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Prof. Dr. Ostap Okhrin

Humboldt-Universität zu Berlin

School of Business and Economics

Ladislaus von Bortkiewicz Chair of Statistics

C.A.S.E.–Centre for Applied Statistics and Economics

 
 
 
 
 
 
 

 

by

Andreas Golle

(542173)

in partial fulfillment of the requirements

for the degree

Master of Science in Business Administration

Berlin, 25th February, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127600688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acknowledgements
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1 Introduction

The LIBOR Market Model (LMM) has become one of the most important models for pricing

fixed income derivatives. It is implemented at every major financial institution. (Huyet, 2007)

points out to two observations that underpin its popularity. First, faced with the limitations of the

model to account for smiles, the industry invented a stochastic volatility LMM extension instead

of abandoning the framework altogether. Second, when dealing with the most important fixed

income exotic, the Bermudan swaption, effort is put into improving numerical techniques rather

than changing the model. These are signs of the LMM having become the industry standard.

In this thesis, we will present the most important concepts of the original version, namely the

lognormal LMM. As such, we assume with a ’smile-less’ world. We will thus not cover the sophisti-

cated stochastic volatility extensions which are nowadays the preferred model choice. Furthermore,

an overall focus is given on the calibration of the LMM to real market data.

In Section 2 we present fixed income basics with regard to terminology and modeling approaches

and also consider the delicate aspect of calibrating a yield curve. Section 3 is entirely devoted

to vanilla fixed income derivatives products and their associated pricing formulae. The LIBOR

Market Model is covered in Section 4 where we present theoretical aspects but mainly focus on

calibrating the model to data. The model parameters, instantaneous volatilities and instantaneous

correlations, are explored and their parameterization is justified. A summary of the results is given

in Section 5.
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2 Fixed Income Basics and Elements of Arbitrage Theory

2.1 Zero Coupon Bonds & Forward Rates

The most atomic product in the fixed income world is a zero coupon bond (ZCB), an instrument

that pays one unit of currency at T for certain and no intermediate coupons.1 We will call these

zero coupon bonds, discount bonds or ZCB interchangeably. We will restrict ourselves to default-

free discount bonds and thus assume a world without credit risk. The discount bond’s price for

t < T is denoted by P (t, T ). Arbitrage arguments necessitate that P (t, T ) < 1 ∀ t < T and

P (t, T ) = 1 ∀ t ≥ T . Zero coupon bonds are discount factors, meaning that multiplying any cash

flow happening at T with P (t, T ) gives the time-t present value of such a (certain) commitment.

Through the use of a replication argument, we are also able to calculate a forward discount bond

P (t, T, T + τ). For this we will consider an increasing sequence of maturities t < T < T + τ, τ > 0.

A forward discount bond is a contract observed at t to pay P (t, T, T + τ) at T and be repaid

1 at T + τ . Consider the strategy at t to buy 1 unit of a (T + τ)-maturity ZCB and sell short

P (t, T + τ)/P (t, T ) units of a T -maturity ZCB. The cost incurred at t is

−1 · P (t, T + τ) +
P (t, T + τ)

P (t, T )
· P (t, T ) = 0.

At T , the short sale transaction matures and we receive a cash flow of

−P (t, T + τ)

P (t, T )

and a cash flow of +1 at time T + τ from the long position in the (T + τ)-maturity ZCB. Since

we statically replicated the cash flows associated with the forward discount bond, we see that its

price is

P (t, T, T + τ) =
P (t, T + τ)

P (t, T )
.

We introduce the concept of a forward LIBOR rate L(t, T, T + τ), by which we mean the simple

rate of interest contracted at time t to borrow funds between T and T + τ . Simple interest hereby

means that if one is to borrow 1 unit of currency at t, one has to repay 1 +L · (T − t) at time T .2

This is called Money Market Convention. We define the simple forward rate L(t, T, T + τ) such

that

P (t, T, T + τ) =
1

1 + τL(t, T, T + τ)

⇔ L(t, T, T + τ) =
1

τ

( P (t, T )

P (t, T + τ)
− 1
)
.

This simple forward rate also emerges as the equilibrium rate in a forward rate agreement (FRA).3

Consider a cash flow of 1 unit at T and a cash flow of −(1+τk) at T +τ , where the rate k is agreed

upon at t, t < T < T + τ . Taking present values by multiplying with the appropriate discount

bond and, since FRAs are traded at zero cost at initiation, equalizing to zero, we have

P (t, T )− P (t, T + τ)(1 + τk)
!
= 0

⇔ k = L(t, T, T + τ) =
1

τ

( P (t, T )

P (t, T + τ)
− 1
)
.

Above we looked at a single forward LIBOR rate L(t, T, T + τ). LIBOR is shorthand for London

Interbank Offered Rate. Now we are interested in a collection of forward LIBOR rates associated

to a discrete tenor structure 0 ≤ T0 < T1 < . . . < TN . Time is discretized into this set of tenor

1We will only consider unit notionals throughout this thesis, as they will multiply through relevant equations in

any case.
2Note that this is different from compounding concepts from finance which state that one would need to repay

(1 + L)(T−t).
3See (Hull, 2009) for details on FRAs.
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dates because most fixed income derivatives only depend on events observed at a finite number of

dates. The spacings between the tenor dates are called coverages or simply year fractions and they

are a sequence τn = Tn+1 − Tn, n = 0, . . . , N − 1. In the EUR market typically τn ≈ 0.5 because

an important benchmark LIBOR rate is the 6M LIBOR rate (see the swap pricing Section 3.1).

Thus we define forward LIBOR rates to be4

Ln(t)
def
= L(t, Tn, Tn+1) =

1

τn

( P (t, Tn)

P (t, Tn+1)
− 1
)
, n = 0, . . . , N − 1 , 0 ≤ t ≤ Tn. (1)

The preceding equation shows that forward rates are determined by discount bonds. We can

reverse this order and recover discount bonds from forward rates by the following reasoning. From

(1) we have

P (t, Tn+1)

P (t, Tn)
=

1

1 + τnL(t, Tn, Tn+1)
n = 0, . . . , N − 1 , 0 ≤ t ≤ Tn.

Then

P (t, T1)

P (t, T0)
· P (t, T2)

P (t, T1)
· · · P (t, TN )

P (t, TN−1)
=
P (t, TN )

P (t, T0)
=
N−1∏
n=0

1

1 + τnLn(t)
.

This could be evaluated at t = T0, i.e. it is evaluated exactly on the tenor date T0. Then

P (T0, TN ) =
N−1∏
n=0

1

1 + τnLn(T0)
.

However, at an arbitrary date t, knowledge of the forward LIBOR rates is insufficient to uniquely

pin down discount bond prices on the entire tenor structure. Suppose that Tj < t < Tj+1, j ∈
{0, . . . , N − 1} and we are interested in the discount bond price P (t, Tn) for some n > j + 1. For

simplicity, we could take the last tenor date in the tenor structure, TN so that we would like to

have an expression for P (t, TN ). We can determine

P (Tj+1, TN ) =

N−1∏
n=j+1

1

1 + τnLn(t)
,

but this only discounts the discount bond’s payment occuring at TN to time Tj+1. We however

imposed t < Tj+1 so that we additionally need a discount factor from Tj+1 to t. We therefore

define a function q(t) = inf {k ∈ Z : Tk ≥ t}, thus, q(t) is the index of the first rollover date after

t. Having introduced this function,

P (t, TN ) = P (t, Tq(t))
N−1∏
n=j+1

1

1 + τnLn(t)
.

In general, for 0 ≤ t < Tn,

P (t, Tn) = P (t, Tq(t))

n−1∏
j=q(t)

1

1 + τjLj(t)
,

and we summarize that forward LIBOR rates do not determine discount bond prices unless one

specifies the so called front stub discount bond P (t, Tq(t)). This bond can be thought of as the

”current price of the shortest maturity bond” (Glasserman, 2010).

4Some sources define Ln(t) := L(t, Tn−1, Tn), however we will try to stick as much as possible to the notation of

(Andersen and Piterbarg, 2010a).
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2.2 Yield Curve Calibration

Forward LIBOR rates are not traded directly in the market, nor is one to observe a continuum

of discount bonds P (·) for every possible maturity. One may indeed observe prices of actual

zero coupon bonds issued by government authorities.5 It is not advisable though and not done

in practice to interpolate these observed prices of zero coupon bonds and use them to calculate

forward rates. Instead, one uses market quotes from liquidly traded fixed-income securities as

benchmarks and strips a LIBOR curve out of these. Following the convention in the literature, we

will simply call this curve yield curve henceforth. Benchmark securities are for instance forward

rate agreements (FRAs) and swaps. As shown in Section 3.1 on swap pricing, swap rates can

be decomposed into a set of discount bonds and thus, given market quotes of swaps for different

maturities (e.g. 2Y, 5Y,...,30Y), one may infer discount bonds from these swap market quotes.

The requirement for including a fixed-income instrument into the set of calibration inputs is that

it is liquidly traded and thus conveys useful information. Assuming that we have a calibrated

yield curve at our disposal, any forward LIBOR rate Ln(t) can thus be calculated via equation

(1). Additionally, Andersen & Piterbarg note for the purposes of calibrating a LIBOR curve,

parametric methods such as the Nelson-Siegel approach are uncommon in practice, see (Andersen

and Piterbarg, 2010a).

The following discussion concerning the construction of a zero coupon curve (yield curve) draws

upon (Hagan and West, 2006) and (Hagan and West, 2008). Since the ultimate goal of

using a stripped curve is the pricing of derivatives which are modeled by a continuous-time model,

it is customary and market-practice to start from the outset utilizing continuous compounding

such that

P (t, T ) = exp
{
−r(t, T )(T − t)

}
.

Here, r(t, T ) is the continuously compounded rate (zero rate) that describes the accrual of interest

from today, t, to some future point in time, T .

Suppose we are given some data y, where yi, i = 1, 2, . . . , n will typically be zero rates associated

to several discount bonds. Thus we will write yi = ri. This data y is a function of time so that for

each ri we have calendar dates t1, t2, . . . , tn. An interpolation rule specifies the value of r(t) for a t

that is not one of the given ti. Given this rule, we then construct a continuous function r(t) which

satisfies r(ti) = ri, i = 1, . . . , n, i.e. the given data r is indeed recovered. Since many interpolation

rules exist, one considers several criteria with which to judge their respective performance. We

will only discuss one such criterion: the continuity of forward rates. Assuring that forward rates

are continuous when calculated off a zero curve is important for the coherence of derivatives pric-

ing. At the extreme, a discontinuous forward curve would assign significantly different values to

interest-sensitive derivatives whose maturities only differ by a few days. This is implausible and

also undermines consistency in risk-management.

Given a t ∈ {t1, tn} which is not equal to any of the ti, we determine the index i such that

ti < t < ti+1. We then calculate r(t) with a version of a cubic spline, only using the contiguous

zero rates ri and ri+1. Consider a cubic spline with coefficients (ai, bi, ci, di) for 1 ≤ i ≤ n − 1.

The continuous function r(t) will then be

r(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3 ti ≤ t ≤ ti+1.

To this end, we will restrict ourselves to a so-called Bessel (Hermite) Cubic Spline. We will not

go into the details of the particular expressions for ai, bi, ci, di and refer to (Hagan and West,

2006). Using a Hermite interpolation scheme preserves continuity of the forward rates, as desired.

5Corporates usually do not offer zero coupon bonds at all because the absence of any coupon payments until

redemption of principal is perceived as a negative signal to investors with respect to issuer solvency.
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Instrument Start Tenor Mid Quotes (%) Knot Points Zero rates (%)

EURIBOR 2B 6M 2.471 26/09/2003 2.4896

FRA 1x7 1M 6M 2.430 24/10/2003 2.4546

FRA 2x8 2M 6M 2.400 26/11/2003 2.4367

FRA 3x9 3M 6M 2.380 24/12/2003 2.4290

FRA 4x10 4M 6M 2.390 24/01/2004 2.4409

FRA 5x11 5M 6M 2.400 25/02/2004 2.4509

FRA 6x12 6M 6M 2.425 24/03/2004 2.4668

FRA 9x15 9M 6M 2.455 24/06/2004 2.4849

FRA 12x18 12M 6M 2.475 24/09/2004 2.5678

IRS 2B 2Y 2.785 26/03/2005 2.7463

IRS 2B 3Y 3.116 26/03/2006 3.0741

IRS 2B 4Y 3.395 26/03/2007 3.3601

IRS 2B 5Y 3.630 26/03/2008 3.5992

IRS 2B 6Y 3.828 26/03/2009 3.8050

IRS 2B 7Y 4.000 26/03/2010 3.9878

IRS 2B 8Y 4.153 26/03/2011 4.1522

IRS 2B 9Y 4.283 26/03/2012 4.2934

IRS 2B 10Y 4.388 26/03/2013 4.4098

IRS 2B 15Y 4.735 26/03/2018 4.8102

IRS 2B 20Y 4.898 26/03/2023 5.0046

IRS 2B 30Y 4.968 26/03/2033 5.0388

Table 1: Calibration Instruments, Mid Quotes as of 24/03/2003

In the first column of Table 1, we show the set of used market quotes which we will formally denote

by

V =
(
V1 V2 . . . Vn

)>
.

These will act as the above mentioned benchmark securities for curve calibration. Thus, our set of

calibration targets are EURIBOR (spot) fixings, forward rate agreements and interest-rate swaps.

The notation ’FRA 1x7’ is market jargon to describe a FRA that starts in 1M and matures in

7M, the tenor then being 6M (B, M and Y refer to business days, months and years, respectively).

The set of market quotes could also include Eurodollar Futures contracts. Utilizing the implied

rate of a Eurodollar Futures contract would however necessitate a so-called convexity adjustment.6

The displayed data for 24/03/2003 was obtained via Datastream as part of a historic time-series

of mid-quotes from ICAP, one of the largest brokerage firms in fixed income markets.

In the fifth column, we depict a set of knot points ti on the curve that correspond to the maturity

dates of the Vi, i = 1, . . . , n. Corresponding to each market quote Vi, let us introduce model rates

Ṽi
7, collected as

Ṽ =
(
Ṽ1 . . . Ṽn

)>
.

The spot fixing and the FRA quotes are modeled with the appropriate forward rate whereas the

quoted rates of the swaps are modeled with the appropriate swap rates. As explained above in the

6See (Hull, 2009) for details on Eurodollar Futures and the convexity adjustment.
7Since the modeled par swap rate applies to a EUR swap, we have to follow the conventions for EUR swaps.

These in turn are given by the conventions for EURIBOR: For the floating leg we have semiannual fixings and year

fractions calculated according to Act/360, for the fixed leg we have annual fixings and 30/360 year fractions. We

did not account for the Modified Following Day Rule convention; the resulting errors are negligible though.
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case of forward rates and in Section 3.1 in the case of swap rates, these model rates depend on

zero rates so that we introduce a set of (model) zero rates

R =
(
R1 . . . Rn

)>
so that Ṽ = Ṽ (R). The objective function to be minimized in a yield curve calibration routine is

then

min
R

n∑
i=1

(
Vi − Ṽi(R)

)2
,

where we use numerical optimization techniques to approach this least squares optimization prob-

lem. MATLAB’s built in function lsqnonlin achieves a single curve calibration within 25 seconds.8

The calibrated zero rates for 24/03/2003 are in the last column of Table 1. Given these rates and

the Hermite interpolation scheme, we can, using equation (1), calculate any forward rate. Figure

1 shows the 6M EUR forward curve that was calculated using the calibrated zero rates. Had

we chosen a simpler interpolation technique such as log-linear interpolation, the forward curve

would not display this smooth behaviour as in the figure, but would look ”saw-tooth” shaped, see

(Andersen and Piterbarg, 2010a) for examples.
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Figure 1: 6M EUR Forward Curve on 24/03/2003 out to 20 years

Calibrating yield curves for weekly data for the period 03/2004–03/2010 and then calculating 6M

EUR forward curves out to 20 years, we obtain a time-series of forward rate curves in Figure 2.

8Measured with tic . . . toc.
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Figure 2: Time Series of 6M EUR Forward Rates, 03/2004 - 03/2010

We end this subsection by noting that no calibration instrument should be perfectly overlapping

to another because the modeled zero rates would then exceed the number of knot points on the

curve, making the calibration problem overspecified.

2.3 Arbitrage Theory & Fixed Income Probability Measures

We give a brief overview of elements of arbitrage pricing theory. The presented theorems here

are biased towards those which we will use later on. A detailed account can be found in (Björk,

2009) and (Shreve, 2004).

We state the following theorem as in (Shreve, 2004).

Definition 2.1 (Quadratic Variation of Itô Processes). Let (W (t))t≥0 be a Brownian motion,

and let F(t), t ≥ 0, be an associated filtration. An Itô Process is a stochastic process of the form

X(t) = X(0) +

∫ t

0

Θ(u)du+

∫ t

0

∆(u)dW (u) (2)

where X(0) is nonrandom and Θ(t) and ∆(t) are adapted stochastic processes. The quadratic

variation of the Itô process is

〈X(t), X(t)〉 =

∫ t

0

∆2(u)du.

Shreve remarks that Definition 2.1 is best remembered by first writing

dX(t) = Θ(t)dt+ ∆(t)dW (t)

and then computing

d〈X(t), X(t)〉 = dX(t) dX(t) = ∆2(t)dt.
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Theorem 2.2 (Martingale representation, one dimension). Let (W (t))0≤t≤T be a Brownian

motion on a probability space (Ω,F ,P), and let F(t), 0 ≤ t ≤ T , be a filtration generated by this

Brownian motion. Let (M(t))0≤t≤T be a martingale with respect to this filtration, i.e. for every t,

M(t) is F(t)-measurable and for 0 ≤ s ≤ t ≤ T , E[M(t)
∣∣F(s)] = M(s). Then there is an adapted

process (c(t))0≤t≤T such that

M(t) = M(0) +

∫ t

0

c(u) dW (u), 0 ≤ t ≤ T. (3)

In diffential form, (3) is

dM(t) = c(t) dW (t), 0 ≤ t ≤ T.

Radon-Nikodym Summary

We state the Radon-Nikodym summary as in (Baxter and Rennie, 1996).

Given P and Q equivalent measures and a time horizon T , we can define a random variable dQ
dP

defined on P -possible paths, taking positive real values, such that

EQ
(
X(T )

∣∣F(t)
)

= ζ(t)−1EP
(
ζ(T )X(T )

∣∣F(t)
)

where ζ(t) is the process ζ(t) = EP
(
dQ
dP

∣∣F(t)
)

and X(T ) a F(T )-measurable contingent claim.

Change of Numeraire

The following theorem is from (Andersen and Piterbarg, 2010a).

Theorem 2.3 (Change of numeraire). Consider two numeraires N(t) and M(t), inducing

equivalent martingale measures QN and QM , respectively. If the market is complete, then the

density of the Radon-Nikodym derivative relating the two measures is uniquely given by

ζ(t) = EQ
N
(dQM
dQN

∣∣F(t)
)

=
M(t)/M(0)

N(t)/N(0)
.

Any process that is strictly positive qualifies as a numeraire.

Risk-neutral Measure

The risk-neutral measure Q is associated with the numeraire β(t) that satisfies the deterministic

SDE

dβ(t) = r(t)β(t)dt β(0) = 1.

Solving the preceding equation yields

β(t) = e
∫ t
0
r(s)ds

which may be proofed by differentation. β(t) can be thought of as a money-market account which

continuously accrues interest over time. For an F(T )-measurable payoff of V (T ), it then holds

that

V (t)

β(t)
= EQ

(V (T )

β(T )

∣∣F(t)
)

V (t) = EQ
(
e−

∫ T
t V (T )

∣∣F(t)
)
.
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T-Forward Measure

In the T -forward measure, a zero coupon bond with maturity T is used as the numeraire asset.

The derivative security pricing formula then changes to

V (t)

P (t, T )
= ET

( V (T )

P (T, T )

∣∣F(t)
)

V (t) = P (t, T )ET
(
V (T )

∣∣F(t)
)
,

since P (T, T ) = 1. ”Shifting to the T -forward measure in a sense decouples the expectation of

the terminal payout V (T ) from that of the numeraire”, (Andersen and Piterbarg, 2010a).

The T -forward measure has an important application in fixed income derivatives pricing. This is

highlighted by the following Lemma.

Lemma 2.4. In a no-arbitrage setting, the forward LIBOR rate L(t, T, T + τ) is a martingale

under QT+τ , such that

L(t, T, T + τ) = ET+τ
(
L(T, T, T + τ)

∣∣F(t)
)
, t ≤ T. (4)

Proof: Appendix 6.1.

An often considered special case of the T -forward measure is the so-called terminal measure, in-

duced by choosing the discount bond maturing at the last date in the tenor structure, i.e. P (t, TN ).

Swap Measure

In the swap pricing Section 3.1, the annuity factor A(t, TS , TE)
def
=
∑E−1
n=S τnP (t, Tn+1) is intro-

duced in equation (5). As it consists of multiple discount bonds which are all positive processes,

A(t, TS , TE) itself is positive and can be used as a numeraire. Choosing A(t, TS , TE) as a numeraire

induces the measure QA which is called swap measure. The derivative security pricing formula then

reads

V (t) = A(t, TS , TE) EA
( V (T )

A(T, TS , TE)

∣∣F(t)
)

t ≤ TS ≤ T ≤ TE .

Spot Measure

Since in the LIBOR Market Model a discrete tenor structure is used, a numeraire accruing interest

in continuous time would not fit into this setting. Hence, the spot measure was introcuded into the

literature as a discrete-time equivalent of the money-market account. For this, consider at time

0 the strategy to invest one unit of currency into 1/P (0, T1) units of T1-maturity discount bonds.

This comes at a cost of 1 at time 0 and returns

1

P (0, T1)
= 1 + τ0L(0, 0, 0 + τ0)

at time T1. Reinvesting into 1/P (T1, T2) units of T2-maturity discount bonds, this returns at time

T2

1

P (0, T1)

1

P (T1, T2)
=
(
1 + τ0L(0, 0, 0 + τ0)

) (
1 + τ1L(T1, T1, T2)

)
.

Proceeding with this strategy for each tenor structure date establishes a positive price process

B(t) =

i∏
n=0

(1 + τnLn(Tn))P (t, Ti+1), Ti < t ≤ Ti+1,

where B(0) = 1. The derivatives pricing formula under the spot measure changes to

V (t)

B(t)
= EB

(
V (T )

B(T )

∣∣F(t)

)
,

where EB
(
·
)

denotes the expectation under measure QB .
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3 Fixed Income Derivatives Products

3.1 Interest Rate Swaps

An interest rate swaps (IRS) is an extremely popular and liquidly traded fixed income derivative.

It is a bilateral OTC contract to exchange cash flow streams. The streams are referred to as legs

of the swap. A vanilla IRS or fixed-for-floating swaps is a contract where one leg is tied to a fixed

rate and one leg is tied to a floating rate. The floating leg is typically based on LIBOR.9 Both legs

have the same expiry date TE and the same currency. One distinguishes payer swaps and receiver

swaps. By convention, the attributes ’payer/receiver’ refer to the fixed leg of the swap.

To value a swap, we specify a tenor-structure which applies to the rate in the floating leg as

0 ≤ TS < TS+1 < . . . < TE τn = Tn+1 − Tn n = S, . . . , E − 1.

Here, we used TS to denote the start of the swap and TE to denote the end of the swap. Comparing

to the above introduced tenor structure {Tn}N−1
n=0 , if TS is equal to T0, we can think of the swap as

spot-starting, if TS > T0, it is a forward-starting swap. At the beginning of each period [Tn, Tn+1],

the spot LIBOR rate fixing is observed, the payment however takes place at the end of each period.

Thus, at the end of each period, the fixed side pays τnK, where K is a constant interest rate and

the floating side of the swap pays τnL(Tn, Tn, Tn+1). This assumes that both legs have the same

payment frequency and share the same conventions for calculating year fractions τn. In reality

however, e.g. in the case of a EUR swap, the rate (6M EURIBOR) associated to the floating leg

fixes semi-annually and is also paid semi-annually, whereas the fixed leg pays annually. Thus, we

note that in a EUR swap, the floating leg pays at times TS+1, . . . , TE , whereas the fixed leg pays

at times TS+2, TS+4, . . . , TE . Schoenmakers generalizes the tenor structure introduced above to

account for these differences, see (Schoenmakers, 2005). A way to formally account for the

different payment frequencies is presented below.

In order to value a swap in the absence of arbitrage, we use the martingale result from equation

(4). Hence, the present value (PV) of the floating leg is

PVfloat(t) =
E−1∑
n=S

τnP (t, Tn+1)ETn+1

(
L(Tn, Tn, Tn+1)

∣∣F(t)
)

=

E−1∑
n=S

τnP (t, Tn+1) L(t, Tn, Tn+1)︸ ︷︷ ︸
=:Ln(t)

.

The present value of the fixed leg is easily valued as

PVfixed(t) =
E−1∑
n=S

τnP (t, Tn+1) ·K

= A(t, TS , TE) ·K,

where we use K as some fixed rate in the IRS and also use the definition of the annuity factor

A(t, TS , TE)
def
=

E−1∑
n=S

τnP (t, Tn+1). (5)

For the party paying fixed, the floating leg is an asset and the fixed leg is a liability. Thus the

value of a payer swap in net terms is

VPayer Swap(t) = PVfloat(t)− PVfixed(t). (6)

As IRS are traded with a net present value of 0 at initiation, we conclude that PVfloat(t) =

PVfixed(t) and we define the par swap rate to be the rate which emerges from this condition. We

9This is only true for USD swaps. For instance, a EUR denominated vanilla swap is based on the EURIBOR

rate. There exist many more variants, e.g. CIBOR in Denmark. On occasion, we will simply refer to the set of

floating rates as LIBOR.
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introduce the notation SR(t, TS , TE) to represent the par swap rate of a swap starting in TS and

maturing in TE . Formally, we have

E−1∑
n=S

τnP (t, Tn+1)Ln(t) =
E−1∑
n=S

τnP (t, Tn+1) SR(t, TS , TE)

⇔ SR(t, TS , TE) =

∑E−1
n=S τn P (t, Tn+1)Ln(t)∑E−1

n=S τn P (t, Tn+1)

⇔ SR(t, TS , TE) =

∑E−1
n=S τn P (t, Tn+1)Ln(t)

A(t, TS , TE)
. (7)

We cannot simply cancel the τn in the above formula because as discussed above, the year fractions

of the two swap legs are typically different. One approach which formally includes the different

payment frequencies would be to change the τn for each leg, hence equation (7) would change to

SR(t, TS , TE) =

∑E−1
n=S τ

float
n P (t, Tn+1)Ln(t)∑E−1

n=S τ
fix
n P (t, Tn+1)

,

where we note that for EUR swaps, τfloat
n ≈ 0.5 and τfix

n ≈ 1. Thus, we would define a different

schedule of payment dates for the floating and fixed leg.10

(Schoenmakers, 2002) utilizes a different approach retaining the definition of the τn as being

spacings between tenor dates with regard to the floating leg, i.e. τn ≈ 0.5 with no superscripts.11

He considers a τ -period tenor structure Tj = T0 + jτ , j ≥ 0, and modifies the swap rate definition

to accomodate for the fact that the fixed leg settles annually by writing

SR(t, TS , TE) =

∑E−1
n=S τn P (t, Tn+1)Ln(t)∑(E−S)/2
k=1 2τn P (t, TS+2k)

. (8)

for a swap contract over the period [TS , TE ] with S and E even. We will not follow the notation of

(8) and continue using (7), while remembering the different conventions which apply for the fixed

and floating leg.

Rearranging equation (7) to

SR(t, TS , TE) ·A(t, TS , TE) =
E−1∑
n=S

τn P (t, Tn+1)Ln(t) = PVfloat(t)

and inserting into equation (6) yields

VPayer Swap(t) = PVfloat(t)− PVfixed(t)

= SR(t, TS , TE) ·A(t, TS , TE)−KA(t, TS , TE)

= A(t, TS , TE)
(

SR(t, TS , TE)−K
)
. (9)

This is the most convenient way of thinking about the time-t value of a payer swap. It is the

difference between the prevailing par swap rate and the strike K, scaled by the annuity factor.

The strike K is the swap rate that the contract was entered into, possibly before t. Pricing swaps

is model-independent.

Clearly then,

VReceiver Swap(t) = A(t, TS , TE)
(
K − SR(t, TS , TE)

)
.

It is instructive to look at the value of a swap for different levels of rates.12 As a payer swap

is positioned for higher rates, increasing rates will increase its value. The first order effect for

the swap value is coming from the annuity A(t, TS , TE), which is why this annuity is often called

10This is the way we implemented it in MATLAB.
11Recall that the tenor structure is chosen according to the conventions of the floating leg.
12We will simply talk about ’rates’, because it does not matter whether we mean zero discount rates or swap rates

as both are connected through equation (7).
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present value of a basis point (PVBP). However, A(t, TS , TE) itself will decrease slightly as rates

increase, thereby reducing the increase in the payer swap.13 This is causing concavity in the payer

swap value. For a receiver swap similar arguments show that the present value of a receiver swap

is a convex function of the swap rate.

Upon defining weights

wn(t)
def
=

τnP (t, Tn+1)∑E−1
k=S τkP (t, Tk+1)

,

the par swap rate can be expressed as

SR(t, TS , TE) =
E−1∑
n=S

wn(t)Ln(t), (10)

and admits the interpretation of a weighted average of forward LIBOR rates, because
∑E−1
n=S wn(t) =

1. This result is straightforward as a swap can be replicated by a bundle of forward rate agreements

(FRAs) and FRAs are linked to forward rates by the arguments above. We note however, in the

case of a EUR swap with different conventions applying to the swap legs, we have
∑E−1
n=S wn(t) ≈ 1.

In Section 2.1 we saw that we are able to express discount bonds in terms of LIBOR rates, albeit

only with a choice for the front stub discount bond,14

P (t, Tn+1) = P (t, Tq(t))
n∏

i=q(t)

1

1 + τiLi(t)
.

Inserting this expression into (10) and observing that the front stub discount bond cancels, we can

also express the par swap rate purely in terms of LIBOR rates:

SR(t, TS , TE) =
E−1∑
n=S

vn(t)Ln(t) (11)

where vn(t) =
τn
∏n
i=q(t)

1
1+τiLi(t)∑E−1

k=S τk
∏k
i=q(t)

1
1+τiLi(t)

. (12)

The popularity of IRS reflects the fact that almost every corporation, not only a financial insti-

tution, bears interest rate risk. IRS allow mitigation of this risk. A corporate that is funded at

LIBOR + 50 bps for the next 10 years might enter a 10 year payer IRS and convert its floating

obligations into fixed ones. The company would be certain never to pay more than the fixed rate

in the swap plus 50 bps in each year for the next 10 years.

3.2 Caps & Caplets

Caplets

A caplet is a call option on a FRA or equivalently a call option on a forward LIBOR rate. The

optionality of this derivative allows the holder to benefit from potentially lower rates in the future,

while protecting from a rise. The payoff of a caplet at time T + τ on a unit notional is

Payoff Caplet(T + τ) = τ(L(T, T, T + τ)−K)+.

In words, it is the positive part of the difference between the LIBOR rate fixing at time T and

the strike, accrued over the period τ . The payoff is fixed in T , but paid in T + τ , corresponding

to the standard ’fixed-in-advance/pay-in-arrears’ convention of money markets. Thus the value of

the caplet at T is

VCaplet(T ) = P (T, T + τ) τ(L(T, T, T + τ)−K)+.

13A(t, TS , TE) multiplied by a constant c is the time-t value of a stream of coupon payments, and, coupon bearing

securities decrease in value as rates rise.
14Here we shifted Tn to Tn+1 to accomodate the expression towards insertion into the swap rate definition.

14



In a similar fashion, at time T + τ a floorlet pays on a unit notional

Payoff Floorlet(T + τ) = τ(K − L(T, T, T + τ))+,

and its value in T is

VFloorlet(T ) = P (T, T + τ) τ(K − L(T, T, T + τ))+.

When discussing the pricing of caplets, we are, as usual, interested in the value at t. By the

risk-neutral pricing formula we can write the value of the caplet at time t < T as

VCaplet(t) = β(t)EQ
(

(L(T, T, T + τ)−K)+

β(T + τ)

∣∣∣F(t)

)
= EQ

(
e−

∫ T+τ
t

r(s)ds(L(T, T, T + τ)−K)+
∣∣F(t)

)
.

This formula is difficult to evaluate as it involves both the stochastic L(·) as well as the stochastic

money market account. Computing this expectation would involve the joint distribution of the

former two under Q. Also, as rates are stochastic, e−
∫ T+τ
t

r(s)ds may not be pulled out of the

expectation operator. We can remedy this problem by employing the change of numeraire technique

and its associated valuation formulae that were introduced in Section 2.3. By switching to the

QT+τ -measure, i.e. by using the zero coupon bond maturing at T + τ as numeraire, the valuation

formula can be significantly simplified to

VCaplet(t) = P (t, T + τ) τ ET+τ
(
(L(T, T, T + τ)−K)+

∣∣F(t)
)
.

Now, we are left with one stochastic variable instead of two. The expectation of L(T, T, T + τ)

under measure QT+τ can now be evaluated. Since the forward LIBOR rate L(t, T, T + τ) is a

martingale under QT+τ (see equation (4)), we can employ the martingale representation theorem

to have

dL(t, T, T + τ) = c(·) dWT+τ . (13)

In the classical Black model (Black, 1976) the function c(·) is given by c(·) = σ L(t, T, T + τ),

i.e. the volatility is proportional to the forward rate level. Given this particular c(·), equation (13)

can be solved to

L(T, T, T + τ) = L(t, T, T + τ) exp
{
−1

2
σ2(T − t) + σ

(
W (T )−W (t)

)}
,

compare to equation (35) in Appendix 6.2.

If σ is deterministic (or even constant as assumed in the Black’76 model), the distribution of

L(T, T, T + τ) is lognormal and we obtain the famous Black’76 formula for a caplet:

V Black
Caplet(t) = P (t, T + τ) τ

(
L(t, T, T + τ)Φ(d1)−KΦ(d2)

)
(14)

where d1 =
log
(
L(t,T,T+τ)

K

)
+ 1

2σ
2
Black(T − t)

σBlack

√
T − t

d2 =
log
(
L(t,T,T+τ)

K

)
− 1

2σ
2
Black(T − t)

σBlack

√
T − t

= d1 − σBlack

√
T − t.

Proof: See Appendix 6.3.

The floorlet has a Black’76 price of

V Black
Floorlet(t) = P (t, T + τ) τ

(
KΦ(−d2)− L(t, T, T + τ)Φ(−d1)

)
,

where d1 and d2 are defined as in the caplet case.
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Caps

Caplets are not traded in the market, however, caps, which are collections of caplets, are traded

liquidly in a number of maturities. A cap is a basket of caplets where for each caplet the same

strike K is applied. We can think of caps as successive calls on forward LIBOR rates. Similarly,

floors are traded which are baskets of floorlets. An investor with exposure to floating rate notes in

his portfolio is concerned that rates will drop in the future. By entering into a floor the investor

can lock in a minimum return while retaining the possibility to benefit from higher LIBOR fixings

in the future.

In the EUR market, the market activity is concentrated on caps for which the reference rate is

6M EURIBOR. The specific rate tenor of 6M is in conjunction with the conventions in the EUR

swap market (in a EUR plain vanilla swap, the floating leg fixes every 6M). This is because swaps

are natural hedging instruments for the delta risk in a cap. Caps are usually spot-starting, i.e. if

entered today, the contract starts in two business days.

A ten-year EUR cap has twenty underlying caplets. The market quotes caps in terms of a premium

or a single flat volatility. The flat volatility has the property that, when applied to each caplet in

the Black’76 pricing formula, it gives the option premium. We give a quote from (Joshi, 2008):

”Another curious aspect [...] is that if one calls a market-maker and asks for a price on a cap, he

will quote a single vol to be used for all the caplets. However, he will have arrived at this vol, by

assigning a different vol to each caplet according to how much he thinks it is worth, converting

these individual vols into prices, adding them up, and then converting back into the single constant

vol which makes the cap have the summed price.”

Being a strip of caplets, a cap is easy to price as it is the sum of the encompassing caplets. We

again switch to the forward measure, this time for each caplet individually,

VCap(t) =
E−1∑
n=S

τnP (t, Tn+1)ETn+1
(
(Ln(Tn)−K)+

∣∣F(t)
)
.

In the Black model, the cap price reads

V Black
Cap (t) =

E−1∑
n=S

τnP (t, Tn+1)
(
Ln(t)Φ(d1)−KΦ(d2)

)
(15)

where d1 =
log
(
Ln(t)
K

)
+ 1

2σ
2
n,Black(Tn − t)

σn,Black

√
Tn − t

d2 = d1 − σn,Black

√
Tn − t.

Every successive LIBOR rate Ln(t) associated to the n-th caplet is a martingale under the Tn+1

forward measure. Each caplet is thus priced under its ’own measure’. A floor is then valued

according to

VFloor(t) =
E−1∑
n=S

τnP (t, Tn+1)ETn+1
(
(K − Ln(Tn))+

∣∣F(t)
)
,

thus

V Black
Floor (t) =

E−1∑
n=S

τnP (t, Tn+1)
(
KΦ(−d2)− Ln(t)Φ(−d1)

)
.

From observing cap quotes for a range of maturities, it is possible to use these quotes to extract

the information on caplet volatility and thus forward LIBOR rate volatility. This process called

caplet volatility bootstrapping is a non-trivial exercise. Once obtained though, caplet volatilities

are fundamental inputs for calibrating an interest rate model such as the LIBOR Market Model

(LMM). We will deal with caplet volatility bootstrapping in Section 4.
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3.3 Digital Caplets

A digital caplet is an option that pays at T + τ on a unit notional

Payoff Digital Caplet(T + τ) = τ 1{L(T,T,T+τ)>K}.

Then

VDigital Caplet(T ) = P (T, T + τ) τ 1{L(T,T,T+τ)>K}.

To find the value at t < T we again use the T -forward measure and use the identity

∂

∂K
(x−K)+ = −1{x>K}.

Then,

VDigital Caplet(t) = P (t, T + τ) τ ET+τ
(
1{L(T,T,T+τ)>K}

∣∣F(t)
)

= P (t, T + τ) τ ET+τ
(
− ∂

∂K

(
L(T, T, T + τ)−K

)+∣∣F(t)
)

= −P (t, T + τ) τ
∂

∂K

(
L(t, T, T + τ)Φ(d1)−KΦ(d2)

)
= −P (t, T + τ) τ (−Φ(d2))

= P (t, T + τ) τ Φ(d2),

where d2 is defined as in the Black’76 formula.

Digital caplets provide more leverage than caplets and are also important building blocks for

interest rate exotics. Consider a range accrual note, a product that accrues value if some condition

is met. A given rate R(t), which could be a fixed rate or a floating rate such as LIBOR, is accrued

over the note’s lifetime only when a different reference rate is inside a given range (e.g. the reference

rate EURIBOR is inside the range [0.01,0.015]). If we let R(t) be the payment rate associated to

the payoff, X(t) be the rate for which a condition has to be fulfilled and l and u are lower and

upper bounds, respectively, a range accrual structured note then pays a coupon C at time T + τ

according to

C = R(T ) · ]{t ∈ [T, T + τ ] : X(t) ∈ [l, u]}
]{t ∈ [T, T + τ ]}

,

where ]{·} denotes the number of days for which the condition is satisfied. Since

]{t ∈ [T, T + τ ] : X(t) ∈ [l, u]} =
∑

t∈[T,T+τ ]

1{X(t)∈[l,u]},

we see that a range accrual note can be decomposed into a series of digital options.

3.4 Swaptions

Besides caps/floors, swaptions represent the second class of interest rate options that are liquidly

traded and considered vanilla by market participants. As IRS are traded, it is natural that options

on them evolved. A swaption is an option to enter an IRS at a future point in time at a prespecified

fixed rate (strike). Swaptions are usually of European type; we will drop this attribute in the

following. One distinguishes payer swaptions and receiver swaptions. A payer swaption is an

option to enter a payer swap, i.e. paying fixed at the prespecified fixed rate and receiving floating

(e.g. 6M LIBOR). A receiver swaption in turn is the right but not the obligation to enter a receiver

swap, thereby receiving fixed and paying the floating leg. A swaption can be settled physically or

in cash, whereby physical settlement means that when the swaption expires (and is ITM), the swap

is initiated and thus the buyer and seller of the swaption are now counterparties in the swap. Cash

settlement involves the swaption seller to compensate the swaption buyer, given that the payoff is

positive.

The underlying swap has to have a finite tenor and thus we need to keep track of both the length

of the swaption and the length of the underlying swap. Given our definiton of a tenor structure,
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we have swaptions with expiries {Tn}E−1
n=S that allow entering a swap starting at Tn and ending at

TE . Notice that with this formulation, the swaption’s expiration date coincides with the start of

the swap, which is typically the case. The swap tenor is then TE − TS . Accordingly, a swaption

maturing at TS and the underlying swap ending at TE is said to be a ”TS into TE −TS” swaption.

Put simpler, a 2 year maturity swaption to enter a 5 year swap, is abbreviated as ”2y5y” or ”2y-

into-5y” swaption.

When the underlying swap is reduced to a single period, TE−TS = 1, a payer swaption is equivalent

to a caplet. We can therefore also think of the above introduced caplets (floorlets) as single-period

payer (receiver) swaptions.

The collection of all swaptions with different expiries and swap tenors is called the swaption matrix

or swaption grid.

In formalizing swaptions, we will always assume the typical situation in which the expiry time of

the swaption is the same time as the start of the swap, TS . At that time, the payoff in case of a

physically settling payer swaption equals

Payoff Swaption(TS) =
(
A(TS , TS , TE)

(
SR(TS , TS , TE)−K

))+

= A(TS , TS , TE)
(

SR(TS , TS , TE)−K
)+

, (16)

where we invoked equation (9), evaluated at t = TS . From this equation, the interpretation of a

payer swaption as a call on the forward swap rate is evident. It is important to note that a swaption

payoff is a nonlinear function of the par swap rate (in case of a payer swaption it is concave, in

case of a receiver swaption it is convex). This is because the underlying swap exhibits convexity

as explained above.

To value a physically settling payer swaption at t < TS , we switch to the swap measure introduced

in subsection 2.3. Recalling that the forward swap rate is a martingale under this measure denoted

by QA, we can price a payer swaption with the change of numeraire technique such that

VPayer Swaption(t)

A(t, TS , TE)
= EA

[A(TS , TS , TE)
(

SR(TS , TS , TE)−K
)+

A(TS , TS , TE)

∣∣∣F(t)

]

VPayer Swaption(t) = A(t, TS , TE)EA
[(

SR(TS , TS , TE)−K
)+∣∣∣F(t)

]
.

Similar to the case of the Black’76 caplet formula, one may assume the distribution of the forward

swap rate to be lognormal. Then we obtain the Black’76 swaption formula

V Black
Payer Swaption(t) = A(t, TS , TE)

(
SR(t, TS , TE) Φ(d1)−KΦ(d2)

)
(17)

where d1 =
log
(

SR(t,TS ,TE)
K

)
+ 1

2σ
2
SR, Black(T − t)

σSR, Black

√
T − t

d2 =
log
(

SR(t,TS ,TE)
K

)
− 1

2σ
2
SR, Black(T − t)

σSR, Black

√
T − t

= d1 − σSR, Black

√
T − t.

The proof follows along the lines of the Black’76 caplet formula, so we omit it.

Now, the critical input is the volatility of the forward swap rate, σSR, Black. Brokers quote swaption

prices in terms of this Black’76 swaption volatility. We introduce the notation σBlack
S,E := σSR, Black

to denote the quoted swap rate volatility of a swaption with underlying swap running from TS to TE .

Pricing a receiver swaption in the Black’76 framework can be done by invoking the parity result

for swaptions,

VPayer Swaption(t)∣∣K − VReceiver Swaption(t)∣∣K = VForward Starting Payer Swap(t)∣∣K .
This means that a forward starting payer swap can be replicated by being long a payer swaption

and short a receiver swaption all struck at the same K, see Table 2.
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at any payment date

Position SR(TS , TS , TE) > K SR(TS , TS , TE) < K

Short Receiver Swaption 0 −(τnK − τnLn(t))

Long Payer Swaption τnLn(t)− τnK 0

Forward Starting Payer Swap τnLn(t)− τnK τnLn(t)− τnK

Table 2: Parity Result for Swaptions

One subtlety in the preceding table are the different settlement/payment frequencies in a swap.

As such, the column header ’at any payment date’ is strictly speaking only accurate if both swap

legs have the same payment frequency. The general idea is correct though.

Solving the parity equation gives the value of a physically settling receiver swaption as

V Black
Receiver Swaption(t) = A(t, TS , TE)

(
KΦ(−d2)− SR(t, TS , TE) Φ(−d1)

)
,

where d1 and d2 are defined as above.

In case of a cash-settling payer swaption, the positive part of the present value of the swap at TS is

paid to the swaption buyer. Cash-settling swaptions are often traded to manage vega risk so that

market participants are actually not interested in entering a swap at swaption’s maturity (Joshi,

2008). Also, since the swaption buyer and seller in a physical setting might end up in a long

counterparty relationship, credit risk concerns play a very important role when choosing between

the physical and cash variant. If equation (16) is used to determine the cash-settled swaption

PV at TS , this might cause valuation discrepancies between counterparties, because the annuity

factor A(TS , TS , TE) depends on a set of zero coupon bonds, which in turn depend on the stripping

algorithm used in yield curve construction. A way out of this settlement problem would be to use

a market observable such as the par swap rate itself, i.e. SR(TS , TS , TE), as quoted by a dealer, to

discount the swap payments to time TS . This swap rate is then the argument in the annuity factor

and discounts the term
(

SR(TS , TS , TE)−K
)+

. Accordingly, the payoff in case of a cash settling

payer swaption reads

Payoff SwaptionCash(TS) = a(SR(TS))
( (

SR(TS , TS , TE)−K
))+

where a(x) =
E−1∑
n=S

τn∏n
i=S(1 + τix)

.
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4 The LIBOR Market Model

4.1 Theory

We are given a tenor structure, i.e. a discretization of time,

0 ≤ T0 < T1 < . . . < TN .

The lognormal LIBOR Market Model assumes a system of stochastic differential equations for the

joint evolution of N forward LIBOR rates under P such that15

dLi(t) = µi(t)Li(t)dt+ σi(t)Li(t)dWi(t) i = 0, . . . , N − 1,

where Wi(t) denotes instantaneously correlated Brownian motions with

dWi(t)dWj(t) = ρij(t)dt.

We let ρ = (ρij(t))i,j=0,...,N−1 be the instantaneous correlation matrix. As pointed out by (Fries,

2007), the LMM is a collection of N Black models which are simultaneously evolved under a unified

measure. Compared to the Black model, we have more flexibility since we consider correlated

Brownian motions. This correlation will become important when pricing swaptions.

As shown above, the forward LIBOR rate Li(t) is a martingale in the measure QTi+1 , i.e. the

measure induced by choosing the numeraire P (t, Ti+1). Under this Ti+1-forward measure it holds

that

dLi(t) = σi(t)Li(t)dW
i+1(t), (18)

where W i+1 def
= WQTi+1 is a Brownian motion which exist in QTi+1 . Importantly, only one LIBOR

rate can be a martingale once we opt for a specific numeraire, while the others are in general

not martingales. In order to establish an arbitrage-free framework, we would like all rates to be

martingales under a single common measure. We conclude that once a choice for a numeraire is

made, the other rates need a drift adjustment to obey the martingale property.

A convenient choice to start with is to choose the discount bond P (t, TN ) which induces the

terminal measure QTN . The arbitrage-free dynamics for the system of LIBOR forward rates then

become

dLi(t) = Li(t)

(
−

N−1∑
j=i+1

τjLj(t)

1 + τjLj(t)
σi(t)σj(t)ρij(t)

)
dt+ σi(t)Li(t)dW

QTN
i (t) i = 0, . . . , N − 1

(19)

so that the drift adjustment is

µQNi (t) = −
N−1∑
j=i+1

τjLj(t)

1 + τjLj(t)
σi(t)σj(t)ρij(t) i = 0, . . . , N − 1.

See (Fries, 2007) for a detailed derivation.

We note that for i = N − 1, the sum
∑N−1
j=i+1(·) is empty so that the forward rate LN−1(t) has no

drift adjustment, thus following the SDE

dLN−1(t) = σN−1(t)LN−1(t) dWN (t).

This is consistent with the result that Li(t) is a martingale under QTi+1 , i = 0, . . . , N − 1.

Under the above introduced spot measure QB , the arbitrage-free dynamics are

dLi(t) = Li(t)

( i∑
j=q(t)

τjLj(t)

1 + τjLj(t)
σi(t)σj(t)ρij(t)

)
dt+ σi(t)Li(t)dW

QB
i (t) i = 0, . . . , N − 1

(20)

15In this subsection, we change the running index n to i. This is done to preserve the typical notation ρij used

in addressing a correlation matrix element.
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with drift adjustment

µQBi (t) =
i∑

j=q(t)

τjLj(t)

1 + τjLj(t)
σi(t)σj(t)ρij(t).

Both under the terminal measure and spot measure, we have forward rate dynamics with correlated

Brownian motion

dWi(t)dWj(t) = ρij(t)dt.

Introducing this correlation into (19) and (20), we Cholesky-factorize the positive definite instan-

taneous correlation matrix such that

ρ = AA> ,

where A is a lower triangular matrix found with Cholesky. The correlated sample vector

W =
(
W0 W1 . . . WN−1

)>
can be generated by setting

W = AZ

for a vector of independent Gaussian draws Z ∼ N(0, I). Then for i = 0, . . . , N − 1, (19) changes

to

dLi(t) = Li(t)

(
−

N−1∑
j=i+1

τjLj(t)

1 + τjLj(t)
σi(t)σj(t)ρij(t)

)
dt+ σi(t)Li(t)

N−1∑
k=1

aik dZ
QTN
i (t).

The presentation of the LMM dynamics has been generic so far. Imposing an actual model to

this framework is a matter of choosing a functional form for σi(t) and ρij(t). Given the high

dimensionality of the model (typically 30 ≤ N ≤ 60), reasonable specifications have to be made

as it is unlikely to obtain, for instance, reliable results for all N(N − 1)/2 correlation parameters

simply by calibrating to a finite amount of market prices of liquidly traded derivatives.

Given a specification for the time-dependent instantaneous volatility and correlation of forward

rates, the stochastic evolution of all forward rates is completely determined and the LMM is

completed, see (Jäckel and Rebonato, 2003).
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4.2 Calibration of Instantaneous Volatilities

The solution of equation (18) is

Ln(T ) = Ln(t) exp
{∫ T

t

σn(s) dWTn+1(s)− 1

2

∫ T

t

σ2
n(s) ds

}
.

Proof: See (35).

Carrying out the derivation of the caplet pricing formula under the Black assumption of a log-

normally distributed forward rate, however, now in the case of a time-dependent deterministic

volatility σn(t), the n-th caplet is then priced according to

V Black
Caplet, LMM(t) = P (t, Tn+1) τn

(
Ln(t)Φ(d1)−KΦ(d2)

)
(21)

where d1 =
log
(
Ln(t)
K

)
+ 1

2

∫ Tn
t

σ2
n(s)ds√∫ Tn

t
σ2
n(s)ds

d2 = d1 −

√∫ Tn

t

σ2
n(s)ds.

Comparing (21) to the Black’76 formula (14) we see that the Black volatility and the instantaneous

volatility in the LMM framework are related by (here, (14) is evaluated at t = 0 and for a general

caplet n)

σn,Black

√
Tn =

√∫ Tn

0

σ2
n(s)ds (22)

σn,Black =

√
1

Tn

∫ Tn

0

σ2
n(s)ds.

As such, the (observed) Black’76 volatility is the root-mean square of the integrated instantaneous

variance.

Given a quote for σn,Black, it is not possible to uniquely determine the instantaneous volatility

σn(t), as there exist plenty functions σn(t) that would integrate to σn,Black. To calibrate a LMM

to a caplet market is then a matter of choosing a well-behaved function for the instantaneous

volatility. As it turns out below, it is customary to choose a parametric form of σn(t).

For the purpose of illustration, assume a given tenor structure, 0 ≤ T0 < T1 < . . . < TN . Since

normally in a fixed income derivative, one ’looks’ at particular interest rate fixings at a finite

amount of times, it is customary to specify σn(t) as a piecewise-constant function. Denoting

σn(Tn) as the instantaneous volatility of the n-th forward rate Ln(t) that applies to the period

[Tn−1, Tn], we can construct a table displaying the volatility structure of forward rates (T−1
def
= 0)

(see Table 3).

Vol of � t ∈ [0, T0) [T0, T1) [T1, T2) [T2, T3) · · · [TN−1, TN )

L0(t) σ0(T0) 0 0 0 0 0

L1(t) σ1(T0) σ1(T1) 0 0 0 0

L2(t) σ2(T0) σ2(T1) σ2(T2) 0 0 0

L3(t) σ3(T0) σ3(T1) σ3(T2) σ3(T3) 0 0

...
...

...
...

...
...

...

LN−1(t) σN−1(T0) σN−1(T1) σN−1(T2) σN−1(T3) · · · σN−1(TN−1)

Table 3: Piecewise constant volatility structure
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The calibration problem is then overparametrized, because the number of parameters is much

bigger than the available number of market quotes at any given point in time.

If we assume stationarity or time-homogeneity of the forward rate volatilites, and introduce σ(i)

as the volatility of a forward rate i periods away from maturity, we can reduce the number of

parameters significantly. Under time-homogeneity, Table 3 becomes Table 4, see (Glasserman,

2010).

Vol of � t ∈ [0, T0) [T0, T1) [T1, T2) [T2, T3) · · · [TN−1, TN )

L0(t) σ(1) 0 0 0 0 0

L1(t) σ(2) σ(1) 0 0 0 0

L2(t) σ(3) σ(2) σ(1) 0 0 0

L3(t) σ(4) σ(3) σ(2) σ(1) 0 0

...
...

...
...

...
...

...

LN−1(t) σ(N − 1) σ(N − 2) σ(N − 3) σ(N − 4) · · · σ(1)

Table 4: Piecewise constant stationary volatility structure

The motivation for imposing time-homogeneity originates from observing term structures of for-

ward rate volatilities as revealed by a cap(let) market. In general, the term structure shape does

not change significantly over time. Further, forward rate volatilites are low close to expiry, peak

around 1-2 years and then fall off again. The literature summarizes the volatility term-structure

as being ’hump-shaped’.

Rebonato gives an explanation of the hump-shape by segmenting the caplet market across three

maturities, see (Rebonato, 2002): the first segment is the very short end of the curve, the second

is the spectrum ranging from 6M to 12-18M and the third segment is associated with longer ma-

turities. The first segment is directly influenced by monetary policy actions undertaken by central

banks. Western central banks nowadays clearly communicate their strategy so that their actions

are by and large anticipated, leading to low volatilities at the short end. The second segment is

characterized by pronounced hikes relative to the other two. The financial economics explanation

centers around the view that market participants continuously assess their expectations of future

monetary policy (”How many more rate hikes/cuts are in the pipeline?”, ”By when will the Fed

be done?”, (Rebonato, 2002)) and also disagree to a large extent on the monetary course in

the intermediate term. Lastly, the third segment is much more affected by structural, long-term

changes in expectations related to inflation and real rates/real returns. Thus, these long-term con-

cerns are more or less independent of short-term monetary loosening/tightening and the forward

rate volatility is relatively low at the long end of the curve. A good parametric form should then

be able to replicate these stylized facts and obey the time-homogeneity restriction.

Rebonato shows that time-homogeneity of the volatility term structure is preserved if σn(t) =

g(Tn − t) for some function g(·) so that the volatility is only a function of time to maturity. A

widely used parameterization of g(·) due to Rebonato is

σn(t) =
(
a+ b (Tn − t)

)
exp
{
−c (Tn − t)

}
+ d. (23)

This specification is sometimes called abcd -formula. Its popularity is amongst other things owed

to the fact that it is ”sufficiently flexible to allow an initial steep rise followed by a slow decay, and

that its square has an analytical integral” (Joshi, 2008). Possessing an analytical integral avoids

computationally expensive numerical integration schemes in calibration routines. The relevant

analytical integral is in Appendix 6.4.
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The reason why an entirely time-homogeneous function might not fit the caplet market perfectly

is because a problem such as the following could appear: Since

σ2
n+1,Black Tn+1 =

∫ Tn+1

t

g(u)2du and σ2
n,Black Tn =

∫ Tn

t

g(u)2du,

then σ2
n+1,Black Tn+1 − σ2

n,Black Tn =

∫ Tn+1

Tn

g(u)2du > 0

must hold because the r.h.s. is a strictly positive quantity, however, this might not be the case for

the l.h.s. side for a particular n.

Let A = {a, b, c, d}. We choose the abcd -parametric form for the instantaneous forward rate

volatility. Calibrating to a caplet market is then a minimization problem of the form

min
A

M∑
n=1

σn,Black −

√
1

Tn − t

∫ Tn

t

[
(a+ b (Tn − t)) exp{−c (Tn − t)}+ d

]2
ds

2

, (24)

where M is the number of caplets under consideration and optimization is subject to the constraints

a + d > 0, c > 0, d > 0.16 Fitting all caplet volatilities with the abcd -formula will generally not

suffice so that we introduce factors kn that measure the extent to which time-homogeneity is lost.

The kn are defined such that we amend (23) to hold for

σn(t) = kn

((
a+ b (Tn − t)

)
exp
{
−c (Tn − t)

}
+ d

)
.

Then, (22) changes to

σn,Black

√
Tn = kn

√∫ Tn

0

σ2
n(s) ds .

If the time-homogeneous specification is already able to recover market prices really well, then we

expect most of the kn to possess values of approximately 1. Below, we will then attempt to first

achieve the best time-homogeneous fit, σ̂n(t), via (24), and then fit perfectly by setting

kn = σn,Black

√
Tn

/(∫ Tn

t

σ̂2
n(s) ds

)1/2

. (25)

Calibration Results

As our benchmark dataset we consider the data provided in Table 7.1 in Chapter 7 of (Brigo

and Mercurio, 2006) which is repeated in Table 6 and displayed in Figure 3. The data is as

of 16/05/2000. σn,Black refers to the Black’76 implied volatility of a caplet maturing in n years,

n = 1, . . . , 19. The fitted parameters of the abcd -formula are in Table 5.

a b c d Residual

0.0065 0.25 0.8769 0.1023 2.43e-005

Table 5: Fitted Parameters of the abcd -formula

We found optimization with lsqnonlin to be the most robust in the sense that the results did not

depend on the starting values. MATLAB’s fminsearch performed worth in this respect.

16Parameter d for instance represents the instantaneous volatility if (Tn − t)→∞ and should thus stay positive.
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Caplet Volatility

σ1,Black 0.1803

σ2,Black 0.1915

σ3,Black 0.1862

σ4,Black 0.1773

σ5,Black 0.1679

σ6,Black 0.1581

σ7,Black 0.1527

σ8,Black 0.1487

σ9,Black 0.1447

σ10,Black 0.1413

σ11,Black 0.1380

σ12,Black 0.1347

σ13,Black 0.1314

σ14,Black 0.1281

σ15,Black 0.1271

σ16,Black 0.1268

σ17,Black 0.1265

σ18,Black 0.1263

σ19,Black 0.1260

Table 6: Caplet Volatilities
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Figure 3: Caplet Volatility Curve

Given the calibrated values for a, b, c, d, we compare the fit against the market data in Figure 4.

Specifically, in this figure we compare the given caplet data against the integrated instantaneous

volatility function
√

1/Tn
∫ Tn

0
σ̂2
n(s) ds (with fitted values for a, b, c, d). The fit is already good,

however not perfect. With the values for kn, calculated according to (25), the fit is perfect. The
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Figure 4: Fit of abcd-formula to the caplet market

values for kn are plotted in Figure 5 and show, as desired, values around 1, indicating that little

time-homogeneity is lost. Finally, we plot the instantaneous volatility function σ̂n(t) in Figure 6,
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Figure 5: Values of kn ∀n

again, with the fitted values for a, b, c, d. The pronounced hump-shape motivated above is evident.
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Figure 6: Instantaneous Volatility with fitted parameters

Remark: Note that the Black’76 caplet volatilities are for annual data, meaning that they reveal

the total volatility of a 12M forward rate. These data have actually been stripped out ouf EUR cap

quotes, thus the initially stripped caplet volatility is with respect to 6M forward rates. (Brigo and

Mercurio, 2006) apply a procedure to transform 6M forward rate volatility to 12M forward rate

volatility which we do not repeat here. We merely note that after transforming the semi-annual

caplet volatility to annual caplet volatility, we can use these as if it represents 12M forward

rate volatility. As shown in the next section, this will be useful when using Rebonato’s swaption

volatility formula.
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4.3 Calibration of Instantaneous Correlations

In Section 4.1, we saw that forward rate correlations are important inputs to the LMM framework.

This model feature is included into the LMM because the value of a swaption at maturity is influ-

enced by the joint distribution of forward rates and thus by the correlation amongst them. This

can be seen by recalling the swaption payoff in equation (16). Since the underlying in a swaption is

a swap rate which in turn is a weighted average of forward rates, we expect the price of a swaption

to increase if the forward rates become more correlated. As the swaption market is vanilla, we

want to make sure that we use its information and be able to reproduce its prices. To this end, we

would also expect that we can imply these correlations out of liquidly traded swaption prices. This

approach of implying forward rate correlations is adressed below, but we will first concentrate on

the intricacies of obtaining the latter via historical estimation.

Historical Correlation Estimation

In order to derive historical estimates of the correlation between changes in forward rates, one

first needs to derive yield curves for some period of time in the past. Then, forward curves may

be calculated off the yield curves and the dependence between forward rate increments may be

estimated. In the following, we will present an estimation approach and the obtained numerical

results. In terms of notation, we follow (Andersen and Piterbarg, 2010b).

Let x be a tenor and τ some fixed year fraction. Further, let l(t, x) be a so-called sliding forward

rate such that it has a fixed time to maturity as opposed to a fixed time of maturity,

l(t, x)
def
= L(t, t+ x, t+ x+ τ).

We define a set of calendar times t0, t1, . . . , tNt that will in our application below correspond to

weekly dates. For a set of tenors x1, . . . , xNx , we construct the Nx ×Nt matrix of observations O

with elements

Oi,j =
l(tj , xi)− l(tj−1, xi)√

tj − tj−1
, i = 1, . . . , Nx, j = 1, . . . , Nt.

The denominator
√
tj − tj−1 in each element of the observation matrix O annualizes the variance

of forward rate increments. For each date t0, . . . , tNt , we calibrate a yield curve from (historical)

market observable quotes for FRAs, swaps and spot rate fixings. Setting τ = 0.5, this allows the

computation of sliding forward rates with tenors x1, . . . , xNx for each calendar date (for the US

market τ would be chosen 0.25). Specifically, we use t0 = 24/03/2003, . . . , tNt = 26/03/2007 and

the set of tenors {x1, . . . , x9} = {0.5, 1, 2, 3, 5, 7, 10, 15, 20}. Each column of O then contains a

(sliding) forward rate curve.

If we are willing to ignore small drift terms, the Nx ×Nx covariance matrix of O is equal to

C = N−1
t OO>.

Letting c be the diagonal matrix defined by

c
def
=



√
C1,1 0

. . . 0

0
√
C2,2

. . .
. . .

. . .
. . .

. . . 0

0
. . . 0

√
CNx,Nx


,

the standard correlation matrix estimator R is

R = c−1Cc−1.

The (i, j)-th element of R is an empirical estimate of the instantaneous LIBOR correlations ρij ,

given the assumption that the latter are time-homogeneous. The concept of instantaneous correla-

tion is, as any continuous-time model, an idealization of reality so that using weekly sampled data
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points is sufficient to be a close proxy. The estimated forward rate correlation matrix is shown in

Figure 7.
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Figure 7: Empirical Forward Rate Correlation Matrix

Directly using historically estimated forward LIBOR correlations in a LMM is subject to several

problems. We will explain a few of these difficulties. (Lutz, 2011) gives a comprehensive account

of all of them. The first problem concerns the estimation period. Obtaining statistically powerful

estimates calls for a long estimation horizon, whereas if a LMM is used for pricing and hedging a

derivative as of today, then a shorter estimation period would be desirable with little overlay of

past market conditions. Second, as the forward curve construction ultimately depends on some

curve calibration algorithm with associated interpolation scheme, different interpolation techniques

in the yield curve bootstrap cause different correlation estimates. Third, the sample correlation

matrix estimator itself has rather poor sampling properties.

Given these arguments, it is common to smooth the empirical correlation matrix by fitting it to

a parametric form, usually with the number of effective parameters ranging from 2 to 5. Besides

smoothness, opting for a parametric form achieves parsimony by reducing the parameter dimension

from Nx(Nx− 1)/2 to that of the respective parametric form. Parameterizing a correlation matrix

ρ must ensure that the general properties of correlation matrices are preserved. Following (Lutz,

2011), these are

(A1) ρ is real and symmetric,

(A2) ρii = 1, i = 1, . . . , Nx and −1 ≤ ρij ≤ 1 ∀ i, j

(A3) ρ is positive definite

(B1) i 7→ ρij , i ≥ j is decreasing

(B2) i 7→ ρi+p,j is increasing for fixed p.

While requirements (A1) to (A3) are general, requirements (B1) and (B2) are specific to forward

rate correlations in the sense that (B1) requires two forward rates to be more decorrelated as their

’distance’ on the curve increases and (B2) specifies that any two forward rates spaced apart by a
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fixed integer p should move more in lockstep at the long end of the curve than at the short end.

As such, (B1) and (B2) impose realistic model features that reflect market observations.

We will focus on two parametric forms. The first one is the three-parameter form suggested by

(Schoenmakers and Coffey, 2000) and reads

ρij = exp
[
−|j − i|
N − 1

(
− log ρ∞ + η1

i2 + j2 + ij − 3Ni− 3Nj + 3i+ 3j + 2N2 −N − 4

(N − 2)(N − 3)

− η2
i2 + j2 + ij −Ni−Nj − 3i− 3j + 3N + 2

(N − 2)(N − 3)

)]
,

i, j = 1, . . . , N, η1 ≥ 0, η2 ≥ 0, 0 ≤ η1 + η2 ≤ − log ρ∞,

where N is the number of forward rates under consideration. We will denote this Schoenmakers &

Coffey parameterization by SC3 for the fact that it is fully described by the 3 parameters η1, η2, ρ∞.

The authors show that this form fulfills all of the above mentioned requirements (A1)–(B2).

The second parametric form developed by (Lutz, 2011) depends on five parameters α, β, γ, δ, ρ∞
and is given by

ρij = ρ∞ + (1− ρ∞)

(
exp
(
−β(iα + jα)

)
+

ϑij√
ϑiiϑjj

√(
1− exp{−2βiα}

)(
1− exp{−2βjα}

))
,

with ϑij =


1 min(i, j) = 0,

min(i, j) min(i, j) > 0, ξiξj = 1,(
(ξiξj)

min(i,j) − 1
)/(

1− 1/(ξiξj)
)

min(i, j) > 0, ξiξj 6= 1,

ξi = exp

(
−1

i

( i− 1

N − 2
γ +

N − 1− i
N − 2

δ
))

,

α, β > 0, γ, δ ∈ R, ρ∞ ∈ [0, 1).

We will denote this form by L5P. (Lutz, 2011) explores the increased flexibility of this form when

fitted to historical correlation matrices.

Letting the respective parameter set be B, fitting a parametric correlation matrix against an

empirical one is a least-squares optimization problem of the form

min
B

Nx∑
i=1

Nx∑
j=1

(Rij − ρij)2
,

for which Andersen & Piterbarg suggest, for instance, using the Levenberg-Marquardt algorithm

(see (Andersen and Piterbarg, 2010b)). In Table 7 we give the results and in Figure 8 and

Figure 9 we visualize the resulting smoothed correlation matrices.

Form α β γ δ ρ∞ η2 η1 Residual

SC3 - - - - 0.3058 0.0264 0.0244 0.6553

L5P 2.7019 0.0075 0.0302 0.1452 0.0325 - - 0.0761

Table 7: Fitted Parameters of Smoothed Correlation Matrix
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Figure 8: SC3-smoothed Empirical Correlation Matrix

The L5P form outperforms the SC3 form, highlighted by lower residual sum of squared errors and

a smoothed correlation matrix which looks more reasonable than the one obtained via SC3. In

an example given on page 110 in (Lutz, 2011), the SC3 form also cannot adequately control for

the ’back end’ correlations, a problem that we encounter here as well. The asymptotic correlation

parameter ρ∞ of L5P appears to be quite small though.17 Further, we note that the results for

L5P were sensitive to the starting values. In conclusion however, the fit produced by L5P appears

to be very good.
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Figure 9: L5P-smoothed Empirical Correlation Matrix

17(Lutz, 2011) obtains however, albeit for a different estimation period, a value of ρ∞ near 0 as well.
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Implying Correlation from a Swaption Matrix

The market quotes swaption prices as Black’76 swaption volatilities such that, when inserted into

the Black’76 swaption formula, they give the option premium. The assumption of the Black’76

swaption formula was that forward swap rates SR(TS , TS , TE) are lognormally distributed. Impor-

tantly, forward rates and swap rates cannot be jointly lognormal at the same time.

In essence, the LMM is a forward-rate based model as the underlying state variables are forward

LIBOR rates. If we choose one of the discount bonds P (t, Tn+1) as a numeraire, one forward rate

will be a martingale, however, the swap rate being a combination of several forward rates, will not

be a martingale. Thus in the LMM, formula (17) cannot hold as it was derived assuming

dSR(t, TS , TE) = σS,E(t)SR(t, TS , TE) dWA, (26)

i.e. that the forward swap rate is a martingale under the measure induced by choosing the annuity

factor as numeraire. Here, σS,E(t) is the instantaneous swap rate volatility and dWA is a Brown-

ian motion increment in measure QA. From equation (26), the lognormal property would follow,

but as explained this does not hold. Brigo & Mercurio derive a complex expression for the swap

rate dynamics under the T -forward measure induced by the numeraire P (t, TS), see (Brigo and

Mercurio, 2006). We thus conclude that swaption pricing via Black’s formula is not possible in

the LMM.

Thus, when calibrating to a swaption matrix, we are faced with the problem that there exist no

closed form solutions for swaption prices in the LMM. Performing a Monte Carlo simulation to

obtain the swaption price is feasible, but for the purposes of calibrating a LMM, doing simulations

during a calibration loop is computationally not viable. There exist, however, very good approx-

imate formulae to the swaption volatility which can be directly used to calibrate to a matrix of

quoted swaption volatilities.

We will now derive the approximate swaption volatility formula as proposed by Rebonato. As

shown above, the swap rate is a linear combination of forward rates,

SR(t, TS , TE) =

E−1∑
n=S

wn(t)Ln(t)

where wn(t)
def
=

τnP (t, Tn+1)∑E−1
k=S τkP (t, Tk+1)

.

Applying Itô’s product rule, we have

dSR(t, TS , TE) =
E−1∑
n=S

wn(t) dLn(t) +
E−1∑
n=S

Ln(t)dwn(t) +
E−1∑
n=S

dwn(t) dLn(t).

If we make the assumption that the weights wn(t) are effectively constant, the swap rate dynamics

simplify to

dSR(t, TS , TE) =
E−1∑
n=S

wn(t) dLn(t).

(Jäckel and Rebonato, 2003) give an in-depth treatment of why this simplification is justified.

We merely note that this is a very good approximation for parallel moves in the yield curve, which

is the prevalent observation when the curve moves.

Given the dynamics of forward rates, dLi(t) = µi(t)Li(t)dt + σi(t)Li(t)dWi(t) with correlated

Brownian motion, we compute the quadratic variation of the swap rate as

d 〈SR(·), SR(·)〉 =
E−1∑
i=S

E−1∑
j=S

wi(t)wj(t)dLi(t)dLj(t)

=
E−1∑
i,j=S

wi(t)wj(t)Li(t)Lj(t)σi(t)σj(t)ρij dt.
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In the preceding equation, we used the Brownian motion multiplication rules dt dt = 0 and

dt dW (t) = 0, both of which are known to be only shorthand expressions for an appropriate

sum with limit zero, see (Shreve, 2004).

Here, we also imposed time-homogeneous correlations. If the swap rate follows an Itô diffusion

process as in equation (2) with ∆(t) =: SR(t, TS , TE)σS,E(t), where σS,E(t) is the instantaneous

swap rate volatility, then we invoke the differential version of Definition 2.1 to have that

d〈SR(·), SR(·)〉 = ∆2(t) dt = SR(t, TS , TE)2 σ2
S,E(t) dt

⇔ σ2
S,E(t) =

1

SR(t, TS , TE)2

E−1∑
i,j=S

wi(t)wj(t)Li(t)Lj(t)σi(t)σj(t)ρij (27)

Since the weights wn(t) and the forward rates Ln(t) are stochastic, we have obtained a stochastic

instantaneous swap rate volatility, even if we start with a deterministic forward rate volatility.

Assume that we would like to use (27) to obtain the Black’76 swaption price. This necessitates to

equate the total Black volatility with its integrated swap-rate instantaneous variance such that

(σBlack
S,E )2 · TS =

∫ TS

0

σ2
S,E(s) ds.

(Jäckel and Rebonato, 2003) conclude that for any future realization of forward rates and

corresponding weights, there is a different instantaneous swap rate volatility so that the r.h.s. is

path-dependent integral that cannot be equated with the path-independent l.h.s.

To proceed, we freeze the stochastic quantities at their time-0 values. This again is a good approx-

imation for parallel yield curve moves. Then,

(σBlack
S,E )2 · TS =

∫ TS

0

1

SR(0, TS , TE)2

E−1∑
i,j=S

wi(0)wj(0)Li(0)Lj(0)σi(s)σj(s)ρij ds.

Rearranging gives Rebonato’s approximated swaption volatility formula:

σBlack, approx
S,E =

√√√√ E−1∑
i,j=S

wi(0)wj(0)Li(0)Lj(0)ρij
SR(0, TS , TE)2

1

TS

∫ TS

0

σi(s)σj(s)ds (28)

In the literature, this is the most common form of Rebonato’s approximated swaption volatility. It

assumes however that both legs of the underlying swap share the same conventions. (Schoenmak-

ers, 2002) derives a general form accounting for different swap leg conventions. The expression

gets much more convoluted then.

We consider the swaption volatilities from Section 6.17 of (Brigo and Mercurio, 2006) which

are displayed in Figure 10 and repeated in Table 8.

TS � (TE − TS) 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10 Y

1Y 16.4 15.8 14.6 13.8 13.3 12.9 12.6 12.3 12.0 11.7

2Y 17.7 15.6 14.1 13.1 12.7 12.4 12.2 11.9 11.7 11.4

3Y 17.6 15.5 13.9 12.7 12.3 12.1 11.9 11.7 11.5 11.3

4Y 16.9 14.6 12.9 11.9 11.6 11.4 11.3 11.1 11.0 10.8

5Y 15.8 13.9 12.4 11.5 11.1 10.9 10.8 10.7 10.5 10.4

7Y 14.5 12.9 11.6 10.8 10.4 10.3 10.1 9.9 9.8 9.6

10Y 13.5 11.5 10.4 9.8 9.4 9.3 9.1 8.8 8.6 8.4

Table 8: ATM Swaption implied volatilities, mid quotes as of 16/05/2000

In the rows of Table 8, we find the maturities of the swaptions and in the columns the respective

tenors of the underlying swaps. We wish to imply the instantaneous forward rate correlation from
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Figure 10: ATM Swaption matrix as of 16/05/2000

this swaption matrix. Since (Brigo and Mercurio, 2006) do not provide discount factors for

16/05/2000, we use (11) to compute weights and swap rates. The authors also provide forward

rates, which we do not repeat here.

Irrespective of whether instantaneous correlations are estimated from historical data or inferred

from market prices, one uses a flexible parametric form which achieves smoothness and parsimony.

Based on the above results, we choose Lutz’ 5P form.

We calibrate only to the swaption matrix and minimize the objective function

min
A,B

M∑
i=1

(
σBlack
i, S,E − σ

Black, approx
i, S,E

)2

where

• M is the number of swaptions in the swaption matrix

• σBlack
i, S,E is the i-th quoted implied swaption volatility for a swap from TS to TE

• σBlack, approx
i, S,E is given by Rebonato’s swaption volatility formula.

We obtain the following parameters:

a b c d α β γ δ ρ∞

0.0917 0.0834 0.5903 0.0772 2.9851 0.3294 -0.4898 -0.4971 0.6282

Table 9: Calibration to Swaption Matrix: Fitted Parameters

Plotting the instantaneous correlation matrix with the calibrated parameters for α, β, γ, δ and

ρ∞ yields Figure 11.
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Figure 11: Fitted Instantaneous Forward Rate Correlation Matrix

Interestingly, when plotting the instantaneous volatility function with calibrated parameters a, b, c, d

in Figure 12, we obtain the same hump shape feature that was already present after calibration

of the caplet market. In a prototypical example, (Rebonato, 2002) calibrates the parameters

a, b, c, d from a swaption matrix, albeit with fixed correlation parameters, and also obtains the

aforementioned hump shape.
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Figure 12: Fitted Instantaneous Volatility Function after Calibration to the Swaption Matrix

We end this subsection with a discussion of possible problems arising from the preceding approach

of calibrating instantaneous correlations. Generally, inferring instantaneous correlations from ac-

tively traded swaptions is desirable as they reflect current market conditions, thus not suffering

34



from the backward-looking nature of historically estimated correlations. (Fries, 2007) argues

relatively strongly against using historically estimated correlations, noting that, in the context of

risk-neutral valuation, ”if the model did not replicate current market prices, then it would not be

possible to buy the replication portfolio of a derivative at the model price of the derivative. The

model price would inevitably be wrong.”

There are however, also problems with implying correlations from the market. One such general

problem is that swaption prices depend on forward rate correlation and volatility. There is no

liquidly traded fixed income derivative that solely depends on correlation, as opposed to caplets,

which solely depend on volatility.

Another problem concerns the relationship between instantaneous and terminal correlations. In-

stantaneous correlations are defined as

ρij =
〈dLi(t), dLj(t)〉√
〈dLi(t)〉

√
〈dLj(t)〉

.

For terminal correlations, (Rebonato, 1998) shows that the appropriate quantity summarizing

the amount of decorrelation between two stochastic variables from time 0 to time T is

ρ̄ij =

∫ T
0
σi(s)σj(s)ρij(s)ds√∫ T

0
σ2
i (s)ds

√∫ T
0
σ2
j (s)ds

.

or

ρ̄ij = ρij

∫ T
0
σi(s)σj(s)ds√∫ T

0
σ2
i (s)ds

√∫ T
0
σ2
j (s)ds

.

in the case of time-homogeneous instantaneous correlations. From this equation, we see that the

terminal correlation not only depends on the instantaneous correlation ρij but also on the instanta-

neous volatilities. Hence, even for perfectly instantaneously correlated random variables, ρij = 1,

terminal decorrelation could be achieved by time-dependent instantaneous volatilities.

Swaption payoffs depend on the terminal correlation between several different forward rates which

leads (Brigo and Mercurio, 2006) to the conclusion that swaption volatilities as given by for-

mula (28) are more directly linked with terminal correlations rather than with instantaneous ones.

This makes it hard to obtain stable calibration results for instantaneous correlations.

In the same context, for swaption prices (Rebonato, 2002) finds an ”almost total lack of depen-

dence on the shape of the correlation function”.

We further note that very sophisticated approaches emerged which imply correlation parameters

out of CMS spread options, a derivative that has become relatively liquid and shows a much

more pronounced sensitivity towards forward rate correlations, see (Lutz, 2011) for details and

applications. These methods are beyond the scope of this thesis.
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4.4 Bootstrapping Caplet Volatilities

We already pointed to the problem that, although caplet quotes reveal the total volatility of

forward rates and are fundamental inputs for LMM calibration, in the market only caps, portfolios

of caplets, are traded. Thus, we first need to bootstrap the caplet volatilities given the market

quotes of caps. For this, consider the cap quotes listed in Table 10 and the associated cap volatility

term structure in Figure 13, obtained from ICAP via Bloomberg. These are ATM flat volatility

quotes from 21/12/2011. The concept of ATM is subtle here, because each cap is a combination of

several caplets with each caplet having a different underlying forward rate. Thus, from the outset,

it is unclear which forward rate sets the ATM strike.

The market convention is that a cap is said to be ATM if the strike is equal to the forward swap

rate of the maturity-equivalent swap, i.e. a cap starting at TS and ending at TE is ATM if

SR(t, TS , TE) = KATM .

We recall that the flat volatility is the single quantity which, when inserted into each Black’76

caplet formula, gives the cap premium (see equation (15)). The cap premia in the third column of

Table 10 were calculated in this fashion with each strike KATM
j set according to be the forward

swap rate.

Cap Maturity Flat Volatility Premium (bps) Residual (bps) kn

1Y 0.5401 16 2 0.8334

18M 0.5841 33 3 0.6527

2Y 0.6433 56 8 0.7886

3Y 0.5699 100 6 0.4545

4Y 0.5508 172 12 0.7130

5Y 0.5127 266 14 0.8391

6Y 0.4738 370 12 0.8481

7Y 0.4434 480 10 1.0192

8Y 0.4186 581 7 0.8483

9Y 0.3979 687 3 0.9989

10Y 0.3794 779 5 0.8807

12Y 0.3508 961 19 -

15Y 0.3277 1227 28 -

20Y 0.3191 1617 21 -

Table 10: ATM EUR Caps, 21/12/2011

We could attempt to back out caplet volatilities from cap quotes and then apply the methods

discussed in Section 4.2 to get the optimal parameters a, b, c, d. (Hull and White, 2000) proposed

the following scheme: given a range of flat cap volatilities, one could interpolate them to obtain

flat cap volatilities for all maturities. Assuming one is interested in the volatility of the caplet

maturing in 2.5 years, one may subtract the calculated 2.5-year cap price from the 3-year cap

price. The 2.5-year cap is not traded but could in principle be computed with the interpolated

flat volatilities. The resulting price of the 2.5-year caplet can be inverted with Newton-Raphson to

get the appropriate volatility. Andersen & Piterbarg discuss possible problems with this approach,

especially when this methodology is applied to caps with different expiries which are quoted in a

different strike range, see (Andersen and Piterbarg, 2010c) for details.

We will consider a different approach described by (Andersen and Piterbarg, 2010c) and

(West, 2010). Let us fix notation by defining the set of cap maturities as

I =
{

1Y, 18M, 2Y, . . . , 10Y, 12Y, 15Y, 20Y
}
.
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Figure 13: ATM Cap Flat Vols, 21/12/2011

To each i ∈ I, we associate an ATM strike Ki (the Ki is the appropriate forward swap rate). The

price (premium) of the i-th cap with strike Ki is denoted by V Cap
i , i ∈ I. Let us further denote

the price of a n-th caplet with strike K and volatility parameter σn(t) as

V Caplet
n (K;σn(t)).

Let ni, n1 < . . . < nI be the number of caplets in the i-th cap. We proceed to define the objective

function

I =
I∑
i=1

( ni∑
n=1

V Caplet
n (Ki;σn(t))︸ ︷︷ ︸

Cap model price

−V Cap
i

)2

. (29)

For a given set of model parameters A = {a, b, c, d}, I thus measures the amount of mispricing

between cap premia quoted in the market and cap model premia, where the latter are sums of

caplet prices calculated in the Black’76 model. In (29), σn(t) will again obey the abcd -formula.

Compared to the approach of Hull & White, we circumvent the caplet volatility bootstrap by

directly implying the parameters a, b, c, d from the cap market. As such, we superimpose the

caplet pricing condition

σn,Black =

√
1

Tn

∫ Tn

0

σ2
n(s)ds

to hold equally well if we consider caps as being a sum of caplet prices.

We minimize I such that

min
A
I subject to a+ d > 0, c > 0, d > 0.

We summarize the implementation.

Algorithm

• Determine the caplet volatilities using
√

1
Tn

∫ Tn
0

σ2
n(s) ds with Rebonato’s abcd -formula for

σn(t) for some starting values for a, b, c, d
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• Find the model Black’76 caplet LMM prices using equation (21)

• Find the model Black’76 cap LMM prices by summing up all revelant caplets

• Minimize objective function (29) by applying this scheme for all caps

We state the calibrated parameters in Table 11 and plot the derived caplet volatilities in Figure

14. We note that is was necessary to enforce the constraints a+ d > 0, c > 0, d > 0.

a b c d

-0.0716 1.8659 1.3240 0.1619

Table 11: Fitted Parameters a, b, c, d
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Figure 14: Calibrated Caplet Volatilities 21/12/2011

The figure again points to the hump-shape in caplet volatilities. The high volatility level reflects the

high degree of uncertainty at that time. If we interpret the flat cap volatility as a weighted average

of the encompassing caplet volatilities, the observed rise at the short end appears reasonable. In

the last column of Table 10 we give the absolute calibration errors between cap market premia

and cap model premia in basis points, i.e. in units of 1/100 %. Finally, in Figure 15 we present the

obtained instantaneous volatility function.

Since the fit to the cap market was not optimal, we now attempt to derive the values for kn such

that we price the caps exactly. This is almost equivalent to the procedure in subsection 4.2, except

that we do not have Black’76 caplet volatilities.

We found the optimal parameter set A = {a, b, c, d} and now re-specify the model to include the

factors kn. Follwing (West, 2010), we assume kn to be a piecewise constant function that changes

its value for each cap. Under this assumption, the kn are found uniquely.

Starting with the 1Y-cap, we calculate the prices of the two caplets, sum them to obtain the model

price of the cap and vary k1 until model and market prices match. This could be done for all

subsequent caps, thus one root search for each cap. We carried this out until the 10Y-cap as we

need these values in the subsequent Monte Carlo simulation. The parameters are in Table 10.
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Figure 15: Instantaneous Volatility Function, 21/12/2011

4.5 Monte Carlo Simulation

In this subsection, we use the calibrated parameters a, b, c, d from 21/12/2011 in a Monte Carlo

simulation. We are given the general dynamics of the LMM under the spot measure

dLi(t) = Li(t)

( i∑
j=q(t)

τjLj(t)

1 + τjLj(t)
σi(t)σj(t)ρij(t)

)
dt+ σi(t)Li(t)dW

QB
i (t) i = 0, . . . , N − 1.

(30)

Simulating the vector of forward rates from t to T cannot be done in one step because the transition

density is unknown. The exception to this assertion is when we only evolve one forward rate. Then

we could choose the discount bond maturing at the payment time of the forward rate as numeraire,

obtain a lognormal transition density and simulate directly to T . In the case of simulating the

joint evolution of forward rates, we need to discretize time from t to T according to the timeline

t = t0 < t1 < . . . < tn = T .

As pointed out e.g. by (Glasserman, 2010) or (Andersen and Piterbarg, 2010b), quite often

one takes ti = Ti, so that we evolve the forward rate vector directly from one tenor date to the

next. A first-order Euler scheme discretizing (30) and evolving all forward rates a single step ∆

forward in time is given by

L̂i(t+ ∆) = L̂i(t) + µi(·)L̂i(t)∆ + L̂i(t)
√

∆σi Z i = 0, . . . , N − 1

with µi(·) =
i∑

j=q(t)

τjL̂j(t)

1 + τjL̂j(t)
σi(t)σj(t)ρij(t) and Z ∼ N(0, 1).

We use hats to denote discretized variables. A log Euler scheme which preserves positivity of all

rates, after application of Itô’s lemma, reads

L̂i(t+ ∆) = L̂i(t) · exp

{(
µi(·)−

1

2
σ2
i

)
∆ +

√
∆σi Z

}
i = 0, . . . , N − 1. (31)
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Repeated application of the single time step gives rise to a particular path of the forward curve

evolution. Given that we simulate the dynamics under the spot measure, for pricing purposes we

need to evolve the spot numeraire as well.

The initial forward rates are given in Table 12. These were calculated from a stripped yield curve

on 21/12/2011.

Forward Rates

L(0, 0.5, 1) 0.0129

L(0, 1, 1.5) 0.0121

L(0, 1.5, 2) 0.0131

L(0, 2, 2.5) 0.0146

L(0, 2.5, 3) 0.0168

L(0, 3, 3.5) 0.0198

L(0, 3.5, 4) 0.0227

L(0, 4, 4.5) 0.0251

L(0, 4.5, 5) 0.0273

L(0, 5, 5.5) 0.0290

L(0, 5.5, 6) 0.0305

L(0, 6, 6.5) 0.0320

L(0, 6.5, 7) 0.0326

L(0, 7, 7.5) 0.0316

L(0, 7.5, 8) 0.0318

L(0, 8, 8.5) 0.0338

L(0, 8.5, 9) 0.0342

L(0, 9, 9.5) 0.0328

L(0, 9.5, 10) 0.0325

Table 12: Initial Forward Rates, 21/12/2011

We use an equidistant time line t0 = 0.5, t1 = 1, . . . meaning that we choose ∆ = 0.5, hence

simulating from one tenor date to the next. For each time step, one of the forward rates will reset,

thus not being ’alive’ anymore as time progresses.

If the derivative payoff is fixed at Tn but paid at Tn+1, we simulate to time Tn and calculate the

deflated payoff

g(L̂(Tn)) ·
n∏
j=0

1

1 + τjL̂(Tj)

for some payoff function g(·) and the simulated spot numeraire process B(Tn) =
∏n
j=0(1+τjL̂(Tj)).

A Monte Carlo price at time t is then given by

VMC(Tn) = B(t)
1

M

M∑
k=1

g(k)(·)
B(k)(·)

for sample size M .

Below, we priced a 10-year cap as of 21/12/2011, so that each caplet payoff is calculated according

to

0.5 · (L̂i(Ti)−K)+ i = 0.5, 1, . . . , 9.5.

We omit the first caplet and calculate 19 caplet prices for each iteration.
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The simulation is supposed to be illustrative only, as we used a full-blown approach according to

equation (31), which is actually not necessarily needed as we could have evolved in a single step

as well.

We used the calibrated parameters a, b, c, d from Table 11 along with the scaling factors kn from

Table 10. In addition, for the correlation parameters, we simply took the historically estimated

correlation parameters. Figure 16 gives the result of this Monte Carlo simulation.18
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Figure 16: Monte Carlo Simulation of 10-yr cap

18The coding of the simulation was partly inspired by the work of (Hippler, 2008).
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5 Summary

We considered the LMM modeling approach in fixed income derivatives markets. We presented a

viable approach to bootstrap a yield curve. (Hagan and West, 2006) remark that the above

applied Hermite spline interpolation is frequently supplied by software vendors. The usage of Re-

bonato’s abcd -formula remains very popular and we applied this function to market data from

2000 and, in the process of a caplet volatility calibration, to data from 2011. Furthermore, we

justified the usage of Lutz’ flexible five parameter correlation parameterization by examining its

fitting performance against an empirically estimated forward rate correlation matrix. We derived

Rebonato’s approximated swaption volatiliy and applied it to a swaption matrix. Finally, we car-

ried out a Monte Carlo simulation with a log Euler scheme.

Given today’s abundance of stochastic volatility LMM extensions, the lognormal approach ad-

mittedly lacks sophistication. Also, there exist better simulation schemes such as the Predictor-

Corrector method developed by (Hunter et al., 2001). Further, as already mentioned above,

calibration approaches of the latest generation include CMS spread options into the set of calibra-

tion instruments. We also did not cover rank reductions of correlation matrices, an advanced topic

that is discussed in any of (Andersen and Piterbarg, 2010b), (Lutz, 2011) or (Pietersz and

Groenen, 2004).
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6 Appendix

6.1 A.1

For the proof that the forward LIBOR rate L(t, T, T + τ) is a martingale under QT+τ we need

the following Proposition, for which we also provide the proof. We follow (Björk, 2009) while

changing his notation to the one we used so far.

Proposition 6.1. Assume that the normalized price process Π(t)/N(t) is a QN -martingale. If the

density of the Radon-Nikodym derivative (likelihood process) is given by

ζ(t) =
M(t)/M(0)

N(t)/N(0)
,

then M(t) is a martingale measure for Π(t).

Proof:

EQM
(

Π(t)

M(t)

∣∣F(s)

)
= ζ(s)−1 EQN

(
ζ(t)

Π(t)

M(t)

∣∣F(s)
)

(32)

= ζ(s)−1 EQN
(
M(t)/M(0)

N(t)/N(0)

Π(t)

M(t)
ζ(t)

∣∣F(s)

)
= ζ(s)−1 N(0)

M(0)
EQN

(
Π(t)

N(t)

∣∣F(s)

)
= ζ(s)−1 N(0)

M(0)

Π(s)

N(s)
=

N(s)/N(0)

M(s)/M(0)

N(0)

M(0)

Π(s)

N(s)
=

Π(s)

M(s)

Returning to the proof of (4), we know that by the risk-neutral pricing formula

P (t, T )

β(t)
= EQ

( 1

β(T )

∣∣F(t)
)
,

so P (t, T ) is a Q-martingale. Applying the above Proposition, then P (t,T )
P (t,T+τ) is a QT+τ -martingale.

Since the forward LIBOR rate is defined by

L(t, T, T + τ) = τ−1
( P (t, T )

P (t, T + τ)
− 1
)

it is a QT+τ -martingale as well. 2

Remark: In (32) we used ζ(t)
ζ(s) inside EQN

(
·
∣∣F(s)

)
. (Baxter and Rennie, 1996) give the lucid

interpretation of this term as being the change of measure up to time t with the change of measure

up to time s removed.

6.2 A.2

Here we closely follow Example 4.4.8 (Generalized geometric Brownian motion) in (Shreve, 2004).

Define the Itô process

X(t) =

∫ t

0

σ(s) dW (s) +

∫ t

0

(α(s)− 1

2
σ2(s)) ds .

Then

dX(t) = σ(t) dW (t) + (α(t)− 1

2
σ2(t)) dt

and

dX(t) dX(t) = σ2(t) dW (t) dW (t) = σ2(t) dt .

Consider an asset price process given by

S(t) = S(0) exp
{
X(t)

}
= S(0) exp

{∫ t

0

σ(s) dW (s) +

∫ t

0

(α(s)− 1

2
σ2(s)) ds

}
. (33)
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By Itô’s formula with f(x) = S(0)ex, f ′(x) = S(0)ex, f ′′(x) = S(0)ex, we have

dS(t) = df(X(t)) = f ′(X(t))dX(t) +
1

2
f ′′(X(t))dX(t)dX(t)

= S(t)dX(t) +
1

2
S(t)dX(t)dX(t) .

Inserting the dynamics dX(t) leads to

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t) (34)

so that (33) is generalized geometric Brownian motion and the solution of (34). In case of constant

α and σ, this becomes GBM as in the classical Black-Scholes analysis,

S(t) = S(0) exp
{(
α− 1

2
σ2
)
t+ σW (t)

} (
W (0) = 0

)
.

If α = 0, then dS(t) = σ(t)S(t)dW (t) and

S(t) = S(0) exp
{∫ t

0

σ(s) dW (s)− 1

2

∫ t

0

σ2(s) ds
}
. (35)

6.3 A.3

ET+τ
[
(L(T, T, T + τ)−K)+

]
= ET+τ

[(
L(t, T, T + τ) exp

{
−1

2
σ2(T − t) + σ(W (T )−W (t))

}
−K

)+]
=

1√
2π

∫ ∞
−∞

(
L(t, T, T + τ) exp

{
−1

2
σ2(T − t) + σ

√
T − tz

}
−K

)+

e−
1
2 z

2

dz

It holds that L(T, T, T + τ) > K if −d2
def
=

log

(
K

L(t,T,T+τ)

)
+ 1

2σ
2(T−t)

σ
√
T−t < Z. Then

ET+τ
[
(·)+

]
=

1√
2π

∫ ∞
−d2

(
L(t, T, T + τ) exp

{
−1

2
σ2(T − t) + σ

√
T − tz − 1

2
z2
}
−Ke− 1

2 z
2
)
dz

=
1√
2π

∫ ∞
−d2

L(t, T, T + τ)ϕ(z − σ
√
T − t)dz −K 1√

2π

∫ ∞
−d2

e−
1
2 z

2

dz

= L(t, T, T + τ)

∫ ∞
−d2−σ

√
T−t

ϕ(y)dy −K
∫ ∞
−d2

ϕ(z)dz change of variables: y = z − σ
√
T − t

= L(t, T, T + τ)

∫ d2+σ
√
T−t

−∞
ϕ(y)dy −K

∫ d2

−∞
ϕ(z)dz

= L(t, T, T + τ) Φ(d2 + σ
√
T − t)−KΦ(d2)

Recognizing that d1 = d2 + σ
√
T − t, the result follows. 2

6.4 A.4

We state the integral of the square of λn(t) =
(
a + b (Tn − t)

)
exp
{
−c (Tn − t)

}
+ d as in (West,

2010).∫ (
(a+ b (Tn − t))e−c (Tn−t) + d

)(
(a+ b (Tm − t))e−c (Tm−t) + d

)
dt

=
ad

c

(
ec (t−Tn) + ec (t−Tm)

)
+ d2t− bd

c2

(
ec (t−Tn)[c (t− Tn)− 1] + ec (t−Tm)[c (t− Tm)− 1]

)
+
ec (2t−Tn−Tm)

4c3

(
2a2c2 + 2abc(1 + c (Tn + Tm − 2t)) + b2

[
1 + 2c2(t− Tn)(t− Tm) + c(Tn + Tm − 2t)

])
=: I(t, Tn, Tm)

For the purposes of calibrating to a caplet market, I(t, Tn, Tm) needs to be evaluated at Tn = Tm.
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Hunter, C., Jäckel, P., and Joshi, M. (2001). Drift approximations in a forward-rate based LIBOR

Market Model. Quarc Working Paper.

Huyet, M. (2007). Societe Generale, Libor Market Models: the reasons behind the success. A focus

on calibration. URL https://www.rocq.inria.fr/mathfi/LMM-09.01.2007.ppt.
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