
Abstract State Machines for the Classroom
– The Basics –

Wolfgang Reisig

Institut für Informatik, Math.-Nat. Fakultät II, Humboldt-Universität zu Berlin,
Unter den Linden 6, DE 10099 Berlin, Germany,
reisig@informatik.hu-berlin.de

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127600809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Wolfgang Reisig

. . . we should have achieved a mathematical model of computa-
tion, perhaps highly abstract in contrast with the concrete nature
of paper and register machines, but such that programming lan-
guages are merely executable fragments of the theory . . .

Robin Milner [17]

Summary. Abstract State Machines (ASM) have been introduced as “a computa-
tion model that is more powerful and more universal than standard computation
models” by Yuri Gurevich in 1985.

Here we provide a bunch of intuitive and motivating arguments, and charac-
teristic examples for (the elementary version of) ASM. The intuition of ASM as a
formal framework for an amazingly liberal notion of algorithms is highlighted. Gen-
eralizing variants of the fundamental “sequential small step” version of ASM are
also considered.

Introduction

Many people find ASM difficult to understand. Most of them are convention-
ally educated computer scientists, hence occupied with a bunch of implicit or
explicit assumptions and expectations on “yet another” specification language
or computation model. ASM challenge some of those assumptions and expec-
tations. It is this aspect that makes people struggle when trying to understand
ASM. Would Computer Science education start out with ASM (and there are
many good reasons to do so), people would conceive the basic ideas of ASM
as the most simple and natural approach to the notion of “algorithm”.

This paper addresses the conventionally educated computer scientist.
To meet his or her implicit and explicit assumptions, the first part of this
presentation addresses the intuition and foundations of ASM in great detail
and various aspects. The second part then focuses technical details of the
most elementary class of ASM. The third part considers various variants and
extensions.

I – Intuition and Foundations of ASM

The first Section addresses the fundamental aspects that make ASM a tech-
nique, quite different from other techniques, to describe algorithms or, more
generally, discrete systems. Without going into details, the central idea is high-
lighted, and the ASM approach is embedded into the context of first order
logic and computable functions.

The second Section is devoted to some small examples. As the central idea
of ASM is, to some extent, independent of concrete syntactical representa-
tions, we represent each example in a Pseudocode notation, as particularly

Abstract State Machines for the Classroom – The Basics – 3

intuitive for the respective algorithm. The representation of such algorithms
as syntactically correct ASM is postponed to Sect. 5. As we stick to a version
of ASM in this paper that can be described by transition systems, we start
the Section with this fundamental notion.

Section 3 starts with an investigation on the notion of states. The algo-
rithms of Sect. 2 are use to exemplify how a program is applied to a state.

1 What Makes ASM so Unique?

1.1 A Basic Question

At the first glance, an abstract state machine is just a set of conditional assign-
ment statements. Several extensions of the basis version of ASM have been
suggested, including parallel, distributed and reactive ones. These concepts
are likewise not too new. Some versions do with quantified variables, essen-
tially with “∀x . . .” and “∃x . . .”. Quantified variables usually don’t appear in
programming languages, but specification languages such as Z very well use
quantification. What, then, makes ASM so unique? In what sense are ASM “a
computation model that is more powerful and more universal than standard
computation models”, as Yuri Gurevich has written 1985 already [12]?

1.2 The Central Idea of ASM

The central and new idea of ASM is easily described: It is the systematic way of
how symbols occurring in the syntactic representation of a program are related
to the real world items of a state. In fact, a state of an ASM may include
any real world objects and functions. In particular, the ASM approach does
not assume a symbolic, bit level representation of all components of a state.
Herein it differs from standard computation models – and most obviously to
Turing Machines – where a state is a (structured) collection of symbols. The
designer or user of a Turing Machine or any (more involved) programming or
specification language may very well have in mind a particular meaning of a
symbol. Examples of such symbols include “1”, “∈”, “init” or “millisecond”.
And a model usually makes little sense without this kind of interpretation.
But conventional computation concentrates on the transformation of symbols,
not dwelling too deeply on what they stand for.

1.3 ASM in the Context of Set Theory and Logic

ASM’s manner to relate symbols to their interpretation is not new at all.
One may read the ASM approach as a recommendation to just take seriously,
what formal logic has revealed in the last century. Since Cantor’s definition
of a set to be “any collection into a whole M of definite and separate objects
m of our intuition or our thought” [4], sets entered mathematics in a clear

4 Wolfgang Reisig

and simple way. Tarski, in [21] suggested structures, including functions and
predicates over real world items, as the most general mathematical framework.
First order logic has been developed as a language to define and to analyze
such structures. In close correspondence to this line of development, Gurevich
suggests a further step, introducing algorithms over real world items.

1.4 ASM and Computable Functions

The above considerations rise the question of implementation: In fact, many
algorithms are definable by ASM, but can not be implemented on a com-
puter. Furthermore, many of them aren’t even intended to be implemented.
They rather describe procedures involving real world items. Examples include
the algorithms to use a teller machine to withdraw money from one’s bank
account, or the procedure to press buttons on a highriser’s walls and inside
its lifts, in order to be transported to an upper floor. In any case, ASM is
a specification language to describe the steps of dynamic, discrete systems.
Those systems include in particular the systems that are implementable on a
computer.

Computability theory characterizes the computable functions as a subset
of all functions over the integers. Can the ASM-specifiable algorithms likewise
be described as a subset of a potentially larger class of candidates? In fact,
Gurevich in [13] provides such a characterization for the most elementary
class of ASM. Intuitively formulated, a discrete system can be represented
as a “sequential small step ASM”, if the system exhibits global states and
proceeds in steps from state to state, and if for each step S → S′ holds: To
derive S′ from S, if suffices to explore a bounded amount of information of S.
(Details follow in Sect. 6.3). For other classes of ASM similar characterizations
exist or are under investigation.

1.5 The Future Role of ASM

In the above perspective, the theory of ASM contributes to the foundations
of informatics as a scientific discipline. At the end of the day it may turn
out that ASM (together with various, so far unknown equivalent notions)
provide the adequate notion of “algorithms” (with the important subclass of
the “implementable” algorithms, i.e. the computable functions).

2 What Kind of Algorithms Do ASM Cover?

2.1 Transition Systems

Classical system models of discrete systems assume global states and describe
dynamic behaviour as steps

Abstract State Machines for the Classroom – The Basics – 5

S → S′

from a state S to its successor state, S′. We stick in this paper to systems with
this kind of behaviour. In technical terms, we consider (initialized) transition
systems:

A transition system
A = (states, init, F) (1)

consists of a set states of states, init ⊆ states of initial states, and a next
state function F : states → states.

A run of a transition system is a sequence

S0S1S2 . . .

of states Si with S0 an initial state and Si = F (Si−1) (i = 1, 2, . . .).
One may suggest to reduce the set states to the reachable ones, i.e. to

those occurring in runs. But this set may be difficult to characterize. A a
matter of convenience, it is frequently useful to allow a larger set of states.

The general framework of transition systems requires no specific properties
of states. In particular, it is not required to represent all components of a
state symbolically. The forthcoming examples of – admittedly quite simple –
algorithms yield transition systems that dwell on this aspect.

This general version of transition systems is not new at all: In the first vol-
ume of his seminal opus [15], Don Knuth introduces the notion of algorithms.
As a framework for the semantics of algorithms, Knuth suggests computational
methods. A computational method is essentially what we called a transition
system (2). Knuth additionally assumes terminal states t with F (t) = t, and
calls a transition system A an algorithm if each run of A reaches a terminal
state. The interesting aspect in Knuth’s definition is that it comes without
the requirement of F being “effective”. Quoting [15, p8]: “F might involve
operations that mortal man can not always perform”. Knuth defines effective
computational methods as a special case: A computational method is effective
iff it is essentially equivalent to a Turing Machine or to any other mechanism
for the computable functions. Nowadays, the term “algorithm” is usually used
to denote what Knuth calls an “effective computational method”.

As we did above already, we will use the term “transition system” in-
stead of “computational method”, and “effective transition system” instead
of “effective computational method”.

Transition systems have been generalized in several directions: Non-termi-
nating computation sequences adequately describe behaviors of reactive sys-
tems; the next-state function F has been generalized to a relation R ⊆ Q×Q,
with computation sequences x0x1 . . . where (xi, xi+1) ∈ R. This represents
nondeterminism. Additionally one may require the choice of xi+1 to follow a
stochastic distribution, or to be fair. Some system models describe a single
behavior not as a sequence of states, but as a sequence of actions. The se-

6 Wolfgang Reisig

quence orders the actions along a time axis. One may even replace the total
order by a partial order, representing the cause-effect relation among actions.

All these generalizations of effective transition systems can be reduced to
equivalent conventional effective transition systems, by reasonable notions of
reduction and equivalence. Generalizations of this kind are intended to express
algorithmic ideas more conveniently. They are not intended to challenge the
established notion of effective computation.

We study non-effective transition systems in this paper. The reader may
wonder whether there is anything interesting “beyond” the computable func-
tions. In fact, there is an exciting proper subclass of all transition systems,
called “Sequential Abstract-State Machines”, that in turn properly contains
the effective transition systems.

Yet, to communicate algorithms, we have to represent them somehow.
We may allow for any kind of notation, as most intuitive for the respective
algorithm.

Distributed systems do not canonically exhibit global states and steps.
Consequently, transition systems don’t adequately represent their behaviour.
That kind of systems will shortly be glanced at in part III of this paper,
together with some other extensions of the basic formalism.

The rest of this Section describes a series of algorithms, of which none
is implementable on a computer, but each will turn out representable in the
framework of ASM.

2.2 Set Extension

Let augment be a function with two arguments: The first argument is any
item. The function augment then extends the set by the item. More precisely,
for a set M and an item m, define

augment(M,m) =def M ∪ {m}. (2)

Now we intend to construct an algorithm that extends any given set M
by two elements m and n, using the function augment. The idea is obvious:
In a sequence of two steps, augment one element in each step. We write this
idea down in the usual style of “pseudocode”. To this end we introduce three
variables X, x and y which in the initial state S0 are valuated by M , m and
n respectively. Then the algorithm

begin

X := augment(X,x);
X := augment(X,y);

end.

(3)

applied to S0, terminates in a state S that valuates X by M ∪{m,n}. Notice
that this algorithm can be applied to any set M and any elements m and n.
A bit level representation of M , m and n is not required.

Abstract State Machines for the Classroom – The Basics – 7

2.3 The Tangent Algorithm

In the geometrical plain assume a circle C with center p, and let q be a point
outside C (cf. Fig. 1). Design an algorithm to construct one of the tangents
of C through q . Such an algorithm is well-known from high school: First
construct the point halfway between p and q. Call it r. Then construct a

Fig. 1. The problem of the tangent algorithm

circle D with center r, passing through p (and, by construction, through q).
The two circles C and D intersect in two points. Pick out one of them; call
it “s”. The wanted tangent is the line through q and s. Figure 2 outlines this
construction. Figure 3 shows a corresponding program.

Fig. 2. The solution of the tangent algorithm

This algorithm employs three sets of date items: POINTS, CIRCLES and
LINES, and five basic operations:

halfway: POINTS × POINTS → POINTS,
circle: POINTS × POINTS → CIRCLES,

intersect: CIRCLES × CIRCLES → P(POINTS),
makeline: POINTS × POINTS → LINES,

pick: P(POINTS) → POINTS.

The tangent algorithm does not specify how points, circles and lines are rep-
resented, and how the operations produce their result. One choice was to
represent a point as a pair of real numbers

(
x
y

)
, a circle by its center and

its radius, and a line by any two points on it. In this case, the above four
operations (6) can be defined by well established formulas, e.g.

8 Wolfgang Reisig

halfway
((

x1
y1

)
,
(
x2
y2

))
=

(
(x1+x2)/2
(y1+y2)/2

)
.

The choice from high school was to represent a point as a black dot on a
white sheet of paper, a circle by its obvious curved line and a (straight) line
by one of its finite sections. Each of the four above operations (6) can then
be performed by pencil, rulers and a pair of compasses.

input(p, C, q);

if q outside C then

r := halfway(p, q);

D := circle(r, p);

M := intersect(C,D);

{|M| = 2}
s := pick(M);

l := makeline(q,s);

output(l);

Fig. 3. The tangent algorithm

Observe that the above algorithm likewise applies to three-dimensional
points, with spheres replacing the circles.

2.4 The Bisection Algorithm

For continuous functions f : R → R, the bisection algorithm approximates
zeros, i.e. finds arguments x0 such that |f(x0)| < ε for some given bound ε.
This algorithm starts with two real numbers a and b such that f(a) and f(b)
are different from 0 and have different leading signs. While |f(a)−f(b)| > ε,
two actions are executed: Firstly, the mean m of a and b is computed. Secondly,
if f(a) and f(m) have different leading signs, a is set to m, otherwise b is set
to m. Figure 4 outlines a typical step, and Fig. 5 shows this algorithm.

0

f

b’=
mean(a,b)

mean(a,b’)

step 2step 1

start

=a’a

b

Fig. 4. Bisection step

Abstract State Machines for the Classroom – The Basics – 9

while |f(a)− f(b)| < ε do

m := mean(a,b);

if sign(a) 6= sign(m) then b := m

else a := m

Fig. 5. The bisection algorithm

2.5 The Halting Problem Decision Algorithm

Let T be the set of all Turing machines. It is well known that T can be
enumerated, i.e. the sets T and N correspond bijectively. Let now halt: N→
{0, 1} be defined by halt(i) = 0 iff the i-th Turing machine terminates when
applied to the empty tape. It is well known that halt is not computable (and
this is the only reason for selecting halt; any other non-computable function
would likewise do the job). Nevertheless, the algorithm

input(i);
b := halt(i);
output(b).

(4)

“computes” the function f .

2.6 A Cooking Receipt

As an – admittedly extreme – case, a cooking receipt may be considered as
an algorithm, too. An example is the following receipt for Pasta Carbonara:

A: Fry the Pancetta bacon in the butter over medium-high heat until it
browns.

B: In a small saucepan, heat the milk.
C: Cook the pasta until al dente. Drain well, then return pasta to pot.
D: Upon termination of A and B, add the bacon and butter to the saucepan.

Stir well. Add the vinegar. Reduce heat to low and cook the sauce gently
for about 15 minutes.

E: Upon termination of C and D, add the sauce, the beaten eggs, and the
cheese to the pot. Stir well and serve.

The algorithm starts with three parallel branches A,B,C. A and B are
single actions and C is a sequence of three actions. Upon termination, A and
B trigger D. Finally, C and D trigger E.

2.7 Some General Observations

The reader may prefer a notion of “algorithm” that would exclude some of
the behaviours described above, for various reasons. Certainly, none of the
algorithms is implementable. For example, the bisection algorithm of Sect. 2.4
applies to any continuous function f and any real numbers a, b and ε. But only

10 Wolfgang Reisig

rare cases of f , a, b and ε are representable in a real computer without causing
precision problems. Yet, all of them can be handled in a formal setting. The
forthcoming Part II will provide the details.

3 Representing States and Steps

In this Section we first discuss requirements for “faithful” models of algo-
rithms. Then we see that a liberal, albeit classical framework of symbols and
their interpretation yields a proper notion of states of faithful models of algo-
rithms. Finally, we show how the symbols used in the representation of states
can also be used to represent steps, and hence algorithms.

3.1 Faithful Modeling

Bound to concrete examples, we have usually a clear understanding of what
an “adequate” description of an algorithm could be: It should cover all aspects
one would like to emphasize and it should hide all aspects one would prefer not
to mention. Formulated more precisely, a really “faithful” modeling technique
represents

• each elementary object of the algorithm as an elementary object of the
formal presentation,

• each elementary operation of the algorithm as an elementary operation of
the formal presentation,

• each state of the algorithm as a state of the formal presentation,
• each step of the algorithm as a step of the formal presentation.

Formulated comprehensively, objects and operations, as well as states and
steps of an algorithm and of its model should bijectively correspond. This is
the tightest conceivable relationship of intuitive and formal presentations of
algorithms.

Can this kind of faithful modeling be conceived at all? Is there a modeling
technique that would achieve this goal at least for some reasonable class of
algorithms? Are there some general principles to construct such models? This
are the questions to be discussed in the rest of this Section.

3.2 Symbols and Their Interpretation in a State

The programs in (3) and in Figs. 3 and 5 employ symbols that stand for
various items and functions. For example, X in (3) stands for any initially
given set, x and y stand for any items and “augment” for a function. The
algorithm is executable only after interpreting the symbol “X” by a concrete
set,M , the symbols “x” and “y” by concrete itemsm and n and “augment” by
the function augment that augments an element to a set. Hence, each initial

Abstract State Machines for the Classroom – The Basics – 11

state of an algorithm must provide an interpretation of all symbols, except
the key symbols such as begin, if etc. For example, let Σ = {X,x, y, augment}
be a set of symbols and let S be a state with

XS = M, xS = m, yS = n and augmentS = augment

as defined in (2).
The program (3) is applicable to this state. The first assignment statement

of (3), X := augment(X,x), then updates S, thus yielding a new state, S′.
This state differs from S only with respect to the interpretation of X:

XS′ = XS ∪ {m} = M ∪ {m}.

Then the second assignment statement, X := augment(X, y), is executed,
yielding a state S′′ with

XS′′ = XS′ ∪ {n} = M ∪ {m} ∪ {n} = M ∪ {m,n}.

3.3 Examples: Bisection and Tangent Algorithms Revisited

The bisection algorithm of Sect. 2.4 can be conceived according to the above
schema: Based on the symbol set Σ = {a, b, ε,m, f,mean, sign,<}, assume
an initial state S with aS , bS , εS and mS any real numbers, fS : R → R any
function, meanS : R × R → R with meanS(x, y) = (x + y)/2, signS : R →
{+,−}, with signS(x) = + iff x > 0, and <S ⊆ R×R as usual. Assuming an
initial state S0, the program of Fig. 5 generates a sequence S0S1S2 . . . Sk of
states, iteratingly updating m, a and b, with finally |fSk

(aSk
)| = |fS0(afk

)| <
εS . Note that this holds for any real numbers aS0 and εS0 and any unary
function fS0 over the real numbers.

The same procedure applies to the tangent algorithm of Sec. 2.3. Given
the symbol set Σ = {C, p, q, r, s, D, M, outside, halfway, circle, intersect,
pick, makeline} assume an initial state S such that CS is any circle with
center pS , and qS a point outside CS . Furthermore, for points a, b and circles
A,B let outsideS(a,A) = true if a lies outside of A, let halfwayS(a, b) return
the point halfway between a and b, let circleS(a, b) be the (unique!) circle,
having a as its center and b on its surface, let intersectS(A,B) be the set
of interesting points of A and B and makelineS(A,B) be the (unique!) line
through a and b. For a set M of elements, let pickS(M) be an arbitrarily
chosen element of M . The symbols q, r, s,D,M may freely be interpreted in
the initial state S.

3.4 Applying a Program to a State

The above examples reveal a very simple schema: A representation P of an
algorithm M consists of two kinds of symbols:

12 Wolfgang Reisig

1. Key symbols such as begin, :=, end, ;, input, if, then, output, while,
do, else (in the order of their occurrence in Sect. 2),

2. constant and function symbols such as X,x, y in (3) and C, p, r, q, . . . in
Fig. 3.

P can be applied to a state S, where S provides an interpretation σS for each
constant and each function symbol σ of P . Applying P to S produces a state
P (S), where the interpretation of some symbols σ have been updated.

The notion of a state of M deserves a closer investigation: Each constant
symbol and each function symbol should be interpreted by any item; virtu-
ally “everything” may serve as an interpretation. The only restriction is the
arity of symbols: A constant symbol must be interpreted by an item, and a
function symbol with arity n must be interpreted by a function of arity n. For
example, in (3) the symbol “augment” has arity 2 and so every state S of this
algorithm must provide a function augmentS which requires two arguments.
This restriction does not unduly limit the formalism: A state S (i.e. an inter-
pretation of the constant and function symbols) that violates this restriction
would spoil any attempt to define the application of P to S.

A class of such algorithms, called sequential small step algorithms, has
been characterized by Gurevich [13]. Details will be explained in the Sect. 5.

II – The Formal Framework

The ASM approach is based on some few notions that have been identified
by Tarski [21] as a most useful general conceptual basis for mathematics: The
notions of structure, signature, and their combination inΣ-structures. Any for-
malism employs symbols to represent objects that in general are no symbols.
Σ-structures provide the means for this kind of arguments. Section 4 presents
the details. Σ-structures are the formal basis for Σ-programs, i.e. pseudocode
programs over a signature Σ, as will be defined in Sect. 5, including the im-
portant subclass of sequential, small step ASM programs. Algorithms based
on such programs are investigated in Sect. 6.

4 Signatures and Structures

4.1 Structures

Here we compile the algebraic prerequisits for the rest of this paper. This is
merely a reminder for some elementary notions and properties, well estab-
lished in the field of General Algebra.

As explained above, a state S of a program is a structure (sometimes also
called algebra), consisting of

• a set U , the universe of S,

Abstract State Machines for the Classroom – The Basics – 13

• finitely many constants, viz elements of U , and
• finitely many functions over U , shaped φ : Un → U . n is the arity of φ.

Constants can be conceived as degenerated functions, with arity zero. So,
a structure S is usually written

S = (U, φ1, . . . , φk). (5)

With ni the arity of the constant or function φi, the arity tuple (n1, . . . , nk)
is the type of S.

4.2 Homomorphism and Isomorphism

Fundamental relationships among structures are homomorphisms and isomor-
phisms:

Assume two structures R = (UR, ψ1, . . . , ψk) and S = (US , φ1, . . . , φk),
both of the same type (n1, . . . , nk). Assume furthermore a mapping h : UR →
US such that for all i = 1, . . . , k and all u1, . . . , uni

∈ UR holds:

h(ψi(u1, . . . , uni
)) = φi(h(u1), . . . , h(uni

)). (6)

Then h is a homomorphism from R to S, written h : R→ S. Figure 6 shows

(u1, . . . , uni) −−−−−→
ψi

ψi(u1, . . . , uni)
??yh · · ·

??yh
??yh

(h(u1),. . . ,h(uni)) −−−−−→
φi

h(ψi(u1, . . . , uni)) =
φi(h(u1), . . . , φi(h(uni))

Fig. 6. The homomorphism property

the property of an homomorphism in a diagrammatic form.
Let now R and S be structures of the same type and let h : R → S be a

bijective homomorphism. Then h is called an isomorphism.
It is not difficult to show that the reverse function f−1 : US → UR of an

isomorphism f : R→ S is again a homomorphism, f−1 : S → R. Hence, it is
reasonable to declare two structures R and S as isomorphic, written R ' S,
if there exists an isomorphism h : R→ S.

4.3 Signatures and Ground Terms

The symbols occurring in a program can be collected in a signature. Each
function symbol is associated its arity and each constant symbol is given the
arity 0. A signature Σ with symbols f1, . . . , fl is usually written

Σ = (f1, . . . , fl, a1, . . . , al) (7)

14 Wolfgang Reisig

with ai the arity of fi (i = 1, . . . , l). (a1, . . . , al) is the type of Σ.
A signature Σ yields canonically the set TΣ of ground terms over Σ: TΣ

is the smallest set of sequences of symbols in Σ such that

• each constant symbol in Σ is an element of TΣ

• if t ∈ Σ with arity n and if t1, . . . , tn ∈ TΣ then f(t1, . . . , tn) ∈ TΣ .

TΣ is apparently infinite iff Σ contains at least one constant symbol and
one symbol with arity n ≥ 1.

Ground terms typically occur on the right hand side of an assignment
statement, such as in “x := x+ 1”. In the context of ASM, “x” is a constant
symbol and “+” a function symbol of arity 2. The ground term “+(x, 1)” is
written in the more convenient infix form “x + 1”. First order logic employs
terms with additional symbols, called variables. The basic version of ASM,
considered here, does without variables. We will see later that ground terms in
their general form may also occur as the left side of an assignment statement,
i.e. an assigment may be shaped as

f(t1, . . . , tn) :=

This may be conceived as an update of an array.

4.4 Σ-Structures

A structure S = (U,ψ1, . . . , ψk) of type (n1, . . . , nk) as in (5), “fits” to a
signature Σ = (f1, . . . , fl, a1, . . . , al) as in (7) if both have the same type, i.e.
if k = l and (n1, . . . , nk) = (a1, . . . , al). In this case, S is a Σ-structure. The
function φi is the interpretation of φi in S and we frequently write φi as fiS .
Hence, S can be written

S = (U, f1S
, . . . , fkS

).

Each term t ∈ TΣ canonically denotes an element tS of the carrier of each
Σ-structure S, defined by induction over the structure of TΣ :

• tS = fiS if t = fi and ni = 0
• tS = fiS (t1S , . . . , tnS) if t = f(t1, . . . , tn).

A signature Σ yields the set str(Σ) of all Σ-structures. This is a rich
set, including a variety of quite different structures. Vice versa, if S is a Σ-
structure as well as a Σ′-structure, both signatures Σ and Σ′ are identical up
to bijective renaming of their symbols.

4.5 Two Lemmata on Σ-Structures

The following two Lemmata will help characterize the expressive power of
ASM algorithms. The first Lemma states that the homomorphism property
of Σ-structures extends to terms:

Abstract State Machines for the Classroom – The Basics – 15

Lemma 1: [homomorphism]
Let Σ be a signature, let R and S be two Σ-structures, and let h : R → S be
an homomorphism. Then holds h(tR) = tS for all t ∈ TΣ.

Proof: By induction over the structure of TΣ .
First case: t is a constant symbol. Then the property holds according to the
definition of homomorphism (cf. (6) in Sect. 4.2).
Second case: t = f(t1, . . . , tn). The inductive hypothesis implies h(tiR

) = tiS

for i = 1, . . . , n. Then, again by definition of homomorphism,

h(tR) = h(f(t1, . . . , tn)R)
= h(fR(t1R

, . . . , tnR
))

= fS(h(t1R
), . . . , h(tnR

))
= fS(t1S , . . . , tnS)
= fS(t1, . . . , tn) = tS . ¤

The second lemma states that isomorphic Σ-structures can not be distin-
guished by help of equations over terms:

Lemma 2: [indistinguishability]
Let Σ be a signature, let R and S be two Σ-structures, and let R ' S. Then
for all t, u ∈ TΣ holds: tR = uR iff tS = uS.

Proof: Let h : R → S be an isomorphism. According to the above Lemma
on homomorphism tR = uR iff h(tR) = h(uR) iff tS = uS . ¤

5 Sequential, Small Step ASM Programs

Part I provided the intuition and Sect. 4 the formal means to define syntax
and semantics of a special kind of programsP : Given a signature Σ, each state
S of P is just a Σ-Structure. The step-function of P , providing for each state
S a successor state P (S), is syntactically represented by the help of terms in
TΣ , together with some key symbols such as if, then, := etc.

In this Section we define a particularly simple version of such programs. We
start with assignment statements that update constants and functions. Then
we proceed to sets of consistent statements and to conditional statements,
and finish with “sequential, small step ASM programs”. The semantics of
such programs is rigorously defined in a mathematical setting.

5.1 Simple Assignment Statements

The simplest form of a program over a signature Σ is just an assignment
statement, shaped

f := t (8)

with f a constant symbol in Σ and t ∈ TΣ .

16 Wolfgang Reisig

Applied to a Σ-structure S, (8) yields the step

S
f :=t−−−→ S′

where S′ updates the value of f : The constant symbol f gains tS as a new
value in S′, i.e.

fS′ = tS

and the semantics of all other symbols remains untouched, i.e. gS′ = gS for
each g ∈ Σ, g 6= f . For example, with the signature

Σ = (c, f, 0, 1) (9)

and the Σ-structure
S = (N, 0, suc) (10)

holds cS = 0 and fS = suc. The step

S
c:=f(c)−−−−−→ S′ (11)

yields cS′ = 1 and fS′ = suc.
As an exercise, the reader may show that (2) updates the value of each

term t ∈ TΣ , more precisely:

tS = n iff tS′ = n+ 1

for each t ∈ TΣ .

5.2 Updates of Functions

The general form of assignment statements over a signature Σ is shaped

f(t1, . . . , tn) := t, (12)

with f ∈ Σ and t1, . . . , tn, t ∈ TΣ , of which (8) is the special case with n = 0.
fS may be conceived as a n-dimensional array, to be updated for one argument
tuple. A step

S
f(t1,...,tn):=t−−−−−−−−−→ S′

updates fS at (t1S , . . . , tnS) by tS , yielding

fS′(t1S
, . . . , tnS

) = tS .

Hence, the right hand side as well as the terms t1, . . . , tn denoting the
arguments of the array on the left hand side are evaluated in the initial state,
S. The function f remains untouched for all other arguments, i.e.

Abstract State Machines for the Classroom – The Basics – 17

fS′(u1, . . . , un) = fS(u1, . . . , un)

for all (u1, . . . , un) 6= (t1S , . . . , tnS). Likewise, the semantics of all other func-
tion symbols remains, i.e.

gS′ = gS

for all g ∈ Σ, g 6= f . As an example we consider the signature Σ and the
Σ-structure S as in (9) and (10). The step

S
f(c):=c−−−−−→ S′

yields cS = 0, hence with (11)

fS′(0) = fS′(cS) = 0.

For all i ≥ 1, fS(i) remains untouched, i.e.

fS′(i) = fS(i) = suc(i) = i+ 1. (13)

Therefore, the functions fS and fS′ differ only for the argument 0.
As an exercise, the reader may show that (13) updates the value of all

terms t ∈ TΣ (except t = c), i.e.

tS′ = 0.

Summing up, in a step S → S′ , an assignment statement selects in S one
constant, or one function at one argument tuple, and in S′ replaces it by a
new value from the universe of S. In particular, the universe of S′ coincides
with the universe of S.

In view of terms, an update S
f(t1,...,tn):=t−−−−−−−−−→ S′ potentially yields fresh val-

ues for all terms u which include as a subterm any term shaped f(v1, . . . , vn)
with (v1S , . . . , vnS) = (t1S , . . . , tnS).

5.3 Consistent Assignment Statements

A step S → S′ of an ASM program in general executes more than one assign-
ment statement. This is easily achieved provided each two such assignments
are consistent, i.e. they don’t try different updates of the same constant, or of
the same function at the same argument tuple. More precisely, two assignment
statements f(t1, . . . , tn) := t and f(u1, . . . , un) := u are consistent at a state
S if

(t1S
, . . . , tnS

) = (u1S
, . . . , unS

) implies tS = uS .

This definition is easily generalized: A set Z of assignment statements is
consistent at a state S if the elements of Z are pairwise consistent at S.

18 Wolfgang Reisig

To define the semantics of assignment statements formally, let Σ be a
signature and let Z be a set of assignment statements with terms in TΣ . Let
furthermore S be an Σ-structure and assume Z be consistent at S. Then S
and Z together define a step

S
Z−→ S′ (14)

where S′ is a Σ-structure, too, and the universe U of S′ is identical to the
universe of S. For an n-ary symbol f ∈ Σ and an argument u ∈ Un we define:
In a state S, Z updates fS at u by v in case Z includes an assignment statement
shaped f(t1, . . . , tn) := t with u = (t1S

, . . . , tnS
), and v = tS . For S′ as in

(14), the value of fS′(u) is now given by

fS′(u) =

{
v , in case Z at S updates fS(u) by v
fS(u) , otherwise.

(15)

5.4 Guards and Conditional Assignment Statements over a
Signature Σ

ASM employ conditional assignment statements, shaped

if α then r, (16)

where r is an assignment statement and α is a boolean expression. The term
α plays the role of a guard in (16).

For a signature Σ, the guards over Σ are symbol sequences such that

• for all t, u ∈ TΣ , “t = u” is a guard over Σ and
• if α and β are guards over Σ, so are “α ∧ β” and “¬α”.

Hence, we assume each signature Σ be extended by the symbols =, ∧, ¬,
true, false. Each Σ-structure S is expected to interpret these symbols as
usual. This implies for each guard α over Σ and each Σ-structure S,

αS ∈ {true, false}.

(16) is a conditional assignment statement over a signature Σ iff

• α is guard over Σ and
• r is an assignment statement over Σ, as defined in (12)

5.5 Sequential, Small Step ASM Programs and Semantics

A sequential, small step ASM program P over a signature Σ is a set of con-
ditional assignment statements over Σ, as defined in Sect. 5.4. To each Σ-
structure S, the program P defines a successor structure S′, usually written
P (S), by the step

Abstract State Machines for the Classroom – The Basics – 19

S
P−→ S′. (17)

To define S′, let Z =def {r| ex. “if α then r” ∈ P and αS = true}. If Z is
consistent at S, construct S′ according to (15), otherwise let S′ = S.

Then term “sequential” is bewildering in the face of concurrently exe-
cuted statements; the term lock step was perhaps more intuitive. Furthermore,
“small step” refers to the limited number of updates during a step: The num-
ber of updates is bounded by the number of conditional statements. Hence,
the term bounded was perhaps more on the point. We will however follow
traditions.

5.6 Simulation of Conventional Control Structures

Usual forms of programs differ from sequential small step ASM mainly w.r.t.
control: Sequences, alternatives and iterations are replaced in ASM in fa-
vor of parallel execution of a set of conditional assignment statements. That
ASM can simulate conventional control structures is fairly obvious; Sect. 5.7
will show some examples. Vice versa, some additional constant symbols help
simulate the ASM control structure by conventional control structures, i.e.
sequences, alternatives and iteration.

This kind of simulation comes however with a price: One step of an ASM
program usually requires a sequence of steps in terms of conventional control
structures. This price is quite high in the context of ASM, because a decisive
aspect of ASM is the expressive power of their single steps, as discussed in
Sect. 3.1: A sequence S → S′′ → S′ of two steps from S to S’ is not “as good
as” the single step S → S′.

5.7 Examples

Section 2 presented a couple of algorithms. We may wonder how they can be
represented as ASM programs.

The set extension program of Sect. 2.2 is no ASM program at first glance:
An ASM program cannot express sequential composition. This deficit is easily
overcome by a well-known “trick”: Extend the initial state by a fresh variable,
l, and valuate l by 0 in the initial state, S0. Reformulate (3) by

par if l=0 then X := g(X,x);
if l=0 then l := 1;
if l=1 then X := g(X,y);
if l=1 then l := 2

endpar.

The same technique can be applied to get rid of the sequential composition
in the tangent algorithm in Sect. 2.3. Börger and Stärk in [3] suggested a
further, elegant representation of sequential behaviour.

20 Wolfgang Reisig

The bisection algorithm of Sect. 2.4, formulated as an ASM, reads

if stop(a,b)=true then result := a,
if ¬(stop(a,b)=true) ∧ f(mean(a,b))=0 then result := mean(a,b),
if ¬(stop(a,b)=true) ∧ ¬(f(mean(a,b))=0)

∧ eqsign(f(a),f(mean(a,b)))=true then a := mean(a, b),
if ¬(stop(a,b)=true) ∧ ¬(f(mean(a,b))=0)

∧ eqsign(f(b),f(mean(a,b)))=true then b := mean(a, b)

As a final example consider a system composed of four components:

prod: a producer to produce items,
send: a sender to send produced items to a buffer,
rec : a receiver to take items from the buffer,
cons: a consumer to consume items provided by the receiver.

We base the model of this system onto a signature including the 0-ary
symbols x, y and buffer. Their value may represent items to be processed
by the system. Furthermore, the values of x and y may be undefined (repre-
sented by x undef and y undef, respectively), and the buffer may be empty
(represented by b empty).

The components interact as follows: In case the value of x is undefined,
a fresh value item is assigned to x (by prod), then forwarded to the empty
buffer (by send), removed from the buffer and assigned to y (by rec), and
finally consumed (by cons).

Applied to an initial state S0 with xS0 = x undefS0 , yS0
= y undefS0

and
bufferS0 = b emptyS0

, the following components define a sequential ASM
program with the described behaviour:

prod =def { if x=x undef then x := item }
send =def if ¬(x=x undef) ∧ buffer=b empty then

{ buffer := x; x := x undef }
rec =def if ¬(buffer=b empty) ∧ y=y undef then

{ y := buffer; buffer := b empty }
cons =def { if ¬(y=y undef) then y := y undef }

Then
Γ = prod ∪ send ∪ rec ∪ cons (18)

is the required sequential ASM. Its behaviour is:

S0
prod−−−→ S1

send−−−→ S2
prod−−−→
rec

S3
send−−−→
cons

S4
prod−−−→
rec

S5 . . . (19)

where each step is inscribed by the components with guards that evaluate to
true.

Abstract State Machines for the Classroom – The Basics – 21

6 Properties of Sequential Small Step ASM Programs

The semantics of programs as defined in Sect. 5.5 implies a series of properties
of steps, to be considered here. Two of them (“steps preserve universes” and
“steps respect isomorphism”) are quite obvious. The third one, “exploration
is bounded”, is intuitively also simple, but requires a bit of formalism.

In the rest of this Section we assume a sequential small step ASM program
P over a signature Σ, and a Σ-structure S.

6.1 Steps Preserve Universes

The semantics of sequential small step ASM programs, as defined in Sect. 5.5,
is based on (15) and (14). There it is explicitely specified:

The universes of S and P (S) coincide.

6.2 Steps Respect Isomorphism

Let R be a Σ-structure, and let h : S → R be an isomorphism. Definitions
in Sect. 5.3 imply for a set Z of assignment statements, that Z is consistent
at S iff Z is consistent at R. Furthermore, for each k-ary f ∈ Σ and each
argument tuple (u1, . . . , uk) for fS , the set Z updates fS at (u1, . . . , uk) by
v iff Z updates fR at (h(u1), . . . , h(uk)) by h(v). Consequently, referring to
(15), fP (S)(u1, . . . , uk) = v iff fP (R)(h(u1), . . . , h(uk)) = h(v). Together with
(17) now follows:

If h : R→ S is an isomorphism, then
h : P (R) → P (S) is an isomorphism, too.

6.3 Exploration Is Bounded

To properly understand the last property, we reconsider the semantics of ASM
programs, as given in (14) and (15): P only describes the updates of a state S,
and does not care about the rest of S. In fact, the rest of S is just adopted in
P (S). Technically, an update of a step S → P (S) is given by three parameters:
A function symbol f ∈ Σ, an n-tuple u of arguments for fS , and the new value,
v. Formulated more formally, let Σ be a signature, let f be a function symbol
in Σ with arity n, let U be a universe, let u ∈ Un and let v ∈ U . Then

(f,u, v) (20)

is a Σ-update over U. For a step S → P (S), the triple (20) may be used to
indicate that fS(u) is updated by v.

22 Wolfgang Reisig

Each step of P yields a set of updates. This motivates the following def-
inition: A Σ-update (f,u, v) over the universe U of S is a P-update of S
iff

fS(u) 6= fP (S)(u) = v.

Let
4(P, S)

denote the set of all P -updates of S.
Now, let T ⊆ TΣ be the set of all terms occurring in P . Let R and S be

two Σ-structures that T can not distinguish, i.e. for all t ∈ T

tR = tS . (21)

Then P inevitably yields the same updates for both states:

4(P,R) = 4(P, S). (22)

7 Gurevich’s Theorem on Sequential Small Step
Algorithms

We are now searching for a characterization of the expressive power of se-
quential small step ASM. We state this problem as a question to transition
systems, as considered in (1) allready.

7.1 A Question and a Partial Solution

What requirements at a transition system A = (states, init, F) would guar-
antee that F can be represented as a sequential small step ASM program P
as defined in Sect. 5.5?

It will turn out that essentially the properties discussed in Sect. 6 provide
such a set of requirements.

The first requirement for the above question is obvious: There must exist
a signature Σ such that states (and hence init) is a set of Σ-structures. The
properties of sequential small step ASM, as discussed in Sect. 6, must hold for
F , hence they provide another three requirements for the above question: F
preserves universes, i.e. for each state S ∈states, the domains of S and F (S)
coincide. Furthermore, F respects isomorphisms, i.e. for each S ∈ states and
each isomorphism h : R → S, h : F (R) → F (S) is an isomorphism, too.
This requires F be well defined for each R isomorphic to some S ∈ states.
Consequently, we require states be closed under isomorphism, i.e. if S ∈
states and S ' R, then R ∈ states. The last requirement starts out with the
obvious observation that the required program P essentially does with finitely

Abstract State Machines for the Classroom – The Basics – 23

many terms t ∈ TΣ . Together with (21) and (22) this implies that there exists
a finite set T ⊆ TΣ of terms such that two states evolve the same updates if
they interpret all t ∈ T alike.

7.2 Some Properties of Transition Systems

The above informal discussion, together with Sect. 6 is now rephrased in a
more formal setting. To this end, let A = (states, init, F) be a transition
system.

A is signature based iff there exists a signature Σ such that states is a set
of Σ-structures. If Σ is known, A is denoted as Σ-based.

In the rest of this Section, assume A to be Σ-based.
A preserves universes if for each S ∈ states, the universes of S and of

F (S) coincide.
A is isomorphism closed if for each S ∈ states and each structure R ' S

holds: R ∈ states.
A respects isomorphism iff for each S ∈ states and each isomorphism

h : R→ S, h : F (R) → F (S) is an isomorphism, too.
The last property requires the following definition: For a state S ∈ states,

an update of A at S is a triple (f,u, v) with f ∈ Σ, u ∈ Uk and v ∈ U , where
k is the arity of f , U is the carrier of S and fS(u) 6= fF (S)(u) = v. Let 4(S)
denote the set of all updates at a state S ∈ states. The last property now
reads:

A bounds exploration iff there exists a finite set T ⊆ TΣ of terms, such
that for all R,S ∈ states holds: If tR = tS for all t ∈ TΣ , then 4(R) = 4(S).

A is ASM-adapted iff A is signature-based, A preserves universes, A is
isomorphism closed, A respects isomorphism and A bounds exploration.

7.3 Gurevich’s Theorem

It has been shown in Sect. 6 that the properties of Sect. 7.2 provide necessary
conditions for the question of Sect. 7.1: F can be represented as a sequential
small step ASM program only if A is ASM-adapted.

As an amazing and beautiful result, Gurevich in [13] has proven that this
property is even sufficient! Hence,

Theorem 1 Let A = (states, init, F) be an ASM-adapted transition system.
Then there exists a sequential small step ASM program P such that

F = P |states.

The proof of this Theorem is far from trivial. It has critically been exam-
ined in [20].

24 Wolfgang Reisig

III – Extensions

Not each algorithm is sequential or small step. There are distributed, reactive,
and large step algorithms. The ASM approach covers those algorithms as
generalizations of the version presented in Part 3.4. We glance at some of
those versions in this part.

8 Sequential Large Step ASM Algorithms

As explained in Sect. 5.5, the term “small step” refers to the limited amount
of updates in each step of an ASM program P : This number is bounded by
the number of assignment statements in P . Of course, there are algorithms
without such a bound.

We present an example of such an algorithm and show its representation
in an extended version of ASM programs.

8.1 An Example: Node Reachability

Let G be a directed graph and let root be a distinguished node of G. We
search for an algorithm that computes a unary predicate R on the nodes of
G, to discern the nodes reachable from root.

Intuitively, this algorithm operates as follows: Initially, R(x) holds if and
only if x ist the root. The following step is iterated until a fixpoint is reached
(i.e. a state identical to its successors state): For all arcs x→ y with R(x) and
¬R(y), extend R by y.

The amount of updates executed in one step is unbounded: In a state S,
the number of arcs x → y in G with R(x) and ¬R(y), is not limited. A step
may even include an infinite amount of updates, in case a node has infinitly
many neighbours. The algorithm can therefore not be represented by a small
step ASM program.

8.2 Quantified Variables

The above node reachability algorithm can be presented with a standard tech-
nique of formal logic, viz with quantified variables. The steps of the algorithm
can then be described by the program

for all x,y with Edge(x,y) ∧ R(x) ∧ ¬R(y) do

R(y) := true.
(23)

(23) is a large step ASM program.
An algorithm is large step not only if the amount of updates fails to be

bounded, but also if the amount of involved explorations is unbounded. An

Abstract State Machines for the Classroom – The Basics – 25

example is the following ASM program that checks whether a given graph has
isolated points:

if ∀x ∃y Edge(x,y) then output := false

else output := true

9 Non-deterministic and Reactive ASM

So far we assume an ASM program P over a signature Σ to define a unique
successor state, P (S) for each state, i.e. each Σ-structure, S. This generalizes
to a set P (S) of successor states, for non-deterministic programs P . Nonde-
terminism can be caused by different means, considered in the sequel.

9.1 Non-deterministic Semantics

One may change the semantic rule of (15): In a state with more than one
assignment statement’s guard valuated to true, one may select one or a subset
of then for execution. Though possible in principle, this idea is fairly bewilder-
ing for the reader used to the conventional approach and has therefore rarely
been used.

9.2 The Operator “choose”

The choose operator is frequently useful. For example, let A = {a1, . . . , ak}
be a set of symbols. An algorithm is to produce all symbol sequences u ∈ A∗
such that there exist v, w ∈ A∗ with

u = vw, v 6= w and |v| = |w|.

The ASM program of Fig. 7 (with “choose” and “for all”) does the job.

choose n,i with i<n

choose a,b ∈ A with a 6=b

v(i) := a

w(i) := b

forall j<n, j 6=i

choose a,b ∈ A

v(j) := a

w(j) := b

Fig. 7. Appliance of choose

26 Wolfgang Reisig

9.3 The Reactive Case

The last source for non-determinism is the case of the environment updating
a constant fS or a function fS for some argument tuple u, at a state S. This
is the case of reactive systems.

From the perspective of a program P , a step S → S′ then includes a
spontaneous change of the value of fS or fS(u), respectively, not caused by
P . Technically, this is a non-deterministic choice from an – in general infinite
– set of alternatives: An elegant method to construct reactive ASM programs.
As an alternative to this kind of “inter step” interaction, an “intra step”
interaction includes a system step together with a step of the environment.
Details on this topic can be found e.g. in [2], [1] and many other papers
published mainly by Blass and Gurevich.

9.4 Turbo Algorithms

As frequently mentioned, the faithful modeling requirement as discussed in
Sect. 3.1 is sensible against the atomicity of steps. There are good reasons to
squeeze more than one action, in particular communicating actions of reactive
algorithms, into one step. This aspect has been addressed in many contribu-
tions including [11] and [3].

9.5 Recursive Algorithms

The quest of atomicity of actions is particularly crucial for recursive algo-
rithms. A typical example was Quicksort. Faithful representation of such al-
gorithms requires a recursive version of ASM, as introduced e.g. in [14].

10 Distributed ASM

Both small step and large step ASM algorithms describe a single run of an
algorithm, as a sequence S0S1 . . . of states Si. This is not adequate for dis-
tributed algorithms. As discovered by C.A. Petri in the 1960ies already [18]
and later on discussed also by Pratt [19], Lamport [16] and Gurevich [11], a
run of a distributed algorithm is a partially ordered set of events, with a > b
iff a is causally necessary for b.

10.1 Distributed ASM programs

This gives rise to the idea of a distributed version of ASM: A distributed ASM
is just a nonempty, finite set of ASM programs, all over the same signature, Σ.
The programs are then called components of the distributed ASM, and every
Σ-structure forms a state of the distributed ASM. The components may be
executed concurrently in case they involve stores with separate locations.

A proper definition of distributed small step ASM can be found in [10] .
The general case of distributed ASM is discussed in [11].

Abstract State Machines for the Classroom – The Basics – 27

10.2 An Example of a Distributed ASM

As an example consider the producer/consumer system of Sect. 5.7: In contrast
to the sequential program Γ of (18), the set

D = {prod, send, rec, cons} (24)

is a distributed ASM. Notice that (24) differs decisively from (18): A sequential
ASM is a single set of conditional assignment statements, while a distributed
ASM is a family of sets of conditional assignment statements. This implies
a notion of distributed runs. The order of occurrences of the component pro-
grams in the run of Γ , as depicted in (19), is

prod send
rec cons

prod send prod

rec
...

.
(25)

In contrast, the ASM program D in (24) yields a partially ordered run of
occurrences of its four components, shown in (26).

send

prod

rec

cons

send

prod

rec

prod
...

... (26)

It is illuminating to compare the partial order of the component occurrences,
as outlined in Fig. 26, with the partial order of (25): In fact, the latter is
unnecessarily strict. This is due to the lockstep semantics of a sequential
ASM: A run is a sequence of steps, and its action occurrences are unordered if
they belong to the same step. This yields partial orders with a transitive non-
order relation, such as (25). Figure 26 shows that, for a distributed run of a
distributed ASM, non-order of action occurrences is not necessarily transitive:
The second production occurs unordered with first consumption, which in turn
occurs unordered to second send. But second production is causally before
second send. This example shows that distributed ASM in fact provide a
substantial generalization of sequential ASM.

11 ASM as a Specification Language

In this paper we do not even attempt to glance the huge amount of application
projects of ASM. Nor do we discuss all the tools and techniques, e.g. for
refinement and simulation, that support ASM as a specification language. We
concentrate on one fundamental aspect only, i.e. the role of constants and
functions for various purposes in an algorithm.

28 Wolfgang Reisig

11.1 Static Constants and Functions

Theory does not prevent any state S to interpret the constant symbol “2”
by the boolean value “true”, or to interpret the function symbol “

√
” by the

function that assigns each employee of a company his or her salary. But this
is not what the reader expects. There is a number of symbols with unique
world wide accepted interpretations; including the integer symbols “0”, . . . ,
“9” to construct representations of integers and rational numbers, and func-
tion symbols such as +, −,

√
, −1, etc. to denote the corresponding well known

functions. Some symbols have a generally agreed denotation only in distin-
guished communities. It is of course reasonable to inquire the initial state
S of an algorithm to interpret such symbols according to their conventional
denotation and never to update them. In Sect. 5.4 we remarked already the
symbols for propositional logic such as “¬” and “∧” must be interpreted as
usual, in order to construct reasonable guards. A set of constants and func-
tions is available this way and denoted as static for obvious reasons.

More generally, we denote as “static” also constants and functions that
are fixed in the initial state and are never updated. They typically play the
role of input to the algorithm. Typical examples are f and ε in the bisection
algorithm, C and p in the tangent- and f in the halting problem decision
algorithm.

Notice the generalized concept of “input” here: It may include entire func-
tions, such as f in Fig. 5 and (4), hence, in general, infinite structures.

11.2 Constant Symbols as “Program Variables”

The non-static constants include in particular symbols which in conventional
programming languages would play the role of variables: Such a symbol, x,
gains some – irrelevant – value in the initial state. x is updated before being
read, i.e. an assignment statement with x at the left side is executed before an
assignment statement with x occurring in the term of its right side is executed.
Consequently, a 0-ary symbol frequently plays the role of a program variable:
A frequent source of confusion for ASM beginners. In particular the reader
must not confuse this kind of constants with quantified variables as introduced
for large step ASMs in Sect. 7.

11.3 Further Roles of Constants and Functions

A constant symbol occurring at the left, but never at the right side of an
assignment statement, may be used as an output variable for reactive algo-
rithms.

More generally, for the sake of clarity one may explicitly declare a constant
symbols as an “output variable” in case it is assumed to be read by the
environment.

Abstract State Machines for the Classroom – The Basics – 29

12 Conclusion

This paper is intended to show that the ASM approach in deed suggests
a reasonable notion of “algorithm”, very adequate as a framework for the
modeling of systems. Implementable systems come as the special case of states
with a bit level representation for all components.

Two aspects in particular motivate the choice of ASM: Firstly, ASM fit
perfectly into the framework of general algebra and logic. The notion of struc-
ture, signature, and Σ-structure are well established to describe system states
in an abstract way. Computer science employs those notions in the context
of Algebraic Specifications, to abstractly describe states. As a (sequential)
behaviour is a sequence of states, it is very natural to describe steps in terms
of Σ-structures, too.

Secondly, the definition of a sequential small step ASM as a set of simul-
taneously executed set of conditional statements, is very well motivated by
Gurevich’s Theorem, as described in Sect. 7.3.

The idea to employ mathematical structures as components of states has
been advocated in [5] already: Data spaces such as stacks, trees and all forms
of data structures from Algol, Lisp and Fortran, together with correspond-
ing operations, define virtual machines. ASM generalizes this to any kind of
data spaces, via algebras; [5] sticks to structures that are implementable in a
canonical way.

[7] suggests to define the state of a program P as Σ-algebras, exactly
as done in ASM. Ganzinger formally defines the semantics of P to be a free
construct, i.e. a mapping from a set of Σ-algebras to a set of Σ-algebras. [8]
expands on this idea; it may be likewise applied to ASM.

The “state-as-algebra” paradigm [8] has been a basis for various lines of
research. Categorial constructs, as employed in [7] already, are likewise used
in [22]. In [9], the authors show that the “state-as-algebra” paradigm is useful
to describe the semantics of specification languages such as VDM, Z and B.
They advocate the combination of algebraic and imperative specifications, of
which ASM is an example. A further example is the “Algebraic Specification
with Implicit state” approach of [6].

Modern specification techniques such as Z, TLA and FOCUS follow logic
based guidelines, such as “a specification is a (huge) logical expression”, “im-
plementation (refinement) is implication”, or “composition is conjunction”.
The ASM formalism has not been designed along these guidelines, nor does
it contradict them. It might be useful to critically review those guidelines in
the light of ASM.

One may very well expect a lot of related representations of algorithms to
arise, in particular further variants of nondeterministic, distributed interactive
and other variants, both small-step and large step, together with interesting
characterizing Theorems, in analogy to Gurevich’s Theorem in Sect. 7.3. On
the long range, one may get used to this approach as an adequate starting
point for computer sciences curricula.

30 Wolfgang Reisig

13 Acknowledgements

I gratefully acknowledge Yuri Gurevich’s patient answers to my many ele-
mentary questions on ASM. I owe much to Egon Börger, as he introduced me
to the fields of ASM. Without Dines Bjørner’s invitation to the Stara Lesna
School in June 2004 and his friendly, persistent proposals, I would never have
written this contribution. Andreas Glausch pointed at weak points in a pre-
liminary version of this paper, thus soliciting a comprehensive update, and –
hopefully – solid simplification.

References

1. Andreas Blass and Yuri Gurevich. Ordinary Small-Step Algorithms. ACM
Trans. Comput. Logic, 7:2, 2006.

2. Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman. Gen-
eral Interactive Small-Step Algorithms. Technical report, Microsoft Research,
August 2005.

3. Egon Börger and Robert Stärk. Abstract State Machines - A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

4. Georg Cantor. Gesammelte Abhandlungen mathematischen und philosophischen
Inhalts. Berlin: Springer-Verlag, 1932.

5. A.B. Cremers and T.N. Hibbard. Formal Modeling of Virtual Machines. IEE
on Software Engineering, SE-4 No 5:426–436, September 1978.

6. P. Dauchy and M.-C. Gaudel. Implicit state in algebraic specifications. In
ISCORE’93, volume No 01/93 of Informatik-Berichte. Universität Hannover,
1993.

7. H. Ganzinger. Programs as Transformations of Algebraic Theories. In 11. GI-
Jahrestagung, Informatik-Fachberichte 50, pages 32–41. Springer-Verlag, 1981.

8. H. Ganzinger. Denotational Semantics for Languages with Modules. In
D. Bjørner, editor, Formal Description of Programming Concepts - II, pages
3–20. North-Holland, 1983.

9. M.-C. Gaudel and A. Zamulin. Imperative Algebraic Specifications. In PSI’99,
Novosibirsk, June 1999, volume 1755 of LNCS, pages 17–39. Springer-Verlag,
2000.

10. Andreas Glausch and Wolfgang Reisig. Distributed Abstract State Machines
and their Expressive Power. Technical Report 196, Humboldt-Universität zu
Berlin, Institut für Informatik, Unter den Linden 6, 10099 Berlin, Germany
http://www.informatik.hu-berlin.de/top, January 2006.

11. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Egon Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press, 1995.

12. Yuri Gurevich. A new thesis. American Mathematical Society Abstracts, page
317, August 1985.

13. Yuri Gurevich. Sequential Abstract State Machines Capture Sequential Algo-
rithms. ACM Transactions on Computational Logic, 1(1):77–111, Juli 2000.

14. Yuri Gurevich and Marc Spielmann. Recursive abstract state machines. J. UCS,
3(4):233–246, 1997.

Abstract State Machines for the Classroom – The Basics – 31

15. Donald E. Knuth. Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley Professional, 1973.

16. Leslie Lamport. Time, clocks, and the ordering of events in a distributed sys-
tem. Communications of the ACM, 21(7):558–565, 1978. Reprinted in several
collections, including Distributed Computing: Concepts and Implementations,
McEntire et al., ed. IEEE Press, 1984.

17. Robin Milner. Software Science: From Virtual to Reality. Bulletin of the EATCS,
(87):12–16, 2005. EATCS Award Lecture.

18. C.A. Petri. Kommunikation mit Automaten. Schriften des Institutes für In-
strumentelle Mathematik Bonn, 1962.

19. V.R. Pratt. Modeling concurrency with partial orders. Int. J. of Parallel Pro-
gramming, 15(1):33–71, Feb 1986.

20. Wolfgang Reisig. On Gurevich’s Theorem on Sequential Algorithms. Acta In-
formatica, 39(5):273–305, 2003.

21. A. Tarski. Contributions to the theory of models I. Indagationes Mathematicae,
16:572–581, 1954.

22. E. Zucca. From Static to Dynamic Abstract Data-Types. In A.Szalas
W.Penczek, editor, MFCS 96, volume 1113 of LNCS, pages pp 579–590, 1996.

32 Wolfgang Reisig

