
Towards Agile Language Engineering
Daniel A. Sadilek Markus Scheidgen

Guido Wachsmuth
Stephan Weißleder

Humboldt-Universität zu Berlin
Unter den Linden 6

D-10099 Berlin, Germany
{sadilek|scheidge|guwac|weissled}@informatik.hu-berlin.de

December 15, 2008

Abstract

Language engineering is software engineering concerned with com-
puter languages. Agile language engineering is the result of adapting
agile principles to language engineering. An agile language engineer-
ing process is geared to ever changing requirements and fosters higher
language quality, software quality, and developer productivity. It pro-
vides short iteration cycles, intensive user integration, control over
frequent changes, and continuous delivery of valuable language tools.
In this paper, we point out technological premises for agile language
engineering; and we sketch how they are met by well-known as well as
upcoming techniques and tools from language engineering.

1 Introduction
Languages change [16]. A language description, as any other piece of soft-
ware, is designed, developed, tested, and maintained. But above all, the
purpose and scope of languages change and languages have to be adapted.
This applies especially to domain-specific languages that are designed for a

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127600882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

specific purpose without exact prior knowledge about this purpose. Lan-
guage tools should not be built from scratch every time a language changes.
Also, models and programs written in a language are valuable assets that
must be preserved and adapted when the language changes. Language en-
gineering [24, 9] addresses the quality of languages and the productivity of
language development. In this paper, we address the problem of enabling
language engineering to facilitate frequent changes.

Software engineering methodologies and techniques can be classified in
a continuum spanning from predictive to adaptive. A predictive process is
thoroughly planned and adapts hardly to changing requirements. In contrast,
adaptive processes can easily adapt to changing requirements—the future is
not planned in detail. Still, these processes can be well-defined. In 2001, the
Agile Manifesto [7] defined principles for agile software development. Agile
software development lies on the adaptive side of the continuum and is based
on evolutionarily changing the software product in short iterations. The user
is steadily involved and there is a usable, valuable software product at the
end of each iteration.

In this paper, we apply agile principles to language engineering. Agile lan-
guage engineering provides short iteration cycles, intensive user integration,
control over frequent changes, and continuous delivery of valuable language
tools.

In the following section, we introduce some necessary terminology. In
Section 3, we present the agile principles for language engineering. In Sec-
tion 4, we describe how an agile language engineering process may look like
in general, and we demonstrate by an exemplary language how it can be
realised with metamodelling technologies in particular. We discuss related
work in Section 5 and conclude with our contribution and future work in
Section 6.

2 Preliminaries
In this section, we give a short introduction into the foundations of agile
language engineering. We discuss the different aspects of a language, several
formalisms for describing a language, and domain-specific languages.

2

2.1 Language Aspects
Generally, a language comprises two aspects: the appearance and the mean-
ing of language instances. Descriptions of computer languages reflect these
aspects: The concrete syntax of a language describes the appearance and
structure of language constructs. The abstract syntax specifies only the struc-
ture of language constructs. The semantics of a language describes the mean-
ing of language constructs with respect to a semantic domain. These descrip-
tions are closely related: Semantics are expressed in terms of the concrete or
abstract syntax. Since both concern the structure of the language, concrete
and abstract syntax interdepend. Language tools are derived from language
descriptions—partly automatically generated, partly by hand. Keeping the
different language descriptions, language instances, and language tools in
sync is one of the serious challenges to language engineering.

2.2 Language Formalisms
Existing language engineering technology relies on different language models
to describe language aspects. The underlying formalism (grammars, graph
grammars, or metamodels), can be used to classify existing language engi-
neering environments into grammar ware, graph grammar ware, and model
ware [24]. In this paper, we touch on all formalisms but concentrate on model
ware.
Grammars and related formalisms are the traditional way to specify the

concrete and the abstract syntax of textual computer languages. Various
formalisms exist to express the semantics of such languages in a denotational,
axiomatic, or operational way. This can be done in terms of either the
abstract or the concrete syntax of the language.
Graph grammars extend the idea of grammars to graphs. The (graph-

ical) syntax of a language can be described by the production rules of a
graph grammar [39]. The semantics of graphical languages can be defined
operational or as a transformation to another language with triple graph
grammars.

A metamodel is an object-oriented specification of the abstract syntax of a
language. They are used in Model Driven Engineering (MDE) where models
are the primary engineering artefacts. For textual languages, a grammar and
a mapping between syntax trees and language instances can describe the con-
crete syntax of the language [4, 59] as done for the OCL standard [36] or for

3

SDL [17]. For graphical languages, a mapping between language constructs
and graphical elements defines the concrete syntax. Language semantics can
be expressed in denotational or operational semantics by model transforma-
tions.

2.3 Domain-Specific Languages
A domain-specific language (DSL) is a special type of language used to in-
crease the productivity of software developers. In contrast to general purpose
languages, a DSL provides domain-specific terms that cannot be applied gen-
erally but only in a limited domain. DSLs allow for more precise and readable
expressions than general purpose languages. This enables domain experts
with less programming experience to participate in software engineering.

The domain-specific nature of a DSL makes it subject to frequent change.
Typically, concepts, concrete syntax, and semantics of a DSL are not clear
in the first place. Prototypical language tools should be delivered to the
domain experts as early as possible. Usage of these prototypes as well as
communication between domain experts and language engineers reveal nec-
essary changes. Changes should then result in new prototypes. Especially
in the beginning, several changes can be expected. Therefore, an iterative
development process is desirable. Language concepts must be easy to define
and easy to change.

Usually, the application range and reuse of a DSL is limited. Neverthe-
less, a wide variety of language tools is needed: Editors are used to create
language instances; compilers or interpreters are needed to execute or simu-
late language instances; debuggers and analysis tools are other useful tools
for software developers. Therefore, the development of language tools for a
DSL must be efficient. This suggests generic or generative solutions.
Agile language engineering as discussed in this paper is particular useful

for the development of DSLs. It provides short iteration cycles, intensive
user integration, control over frequent changes, and continuous delivery of
language tools.

3 Agile Principles for Language Engineering
The Manifesto for Agile Software Development [7] embraces the fundamental
principles underlying agile software development methods. In this section, we

4

examine the questions that arise from applying these principles to language
engineering. We discuss these questions in the following section.

Agile software engineering emphasises individuals and interaction, par-
ticularly user collaboration. Face-to-face conversation is considered the most
efficient and effective way to convey information. This comprises both,
engineer-engineer and user-engineer conversation. What roles are involved in
agile language engineering? What are the typical scenarios? How are roles
allocated in these scenarios? What are the consequences for the engineering
process? We study these questions in Section 4.1.

Agile software engineering requires an engineering process. So does agile
language engineering. How could an agile language engineering process look
like? Which steps does it consist of? How are the roles assigned in the
process? We propose a process answering these questions in Section 4.2.

In agile software engineering, working software is the primary measure of
progress. It should be delivered frequently and as early as possible. Working
software means that the user can execute and use the delivered software.
Languages are not executable and usable themselves. What does working
language mean? How can we make a language work? In Section 4.3, we
investigate these questions in detail.

Another principle in agile software engineering is the continuous delivery
of valuable software. Testing ensures the quality of software and is an integral
part of an agile process. What does testing mean for languages? When is
a language test correct? What are appropriate test cases? How can a test
suite be evaluated? We discuss these questions in Section 4.4.

Agile software engineering welcomes changing requirements, even late in
development. Furthermore, frequent change is encouraged in order to ensure
technical excellence, good design, and simplicity. Automated refactoring
guarantees certain preservation properties and helps to control changes in
agile processes. How can we control language change? What are the impli-
cations of the interdependencies of language aspects and tools? What impact
does language change have on language instances? We consider these ques-
tions and stepwise language adaptation as a way to control language change
in Section 4.5.

5

4 Agile Language Engineering Applied
In this section, we describe how agile language engineering can be realised
using tools from the field of model ware. Thus, we answer the questions
formulated in the last section. In each of the following subsections, we first
discuss one of agile language engineering’s aspects in a general fashion and
then exemplify it. For this, we use a running example from the earthquake
detection domain.

Example 1 (Domain earthquake detection) At the present time, our
research group is working on SAFER [46], a multidisciplinary project of
the European Union involving institutions from computer science, multiple
geologic disciplines, meteorology, and disaster management. In this project,
we develop technologies for earthquake early warning systems. An integral
part of such a system is an earthquake detection algorithm, which constantly
processes data coming from an acceleration sensor. Developing an earthquake
detection algorithm requires knowledge from seismologists. In [43], we suggest
enabling seismologists or other domain experts to directly contribute to a
system model by providing them with a language they understand easily. This
calls for a DSL with concepts that the seismologists know and with a concrete
syntax that matches their intuition.

4.1 Language Engineering Roles
Agile language engineering is concerned with three roles: Domain experts
(DE) possess the knowledge necessary to develop software in a specific do-
main. For example, they can formulate requirements for the software. Often,
domain experts are also users of the software. The software is implemented
by software engineers (SE). In the context of agile language engineering, a
software engineer is also a language user (LU = SE), namely the user of a
DSL, which should ease software development The DSL itself is developed
by a language engineer (LE).

Of course, each of these roles cannot only be played by one person but
also by a group of people. Moreover, one person or group can also play
multiple roles at once; we distinguish two development scenarios:

6

1. DE, [SE = LE]:
Software engineers develop the language they use. Typically, the used
language is a so-called internal DSL that is defined inside a flexible,
metaprogrammable host language. Here, language engineering is an in-
tegral part of software engineering. The software engineer instruments
abstraction mechanisms of the host language to create software more
efficient, maximising reuse. This is for example the case in language-
oriented programming [15].
In this scenario, domain concepts are first realised as software arte-
facts—expressed with the DSL as it looks so far. If a domain concept
has proved its value, it is incorporated into the DSL.

2. [DE = SE], LE:
Domain experts develop (parts of) the software themselves; they are
integrated into the software engineering process. For this, they need a
language. Typically, the used language is a special external DSL with
limited application scope. An external DSL, in contrast to an internal
DSL, is an independent language that can have a concrete syntax built
specially to match the domain experts’ intuition.
In this scenario, new domain concepts are identified by the domain ex-
perts. Given that the DSL—due to its limited application scope—does
not allow to express the new concepts with existing ones, they are
directly incorporated into the DSL by the language engineer.

Both scenarios can benefit from agile language engineering because languages
are continuously extended during software development [54] in both scenar-
ios.

Example 2 (Role assignment) In the earthquake detection example, the
domain expert is a seismologist. As already stated, we want to enable him to
directly express earthquake detection algorithms with a DSL. This corresponds
to the second scenario (DE = SE, LE): By using a DSL, the seismologist also
acts as a software engineer; but he depends on a language engineer to define
and extend the DSL he uses.

4.2 An Agile Language Engineering Process
Realising the vision of agile language engineering requires an engineering
process. Extreme programming [6] is an established process for agile soft-

7

release

Agile
“Rhythm”

testi
ng

refactoringus
er

 s
to

ry
us

er acceptance test

realisation

Language User

Language Engineer

Figure 1: Agile language engineering process.

ware engineering. Its most distinctive feature compared to more predictive
engineering processes, like the waterfall model, is the fast succession of small
iterations. In each iteration, the software product is extended with a new
function. This function is tested with automated tests and then presented to
software users in acceptance tests. They can express their change requests in
the form of user stories, which are considered in the next iteration. Inspect-
ing architecture and design of the software is a regular task. This leads to
changes of already implemented parts of the software. Therefore, refactoring
is an integral part of agile software engineering.

We propose to apply a very similar process for agile language engineering
(Figure 1). The differences lie in the tasks performed in the process steps
and in the artefacts created. User stories given by language users act as
input into the process. User stories are about what language users want to
model with the language, how models should look like, what they should
mean, and how tools should behave. From these stories, language engineers
derive a realisation of the language. Such a realisation contains declarative
models that language tools can be generated from automatically. Addition-
ally, such a realisation can contain manually implemented tools or manual
modifications of generated tools (cf. Section 4.3). Like with agile software
engineering, the realisation is tested with automated tests and then presented
to language users in acceptance tests. However, it is more complex to test

8

a language than testing ordinary software: all language aspects (abstract
syntax, concrete syntax, semantics) and all tools for the language must be
tested (cf. Section 4.4). If errors are found or change requests arise, the
language must be adapted. This, again, is more complex for languages than
for ordinary software. The specifications of the different language aspects
are interdependent and already existing language instances and tools must
be co-adapted when the language changes (cf. Section 4.5).

Example 3 (Creating the first model sketch) The stream-oriented lan-
guage is developed iteratively. A seismologist, who plays the role of a language
user, and a computer scientist, who plays the role of a language engineer, start
the first iteration with discussing some example uses of the new language.
For the beginning, they concentrate on one specific detection algorithm called
STA/LTA [48]. The seismologist sketches his ideas in an informal ad-hoc
concrete syntax on a whiteboard (Figure 2). It is part of a larger user story
about how this model is used, e.g. how it is executed.
The intention behind the model is as follows: Streams come out of sensor

sources, go through filters and then into sinks. Sensor readings from an
acceleration sensor are piped through a filter (STA/LTA) that realises the
earthquake detection. The filter forwards sensor readings that are considered
to be the beginning of an earthquake and blocks all others. The frequency of
sensor readings is limited by another filter, detection time filter, before they
stream into the stream sink detection warning. This stream sink generates
an earthquake warning whenever a sensor reading streams in, for example by
activating a warning horn.
The seismologist wants to control timing properties of the STA/LTA de-

tection and of the detection time filter. Furthermore, he wants to control
the sound level of the detection warning. For this, seismologist and language
engineer include corresponding parameters in the model.
In the next step (Section 4.3), the language engineer will derive the first

version of a stream-oriented language from the model sketch. In a later step
(Section 4.4), the model sketch itself will be represented formally and will be
used to test the metamodel of the language.

9

Figure 2: First sketch of an earthquake detection algorithm.

4.3 Make a Language Work
Agile engineering is about working software. We define a language as work-
ing, if tools exists that enable users to create, analyse, transform, and run
instances of that language. The concrete set of tools depends on the nature
of the language. If we have to produce a working language right from the
beginning, we need technology that allows us to create language tools fast
and based on potentially incomplete information. Consequently, we need
toolkits and frameworks that allow us to describe language tools on a high
level of abstraction, without the need to fill in all the details right from the
beginning.

Existing language engineering frameworks consist of meta-languages and
meta-tools. Meta-languages allow to describe distinct language aspects.
Meta-tools can be used to automatically derive language tools from these
descriptions in a generic or generative way. The frameworks thereby allow
an efficient generative engineering of language tools. To create a full tool-
chain of language tools, we have to use several frameworks in combination.

Examples for language frameworks for grammar-based language engineer-
ing are the ASF+SDF Meta-Environment [52], LDL [40], and The Eclipse
IMP [22]. Model-based frameworks are usually based on a metamodelling
language similar to OMG’s MOF recommendations. Important work in this
area are DSL-development frameworks like GME [3] or XMF [14] (originated
in the MMF approach [13]), and metaprogramming facilities like MPS [15],

10

Kermeta [50], MetaEdit+ [34], AToM3 [35], AMMA [42], or openArchitec-
tureWare [1]. Other frameworks are based on graph grammars and graph
transformations: Graph REwrite And Transformations (GReaT) [12], Dia-
Gen [53], or Tiger [49]. These frameworks allow to generate editors, analysers,
interpreters or simulators, and compilers or code-generators.

Example 4 (Metamodel for the stream-oriented language) The lan-
guage engineer in our example needs to create an editor and a simulator for
the stream-oriented language. We choose a metamodel based approach for this
example and use existing metamodel based frameworks to build a graphical
editor and simulator. First, the language engineer derives a first metamodel
version based on the first model sketch in Figure 2. This metamodel contains
basic stream-oriented concepts that are necessary for the development of an
earthquake detection algorithm. The language engineer works agile and it-
eratively and, thus, constructs a minimal metamodel with only indispensable
elements like that in Figure 3. At this stage, the metamodel is kept so simple
that it hardly allows to formulate any other model than that in Figure 2.

Example 5 (Editor for the stream-oriented language) In order to cre-
ate an editor that supports a graphical concrete syntax, the language engineer
uses the Eclipse Graphical Modelling Framework GMF [20]. He models the
graphical concrete syntax with meta-languages of GMF. He defines the sym-
bols (boxes and circles) and their connections (arrows) in a “graphical model”
and maps them to classes and associations of the metamodel in a “mapping
model”. From these models of the concrete syntax, GMF generates an editor
that allows to create and manipulate models. Figure 5 shows a model created
with this editor.

Example 6 (Simulator for the stream-oriented language) To build a
simulator, the language engineer uses the techniques described in [47]. In that
paper, the authors present a framework that allows to augment a metamodel
with a semantics description. Based on this description, the framework can
generate a simulator for models that are instances of the metamodel. The
language engineer simply has to describe the language’s operational semantics
with operation signatures and implementations for these operations. The op-
eration signatures are placed in the existing metamodel classes. The operation
implementations are defined with an action language, similar to UML activ-
ities. Based on operation signatures and implementations, the framework

11

can generate a model simulator that executes the operation implementations
on a given model and thereby interprets the model based on the described
semantics.
The metamodel in Figure 3 shows such operation signatures and further

utility classes necessary to describe the operational semantics. Figure 4 shows
the implementation of the operation StaLta:consume(value). When sim-
ulating the model from Figure 5, this operation is called by the acceleration
sensor for each measurement of seismic activity. This simulates a data stream
from the sensor to the connected STA/LTA filter. The filter computes a short
term average and a long term average over the arriving values. To realise
this, a StaLta instance uses two instances of the utility class MovingAverage
to store values and compute averages over a user-defined number of measure-
ments (time). The size of the averages is provided by the language user
through StaLta’s attributes. After calling MovingAverage:move(value) on
both averages, StaLta:consume(value) checks if seismic intensity raises by
comparing both averages. A significant raise indicates an earthquake. In
such cases, the filter calls consume(value) on the connected detection warn-
ing sink. Based on the metamodel and the operation descriptions, we can
derive a simulator for early warning systems described in this version of the
stream-oriented language.

In the example, both editor and simulator are automatically generated
from language descriptions based on the according frameworks. This allows
to build language tools fast, but also requires later manual work to integrate
tools tightly. On the one hand, we need the flexibility to choose from several
frameworks depending on concrete syntax (e.g. graphical or textual syntax)
and language semantics (e.g. operational or translational semantics). On
the other hand, not every framework is already integrated with every other
framework. Therefore, integrating frameworks or generated tools will be a
necessary burden of applying agile language engineering. Furthermore, we
cannot expect that all tools can be fully automatically generated. Specific
language requirements will always require manual alterations of the generated
tools.

12

basic concepts

concepts for a
first simple domain specific scenario

necessary for operational semantics

DetectionWarning

+w arningLevel : SoundLevel

+consume(value : String)

StaLta

+staTime : Integer
+ltaTime : Integer

+push(value : Object)
+consume(value : Object)

Sink

+consume(value : Object)

MovingAverage

-values : Integer [0..*]
-time : Integer

+move(value : Integer)
+getCurrentAvr() : Integer

+push(value : Object)

Source

SensorSource

+push(value : Object)

DetectionTimeFiler

+w aitTime : Integer

Filter

+sink+source

+sta

+lta

Figure 3: A metamodel with operations for the stream-oriented language.

=sta =value

call: move

put the new value
into the moving
averages

=lta =value

call: move

(sta.getCurrentAvr() / lta.getCurrentAvr()).round() > 4

check the sta lta condition

=sink ='earthquake'

call: consume

emit an object[true]

[false]

Figure 4: Behaviour description for the operation StaLta.consume(value)
in the metamodel.

13

Figure 5: Screenshot of an editor generated with GMF. It shows the first
model expressed in the stream-oriented DSL.

14

4.4 Test Support for Languages
Testing is one of the most important techniques to assess the quality of
a system [8]. The test execution is sub-divided in test cases. The basic
structure of each test case is as follows: A sequence of test input stimuli
is fed into the system under test (SUT). Then, the actual behaviour of the
SUT is compared to the expected behaviour. If they are different, then the
test case detected a fault. The set of all test cases for a SUT is a test
suite. Coverage criteria are used to define a certain level of quality for a test
suite [51]. They can also be used to define so-called test goals that are used
for test case generation [21].

There are several ways to integrate testing in the overall engineering pro-
cess. The Agile Manifesto proposes early testing. For example, this is realised
in extreme programming [6], where a test is written prior to the function of
the SUT it tests.

4.4.1 Testing in Agile Language Engineering

In this section, we suggest how to apply the mentioned aspects of testing to
agile language engineering. In the case of a language, the SUT consists of
the language description and language tools. We test the different aspects
of a language separately: we create tests for (1) the abstract syntax, (2)
the concrete syntax, (3) the semantics, and (4) the user acceptance of the
language tools. Note that these tests are executed in each iteration of the
agile language engineering process.

(1) The abstract syntax specification of a language has to be tested in
order to validate its expressiveness. One possibility to do this is by giving
positive and negative example instances of the language. Each example in-
stance forms one test case. When executing test cases, it is checked whether
positive (negative) example instances do indeed (not) comply to the abstract
syntax of the language. A tool realising this approach is MMUnit [45]. It
provides an editor for specifying example instances of the language under
test. MMUnit is an Eclipse plug-in based on EMF. It generates JUnit test
cases that can be easily integrated in an overall testing process.

(2) The concrete syntax of a language manifests in an editor. Conse-
quently, tests for the concrete syntax description are GUI tests. These GUI
tests can be based on a capture-replay-mechanism, which records the manu-
ally executed test cases of the domain expert to repeat them automatically.

15

This technique has drawbacks if the design of GUI components is changed
often. Another way to implement automatic GUI tests is the automatic gen-
eration of test cases by analysing the concrete syntax description and the
used GUI generators. There are some tools that support automatic GUI
testing, e.g. Abbot [2].

(3) The tests for the semantics of a language depend on how the se-
mantics is described. Here, we deal with two kinds of semantics descriptions:
interpretative and transformative. With an interpretative approach, language
instances can be interpreted and executed directly. For testing, we create
an example instance and input data, feed them into the interpreter, and
compare expected and actual behaviour. With a transformative approach,
language instances are translated into an instance of another language, the
target language. This transformation has to be tested, e.g. with an auto-
mated approach [10]. If the target language’s instance is executable, the
result of the transformation can be tested, as well—like with an interpreta-
tive approach. For some approaches of semantics descriptions, test cases can
be automatically derived. For instance, when activity diagrams and OCL
describe the semantics, we can use approaches that generate test cases from
UML flow graphs and OCL [29, 58].

(4) All of the preceding test approaches can be automated to a certain
extent. The user acceptance tests, however, have to be performed manually
by a user. Informal aspects like the design (layout, colour) of dialogues can
influence the acceptance of language tools.

4.4.2 Evaluation of Tests

A test suite has a certain fault detection ability—depending on the test cases
included. Since testing cannot prove the absence of faults, this fault detec-
tion ability is used as a notion for quality. The quality of the test suite is
measured with coverage criteria. Although there is no proof for a relationship
between coverage criteria and fault-detection ability, the satisfaction of cer-
tain criteria is widely accepted as sufficient—even for safety-critical systems.
Coverage criteria are classified based on their foundation: structural [30],
functional [30], or fault coverage [19, 38], for instance. The language aspect
dictates the coverage criteria:

(1) Tests of the abstract syntax of a language target language structure.
Consequently, for such test cases we apply structural coverage criteria, e.g.,

16

Figure 6: A screenshot of a test model in MMUnit.

Model Fragment Coverage Criterion [10], Association-end Multiplicity Crite-
rion, or Class Attribute Criterion [5].

(2) Coverage criteria for concrete syntax tests depend on the nature of
the syntax. For instance, for a graphical concrete syntax, coverage criteria
for GUI tests can be used: e.g., Event Coverage and Invocation Coverage
demand that all components of a GUI are invoked at least once [33].

(3) Coverage criteria for language semantics tests depend on the nature
of the semantics. Executable languages require functional criteria [30], for
instance. One such criterion is Modified Condition Decision Coverage [11].
It is widely accepted, e.g., required for software quality in airborne systems
and equipment certification (standard RTCA/DO-178B). For other kinds of
semantics specifications (e.g., rule-based), other coverage criteria are appro-
priate: e.g., Rule Coverage Criterion or Context-Dependent Rule Coverage
Criterion [26].

(4) As mentioned above, user acceptance depends on informal aspects like
the design of language tools. Therefore, coverage criteria cannot be applied.

Example 7 (Use of MMUnit to test the abstract syntax) In our ex-
ample, the language engineer uses MMUnit to test the abstract syntax of the
stream-oriented language. The stream-oriented language allows to describe
connected sources and sinks. One restriction is that each source must have ex-
actly one sink. To test this restriction, the language engineer defines positive
and negative example instances of the stream-oriented language in a so-called

17

test specification (Figure 6): The test specification contains arbitrary and
forbidden elements—marked with a dashed and a thick border, respectively.
The test specification enforces that each source has exactly one sink by declar-
ing that oWarning2 (a second sink of oTimeFilter) is forbidden. Since the
necessary multiplicities between Source and Sink are missing in the designed
metamodel (cf. Figure 3), MMUnit does not reject the forbidden model. This
is a fault. Consequently, the metamodel has to be corrected.

Example 8 (Application of structural coverage criteria) We use the
coverage criterion Class Coverage with the MMUnit test specification: it cov-
ers 100% of the non-utility classes of the metamodel from Figure 3. Now,
we apply the coverage criterion Class Attribute Coverage: Because an in-
stance of class Sink can reference an instance of class Source and there are
3 non-abstract sub-classes of Sink and 3 of Source, there are 9 possible com-
binations for an instance of Sink referencing an instance of Source via the
attribute source. Since the test specification uses only 3 of them, it reaches
only about 33%.

Example 9 (Application of functional coverage criteria) We use cov-
erage criteria for a certain kind of flow graph: activity diagrams (Figure 4).
For testing the stream-oriented language, domain expert and language engi-
neer create a test set-up for StaLta::consume(value). This set-up contains
a sequence of low input values. Consequently, domain expert and language
engineer observe that the STA/LTA condition is always evaluated to false
but never to true. Therefore, the test uses just 5 out of 6 transitions and
reaches about 83% Transition Coverage. In the following, domain expert and
language engineer add a high test input value to the test input sequence so
that the STA/LTA condition is evaluated to true. Therefore, the test covers
100% of the transitions.

4.5 Language Adaptation
In an agile development process, change is encouraged. This holds for agile
language engineering as well. In this section, we discuss causes and locations
for language changes, the meaning of change to languages, and possibilities
to support change in an agile language engineering process.

18

4.5.1 Language Change

Once a language is used, either in projects or in its tests, it becomes subject
to change. Actually, development is permanent change: Alternative designs
are explored in order to meet requirements. Well-known solutions are cus-
tomised for particular problems. New requirements are implemented and
old requirements may change. Thus, the language has to change. Redesign
arises due to a better understanding or to facilitate reuse. Errors are discov-
ered and corrected. Thereby, the language is typically changed stepwise in a
manual ad hoc fashion [25].

Change affects all aspects of a language: For instance, language usage
might reveal new requirements on the concrete syntax. As most requirements
relate to language concepts, the abstract syntax is subject to frequent change
due to evolving requirements. The same holds for language semantics since
requirements related to a language concept are commonly concerned with
its meaning as well. Thereby, changing one aspect of a language affects
the others. This holds particularly with regard to the abstract syntax of a
language. Here, changes are usually propagated to the highly related concrete
syntax and to semantics descriptions typically expressed in terms of abstract
syntax constructs.

Furthermore, language change propagates along the meta-dimension [16]
causing inconsistencies between the language and its instances. In general,
language instances co-change with the syntactical aspects of the language.
Additionally, instances might co-change with language semantics in order to
preserve the original semantics.

In addition to instances, co-change affects language tools. These tools
contain some aspects of a language implicitly. For example, parsers define the
concrete and abstract syntax implicitely. Editors include at least a concrete
syntax definition. Additionally, an editor might include an abstract syntax
for outline views and static semantics for semantic analyses. Tools have to
co-change with language specifications concerned with those aspects. For
purely generic approaches, co-change is a non-issue. Here, tools are fully
specified by the language description itself.

In other approaches, tools may be changed independently by hand causing
inconsistencies between tools and language specifications. These inconsisten-
cies often cause irremediable erosion where language specifications or tools
are not longer updated [16].

19

4.5.2 Agile Adaptation

As we mentioned before, language change arises permanently. In agile lan-
guage engineering, language change is accepted and systematically managed.
Thereby, language erosion can be avoided.

For software engineering, automated transformations for code refactor-
ing [18, 37] enables agile processes by handling dependencies and widespread
changes. A refactoring guarantees behaviour preservation and states ex-
plicit properties of a change performed in terms of pre- and postconditions.
Nowadays, automated refactoring is integrated in modern IDEs for various
programming languages.

For agile language engineering, transformational language adaptation is
essential. An adaptation defines several pre- and postconditions as well as
its effect in terms of a transformation step. Each adaptation ensures par-
ticular semantics preservation and instance preservation properties [25, 56].
These properties define the quality of change and indicate the need for co-
adaptation. Tool support for adaptation exists for grammar-based [28] and
model-based language descriptions [55].

Each adaptation indicates co-adaptation needed for instances and other
language definitions. In most cases, co-adaptation can be achieved au-
tomatically. Automated co-adaptation can be provided for language in-
stances [27, 56] and semantics descriptions [31, 32]. Hence, language de-
scriptions and instances are kept in sync and language erosion is prevented.
Furthermore, transformational adaptation makes language change explicit
and provides documentation and traceability. For some change, manual
adaptation remains feasible. In this case, we advice small changes in order
to keep co-adaptation manageable and to avoid language erosion.

Once a language description is adapted, either by hand or by tools, the
development cycle starts over. In order to make the language run, other
language descriptions and language tools might need co-adaptation. This is
achieved by automated co-adaptation steps, by manual adjustment of generic
solutions, or by completely manual co-adaptation. Then, the new language
needs to be tested again. The language instances in the test set have to be co-
adapted. Thereby, some instances might get obsolete or new test cases might
be needed. Change, adaptation, and co-adaptation remain manageable due
to small adaptation steps and frequent repetition of the development cycle.

Example 10 (Adaption of the stream-oriented language) The stream-
oriented language can be extended in several ways: First, connections between

20

sources and sinks become explicit. Therefore, the language engineer turns the
corresponding association into a class. The adaptation of the metamodel and
the co-adaptations of the semantics description and of language instances are
achieved completely by automated transformations. Then, sources are allowed
to connect to more than one sink and vice versa. This is done by generalis-
ing the corresponding association with help of an automated transformation.
Language instances are automatically co-adapted. Since the language engi-
neer has to define the meaning of possibly new instances, language semantics
need to be extended manually. In a further step, the language user wants
to integrate warnings originating from several sensors by a consensus algo-
rithm. Therefore, the language engineer introduces consensus filters as a new
language concept. Again, adaptation is achieved automatically. It does not
invalidate language instances. Semantics are extended manually to specify the
meaning of the introduced concept. Next, the language engineer increases the
expressivity of the language by introducing filters with user-definable expres-
sions. The language user experiments with these new filters and recognises
the need for internal states and explicit buffers in these filters. Like for the
introduction of consensus filters, both adaptations do not invalidate existing
language instances. Semantics need to be extended manually for the new
language constructs.

5 Related Work
5.1 Community Process
Most multi-purpose languages are developed within a community process.
Multi-purpose languages are used by a larger community. A community
process allows to react to developments and flows within that community.
Examples are the development of UML recommendations within the OMG
or the advancement of Java through the Java community process. Commu-
nity processes are heavyweight processes. Specification and implementation
of language and language tools are separated. Scope and size of languages
and process cause many problems. The needs of many people have to be uni-
fied. This requires time and lots of compromises. Backward compatibility is
always a limiting factor. There are often wanted or unwanted discrepancies
between language specification and tools from different vendors implementing
it. But, the scope and size of community processes are also its biggest advan-

21

tage. For example, the bigger market for multi-purpose languages allows for
manual implementation of very sophisticated tool-support. Agile language
engineering, as proposed in this paper, is the contrary form of language engi-
neering and relies on cheaply deriving tool-support from declarative language
models.

5.2 Internal DSLs
Using internal DSLs almost feels like writing in a new language—although
you are just using a normal multi-purpose programming language. There
are particular programming languages that are suited for internal DSLs, be-
cause these languages provide a very flexible concrete syntax and exten-
sive metaprogramming facilities. Example languages are Ruby, Smalltalk, or
Lisp. All these languages are vividly used for internal DSLs.

Besides existing programming languages, there are several metaprogram-
ming languages based on MOF-like metamodelling mechanisms, that can be
used for internal languages or are tightly connected to external language de-
velopment. Such languages are used in the XMF framework [14], the Meta
Programming System (MPS) [15], and Kermeta [50].

Internal DSLs are an inevitable consequence of agile engineering and con-
tinuous refactoring. Engineering with internal DSLs can be understood as a
weak form of agile language engineering that requires the language user to
be a software engineer.

5.3 Language Workbenches
In contrast to internal DSLs, external DSL development requires to build
languages with their own syntax and all tools necessary. To ease the develop-
ment of such languages and allow rapid prototyping for languages, language
workbenches and language frameworks offer sets of tools and metalanguages
to describe different language aspects and create tools from these descrip-
tions.

Examples for these workbenches and frameworks based on grammars are
the ASF+SDF Meta-Environment [52], LDL [40], and The Eclipse IMP [22].
Model-based frameworks are GME [3] or XMF [14] (originated in the MMF
approach [13]), and metaprogramming facilities like MPS [15], kermeta [50],
MetaEdit+ [34], AToM3 [35], AMMA [42] and ATL [23], or openArchitec-
tureWare [1]. Other workbenches and frameworks are based on graph gram-

22

mars and graph transformations are Graph REwrite And Transformations
(GReaT) [12], DiaGen [53], Moses [41], or Tiger [49].

These workbenches and frameworks can be used for agile language en-
gineering or to realise the vision of language-oriented programming [15].
Language-oriented programming combines multiple domain-specific languages
and their development with the actual software development. When an ab-
straction is identified, it is directly integrated into the project’s DSLs and
used right away. Creating DSLs becomes a daily habit as creating APIs,
libraries, or classes is in today’s software engineering. Agile language engi-
neering can complement agile software engineering using language-oriented
programming.

6 Conclusion
6.1 Contribution
In this paper, we applied agile principles to language engineering. We pointed
out the different roles in language engineering, typical development scenarios,
and consequences for user collaboration throughout the engineering process.

We exemplified agile language engineering for the development of a stream-
oriented language from the domain of earthquake detection. Based on this
example, we showed how agile language engineering can be applied by util-
ising existing language engineering techniques. We investigated solutions
to efficiently develop language tools. We are concerned with the testing of
language aspects and the evaluation of language tests. Stepwise language
adaptation was discussed as a way to control frequent language change and
to avoid erosion between language specifications, tools, and instances. In
general agile language engineering can allow to efficiently engineer languages
that change frequently. Therefore, this approach is particular useful for de-
veloping DSLs.

Thereby agile language engineering presents only engineering process
principles and the general course of action. For every language, specific
language frameworks have to be combined to find a specific agile language
engineering process. We want to stress that the presented examples and uses
meta-languages and tools only constitute an example application of agile
language engineering principles.

23

6.2 Future Work
The agile principles discussed and applied to language engineering in this
paper are only a first step towards agile language engineering. Now we need
formal studies, involving real world languages. This does not only concern the
language engineering itself, but also the software engineering that is based
on the developed languages. For user collaboration, further investigations
about the interactions between agile language engineering processes and agile
software engineering processes are needed. Based on the general process
presented in this paper, more concrete agile processes have to be designed
and evaluated.

We listed some of the growing number of language frameworks and work-
benches. To allow the efficient development of highly integrated tool chains,
we need to find generic interaction and integration mechanisms between dif-
ferent language engineering frameworks and concrete language tools. Lan-
guage workbenches are a beginning, but the possibilities to integrate tools
created with different technologies are limited. The integration of frame-
works and tools for several language aspects also influences automatic tests
for language tools and adaptation and automated co-adaptation. Further-
more, frameworks for automated tests and co-adaptation have to be devel-
oped for all the used meta-languages and must also be applicable to manually
altered generated language tools.

References
[1] openArchitectureWare, 2008. See http://www.

openarchitectureware.org.

[2] Abbot, 2008. See http://abbot.sourceforge.net/doc/api/abbot/
doc-files/about.html.

[3] Aditya Agrawal, Gabor Karsai, and Akos Ledeczi. An End-to-End
Domain-Driven Software Development Framework. In OOPSLA’03.
ACM Press, 2003.

[4] Marcus Alanen and Ivan Porres. A Relation between Context-Free
Grammars and Meta Object Facility Metamodels. Technical report,
TUCS, 2004.

24

[5] Anneliese Amschler Andrews, Robert B. France, Sudipto Ghosh, and
Gerald Craig. Test adequacy criteria for uml design models. Softw.
Test., Verif. Reliab., 13(2):95–127, 2003.

[6] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000.

[7] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, An-
drew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Mar-
tin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.
Manifesto for Agile Software Development. February 2001. See http:
//agilemanifesto.org/.

[8] Boris Beizer. Software Testing Techniques. John Wiley & Sons, Inc.,
New York, NY, USA, 1990.

[9] Jean Bézivin and Reiko Heckel, editors. Language Engineering for
Model-Driven Software Development, volume 04101 of Dagstuhl Sem-
inar Proceedings, 2005.

[10] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le
Traon. Metamodel-based test generation for model transformations: an
algorithm and a tool. In ISSRE’06, pages 85–94. IEEE, 2006.

[11] John J. Chilenski and Steven P. Miller. Applicability of Modified Con-
dition/Decision Coverage to Software Testing. In Software Engineering
Journal, volume 9, pages 193–200, September 1994.

[12] Alexander Christoph. Great: Uml transformation tool for porting mid-
dleware applications. In Hamid R. Arabnia and Hassan Reza, editors,
Software Engineering Research and Practice, pages 212–219. CSREA
Press, 2004.

[13] Tony Clark, Andy Evans, Stuart Kent, and Paul Sammut. The
MMF Approach to Engineering Object-Oriented Design Languages. In
LDTA’01, April 2001.

[14] Tony Clark, Andy Evans, Paul Sammut, and James Willans. Applied
Metamodeling, A Foundation for Language Driven Development. Xac-
tium, 2004. See http://www.xactium.com.

25

[15] Sergey Dmitriev. Language Oriented Programming: The Next Pro-
gramming Paradigm. onBoard, (1), November 2004. See http://www.
onboard.jetbrains.com/is1/articles/04/10/lop/.

[16] Jean-Marie Favre. Meta-model and model co-evolution within the 3D
software space. In ELISA’03, pages 98–109, September 2003.

[17] Joachim Fischer, Michael Piefel, and Markus Scheidgen. A metamodel
for sdl-2000 in the context of metamodelling ulf. In Daniel Amyot and
Alan W. Williams, editors, SAM, Lecture Notes in Computer Science,
pages 208–223. Springer.

[18] Martin Fowler, Kent Beck, John Brant, William F. Opdyke, and Don-
ald B. Roberts. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, June 1999.

[19] Phyllis G. Frankl and Elaine J. Weyuker. A formal analysis of the fault-
detecting ability of testing methods. IEEE Transactions on Software
Engineering, 19(3):202–213, 1993.

[20] Eclipse Graphical Modeling Framework, 2008. See http://www.
eclipse.org/gmf.

[21] I-Logix. Rhapsody Automatic Test Generator, Release 2.3, User Guide,
2004.

[22] IBM Research. The Eclipse IMP, 2008. See http://www.eclipse.org/
proposals/imp.

[23] Frédéric Jouault and Ivan Kurtev. Transforming models with atl.
In Model Transformations in Practice, volume 3844, pages 128–138.
Springer, 2005.

[24] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering
discipline for grammarware. TOSEM, (3):331–380, jul 2005.

[25] Ralf Lämmel. Grammar adaptation. In José Nuno Oliveira and P. Zave,
editors, FME’01, volume 2021 of LNCS, pages 550–570. Springer, 2001.

[26] Ralf Lämmel. Grammar testing. In FASE’01, volume 2029 of LNCS,
pages 201–216. Springer, 2001.

26

[27] Ralf Lämmel and Wolfgang Lohmann. Format evolution. In RETIS ’01.
OCG, 2001.

[28] Ralf Lämmel and Guido Wachsmuth. Transformation of SDF syntax
definitions in the ASF+SDF Meta-Environment. ENTCS, 44(2), 2001.

[29] Leirios. LTG/UML. See http://www.leirios.com.

[30] Peter Liggesmeyer. Software-Qualität: Testen, Analysieren und Veri-
fizieren von Software. Spektrum Akadamischer Verlag, 2002.

[31] Wolfgang Lohmann and Günter Riedewald. Towards automatical mi-
gration of transformation rules after grammar extension. In CSMR ’03.
IEEE, 2003.

[32] Slavisa Markovic and Thomas Baar. Refactoring OCL annotated UML
class diagrams. In Lionel C. Briand and Clay Williams, editors, MoD-
ELS’05, volume 3713 of LNCS. Springer, October 2005.

[33] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage
criteria for gui testing. In ESEC/FSE-9: Proceedings of the 8th European
software engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engineering, pages
256–267, New York, NY, USA, 2001. ACM.

[34] Meta Case. MetaEdit+, 2008. See http://www.metacase.com.

[35] The Modelling, Simulation and Design lab (MSDL), School of Computer
Science of McGill University, Montreal, Quebec, Canada. AToM3 A
Tool for Multi-Formalism Meta-Modelling, 2008. See http://atom3.
cs.mcgill.ca/index.html.

[36] Object Management Group. Object Constraint Language Specification,
version 2.0, May 2006.

[37] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD the-
sis, University of Illinois at Urbana-Champaign, Champaign, IL, USA,
1992.

[38] Alexandre Petrenko, Gregor v. Bochmann, and Ming Y. Yao. On fault
coverage of tests for finite state specifications. Computer Networks and
ISDN Systems, 29(1):81–106, 1996.

27

[39] Jan Rekers and Andy Schürr. A graph grammar approach to graphical
parsing. In IEEE 11th International Symposium on Visual Languages,
pages 195–202, sep 1995.

[40] Günter Riedewald. The LDL — language development laboratory. In
Uwe Kastens and P. Pfahler, editors, CC’92, volume 641 of LNCS, pages
88–94. Springer, October 1992.

[41] Jorn Janneck Robert Esser. Moses: A tool suite for visual modeling
of discrete-event systems. In HCC’01, pages 272–279. IEEE Computer
Society, 2001.

[42] Davide Di Ruscio, Frédéric Jouault, Ivan Kurtev, Jean Bézivin, and
Alfonso Pierantonio. Extending AMMA for Supporting Dynamic Se-
mantics Specifications of SDLs, 2006.

[43] Daniel Sadilek, Falko Theisselmann, and Guido Wachsmuth. Challenges
for model-driven development of self-organising disaster management
information systems. In IRTGW’06: International Research Training
Groups Workshop. GITO-Verlag, November 2006.

[44] Daniel A. Sadilek and Stephan Weißleder. MMUnit (Unit-Tests for
Meta-Models). See http://mmunit.sourceforge.net.

[45] Daniel A. Sadilek and Stephan Weißleder. Towards Automated Test-
ing of Abstract Syntax Specifications of Domain-Specific Modeling Lan-
guages. In Domain-Specific Modeling Languages (DSML’08) - associated
with Modellierung 2008, March 2008.

[46] SAFER Project. SAFER – Seismic eArly warning For EuRope, May
2007. See http://www.saferproject.net/.

[47] Markus Scheidgen and Joachim Fischer. Human comprehensible
and machine processable specifications of operational semantics. In
ECMDA’07, LNCS. Springer, 2007.

[48] Samuel W. Stewart. Real time detection and location of local seismic
events in central california. In Bull. Seism. Soc. Am., volume 67, pages
433–452, 1977.

28

[49] Gabriele Taentzer. Tiger EMF transformation. http://tfs.cs.tu-
berlin.de/emftrans, 2007.

[50] Triskell Team. Triskell Meta-Modelling Kernel. IRISA, INRIA, 2008.
See http://www.kermeta.org.

[51] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2006.

[52] Mark van den Brand, Jan Heering, Hayco de Jong, Merijn de Jonge,
Tobias Kuipers, Paul Klint, Leon Moonen, Pieter Olivier, Jeroen
Scheerder, Jurgen Vinju, Eelco Visser, and Joost Visser. The ASF+SDF
Meta-Environment: a Component-Based Language Development Envi-
ronment. In CC’01, LNCS. Springer, 2001.

[53] Gerhard Viehstaedt and Mark Minas. Diagen: A generator for diagram
editors based on a hypergraph model. In Amihai Motro and Moshe
Tennenholtz, editors, NGITS, pages 0–, 1995.

[54] Eelco Visser. Domain-specific language engineering. A case study in
agile DSL development. In Ralf Lämmel, Joao Saraiva, and Joost Visser,
editors, GTTSE’07, LNCS. Springer, 2007. to appear.

[55] Guido Wachsmuth. An adaptation browser for MOF. In Danny Dig
and Michael Cebulla, editors, WRT’01: First Workshop on Refactoring
Tools, pages 65–66, 2007.

[56] Guido Wachsmuth. Metamodel adaptation and model co-adaptation. In
Erik Ernst, editor, ECOOP’07, volume 4609 of LNCS. Springer, 2007.

[57] Stephan Weißleder. ParTeG (Partition Test Generator). See http:
//parteg.sourceforge.net.

[58] Stephan Weißleder and Bernd-Holger Schlingloff. Deriving Input Par-
titions from UML Models for Automatic Test Generation. In LNCS
Volume on Models in Software Engineering (MoDELS 2007), 2007.

[59] Manuel Wimmer and Gerhard Kramler. Bridging grammarware and
modelware. In Jean-Michel Bruel, editor, MoDELS Satellite Events,
Lecture Notes in Computer Science, pages 159–168. Springer.

29

