
Modeling Event-driven Time Series with

Generalized Hidden Semi-Markov Models

Felix Salfner

Department of Computer Science

Humboldt-Universität zu Berlin

salfner@informatik.hu-berlin.de

November 16, 2006

Abstract

This report introduces a new model for event-driven temporal sequence processing: Generalized

Hidden Semi-Markov Models (GHSMMs). GHSMMs are an extension of hidden Markov models

to continuous time that builds on turning the stochastic process of hidden state traversals into a

semi-Markov process. A large variety of probability distributions can be used to specify transition

durations.

It is shown how GHSMMs can be used to address the principle problems of temporal sequence

processing: sequence generation, sequence recognition and sequence prediction. Additionally, an

algorithm is described how the parameters of GHSMMs can be determined from a set of training

data: The Baum-Welch algorithm is extended by an embedded expectation-maximization algo-

rithm. Under some conditions the procedure can be simplified to the estimation of distribution

moments. A proof of convergence and a complexity assessment are provided.

1 Introduction

Modeling of time series, or temporal sequence processing, is typically accomplished if one of four

problems need to be solved[1]:

1. Sequence generation: Having specified a model, generate samples of time series.

2. Sequence recognition: Does some given sequence belong to the typical behavior of the under-

lying stochastic process or not? More precisely: What is the probability for it?

3. Sequence prediction: Assess the probability of the next observation (or state) of the time

series.

4. Sequential decision making: Select a sequence of actions in order to achieve some goal or to

optimize some cost function.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127600583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The majority of models for temporal sequence processing deal with series whose values occur equidis-

tantly (See, e.g., [2] for an overview). However, there are applications that have to deal with time

series consisting of values that occur at random points in time. These time series are sometimes

also referred to as event-driven time series. Examples of applications resulting in event-driven time

series include service execution, traffic control applications, customer behavior or traces of events

in computer systems. This report introduces a new model for event-driven time series in order to

solve the questions stated above: Generalized Hidden Semi Markov Models (GHSMMs).

In this report, only time series consisting of values from a countable finite set (referred to as symbols)

are considered but the theory can be extended easily to multidimensional real values. Fig. 1 shows

Figure 1: A non-equidistant time series with discrete symbols. The series consists of symbols A, B and C that

occur at time 0, . . . , tL. The delay between two successive symbols is denoted by dk.

an example for an event-driven time series and introduces some basic notation:

• {o1, . . . , oM} denotes the set of symbols, which is {A, B, C} in the example.

• Ok denotes the symbol that has occurred at time tk and

• dk denotes the length of the time interval between two successive symbols Ok−1 and Ok .

1.1 Three approaches to time handling

Several ways exist to incorporate time of symbol occurrence into models for time series. This report

presents three approaches: (1) dividing time into equidistant slots, (2) defining delay symbols, and

(3) extending models to continuous time.

Time slots. A straightforward solution to time handling is to define time intervals of fixed length.

If there are no events within one time slot, a special symbol denoting “silence” is included. The

Figure 2: Handling event-driven time series by division of time into slots of fixed length.

time series shown in Figure. 2 would translate into the equidistant series “AC B S S S F” where

S denotes the symbol indicating silence. One advantage of this approach is that any model for

equidistant time series can be used since time can be computed from the number of steps. However,

there are two problems with this approach:

2

1. In most cases, there is some probability that more than one event occurs within one time slot.

There are several solutions to this situation including the definition of additional symbols

representing combined events, dropping of events or assignment to the next “free” slot – but

none of the solutions is really convincing. It is obvious that a reduction of slot width reduces

the probability of co-occurrence. On the other hand, small time steps cannot represent long

delays appropriately. In general, if the length of inter-symbol intervals varies greatly, this leads

to long chains of silence symbols, which deteriorates model quality for most of the models.

2. Time resolution is reduced since it is no longer known when exactly an event has occurred

within the time slot. This is true especially for the case of wide time slots.

Delay symbols. A second approach to modeling of event-driven time series is to define a set of

delay symbols representing delays of different length. The sequence shown in Fig. 2 could then be

represented by “AS1 C S1 B S3 F”. In comparison to the approach described above, representation

of time is improved since chains of silence symbols are avoided. Especially, if silence symbols are

representing delays on a logarithmic scale, a wide range of inter-symbol delays can be handled

appropriately. Nonetheless, two other disadvantages appear:

1. In most cases the model must be adapted to handle the two different types of values: symbols

and delays.

2. Time resolution is worse due to the fact that one symbol accounts for even longer time intervals.

Continuous Time. The third and most elegant approach to handle non-equidistant time intervals

in time series is obviously to incorporate continuous time into the model itself. A prominent example

of such is the extension of discrete time Markov chains (DTMCs) to continuous time Markov chains

(CTMCs): Instead of stepping from one state to another, CTMCs can handle transitions of arbitrary

durations since transition probabilities are defined by exponential probability distributions P (t).

1.2 Focus of this report

As a result of their extended modeling capabilities, hidden Markov models (HMMs) are becoming

more and more frequent in time series modeling. Examples include, e.g., detection of intrusion

into computer systems [3], fault diagnosis [4], network traffic modeling [5], speech recognition [6],

part-of-speech tagging [7], and genetic sequence finding applications [8]. However, HMMs are based

on discrete-time Markov chains (DTMCs) and therefore need to be extended in order to process

event-driven time series. Ignoring the first two approaches to time handling, this report focuses

on extending HMMs to continuous time. Specifically, it introduces a new continuous-time HMM

that allows to use a large variety of transition distributions and their mixtures. The model is called

Generalized Hidden Semi-Markov Model (GHSMM).

3

The report is organized as follows: In order to provide some background, traditional discrete-time

HMMs are briefly introduced in Section 2. In Section 3 HMM extensions that have been published

hitherto are recaptured and their properties are discussed. The GHSMM model is introduced in

Section 4, and its application to temporal sequence processing is described in Sections 5-7. Deriving

model parameters from a set of training data is described in Section 8, followed by a proof of

convergence in Section 9 and complexity considerations in Section 10.

2 A Short Introduction to Discrete-time HMMs

Traditional HMMs are based on discrete-time Markov chains (DTMC), which consist of a set S =

{si} of N states and a square matrix A = [aij] defining transition probabilities between the states.

A is a stochastic matrix, from which follows that

N∑

j=1

aij = 1 (1)

Additionally, a vector of initial state probabilities π = [πi] has to be specified. Again,

N∑

i=1

πi = 1 (2)

must be fulfilled.

The stochastic process of DTMCs can be described as follows: An initial state is chosen according to

the probability distribution defined by π. Starting from the initial state, the process transits from

one state to the next according to the transition probabilities defined by A. This notion corresponds

to the so-called Markov assumptions:

1. The process is memoryless: a transition’s destination is dependent only on the current state

irrespective of the states that have been visited previously.

2. The process is time-homogeneous: transition probabilities A stay the same regardless of the

time that has already elapsed (A is not depending on time t)

More formally, both assumptions can be expressed by the following equation:

P (St+1 = sj | St = si, . . . , S0) = P (S1 = sj | S0 = si) (3)

Loss of memory is expressed by the fact that all previous states S0, . . . , St−1 of the left-hand side

are ignored and time-homogeneity is reflected by the fact that the transition probability are equal

for time t → t + 1 and 0 → 1.

4

HMMs extend the concept of DTMCs. At each time step an output (or observation) is generated

according to a probability distribution. The key notion is that this output probability distribution

depends on the state the stochastic process of the DTMC is in. Two types of HMMs can be

distinguished regarding the types of their outputs. If the output is chosen from some finite countable

set, outputs are called symbols. If the output is continuous, e.g, a vector of real numbers, the model is

called continuous HMM.1 As stated in the introduction, this report deals only with discrete symbols

and does not consider continuous HMMs.

To formalize the extension, HMMs additionally define a finite countable set of symbols O = {oi} of M

different symbols and a stochastic matrix B = [bij]. Each row i of B defines a probability distribution

for state si such that bij is the probability for emitting symbol oj given that the stochastic process

is in state si. Hence, B has dimensions N ×M and

M∑

j=1

bij = 1 (4)

Please note that for readability reasons, bij will sometimes be denoted by bi(oj). Figure 3 shows a

simple discrete-time HMM.

Figure 3: A simple discrete-time HMM with N = 4 states and M = 2 output symbols.

The fact that HMMs are called “hidden” refers to the notion that only the outputs can be measured

from outside and the state of the stochastic DTMC process is hidden from the observer. The

majority of theory about HMMs is concerned with this property. For example, efficient algorithms

have been developed to find the most probable sequence of DTMC states when some sequence of

output symbols has been observed. Other algorithms address the problem of finding optimal HMM

parameters λ = (A, B, π) when a set of observation sequences is given (and nothing is known about

the states the DTMC has travelled through). The most well-known algorithms will be described in

the following sections.
1Not to be confused with continuous-time HMMs as defined in the next section

5

2.1 Forward-backward algorithm

The probability that a given HMM with parameters λ = (A, B,π) has generated some observation

sequence o = (Ot) is called sequence likelihood and is denoted by P (o|λ). If the sequence of hidden

states that generated the observation sequence was known, the likelihood could be computed by:

P (o, s|λ) = πS0 bS0(O0)
L∏

t=1

aSt−1 St bSt(Ot) (5)

where s = [St] denotes the sequence of hidden states and L is the length of the sequence. However,

as only o is known, all possible state sequences s have to be considered:

P (o|λ) =
∑

s

πS0 bS0(O0)
L∏

t=1

aSt−1 St bSt(Ot) (6)

which results in intractable complexity. Nevertheless, an efficient reformulation has been found

exploiting the Markov assumption that the transition probability only depends on the current state.

Using this property, Equation 6 can be rearranged such that repetitive computations can be grouped

together. From this rearrangement it is only a small step to a recursive formulation, which is also

known as dynamic programming approach. The resulting algorithm is called forward algorithm.

Forward algorithm. The algorithm is based on a forward variable αt(i) denoting the probability

of subsequence (O0 . . . Ot) and the fact that the stochastic process is in state i at time t:

αt(i) = P (O0 O1 . . . Ot, St = si|λ) (7)

αt(i) can be computed by the following recursive computation scheme:

α0(i) = πi bi(O0) (8)

αt(j) =
N∑

i=1

αt−1(i) aij bj(Ot); 1 ≤ t ≤ L (9)

The algorithm can be visualized by a so-called Trellis structure as shown in Figure 4. Each node is

representing one αt(i) while edges visualize the terms of the sum in Equation 9.

As αL(i) is the probability of the entire sequence and the fact that the stochastic process is in state

i at the end of the sequence, sequence likelihood P (o|λ) can be computed by:

P (o|λ) =
N∑

i=1

αL(i) (10)

Backward algorithm. A backward variable βt(i) can be defined in a similar way, denoting the

probability of the rest of the sequence (Ot+1 . . . OL) given the fact that the stochastic process is in

state i at time t:

βt(i) = P (Ot+1 . . . OL|St = si, λ) (11)

6

Figure 4: A trellis structure visualizing αt(i). Edges indicate the terms that have to be summed up in the

forward algorithm (see Equation 9).

βt(i) can be computed in a similar recursive way by:

βL(i) = 1 (12)

βt(i) =
N∑

j=1

aij bj(Ot+1) βt+1(j); 1 ≤ t ≤ L (13)

Forward-backward algorithm. Combining both αt(j) and βt(i) leads to another probability

that is of interest in time series modeling: the probability of being in state si at time t given an

observation sequence o. This probability is denoted by

γt(i) = P (St = si|o, λ) (14)

Some computations yield:

P (St = si|O0 . . . OL, λ) =
P (St = si, O0 . . . OL |λ)

P (O0 . . . OL |λ)
(15)

=
P (St = si, O0 . . . Ot Ot+1 . . . OL |λ)

P (O0 . . . OL |λ)
(16)

=
P (St = si, O0 . . . Ot |λ) P (Ot+1 . . . OL |St = si, λ)

P (O0 . . . OL |λ)
(17)

=
αt(i) βt(i)

P (O0 . . . OL |λ)
(18)

Hence γt(i) can be computed by:

γt(i) =
αt(i) βt(i)
P (o |λ)

=
αt(i) βt(i)∑N
i=1 αt(i) βt(i)

(19)

Viterbi algorithm. In order to find the most probable sequence of states the straightforward

solution would be to select the most probable state at each time step t:

Smax(t) = arg max
i

γt(i) (20)

However, it turns out that models exist for which one of the transitions from Smax(t) to Smax(t+1)

is not possible (the transition probability aij equals zero). This is due to the fact that α and β both

sum up all possible paths between the states of the DTMC – and γ is only the product of α and β.

7

The solution to compute the most probable state sequence is called Viterbi algorithm. Very similar

to αt(i), let δt(i) denote the probability of the most probable state sequence for the subsequence of

observations (O0 . . . Ot) that ends in state si:

δt(i) = max
S0 ... St−1

P (O0 . . . Ot, S0 . . . St−1, St = si|λ) (21)

δt(i) can be computed by a slight modification of the forward algorithm using maximum values

instead of the sum over all states:

δ0(i) = πi bi(O0) (22)

δt(j) = max
1≤i≤N

δt−1(i) aij bj(Ot); 1 ≤ t ≤ L (23)

In order to find the most sequence of probable states each state selected by the maximum operator

has to be stored in a separate array. The sequence can then be found by tracing backwards through

the array starting from state arg maxi δL(i).

2.2 Training of discrete-time HMMs

In the forward-backward algorithm, the model’s parameters λ were assumed to be fixed and known.

However, in the majority of applications, λ cannot be inferred analytically but need to be estimated

from recorded sample data. In the machine learning community, such a procedure is called training.

Several algorithms exist for HMM training, of which the Baum-Welch algorithm is most prominent.

This sections introduces the standard Baum-Welch algorithm.

Let’s first introduce formulas for parameter estimation if the sequence of “hidden” states is known.

This scenario occurs, e.g., in part-of-speech tagging applications:

• Initial state probabilities πi are determined by the relative frequency of sequences starting in

state si:

πi =
number of sequences starting in si

total number of sequences
(24)

• Transition probabilities aij are determined by the number of times the process went from state

si to state sj divided by the number of times, the process left state si to anywhere:

aij =
number of transitions si → sj

number of transitions si → ?
(25)

• Emission probabilities bi(oj) are determined by the number of times the process has generated

symbol oj in state si compared to the number of times the process has been in state si:

bi(oj) =
number of times symbol oj has been emitted in state si

number of times the process has been in state si
(26)

8

However, in many applications the hidden data is not known. The solution found by Baum and

Welch introduced expectation values for the unknown quantities. The algorithm belongs to the

class of Expectation-Maximization (EM) algorithms. EM algorithms employ an iterative scheme

for lower bound maximization of the overall data likelihood. The rationale behind the algorithm is

described in detail in section 9. At this point it is sufficient to state that the algorithm consists of

two major steps:

1. E-step: Compute estimations for the hidden data given a fixed set of model parameters.

2. M-step: Adjust model parameters to maximize data likelihood.

This scheme is repeated until data-likelihood converges to some optimum value. Convergence to a

local optimum can be proven (see section 9).

E-Step In order to compute expectation values for the E-step of the algorithm, another quantity

has to be introduced: the probability of a transition from state si to sj at time t, given some

observation sequence o:

ξt(i, j) = P (St = si, St+1 = sj |o, λ) (27)

Starting from γt(i), it can be derived similar to Equations 15–18 by interposing the transition from

si to sj between α and β:

ξt(i, j) =
αt(i) aij bj(Ot+1) βt+1(j)

P (o|λ)
(28)

=
αt(i) aij bj(Ot+1) βt+1(j)∑N

i=1

∑N
j=1 αt(i) aij bj(Ot+1) βt+1(j)

(29)

This approach is visualized in Figure 5.

Figure 5: A trellis structure visualizing the computation of ξt(i, j) (see Equation 29).

The expected number of transitions from state si to sj can be obtained by summing over time t:

L−1∑

t=0

ξt(i, j) (30)

9

M-step The second step of the Baum-Welch algorithm is a maximum likelihood optimization of

HMM parameters that uses expected values for the unknown data. As it is unknown which state

the process has travelled through, expectation values are substituted into Equations 24–26:

π̄i ≡ expected number of sequences starting in state si

total number of sequences
≡ γ0(i) (31)

āij ≡ expected number of transitions si → sj

expected number of transitions si → ?
≡

L−1∑

t=0

ξt(i, j)

L−1∑

t=0

N∑

j=1

ξt(i, j)

(32)

b̄i(k) ≡ expected number of times observing ok in state si

expected number of times in state si
≡

L−1∑

t=0
s.t. Ot=ok

γt(i)

L−1∑

t=0

γt(i)

(33)

Please note that summing up ξt(i, j) over all destination states sj yields the probability for the

source state si at time t. Hence, ξt(i, j) can be related to γt(i):

N∑

j=1

ξt(i, j) = γt(i) (34)

Using this Equation, Equation 32 could be simplified. But since this relation does not hold for

the extension to continuous time, substitution has been omitted for the sake of comparability to

equations presented in Section 8.

EM algorithm. The overall EM algorithm starts from an initialized and hence completely defined

HMM. As much a-priori knowledge as possible should be used to get reasonable initial values for the

parameters. If this is not possible, simply random initialization can be used. After initialization,

E and M-steps are executed repeatedly until some level of convergence has been reached.2 In each

E-step the parameter estimations of the previous M-step are used.

2.3 Multiple Training Sequences

The formulas presented here have only considered one single observation sequence. In most appli-

cations, there will be a large set of training sequences. The main idea of multiple sequence training
2For implementation, a maximum number of iterations is often used as an additional stopping criterion.

10

is that nominators and denominators of Equations 31 to 33 are transformed into a weighted sum

over sequences. The weight for each sequence ok is determined by its sequence likelihood P (ok |λ)

computed along with the E-step of the algorithm.

3 Previous Extensions to Continuous Time

Discrete-time HMMs have been applied very successfully to several application areas in which time

is not considered (e.g., gene sequence analysis) or to areas in which measurements/symbols occur

periodically (e.g., symbols acquired by periodic probing). Discrete-time HMMs have also been

applied to application domains in which the temporal behavior of the underlying stochastic process

is important, but the need for a computationally feasible solution forced the usage of discrete-time

models. For example in speech recognition, phoneme durations vary statistically, which should be

reflected by the model in such a way that the underlying stochastic process stays longer in some states

than in others. First modeling approaches have ignored this fact and have used discrete-time HMMs

due to the fact that speech-recognition is a real-time task and computers were not powerful enough

in the early 80s to perform computations quick enough. However, in [9] Russell and Cook showed

that a switch to continuous time models can improve modeling performance significantly. Despite

speech recognition, continuous-time HMMs have been successfully applied to other applications as

well (see, e.g., [10]). This section briefly introduces various extensions to continuous time that have

been published and spells out what makes GHSMM a unique approach.

Self transitions in discrete-time HMMs. As described in Section 1, the simplest way to handle

event-driven time series is to descretize time by defining time slots of length ∆ and to handle time

variance (i.e., delays) as multiples of ∆. When applying this approach to discrete-time HMMs,

delays are represented by self-transitions: In each time step, there is some probability that the

stochastic process transits to itself and hence stays in the state (see Figure 6).

Figure 6: Duration modeling by a discrete-time HMM with self-transitions.

This approach leads to a geometric distribution for state sojourn times, since the probability to stay

in state si for d time-steps of duration ∆ equals

Pi(D = d) = ad−1
ii (1− aii) (35)

11

CT-HMMs. A similar approach has been proposed in [5]. Here, the embedded time-discrete

Markov chain is replaced by a continuous-time Markov chain (CTMC). The resulting model is

abbreviated by CT-HMM and may not be confused with continuous HMMs (CHMMs), which are

discrete-time HMMs with continuous output probability densities. CTMCs are determined by an

initial distribution and an infinitesimal generator matrix Q. Determination of the infinitesimal

generator matrix Q follows a two-step approach: First, a transition matrix P (∆) and the initial

distribution are estimated by Baum-Welch training from the training data and then Q is obtained

by Taylor expansion of the equation

Q =
1
∆

ln(P) (36)

which is directly derived from Kolmogorov’s equations (see, e.g., [11]). ∆ denotes again some

minimal delay (a time step) as in the previous approach.

Models such as CT-HMMs still imply strong assumptions about the underlying stochastic process

since CTMCs are based on time-homogeneous, memoryless, exponential distributions. A more

powerful approach towards continuous-time HMMs is to substitute the underlying DTMC by a

semi-Markov process (SMP). Resulting models are called Hidden Semi-Markov Models (HSMMs).

SMPs are described in more detail along with the introduction of GHSMMs in Section 4. For the

time being it is sufficient to remember that SMPs allow to use arbitrary probability distributions in

order to characterize state transition behavior.

A first approach to HSMMs is to substitute the self-transitions as in Figure 6 by state durations

that follow a state-specific probability distribution pi(d) as depicted in Figure 7. Several solutions

Figure 7: Duration modeling by explicit modeling of state durations.

have been developed to explicitly specify and determine pi(d) from training data along with the

Baum-Welch algorithm.

Ferguson’s model. One of the first approaches to explicit state duration modeling was proposed

by Ferguson in [12]3. The idea was to use a discrete probability distribution for pi(d). While the

approach was very flexible, it showed three disadvantages: first, it is a discrete-time model requiring

the definition of a time step ∆ and a maximum delay D, second, convergence of the training

algorithm was insufficiently slow, and third, much more training data was needed for training. The

last two drawbacks result from a dramatically increased number of parameters that have to be

estimated from the training data: The number of parameters increases from N self-transitions to

N ×D duration probabilities.
3A crisp overview can be found in [13].

12

HSMMs with Poisson-distributed durations. Ferguson proposed to use parametric distribu-

tions instead of discrete ones. Russell and Moore [14] have used Poisson distributions. A comparison

of both models showed that the models perform better if there is an insufficient amount of training

data available [9].

HSMMs with gamma-distributed durations. Levinson provided a maximum likelihood esti-

mation for parameters of gamma-distributed durations [15]. As it is the case with most maximum

likelihood procedures, optimal parameters are obtained by derivation of the likelihood function.

However, this derivative cannot be computed explicitly and numerical approximation has to be

applied.

HSMMs with durations from the exponential family. Mitchell and Jamieson [16] extended

the spectrum of available distributions for explicit duration modeling to all distributions of the

exponential family, which includes gamma distributions. Their work is also founded on a direct

computation of maximum likelihood involving numerical approximation of the maximum.

HSMMs with Viterbi path constrained uniform distributions. The authors of [17] present

an approach where transition durations are assumed to be uniformly distributed. Their key idea is

that first parameters π, A and B are obtained by the discrete-time HMM reestimation procedure.

A subsequent step involves computation of Viterbi paths for the training data in order to identify

minimum and maximum durations for each transition: this defines a uniform duration distribution

for each transition.

Expanded State HMMs (ESHMMs). In parallel to the development of HSMMs with param-

eterized probability distributions, it has been found that Ferguson’s model can be implemented in

a much easier way by a series-parallel topology of the hidden states [18]. To be precise, each state

of the HMM is replaced by a DTMC sharing the same emission probability distribution. State

durations are then expressed by the probabilities of the DTMC (Figure 8 shows a small example

for a HMM with left-to-right topology). Those models are referred to by Expanded State HMMs

(ESHMMs).

ESHMMs allow to use implementations of standard discrete-time HMMs. Furthermore, the idea

to represent state durations by state chains led to several variants of the duration structure, that

extend Ferguson’s model. For example, the duration structure may have self-transitions that allow

to model durations of arbitrary length instead of a fixed maximum duration D. Some structures

have been proposed in [19] and [20] and a comparison of two extended structures is provided in [9].

More elaborate training algorithms for ESHMMs have been proposed in [21] and [22].

13

Figure 8: Topology of an Expanded State HMM (ESHMM). Emission probabilities bi(oj) have been omitted.

Inhomogeneous HMMs (IHMMs). Ramesh and Wilpon have developed another variant of

HMMs, called Inhomogeneous HMM (IHMM) [23]. Time homogeneity of stochastic processes refers

to the property that the behavior (i.e., the probability distributions) do not change over time. In

terms of Markov chains, it means that the transition probabilities aij are constant and not a function

of time. However, the authors abandon this assumption and define:

aij(d) = P (St+1 = j|St = i, dt(i) = d); 1 ≤ d ≤ D (37)

which is the transition probability from state si to state sj given that the duration in state si at time

t – dt(i) = d – equals d. In order to define a proper stochastic process, the transition probabilities

must satisfy:

∀d ∈ {1, . . . , D} :
N∑

j=1

aij(d) = 1 (38)

As can be seen from the formulas, Ramesh and Wilpon also assume discretized time and a maximum

state duration D.

What is new about GHSMM. Generalized hidden semi-Markov models extend the models

presented above in four aspects:

1. GHSMMs allow to use a variety of parametric transition probability distributions. More specif-

ically, each transition can be modeled by a mixture of kernel distributions. Almost any type

of parametric probability distribution can be used for each kernel. However, since parame-

ter estimation is performed on a maximum likelihood basis, distributions should be preferred

for which the maximum likelihood equations can be solved analytically or for which good

analytical approximations exist. This includes well-known distributions such as Gaussian,

exponential, gamma, Pareto, or log-normal.

2. GHSMMs model transition durations rather than state durations. Widely used state durations

are a special case where all transitions are equally distributed. However, GHSMMs are not

the first model that use transition durations, they have also been proposed in, e.g., [24].

3. GHSMMs operate on true continuous time instead of multiples of a minimum delay ∆. This

feature is especially important for event-driven time series modeling.

14

4. There is no no maximum duration D in GHSMMs.

The first extension is based on the usage of an embedded EM algorithm for estimation of transi-

tion probability parameter estimation. Since EM algorithms perform lower bound maximization

(see [25]), more complex problems can be solved which translates into a solution for more complex

transition distributions.

The second extension results from a strict application of the theory of semi-Markov processes. As

main developments for HMMs have been achieved in the area of speech recognition, state duration

modeling has been sufficient. However, for other applications in temporal sequence processing, this

is not always the case.

Regarding the last two extensions, many approaches have introduced time discretization together

with some maximum delay. Both restrictions were used to enable a dynamic programming ap-

proach, i.e, forward-backward and Viterbi algorithm. Although the mathematical restrictions are

inescapable, GHSMM apply efficient algorithms by a stricter enforcement of the Markov assump-

tions.

4 Generalized Hidden Semi-Markov Models (GHSMMs)

GHSMMs are HMMs that are based on a continuous-time semi-Markov process. They allow to

define durations for each transition of the embedded Markov chain and to use a large variety of

duration distributions. In this section, the theory of semi-Markov processes is introduced briefly

and applied to HMMs. Formulas for the forward-backward algorithm, Viterbi algorithm and training

are developed along with the principle tasks of temporal sequence processing in Sections 5-8.

4.1 Wrap-up of Semi-Markov Processes

Semi-Markov processes (SMP) are a continuous-time extension to Markov renewal sequences, which

are defined as follows (see, [26]):

A sequence of bivariate random variables {(Yn, Tn)} is called a Markov renewal sequence if

1. T0 = 0, Tn+1 ≥ Tn; Yn ∈ S , and

2. ∀n ≥ 0 : P (Yn+1 = j, Tn+1−Tn ≤ t|Yn = i, Tn, . . . , Y0, T0) = P (Y1 = j, T1 ≤ t|Y0 = i) (39)

where random variables Tn denote time and Yn denote the state of the n-th element in the Markov

renewal sequence. Please note that Tn refer to instants on a continuous time scale and t is the

length of the interval between Tn+1 and Tn. Furthermore, Equation (39) expresses that Markov

renewal sequences are memoryless and time-homogeneous: As the transition probability is only

depending on the immediate predecessor, it has no memory of the states the process has travelled

15

through, and since transition probability at time n is equal to the probability at time 0, the process

is time-homogeneous.

Let gij(t) denote the conditional probability that state sj follows si after time t as defined by

Equation (39). Then the matrix G(t) := [gij(t)] is called the kernel of the Markov renewal sequence.

Please note that gij(t) has all properties of a cumulative probability distribution except that the

limiting probability pij can be less than 1:

pij := lim
t→∞ gij(t) = P (Y1 = j|Y0 = i) ≤ 1 (40)

Even if Markov renewal sequences are defined on a continuous time scale, they form a discrete

sequence of points. If the gaps between the points of a Markov renewal sequence are filled, a Semi-

Markov process (SMP) is obtained. More formally:

A continuous-time stochastic process {X(t), t ≥ 0} with countable state space S is said to be a

semi-Markov process if

1. it has piecewise constant, right continuous sample paths, and

2. {(Yn, Tn), n ≥ 0} is a Markov renewal sequence, where Tn is the n-th jump epoch and

Yn = X(Tn+)

which means that the state X of the SMP at any time t is defined by the state Yn of the embedded

Markov renewal sequence where n is determined such that it is the largest index for which Tn ≤ t.

Figure 9 visualizes the concept.

Figure 9: A semi-Markov process X(t) defined by a Markov renewal sequence {(Yn, Tn)}

The term “semi-Markov” stems from the fact that the process X itself is not a Markovian process

since properties of the Tn process depend on the state of Yn. Yet, the associated process (Yn, Tn) is

Markovian.

A SMP is called regular, if it only performs a finite number of transitions in a finite amount of time.

As this report only considers regular SMPs, the term “regular” will be omitted from now on.

Please note that the limits defined in Equation 40 “eliminate” time behavior. By this, pij define

a DTMC that is said to be embedded in the SMP. From this analogy it is clear that the following

16

property holds for each transient state si:
N∑

j=1

pij = 1 (41)

expressing the fact that it is sure that the SMP leaves state si if time d approaches infinity.

In addition to the notion of the embedded DTMC, the limiting probabilities pij can be used to define

a quantity that helps to understand the way how SMPs operate. Let dij(t) denote a probability

distribution for the duration of a transition from state si to state sj :

dij(t) = P (T1 ≤ d | Y0 = i, Y1 = j) (42)

Using the limiting probabilities, dij(t) can be computed from gij(t) the following way:

dij(t) =

gij(t)
pij

if pij > 0

1 if pij = 0
(43)

Therefore, gij(t) can be split into a transition probability and a transition duration distribution:

gij(t) = pij dij(t) (44)

which leads to an intuitive description of the behavior of SMPs: Assume that at time 0 the system

enters state i. It then chooses the next state to visit to be j according to probability pij . Having

decided upon the next state to be j, it stays in state i for a random amount of time sampled from

distribution dij(t) before it enters state j. Once the SMP enters state j it looses all memory of the

history and behaves as before, starting from state j. Note that the theory of SMPs allow pii 6= 0,

i.e., the SMP may return to state i immediately after leaving it. However, for simplicity reasons, it

will be assumed further on that pii = 0.

Finally, it should be noted that SMPs are fully specified by two quantities:

1. the initial distribution π = [πi] = [P (X(0) = i)]

2. the kernel G(t) of the underlying Markov renewal sequence. Alternatively, G(t) can be spec-

ified by P = [pij], which is a transition matrix for the embedded DTMC, and a matrix

D(t) = [dij(t)] defining probability distributions for the duration of each transition from si to

sj .

Be aware that the matrix multiplication G(t) = P × D(t) is not correct since Equation 44 only

holds for each gij(t) separately.

4.2 GHSMMs: Combining Semi-Markov Processes with Hidden Markov Models

Generalized hidden semi-Markov models (GHSMMs) are hidden Markov models that use a semi-

Markov process (SMP) instead of a discrete-time Markov chain (DTMC) to model the stochastic

process of hidden state transitions. A simple example is provided in Figure 10.

17

Figure 10: A simple GHSMM example.

The example shown in Figure 10 is identical to the discrete-time example shown in Figure 3 except

that the the transition probabilities aij have been replaced by cumulative probability distributions

gij(t). From Equation 41 follows that for each transient state the limiting values pij – which are the

upper bounds of each gij(t) as defined in Equation 40 – of all outgoing edges sum up to 1.

As shown by Equation 44, gij(t) can be represented as a product of pij and a distribution charac-

terizing the duration of the transition from state si to sj . In order to specify transitions, GHSMMs

use a mixture of probability distributions:

dij(t) =
R∑

r=0

wij,r κij,r(t|θij,r) (45)

s.t.
R∑

r=0

wij,r = 1 (46)

where wij,r are weights that sum up to 1 and κij, r are so-called kernels. Each kernel κij, r(t|θij,r) is a

cumulative probability distribution with parameters θij,r. For example, if κij, r is a Gaussian kernel,

θij,r consists of mean µij,r and variance σ2
ij,r. Furthermore, one kernel, say κij,0, can model some

background distribution (e.g., a uniform distribution) in order to account for “delay noise” meaning

delays that do not follow the characteristics modeled by dij(t). For kernels κij,0, any type of

parametric probability distribution can be used. However, since parameter estimation is performed

on a maximum likelihood basis, distributions should be preferred for which the maximum likelihood

equations can be solved analytically. This includes well-known distributions such as Gaussian,

exponential, Pareto, or log-normal.

As it is the case for the entire report, only GHSMMs with discrete emission probabilities B are

considered here. Nevertheless, the approach could be extended easily to continuous, multimodal

outputs (see [13, 27, 28] for a summary how it is done for discrete-time HMMs). Additionally as

stated above, it is assumed, that pii = 0, expressing the fact that there are no self transitions in the

18

model.

In summary, a GHSMM is completely defined by

• The set of states S = {s1, . . . , sN}

• The set of symbols O = {o1, . . . , oM}

• The N -dimensional initial state probability vector π

• The N ×M matrix of emission probabilities B

• The N ×N limiting transition probability matrix P

• The N ×N matrix of cumulative transition duration distributions D(t)

For better readability of formulas, define λ = (π, B, P , D(t)) to be the set of parameters. The

number of states and the set of symbols are not included since the first is not altered by the Baum-

Welch training algorithm and the second is application specific and is hence fixed and not further

addressed here.

5 Generating Temporal Sequences with GHSMMs

The easiest way to explain the mode of operation of GHSMMs is to look at the first problem of

temporal sequence processing, which refers to the generation of a time series. The goal of time

series generation is to obtain a random sequence that obeys to some properties characterizing some

typical behavior. This translates into a specification of a GHSMM and then to simulate a random

run through the model. The emissions that are generated during the run form a random temporal

sequence. To illustrate this, the model shown in Figure 10 is used and one exemplary time series is

generated as follows:

1. The initial state is chosen according to probability distribution π, say state s2.

2. The first emission symbol is drawn according to probability distribution b2(ok), say o2.

3. The second state is determined according to probability distribution p2j , which is the second

row in P . Say the second state was s1.

4. Having decided about the successor state, a duration for the transition is sampled from dis-

tribution d21(t). Assume the duration was 13 seconds.

5. The second emission symbol is chosen according to b1(ok), say o1.

6. The procedure now repeats from the third step. Assume that the third state was s4, the

transition’s duration was 7 seconds and that the third symbol emitted is o1.

19

7. Since s4 is an absorbing state, sequence generation ends.

The described example results in a time series as shown in Figure 11.

Figure 11: A temporal sequence that could have been generated by the model shown in Figure 10.

The figure also introduces some notations that will be used in the following: Oi = ok denotes that

the i-th element of a sequence is symbol ok. Therefore, the sequence of the example is represented

by O0 = o2, O1 = o1, O2 = o1. The same applies to the sequence of hidden states the process has

traversed. The sequence of states in the example is S0 = s2, S1 = s1, S2 = s4. Furthermore, di

denotes the delay between symbols Oi and Oi−1, which in the example corresponds to d1 = 13s,

d2 = 7s.

6 Recognition of Temporal Sequences: The Forward Algorithm

The term “sequence recognition” refers to the task of deciding whether some sequence (that has been

observed before) belongs to some typical pattern or not. In the case of soft classification not a binary

decision but a probability of class membership is desired. Sequence recognition with GHSMMs is

achieved by computing the probability that the sequence were generated by the GHSMM. This

probability is called sequence likelihood and can be computed by the forward algorithm.

In order to elucidate properties and limitations of the GHSMM approach, previous extensions of

HMMs to continuous-time are analyzed in more detail, first. The focus is on duration modeling in

speech recognition applications, since most extensions have been developed in this area. It is then

illustrated why the assumptions of previous extensions are not appropriate for event-driven time

series and the approach taken by GHSMMs is explained. The last part of the section concentrates

on a formal derivation of the forward algorithm.

6.1 Duration Modeling in Speech Recognition

In the area of speech recognition, one of the tasks is to assign phonemes to a series of sound samples.

The procedure is quite complex and will only be explained in a simplified version, here. However,

there are a few things that need to be mentioned in order to understand the difference between

speech recognition and temporal sequence processing of event-driven time series.

The process of phoneme recognition is sketched in Figure 12. Starting from the bottom of the figure,

20

Figure 12: A simplified sketch of phoneme assignment to a speech signal.

the analog sound signal is sampled and converted into a digital signal. Portions of the sampled

signal are then analyzed in order to extract features of the signal. Feature extraction involves,

e.g., a short-time Fourier transform and various other computations. Since this report focuses on

discrete emissions only, assume that the result of feature extraction is one symbol out of a discrete

set4. Then, the sequence is analyzed by several HMMs: Each HMM is representing one phoneme

and sequence likelihood is computed for each using the forward or Viterbi algorithm. In order to

assign phonemes to the sequence of features, phonemes having maximum sequence likelihood are

selected.

As it was pointed out by several authors, the quality of assignment can be improved by introducing

the notion of state duration: Traversing the hidden states should not be absolutely synchronous

to the sequence of features. It should rather be possible that the stochastic process resides in

one state generating several emissions before transitioning to another state. This is visualized in

Figure 13. Figure 13 a) shows the trivial case where each feature symbol corresponds to a state

transition. Introducing the notion of state duration, the process of state transitions is decoupled

from the occurrence of observation symbols since the process can stay in one state producing several

subsequent feature symbols. However, this flexibility results in an increased number of potential

state sequences, as can be seen from Figures 13 b) to d). The increased number of potential
4Usually, it is a feature vector containing both discrete and continuous values

21

Figure 13: Assigning states si to feature symbols A or B.

state sequences obviously increases computational complexity to compute sequence likelihood as all

possible paths have to be summed up (c.f., Equation 6). To be precise, the number of potential

paths increase from NL to
L−1∑

k=0

(
L− 1

k

)
N (N − 1)k (47)

where L denotes the length of the sequence and k the number of state transitions that take place

during sequence generation, and
(
x
0

)
is assumed to be equal to 1. There is no chance to apply

dynamic programming in order to get to an efficient algorithm such as the forward algorithm (c.f.,

Section 2.1). This is because the Markov assumptions do not apply and the necessary condition

that all the information needed to compute αt(j) must be included in α’s of the previous time step

is not fulfilled for variable state durations.

Concrete models that were used in speech recognition have typically applied one restriction in order

to come up with an algorithm that is close to the original forward algorithm: They included an

upper bound for state durations (denoted by D). This leads to the following forward-like algorithm

(see, e.g., [16]):

αt(j) =
N∑

i=1

min(D,t)∑

τ=1

αt−τ (i) aij dj(τ)
τ−1∏

m=0

bj(Ot−m) (48)

αt(j) denotes the probability of the observation sequence for all state sequences where state sj ends

at time t. The algorithm includes an additional sum over τ , which is the duration how long the

process stays in state sj . dj(τ) specifies the probability for such a duration. The product over bj(·)

22

Figure 14: The trellis structure showing the effect of duration modeling for D = 2 (c.f., Figure 4 and Equa-

tion 48). Thick lines highlight terms involved in computation of α3(1)

results from the fact that during its stay, state sj has to produce all the emission symbols. Similar

to the standard forward algorithm, the approach can be visualized by a Trellis structure, as shown

in Figure 14.

The major drawback of the algorithm is its computational complexity – it increases by a factor of
D2

2 (c.f., [23]).

The various models that have been listed in Section 3 take different approaches to specify the

duration distribution dj(τ) and to estimate the distribution from training data.

6.2 Duration Modeling for Event-driven Time Series

The essential difference between speech recognition and modeling of event-driven time series is that

in speech recognition the sequence of symbols occur equidistantly (periodically) which is not the

case in event-driven series.

The first conclusion from this difference is that delays are not integer steps anymore, but some

interval on the real scale. Moreover, delays may cover a wide range of values ranging from very

short to very long time spans. Therefore, discrete delay models such as Ferguson’s are not well-

suited.

The second conclusion is that time variability is already included in the observation sequence itself.

Therefore, it is not necessary anymore that the stochastic process of hidden state traversals is

independent of the occurrence of observation symbols and the forward algorithm has to investigate

various state durations that cannot be inferred from the observed data. Moreover, a close relation

between hidden state transition and occurrence of observation symbol can be assumed. Specifically,

GHSMMs build on a one-to-one mapping of hidden states and observation symbols, as shown in

Figure 15.

The one-to-one mapping of state transitions and observation symbol occurrence has two advantages:

1. It enforces the Markov assumption and hence leads to a forward algorithm that is very similar

to the standard forward algorithm of discrete-time HMMs. Specifically, the sum over τ in

23

Figure 15: Time variation is included in the observation sequence. Therefore, GHSMMs assume a one-to-one

mapping of states and symbols, enforcing the Markov assumption. This leads to efficient algorithms.

Equation 48 is not necessary anymore and the GHSMM forward algorithm hence belongs to

the same complexity class as the standard forward algorithm (see Section 10).

2. It allows to assign durations to transitions rather than to states, which increases modeling flex-

ibility and expressiveness. Obviously, state durations are a special case of transition durations,

where all outgoing transitions have the same duration distribution.

6.3 The Forward Algorithm for GHSMMs

The forward algorithm of GHSMMs is derived from the discrete-time equivalent as described by

Equations 7–9. The fact that event-driven observation sequences are considered leads to a change

in time indexing: tk denotes the time when symbol Ok has occurred instead of t denoting a time

step in discrete-time equivalents.

In standard discrete-time HMMs, the transition probability is simply aij . In GHSMMs, the transi-

tion probability is replaced by gij(t) specifying the probability that the transition has taken place at a

time less or equal to t. However, in order to derive the forward algorithm for GHSMMs, a one-to-one

replacement of aij with gij(t) is not sufficient. This follows from the following considerations:

1. Assume that at time tk−1 the stochastic process has just entered state si and has emitted

observation symbol ok−1.

2. As the goal of the forward algorithm is to compute probability of a given time series o and

GHSMMs assume that there is a state transition occurring at each observation symbol, it is

known when the transition to the next state has taken place and the duration of the transition

is dk := tk − tk−1.

3. Knowing dk we are able to compute the transition probability to each successor state sj by

gij (dk).

4. The subsequent symbol ok is then emitted by state sj with probability bj(ok).

5. However, from Equations 40 and 41 follows that for the sum over all successor states the

24

following inequality holds5:
N∑

j=1

gij(dk) ≤ 1 (49)

expressing the fact that by time dk < ∞ some fraction of the probability mass may not be

distributed among the successor states. The explanation for this is natural: as dk is finite,

there may be some probability that the stochastic process still resides in state si after time

dk. The probability for this is

1−
N∑

j=1

gij(dk) (50)

In this case it must be assumed that state si has generated symbol ok

6. Applying Markov assumptions, the stochastic process looses all memory and considerations

for the following sequence start from 1. Please note that this is the reason why the efficient

dynamic programming approach of the forward algorithm can be applied.

In order to formalize these considerations, probability vij(dk) is defined as

vij(dk) = P (Sk = sj , dk = tk − tk−1 | Sk−1 = si) (51)

=

gij(dk) if i 6= j

1−
N∑

h=1

gih(dk) if i = j
(52)

This relates the GHSMM approach to IHMMs because for GHSMMs also holds that

∀ d, i :
N∑

j=1

vij(d) = 1 (53)

However, the process must still be called homogeneous since probabilities vij(d) stay the same

regardless of time tk. Additionally in contrast to IHMMs, GHSMMs use continuous distributions

rather than discrete ones.

Similar to the case of discrete-time HMMs, the forward variable for GHSMMs denotes the probability

of the observation sequence up to time tk for all state sequences that end in state si (at time tk):

αk(i) = P (O0 O1 . . . Ok, Sk = si|λ) (54)

By replacing aij by vij(t) and changing time indexing, the following recursive computation scheme

for αk(i) is derived:

α0(i) = πi bi(O0)

αk(j) =
N∑

i=1

αk−1(i) vij(tk − tk−1) bj(Ok); 1 ≤ k ≤ L
(55)

5Remember that gii (t) ≡ 0 is assumed

25

By analogy with discrete-time HMMs, sequence likelihood P (o |λ) is the sum over the last column

of the Trellis structure:

P (o |λ) =
N∑

i=1

αL(i) (56)

Again, sequence likelihood P (o |λ) is the probability that model λ can generate observation sequence

o. This probability can be used as an indicator if the sequence is exhibiting properties that are

formalized by the GHSMM λ.

6.4 Finding the Most Probable Sequence of States: The Viterbi Algorithm

The forward algorithm incorporates all possible state sequences. However, in some applications

this is it not desired and only the most probable sequence of states should be considered. This is

computed by the Viterbi algorithm.

In analogy with discrete-time HMMs, the Viterbi algorithm for GHSMMs is derived by replacing

the sum over all previous states with the maximum operator:

δk(i) = max
S0 S1 ... Sk−1

P (O0 O1 . . . Ok, S0, S1, . . . , Sk−1, Sk = si | λ) (57)

δ0(i) = πi bi(O0) (58)

δk(j) = max
1≤i≤N

δk−1(i) vij(tk − tk−1) bj(Ok) (59)

Hence maxi δL(i) is the maximum probability of any state sequence generating observation sequence

o. The sequence of states itself can again be obtained by storing which state was selected by the

maximum operator and then tracing back through the array starting from state arg maxi δL(i).

7 Sequence Prediction

Sequence prediction deals with the estimation of the future behavior of a temporal sequence. Given

a model and a time series, the question is how the time series will evolve in the near future based

on the characteristics expressed by the underlying model. More precisely, two different types of

sequence prediction can be distinguished:

1. What is the probability for the next observation or observations of the sequence?

2. What is the probability that the underlying stochastic process will reach a certain distinguished

state within some time interval?

26

7.1 Probability of the Next Observation

In order to estimate the probability of next observations, the following probability is defined:

ηt(ok) = P (OL+1 = ok, T ≤ t | tL, O0 . . . OL, λ); t ≥ tL (60)

ηt(ok) is the probability that the next emitted observation symbol is ok, given the time of symbol

occurrence being less or equal to t, a GHSMM λ and the beginning of an event-driven time series

o = O0 . . . OL. For ηt(ok) the following equations hold:

ηt(ok) =
N∑

j=1

P (SL+1 = sj , OL+1 = ok, T ≤ t | tL, o, λ) (61)

=
N∑

j=1

P (OL+1 = ok, T ≤ t | SL+1 = sj , tL, o, λ) P (SL+1 = sj | tL, o, λ) (62)

For the first probability in Equation 62 holds:

P (OL+1 = ok, T ≤ t | SL+1 = sj , tL, o, λ) = bj(ok) (63)

whereas the second probability in Equation 62 can be split up further:

P (SL+1 = sj , T ≤ t | tL, o, λ) (64)

=
N∑

i=1

P (SL+1 = sj , SL = si, T ≤ t | tL, o, λ) (65)

=
N∑

i=1

P (SL+1 = sj , T ≤ t | SL = si, tL, o, λ) P (SL = si | tL, o, λ) (66)

=
N∑

i=1

vij(t− tL) P (SL = si | tL, o, λ) (67)

and by use of the forward algorithm:

P (SL = si | tL, o, λ) =
αL(i)

P (o | λ)
=

αL(i)
N∑

j=1

αL(j)

(68)

or in case of the Viterbi algorithm:

P (SL = si | o, λ) =
δL(i)

N∑

j=1

δL(j)

(69)

Summarizing Equations 61–68, the probability that observation symbol ok will occur up to time t

in the future can be computed by

ηt(ok) =
N∑

j=1

bj(ok)
N∑

i=1

vij(t− tL)
αL(i)

P (o | λ)
(70)

27

7.2 Probability to Reach a Distinguished State

Computing probabilities for the next observation symbol involved a probability distribution for the

next hidden state SL+1 (see Equation 67). However, if not the next observation symbol is of interest

but the probability distribution to reach a distinguished state, computation of the first-step successor

is not sufficient. Moreover, the general probability to reach the distinguished state sd for the first

time by time t is desired:

P (Sd = sd, Td ≤ t | o, λ); Td = min(t : St = sd) (71)

The procedure to compute this probability involves two steps:

1. Based on the given observation sequence o and the GHSMM λ, compute the probability

distribution for the last hidden state in the sequence P (SL = si |o, λ) using Equation 68 or 69.

2. As future observations are unknown, all possible sequences of observation symbols have to be

taken into account. Due to the fact that
∑M

k=1 bi(ok) = 1 for any state si, summing over all

output symbols can be omitted and only the semi-Markov process of hidden state transitions

has to be analyzed. In semi-Markov theory, the desired quantity is called “first passage time

distribution”

In order to compute the first passage time distribution, so-called first step analysis is applied (see,

e.g., [26]). The essence of first step analysis is as follows:

The first step of the stochastic process reaches the designated state directly or the process

transits to an intermediate state. In the latter case, the designated state is then reached

directly from the intermediate state or via another intermediate state. This establishes

a recursive computation scheme.

Let Td denote the time to first reach the designated state sd, then

Fid(t) = P (Td ≤ t|SL = si) (72)

is the probability to reach sd by time t given that the semi-Markov process of hidden state traversals

is in state si at the end of the observation sequence. Then

Fid(t) = gid(t) +
∑

j 6=d

∫ t

0
d gij(τ) Fjd(t− τ) (73)

where gid(t) is the cumulative probability distribution as defined in Section 4.1 and
∫ t

0
d gij(τ) Fjd(t− τ)

denotes the Riemann integral.

28

In order to solve the equation system of (73), a recursive scheme can be defined:

F
(0)
ij (t) = 0 (74)

F
(n+1)
ij (t) = gid(t) +

∑

j 6=d

∫ t

0
d gij(τ) F

(n)
jd (t− τ) (75)

having the property that for convergence of the approximation holds:

sup
0≤x≤t

∣∣∣F (n)
ij (x)− Fij(x)

∣∣∣ ≤ µ[n
r] (76)

since for any fixed t ≥ 0, an integer r and real number 0 < µ < 1 exists such that:

∑

j

g∗rij (t) ≤ µ (77)

where g∗rij (t) denotes the r-th convolution of gij(t) with itself.

Since Fid(t) assumes the stochastic process to be initially in state si, we have to sum up all states

SL in order to compute the probability to reach state sd within time t:

P (Sd = sd, Td ≤ t | o, λ) =
∑

i

Fid(t) P (SL = si | o, λ) (78)

Computation of Equation 75 can be quite costly, depending on n, which is the maximum number of

transitions up to time t that are considered in the approximation. Additionally, each step involves

solution of the Riemann integral which must in many cases be solved numerically as there are many

distributions for which there’s no analytical representation (e.g., the cumulative distribution of a

Gaussian random variable). However, computational complexity can be limited since the maximum

number of transitions is commonly limited by the application (in most applications, there is a

minimum delay between successive observations) which also limits the number of time points for

which the Riemann integral has to be approximated.

A second important note is related to real-time or online applications. Fid(t) is only depending on

the parameters of the GHSMM and not on the observation sequence: it can hence be precomputed.

Online evaluation of Equation 78 only has to compute Equations 68 or 69 for each state, multiply

with precomputed Fid(t) and sum up the products.

8 Extracting Features from Training data:

The Baum-Welch Algorithm

Previous sections assumed that a GHSMM was given. This section deals with the task to estimate

the parameters λ of a GHSMM from training sequences that have been observed prior to modeling.

For this purpose, the Baum-Welch algorithm for discrete-time HMMs (as described in Section 2.2)

is adapted to GHSMMs.

29

8.1 The Backward Variable, Xi and Gamma

In addition to the forward variable αk(i), reestimation formulas for discrete-time HMMs were based

on a backward variable βt(i), a state probability γt(i), and a transition probability ξt(i, j). The same

applies to reestimation formulas for GHSMMs. The GHSMM equivalents βk(i), γk(i) and ξk(i, j)

are defined as follows.

The backward variable βk(i) is the probability of the rest of the observation sequence Ok+1 . . . OL

given that the process is in state si at time tk and a GHSMM. βk(i) is computed backwards starting

from time tL:

βk(i) = P (Ok+1 . . . OL | Sk = si, λ) (79)

βL(i) = 1

βk(i) =
N∑

j=1

vij(dk) bj(Ok+1) βk+1(j)
(80)

γk(i) is the probability that the stochastic process is in state i at the time when the k-th observa-

tion occurs. It can be computed from αk(i) and βk(i) following the same scheme as presented in

Equations 15–18:

γk(i) =
αk(i) βk(i)∑N
i=1 αk(i) βk(i)

(81)

ξk(i, j) is the probability that the stochastic process is in state si at time tk and transits to state sj

at time tk+1:

ξk(i, j) = P (Sk = si, Sk+1 = sj | o, λ) (82)

ξk(i, j) =
αk(i) gij(dk+1) bj(Ok+1) βk+1(j)∑N

i=1

∑N
j=1 αk(i) gij(dk+1) bj(Ot+1) βk+1(j)

(83)

Please note that ξk(i, j) uses gij(t) instead of vij(t). This is due to the fact that ξij(t) is about

transitions but vij(t) also contains the probability that the process has stayed in state si, and

self-transitions are not considered (pii = 0).

As was the case for discrete-time HMMs, the expected number of transitions from state si to state

sj is the sum over time
L−1∑

k=0

ξk(i, j). (84)

However, the relation between γt(i) and ξt(i, j), as given in Equation 34 (page 10), does not hold for

GHSMMs: The sum of transition probabilities to all successor states does not include the probability

that the process remains in state si (c.f., Equation 49) and is hence not equal to γ(i).

30

8.2 Reestimation Formulas

Expectedly, the so-called reestimation formulas for GHSMMs are very similar to their discrete-

time HMM equivalents, which are described in Section 2.2. In analogy with discrete-time HMMs,

reestimation formulas are only provided for one single training sequence. In the common case of

multiple sequences, the same procedure as in Section 2.3 must be applied.

Initial probabilities π are computed in the same way as for discrete-time HMMs:

π̄i ≡ expected number of series starting in state si

total number of sequence
≡ γ0(i) (85)

Emission probabilities bi(oj) are as well identical to their discrete-time equivalents:

b̄i(oj) ≡ expected number of times observing oj in state si

expected number of times in state si
≡

L∑

k=0
s.t. Ok=oj

γk(i)

L∑

k=0

γk(i)

(86)

Transition distributions gij(t). According to Equation 44 (page 17), gij(t) is the product of

the limiting transition probability pij of the embedded DTMC and the duration distribution dij(t).

Limiting transition probabilities pij are independent of time since they are obtained by letting

t →∞ and pij simply denotes the probability that a transition from state si to sj has taken place

in the training sequence. Hence, pij can be identified with transition probabilities aij of HMMs and

the same formulas apply. In the Baum-Welch algorithm, aij are estimated by the relative frequency

of si → sj transitions, and from Equation 84 follows:

p̄ij ≡ expected number of transitions si → sj

expected number of transitions si → ?
≡

L−1∑

k=0

ξk(i, j)

N∑

j=1

L−1∑

k=0

ξk(i, j)

(87)

Transition durations dij(t). The procedure to estimate dij(t) is more complex since GHSMMs

allow to use a great variety of duration distributions and an “embedded” expectation-maximization

algorithm is used. Additionally, if only a subset of transition distributions dij are used, a more

efficient maximization algorithm can be applied. The next section describes both variants in detail.

31

8.3 Maximizing Transition Durations

Transition durations dij(t) are cumulative probability distributions specifying the duration of tran-

sitions from state si to sj last. The problem is, that for any training sequence o it is not known

exactly what path of hidden states the stochastic process has traversed. Instead, the only two things

known about each transition that took place from observation symbol Ok−1 to Ok are:

1. the duration of the transition: dk

2. the probability that a transition from hidden state si to sj took place: ξk−1(i, j)

Combining both quantities for each pair of observation symbols Ok−1 → Ok; 1 ≤ k ≤ L having a

delay of dk, a weight can be assigned to each dk for each pair of states si → sj by ξk−1(i, j). This

results in a set of weighted durations as shown in Figure 16. The goal is to find transition duration

distribution densities d
′
ij(t) such that they best represent the weighted sample.

Figure 16: Weighted distribution of transition durations and estimated Gaussian duration distribution density.

Points visualize the delay values dk that occur in the training sequence, their size corresponding to the weights

ξk−1(i, j). The dashed curve symbolizes an estimated probability density of the duration distribution d
′

ij(t).

Recall that transition duration distributions in GHSMMs are defined as:

dij(t) =
R∑

r=0

wij,r κij, r(t|θij,r) (88)

s.t.
R∑

r=0

wij,r = 1 (89)

Hence more specifically, the goal of transition duration optimization is to adjust the weights wij,r

and parameters θij,r for each transition si → sj such that the likelihood of the weighted delays of

the training sequence is maximized. Due to the Markov assumptions it is possible to estimate each

dij(t) independently for each transition si → sj and further considerations will focus on evaluation

of one single transition. Therefore, the index ij will be omitted in cases where only one transition

is addressed.

GHSMMs use an expectation maximization (EM) approach to achieve this. EM algorithms repeti-

tively apply maximum likelihood estimation (see, e.g., [29]). Since this is the most complex part of

EM algorithms, the formulas are provided here.

32

EM algorithms typically do not maximize the data likelihood directly but maximize a so-called Q-

function (Section 9 provides more details about this procedure). In the case of transition duration

optimization, the following Q-function has to be maximized:

Qd =
L∑

k=1

R∑

r=0

P (dk) log
[
P (dk | r) P (r)

]
P

(
r | dk, θold

)
(90)

where

• P (dk) is the probability of the data point (delay between Ok−1 and Ok)

• P (r) is the probability of kernel r

• P (dk | r) is the probability that delay dk is generated by kernel r

• P
(
r | dk, θold

)
is the probability of kernel r given the data point and previous set of parameters.

P (dk) = ξk−1 (91)

P (r) = wr (92)

P (dk | r) = κ′r(dk|θr) (93)

P
(
r | dk, θold

)
=

P (dk | r, θold) P (r | θold)∑
r P (dk | r, θold) P (r | θold)

=
κ′r(dk|θold

r) wold
r∑

r κ′r(dk|θold
r) wold

r

(94)

with κ′r(·) denoting the probability density of κr(·), which are defined to be cumulative distributions,

and superscripts old referring to parameter values of the previous reestimation step.

The logarithm of Equation 90 can be split into a sum

Qd =
L∑

k=1

R∑

r=0

P (dk) log
[
P (dk | r)

]
P

(
r | dk, θold

)

+
L∑

k=1

R∑

r=0

P (dk) log
[
P (r)

]
P

(
r | dk, θold

)
(95)

It can be observed that the two parts of Equation 95 are independent of each other from which

follows that weights wr and kernel parameters θr can be optimized separately.

As will be derived in Section 9, reestimation of the kernel parameters θr follows from partial differ-

entiation of the first summand of Equation 95 with respect to θr. Since this eliminates the sum over

the kernels
∑

r, each kernel’s parameters can be optimized separately by solving:

∂ Qd

∂ θr
=

L∑

k=1

1
P (dk | r, θr)

∂ P (dk | r, θr)
∂ θr

P (dk) P
(
r | dk, θold

)

=
L∑

k=1

1
κ′r(dk, θr)

∂ κ′r
∂ θr

ξk−1
κ′r(dk|θold

k) wold
r∑

r κ′r(dk|θold
k) wold

r

!= 0

(96)

33

Since this is maximum likelihood parameter estimation, it is recommended to use kernels for which

a formal solution to Equation 96 exists. Examples include Gaussian, exponential, Pareto, or log-

normal distributions. Appendix A provides equations for some distributions. However, if no an-

alytical solution exists (e.g., for the gamma distribution), Equation 96 can be solved numerically,

which of course increases computational complexity. However since the EM algorithm is an itera-

tive procedure, it is sufficient to use a good estimate that increases Qd (such an estimate for the

gamma distribution is provided in Appendix A). This approach is called generalized expectation

maximization (GEM) algorithm.

Reestimation of the kernels’ weights can be obtained from the second summand of Equation 95.

Due to the constraint given in Equation 89, Lagrange optimization is applied yielding:

wr = P (r) =

L∑

k=1

ξk−1 P
(
r | dk, θold

)

L∑

k=1

ξk−1

(97)

The derivation of the formula is again provided in Section 9.

The special case of single kernel durations. If only one kernel κij is used for each transition

duration, Equation 90 turns into the standard objective function for maximum likelihood (ML)

estimation. It can be shown that for special distributions ML estimation is equal to the methods of

moments, where the first n moments are estimated from observation samples and the distribution’s

parameters are computed from them.6 The Normal distribution N (µ, σ2) is one prominent example

(see, e.g., [30] for more). In general, the n-th moment for durations of a transition from state si to

sj is:

E [Dn] =
∫ ∞

−∞
d n P (d) (98)

which in in our case boils down to estimation from the finite sample of durations occurring in the

observation sequence:

E [Dn] =

L∑

k=1

dn
k ξk−1(i, j)

L∑

k=1

ξk−1(i, j)

(99)

8.4 A Summary of the Training Algorithm

Since a lot of formulas have been developed in the last sections, the entire training procedure is

reiterated here. The goal of the training procedure is to adjust the GHSMM parameters λ such

that the likelihood of a given training sequence o is maximized. However, the Baum-Welch training
6This is known as the method of moments.

34

algorithm does only affect π, B, P , and D(t), but not the structure of the GHSMM. The structure

consists of

• the set of states S = {s1, . . . , sN},

• the set of symbols O = {o1, . . . , oM},

• the topology of the model. It defines, which of the N states can be initial states, which

of the potentially N × N transitions can be traversed by the stochastic process, and which

of the potentially N × M emissions are available. Technically, a transition si → sj can be

“removed” by setting pij = 0. The same holds for the initial state distribution π and the

emission probabilities: if bi(ok) is set to zero, state si cannot generate observation symbol ok.

Since the Baum-Welch algorithm can never assign a non-zero value to probabilities that are

equal to zero, Baum-Welch does not change the structure of the GHSMM.

• specification of the transition duration kernels D(t). This includes the number and types of

kernels for each existing transition. It may also comprise specification of additional parameters

that are not adjusted by maximum likelihood estimation. For example, upper and lower bounds

for uniform background distributions need to be set up before training starts.

Having specified the GHSMM structure, the Baum-Welch algorithm performs the steps shown in

Figure 17 in order to adjust the parameters λ such that sequence likelihood of P (o |λ) reaches at

least a local maximum.

In analogy with discrete-time HMMs, the procedure was outlined only for training with one single

sequence. If multiple sequences are used, computations are performed for each sequence and the

results are combined as described in Section 2.3.

When executing the algorithms on computers, probabilities quickly approach the limit of computa-

tional accuracy, even with double precision floating point numbers. Therefore, a technique called

scaling has been developed (see, e.g., [13]). The same technique can be applied to GHSMMs without

restrictions.

9 Proving Convergence

Both, discrete-time HMMs and GHSMMs use the Baum-Welch algorithm for parameter estimation.

Its main characteristic is that sequence likelihood is increased by an iterative reestimation procedure

until some local maximum is reached. While convergence of the algorithm was originally proven

by Baum et al. in [31], simpler proofs exploit the fact that the algorithm is in fact an instance

of expectation maximization (EM) algorithms [32]. This section will therefore sketch the latter

approach and adapt it to GHSMMs. Since the proof of convergence relies on a so-called Q-function,

it will be introduced first, followed by the application to GHSMMs.

35

1. Initialize the model by assigning random values to π, B, P , and D(t) for all entries that

are existing in the structure. This is λold.

2. Compute αk(i) by Equation 55, βk(i) by Equation 80, γk(i) by Equation 81, and ξk(i, j)

by Equation 83 using λold and observation sequence o.

3. Compute sequence likelihood P (o |λold) by Equation 56.

4. Adjust π by Equation 85, B by Equation 86, and P by Equation 87.

5. Reestimate the parameters of D(t) by the embedded EM algorithm for each dij(t):

(a) Compute delay log-likelihood

P (d | θold
ij) =

L∑

k=1

ξk(i, j) log
[
dij(dk)

]

where dij(·) is the mixture of kernels as in Equation 88.

(b) Adjust the kernel parameters θij,r by the solution to Equation 96 for each kernel

κij,r of dij(·).
(c) Adjust the kernel weights wij,r by Equation 97.

(d) Set θold
ij := θnew

ij and repeat steps 5a to 5d until the difference of delay log-likelihoods

P (d | θij) is less than some bound εd.

6. Set λold := λnew and repeat steps 2 to 6 until the difference in observation sequence

likelihood P (o |λ) is less than some bound ε.

Figure 17: The complete Baum-Welch training algorithm for GHSMMs.

9.1 Derivation of the Q-Function

EM algorithms are one form of maximum-a-posteriori (MAP) estimators and hence rely on the prob-

ability of some data that has been observed, which in this case refers to the observation sequence o

forming dataset O. Assuming that observations are independent and identically distributed, the

goal is to maximize data likelihood P (o|λ).

The potential of EM algorithms and their wide range of application stems from two properties:

1. EM algorithms build on lower bound optimization. This allows to optimize complex objective

functions by maximizing a lower bound that is much easier to handle.

2. EM algorithms can handle incomplete/unobservable data.

36

Lower bound optimization The first property of EM algorithms is that they employ lower

bound optimization [33], which is also called primal-dual method [34]. In lower bound optimization,

an objective function, which is computationally intractable, is optimized by repetitive maximization

of some lower bound that is easier to compute. If the lower bound is defined such that it equals the

objective function at the point of current estimation, a maximization of the lower bound automati-

cally leads to an increased value of the objective function – except for the case when the derivative

of the objective function equals zero, which is a local optimum. (see Figure 18).

Figure 18: Lower bound optimization. Maximizing a lower bound that equals the objective function at the

point of current estimation of parameter λ leads to an increased value of the objective function.

From this consideration, the following iterative optimization scheme can be derived:

1. Determine a lower bound that equals the objective function at the current estimate of param-

eter λ. This is the E-step of the algorithm.

2. Determine the maximum of the lower bound yielding the next estimation of λ. This is the

M-step of the algorithm.

3. Repeat until the increase of the objective function is below some threshold.

In comparison to lower bound maximization, gradient-based optimization approaches build on a

linear approximation at the point of the current estimate for θ and move along that line for some

distance to obtain the new estimate.

Handling of unobservable data In the case of HMMs / GHSMMs, handling of unknown data

refers to the fact that the sequence of hidden states s, which the stochastic process has traversed, can-

not be observed. Therefore, two data sets must be distinguished: the complete dataset Z = (O,S)

includes both observed and unknown data, while the incomplete dataset O only consists of observed

data.

The way how EM algorithms deal with unknown data is that the incomplete data likelihood is

37

assumed to be the marginal of the complete data set. Hence,

P (o|λ) =
∫

s
P (o, s|λ) ds (100)

The Q-Function. In order to find a lower bound to data likelihood Jensen’s inequality [35] can

be used: ∑

j

g(j) aj ≥
∏

j

g
aj

j (j); aj ≥ 0,
∑

j

aj = 1, g(j) ≥ 0 (101)

stating that the arithmetic mean is never less than the geometric mean. Application to Equation 100

requires extension by some arbitrary function q(s) as follows (see [33]):

P (o|λ) =
∫

s

P (o, s|λ)
q(s)

q(s) ds ≥
∏
s

(
P (o, s|λ)

q(s)

)q(s) ds

= f(λ, q(s)) (102)

where ∫

s
q(s) ds

!= 1 (103)

f(λ, q(s)) is the lower bound and q(s) is some arbitrary cumulative probability distribution over s.

The arbitrary function f needs to be chosen such that the lower bound touches the objective function

at the current estimate of parameters λold. It can be shown ([33]) that setting

q(s) = P (s |o, λold) (104)

fulfills the requirement.

Maximization of the lower bound is performed by maximizing its logarithm. Substituting Equa-

tion 104 into the logarithm of f(λ, q(s)) and dropping terms that are not depending on λ yields the

so-called Q-function:

Q(λ, λold) =
∫

s
log

[
P (o, s|λ)

]
P (s |o, λold) ds (105)

= Es

[
log P (o, s|λ)

]
(106)

which is in fact the expected value over s of the log-likelihood of the complete data set. Since

likelihood of the complete data set is in many cases easier to optimize than the one of the incomplete

data set, EM algorithms can solve more complex optimization problems.

EM algorithms. To summarize the functioning of EM algorithms, the following two steps are

performed iteratively until some convergence with respect to training data likelihood is reached:

• E-step: Compute the Q-function based on parameters λold obtained by initialization or the

previous M-step.

• M-step: Compute the next estimation for λ by maximizing the Q-function:

λnew = arg max
λ

Q(λ, λold) (107)

38

Maximization is in most cases achieved by partial derivation of the Q-function and solving the

equation
∂ Q

∂λ

!= 0 (108)

If there are additional constraints on the parameters (e.g., the sum of parameters has to be equal

to 1), Lagrange multipliers are used. In the case that there is no analytical solution for the optimum,

it is even sufficient to find some new parameter values λ for which the lower bound is greater than

for λold. This approach is called “Generalized EM algorithm”

9.2 The Q-function for GHSMMs

In terms of GHSMMs, the complete dataset Z = (O,S) consists of the observation sequence o and

the sequence of hidden states s the stochastic process has traveled through. If both the sequence of

hidden states and observation sequence are known, (complete) data likelihood is

P (o, s |λ) = πs0 bs0(O0)
L∏

k=1

vsk−1 sk
(dk) bsk

(Ok) (109)

= πs0

L∏

k=0

bsk
(Ok)

L∏

k=1

vsk−1 sk
(dk) (110)

and hence the Q-function for GHSMMs is

Q(λ, λold) =
∑

s∈S

log
[
P (o, s|λ)

]
P (s |o, λold) (111)

=
∑

s∈S

log
[
πs0

]
P (s |o, λold) (112)

+
∑

s∈S

L∑

k=0

log
[
bsk

(Ok)
]
P (s |o, λold) (113)

+
∑

s∈S

L∑

k=1

log
[
vsk−1 sk

(dk)
]
P (s |o, λold) (114)

where S denotes the set of all possible state sequences s.

Some papers (e.g., [36]) use P (s, o |λold) instead of P (s |o, λold). In fact, this does not matter since

P (s, o |λold) = P (s |o, λold)× P (o |λold) (115)

and since P (o |λold) is independent of λ it does not affect the arg max operator used for maximization

(see Equation 107).

9.3 Maximizing the Q-function

The important thing to note about the Equation for Q(λ, λold) is that terms 112 to 114 are indepen-

dent of each other with respect to λ = (π, B, G). Since maximization involves partial derivation,

39

the terms can be maximized separately.

Maximizing π. The first term (112) can be further simplified:

∑

s∈S

log
[
πs0

]
P (s |o, λold) =

N∑

i=1

log
[
πi

]
P (S0 = si |o, λold) (116)

since for each s ∈ S, only the first state is of importance and P (S0 = si |o, λold) contains all state

sequences starting with state si.

In order to determine the new estimation for π, the following constrained maximization problem

has to be solved:

πi = arg max
πi

Q(λ, λold); s.t.

N∑

i=1

πi = 1 (117)

which can be done using a Lagrange multiplier ϕ:

∂

∂πi

(
N∑

i=1

log
[
πi

]
P (S0 = si |o, λold)− ϕ

(N∑

i=1

πi − 1
))

!= 0 (118)

⇔ P (S0 = si |o, λold)
1
πi
− ϕ = 0 (119)

⇔ πi =
P (S0 = si |o, λold)

ϕ
(120)

Summing Equation 120 over i yields ϕ:

N∑

i=1

P (S0 = si |o, λold)
ϕ

!= 1 (121)

⇔ ϕ =
N∑

i=1

P (S0 = si |o, λold) = 1 (122)

Substituting ϕ back into Equation 120 yields the solution

πi = P (S0 = si |o, λold) = γ0(i) (123)

Maximizing bi(oj). The second term (113) can be maximized in a similar way. The first step is

to simplify the log-likelihood by the same arguments as before:

∑

s∈S

L∑

k=0

log
[
bsk

(Ok)
]
P (s |o, λold) =

N∑

i=1

L∑

k=0

log
[
bi(Ok)

]
P (Sk = si |o, λold) (124)

For readability reasons, bi(oj) will be denoted by bij . Then the maximization problem becomes:

bij = arg max
bij

Q(λ, λold); s.t. ∀ i :
M∑

j=1

bij
!= 1 (125)

40

leading to

∂

∂bij

N∑

i=1

L∑

k=0

log
[
bik

]
P (Sk = si |o, λold)−

N∑

i=1

ϕi

(M∑

j=1

bij − 1
)

 = 0 (126)

⇔
L∑

k=0;
Ok=oj

P (Sk = si |o, λold)
1
bij

− ϕi = 0 (127)

⇔ bij =

L∑

k=0;
Ok=oj

P (Sk = si |o, λold)

ϕi
(128)

Summing Equation 128 over j yields ϕi:

M∑

j=1

L∑

k=0;
Ok=oj

P (Sk = si |o, λold)

ϕi

!= 1 (129)

⇔ ϕi =
M∑

j=1

L∑

k=0;
Ok=oj

P (S0 = si |o, λold) =
L∑

k=0

P (S0 = si |o, λold) (130)

and hence

bij =

L∑

k=0;
Ok=oj

P (Sk = si |o, λold)

L∑

k=0

P (S0 = si |o, λold)

=

L∑

k=0;
Ok=oj

γk(i)

L∑

k=0

γk(i)

(131)

Maximizing Transition Probabilities. Simplifying the third term (114) yields:

∑

s∈S

L∑

k=1

log
[
vsk−1 sk

(dk)
]
P (s |o, λold) =

N∑

i=1

N∑

j=1

L∑

k=1

log
[
vij(dk)

]
P (Sk−1 = si, Sk = sj |o, λold) (132)

In contrast to π and bi(oj), the maximization problem is more complex, since vij(dk) is a function

of P and D(t):

vij(dk) = fij

(
P , D(dk)

)
=

pij dij(dk) if i 6= j

1−
N∑

h=1

pih dih(dk) if i = j
(133)

where pii = 0 is assumed.

41

Maximizing pij is very similar to the estimation of aij in discrete-time HMMs. The constraint

for optimization is:

∀ i :
∑

j

pij
!= 1, pii = 0 (134)

Since pii = 0, we only have to consider the first line of Equation 133 where i 6= j.

In order to shorten notations, let

P (si, sj , k |o, λold) := P (Sk−1 = si, Sk = sj |o, λold). (135)

and hence the Lagrangian optimization equation is:

∂

∂pij

N∑

i=1

N∑

j=1

L∑

k=1

log
[
vij(dk)

]
P (si, sj , k |o, λold)−

N∑

i=1

ϕi

(N∑

j=1;
j 6=i

pij − 1
)

 = 0 (136)

⇔ ∂

∂fij

N∑

i=1

N∑

j=1

L∑

k=1

log
[
fij

(
P , D(dk)

)]
P (·)

 ∂fij

(
P , D(dk)

)

∂pij
− ϕi = 0 (137)

⇔
L∑

k=1

(
1

pij dij(dk)
P (si, sj , k |o, λold) dij(dk)

)
− ϕi = 0 (138)

⇔ pij =

L∑

k=1

P (si, sj , k |o, λold)

ϕi
(139)

It can be seen from Equation 139 that dij are cancelled out and hence pij can be determined

independently from dij(t). The solution is found by summing up pij and solving for ϕi similar to

Equation 129:

pij =

L∑

k=1

P (Sk−1 = si, Sk = sj |o, λold)

N∑

j=1;
j 6=i

L∑

k=1

P (Sk−1 = si, Sk = sj |o, λold)

=

L−1∑

k=0

ξk(i, j)

N∑

j=1;
j 6=i

L−1∑

k=0

ξk(i, j)

(140)

Since ξk(i, j) builds on gij(t) and gii(t) is equal to zero by definition, the restriction j 6= i can be

omitted.

Maximizing dij(t) is more complicated than maximizing pij . The reason for this is that in the

case of pij , the “balance” between all outgoing transitions can be taken care of by the Lagrangian.

Additionally, by defining pii to be equal to zero it was possible to focus only on the case i 6= j and

hence not to consider vii(t) (second case in Equation 133). However, this approach is not admissible

42

for dij(t) since

vii(t) = 1−
N∑

h=1

pih dih(dk) 6≡ 0 (141)

expressing the fact that vii(t) is depending on vij(t); i 6= j.

The informal explanation for why an independent treatment of all durations i 6= j is not admissible

is that if all dij(dk); i 6= j were treated independently, the maximum of Equation 132 with respect

to dij(dk) would be that dij(t) ≡ 1; t > 0. Since dij(t) are cumulative probability distributions

specifying the probability that a transition takes place at time T ≤ t, data likelihood (Equation 132)

is maximal if a probability of 1 is assigned to all durations. In this case, vii would be equal to zero

and the GHSMM would actually be turned into a standard HMM, building on a DTMC.

Therefore, data likelihood has to be maximized for duration densities dij
′(t) leading to the following

optimization problem:

d̄ij
′(t) = arg max

dij
′(t)

L∑

k=1

log
[
pij dij

′(dk)
]
P (Sk−1 = si, Sk = sj |o, λold) (142)

The interpretation of this is intuitive: The probability that a transition from state si to sj of

duration t occurs has to be adjusted in such a way that the distribution fits very well for durations

of transitions that are very likely. Likelihood of a transition si → sj at time tk−1 having duration

of dk = tk − tk−1 is expressed by P (Sk−1 = si, Sk = sj |o, λold). The optimization problem given

in Equation 142 is in fact a classical maximum likelihood optimization problem with weighted data

points. A visualization is provided by Figure 16 on page 32).

Since in GHSMMs, duration distributions are modeled as a weighted mixture of probability distri-

butions, an embedded EM algorithm is used to fit the parameters of the kernels to the data. From

the definition of transition duration distributions (Equation 45) can be inferred that the densities

have the following similar form:

dij
′(t) =

R∑

r=0

wij,r κ′ij, r(t|θij,r) (143)

s.t.
R∑

r=0

wij,r = 1 (144)

where wij,r denotes the weight for kernel r and κ′ij, r(t|θij,r) denotes a probability density with

parameters θij,r.

Considering that transition probabilities can be expressed by

P (Sk−1 = si, Sk = sj |o, λold) = ξk−1(i, j) (145)

and keeping in mind that constant factors pij do not affect the arg max operator, a more finegrained

representation of the maximization problem given in Equation 142 is:

θ̄ij = arg max
θij

L∑

k=1

log
[R∑

r=0

wij,r κ′ij, r(dk, θij,r)
]
ξk−1(i, j) (146)

43

Maximization of Equation 146 follows very closely the optimization of a mixture of Gaussians, which

can be found in many textbooks (e.g., [25]), except that data points are weighted here.

As stated before, EM algorithms assume the hidden data to be known (forming the complete dataset)

and optimize the expected value with respect to the hidden data. In this case the unobservable data

is the knowledge, to which kernel r each delay is assigned. Hence the Q-function for the parameters

of duration distributions for one transition si → sj is:

Qdij (θij , θ
old
ij) =

∫

r
log

[
P (d, r|θij)

]
P (r |d, θold

ij) dr (147)

=
L∑

k=1

R∑

r=0

P (dk) log
[
P (r) P (dk | r, θij,r)

]
P

(
r | dk, θold

ij

)
(148)

=
L∑

k=1

R∑

r=0

ξk−1(i, j) log
[
wij,r κij,r

′(dk|θij,r)
]

P
(
r | dk, θold

ij

)
(149)

where P (d, r|θij) denotes weighted data likelihood for all delays d = [dk] and kernel assignment

vector r = [rk], where each delay is weighted by P (dk) .

From Bayes’ theorem follows that

P
(
r | dk, θold

ij

)
=

P (dk | θold
ij,r) P (r)old

∑
r P (dk | θold

ij,r) P (r)old
=

κ′ij,r(dk | θold
ij,r) wold

ij,r∑
r κ′ij,r(dk | θold

ij,r) wold
ij,r

(150)

Kernel weights wij,r Derivation of Equation 149 with respect to kernel weights wij,r and includ-

ing a Lagrangian multiplier for the constraint yields:

∂

∂wij,r

[
L∑

k=1

R∑

r=0

ξk−1(i, j) log
[
wij,r κij,r

′(dk)
]

P
(
r | dk, θold

ij

) − ϕ
(R∑

r=0

wij,r − 1
)]

!= 0(151)

⇔ wij,r =

L∑

k=1

ξk−1(i, j) P
(
r | dk, θijold

)

ϕ
(152)

and solving for ϕ yields:

wij,r =

L∑

k=1

ξk−1(i, j) P
(
r | dk, θold

ij

)

L∑

k=1

ξk−1(i, j)

(153)

Kernel parameters θij,r In order to determine kernel parameters θij,r, Equation 149 must be

derived with respect to θij,r. Since this derivation is depending on the particular form of the kernel

44

that is used, only a general optimization equation can be derived here:

∂ Qdij

∂ θij,r
=

L∑

k=1

R∑

r=0

ξk−1(i, j) log
[
wij,r κ′ij,r(dk|θij,r)

]
P

(
r | dk, θold

ij

)

=
L∑

k=1

ξk−1(i, j)
1

κ′ij,r(dk|θij,r)
∂ κ′ij,r(dk|θold

ij,r)
∂ θij,r

κ′ij,r(dk|θold
ij,r) wold

ij,r∑
r κ′ij,r(dk|θold

ij,r) wold
ij,r

!= 0

(154)

Appendix A provides the solution to Equation 154 for some well-known distributions. In case that

no formal solution exists, numerical solution techniques may be used.

10 Complexity

As it is the case for most machine learning techniques, two cases have to be distinguished for

complexity assessment:

• Training of the model. Training is in most cases performed offline using previously recorded

training data. Although feasibility restrictions exist, training complexity is not as critical as

application complexity.

• Application of the model. After training, the obtained model is applied, which means that

it is supplied with new, unknown data. The new data may either arrive continuously during

runtime or a huge amount of data must be processed. Therefore, for both types of application

complexity is much more critical. This is especially true for applications where processing

deadlines need to be met.

In terms of hidden Markov models, application complexity refers to the forward, backward and

Viterbi algorithm while training complexity refers to the Baum-Welch algorithm.

Application complexity. The forward algorithm of standard discrete-time HMMs belongs to the

class O(LN2) since for each of the L + 1 symbols of the sequence, a sum over N terms has to be

computed for each of the N states. However, this is only true if really all predecessors are taken into

account. If the implementation uses adjacency lists, it is only true if the topology is a clique. This

is really rare: many applications use a left-to-right structure where only a few predecessors have to

be summed up, leading to a complexity of roughly O(LN).

Complexity of the Viterbi algorithm is the same since the sum of the forward algorithm is simply

replaced by a maximum operator, which also has to investigate all N predecessor in order to select

the maximum value.

Complexity of the Backward algorithm is also equal to the forward algorithm, although multipli-

cation of bi(Ot) cannot be factored out – but since constant factors do not change the class of

complexity in the O-calculus, the same class results.

45

Turning to GHSMMs, the algorithms belong to the same class of complexity, since the only difference

between the algorithms is that aij is replaced by vij(dk). More precisely: a single multiplication is

substituted by computations that are a bit more complex. To reiterate,

vij(dk) =

pij dij(dk) if i 6= j

1−
N∑

h=1

pih dih(dk) if i = j
(155)

where each dij(dk) is a mixture of kernels:

dij(t) =
R∑

r=0

wij,r κij, r(t|θij,r) (156)

Therefore, for cases i 6= j,

aij ⇔ pij

R∑

r=0

wij,r κij, r(t|θij,r) (157)

κij,r(t) are cumulative probability distributions that have to be evaluated. Depending on the type of

distribution this might involve some computations since for, e.g., Gaussian distributions, there is no

formula for the cumulative distribution. However, since R remains constant irrespective of N and

L, it is a constant factor and complexity in terms of the O-calculus is the same as for discrete-time

HMMs. But even if constant factors are concerned, the complexity overhead is rather small since R

is in many cases a very small number (less than ten). For i = j, computations are even less costly

if the products pij dij(t); i 6= j are summed up “on the fly”.

Training complexity. Estimating overall complexity of the Baum-Welch algorithm is a hard task

since the number of iterations is depending on convergence with respect to data likelihood – and

this depends on many factors such as

• model initialization, which is in many cases random

• quality and quantity of the training data

• appropriateness of the HMM assumptions

• appropriateness of the HMM topology

• number of parameters of the HMM, determined by N + N2 + NM ∈ O(N2) in case of a fully

connected HMM.7

Due to especially the last point, it is assumed that the number of iterations is O(N2), which in

reality is a quite loose upper bound. In fact convergence might even be better with an increasing

amount of training data. M is assumed to be application dependent and hence constant.
7M denotes the size of the observation symbol alphabet.

46

Nevertheless, complexity of one reestimation step can be determined: The E-Step of the EM al-

gorithm involves execution of the forward-backward algorithm. Then, to accomplish the M-step,

reestimation of

π requires O(N) steps

B requires O(NL) steps8

A requires O(N2L) steps

for each sequence. Similar to the case for the forward-backward algorithm, complexity of real

models (e.g., left-to-right topology) is less. Putting this together with the number of iterations,

overall training complexity is of class O(N4L).

Turning to GHSMMs, reestimation of π and B remains the same and reestimation of P equals rees-

timation of A. Hence the complexity overhead of GHSMMs derives from estimation of dij(t). There

may be N (N − 1) different dij(t), each consisting of a small number of kernels (e.g., 0 ≤ R < 10),

which are reestimated by an embedded EM algorithm. The number of iterations is not depending

on N and will rather decrease with increasing L, hence the number of iterations is assumed to be

of O(1). Each reestimation step involves (R + 1) O(L) = O(L) steps. Putting all this together,

reestimation of transition durations is of complexity

N (N − 1) ∗ O(1) ∗ O(L) = O(N2L) (158)

Assuming the number of iterations of the outer EM algorithm to be again O(N2), this yields an

overall complexity of O(N4L).

11 Conclusions

Temporal sequence processing for event-driven time series can be accomplished by three different

approaches: (a) the time line can be split up into time slots, (b) delay events can be defined in order

to obtain a periodic time series or (c) continuous time can be incorporated into the model that is

being used. This report has focused on the third approach. More specifically, it has introduced a new

approach how hidden Markov models (HMMs) can be extended to continuous time. The approach

builds on turning the stochastic process of hidden state traversal into a semi-Markov process. Since

a large variety of transition duration probability distributions can be used, the resulting model is

called Generalized Hidden Semi-Markov Model (GHSMM).

It has been shown in the report, how GHSMMs can be used to address the principle problems of

temporal sequence processing: sequence generation, sequence recognition and sequence prediction.

Additionally, it has been shown how the parameters of GHSMMs can be determined from a set
8M is considered constant, here.

47

of training data. The training procedure uses an embedded expectation-maximization algorithm,

which can under certain conditions be simplified to standard distribution moment estimation. A

proof of convergence has been described and complexity of the entire approach has been assessed.

Appendix

A Maximum Likelihood Estimates for Selected Distributions

Formulas for maximum likelihood estimation of probability distribution parameters are provided

by many textbooks. However, in the case of GHSMMs, estimation from weighted set of data is

required. This appendix summarizes the formulas for some selected distributions. Maximum like-

lihood estimation is derived in detail for the exponential distribution while only resulting formulas

are reported for the others.

A.1 Exponential Distribution

The exponential distribution is depending on one parameter λ. Its density has the form

f(x) = λ e−λx (159)

Maximum likelihood estimation for a weighted set of data points is

λ̂ = arg max
λ

N∑

i=1

P (xi) log
(
f(xi)

)
(160)

where P (xi) is the weight for data point xi. Maximization is performed by derivation with respect

to λ:

∂

∂λ

N∑

i=1

P (xi) log
(
f(xi)

) != 0 (161)

⇔
N∑

i=1

P (xi)
1

f(xi)
∂

∂λ
f(xi)

!= 0 (162)

⇔
N∑

i=1

P (xi)
1

f(xi)
f(xi)

(
1
λ
− xi

)
!= 0 (163)

⇔ λ̂ =

N∑

i=1

P (xi)

N∑

i=1

P (xi) xi

(164)

which is actually the inverse of a weighted mean corresponding to the fact that the expectation

value for exponential distributions is 1
λ .

48

A.2 Normal Distribution

The Normal distribution’s density is

f(x) =
1√

2π σ2
exp

(
− (x− µ)2

2σ2

)
(165)

The maximum likelihood estimation for the mean value yields:

µ̂ =

N∑

i=1

P (xi) xi

N∑

i=1

P (xi)

(166)

and

σ̂2 =

N∑

i=1

P (xi) (xi − µ̂)2

N∑

i=1

P (xi)

(167)

A.3 Log-Normal Distribution

The Log-Normal distribution’s density is

f(x) =
1

x
√

2π σ2
exp

(
− (log x− µ)2

2σ2

)
(168)

The maximum likelihood estimation for the mean value yields:

µ̂ =

N∑

i=1

P (xi) log xi

N∑

i=1

P (xi)

(169)

and

σ̂2 =

N∑

i=1

P (xi) (log xi − µ̂)2

N∑

i=1

P (xi)

(170)

A.4 Pareto Distribution

Probability density of the Pareto distribution is:

f(x) =
k xk

min

xk+1
=

k

xmin

(xmin

x

)k+1
(171)

49

In order to estimate both parameters xmin and k, we have:

x̂min = min
i

xi (172)

and

k̂ =

N∑

i=1

P (xi)

N∑

i=1

P (xi)
(
log(xi)− log(x̂min)

)
(173)

A.5 Gamma Distribution

The Gamma distribution’s density has the form:

f(x) = xk−1 exp(−x
θ)

θk Γ(k)
(174)

However, finding optimal estimates for θ and k is a bit more complicated, since no formal solution

can be found. However, using the approximation

log(k)− Γ(k) ≈ 1
k

(
1
2

+
1

12 k + 2

)
(175)

the approximately optimal estimate for k is

k̂ ≈ 3− s +
√

(s− 3)2 + 24s

12s
(176)

where

s := log

N∑

i=1

P (xi) xi

N∑

i=1

P (xi)

−

N∑

i=1

P (xi) log xi

N∑

i=1

P (xi)

(177)

It can be shown that this estimate is within a 1.5% bound of the true maximum. The approximate

estimate could be used as starting point for a Newton-Raphson numerical optimization. However,

since the estimation is part of an EM algorithm, an increase in data likelihood is already sufficient.9

Therefore, the approximate value of Equation 176 is sufficient here.

Derivation of the likelihood function with respect to θ yields:

θ̂ =

N∑

i=1

P (xi) xi

k̂

N∑

i=1

P (xi)

(178)

9The algorithm is then called Generalized Expectation Maximization (GEM)

50

References

[1] Ron Sun. Introduction to sequence learning. In Ron Sun and C. Lee Giles, editors, Sequence

Learning: Paradigms, Algorithms, and Applications, volume 1828 of Lecture Notes in Computer

Science, pages 1–11. Springer, Berlin / Heidelberg, 2001.

[2] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series Analysis: Fore-

casting and Control. Prentice Hall, Englewood Cliffs, New Jersey, third edition, 1994.

[3] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls: alterna-

tive data models. In IEEE Proceedings of the 1999 Symposium on Security and Privacy, pages

133–145, 1999.

[4] A. Daidone, F. Di Giandomenico, A. Bondavalli, and S. Chiaradonna. Hidden Markov models

as a support for diagnosis: Formalization of the problem and synthesis of the solution. In IEEE

Proceedings of the 25th Symposium on Reliable Distributed Systems (SRDS 2006), Leeds, UK,

Oct. 2006.

[5] Wei Wei, Bing Wang, and Don Towsley. Continuous-time hidden markov models for network

performance evaluation. Performance Evaluation, 49(1-4):129–146, 2002.

[6] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. Spoken Language Processing: A Guide to

Theory, Algorithm, and System Development. Prentice Hall, Upper Saddle River, NJ, USA,

2001.

[7] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language

Processing. The MIT Press, Cambridge, Massachusetts, 1999.

[8] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological sequence

analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cam-

bridge, UK, 1998.

[9] M. Russell and A. Cook. Experimental evaluation of duration modelling techniques for au-

tomatic speech recognition. In IEEE Proceedings of International Conference on Acoustics,

Speech, and Signal Processing (ICASSP ’87), volume 12, pages 2376–2379, Apr. 1987.

[10] Shun-Zheng Yu, Zhen Liu, M. S. Squillante, Cathy Xia, and Li Zhang. A hidden semi-markov

model for web workload self-similarity. In IEEE Proceedings of 21st International Performance,

Computing, and Communications Conference, pages 65–72, 2002.

[11] D. R. Cox and H. D. Miller. The Theory of Stochastic Processes. Chapman and Hall, London,

UK, first edition, 1965.

[12] J. Ferguson. Variable duration models for speech. In Proceedings of the Symposium on the

Application of HMMs to Text and Speech, pages 143–179, 1980.

51

[13] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, Feb. 1989.

[14] Martin J. Russell and R. K. Moore. Explicit modelling of state occupancy in hidden markov

models for automatic speech recognition. In IEEE Proceedings of Int. Conf. on Acoustics,

Speech and Signal Processing, pages 5–8, Mar. 1985.

[15] S. E. Levinson. Continuously variable duration hidden markov models for automatic speech

recognition. Computer Speech and Language, 1(1):29–45, 1986.

[16] C.D. Mitchell and L.H. Jamieson. Modeling duration in a hidden markov model with the

exponential family. In IEEE Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing (ICASSP-93), volume 2, pages 331–334, Apr. 1993.

[17] Weon-Goo Kim, Jeung-Yoon Choi, and Dae Hee Youn. HMM with global path constraint in

viterbi decoding for isolatedword recognition. In IEEE Proceedings of International Conference

on Acoustics, Speech, and Signal Processing (ICASSP-94), volume 1, pages 605–608, Apr. 1994.

[18] A. E. Cook and M. J. Russell. Improved duration modeling in hidden markov models using

series-parallel configurations of states. Proc. Inst. Acoust., 8:299–306, 1986.

[19] A. Noll and H. Ney. Training of phoneme models in a sentence recognition system. In IEEE

Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP

’87), volume 12, pages 1277–1280, Apr. 1987.

[20] Janne Pylkkönen. Phone duration modeling techniques in continuous speech recognition. Mas-

ter’s thesis, Helsinki University of Technology, Department of Computer Science and Engineer-

ing, Laboratory of Computer and Information Science, 2004.

[21] Xue Wang. Durationally constrained training of hmm without explicit state durational pdf. In

Proceedings of the Institute of Phonetic Sciences, University of Amsterdam, volume 18, pages

111–130, 1994.

[22] Antonio Bonafonte, Josep Vidal, and Albino Nogueiras. Duration modeling with expanded hmm

applied to speech recognition. In IEEE Proceedings of the Fourth International Conference on

Spoken Language (ICSLP 96), volume 2, pages 1097–1100, Oct. 1996.

[23] Padma Ramesh and Jay G. Wilpon. Modeling state durations in hidden markov models for

automatic speech recognition. In IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP-92), volume 1, pages 381–384, 1992.

[24] Carl Mitchell, Mary Harper, and Leah Jamieson. On the complexity of explicit duration hmm’s.

IEEE Transactions on Speech and Audio Processing, 3(3):213–217, May 1995.

52

[25] Bert-Uwe Köhler. Konzepte der statistischen Signalverarbeitung. Springer, Berlin, Heidelberg,

Germany, 2005.

[26] Vidyadhar G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman and Hall,

London, UK, first edition, 1995.

[27] B. H. Juang, S. E. Levinson, and M. M. Sondhi. Maximum likelihood estimation for multivariate

mixture observations of markov chains. IEEE Transactions on Information Theory, 32(2):307–

309, 1986.

[28] L. A. Liporace. Maximum likelihood estimation for multivariate observations of markov sources.

IEEE Transactions on Information Theory, 28(5):729–734, Sep. 1982.

[29] John Aldrich. R.a. fisher and the making of maximum likelihood 1912–1922. Statistical Science,

12(3):162–176, 1997.

[30] Rainer Schlittgen. Einführung in die Statistik: Analyse und Modellierung von Daten.

Oldenbourg-Wissenschaftsverlag, München, Wien, 9 edition, 2000.

[31] Leonard E. Baum and George R. Sell. Growth transformations for functions on manifolds.

Pacific Journal of Mathematics, 27(2):211–227, 1968.

[32] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum-likelihood from incomplete data via

the em algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

[33] T. Minka. Expectation-Maximization as lower bound maximization. Tutorial published on the

web at http://research.microsoft.com/users/minka/papers/minka-em-tut.ps.gz, 1998.

[34] M. S. Bazaraa and C. M. Shetty. Nonlinear Programming. John Wiley and Sons, New York,

1979.

[35] Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les

valeurs moyennes. Acta Mathematica, 30(1):175–193, Dec. 1906.

[36] Jeff A. Bilmes. A gentle tutorial on the EM algorithm and its application to parameter esti-

mation for Gaussian Mixture and Hidden Markov Models. Tech. report ICSI-TR-97-021, U.C.

Berkeley, International Computer Science Institute, Berkeley, CA, Apr. 1998.

53

