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Abstract 

Language ultimately aims to convey meaning. Importantly, the amount of associated 

semantic information varies considerably between individual words. Recent evidence 

suggests that the richness of semantic representations can facilitate performance in lexical and 

semantic tasks, but much remains to be learned about semantic richness effects. The present 

dissertation combined event-related brain potentials (ERPs) and connectionist network 

modeling to address several unresolved issues concerning the role of semantic richness in 

word processing. Specifically, ERPs were employed to investigate the time course of 

independent influences of the number of semantic features and associates during word reading 

(study 1) and influences of semantic richness on implicit word learning (study 2). Aiming at 

advancing a mechanistic understanding of the obtained results, both studies were 

subsequently simulated using a network model of semantic cognition (study 3). 

Results showed no influences of the number of associates, but fast access to semantic 

features, with influences of feature-based semantic richness starting at about 190 ms - a mere 

20 to 30 ms after and temporally overlapping with the activation of orthographic 

representations as reflected by N1 lexicality effects. Later on, a higher number of semantic 

features induced larger N400 amplitudes. Furthermore, the number of semantic features 

enhanced repetition priming effects on lexical decision accuracy and N400 amplitudes, 

providing initial evidence for influences of semantic richness on implicit word learning. These 

results are in line with feature-based network model of semantic cognition. Simulations with 

such a model suggested that semantic activation can facilitate lexical decisions, while network 

error closely corresponds to N400 amplitudes. In psychological terms, network error has been 

conceptualized as implicit prediction error. Thus, these results are taken to suggest that N400 

amplitudes may reflect implicit prediction error in semantic memory.
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Zusammenfassung 

Lesen zielt darauf ab, Bedeutung aus geschriebenem Text zu extrahieren. 

Interessanterweise unterscheiden sich Wörter beträchtlich hinsichtlich der Menge mit ihnen 

assoziierter Bedeutung, und es wurde kürzlich gezeigt, dass eine hohe Bedeutungshaltigkeit 

lexikalische und semantische Aufgaben erleichtern kann. Die vorliegende Dissertation 

kombiniert ereigniskorrelierte Hirnpotentiale (EKPs) und konnektionistische Netzwerk-

Modellierung, um einige offene Fragen zur Rolle der Bedeutungshaltigkeit bei der 

Wortverarbeitung anzugehen. Hierbei wurden EKPs verwendet, um den Zeitverlauf 

unabhängiger Einflüsse der Anzahl semantischer Merkmale und Assoziationen beim 

Wortlesen zu bestimmen sowie Einflüsse von Bedeutungshaltigkeit auf implizites Wortlernen 

zu untersuchen. Um die zugrundeliegenden Mechanismen besser zu verstehen, wurden die 

Ergebnisse anschließend mittels eines semantischen Netzwerk-Modells simuliert. 

Es zeigten sich keine Einflüsse der Anzahl der Assoziationen, aber eine schnelle 

Aktivierung semantischer Merkmale, die das EKP bereits ab 190 ms beeinflussten - nur 20 bis 

30 ms nach und zeitlich überlappend mit der Aktivierung orthographischer Repräsentationen, 

die durch N1-Lexikalitätseffekte angezeigt wurden. Im weiteren Verlauf ging eine hohe 

Merkmalsanzahl mit größeren N400-Amplituden einher. Zudem verstärkten semantische 

Merkmale Wiederholungseinflüsse auf die Akkuratheit lexikalischer Entscheidungen und 

N400-Amplituden, was einen ersten Hinweis auf Einflüsse von Bedeutungshaltigkeit auf 

implizites Wortlernen darstellt. Diese Ergebnisse stehen im Einklang mit merkmalsbasierten 

semantischen Netzwerk-Modellen. Simulationen legen nahe, dass semantische Aktivierung 

lexikalische Entscheidungen erleichtert, während Netzwerk-Fehler in engem Zusammenhang 

mit N400-Amplituden stehen. Da Netzwerk-Fehler psychologisch als implizite 

Vorhersagefehler interpretiert werden, deuten diese Ergebnisse darauf hin, dass N400-

Amplituden implizite Vorhersagefehler im semantischen System widerspiegeln könnten. 
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Synopsis 

1 Introduction 

Getting along in daily life depends heavily on vast amounts of knowledge about the 

objects around us – what we might find inside the white and rectangular object in the kitchen, 

and what we could do with the things we encounter; how the four-legged furry animal on the 

street might react when we tried to touch it, how that touch would feel, etc. Such knowledge 

is often referred to as semantic knowledge and is assumed to be represented in semantic 

memory. Representations in semantic memory endow sensory input with meaning, thereby 

enabling us to interact with the things surrounding us in a reasonable way and to make sense 

of spoken or written words.  

Interestingly, words differ widely in the amount of associated semantic information. 

For instance, the semantic representation associated with the word ‘car’ is multifaceted and 

rich (cars have doors, windows, wheels, engines; require gasoline; cause pollution; are used 

for transportation, as a status symbol, etc.), while the semantic representation linked to the 

word ‘cork’ is relatively sparse (corks are cylindric, small, used to close wine bottles). As 

language ultimately aims to convey meaning, the richness of semantic representations might 

be expected to have an important impact on word processing. Indeed, recent evidence 

suggests that semantic richness can facilitate performance in lexical and semantic tasks (see 

below for further discussion). However, much remains to be learned about semantic richness 

effects and their contribution to understanding the nature of semantic representations and the 

mechanisms underlying the activation of these representations during reading.  

With the aim of contributing to elucidate these issues, the present dissertation linked 

time-resolved measurements of electrical brain activity as provided by event-related brain 

potentials (ERPs) and connectionist modeling, two approaches which have both brought about 
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substantial progress in understanding semantic cognition (see below), but have very rarely 

been combined. Specifically, ERPs were employed to investigate the temporal evolvement of 

semantic richness effects during word reading (study 1) and influences of semantic richness 

on implicit word learning (study 2). Aiming at advancing a mechanistic understanding of the 

obtained results, specifically the modulations of the meaning-related N400 ERP component, 

both studies were subsequently simulated using a connectionist network model of semantic 

cognition (study 3). The next sections provide some relevant background on the investigation 

of semantic cognition, focusing on semantic network models (section 1.1), semantic richness 

effects (section 1.2), and meaning-related ERPs (section 1.3). The three studies are 

subsequently summarized in sections 2, and jointly discussed in section 3. 

 

1.1  Models of semantic cognition 

Researchers have long been interested in the representation and computation of 

meaning. Early views conceived of semantic memory as an amodal, modular store of factual 

information (Tulving, 1972); a predominant theory on how knowledge could be represented in 

this system assumed a large set of stored propositions (Collins & Quillian, 1969). Further 

developments within the general frame of an amodal, modular semantic system included the 

proposal of feature-based representations of category prototypes (Rosch & Mervis, 1975), 

which arose based on evidence for the gradedness of category membership (e.g. sperlings are 

much more typical birds than penguins), and the so-called theory-theory which held that the 

subtlety and sophistication of semantic judgments could only be explained by implicit causal 

theories structuring semantic knowledge (Gopnik & Wellmann, 1994).  

Mechanistic understanding of semantic processes has been considerably advanced by 

the explicit computational implementation of models of semantic cognition. Especially 

network models from the connectionist approach have been extremely successful in 



    Introduction 

5 
 

explaining a wide range of phenomena in semantic cognition (including those that had 

motivated complex theoretical assumptions such as the theory-theory, hierarchical 

representations, or stored prototypes) as arising from the domain-general learning principles 

of the connectionist framework (Cree, McNorgan, & McRae, 2006; Cree, McRae, & 

McNorgan, 1999; O'Connor, Cree, & McRae, 2009; Rogers & McClelland, 2008). In this 

frame, semantic cognition is suggested to arise from activation flowing among simple 

processing units according to the strength of the weights connecting the units. Semantic 

knowledge is assumed to be stored in these connection weights which are gradually adjusted 

by experience. In response to a perceptual input, such as a word or an object, the semantic 

system is assumed to make information available which is not directly present in the input. 

Thus, upon seeing a dog or a bird, a person with a fully developed semantic system can 

roughly anticipate how it would sound if the respective animal would make a sound or what 

would happen if a cat would come around the corner. Similarly, when reading sentences such 

as “I take my coffee with cream and …” the semantic system generates anticipations of 

plausible continuations. Semantic representations are assumed to be shaped by adjusting the 

connection weights supporting these anticipations based on prediction errors, i.e. the 

difference between the anticipations and actual outcomes, resulting in more accurate 

anticipations in the future. In this way, such implicit predictions (which may be weak and 

random in newborn babies) can gradually improve through experience.  

In connectionist models, such learning corresponds to the activation of a specific input 

pattern (representing perceptual input) upon which activation flowing according to connection 

weights produces a specific output pattern (representing implicit predictions) which is 

compared to a target pattern (representing actual outcomes). Connection weights are then 

adjusted based on the difference between model-generated output and target (representing 

implicit predictions and actual outcomes, respectively), by means of error-backpropagation. 
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Such implicit error-driven learning is assumed to occur incessantly and automatically during 

information processing, in order to gain an accurate internal representation of the environment 

and optimize processing. It should be noted that the assumption that prediction errors drive 

learning is not specific to the connectionist framework, but widely shared in cognitive science 

and neuroscience (e.g. McLaren, 1989; Schultz & Dickinson, 2000; Tobler, O'Doherty, 

Dolan, & Schultz, 2006), and has recently been compellingly advanced by predictive coding 

accounts of the neuro-cognitive system (den Ouden, Daunizeau, Roiser, Friston, & Stephan, 

2010; den Ouden, Friston, Daw, McIntosh, & Stephan, 2009; Friston, 2005, 2009). The 

possibility to understand semantic cognition in terms of such general mechanisms, with 

knowledge stored in connections shaped by experiences, challenges assumptions of a strict 

separation and modularity of semantic memory, instead suggesting a more interactive and 

integrated view of the semantic system as dynamically interwoven in experience. Such a 

perspective seems nicely in line with the proposal that semantic cognition is grounded in 

perception and action, with semantic features stored in perceptual and motor systems 

according to sensory-motor experiences during concept acquisition (Barsalou, 1999; Kiefer & 

Spitzer, 2001; Pulvermüller, 2005). 

A promising development within the connectionist modeling approach is to derive the 

semantic information to be learned by the models empirically, instead of based on intuition 

(Andrews, Vigliocco, & Vinson, 2009; Cree, et al., 2006; O'Connor, et al., 2009). Such an 

approach allows for a better approximation of human semantic representations, thereby 

improving model predictions, and additionally reduces degrees of freedom for the modeler. 

Thus, a number of models (including the one used in study 3) have implemented semantic 

representations based on the elaborate feature production norms by McRae et al. (2005) where 

more than 700 participants listed 2526 semantic features (e.g. mouse – “is small”, “has four 

legs” etc.) for 541 concrete words (Cree, et al., 2006; O'Connor, et al., 2009). Another recent 
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model implemented semantic representations based on a combination of these features with 

word co-occurrences in text corpora (Andrews, et al., 2009).  

Even though it seems beneficial to use empirical information (e.g. feature norms or co-

occurrence statistics) as a basis for implementing semantic representations, it is of course a 

crucial issue what kind of empirical information the implementation should be based on. 

Although many theories and models assume semantic features to play an important role in the 

representation of meaning (Collins & Loftus, 1975; Harm & Seidenberg, 2004; McRae, deSa, 

& Seidenberg, 1997; Plaut & Shallice, 1993; Rogers & McClelland, 2008), it is an ongoing 

debate whether the organization of semantic memory is based on semantic features or 

associations or both (Hutchison, 2003; Lucas, 2000; Yee, Overton, & Thompson-Schill, 

2009). Measures of the richness of semantic representations may help to elucidate this issue, 

as discussed in the next section.  

 

1.2  Semantic richness 

As noted above, words differ considerably in the amount of associated semantic 

information (e.g. ‘car’ vs. ‘cork’). Extensive norming efforts during recent years have 

provided a well-grounded empirical basis to systematically quantify this variance along 

various dimensions, and to explore the influences of these various measures, such as for 

example the number of features generated in the above-described feature production norms 

(McRae, et al., 2005), the number of associates, referring to the number of different first 

associations generated across participants in free-association tasks (Nelson, McEvoy, & 

Schreiber, 2004), the diversity of contexts in which a word appears (Adelman, Brown, & 

Quesada, 2006), or word co-occurrences in text corpora (Buchanan, Westbury, & Burgess, 

2001).  
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Recent evidence suggests facilitative influences of semantic richness in visual word 

processing (Adelman, et al., 2006; Buchanan, et al., 2001; Dunabeitia, Aviles, & Carreiras, 

2008; Pexman, Holyk, & Monfils, 2003; Pexman, Lupker, & Hino, 2002) and free recall 

(Hargreaves, Pexman, Johnson, & Zdrazilova, 2012), and semantic richness has been shown 

to induce decreased activation in various brain regions (Pexman, Hargreaves, Edwards, 

Henry, & Goodyear, 2007). However, many issues remain unresolved. First, different 

dimensions of semantic richness are often positively correlated and current work just starts to 

disentangle independent contributions of different measures (Pexman, Hargreaves, Siakaluk, 

Bodner, & Pope, 2008; Yap, Pexman, Wellsby, Hargreaves, & Huff, 2012; Yap, Tan, 

Pexman, & Hargreaves, 2011). Such disentanglement is important because independent 

influences of a specific measure of semantic richness suggest that the underlying dimension 

indeed plays a role in semantic processing. Thus, this kind of evidence helps to elucidate the 

structure of semantic representations and is therefore crucial to the above-discussed issue 

concerning what kind of empirical information should be used to best approximate the nature 

of semantic representations in implemented models. In this spirit, study 1 aimed to 

disentangle independent influences of the number of semantic features and associates during 

word reading.  

Second, evidence concerning the time course of semantic richness effects is scarce. 

Only a few previous studies have exploited the high temporal resolution provided by ERPs 

(see next section) to investigate semantic richness effects, and the obtained results are rather 

inconsistent (Amsel, 2011; Kounios et al., 2009; Müller, Dunabeitia, & Carreiras, 2010). 

However, such evidence is important to understand the mechanisms underlying influences of 

semantic richness and their interplay with other processes involved in visual word 

recognition. Thus, study 1 employed ERPs to further investigate the temporal dynamics of 

semantic richness effects.  
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Furthermore, while evidence concerning semantic richness effects on word recognition 

rapidly accumulates, little is known about whether and how the richness of semantic 

representations may influence language learning. Study 2 aimed at sheding some initial light 

on this question by investigating influences of the number of semantic features on implicit 

word learning as measured by repetition effects on lexical decision performance and the N400 

component of the ERP, which provides a well-established electrophysiological indicator of 

semantic processing, as described below. 

 

1.3  Electrophysiological indicators of semantic cognition  

Event-related brain potentials (ERPs) measure the electrical activity of the brain 

(primarily summed post-synaptic potentials of synchronously activated neurons in the 

neocortex) related to an event, for example a visual word. The continuous online signal 

provided by ERPs seems to be very well-suited to investigate semantic processing not only 

due to its high temporal resolution but also because semantic computations are often not 

trivially related to behavioral performance (Cree, et al., 2006). Many lexical or semantic tasks 

depend on very specific decision thresholds to be crossed (Grondin, Lupker, & McRae, 2009), 

which may prevent those aspects of semantic processing that are irrelevant to these decision 

thresholds from being reflected in behavioral performance. ERP measures thus seem ideally 

suited to inform conceptions of continuous internal processes such as those implemented in 

the above-discussed network models of semantic cognition. 

Recent studies have found semantic variables to modulate the ERP as early as within 

the first 200 ms of word processing (Dambacher, Rolfs, Gollner, Kliegl, & Jacobs, 2009; 

Hauk, Davis, Ford, Pulvermuller, & Marslen-Wilson, 2006; Hoenig, Sim, Bochev, 

Herrnberger, & Kiefer, 2008; Kiefer, Sim, Herrnberger, Grothe, & Hoenig, 2008; Penolazzi, 

Hauk, & Pulvermüller, 2007; Rabovsky, Sommer, & Abdel Rahman, 2012a; Skrandies, 
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1998). Nonetheless, the most well-established and widely used electrophysiological indicator 

of semantic cognition is the N400 component, a negative ERP component with a broad 

centro-parietal scalp distribution peaking at about 400 ms after the presentation of a 

potentially meaningful stimulus (Kutas & Federmeier, 2011; Kutas & Hillyard, 1980). The 

N400 has been consistently linked to semantic processing in a multitude of paradigms, with 

for example larger amplitudes for semantic violations (Kutas & Hillyard, 1980), low cloze 

probability sentence continuations (Kutas & Hillyard, 1984), and targets following a 

semantically unrelated as compared to a related prime, be it a word, a face, or a sound (Barrett 

& Rugg, 1989; Bentin, Mccarthy, & Wood, 1985; Van Petten & Rheinfelder, 1995). 

Important for present purposes, N400 amplitudes have also been shown to be modulated by 

repetition, with smaller amplitudes for repeated stimuli (Nagy & Rugg, 1989), and by the 

richness of semantic representations. However, the direction of the obtained semantic richness 

effects differed between experiments, with two studies reporting larger N400 amplitudes for 

words with richer semantic representations (Amsel, 2011; Müller, et al., 2010), while Kounios 

et al. (2009) observed a trend in the opposite direction. Clearly, further research seems 

desirable.  

In general, N400 data have yielded important insights into semantic processing, e.g. 

pointing at a more interactive (Kutas, 1993) and proactive (Federmeier & Kutas, 1999) 

semantic system than previously assumed, and blurring psycholinguistic distinctions between 

meaning at different levels (e.g. word meaning vs. world knowledge; Hagoort, Hald, 

Bastiaansen, & Petersson, 2004). However, despite the large body of data, there is currently 

no agreement on the specific computational mechanisms underlying the N400. The theoretical 

debate on the functional basis of the N400 mostly consists in verbally descriptive proposals 

such as semantic binding (Federmeier & Laszlo, 2009), semantic memory access (Kutas & 

Federmeier, 2000; Lau, Phillips, & Poeppel, 2008), semantic integration (Baggio & Hagoort, 
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2011), or semantic inhibition (Debruille, 2007), which are difficult to unequivocally identify 

with specific measures in mechanistic theoretical frameworks such as the above-described 

models of semantic cognition. Unfortunately, even though the continuity of the ERP signal 

seems to relate very nicely to the continuous internal processes simulated in network models 

of semantic cognition, there has been very little contact between ERPs and computational 

modeling in research on semantic processing (see Laszlo & Plaut, 2012, for a very recent 

exception).  

 

1.4  Aims and outline of the present work 

The present work aims at narrowing this gap, combining ERPs and connectionist 

modeling to further elucidate semantic richness effects in visual word processing. The 

dissertation is composed of three studies, two ERP studies which were subsequently simulated 

in a modeling study. Stimuli for the ERP studies were selected from the feature production 

norms by McRae et al. (2005) which were also the basis for semantic representations in the 

network model, enabling direct item-specific simulation. The ERP studies investigated the 

time course of independent influences of the number of semantic features and associates 

during word reading (study 1; section 2.1) and influences of feature-based semantic richness 

on implicit word learning (study 2; section 2.2). The modeling study primarily addressed the 

functional basis of the observed N400 amplitude modulations, but also examined the 

mechanisms underlying influences of semantic richness on lexical decision performance 

(study 3; section 2.3).
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2 Summary of the present studies 

2.1  The time course of semantic richness effects during word reading (study 1) 

An important step towards understanding the mechanisms underlying the extraction of 

meaning from print is to investigate which of the various measures proposed to quantify 

semantic richness influence word processing, and at what point in time these influences take 

place (absolutely as well as in relation to other lexical variables). In study 1, we thus 

contrasted two important measures of the richness of semantic representations, the number of 

semantic features (McRae, et al., 2005) and associates (Nelson, et al., 2004), as described in 

the introduction. 160 word stimuli were selected so that the number of semantic features and 

associates were orthogonally manipulated in the stimulus set. ERPs were recorded while these 

words were presented along with an equal number of pseudowords, and participants 

performed lexical decisions. We did not find any influence of the number of associates. In 

contrast, the number of semantic features modulated ERP amplitudes starting at about 190 ms 

already. Aiming to specify the temporal relationship between word form and meaning 

processing, we additionally compared the onset of semantic richness effects with the onset of 

lexicality effects: as pseudowords do not match any pre-existing visual word form 

representation, ERP differences between words and pseudowords may already arise at the 

level of orthographic processing, preceding possible effects at the semantic level. Lexicality 

effects began at about 164 ms in the left-lateralized N1 component, suggested to reflect visual 

word form processing (McCandliss, Cohen, & Dehaene, 2003), and continued while semantic 

feature effects set in. Thus, influences of semantic features started a mere 20 to 30 ms after, 

and temporally overlapping with, form-related processes during reading. Later on, in the 

N400 segment, the number of semantic features enhanced negative amplitudes at centro-

parietal sites. This N400 effect is at variance with results of Kounios et al. (2009) who found a 

trend for larger N400 amplitudes for words with few semantic features, so that further 
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research seems desirable. On the other hand, the present finding is in line with more 

negativity for words with many features in the N400 segment as reported by Amsel (2011), as 

well as the finding that concrete words (often assumed to be associated with richer semantic 

representations) induce larger N400 amplitudes than abstract words (Holcomb, Kounios, 

Anderson, & West, 1999; Kounios, et al., 2009; Kounios & Holcomb, 1994; West & 

Holcomb, 2000), and that newly learned objects and their written names elicit larger N400 

amplitudes when they are associated with in-depth as compared to minimal semantic 

information (Abdel Rahman & Sommer, 2008; Rabovsky, et al., 2012a). The finding of 

feature effects arising already at about 190 ms is in line with previous evidence for fast access 

to semantics in reading (Dambacher, et al., 2009; Hauk, et al., 2006; Kiefer, et al., 2008; 

Penolazzi, et al., 2007; Rabovsky, et al., 2012a; Skrandies, 1998), and quite clearly converges 

with earlier suggestions that N400 effects occur too late to reflect the first phase of lexical 

semantic access (e.g. Dambacher, et al., 2009; Hauk, et al., 2006), stimulating the question of  

the functional basis of the observed N400 modulation. This issue was left unresolved in study 

1 (please see Rabovsky, Sommer, & Abdel Rahman, 2012c, p. 8), but will receive further 

consideration in study 3 and the discussion section. Summing up, initial access to semantic 

features is fast, taking place within the first 200 ms, and feature-based semantic richness 

continues to modulate processing later on during reading. In contrast, we did not observe any 

influence of the number of associates. 

 

2.2  Influences of semantic richness on implicit word learning (study 2) 

While by now quite a few studies suggest that semantic richness facilitates visual word 

recognition (Grondin, et al., 2009; Pexman, et al., 2003; Pexman, et al., 2002), and a very 

recent study showed that semantic richness enhances free recall (Hargreaves, et al., 2012), as 

yet little is known about whether and how the richness of semantic representations may 
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influence implicit learning and adaptation processes. Study 2 explored this issue by 

investigating influences of the amount of associated semantic features on implicit word 

learning.  

Implicit learning occurs incidentally during information processing, and it is often 

assumed that prediction errors play an important role in this process. As described in the 

introduction, it has been suggested that the brain incessantly and automatically anticipates 

upcoming events based on an experience-derived internal model of the environment. 

Deviations between anticipated and factual events are assumed to drive adaptations of internal 

representations to reduce future prediction errors and optimize processing (Friston, 2009; 

McClelland, 1994; McLaren, 1989; Schultz & Dickinson, 2000). A well-established measure 

of implicit learning is repetition priming, that is, the processing facilitation caused by the 

repeated encounter with a given stimulus. From the perspective of connectionism or 

predictive coding (Friston, 2005; McClelland, 1994; O'Reilly, Munakata, Frank, Hazy, & 

Contributors, 2012), such priming effects can be viewed as consequences of the continuous 

adaptation of the system aiming to reduce future prediction errors.  

Thus, influences of the amount of associated semantic features on implicit word 

learning were investigated with a repetition priming design. Participants performed lexical 

decisions on 160 visual words differing in the amount of associated semantic features 

according to McRae et al. (2005), and 160 pseudowords. The complete stimulus set was 

presented twice; the lag between subsequent presentations of the same item varied randomly 

between 160 and 480 intermediate words. It is important to note that priming effects at such 

lags are assumed to be due to connection adaptations instead of residual activation (Becker, 

Moscovitch, Behrmann, & Joordens, 1997); semantic priming effects depending on residual 

activation typically disappear when prime and target are separated by several intervening 

items (e.g. Bentin & Feldman, 1990). Implicit learning was assessed by repetition priming 
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effects on performance as well as N400 amplitudes which are typically reduced by repetition 

(Nagy & Rugg, 1989).  

We found enhanced repetition priming for words with many as compared to few 

semantic features in both lexical decision accuracy and the N400 component. Thus, the 

richness of semantic representations advances repetition-induced changes in word processing 

considered to reflect implicit learning. These results seemed in line with feature-based 

connectionist network models that rely on a learning rule which is sensitive to semantic 

features, yielding substantial positive correlations between the number of features and the 

computed error driving connection adaptations (Cree, et al., 2006; Cree, et al., 1999; 

O'Connor, et al., 2009). Study 3 examined this correspondence more directly by simulating 

the obtained results with such a model, as further discussed in the general discussion section.  

In sum, the results from study 2 suggest a novel and important impact of feature-based 

semantic richness on implicit learning and plasticity within the lexical conceptual system that 

should be taken into account when aiming to describe and understand reading development 

(Seidenberg & McClelland, 1989). 

 

2.3  Linking N400 modulations to a model of semantic cognition (study 3) 

An issue that was left unresolved in both studies 1 and 2 is the functional basis of the 

observed N400 modulations. Interestingly, an early comment by McClelland (1994; p. 61) 

suggested a relation between the N400 component and implicit prediction errors: “I do mean, 

though, that his or her cognitive system is in fact anticipating the future, and that a reaction 

can occur if these expectations are violated […]. They [such reactions] also, at least in 

language processing, generate large and robust evoked potentials, such as the N400 by Kutas 

& Hillyard (1980).” Indeed, it is interesting to note that N400 amplitudes seem to crucially 

depend on the fit between the information which is implicitly anticipated based on statistical 
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regularities across levels of representations as represented in semantic memory (semantic 

context, relations between words, frequency of occurrence of single words…) and the actually 

observed information. As described in the introduction (section 1.1.1), implicit prediction 

error is implemented as network error (i.e. the difference between model-generated and 

correct output) in connectionist models, so that the proposal that N400 amplitudes reflect 

implicit prediction errors can be directly tested with a connectionist model of meaning. 

However, this early suggestion has not been further examined, and the recently published first 

implemented model of ERPs during reading did not consider different measures in the model, 

but instead directly started with the assumption that the N400 corresponds to the amount of 

semantic activation (Laszlo & Plaut, 2012).  

Here, we tested the hypothesis that N400 amplitudes may reflect implicit prediction 

errors in the semantic system, represented by error values in a network model of meaning 

(McClelland, 1994). The model we used has successfully simulated a number of behavioral 

results in the semantic memory literature (Cree, et al., 2006; Mirman & Magnuson, 2008; 

O'Connor, et al., 2009), with 30 input units representing word form that map onto 2526 

directly interconnected semantic feature units representing word meaning according to 

semantic feature production norms (McRae et al., 2005). To simulate the processing of word 

meaning, the corresponding word form was presented at the input layer and activation 

propagated to the semantic layer for 20 ticks (representing model time).  The activation 

pattern produced at the semantic layer was interpreted as the activated word meaning. We 

were specifically interested in two measures: First, semantic network error, i.e. the difference 

between model-generated and correct activation across all semantic feature units, and second, 

the amount of activation across all semantic units which Laszlo & Plaut (2012) proposed to 

underlie N400 amplitudes. We simulated six N400 effects obtained in empirical research, 

including the results from studies 1 and 2 (Rabovsky, Sommer, & Abdel Rahman, 2012b; 
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Rabovsky, et al., 2012c), to examine the correspondence between N400 amplitude 

modulations and variations in both, semantic network error and semantic activation. 

In line with our hypothesis, network error values were consistently in the same 

direction as N400 amplitudes. Like N400 amplitudes, error values were reduced for 

semantically related target words (simulation 1), while being enhanced for words with richer 

semantic representations (simulation 2; please also see study 1), and for low frequency words 

(simulation 3). Furthermore, error values decreased with repetition (simulation 4), and this 

repetition-induced decrease was stronger for words with richer semantic representations 

(simulation 5; please also see study 2), and for low frequency words (simulation 6). In 

contrast, contrary to the proposal by Laszlo & Plaut (2012), there was less correspondence 

between semantic activation and the N400. Like N400 amplitudes, activation was larger for 

words with richer semantic representations (simulation 2; see study 1). However, activation 

also increased with frequency, semantic priming, and repetition (simulations 1, 3, 4), and 

showed stronger repetition-induced increases for words with richer semantic representations 

(simulation 5; see study 2) and low frequency words (simulation 6) which is all opposite to 

well-established N400 results (Kutas & Federmeier, 2011). Instead, the simulations seem 

better in line with the notion that semantic activation can improve lexical decision 

peformance, presumably by facilitating the crossing of decision thresholds when deciding that 

a stimulus is a word and not a pseudowords because words have meaning while pseudowords 

do not (Grondin, et al., 2009).  

In sum, the results suggest a close relation between N400 amplitudes and semantic 

network error. Based on conceptualizing error values in connectionist models as implicit 

prediction error (McClelland, 1994; O'Reilly, et al., 2012; Rogers & McClelland, 2008), these 

results are taken to suggest that N400 amplitudes reflect implicit prediction error in the 

semantic system (McClelland, 1994). 
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3  General discussion and future directions 

The present dissertation combined electrophysiology and connectionist modeling to 

explore influences of two measures of semantic richness in word reading and word learning, 

and to better understand the functional basis of the meaning-related N400 ERP component. 

Results showed no influences of the number of associates. In contrast, influences of feature-

based semantic richness started at about 190 ms already, only about 20 to 30 ms after the 

activation of orthographic representations as indicated by N1 lexicality effects. Later on, 

words with many semantic features induced larger N400 amplitudes. Furthermore, the number 

of semantic features enhanced implicit word learning as assessed by repetition priming effects 

on lexical decision accuracy and N400 amplitudes. These results are in line with connectionist 

network models with feature-based representations of word meaning. Relating the observed 

results to such a model suggested the possibility that N400 amplitudes may reflect implicit 

prediction error in semantic memory while semantic activation may facilitate performance. I 

will first outline this proposal (section 3.1) to then examine how this perspective contributes 

to understanding semantic richness effects during reading (section 3.2) and influences of 

semantic richness on implicit word learning, while also suggesting a relation between the 

N400 component and implicit learning more generally (section 3.3). Open questions and 

suggestions for further research are discussed along the way. 

 

3.1  The N400 as implicit prediction error in the semantic system 

Simulations of the N400 effects obtained in study 1 and 2, as well as a number of well-

established N400 effects (Kutas & Federmeier, 2011), consistently revealed a close 

correspondence between network error and N400 amplitudes while such a relation was not 

obtained for semantic activation values which seemed better in line with the notion that 

semantic activation can facilitate lexical decisions (Grondin, et al., 2009). These results do not 
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fit with the recently proposed first model of ERPs during reading, which assumes a relation 

between the N400 and semantic activation (Laszlo & Plaut, 2012). Instead, the results are 

consistent with an early remark by McClelland (1994), who related N400 amplitudes to 

implicit prediction errors which are represented by error values in connectionist models 

(O'Reilly, et al., 2012; Rogers & McClelland, 2008). 

In line with such an account in terms of implicit prediction error, N400 amplitudes 

seem to crucially depend on the similarity between actual observations and implicit 

anticipations based on represented occurrence probabilities as extracted from previously 

experienced regularities across levels of representation. From this perspective, N400 

amplitudes are larger for semantic violations, low cloze probability sentence continuations or 

semantically unrelated targets, because words occur less frequently in the respective contexts 

and are therefore less expected, resulting in enhanced implicit prediction error. The 

represented occurrence probabilities for low frequency words are presumably generally rather 

low, resulting in enhanced implicit prediction error and thus enhanced N400 amplitudes for 

these words. Recent exposure to a word supposedly enhances its represented occurrence 

probability, giving rise to repetition-induced reductions of implicit prediction error and hence 

N400 amplitudes. In the following, I consider more specifically how this account explains and 

integrates the results obtained in the present ERP studies. 

 

3.2  Semantic richness effects during reading from a network model perspective 

Results from study 1 showed enhanced N400 amplitudes for words with many 

features. In line with this finding, simulation 2 in study 3 showed enhanced network error for 

these words. Conceptualizing network error as implicit prediction error (McClelland, 1994; 

O'Reilly, et al., 2012), this suggests higher implicit prediction error for words with many 

semantic features. While it seems pretty intuitive that implicit prediction error is higher for 
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low frequency words, and for words that were not repeated or semantically primed, increased 

implicit prediction error for words with richer semantic representations may not seem very 

plausible at first sight. However, this relation might be explained by assuming that for every 

semantic feature, it is on average more probable that it is not involved in the currently relevant 

concept than that it is involved. This is definitely true for the features in the norms by McRae 

et al. (2005), and hence in the model, where on average each of the 2526 features occurs in 

only 2.87 out of the 541 concepts, so that the average probability for a feature to be involved 

in the representation of the current concept is below 1%. Thus, being involved is improbable, 

and even though the norms obviously do not cover the entire space of concepts and features, it 

seems reasonable to assume that this pattern generalizes beyond this reduced semantic space. 

Thus, every semantic feature may signal implicit prediction error when it is (unexpectedly) 

involved in the current concept, resulting in higher cumulative implicit prediction error and 

hence larger N400 amplitudes for words with more semantic features.  

An important goal of study 1 was to pinpoint the moment when semantic richness 

effects first arise during reading. Interestingly, results showed that the influence of the number 

of features arose at 190 ms already, only about 20 to 30 ms after and temporally overlapping 

with influences of lexicality setting in during the left-lateralized N1 component which 

presumably reflects orthographic processing (McCandliss, et al., 2003). This fits well with 

fast access to semantics in reading (Dambacher, et al., 2009; Hauk, et al., 2006; Hoenig, et al., 

2008; Kiefer, et al., 2008; Penolazzi, et al., 2007; Rabovsky, et al., 2012a; Skrandies, 1998) as 

well as partial information transmission and temporal overlap between sub-processes in 

reading, as implemented in connectionist models (Harm & Seidenberg, 2004). The 

mechanisms underlying this early feature effect are presently unclear – it might reflect an 

early start of the N400 effect, a possibility suggested by the similarity of the scalp 

distributions (please see Rabovsky, et al., 2012c), or alternatively a different preceding 
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process, possibly at an interactive interface between visual word form processing and 

semantics. It would be intriguing to see whether this issue could be clarified by means of 

simulations. This seems difficult to accomplish with the model used herein, because the focus 

of the present simulations was on the N400 component which is related to semantic processes 

independent of perceptual modality and domain (Kutas & Federmeier, 2011). Thus, while 

quite an effort was made to approximate human semantic processing by implementing 

semantic representations based on empirical semantic feature production norms (McRae, et 

al., 2005), the input to semantics was highly oversimplified. However, a model with more 

elaborate visual input representations (features, letters, word forms…) to semantics that 

attempts to more fully capture the processes and interactions involved in visual word 

recognition might contribute to a clarification. Furthermore, in addition to the early and later 

feature effect, a more complete model may also allow for simulating the N1 lexicality effect, 

possibly as activation (or network error) in a visual word form layer. Establishing relations 

between ERP effects and such simulations would presumably also be informative for models 

of reading more generally (Harm & Seidenberg, 2004; Seidenberg & McClelland, 1989) 

which are often not specified in terms of timing. 

The finding of ERP effects of the number of features but not the number of associates 

fits in with a recent behavioral study by Yap et al. (2011) reporting independent influences of 

the number of features but not associates when a number of lexical and semantic variables 

were controlled for. These results are in line with the present model as well as other models 

assuming feature-based representations of word meaning. In this context, it may be important 

to clarify that most feature-based models do not actually assume semantic representations to 

consist in lists of verbalizable features (Harm & Seidenberg, 2004; McRae, et al., 1997; Plaut 

& Shallice, 1993; Rogers & McClelland, 2008). Rather, as pointed out by McRae et al. 

(2005), semantic feature listings, as collected in feature production norms, are assumed to 
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represent a temporary online abstraction of semantic representations, while the representations 

per se are assumed to be grounded in perceptual and motor systems according to repeated 

sensory experiences and interactions with the respective objects during concept acquisition, in 

line with proposals suggesting embodied semantic representations (Barsalou, 1999; Kiefer & 

Spitzer, 2001; Pulvermüller, 2005). Thus, verbalizable semantic features provide a helpful 

approximation to semantic representations, and the present data are in line with the notion that 

this approximation captures relevant aspects of meaning representation. However, before 

drawing general conclusions, one should consider that the present studies as well as the study 

by Yap et al. (2011) only used concrete words. It has been proposed that concrete and abstract 

words differ in their semantic representations, with concrete words relying more on semantic 

features and abstract words relying more on associations (Crutch & Warrington, 2005; 

Dunabeitia, Aviles, Afonso, Scheepers, & Carreiras, 2009). Accordingly, relevant semantic 

richness dimensions might not generalize across types of words. Indeed, a very recent study 

by Recchia and Jones (2012) found the number of semantic features to predict performance 

for concrete but not abstract words, while the number of semantic neighbors (words that occur 

in similar lexical contexts) facilitated performance for abstract words only. It would be 

interesting to test whether the pattern we found for the number of features and associates in 

concrete word processing might reverse similarly when using abstract words.  

According to the proposal outlined above (section 3.1), enhanced activation for words 

with many features in the simulation of semantic richness effects during reading (study 3, 

simulation 2) predicts facilitated performance for these words, in line with previous evidence 

(Pexman, et al., 2008; Pexman, et al., 2002; Yap, et al., 2011). It seems interesting to note that 

this often observed semantic richness benefit in behavioral performance at some point seemed 

to be naturally explained by the enhancement of repetition effects for words with many 

semantic features obtained in study 2: “If the amount of semantic features associated with a 
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given word enhances learning during every single encounter, repeated presentations should 

naturally entail the observed benefit” (Rabovsky, et al., 2012b, p. 1081). However, the 

simulations shed new light on this issue, suggesting that while the semantic richness benefit is 

indeed strengthened through enhanced repetition priming for words with many features 

(simulation 5; please also see the next section), it primarily relies on higher semantic 

activation for words with richer representations (please see simulation 2) which can facilitate 

crossing decision thresholds when discriminating between words and pseudowords (Grondin, 

et al., 2009).  

In study 1, however, this often observed benefit was not obtained. The lack of the 

behavioral effect was most probably due to the orthographically rather untypical 

pseudowords, which had significantly lower bigram and trigram frequencies as compared to 

the words, so that semantic processes presumably contributed little to lexical decision 

performance, because decisions could instead be based on lower orthographic levels of 

representation. This explanation receives support from the fact that regression analyses of 

response times to the same stimuli as retrieved from the English Lexicon Project (ELP; Balota 

et al., 2007) showed the expected facilitative influence of the number of features but not 

associates (please see Rabovsky, et al., 2012c, p. 7). This crucial effect of decision threshold 

and how it can be influenced by all sorts of context variables independent of the manipulation 

of interest highlights the usefulness of ERPs in investigating internal processes beyond the 

presently task-relevant aspects, and serving to inform models of semantic cognition. 

 

3.3  Semantic richness and implicit learning from a network model perspective 

In study 2, feature-based semantic richness was found to enhance implicit word 

learning as reflected in repetition-induced N400 amplitude reductions and increases in lexical 

decision accuracy. In line with these results, repetition resulted in enhanced reductions of 
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network error and enhanced increases of semantic activation for words with many as 

compared to few semantic features in study 3 (simulation 5). When taken together with the 

finding of larger N400 amplitudes (and enhanced network error) for words with many features 

during single word presentation (study 1; study 3, simulation 2 ), and the model-based 

interpretation of the N400 as implicit semantic prediction error (study 3), this enhanced 

repetition effect (presumably reflecting enhanced connection adaptation) can be naturally 

explained by the widely shared assumption that learning is based on prediction error (den 

Ouden, et al., 2009; Friston, 2005, 2009; McClelland, 1994; McLaren, 1989; Rogers & 

McClelland, 2008; Schultz & Dickinson, 2000; Tobler, et al., 2006). A similar pattern as 

apparent in the joint consideration of studies 1 and 2, namely that the condition with enhanced 

N400 amplitudes during single word presentation shows enhanced repetition effects in 

performance and ERPs, can also be found for low frequency words (Rugg, 1990; please see 

simulations 3 and 6). It seems interesting to note that this relation between N400 amplitudes 

during initial presentation and repetition effects does not depend on performance during 

single word processing: While performance is generally better for words with richer semantic 

representations, the opposite is true for low frequency words.  

More generally, if the N400 reflects implicit prediction error, and implicit prediction 

error drives connection adaptation, as often assumed (e.g. McClelland, 1994; McLaren, 1989; 

Rogers & McClelland, 2008; Schultz & Dickinson, 2000; Tobler, et al., 2006), then enhanced 

N400 amplitudes should entail enhanced connection adaptation, i.e. enhanced implicit 

memory formation, as for example reflected in stronger repetition effects. There are indeed 

some pieces of evidence supporting this suggestion, most notably a study by Schott, 

Richardson-Klavehn, Heinze, & Düzel (2002) reporting larger N400 amplitudes during a 

learning phase to predict implicit memory (as assessed by repetition priming effects on stem 

completion in the absence of explicit memory) during test. However, further research on the 
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relation between N400 amplitudes and implicit memory formation seems highly desirable. In 

this context, it seems important to note that the intrinsic theoretical relation between 

prediction error and connection adaptation makes it presently difficult to unequivocally decide 

whether N400 amplitudes reflect implicit prediction error or whether they might rather reflect 

the connection adaptations driven by implicit prediction error. Further research is needed to 

clearly disentangle these possibilities, possibly by analyzing N400 data in the frame of the 

neurobiologically detailed predictive coding model suggested by Friston and colleagues 

(Friston, 2005, 2009; Garrido, Kilner, Stephan, & Friston, 2009). 

Finally, the reported driving influence of semantic richness on language learning 

seems to suggest some intriguing implications to be addressed, for instance, concerning 

reading difficulties and second language acquisition. Furthermore, it remains to be explored in 

how far the reported driving influence of semantic richness on implicit visual word learning 

generalizes to other perceptual modalities (e.g. visual vs. auditory) and domains (e.g. 

language vs. object recognition). The present model-based account would suggest a 

generalization, because the driving mechanism is functionally localized in the semantic layer, 

independent of the somewhat arbitrary input. However, further research is required to 

examine this suggestion.  

 

3.4  Conclusions 

In sum, the present work combined ERPs and a connectionist network model to 

explore independent influences of the number of semantic features and associates during word 

reading and word learning, and to better understand the computational mechanisms 

underlying the N400 ERP component. The results support feature-based network models of 

semantic cognition, with fast initial access to semantic features during reading, arising within 

the first 200 ms and resuming during the N400 segment, as well as a driving influence of 
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feature-based semantic richness on implicit word learning. Simulations using a network 

model with empirically derived semantic features suggest that semantic activation can 

facilitate lexical decisions, while network error closely corresponds to N400 amplitudes. 

Based on conceptualizing network error as implicit prediction error (McClelland, 1994; 

O'Reilly, et al., 2012), these results are taken to suggest that N400 amplitudes may reflect 

implicit prediction error in semantic memory
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