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Summary 

Hantaviruses are worldwide distributed pathogens which are mainly carried by rodents. When 

transmitted to humans, they can cause two significant diseases: hemorrhagic fever with renal 

syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS). Depending on the virus 

strain, the case fatality rates of hantavirus diseases are ranging from 0.1% up to 50%. 

In Europe Dobrava-Belgrade virus (DOBV) is the most life-threatening hantavirus leading to 

HFRS with case fatality rates of up to 12%. According to its natural hosts, mice of the genus 

Apodemus, DOBV forms distinct phylogenetic lineages. DOBV-Af associated with A. 

flavicollis (Af) causes severe HFRS cases in the Balkan region. DOBV-Aa, found in A. 

agrarius (Aa), is typical for Central Europe and Central European Russia where it causes 

mild/moderate disease. Moderate to severe HFRS cases in South European Russia have been 

associated with virus strains of the DOBV-Ap lineage, transmitted by A. ponticus (Ap). 

In Germany, DOBV is endemic in the northern part of the country. Seroepidemiological 

studies involving fine serotyping by neutralization assay as well as phylogenetic analyses of 

patient-associated virus sequences showed that strains of DOBV-Aa lineage are responsible 

for HFRS cases in this geographical region. However, the causative agent of human disease 

from Germany was not isolated in cell culture. 

Within the current study, we have generated the first cell culture isolate of DOBV from 

Germany, called Greifswald virus (GRW/Aa), and determined its complete genomic 

nucleotide sequence. Phylogenetic analyses revealed close clustering of GRW/Aa with 

sequences derived from Northern German HFRS patients. Consequently, GRW/Aa can be 

taken as a representative of DOBV strains causing HFRS in Germany. We have demonstrated 

that in cultivated host cells GRW/Aa exhibits properties similar to pathogenic Hantaan virus; 

it recognizes β3 integrins and Decay Accelerating Factor (DAF) as cellular entry receptors 

and induces late expression of innate immunity markers (IFN-β, IFN-λ1, MxA). 

Despite hantaviruses being well recognized human pathogens in almost all continents, the 

first African hantavirus named Sangassou virus (SANGV) has been only very recently 

isolated in our group. Important to note that SANGV is most closely related to DOBV in 

molecular phylogenetic analyses. Therefore, it was interesting to investigate if SANGV, a 

potential human pathogen, displays properties similar to GRW/Aa. Given that an animal 

model for studying hantavirus-mediated pathogenesis is not available, we used cellular 

receptor recognition and induction of innate immunity markers as in vitro determinants to  

 

 



 3

estimate the pathogenic potential of SANGV in comparison to GRW/Aa. We have found that 

SANGV exclusively recognizes β1 integrins as cellular entry receptors and elicits strong 

induction of IFN-λ1 in infected cells. Therefore, in cultivated host cells SANGV exhibits 

functional characteristics distinct from GRW/Aa. Whether these properties contribute to 

SANGV-mediated pathogenesis in humans needs to be elucidated in future studies. 

 

 

 

Keywords: Dobrava-Belgrade virus (DOBV); Sangassou virus (SANGV), cellular receptor; 

innate immunity. 
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Zusammenfassung 

 

Hantaviren, deren Hauptreservoir Nager bilden, sind weltweit verbreitete Pathogene. Nach 

Übertragung auf den Menschen prägen sie vorwiegend zwei Krankheitsbilder: Das 

hämorrhagische Fieber mit renalem Syndrom (HFRS) oder das Hantavirus-assoziierte 

cardiopulmonale Syndrom (HCPS). Je nach Virusstamm variiert die Mortalitätsrate zwischen 

0,1% und 50%. 

Das Dobrava-Belgrad-Virus (DOBV), welches zum HFRS führt, weist eine Mortalitätsrate 

von bis zu 12% auf und ist somit das lebensbedrohlichste Hantavirus in Europa. Wie ihre 

natürlichen Wirte, die Mäuse aus dem Genus Apodemus, bilden auch die DOBV 

unterschiedliche phylogenetische Linien. Das aus A. flavicolis (Af) isolierte DOBV-Af ist im 

Balkan verbreitet und führt zu schweren Verläufen des HFRS. Das in A. agrarius (Aa) 

gefundene DOBV-Aa verursacht schwache bis milde HFRS-Erkrankungen in Mitteleuropa 

und dem zentraleuropäsichen Teil Russlands. Moderate bis schwere HFRS-Verläufe im 

südeuropäischen Teil Russlands wurden mit Viren der DOBV-Ap-Linie in Verbindung 

gebracht, welche von A. ponticus (Ap) übertragen werden. 

In Deutschland ist DOBV endemisch im nördlichen Teil des Landes. Epidemiologische 

Studien, basierend auf der serologischen Feintypisierung mittels Neutralisationstests und 

phylogenetischen Analysen Patienten-assoziierter Virussequenzen, zeigen, dass Viren der 

DOBV-Aa-Linie für die HFRS-Fälle in dieser Region verantwortlich sind. Bislang konnte das 

für die humane Erkrankung in Deutschland verantwortliche Virus noch nicht in Zellkultur 

isoliert werden. 

In der vorliegenden Arbeit wurde das erste Zellkulturisolat eines aus Deutschland 

stammenden DOBV gewonnen, dessen vollständige Genomsequenz bestimmt und als 

Greifswald-Virus (GRW/Aa) bezeichnet wurde. In phylogenetischen Analysen bildete 

GRW/Aa eine gemeinsame Gruppe mit viralen Sequenzen, die aus norddeutschen HFRS-

Patienten gewonnen wurden. Folglich kann GRW/Aa als das für HFRS in Deutschland 

verantwortliche DOBV angesehen werden. Anhand von Wirtszellkulturen konnten wir 

zeigen, dass GRW/Aa ähnliche Charakteristika aufweist, wie das pathogene Hantaan-Virus; 

es nutzt β3-Integrine und den decay accelerating factor (DAF) als zelluläre Rezeptoren und 

induziert die späte Expression von Markern der angeborenen Immunantwort (z. B. IFN-β, 

IFN-λ1, MxA). 
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Obwohl Hantaviren auf nahezu allen Kontinenten als Humanpathogene bekannt sind, wurde 

das erste afrikanische Hantavirus (Sangassou-Virus, SANGV) erst kürzlich in unserer 

Arbeitsgruppe isoliert. Aufgrund der engen phylogenetischen Verwandtschaft zwischen 

SANGV und GRW/Aa haben wir untersucht, ob das potentiell humanpathogene SANGV 

ähnliche Eigenschaften wie GRW/Aa aufweist. Aufgrund der Tatsache, dass bislang noch 

kein Tiermodell für die Untersuchung der Hantaviruspathogenese existiert, haben wir die 

Rezeptorerkennung und Induktion der Marker der angeborenen Immunantwort zur 

Abschätzung des humanpathogenen Potentials von SANGV, im Vergleich zu GRW/Aa, 

verwendet. Wir zeigten, dass SANGV ausschließlich β1-Integrine als Rezeptor nutzt und eine 

starke IFN-λ1-Antwort in der infizierten Zelle induziert. In der Zellkultur zeigt SANGV somit 

andere funktionelle Charakteristika als GRW/Aa. Ob diese in Zusammenhang mit einer durch 

SANGV vermittelten Pathogenese stehen, muss in zukünftigen Studien untersucht werden. 

 

 

 

Schlagwörter: Dobrava-Belgrad-Virus (DOBV); Sangassou virus (SANGV), zellulärer 

Rezeptor, angeborene Immunantwort. 
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Abbreviations 

aa amino acid(s) G1 glycoprotein 1 

Aa Apodemus agrarius G2 glycoprotein 2 

Af Apodemus flavicollis HFRS Hemorrhagic Fever with 

Renal Syndrome 

Ap Apodemus ponticus HCPS Hantavirus 

Cardiopulmonary Syndrome 

APS ammonium persulfate h hour(s) 

BSA bovine serum albumin HTNV Hantaan virus 

BSL biosafety level ICTV International Committee on 

Taxonomy of Viruses 

bp base pair(s) HRP horseradish peroxidase 

cDNA complementary DNA IFN interferon 

CAR coxsackie and adenovirus 

receptor 

IRF IFN regulatory factor 

DAF Decay Accelerating Factor Ig immunoglobulin 

DNA deoxyribonucleic acid ISG interferon stimulated gene 

DOBV Dobrava-Belgrade virus JAK janus protein tyrosine kinase

DMEM Dulbecco’s modified Eagle 

medium 

L-segment large genome segment 

d day(s) min minutes 

ds double stranded MOI multiplicity of infection 

eIF2a eukaryotic translation 

initiation factor 2a 

M-segment medium genome segment 

ELISA             enzyme-linked 

immunosorbent assay 

mRNA messenger RNA 

FCS fetal calf serum ML maximum likelihood 

FFU focus forming units MEM minimum essential medium 

FITC fluorescein isothiocyanate N nucleocapsid 

GRW/Aa Greifswald virus NC negative control 

nt nucleotide(s) NCR non-coding region 

NS non-structural UV ultraviolet 

OD optical density ucf ultracentrifuged 
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ORF open reading frame vRNA   viral RNA 

PC positive control VEGF   vascular endothelial growth 

factor 

PCR polymerase chain reaction VEGFR2 VEGF cellular receptor 2 

PBS phosphate buffered saline WB Western blot 

PSI plexin–semaphorin–integrin wt wild type 

PKR protein kinase R   

PHV Prospect Hill virus   

pi post infection   

qPCR quantative real-time PCR   

RdRp RNA dependent RNA 

polymerase 

  

RGD arginine-glycine-aspartic 

acid 

  

RT-PCR reverse transcription PCR   

RNA ribonucleic acid   

SANGV Sangassou virus   

SD standard deviation   

SDS sodium dodecyl sulphate   

S-segment small genomic segment   

STAT    signal transducer of 

activation and transcription 

  

SK Slovakia   

Slo Slovenia   

TEMED Tetramethylethylenediamine   

TNF tumor necrosis factor   

U unit(s)   
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1 Introduction  

1.1 Historical overview 

The history of the hantavirus research starts in 1976 when Ho-Wang Lee and co-workers 

isolated the first hantavirus from striped field mouse (Apodemus agrarius). It was named 

Hantaan virus (HTNV) according to the Hantaan River which flows through the endemic 

region of Korea [1]. HTNV is an etiological agent of human disease known as hemorrhagic 

fever with renal syndrome (HFRS) characterized by symptoms such as high fever, chills, 

headache, generalized myalgia, abdominal and back pain and hemorrhagic manifestations [2]. 

The term „HFRS“ was adopted by the World Health Organization in 1983 to serve as an 

unifying name for clinical hantavirus infections in Eurasia [3]. Before, the disease had a 

multitude of names that brought much confusion concerning its actual distribution and 

epidemiology. In China the disease was known as epidemic hemorrhagic fever while it was 

called Korean hemorrhagic fever in Korea. In Scandinavia, western USSR, and Western 

Europe, the disease was called nephropathia epidemica. 

Description of the first clinical cases of human disease with characteristics similar to HFRS 

have been found in the archives of a hospital in Vladivostok (Far Eastern Siberia, Russia) in 

1913 [4]. However, Chinese physicians described the disease more than 1000 years ago. 

Intensive research on hantaviruses started after the Korean War (1950-1953) when more than 

3,000 American soldiers developed the illness of unknown etiology [5]. 

Isolation of the HFRS agent had been attempted by several groups of investigators since 

1952, but successful hantavirus propagation in cell culture was achieved only in 1981 [6]. 

Although viral antigens and RNA are present in the tissues of most seropositive natural hosts 

– rodents, the viruses are very often difficult to establish in tissue culture by direct 

inoculations. 

After discovery of the first hantavirus, other viruses genetically related to the Hantaan virus 

were characterized and classified: Puumala virus (PUUV) from bank voles [7], Seoul virus 

(SEOV) from urban rats [8] and Dobrava-Belgrade virus (DOBV) from yellow-necked field 

mouse [9]. 

First in 1993 Sin Nombre hantavirus (SNV) from deer mouse was identified as a causative 

agent of a mysterious respiratory illness in the United States with high case fatality rates, 

today known as hantavirus cardiopulmonary syndrome [10]. Later on several new hantavirus 

species from the Americas have been described: New York virus (NYV) from white-footed 

mouse [11] and Andes virus (ANDV) from long-tailed pygmy rice rat [12]. However, the 
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non-pathogenic Prospect Hill virus (PHV) from meadow vole was already described in 1985 

[13]. 

Lately, the first indigenous African hantavirus, Sangassou virus (SANGV), was found in the 

African wood mouse from Guinea, West Africa [14]. Meanwhile, two additional hantaviruses 

were found in Africa – Tanganya virus [15] and Azagny virus [16]. 

Until recent time, rodents were considered as sole natural hosts for hantaviruses. 

Thottapalayam virus (TPMV), isolated from an Asian house shrew trapped in India, was for 

many years considered as a single exception (for the references see [17]). However, several 

recent studies indicated that multiple other species of shrews from widely separated 

geographic regions harbor hantaviruses that are far more genetically divergent than 

hantaviruses carried by rodents. Shrew-borne hantaviruses include Tanganya virus in the 

Therese’s shrew, Azagny virus harbored by the West African pygmy shrew, Camp Ripley 

virus (RPLV) in the northern short-tailed shrew [18], Cao Bang virus (CBNV) in the Chinese 

mole shrew [19], Seewis virus (SWSV) in the Eurasian common shrew [20], Ash River virus 

(ARRV) in the masked shrew [21], Jemez Springs virus (JMSV) in the dusky shrew [21], and 

Imjin virus (MJNV) in the Ussuri white-toothed shrew [22]. In addition, phylogentically 

distinct hantaviruses from moles have been identified. Mole-borne hantaviruses include 

Asama virus (ASAV) in the Japanese shrew mole [23], Oxbow virus (OXBV) in the 

American shrew mole [24], and Nova virus (NVAV) in the European common mole [25]. 

1.2 Genome structure and replication 

Hantaviruses belong to the Bunyaviridae family. Replication takes place in the cytoplasm of 

infected cells. Their virions are spherical particles with diameters from 90 nm to 100 nm. The 

virus has a three-segmented RNA genome of negative polarity. The S-segment open reading 

frame (ORF) encodes a viral nucleocapsid (N-protein). In some viruses, e.g. PUUV and SNV, 

there is an additional small ORF overlapping with the major open reading frame of the S 

mRNA which encodes a putative non-structural protein [26]. Hantaviruses have an envelope 

that is formed by a lipid bilayer and two glycoproteins, G1 and G2. These proteins are 

cleavage products of a glycoprotein precursor encoded by M-segment ORF. The L-segment 

ORF encodes a RNA-dependent RNA polymerase (L-protein). The L-protein has been 

reported to have many functions such as transcriptase, replicase and endonuclease [27]. Viral 

RNAs are encapsidated by N-protein forming viral ribonucleoprotein complexes (vRNP). A 

small amount of L-protein is also associated with each vRNP (Figure 1).  

 



 

Figure 1: Schematic illustration of a hantavirus particle (adapted from Dr. B. Klempa) 

The vRNPs of hantaviruses appear to be circular due to the complementarity and subsequent 

base pairing of the 5'- and 3'-termini of the vRNAs. The 5’- and 3’-termini of all three 

segments form panhandle structures. These panhandles are thought to play a role in viral 

transcription and in the proposed prime-and-realign mechanism of replication [28]. 

Negative-stranded RNA viruses which replicate either in the cell nucleus (orthomyoxviruses) 

or in the cell cytoplasm (bunyaviruses) have not evolved capping enzymes, but evolved 

unique strategies to cap their own mRNA. Hantaviruses get hold of caps from the host cell 

mRNAs by a novel cap-snatching mechanism [29]. 

The model of hantavirus transcription of vRNA to mRNA is termed “prime-and-realign”. It 

suggests that the terminal G-residue from the cellular cap primer aligns with the third 

nucleotide of the hantaviral vRNA (C-residue) to initiate the L-protein transcriptase activity. 

After synthesis of a few nucleotides, the nascent RNA realigns by slipping backwards three 

nucleotides on the repeated terminal sequences (AUC(+3)AUC(+6)AUC) of the S-, M-, and 

L-RNAs. The outcome of the slippage is that the G becomes the first nucleotide of the 5’-

extensions. This realignment of the G to the position -1 produces an extra copy of the 3’-end 

of viral mRNA. However, if the G initiates at position +6, rather than +3, and realigns to 

position +3, the first two nucleotides of the viral mRNA will be lost, a finding that is 

commonly observed in sequence studies ([30], Figure 2). 
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Figure 2: Prime-and-realign model for initiation of hantavirus mRNA synthesis  
(adapted from [27]). 

The same prime-and-realign model has been proposed for vRNA and cRNA synthesis during 

hantavirus replication with a single difference. GTP is used as a primer for initiation of virus 

replication [28]. The accumulation of N-protein is most likely the signal for switching from 

primary transcription to replication. Newly synthesized N-protein is required for genome 

replication [31,32] and therefore mRNA transcription and translation of viral proteins starts 

before the RNA replication. 

1.3 Natural host reservoirs 

TPMV was isolated in 1971 from Asian house shrew before the first prototype of hantaviruses 

– HTNV has been obtained from a rodent. However, TPMV was classified as a hantavirus 

much later than HTNV. Therefore, for many years murid rodents (order Rodentia; family 

Muridae, subfamily Murinae; family Cricetidae, subfamilies Arvicolinae, Sigmodontinae and 

Neotominae) were considered as natural hosts of hantaviruses [33], Table 1. However, 

recently new distinct hantaviruses of currently unknown pathogenic potential have been 

discovered in insectivorous shrews and moles (for references see chapter 1.1). 

Phylogenetic analyses revealed significant congruence (similarity) in genetic co-evolution of 

hantaviruses with their natural hosts [34]. Therefore, it was believed that hantavirus species 

are co-evolved with their rodent hosts. It is still thought that hantavirus species are strongly 

associated with one (or a few closely related) specific rodent species. Although, several 

studies showed that there might be multiple rodent hosts for particular virus species and 

multiple viruses can exist in a single host species [33,35]. 
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Table 1: Selected hantavirus species and their natural hosts (adapted from [36,37,23,24]) 

 

species host abbreviation of virus name 
 
 

Dobrava-Belgrade virus 
 
 

Hantaan virus 
Seoul virus 

Sangassou virus 
 

Murinae-associated 
 

Apodemus flavicollis 
Apodemus agrarius 
Apodemus ponticus 
Apodemus agrarius 

Rattus species 
Hylomyscus simus 

 
 

DOBV-Af 
DOBV-Aa 
DOBV-Ap 

HTNV 
SEOV 

SANGV 

 
 

Puumala virus 
Tula virus 

 
Prospect Hill virus 

 

Arvicolinae-associated 
 

Myodes glareolus 
Microtus arvalis, M. agrestis, 

M. rossiaemeridionalis 
Microtus pennsylvanicus, 

M. ochrogaster 

 
 

PUUV 
TULV 

 
PHV 

 
 

 
 

Sin Nombre virus 
 

New York virus 
El Moro Canyon virus 

Rio Segundo virus 
 

Neotominae-associated 
 

Peromyscus maniculatus 
P.leucopus Peromyscus 

leucopus 
Reithrodontomys megalotis 
Reithrodontomys mexicanus 

 
 
r
o
d
e
n
t 
s 
 

 
 

SNV 
 

NYV 
ELMCV 
RIOSV 

 
 

Andes virus 
Maporal virus 

Black Creek Canal virus 

Sigmodontinae-associated 
 

Oligoryzomys longicaudatus 
Oligoryzomys fulvescens 

Sigmodon hispidus 

  
 

ANDV 
MAPV 
BCCV 

 
 
 

Thottapalayam virus 
Tanganya virus 
Azagny virus 

 

Crocidurinae-associated 
 

Suncus murinus 
Crocidura theresae 
Crocidura obscurior 

 
 

TPMV 
TGNV 
AZGV 

 
Ash River virus 

Seewis virus 

Soricinae-associated 
Sorex cinereus 
Sorex araneus 

 
 
s
h
r
e
w
s

 
ARRV 
SWSV 

 
 

Asama virus 
Oxbow virus 
Nova virus 

Talpinae-associated 
Urotrichus talpoides 
Neurotrichus gibbsii 

Talpa europaea 

m
o
l
e
s

 
ASAV 
OXBV 
NVAV 
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Hantaviruses are maintained by horizontal transmission through close contact (e.g. bites) 

between natural hosts. In contrast to humans, hantaviruses persistently infect their reservoir 

hosts, causing life-long infections, mainly without signs of disease. Hantavirus infection in 

natural hosts is characterized by an acute phase of peak viremia, viral shedding, and virus 

replication in target tissues, followed by a persistent phase of reduced, cyclical virus 

replication despite the presence of high antibody titers [38]. Humans are dead-end hosts, spill-

over infection to them results in the hantavirus disease, characterized in severe cases by renal 

or lung failure. 

1.4 Evolution of hantaviruses 

The separation of hantaviruses into clades that parallel the molecular phylogeny of rodents in 

the Murinae, Arvicolinae, Neotominae, and Sigmodontinae subfamilies has suggested that 

hantaviruses have co-evolved with their reservoir rodent hosts [34,39] (Figure 3). Recently, 

this idea has been actively challenged on the basis of the disjunction between the evolutionary 

rates of the host and virus species [40,41]. Host switching and local species-specific 

adaptation instead of co-divergence have been speculated to account for the similarities 

between the host and virus phylogenies. 

Obviously, host switching (virus shifting to a new host) have occurred during the evolution of 

the rodent-borne hantavirus (Topografov virus in Siberian lemmings (Lemmus sibiricus) is an 

often cited example) as well as during the evolution of the insectivore-borne hantaviruses (for 

references see review [42]). The evolution of hantaviruses has been also influenced by 

reassortment and recombination events [43]. In the Old and New World, reassortment of 

hantaviruses have been reported to occur in nature within and between virus lineages, and 

even between different viruses [44-46]. 

Recent emergence of hantaviruses isolated from shrews and moles of multiple species 

suggests that evolutionary history of hantaviruses is even more complex than it was expected. 

For example, full-genome analysis of Thottapalayam virus (TPMV), a hantavirus isolated 

from a shrew more than 40 years ago, shows an early evolutionary divergence from rodent-

associated hantaviruses [47,48]. Moreover, the collective data including other insectivores-

borne hantaviruses suggest that ancestral shrews or moles rather than rodents may have 

served as the early hosts of primordial hantaviruses [25]. 

Since the sequence database of hantaviruses from shrews, moles, and other insectivores 

remains incomplete, it is too early to conclude that recent host switching events coupled with 

subsequent divergence are solely responsible for the similarities between the phylogenies of 

hantaviruses and their mammalian reservoir hosts. The issue is not whether the evolution of 



hantaviruses is a direct consequence of either host switching or co-phylogeny. Rather, both 

mechanisms apparently influenced the evolution of hantaviruses. Therefore, when viewed 

within the context of molecular phylogeny and zoogeography, the close association between 

distinct hantavirus clades and specific subfamilies of rodents, shrews, and moles is likely the 

result of alternating and periodic co-divergence through deep evolutionary time [25]. 

 

Figure 3: Phylogenetic relationship between selected hantavirus representatives associated with 
rodents (Murinae, Arvicolinae, Sigmodontinae and Neotominae subfamilies), shrew and moles. The 
Maximum likelihood phylogenetic tree (Tamura Nei evolutionary model) is based on partial S-segment 
nucleotide (418 nucleotides) sequences, calculated with MEGA5. 

1.5 The human diseases: Hemorrhagic Fever with Renal Syndrome (HFRS) and 
Hantavirus Cardiopulmonary Syndrome (HCPS) 

Hantaviruses are transmitted to humans through the inhalation of contaminated aerosols from 

natural hosts excreta and saliva. Both HFRS and HCPS are associated with acute 

thrombocytopenia and changes in vascular permeability and both syndromes can include renal 

and pulmonary manifestations. Nevertheless, Old world hantaviruses tend to cause renal 

dysfunction and the disease is called HFRS while New World hantaviruses are more 

associated with cardiopulmonary failure (HCPS). Therefore, the latter illness is named HCPS 

(Table 2). 

The incubation time of the disease can take up to 6 weeks. In the very early phase of illness 

both HFRS and HCPS patients develop influenza-like symptoms, such as fever, chills, general 
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malaise, headache, abdominal/back pain, and nausea. In the next phases hypotension occurs 

and a cardiogenic shock can lead to death. In addition, renal or lung failure are also common 

reasons for a fatal outcome. The appearance of a diuretic phase is usually a good sign of 

patient recovery. Thereafter, convalescence phase starts and can last up to several weeks [37]. 

Table 2: Selection of important hantaviruses causing Hemorrhagic Fever with Renal Syndrome 
(HFRS) and Hantavirus Cardiopulmonary Syndrome (HCPS) in humans 

 

Hantaviruses Geographical 
distribution 

Disease Case fatality 
rates [%] 

Old World  
HTNV Asia HFRS 10-15 
SEOV Asia HFRS <1 
PUUV Europe HFRS 0.1-0.4 

DOBV-Af Europe HFRS up to 12 
DOBV-Aa Europe HFRS 0.4-0.9 
DOBV-Ap Europe HFRS up to 10 
New world  

SNV Americas HCPS 30-50 
ANDV Americas HCPS 30-50 
NYV Americas HCPS ? 

1.6 Cellular receptors utilized by hantaviruses during the entry to the target cell 

Endothelial cells and platelets are main targets during hantavirus infection. Therefore, it is 

believed that pathogenesis in humans is dependent on the damage of those cells [49]. 

Integrins are cellular surface molecules commonly utilized by many non-enveloped and 

enveloped viruses, including hantaviruses, as receptors for attachment and/or cell entry [50]. 

They are expressed in many tissues including endothelial cells and platelets [51]. Interestingly 

for hantavirus research, integrins play a central role in regulating platelet activation and 

maintaining capillary integrity [49]. The usage of ß3 versus ß1 integrins as receptors for cell 

entry by hantaviruses seems to be one of the important pathogenicity determinants. It has 

been shown that ß3 integrin is used predominantly by pathogenic HTNV, SEOV, PUUV, 

SNV, NYV, ANDV hantaviruses while ß1 integrin is preferentially utilized by non-

pathogenic PHV and TULV [49,52-54]. 

Although, endothelial cells are central targets for hantavirus infection; the main route of virus 

transmission to humans is the inhalation of contaminated aerosols. Consequently, at the very 

early stage of infection, the virus attacks the lung epithelium which is a polarized monolayer, 

meaning that it has apical and basolateral surfaces, connected with each other through tight 
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junctions. Therefore, the expression of a certain protein is restricted to apical or basolateral 

localization. Interestingly, ß3 integrins are expressed on basolateral surface of polarized cells; 

however pathogenic HTNV and PUUV can infect polarized epithelium and endothelium from 

the apical site, where those receptors are inaccessible. This indicates that hantavirus infection 

requires an additional target molecule. Recently it has been demonstrated that pathogenic 

HTNV and PUUV utilize also Decay Accelerating Factor (DAF) [55] during the cell entry 

process. DAF is a complement factor and is a promising candidate for being an additional 

receptor for hantaviruses since it is exclusively expressed on the apical site of many polarized 

cells. Moreover, it has been shown for coxsackievirus that its attachment to the DAF receptor 

initiates a signaling cascade, leading to the cytoskeletal rearrangements and opening of the 

tight junctions that facilitate the transport of the viral particle to coxsackie- and adenovirus 

receptor (CAR). Therefore, it was speculated that hantaviruses can use DAF-mediated 

signaling to overcome the tight junction barrier in similar way as coxsackievirus does [55]. 

Another glycoprotein gC1qR/p32 (also called p33 or HABP-1) has been reported to be 

recognized by HTNV [56]. It is a protein which was initially shown to bind a complement 

protein C1q. gC1qR/p32 is expressed in many cell types including endothelial cells and 

platelets. Although, gC1qR/p32 has no trans-membrane domain, it is thought to locate on the 

cell surface through interactions with other membrane-bound proteins or components. For 

instance, it has been suggested that association of gC1qR/p32 with ß1 integrin is involved in 

C1q-mediated endothelial cell adhesion and spreading processes [57]. Furthermore, 

gC1qR/p32 protein has been shown to interact with viral protein of such viruses as hepatitis C 

virus, herpes simplex virus type I, rubella virus, adenovirus and others. Since gC1qR/p32 

interacts with complement system, it has been speculated that HTNV-mediated recognition of 

gC1qR/p32 could be involved in dysregulation of the complement pathway. However, how 

the gC1qR/p32 is implicated in the pathogenesis of HFRS remains to be answered [56]. 

1.6.1 Permeability changes in endothelial cells caused by pathogenic hantaviruses 

Thrombocytopenia is a hallmark of HFRS and HCPS and is one of the prerequisites for 

hemorrhages in patients suffering from both hantavirus diseases. This indicates that platelets 

and endothelial cells have to be damaged during hantavirus mediated pathogenesis. In order to 

maintain a defensive mechanism, endothelial cells migrate on extracellular matrix proteins 

and therefore support vascular integrity. Such migration is directed by specific integrin-ligand 

interactions. Ligand binding to integrins results in cytoskeleton rearrangements and is 

required for cell migration. It has been shown that pathogenic HTNV, NYV, and SEOV 

inhibited the ability of endothelial cells to migrate on the ß3 integrin ligand - vitronectin, but 
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had no affect on endothelial cell migration on ß1 integrin ligands - collagen and fibronectin 

[53]. Given that ß3 integrins, rather than ß1 integrins, have an important role in vascular 

permeability; the use of ß3 integrins by pathogenic hantaviruses could clarify why infection 

by these strains results in severe disease. It has been observed that ß3 integrin has two 

conformations – active (extended) and inactive (bent). It has been shown that hantaviruses can 

bind to the plexin–semaphorin–integrin (PSI) domain, which is accessible at the apex of the 

inactive integrin. The binding of hantaviruses to the inactive form of ß3 integrin explains how 

pathogenic hantaviruses abrogate ß3 integrin-mediated endothelial cell migration, which in 

turn could lead to the vascular permeability and cause hemorrhages [58]. 

There is another approach used by hantaviruses in order to dysregulate endothelial cell barrier 

functions. Hantaviruses enhance endothelial cell permeability in response to the vascular 

endothelial growth factor (VEGF). VEGF has been reported to cause localized tissue edema 

and is recognized by the cellular receptor named VEGF receptor 2 (VEGFR2). ß3 integrins 

have been noted to alter VEGFR2-directed endothelial cell permeability. Therefore, it has 

been suggested that hantavirus interactions with inactive ß3 integrins has the potential to 

disrupt VEGFR2-β3 integrin complexes and result in endothelial cells which are hyper-

permeabilised. Vascular endothelial (VE)-cadherin is a protein which builds adherence 

junctions and plays a role in functioning of the endothelial cell barrier (Figure 4). It has been 

noted that activation of VEGFR2 directs VE-cadherin phosphorylation, dissociation and 

therefore endothelial cell permeabilisation. In confirmatory assays it was shown that 

endothelial cells infected with pathogenic HTNV and ANDV increase the dissociation of VE-

cadherin [59]. 

In addition, clinical data demonstrated that platelets from HFRS patients are defective in 

activation [60], and this explains the thrombocytopenia in hantavirus infected patients. This 

observation is in agreement with the idea that pathogenic hantaviruses bind the inactive form 

of ß3 integrin on platelet and on the endothelial cell surface, leading to their altered 

adherence. In summary, hantavirus mediated dysregulation of ß3 integrin functions may 

contribute to endothelial cell responses that permeabilise the vasculature [59]. 



 

ß3 
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Figure 4: Schematic representation of hantavirus binding to the inactive form of β3 integrin 
resulting in enhanced VEGF directed VE-cadherin internalisation, adherens junction disassembly 
and endothelial cell permeability. EC, endothelial cells. VEGF, vascular endothelial growth factor. 
VEGFR2, cellular receptor recognising VEGF. VE-cadherin, vascular endothelial protein. Src, kinase that 
phosphorylates intracellular domain of VE-cadherin (adapted from [59]). 

1.7 Hantaviruses and induction of innate immunity 

1.7.1 Interferons and their biological activities 

Interferons (IFNs) are key players in regulation of innate antiviral responses. There are three 

types of IFNs (type I, II, and III) which are differentiated accordingly to the structure, 

receptor usage and biological activity. Type I IFNs form the most abundant family and induce 

a potent antiviral state in a wide variety of cells, they include 13 types of IFN-α genes and one 

single gene each of IFN-ß, IFN-κ, IFN-ω, and IFN-ε in humans. There is only one 

representative of type II IFNs – the IFN-γ gene. It plays a main role in mediating of adaptive 

immune responses and developing of host protection against pathogenic microorganisms such 

as bacteria. Interestingly, IFN-γ can amplify the induction of antiviral activity in the presence 

of IFN-α and IFN-ß, indicating that type I and II IFNs can work together to protect the host 
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from invading organisms. In 2003, the third family of IFNs (type III) has been discovered 

which includes three members, IFN-λ1, -λ2, -λ3. Based on their biological activities, type III 

IFNs are very similar to type I IFNs, however, it has been shown that type III IFNs recognize 

a different receptor and the expression of type III IFN receptor is restricted to certain cell 

types. 

Although type III IFNs do not recognize receptor utilized by type I IFNs, signaling through 

either type I or type III receptor leads to the activation of the same Jak-STAT signal 

transduction cascade (Figure 5). 

 

Figure 5: A model of IFN receptor signaling pathway. Type I, II and III IFNs bind to distinct receptor 
complexes on the cell surface. Signal transduction cascades activated by binding of IFNs to their cognate 
receptors activate expression of many IFN-stimulated genes (ISGs). The proteins encoded by these genes 
in turn mediate the antiviral activity of the IFNs, in particular the type I and III IFNs. The recognition of 
type I or III IFNs by their receptors induces a signaling cascade that results in the activation of STAT1 
and STAT2 which together with IRF-9 form ISGF3 transcription factor complexes. The newly formed 
ISGF3 complexes then translocate from the cytosol to the nucleus where they bind to IFN-stimulated 
response element (ISRE) in the promoter of ISGs such as IRF7, Mx and OAS genes. (adapted from [61]). 

1.7.2 Induction of type I IFNs by hantaviruses 

Upon the recognition of the invading virus, the host cell starts to mount antiviral responses, 

leading to the activation of type I IFNs followed by induced production of ISGs. A strong 

innate immune response is a very undesirable process for virus replication and its survival in 

the infected hosts. Therefore, many viruses have developed mechanisms to avoid the host’s 

pathogen-mediated recognition [62,63]. 

Differential cellular interferon response to pathogenic versus non-pathogenic hantaviruses has 

been assessed by several research groups. However, the link between the pathogenicity and 
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ability of certain viruses to induce or counteract expression of IFNs has not been elucidated so 

far. 

There is a study showing that pathogenic HTNV clearly induced the production of IFN-ß, 

whereas expression of this cytokine was barely detectable in the supernatant or in extracts 

from cells infected with non-pathogenic TULV [64]. Another study applied Affymetrix DNA 

array to investigate cellular responses after hantavirus infection in order to differenciate 

pathogenic SNV hantavirus from non-pathogenic PHV. Authors did not observe significant 

differences in expression of number of IFN-activated genes in endothelial cells after 4 hours 

post infection. However, after 12 hours post infection they observed an up-regulation of a 

small group of genes (anti-viral factors, transcription factors, kinases, structural proteins, 

receptors, growth factors and chemokines) by PHV in comparison to SNV [65]. 

Geimonen and Alff observed major differences in IFN-specific transcriptional responses 

between pathogenic NYV, HTNV and non-pathogenic PHV hantaviruses at 1 day post 

infection [66,67]. Therefore, the authors suggest that hantavirus pathogenesis may in part be 

determined by viral regulation of cellular interferon responses. PHV but not pathogenic 

ANDV, was found to induce a robust IFN-β response early after infection (12 to 24 hours post 

infection) of primary lung endothelial cells [68]. This finding was confirmed by the 

observation that PHV but not ANDV activates IFN regulatory factor 3 (IRF-3), which leads to 

the phosphorylation of IRF-3 and its translocation to the nucleus. In the nucleus IRF-3 

stimulates transcription of IFN-β mRNAs. In addition, the level of STAT 1/2 phosphorylation 

was much lower in cells infected with ANDV [68]. However, Spiropoulou et al found that 

both ANDV and PHV can down regulate IFN-stimulated phosphorylation of STAT 1/2. 

1.7.3 Induction of antiviral MxA gene / protein 

A readout marker for IFN bioactivity which has been often used in characterization of 

hantaviruses is the antiviral MxA protein [64,69-72]. The MxA protein belongs to the 

superfamily of dimanin-like GTPases and is involved in mediation of antiviral immune 

response against many viruses [73]. Moreover, it has been shown that over-expression of 

MxA protein in cell culture can block hantavirus replication [74,75]. An interesting 

observation has been published recently, demonstrating that established cell lines, such as 

A549 and HUH7, mount strong MxA response when infected with PHV in comparison to 

HTNV [71]. Another study observed the strong induction of type III IFNs (IFN- λ1/2) in 

response to HTNV infection of A549 cells. The induction of IFN- λ1 preceded the induction 

of MxA and type I IFNs [76]. Since MxA gene expression is regulated only by type I and III 

IFNs [77], the authors suggested that MxA is induced by type III IFNs in A549 cells exposed 
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to HTNV. Furthermore, the presence of type III IFNs was detected by ELISA on days 12, 15 

and 18 after infection of Vero E6 with PHV, SNV and ANDV, respectively [78]. Vero E6 

cells are commonly used by researchers to prepare hantavirus stocks. Presence of active type 

III IFNs in virus stocks could impair all earlier observed MxA induction patterns in infected 

cells. Therefore, more investigations are needed to elucidate the influence of newly described 

type III IFNs in hantavirus-mediated pathogenesis. 

1.7.4 The role of protein kinase R in innate immunity and its induction by 
hantaviruses 

IFN inducible protein kinase R (PKR) is one of the four mammalian serine-threonine kinases 

(the three others being HRI, GCN2 and PERK) that phosphorylates the eIF2a translation 

initiation factor, in response to stress signals, mainly as a result of viral infections [79]. eIF2a 

phosphorylation results in the shutdown of translation of both cellular and viral mRNAs - an 

efficient way to inhibit virus replication. PKR is constitutively expressed at endogenous level 

in cells, and its activity is regulated by an auto-inhibitory effect of its own N-terminus.  

The PKR is activated in response to dsRNA - an intermediate product of viral replication 

(Figure 6), however, dsRNA is not the sole substrate for PKR. It can be activated by heparin 

and caspases. It has been shown that heparin binds to the PKR domains and prevents 

intradomain interactions that in turn lead to the activation of PKR. Caspases are reported to 

activate PKR through the cleavage of the inhibitory N-terminus from the kinase. In addition, 

PKR has been observed to mediate indirect phosphorylation and ubiqutination of IκB which 

leads to the activation of NF-κB pathway ([80], Figure 6). PKR is also activated in response 

to stress stimuli. Protein activator of the IFN-inducible protein kinase (PACT) has been 

reported to contribute to PKR-mediated response to stress. Involvement of PACT in PKR-

maintained regulation of such transcription factors as NF-κB, STAT-1/3, IRF-1 has been 

observed [80]. However, PKR-dependent activation of such transcription factors is 

independent of eIF2a phosphorylation. 

Moreover, PKR can function to control cell growth, cell differentiation and can induce 

apoptosis [79]. Its activity can be controlled by the action of several oncogenes [81]. 

Viruses have evolved specific mechanisms to prevent the development of an antiviral state by 

inhibiting key components of the PKR signaling pathway. Several viral proteins antagonists 

of PKR have been identified, many of which are RNA-binding proteins. For example, non 

structural proteins (NSs) of Influenza B virus [82] as well as E3L protein from Vaccinia virus 

were found to inhibit host PKR activity through direct interaction. Hepatitis C virus NS5A, 

Herpes simplex 1 US11, and Kaposi’s sarcoma vIRF-2 proteins also interact with PKR and 

http://www.uniprot.org/uniprot/P19525
http://www.uniprot.org/uniprot/P19525
http://www.uniprot.org/uniprot/P27958
http://www.uniprot.org/uniprot/P04487


inhibit its activity [79]. Some viruses including human cytomegalovirus or mouse 

cytomegalovirus alter PKR subcellular localization, while others direct PKR to degradation 

like Rift valley fever virus NSs protein [83]. 

Despite the fact that PKR plays an important role in the pathogenesis of many different 

viruses, there are only two publications which tried to evaluate the interactions between 

hantaviruses and PKR. In the first study, DNA microarray technology was used to monitor 

changes in mRNA levels after HTNV infection of A549 cells. It was reported that PKR was 

not involved in antiviral activity during HTNV infection [69]. In the second study, a weak 

increase in PKR gene expression after PHV infection of endothelial cells was observed [65]. 

 

Figure 6: Virus-mediated inhibition of PKR activity   
(adapted from http://viralzone.expasy.org/all_by_protein/554.html). 
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1.8 Hantaviruses in Germany 

In Germany hantaviruses cause a rather mild form of HFRS with case fatality rates of up to 

0.4% [37]. PUUV is the causative agent for the majority of clinical cases in Germany [84], 

however DOBV and Tula virus (TULV) are also circulating. The numbers of hantavirus 

infections of humans in Germany are growing in 2-3 year cycles. For example in 2005, 448 

clinical cases were documented; however already in 2007, a major increase (1,687 cases per 

year) in hantavirus-caused human infections has been registered [84], while in 2010, 2,017 

hantavirus infections were reported (data taken from Robert Koch-Institut: SurvStat, 

http://www3.rki.de/SurvStat). Increased clinical cases of hantavirus infections in Germany are 

usually associated with increased numbers of bank voles, transmitting the causative agent of 

disease – PUUV [85]. Intriguingly, a high number of infections in previous years has been 

observed in urban environments too. This finding could be explained by hypotheses 

describing bank voles moving close to human habitats due to an exceptionally cold and snowy 

winter [86]. The difference in reported clinical cases between certain years could be 

associated with fluctuations in population size of bank voles and the proportion of infected 

animals. As a consequence, local prevalence and transmission rates can be affected by local 

age structures, sex ratios and proportion of reproductive voles [85]. Interestingly, the bank 

vole is distributed through whole Germany; however the majority of PUUV human infections 

is reported from endemic regions: Baden-Wuerttemberg, Bavaria, North Rhine Westphalia, 

Lower Saxony [87]. The first PUUV isolate has been generated in the early 80s [7]. 

The second hantavirus causing human infections in Germany is DOBV. The first case of 

human infection with DOBV in Germany has been published in 1998 [88]. DOBV-caused 

HFRS cases are less prevalent then PUUV infections. The distribution of infections with the 

DOBV seems to be limited to the north-eastern part of Germany (Mecklenburg Western-

Pomerania, Brandenburg, Saxony, Saxony-Anhalt), due to the limitation of the geographical 

distribution of the Apodemus mouse as the natural reservoir host of DOBV [89] (Figure 7). 

There is a study presenting the molecular evidence of Apodemus agrarius being a natural host 

of DOBV in Germany [35]. 

Another PUUV-related virus – TULV –is considered nowadays as a non-pathogenic 

hantavirus, however, a single case report, describing possible human infection with TULV 

has been published [90]. 



 

Figure 7: Geographical distribution of hantavirus natural hosts in Germany. 

1.9 Dobrava-Belgrade hantavirus (DOBV) 

In Europe DOBV is the most life-threatening hantavirus leading to HFRS with case fatality 

rates of up to 12 % [91,92]. According to the natural hosts, mice of the genus Apodemus, 

DOBV forms distinct phylogenetic lineages. DOBV-Af, represented by the original Dobrava 

isolate from Slovenia (Slo/Af), associated with A. flavicollis (Af), causes severe HFRS cases 

in the Balkan region. In A. agrarius (Aa) two lineages of hantavirus were found. DOBV-Aa, 

represented by the cell culture isolates SK/Aa from Slovakia and Lipetsk/Aa from Russia, is 

typical for Central Europe and Central European Russia [93,94], where it causes 

mild/moderate disease. DOBV-like Saaremaa virus (SAAV) represented by cell culture 

isolate SAA/160V, present in North-East Europe is not conclusively associated with clinical 

cases [95]. Very recently, moderate to severe HFRS cases in South European Russia have 

been associated with the DOBV-Ap lineage, represented by Sochi virus (Sochi/Ap), 

transmitted by A. ponticus (Ap) [94] and an isolate obtained from a fatal human HFRS case 

(Sochi/hu) [96]. 

Since natural hosts of DOBV-Af and DOBV-Aa are distributed in the same geographical 

regions, some interactions between host species could occur. It means that DOBV lineages 

could undergo the genetic interaction between each other. Molecular phylogenetic analyses 

indicated possible recombination in DOBV evolution, meaning that DOBV-Af and DOBV-

Aa could have interacted with each other in vivo [43]. 

 26 



 

Figure 8: Natural hosts of DOBV. Yellow-necked field mouse, Apodemus flavicollis, carrier of DOBV-
Af (left); striped field mouse A. agrarius, carrier of DOBV-Aa and SAAV (middle); caucasian forest 
mouse, A. ponticus, carrier of DOBV-Ap (right). 

Very recently multiple spill-over infections of A. flavicollis animals by DOBV-Aa lineage 

have been reported in Germany [35]. Moreover, single DOBV-Af spill-over infections of A. 

sylvanticus and Mus musculus have been reported previously [97]. Virus spill-over infections 

are good prerequisites for the co-infection of the same animal with different viruses and 

genetic reassortment between them [98]. In vitro studies, including simultaneous infection of 

Vero E6 cells with representatives of the DOBV-Aa and DOBV-Af lineages (virus isolates 

SK/Aa and Slo/Af, respectively), have confirmed reassortment events between two distinct 

DOBV lineages [72]. 

It is interesting to note that the different members of the DOBV species exert HFRS of 

different severity. Most severe human clinical cases were observed in Balkan regions where 

DOBV-Af infections occur. The case fatality rates were reported to be up to 12%. Whereas 

clinical manifestations of DOBV-Ap infections of humans in the Sochi region (European 

Russia) are rather moderate to sever with case fatality rates more than 6%. However, DOBV-

Aa have been observed to cause rather mild to moderate courses of HFRS reaching case 

fatality rates in range from 0.4% to 0.9%. Nevertheless, severe cases of HFRS with renal 

failure complicated by lung impairment have been observed in Germany [99,98]. 

Seroepidemiological studies involving fine serotyping by neutralization assay and 

phylogenetic analysis of patient-associated virus sequences indicated that the DOBV-Aa 

lineage is responsible for HFRS cases in Northern Germany [100]. Despite of the knowledge 

that the DOBV is circulating in Germany and causing human disease [100,101,99], the cell 

culture isolate of the virus could not be generated so far. 

1.10  Sangassou virus, the first indigenous hantavirus from Africa 

Although hantaviruses are world-wide distributed pathogens, there was only little evidence of 

hantavirus presence in Africa. There were seroepidemiological reports showing that 

prevalence of hantavirus antibodies in human populations from different African countries is 
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in the range from 1.4% to 6.15% [102,103]. Both studies investigated antibodies reacting with 

HTNV antigen, although Apodemus agrarius, the natural host of HTNV, is not found in 

Africa. 

In 2006, the first African hantavirus has been molecularly detected in an African wood mouse 

(Hylomyscus simus) in Guinea. The virus was named Sangassou (SANGV), after the village 

where the positive animal had been trapped [14]. Phylogenetic analyses based on partial S-, 

M-, and L-segments revealed that SANGV is a novel hantavirus. First of all, SANGV 

sequences are significantly divergent (≈ 15%) from other hantavirus species. Second, 

although SANGV is the most closely related to DOBV, it forms a distinct clade in a 

Maximum likelihood phylogenetic tree (Figure 9). Third, SANGV was found in a rodent 

species previously not recognized as a natural host of hantaviruses. 

A recent seroepidemiology study based on the combination of screening and confirmatory 

assays (ELISA, immunoblot, immunofluorescence assay, focus reduction neutralization test) 

showed the presence of hantavirus-specific neutralizing antibodies in Guinean patients with 

fever of unknown origin (4.4% seropositive) [104]. In contrast, prevalence of hantavirus 

antibodies in the whole human population from Forest Guinea was found to be 1.2%. In 

addition, a serum sample obtained from a patient during the acute phase of illness showed 

titers of IgM against SANGV that were 4-fold higher than those against PUUV. These data 

suggest that SANGV (or other related African viruses) might be pathogenic for humans. 

However, the final evidence of SANGV vRNA being present in human specimens has not 

been obtained yet. 

The second hantavirus from Africa– Tanganya virus (TGNV) was detected in the Therese’s 

shrew (Crocidura theresae) [15]. TGNV exhibits low sequence similarity to the rodent 

derived hantaviruses (below 78%) and showed the lowest similarity to the first described 

shrew-borne hantavirus - TPMV (below 48% on nucleotide level). Phylogenetic analysis 

based on partial S-segment sequences revealed that TGNV does not cluster with rodent borne 

hantaviruses and does not join shrew borne TPMV as well. Nevertheless, evolutionary trees 

supported the idea that shrew rather than rodent is a natural host for TGNV [15]. Therefore, it 

is very surprising that TGNV did not form a monophyletic group with TPMV (Figure 9). 

Very recently the third hantavirus from Africa, designated Azagny virus (AZGV) was found 

in the West African pygmy shrew (Crocidura obscurior) [16]. Sequence and phylogenetic 

analyses of the S-, M- and L-segments indicated that AZGV shares a common ancestry with 

TGNV and is also evolutionarily distant from TPMV. However, to further speculate on 



relations of TGNV and AZGV to other shrew-borne hantaviruses more sequence data and 

epizootiologic studies are necessary. 

Taken into account that both TGNV and AZGV exhibit low sequence similarities with rodent-

borne hantaviruses, one could expect these viruses being serologically distinct from other 

hantaviruses. Therefore, human infections by TGNV and AZGV might be missed when using 

antibody detection assays based on antigens from conventional rodent-borne hantaviruses. 

 

 

Figure 9: Phylogenetic placement of Sangassou and Tanganya (indicated with arrows) virus 
sequences in comparison to selected representatives of hantaviruses associated with rodents, shrew 
and moles. The Maximum likelihood phylogenetic tree (Tamura-Nei evolutionary model) is based on 
partial S-segment nucleotide (418 nucleotides) sequences and calculated with MEGA5. Shrew- and mole-
associated hantaviruses are indicated by light gray circles. Rodent-associated viruses are indicated by 
dark gray circles.  
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2 Aims of the study 

DOBV is the most virulent hantavirus in Europe with case fatality rates up to 12%. Besides, 

there are several lineages of DOBV which are carried by different natural host reservoirs. 

When transmitted to humans they can cause mild to moderate forms of HFRS. In addition, it 

has been shown that two lineages could be reassorted in vitro and in nature. Therefore, DOBV 

is a unique hantavirus prompting to study its molecular characteristics and evaluate 

pathogenicity potential of different lineages to humans. 

In Germany, DOBV is endemic in the north-eastern part of the country. Clinical cases of 

human diseases caused by DOBV are reported regularly, however, the causative agent of such 

illness was not identified before. Thus, we initiated the current study with the main goal to 

isolate and characterize the indigenous DOBV from Germany. 

Aims of the study were: 

1. Generate cell culture isolate of DOBV from North-Eastern Germany 

2. Complete genetic characterization of virus genome 

3. Complete molecular phylogenetic analyses 

4. Identify cellular receptor(s) necessary for virus entry 

5. Study the activation of selected innate immunity markers 

It has been reported that pathogenic and non-pathogenic hantaviruses utilize distinct cellular 

receptors in order to maintain virus entry. Also the differential cellular interferon response to 

hantaviruses has been considered as one of the pathogenicity characteristics. Therefore, 

receptor usage and induction of innate immunity markers (tasks 4 and 5) have been taken as 

pathogenicity determinants of the investigated viruses. We also wanted to evaluate the 

pathogenicity potential of the novel, recently isolated SANGV from Africa. Partial molecular 

characteristics of SANGV have been published before the current work. Therefore, we 

concentrated our efforts on performance of tasks 4 and 5 with SANGV in order to evaluate its 

pathogenicity potential in comparison with DOBV from Germany. 

Both SANGV and the new DOBV isolate are genetically closely related and belong to 

Murinae-associated hantaviruses. In addition, we expected the new DOBV to be pathogenic; 

however, in the case of SANGV there was only indirect evidence that it may infect humans. 

Therefore, it was interesting to compare DOBV and SANGV in order to estimate whether 

they demonstrate similar pathogenicity potential. 
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3 Materials and methods 

3.1 Cells and viruses 

Vero E6 (african green monkey epithelial kidney cell line; Vero C1008 ATCC CRL 1586), 

A549 cells (human epithelial lung cell line; ACC 107, German Collection of Microorganisms 

and Cell Cultures, Braunschweig, Germany) and HUH7 (human hepatoma cell line; Health 

Science Research Resources Bank, Osaka, Japan) were cultured in Minimal essential medium 

(MEM) with Earle’s Salt supplemented with 5% fetal calf serum (FCS; Perbio (Bonn, 

Germany), 25 mM HEPES, 1% glutamine, 1% sodiumpyruvate, 1% non-essential amino 

acids (Biochrom AG, Germany) and 0.1% gentamycinesulphate (Bio – Wittacker, Germany). 

Stocks of GRW/Aa (isolated within this study), HTNV 76–118 (kindly provided by Dr. Åke 

Lundkvist), PHV type 3571 (kindly provided by Dr. Robert B. Tesh) and SANGV (kindly 

provided by Dr. Boris Klempa) were produced in Vero E6 cells cultivated in 75 cm2 cell 

culture flaks. The cells were infected at the multiplicity of infection (MOI) 0.1 for 1 hour at 

37°C in 5% CO2 humidified atmosphere, then 15 ml of fresh medium was added. After seven 

days, cell culture supernatants were collected, centrifuged to remove cell debris, aliquoted and 

stored at -80°C. 

Experiments with infectious GRW/Aa, HTNV, PHV and SANGV were performed under 

biosafety level 3 conditions in the Institute of Virology, Charité School of Medicine. 

Virus stocks and cells were determined to be free of mycoplasma contamination by using the 

PCR-based VenorGeM mycoplasma detection kit (Minerva Biolabs, Germany). 

3.2 Virus ultracentrifugation 

For production of high-titer, IFN-free virus stocks 175 cm² cell culture flasks were infected 

and incubated for seven days at culture conditions. After two freeze/thaw cycles, cells were 

scraped from culture vessel bottom and exposed to sonication. Cell debris was removed by 

centrifugation. Supernatant was transferred into sealed tubes and ultracentrifuged for 3 hours 

at 28,000 g and 4°C. Virus pellets were resolved in fresh culture medium through repetitive 

vortexing and sonication. 

3.3 Inactivation of hantaviruses by UV irradiation 

Virus stock solution (0.5 ml) was transferred to a small plastic Petri dish and placed directly 

on the workspace of the UV transilluminator equipped with 8-W tubes (Vilber Lourmat, 

France). Inactivation was performed by UV irradiation for 3 min at 312 nm, corresponding to 

1.4 J/cm2 [105]. 
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3.4 Virus titration 

To determine the virus titers of the viral stocks, the modified chemiluminescent focus assay 

described by [106] was used. Briefly, confluent Vero E6 cells grown in 6-well plates were 

inoculated with 0.2 ml/well of tenfold dilutions of viral stock in Hanks’ balanced salt solution 

(HBSS) supplemented with 2% HEPES (Gibco/Invitrogen, Germany), 2% FCS and 

antibiotics mixture PSN (Biochrom AG, Germany). After virus adsorption for one hour at 

37°C in a humidified 5% CO2 atmosphere, the cells were overlaid (2.5 ml overlay per well) 

with a 1:1 mixture of 2.4% Avicel (FMC Biopolymer, USA) in water and basal Eagle´s 

medium (2x BME) supplemented with 5% FCS, 2.5% HEPES and antibiotics. Plates were 

then incubated for 7–10 days (dependent on the virus strain) under the conditions described 

above. Afterwards, the overlay was removed by gently pouring of washing buffer (PBS 

supplemented with 0.15% Tween-20) onto the overlay. By flipping the plate, the overlay was 

discarded. The cells were carefully washed twice with washing buffer, then fixed with 

methanol (1-3 ml/ well) for 8 min, allowed to dry and again washed two times. 1 ml of 

corresponding rabbit polyclonal antiserum was added to each well, diluted in PBS containing 

10% FCS, and incubated for 1 h at 37 °C. Cell were washed five times and 1 ml of goat anti-

rabbit IgG conjugated with horseradish peroxidase diluted 1:1000 in PBS supplemented with 

10 % FCS was added per well and incubated for 1 hour (h) at 37 °C. Following five additional 

washing steps, 0.5 ml/well of the chemiluminescence substrate, Supersignal West Dura 

(Pierce, USA), was added. The plates were evaluated in DIANA Chemiluminescence System 

(Raytest, Germany). For evaluation of the titers, the focus forming units (FFU) of each well 

were counted and the titers were calculated per ml. 

3.5 Cell culture isolation procedure 

DOBV RT-PCR-positive lung samples from three naturally infected Apodemus mice trapped 

in a region near Greifswald/north-eastern part of Germany were used for virus isolation 

attempts. The samples (ca 8-10 mm3) were processed as 10% tissue suspensions in 1 ml of 

Dulbecco’s medium (DMEM) supplemented with 0.2% bovine serum albumin (BSA). The 

tissues were triturated in a closed mechanical blender FastPrep Instrument (BIO 101 Systems, 

Carlsbad, CA, USA). Triturated tissues were briefly centrifuged at low speed to remove larger 

tissue fragments and inoculated (1 ml/ flask) onto cultures of confluent Vero E6 cells in 25 

cm2 flasks. Cells inoculated with 1 ml medium only served as a negative control. Virus was 

then allowed to adsorb at 37°C in a humidified 5% CO2 atmosphere. The cell culture medium 

(MEM plus 10% FCS, 1% L-glutamate, 100 IU penicillin and 100 μg/ ml streptomycin) was 

changed for the first time after 90 min and then weekly. In 2 week intervals, cells, detached 
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by trypsin treatment, were passaged into new culture flask with the addition of the same 

amount of fresh uninfected cells according to a described protocol [95]. While suspended, 

several slides were prepared and examined for characteristic hantavirus antigen expression 

following immunofluorescence assay (IFA) techniques. First positive IFA slide was observed 

after six weeks of cultivation. At the same time isolation attempts were stopped, the medium 

from positive flask was collected and used for further propagation of virus.  

3.6 Immunofluorescence assay 

Cells were prepared on Teflon-coated slides with 12 circular areas (“spots”). After detaching 

with trypsin treatment, the cells were suspended in cell culture medium and washed twice. 

Washed cells from every flask were resuspended in 5 ml of cell culture medium and 20 μl of 

the suspension was deposited on each spot of the slides cleaned with 70% ethanol. The slides 

were put in a moist chamber and incubated at 37°C and 5% CO2 overnight. The slides were 

washed two times in PBS and once in bi-distillated water and anhydrous acetone and then 

fixed in anhydrous acetone at 4°C for 10 minutes, air-dried and used or stored at -20°C. 

Slides were first washed before usage in PBS and air-dried. 20 μl of anti-DOBV/HTNV rabbit 

antisera [107] diluted 1:20, 1:40, 1:80, 1:160 and 1:320 in PBS were deposited on different 

spots and incubated at room temperature for 30 min in a moist chamber. The slides were 

washed, with 3 changes of PBS each for 5 min, and air-dried. Fluorescein isothiocyanate 

(FITC)-conjugated anti-rabbit immunoglobulin (Dako, Denmark), diluted 1:40 in PBS, was 

added, 20 μl to each spot, and the slides were returned to the moist chamber at room 

temperature for 30 min. To increase the contrast in staining Evan’s blue (Parc Technologique 

Delta Sud, France) at dilution 1:1500 was added to the conjugate. The slides were again 

washed, with three changes of PBS each for 5 min, and air-dried. The slides were mounted 

with the mounting medium (Progen, Germany) under cover slips and examined for 

characteristic cytoplasmic pattern in a fluorescence microscope (Olympus BX60, Germany).  

3.7 RNA extraction 

3.7.1 RNA extraction from cell culture supernatant 

For isolation of viral RNA from cell culture supernatant, the QIAmp Viral RNA Mini Kit 

(Qiagen, Germany) was used. The RNA was extracted according to the standard QIAmp viral 

RNA mini spin protocol. Briefly, 140 μl of cell culture supernatant was added to 560 μl AVL 

buffer containing carrier RNA and incubated at room temperature for 10 minutes. Ethanol 

was added to the lysate and the lysate was applied to the column provided and centrifuged. 

RNA was then washed with washing buffers AW1 and AW2. An additional centrifugation 
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step was performed to remove possible residues of the buffers. 60 μl AVE buffer were then 

added into the column, incubated for 1 min and the RNA was eluted by centrifugation. The 

RNA was stored at -20°C until further use. 

3.7.2 RNA extraction from cell culture 

Total RNA from cells was isolated with RNeasy Mini Kit (Qiagen, Germany). The RNA 

extraction was performed according to the protocol described by manufacturer. Briefly, up to 

1 x 107 cells were lysed in RLT buffer. 70% ethanol in DEPC-water was added to the lysate 

and the mixture was applied to the RNeasy Mini spin column and centrifuged. Three washing 

steps (1 time buffer RW1, two times buffer RPE) were performed. The RNA was then eluted 

in 50 μl RNase-free water. 10µl of extracted RNA was directly reverse transcribed. The rest 

from RNA sample was stored at -20°C. 

3.8 Reverse transcription 

3.8.1 M-MLV Reverse transcription with the random hexamer primers  

The extracted viral RNA was reversely transcribed to cDNA using N6 random hexamer 

primers (Invitrogen, Germany). For each reaction, 10 μl total RNA plus 10 μl PCR Mix were 

used. PCR Mix includes: First-Strand Buffer (100 mM Tris-HCl (pH 8.3), 150 mM KCl, 6 

mM MgCl2), 1 mM DTT, 0.75 mM dNTP, 25 ng of N6 primer, 100 Units of Moloney Murine 

Leukemia Virus Reverse Transcriptase (M-MLV RT) and 20 Units of RNaseOUT™. The 

reverse transcription PCR conditions were 10 min of 25°C, 30 min of 42°C, 6 min of 96°C, 

followed by final cooling to 4°C in the Master cycler personal (Eppendorf, Germany). 

3.8.2 SuperScript III First-Strand Synthesis System for reverse transcription 

The SuperScript III First-Strand Synthesis System (Invitrogen, Germany) was used in cases 

when amplification of long PCR products was needed (sequencing of M- and L-genome 

segments). Mix 1 (10µl) contains: 8 μl of RNA, 50 ng of N6 random hexamers, 1 mM dNTP 

mix; Mix 2 (10µl) contains: RT buffer (40 mM Tris-HCl (pH 8.4), 100 mM KCl), 10 mM 

MgCl2, 20 mM DTT, 200 Units of Superscript III RT™ and 40 Units of RNaseOUT™. 

Both mixes were prepared in separate tubes. First, Mix 1 was prepared and incubated at 65°C 

for 5 min and then incubated on ice for at least one minute. Then, Mix 2 was added and the 

tubes were placed in the Master cycler personal (Eppendorf, Germany) and the PCR reaction 

was started. The reverse transcription PCR conditions were 60 min of 48°C, 5 min of 85°C, at 

least 1 min of 4°C, addition of 1 μl of RNase H to each reaction tube, 20 min of 37°C, 

following final cooling to 4°C. 
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3.9 PCR 

3.9.1 Hantavirus screening S- and L-PCR 

Total RNA from cell culture supernatant was reversely transcribed with random hexamer 

primer (M-MLV reverse transcription kit, chapter 3.8.1). 5µl of cDNA was then used for the 

1st PCR reactions. 

A standard nested set of generic primers specific for the hantavirus S- and L-RNA genome 

segments was used for the initial screening. Two different nested PCR sets (one is to detect S-

segment, another is to detect L-segment) were used for the detection of DOBV. For primer 

sequences, see the Table 3. The thermal cycling conditions of both 1st PCRs (40 cycles) and 

nested PCRs (25 cycles) were: single step of 95°C for 15 min, 59°C for 30 sec, 52/ 55°C for 

60 sec (S- / L-PCR) and 72°C for 60 sec, followed by one cycle of final extension for 6 min at 

72°C. PCR mixture (50 μl) contains: balanced (NH
4
)

2
S0

4
, 1.5 mM MgCl

2
, 0.1% Tween 20®, 

0.2mM of each dNTP, 1µM of each primer and 5 Units of TEMPase Hot Start DNA 

Polymerase (Biomol, Germany). 

 

Table 3: List of PCR primers used for hantavirus screening 

PCR Primer name Primer sequence 
S-segment 1st 

PCR 
 

nested PCR 

D113 (113-137) 
D1162c (1142-1162) 

 
D357 (357-376) 
D955c (935-955) 

5'-GATGCAGAIAAICAITATGARAA-3' 
5'-AGTTGIAT(I+C)CCCATIGA(I+C)TGT-3' 

 
5'-GAIATTGATGAACCIACAGG-3' 

5'-ACCCAIATTGATGA(I+C)GGTGA-3' 
L-segment 1st 

PCR 
 

nested PCR 
 

HAN-L-F1 (3119-3139) 
HAN-L-R1 (3550-3570) 

 
HAN-L-F2 (3170-3192) 
HAN-L-R2 (3538-3559) 

5'-ATGTAYGTBAGTGCWGATGC-3' 
5'-AACCADTCWGTYCCRTCATC-3' 

 
5'-TGCWGATGCHACIAARTGGTC-3' 

5'-GCRTCRTCWGARTGRTGDGCAA-3' 

The positions of primer binding sites for hantavirus specific S-PCR / L-PCR refer to the DOBV/Esl862/Aa/97 / 
DOBV/SK/Aa strain sequences (AJ269550 / GU904039.1). R=A+G, Y=C+T, M=A+C; S=G+C; K=G+T; 
W=A+T; I=inozine. 

3.9.2 PCR for sequencing of DOBV complete S-, M- and L- segments 

For sequencing of the complete genome, viral RNA was extracted from cell culture 

supernatant (chapter 3.7.1) and reverse transcribed with random hexamer primer (SuperScript 

III First-Strand Synthesis System for the Reverse transcription, chapter 3.8.2) 

The complete S-segment sequence was obtained by sequencing of two overlapping PCR 

products (primer pairs: RT-DOB/D955c, MurS 598F/ RT-DOB). PCR primers are listed in 
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Table 4. The same approach was used to obtain the complete M-segment (primer pairs: DOB-

M11/ M970R, M905F/ M1990R, M1674/ M3618). 

PCR (40 cycles) conditions were similar to those described in the chapter 3.9.1, only 

annealing temperature (52-55°C) and elongation time (1-2 min) were always modified 

according to melting temperature of primers and length of the amplified fragment. 

In the case of L-segment, the nested PCR amplifying overlapping L-segment fragments was 

carried out with PCR Extender System (5 Prime, Germany), following the application 

protocol of the manufacturers. The buffer of PCR was High Fidelity Buffer with 2.5 mM 

Mg2+, provided by manufacture. 1st PCR primer pairs: MURL-1F / HAN-L-R1, HAN-L-F1 / 

HTND-U1; nested primer pairs: MURL 38F / HAN-L-R2, HAN-L-F2 / HTND-U1. 

Concentration of each primer in PCR mixture was 0.4 µM. The cycling conditions of both 1st 

PCRs (40 cycles) and nested PCRs (25 cycles) were: single step of 94°C for 2 min, 94°C for 

20 sec, 48/ 50°C for 20 sec (1st / nested PCR) and 68°C for 2.5 min, followed by one cycle of 

final extension for 7 min at 68°C. 

 

Table 4: List of PCR primers used for DOBV sequencing 

PCR Primer name Primer sequence 
S-segment 

PCR.1 
 

S-segment 
PCR.2 

RT-DOB (1-22) 
D955c (935-955) 

 
MurS 598F (598-618) 

RT-DOB (1-22) 

5'-ttctgcagTAGTAGTAKRCTCCCTAAARAG-3' 
5'-ACCCAIATTGATGA(I+C)GGTGA-3' 

 
5'-TGAARGCWGAIGARATIACAC-3' 

 
M-segment 

PCR.1 
 

M-segment 
PCR.2 

 
M-segment 

PCR.3 

DOB-M11 (11-29) 
M970R (950-970) 

 
M905F (905-923) 

M1990R (1970-1990) 
 

M1674 (1674-1698) 
M3618 (3618-3638) 

5'-CTCCGCAAGAAATAGCAGT-3' 
5'-GTTTGCTGCATTTGCAGTGTG-3' 

 
5'-GTTGCAACTTATTCAATTG-3' 
5'-TCIGMTGCISTIGCIGCCCA-3' 

 
5'-TGTGAIRTITGIAAITAIGAGTGTGA-3' 

5'-GCAAGATATAGAAATACCCAC-3' 
L-segment 1st 

PCR.1 
 

nested PCR.1 
 
 

L-segment 1st 
PCR.2 

 
seminested 

PCR.2 

MURL-F1 (1-18) 
HAN-L-R1 (3550-3570) 

 
MURL 38F (38-57) 

HAN-L-R2 (3538-3559) 
 

HAN-L-F1 (3119-3139) 
HTND-U1 (6512-6533) 

 
HAN-L-F2 (3170-3192) 
HTND-U1 (6512-6533) 

5'-TAGTAGTAGACTCCSKAA-3' 
5'-AACCADTCWGTYCCRTCATC-3' 

 
5'-ATGGADAAATAYAGAGAAAT-3' 

5'-GCRTCRTCWGARTGRTGDGCAA-3' 
 

5'-ATGTAYGTBAGTGCWGATGC-3' 
5'-TAGTAGTAGTATGCTCCGGAAA-3' 

 
5'-TGCWGATGCHACIAARTGGTC-3' 

 

Small letters in primer sequences indicate 5'-tails of heterologous sequence integrated for cloning or sequencing 
purposes. R=A+G, Y=C+T, M=A+C; S=G+C; K=G+T; W=A+T; I=inozine. The positions of primer binding sites 
for hantavirus specific PCR refer to the DOBV/Esl862/Aa/97 strain sequences. 
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3.10 Cloning and sequencing 

The amplified PCR products were cloned into the pSC-A PCR cloning vector from 

StrataClone PCR Cloning Kit (Stratagene, Canada) according to the instructions of the 

manufacturer. At least three recombinant plasmids were sequenced in both directions with 

either respective primer pairs listed in Table 4 or M13uni / M13rev primers (Big dye 

Terminator V1.1 Kit, Applied Biosystems, Germany). Plasmids were then purified by the 

QIAGEN plasmid purification Mini Kit (Qiagen, Germany) according to the protocol of the 

manufacturer. Dideoxy sequencing was performed on a 3130 Genetic Analyzer sequencer 

(Applied Biosystems, Germany) using the Big dye Terminator V1.1 Kit (Applied Biosystems, 

Germany) as described by the manufacturer. 

3.10.1 Long PCR Product Sequencing (LoPPS) 

To sequence the full-length L-segment of newly isolated virus, a shotgun-based approach to 

sequence long PCR products was used [108]. Briefly, the method relies on ultrasonic shearing 

of PCR products, resulting in fragments 700–1.000 nt long. Termini are subsequently repaired 

to obtain blunt ends and 3’-A-overhangs are added before TA cloning. A predetermined 

number of clones are sequenced using an insert-independent primer to obtain an overlapping 

contig covering the full length of the PCR product. 

3.10.2 Sequencing of 5'- and 3’- ends of the S-, M- and L-segments 

The total RNA was extracted from Vero E6 cells infected with DOBV (MOI 0.1; 7 days post 

infection) according to the method described in the chapter 3.7.2. 

To get 5'- and 3’- ends of particular segment ligated, the T4 RNA ligase kit (Fermentas, 

Germany) was used accordingly to the instructions of the manufacturer. 50 µl of reaction 

mixture contained: 20 µl of RNA, 50 mM Tris-HCl (pH 7.5 at 25°C), 10 mM MgCl
2
, 10 mM 

DTT, 1 mM ATP, 5 µg of BSA, 40 Units of RNaseOUT™ and 50 Units of T4 RNA ligase. 

The mixture was incubated for 90 min at 37°C. 

Ligated RNA was reversely transcribed as described in chapter 3.8.1. 

To sequence ends of different segments, PCR products were obtained with a nested set of 

primers specific for the hantavirus S, M, and L genome segments. Thermocycler conditions 

were similar to described in the chapter 3.9.1, only annealing temperature for the 1st PCR / 

nested PCR was always 55°C. PCR products were sequenced with protocol described in the 

chapter 3.10. For primer sequences, see the Table 5. 
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Table 5: List of PCR primers used for DOBV segment ends sequencing 

PCR Primer name Primer sequence 
S-segment 

1st PCR 

 
nested PCR 

SKS-1380F (1380-1400) 
SKS-132R (113-132) 

 
SKS-1490F (1490-1511) 

SKS-108R (89-108) 

5'-TGTAATCCCACATATGCTGC-3' 
5'-CATACTGCTTTTCTGCATCC-3' 

 
5'-TAATCTCAGGGTGGGTTAGGA-3' 

5'-CCTTCTGCCTGGCTATCACC-3' 
M-segment 

1st PCR 

 
seminested 

PCR 

SKM3311F (3309-3331) 
DOBM 970R (950-970) 

 
SKM3311F (3309-3331) 

SKM-146R (146-166) 

5'-GGTTTATAAAATCTGGAGAGTGG-3' 
5'-GTTTGCTGCATTTGCAGTGTG-3' 

 
 

5'-ACCTGTTACACTGCTCTCTCC-3' 
L-segment 

1st PCR 

 
nested PCR 

SKL orf 6032F (6033-6052) 
DOB L 669R (650-669) 

 
GRW-L-6339F (6339-6367) 

GRW-L-591R (563-591) 

5'-GGGTGACTTGCTTATCATGT-3' 
5'-AACATKGCYTCYARAGCAGC-3' 

 
5'-AGTTTAGCACATTTGATCAGGAGGCACAG-3' 
5'-CTCATGTATTGAACAACCCCGTCATTTCT-3' 

The positions of primer binding sites for hantavirus specific PCR refer to the DOBV/Esl862/Aa/97 strain 
sequences. 

3.11 Sequence comparison and phylogenetic analysis 

The obtained overlapping nucleic acid sequences were combined for analysis and edited with 

the aid of the SEQMAN program from the Lasergene software package (DNASTAR, 

Madison, Wis.). The sequence data were further analyzed by using the BioEdit software 

package [109]. Sequences were aligned by using CLUSTAL W, implemented in BioEdit 

software, with default parameters. The sequences were first aligned on amino acid level and 

then reverse translated to nucleotide sequences by using BioEdit software. The reliability of 

the alignment was checked by using DotPlot analysis provided by BioEdit software package. 

The alignment was tested for phylogenetic information by Likelihood Mapping analysis 

[110]. To reconstruct maximum-likelihood (ML) phylogenetic trees, we applied quartet 

puzzling by using the TREE-PUZZLE package [110,111]. As an evolutionary model for the 

reconstructions, the Tamura-Nei model was used; missing parameters were reconstructed 

from the datasets. Values above the branches represent PUZZLE support values. Values 

below the branches are bootstrap values of the corresponding ML phylogenetic tree (Tamura-

Nei evolutionary model) calculated with the MEGA5 software [112] from 1000 bootstrap 

pseudoreplicates. Resulting evolutionary trees were then visualized by using MEGA5 

software [112]. 
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3.12 Receptor blocking assay 

Antibodies against α5β1 integrin, mouse monoclonal antibody MAB1969, (Millipore, 

Germany), ανβ3 integrin, mouse monoclonal antibody MAB1976 (Millipore, Germany) and 

DAF/CD55, rabbit polyclonal antibody H319 (Santa Cruz, Germany), were added to the 

confluent Vero E6 cells (seeded in 12 well plates). Cells were treated with 40 µg/ml of 

antibodies for 1 h at 4°C. Thereafter the virus (MOI 0.05) was added to the monolayer. After 

incubation for 1 h at 37°C, the cells were washed with medium and incubated for 24 h under 

growth conditions. Samples were taken for qPCR and Western Blot analysis. The percentage 

of antibody-mediated inhibition of infection (viral RNA production measured by qPCR) was 

calculated in comparison to untreated, infected cells. The density of N-protein and β-actin 

(reference protein) bands on Western blot were quantified by ImageJ 1.41o program (Wayne 

Rasband National Institutes of Health, USA). The expression of N-protein was normalised to 

the expression of β-actin. The percentages of antibody-mediated inhibition of viral infection 

(N-protein expression) were calculated in comparison to untreated but infected cells. Data are 

summarised in the graphical way. 

3.13 Quantitative real time PCR (qPCR) 

A549 cells or HUH7 cells were seeded in 12-well plates at a density to achieve 90–95% 

confluence after overnight incubation at culture conditions. For poly I:C-treatment, cells were 

transfected for 6 hours with 1.6 μg/well of poly I:C, high molecular weight #tlrl-pic 

(InvivoGen, USA) and Lipofectamine 2000 (Invitrogen, Germany). Cells were infected with 

MOI 1, at indicated time points RNA was isolated using the RNAeasy kit (Qiagen, Germany). 

Extracted RNA was subjected to the DNAse digestion (RNAeasy MinElute Cleanup 

Handbook 10/2010, Appendix C), following the protocol provided by manufacturer (Qiagen, 

Germany). Purified RNA was reversely transcribed by M-MLV Reverse transcription kit with 

the random hexamer primers (Invitrogen, Germany). MxA-, IFN-ß- and IFN-λ1-relative gene 

expression (quantified as fold induction of the gene in infected or stimulated cells in 

comparison to uninfected or untreated cells (negative control)) was quantified by QuantiTest 

Sybr Green PCR kit (Qiagen, Germany). Each PCR reaction contained 4 µl of corresponding 

cDNA, 0.4 µM final concentration of each corresponding primer in a 20 µl of total reaction 

volume. PCR conditions were taken from manufacturer protocol; annealing temperature for 

MxA and IFN-ß primers was 55°C, and 59°C for IFN-λ1 primer pairs. Using the Pfaffl 

method [113,114], data are presented as the fold change in gene expression normalized to an 

endogenous housekeeping gene (PBGD) and relative to the untreated control. Annealing 
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temperature and primers for PBGD qPCR were adapted from previously published protocol 

[115]. 

qPCRs for GRW/Aa, HTNV, SANGV and PHV viral S-segments RNA were performed as 

previously described [116]. The viral RNA was quantified by using S-segment templates of 

known copy numbers. Virus genome copy numbers were normalized to ng of total cellular 

RNA. The list of primers and probes used in qPCR assays is attached in Table 6. 

Experiments were repeated three times, each repetition included infections/transfections 

performed in duplicates. Results are presented as the mean ± standard deviation of the mean. 

 

Table 6: Primers and probes used in real-time SYBR Green and TaqMan qPCR 

Real Time 
PCR 

Primer/ Probe name Primer / Probe sequence 

MxA 

 

MxAq F 

MxAq R 

5'-GAGGAGATCTTTCAGCACCTGAT-3' 

5'-CTGGATGATCAAAGGGATGTGGC-3' 

IFN-ß IFNb se 

IFNb as 

5'-GCCGCATTGACCATCTATGAGA-3' 

5'-GAGATCTTCAGTTTCGGAGGTAAC-3' 

IFN-λ1 IFN L1 F 

IFN L1 R 

5’-GTCACCACAGGAGCTAGCGA-3’ 

5’-GTGAAGGGGCTGGTCTAGG-3’ 

PBGD PBGD F 

PBGD R 

5'-GGCTGCAACGGCGGAA-3' 

5'-CCTGTGGTGGACATAGCAATGATT-3' 

DOBV-S-
segment 

DOBV F 

DOBV R 

DOBV R1 

Probe (DOBV TMGB) 

5'-GACTCACCRTCATCAATYTGGGT-3' 

5'-TGGAGGACAGMAAARAATGCACC-3' 

5'-GATGCCATGATIGTRTTCCTCAT -3' 

5'-F-TCTGCCATGCCTGC--MGB-3' 

SANG-S-
segment 

lcSA14-F1 

lcSA14-R1 

Probe (SA14-TAQ) 

5'-AGGCTGTCAGACAACAAGCA-3' 

5'-GCTCCTGCAAATACCCAAAT-3' 

5’-F-TGGACCACATTGACTCACCATCATCA-TMR-3’ 

HTNV-S-
segment 

Ht&Se F 

Ht&Se R 

Probe (Hat&Se MGB) 

Probe (Hat&Se MGB1) 

5'-CATGGCWTCHAAGACWGTGGG-3' 

5'-TTKCCCCATGCCACCAT-3' 

5'-F-TCAATGGGGATACAACT--MGB-3' 

5'-F-TCAATGGGAATACAACT--MGB-3' 

PHV-S-
segment 

lcPHVF 

lcPHVR 

Probe (PHV-TAQ) 

5'-AGGAAGAGATCACTCGCCAT-3' 

5'-TCCAATGTTGACACTGCTGA-3' 

5’-F-CATTGCCCGGCAGAAGCTCA--TMR-3’ 

F = FAM label, TMGB = hydrolysis probe coupled to an MGB moiety; MGB = Minor Groove Binder, TMR = 
TAMRA, R = antisense orientation, F = sense orientation, location of the oligonucleotide in reference to the 
respective GenBank entry. 
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3.14 ELISA of IFN-λ1 

ELISA was performed using the human IFN-λ1 DuoSet ELISA Development System (R&D 

Systems, DY1598) as in the recommended protocol, with the exception of coating the plates 

with a polyclonal anti-human IFN-λ1 capture antibody (R&D Systems, AF1598). This 

antibody was used for its greater cross-reactivity to African green monkey-derived IFN-λ. 96-

well plates were precoated for 16 hours at 4°C with 100 µl of a polyclonal anti-human IFN-λ1 

capture antibody (2 µg/ml). After capture antibody was bound to plate, 300 µl of 3% BSA 

(diluted in PBS) were added in order to block unspecific bindings, plate was incubated at 

room temperature for 1 hour. Thereafter, wells were washed four times with a washing buffer 

(1% BSA in PBS). Samples, containing 100 µl of Vero E6-derived viral stocks or Vero E6-

conditioned medium as a control that had been subjected to UV irradiation, were added and 

incubated for 2 hours at room temperature. Wells were washed again and 100 µl of detection 

antibody (400 ng/ml) were added and incubated for 2 hours at room temperature. After that 

wells were washed again with a washing buffer and 50 µl of Streptavidin-HRP (0.5 µg/ml) 

were added and incubated at room temperature for 30 minutes. Wells were washed 4 times 

with washing buffer and 50 µl of TMB Substrate Solution (Seramun Diagnostica, Germany) 

were added and incubated at room temperature for 10 minutes, followed by addition of 50 µl 

of Stop Solution (1N H2SO4). Optical density (O.D.) of each well in the plate was measured 

on the reader (Sunrise Tecan, Switzerland) at 450 nm. The concentrations of IFN-λ1 were 

interpreted from a curve generated using 2-fold dilutions of a recombinant IFN-λ1 standard 

starting at 4000 pg/ml. All data were reported as the average of samples and standards run in 

duplicate wells. 

3.15 Protein chemistry 

3.15.1 Western blot 

Cell extracts were prepared by lysing the cells with sample buffer (250 mM Tris, 2% SDS, 

10% Glycerin, 5% ß-mercaptoethanol, 25 U/ml of Benzonase and 0.01% bromphenolblue) at 

37°C for 5 min. To remove cell debris, the lysate was centrifuged and afterwards boiled at 

95°C for denaturing of the proteins. For separation of the proteins, samples were loaded on a 

10% polyacrylamide gel. The gel was run at 25 mA/gel until the blue front was at the bottom 

of the gel. 
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Table 7: Composition of SDS gels for Western blot analysis 

Chemicals 10%  Resolving gel 5% Stacking gel 

30% Acrylamide/Bis (29:1) 8.3 ml 1.3 ml 

1.5M Tris HCl (pH8.8) 6.5 ml --- 

0.5M Tris HCL (pH 6.8) --- 2.5 ml 

H2O 9.9 ml 6.1 ml 

10% SDS 200 μl 200 μl 

10% APS 250 μl 50 μl 

TEMED 25 µl 10 µl 
 

Following electrophoretic separation, proteins were transferred onto methylcellulose 

membrane by semi-dry blotting method at 75 mA/gel. The resolving gel was cut from the 

stacking gel. Three pieces of Whatman paper were soaked with blotting buffer and placed 

onto the semi-dry electroblotting device. The gel was placed onto the Whatman paper. The 

nitrocellulose membrane was equilibrated in the semidry blotting buffer and placed onto the 

gel. Finally three additional Whatman papers were put onto the membrane. The transfer was 

performed for one hour at 75 mA/gel. After the transfer, the gel was stained with Coomassie 

Brilliant Blue staining to visualize the efficiency of protein transfer. Then the blots were 

blocked for 1 hour at room temperature in TBST (100 mM Tris-HCl (pH 8.0), 1.5 M NaCl, 

0.5 % Tween 20) containing either 5% milk powder or 5% BSA (in the case of 

phosphorylated protein of interest). Specific primary antibodies, diluted in TBST containing 

2% milk powder (2.5% BSA), were added to the blots and incubated for 1 hour to 12 hours at 

4°C. The membranes were then washed five times with TBST, followed by incubation with 

appropriate secondary antibodies conjugated with horseradish peroxidase for 1 hour at room 

temperature. After five final washing steps, detection of the stained proteins was performed 

by adding chemiluminescent substrate (SuperSignal West Dura Extended Duration Substrate) 

to the membranes. The proteins were visualised by exposure on a CCD camera (Bioblock 

Scientific, France). 

3.15.2 Detection of antiviral MxA protein, interferon-inducible PKR, elongation 
factor eIF2α, viral nucleocapsid and ß-actin (reference protein) expression 

The expression of the MxA protein was examined in A549 and HUH7 cells. Cells were grown 

in 12-well plates and infected with MOI 1 of the respective virus. Cells infected with HTNV 

were taken as a positive control in MxA expression assays. Uninfected cells were taken as a 

negative control. Plates were incubated at 37°C in 5% CO2 humidified atmosphere. At time 

points 1, 2, 3, and 4 days post infection, samples were taken for each virus. Briefly, the 
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medium was removed and cells were carefully washed twice with PBS. After removing the 

PBS, lysis buffer (see the chapter 3.15.1) was added to the cells. The plates were incubated 

for 15 min at 37°C. Afterwards, the lysate was transferred to 0.5 ml tube and stored at -20°C 

until analysis by Western blot. 

 

Table 8: Primary antibodies for Western blot analysis 

Specificity (dilution) Origin Reference 
α – SK/Af (1:500) rabbit [107] 
α – Sang (K105) rabbit Seramun Diagnostia, 

Germany 
PKR (phospho T446) antibody 

[E120] (1:500) 
rabbit Abcam plc, UK 

PKR (ab58301) (1:1000) mouse Abcam plc, UK 
Phospho-eIF2α (Ser51) (119A11) 

(1:500) 
rabbit Cell signalling, USA 

eIF2α (L57A5) (1:1000) mouse Cell signalling, USA 
M 143 α – MxA (1:500) mouse [117] 

ab6276 α -Actin (beta) (1:150000) mouse Abcam plc, UK 
 

Table 9: Secondary antibodies for Western blot analysis 

Antibody (Dilution) Reference 

horseradish-peroxidase (HRP)-labelled Goat 

anti-Rabbit IgG 1:1000 

Dako, Denmark 

horseradish-peroxidase (HRP)-labelled Goat 

anti-Mouse IgG 1:1000 

Dako, Denmark 

 

3.15.3 PKR inhibition assay 

A549 cells were seeded in 12 well plates one day before infection, to achieve 80% 

confluence. Cells were infected with corresponding virus with MOI 1 for two and four days. 

Afterwards, cells were transfected with poly I:C in order to stimulate phosphorylation of 

PKR. For poly I:C-treatment, infected cells (after two and four days post infection) were 

transfected (accordingly to manufacturer instructions) for six hours with 0.5 μg/well of poly 

I:C, high molecular weight #tlrl-pic (InvivoGen, USA) and Lipofectamine 2000 (Invitrogen, 

Germany). Then cells were lysed in protein lysis buffer (chapter 3.15.2) and passed on to the 

Western blot analyses (chapters 3.15.1, 3.15.2). The inhibition effect was assessed by 

comparison of virus infected, poly I:C-stimulated cells with uninfected, poly I:C-stimulated 

cells.



4 Results 

4.1 Generation of DOBV cell culture isolate from Germany 

4.1.1 Virus isolation 

During 2002-2008 around 400 Apodemus mice were trapped in three federal states of 

Germany (Lower Saxony, Mecklenburg-Western-Pomerania and Brandenburg). Tissues were 

obtained from both A. agrarius and A. flavicollis rodent species. DOBV-IgG ELISA revealed 

20 positive samples [35]. Three animal tissues (two of A. agrarius and one of A. flavicollis 

origin) positive for DOBV in serology and RT-PCR (GER/08/118/Aa, GER/08/125/Aa and 

GER/08/131/Af) were used in the current study. Lung tissue suspensions of infected animals 

were inoculated onto Vero E6 cells. After six weeks of blind passaging (three passages) 

infected cells were detected by immunofluorescence assay in case of the GER/08/131/Af 

sample (Figure 10) and the presence of viral RNA in the cell culture supernatant was verified 

by RT-PCR (data not shown). The novel isolate was called Greifswald virus (GRW) 

according to the geographical region where the positive animal had been trapped. 

 

Figure 10: Evaluation of virus isolation success by immunofluorescence assay. Immunofluorescent 
staining of Vero E6 cells inoculated with lung tissue suspensions of RT-PCR positive mice 
(GER/08/118Aa, GER/08/125Aa, GER/08/131Af) and a negative control (NC) using DOBV/ HTNV 
human convalescent-phase serum. Evans Blue Reagent was used as a counter stain. 

The fact that the cell culture isolation succeeded only in the case of a tissue from a spill-over 

infected rodent (see below) raised the question of determinants of successful isolation 

procedure. Therefore we retrospectively quantified the virus load in the used tissue samples 

by quantitative real-time PCR (qPCR). Indeed, the highest virus load was observed in lungs of 

GER/08/131/Af mouse (290 ± 94 copies per ng of total RNA) while GER/08/118/Aa and 

GER/08/125/Aa tissue samples were determined to contain 99 ± 62 and 0.7 ± 0.6 copies per 

ng of total RNA, respectively. 
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4.2 Complete genetic characterization of the new virus isolate 

4.2.1 Sequence analysis of GRW virus genome segments 

Complete nucleotide sequences of all three virus genome segments were determined. S-

segment was found to be 1,675 nucleotides (nt) long and its single open reading frame (ORF; 

nt position 36-1,325) encodes the viral nucleocapsid protein of 429 amino acids (aa). M-

segment is 3,644 nt long and encodes the glycoprotein precursor of 1,135 aa (ORF position 

41-3,448). L-segment is 6,532 nt long and encodes the viral RNA-dependent RNA 

polymerase of 2,151 aa (ORF position 38-6,493). 

Based on the current hantavirus classification, defined by the International Committee on 

Taxonomy of Viruses (ICTV), a distinct hantavirus species has to exhibit at least a 7% 

difference in amino acid identity when comparing the complete S-segment and M-segment 

sequences. Recently, new criteria of ICTV guidelines have been suggested for the 

demarcation of hantavirus into species (amino acid distance of >10% for S-segment or >12% 

for M-segment) [118]. According to these guidelines, GRW virus does not form a separate 

hantavirus species and clearly belongs to the DOBV species. The sequence similarities 

between GRW and other DOBV isolates were in range from 79.8 to 89.3% on nucleotide and 

from 90.2 to 98.8% on amino acid level (Table 10). SK/Aa showed the highest sequence 

identity values with more than 96% aa sequence identity for all three segments. Interestingly, 

for the S-segment sequences the lowest similarity values were observed for SAAV/160V 

while for M- and L- segment sequences for Sochi/hu. 

 

Table 10: Complete ORF nucleotide and amino acid sequence identities of GRW with other DOBV, 
SANGV and HTNV isolates* 

 % identity of GRW with virus isolates 

 S-segment M-segment L-segment 

virus isolate nt aa nt aa nt aa 

SK/Aa 89.3 98.8 86.6 96.3 86.7 97.3 

SAA/160V 87.4 97.4 87.0 95.9 88.0 97.2 

Slo/Af 88.2 97.9 83.2 94.3 85.9 97.6 

DOBV 

isolates 

Sochi/hu 87.7 98.3 79.8 90.2 83.4 95.8 

SANGV 78.2 88.5 72.4 80.7 75.5 86.9 

HTNV/76-118 74.2 83.4 70.5 76.6 74.7 85.0 

* ORF, open reading frame. nt, nucleotides. aa, amino acids. NA, not available 



4.2.2 Panhandle-forming terminal nucleotides (22-29 bp long) of the GRW RNA 
genomic segments 

In order to characterize the complete genome of GRW, exact 3’- and 5’-termini of all three 

viral RNA segments were determined (for detailed protocol see Materials and methods 

section). As it has been observed for other hantaviruses [39], 3’- and 5’-termini of GRW viral 

RNA are forming panhandle structure with a length of 22-29 bp (Figure 11). 14 of the 22-29 

bp are identical in all three segments. However, base pairing is incomplete, with two 

mismatches (within the 14 identical bp) at positions 9 and 10. In other hantaviruses such as 

HTNV, SEOV, PUUV and SNV, a noncanonical G:U pair in position 10 is present [39]. In 

case of GRW G:U pair appears at position 28 in S- and M-derived panhandles and at position 

19 in L-derived panhandle (Figure 11). 

 

 

Figure 11: Panhandle-forming terminal nucleotides (22-29 bp long) of the GRW/Aa RNA genomic 
segments. |, complementary pairing; :, noncanonical U-G pair 

4.3 Molecular phylogenetic analyses 

ORF sequences of all three GRW segments were analyzed by the maximum-likelihood 

method with Tamura-Nei evolutionary model (Figure 12). Before the tree reconstruction used 

data sets were analyzed by RDP3 program with automated screening procedure [119]. No 

putative recombination regions for any of the used data sets could be detected by more than 3 

programs implemented in RDP3. 

In S- and M-segment analyses, the GRW sequences clustered with high statistical support 

together with DOBV sequences obtained from mice trapped in Northern Germany and 

therefore clearly belong to the DOBV species (Figure 12 A and B). Moreover, there was no 
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difference in sequences obtained from mouse tissue (GER/08/131/Af) and its cell culture-

generated isolate (GRW), demonstrating the absence of mutations during cell culture isolation 

procedure at least for the analyzed S- and M- segment coding sequences (Figure 12). As 

previously stated for the rodent tissue-derived sequence GER/08/131/Af [35], the new DOBV 

strain was isolated from A. flavicollis mouse, but genetically belongs to the DOBV-Aa lineage 

(associated with A. agrarius as a natural host) (Figure 12 A, B, C). This finding shows that 

the virus was obtained from a spill-over infected animal. Therefore, the new DOBV isolate 

was designated as GRW/Aa according to its evolutionary origin in DOBV-Aa lineage and 

despite the fact that it was isolated from A. flavicollis. In addition, comparison of 

phylogenetic trees of all three segments revealed no indications for reassortment events of 

GRW/Aa with other hantavirus strains (Figure 12 A, B, C). 



 

Figure 12: Maximum likelihood phylogenetic trees (TREE-PUZZLE package, Tamura-Nei 
evolutionary model) based on (A) complete S-, (B) complete M- and (C) complete L- segment ORFs 
sequences. 
 ← - GRW/Aa positions in trees. Values above the branches represent PUZZLE support values, 
while values below the branches are bootstrap values of the corresponding maximum likelihood 
phylogenetic trees (Tamura-Nei evolutionary model) calculated with the MEGA5 software from 1,000 
bootstrap pseudoreplicates. Only values > 70% (considered significant) are shown. Different DOBV 
clades are indicated by gray boxes. Before tree reconstruction sequence data were verified by RDP3 
program [119]. No putative recombinant regions could be detected by more than 3 programs implemented 
in the RDP3 automated screening. For abbreviations and accession numbers, see the materials and 
methods. 
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4.4 Molecular evidence of DOBV-caused human infections in Germany 

4.4.1 Clinical case of DOBV-caused HFRS from Northern Germany 

In October 2010, a 35 years old woman (patient H431) from Walsleben, north of Germany, 

was hospitalized to the local hospital in Neuruppin. At admission, she developed symptoms 

compatible with a hantavirus infection, such as influenza-like symptoms, fever, headache, 

back and abdominal pain, acute renal failure with proteinuria. 

First testing of the serum (H431) was performed in Stuttgart (Laboratory Prof. Enders) 

applying ELISA from Progen (Germany). Patient serum was examined to detect the presence 

of specific IgG and IgM antibodies to either Hantaan (HTNV) or Puumala viruses (PUUV). 

The test revealed the presence of HTNV-specific IgM antibodies. Knowing that antibodies 

against HTNV highly cross-react with DOBV, further testing was performed in order to 

differentiate whether patient serum react better with HTNV or DOBV antigens. 

A detailed serum examination was performed by in-house ELISA in Berlin (Table 11). This 

ELISA uses recombinant DOBV and PUUV nucleocapsid protein antigens to detect the 

presence of specific IgG and IgM antibodies. The titers of IgG and IgM to DOBV antigen 

were determined to be 1:102,400 and 1:25,600, respectively, whereas PUUV-specific IgG 

antibodies could not be detected. 

 

Table 11: Testing of serum H431 by in-house ELISA (Berlin). End-point antibody titers are shown. 

DOBV-IgG 1:102,400 

DOBV-IgM 1:25,600 

PUUV-IgG <1:400 

PUUV-IgM Not done 

 

 

IgG antibodies were analyzed by Bunya-BLOT (Mikrogen, Germany). This BLOT uses 

recombinant hantavirus nucleocapsid protein antigens to detect the presence of specific IgG 

antibodies. Bunya-BLOT analyses revealed IgG antibodies present in patient serum which 

react with HTNV / PUUV and DOBV antigens (Figure 13). 

 



 

Figure 13: Bunya-BLOT IgG (Mikrogen, Germany) analyses of serum from H431 patient. SC, 
serum control (IgG); cut-off, bands are only considered to be positive if darker than cut-off band; PUUV, 
Puumala virus; HTNV, Hantaan virus; DOBV, Dobrava-Belgrade virus; SEOV, Seoul virus; N, viral 
nucleopcapsid protein. 

 

4.4.2 Molecular phylogenetic analyses including patient derived sequences 

RNA for reverse transcription PCR (RT-PCR) was extracted from patient H431 serum. A 

nested PCR specific for DOBV M- and L-segments generated DNA bands of expected sizes 

(M, 317 nt, positions 1,673 to 1,989; L, 300 nt, positions 3,013 to 3,312). Nucleotide 

sequence of these fragments were determined and phylogenetically analyzed. In addition, 

previously published S-segment sequence derived from a patient (H169, [100]) was also 

included in phylogenetic analyses. 

In analyses of partial S-, M-, and L- segments (Figure 14 A, B, C), Northern German HFRS 

patient-derived nucleotide sequences H169 (S-segment only) and H431 (M- and L-segments 

only) cluster closely with mouse-derived DOBV-Aa sequences and GRW/Aa. Therefore, 

phylogenetic analyses undoubtedly showed that sequences obtained from patient H431 are of 

DOBV-Aa origin. In addition, analyses demonstrated that DOBV circulating in the natural 

host population from this particular region is responsible for human disease. Based on 

obtained results, GRW/Aa can be taken as a representative for hantavirus causing HFRS in 

the northern part of Germany. 
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Figure 14: Maximum likelihood phylogenetic trees (TREE-PUZZLE package, Tamura-Nei 
evolutionary model) based on (A) partial S- (559 nt, positions 377 to 938), (B) partial M- (317 nt, 
positions 1,673 to 1,989), (C) partial L- (300 nt, positions 3,013 to 3,312) segment sequences.  

 ← - GRW/Aa positions in trees.  - positions of DOBV patient-derived sequences in trees. 
Values above the branches represent PUZZLE support values, while values below the branches are 
bootstrap values of the corresponding maximum likelihood phylogenetic trees (Tamura-Nei evolutionary 
model) calculated with the MEGA5 software from 1,000 bootstrap pseudoreplicates. Only values > 70% 
(considered significant) are shown. Different DOBV clades are indicated by gray boxes. Before three 
reconstruction sequence data were verified by RDP3 program [119]. No putative recombinant regions 
could be detected by more than 3 programs implemented in the RDP3 automated screening. For 
abbreviations and accession numbers, see the materials and methods. 
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4.5 Cellular receptors necessary for GRW/Aa virus and SANGV entry 

As a further step towards virus characterization, the receptor usage of GRW/Aa virus was 

determined using blocking experiments. In parallel studies receptor usage for the novel 

African hantavirus, SANGV, has been assessed as well. 

In Vero E6 cells, the putative hantavirus receptors (αvß3 integrin, α5ß1 integrin, DAF) were 

blocked by pre-incubation with specific blocking antibodies and then the cells were infected 

with the virus. Efficiency of the virus entry blockage was evaluated by quantification of viral 

RNA with qPCR (Figure 15 A) and detection of viral nucleocapsid protein by Western blot 

analyses (Figure 15 B) in the infected cells. In addition, HTNV and PHV were used in the 

assay as a control of our experimental settings since their entry was reported to be inhibited 

by ß3 and ß1 integrin-specific antibodies, respectively [52]. HTNV has been also found to be 

inhibited by anti-DAF antibodies [55]. Both approaches revealed that the presence of 

accessible avß3 integrin and DAF receptors on the cell surface is important for GRW/Aa 

entry. We observed up to 60% inhibition of GRW/Aa infection in the presence of neutralizing 

anti-αvß3 integrin and up to 80% of GRW/Aa inhibition in the presence of anti-DAF 

antibodies, whereas anti-α5ß1 antibody failed to block GRW/Aa infection. 

In the case of SANGV, results of both qPCR (Figure 15 A) and Western blot (Figure 15 B) 

clearly indicated that SANGV infection can be efficiently blocked only by anti-α5ß1 integrin 

antibodies. We observed up to 80% in qPCR and up to 60% by Western blot inhibition of 

SANGV infection in the presence of blocking anti-α5ß1 antibodies. 

As a control for our experimental settings we reproduced data confirming receptor usage of 

HTNV and PHV known from literature and mentioned above. Interestingly, although 

infection by both control viruses could be efficiently inhibited also by anti-DAF antibodies, 

this was not the case for SANGV which could be significantly inhibited exclusively by ß1-

specific antibodies. 



 

Figure 15: Integrin / DAF receptor blocking assay. Vero E6 cells were treated with 40 μg/ml of 
indicated blocking antibodies for one hour. Then corresponding virus at multiplicity of infection (MOI) 
0.05 was added to the cells. After one hour cells were washed, new medium was added. One day later 
samples were collected. A) Viral S-segment RNA expression was measured by qPCR. B) Expression of 
viral nucleocapsid (N) protein was detected by Western blot. The density of bands on blots was quantified 
by ImageJ 1.41o programm (Wayne Rasband National Institutes of Health, USA). The percentages of 
antibody-mediated inhibition of viral infection were calculated in comparison to untreated but infected 
cells. Experiment was performed three times. Data are presented as the mean ± SD of the mean. 

4.6 Activation of selected innate immunity markers in response to GRW/Aa and 
SANGV infection 

4.6.1 Expression of antiviral MxA protein and mRNA in response to GRW/Aa and 
SANGV infection 

Since A549 and HUH7 cells have been used in previous studies on innate immunity response 

in terms of hantavirus infection [71,120], we also elucidated how A549 and HUH7 cells 

respond to GRW/Aa and SANGV infection. MxA protein and mRNA expression were 

investigated by Western Blot and qPCR, respectively. 

MxA protein expression in response to GRW/Aa infection of A549 cells was first detectable 

by Western blot at day 4 post infection (Figure 16 A) but MxA mRNA measured by qPCR 

was gradually increasing from day 1 to day 4 post infection (Figure 16 B). Interestingly, there 

was no detectable MxA protein expression after GRW/Aa infection in HUH7 cells (Figure 16 

C). However, some basic and continuous expression of MxA mRNA (~ 10 folds induction in 

comparison to negative control) was observed in HUH7 cells exposed to GRW/Aa infection 

(Figure 16 D). Similar MxA protein expression patterns were observed for pathogenic HTNV 

and DOBV-SK/Aa [71,72]. 
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Figure 16: Monitoring of MxA protein expression and MxA, viral RNA expression in A549 cells (A, 
B) and in HUH7 cells (C, D) after GRW/Aa infection. A549 cells or HUH7 cells were infected at MOI 
1. Samples were taken at indicated time points post infection A), C) Expression of antiviral MxA protein 
detected by Western blot. NC (negative control), uninfected cells. PC (positive control), cells infected 
with HTNV for four days. β-actin was taken as a reference protein (loading control). Representative 
results of two independent experiments are shown. B), D) Expression of viral RNA and induction of MxA 
mRNA in response to GRW/Aa infection measured by qPCR. Poly I:C, cells transfected at the time of 
infection with 1.6 μg of poly I:C for six hours. Experiment was performed three times. Data are presented 
as the mean ± SD of the mean. 

 

MxA protein expression in response to SANGV infection of both A549 and HUH7 cells was 

observed already at day 1 post infection (Figure 17 A, C) and was gradually increasing from 

day 1 to day 4. The expression of MxA protein in HUH7 cells seems to be stronger in 

comparison to MxA protein expression in A549 cells infected with SANGV. Since MxA 

protein expression was observed already at day 1 after infection with SANGV, investigation 

of MxA mRNA levels by qPCR was extended to earlier time points after infection (1 hour, 6 

hours and 12 hours). We observed significant induction of MxA mRNA (~ 100 folds 

induction in comparison to negative control) already 6 hours post infection in SANGV 

infected A549 and HUH7 cells (Figure 17 B, D). The obtained pattern for MxA mRNA 

expression in response to SANGV was almost the same in both cell lines (Figure 17). 

Interestingly, SANGV-mediated MxA protein expression patterns resemble patterns which 

were reported for non-pathogenic PHV [71]. 
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Figure 17: Monitoring of MxA protein expression and MxA, viral RNA expression in A549 cells (A, 
B) and in HUH7 cells (C, D) after SANGV infection. A549 cells or HUH7 cells were infected at MOI 
1. Samples were taken at indicated time points post infection A), C) Expression of antiviral MxA protein 
detected by Western blot. NC (negative control), uninfected cells. PC (positive control), cells infected 
with HTNV for four days. β-actin was taken as a reference protein (loading control). Representative 
results of two independent experiments are shown. B), D) Expression of viral RNA and induction of MxA 
mRNA in response to SANGV infection measured by qPCR. Poly I:C, cells transfected at the time of 
infection with 1.6 μg of poly I:C for six hours. Experiment was performed three times. Data are presented 
as the mean ± SD of the mean. 

 

4.6.2 IFN-ß and IFN-λ1 induction in response to GRW/Aa and SANGV infection 

The observed MxA induction pattern motivated us to study further the mechanisms regulating 

MxA expression. Since MxA expression is tightly regulated by type I and type III interferons 

(IFNs) and is not induced directly by viruses or other stimuli [77], it was necessary to 

investigate whether GRW/Aa and SANGV induce type I IFN (IFN-ß) or/ and type III IFN 

(IFN-λ1) in cell lines. Given that A549 cells are established from lung epithelium which is 

affected during hantavirus infection, we chose A549 as a target cell line to set up methods and 

to study IFNs induction by hantaviruses. 
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Figure 18: Induction of IFN-ß and IFN-λ1 mRNA expression in A549 cells after GRW/Aa (A) or 
SANGV (B) infection. A549 cells were infected at MOI 1. Samples were collected at indicated time 
points. Expression of IFN-ß and IFN-λ1 mRNA were measured by qPCR. Poly I:C, cells transfected at 
the time of infection with 1.6 μg of poly I:C for six hours. Experiment was performed three times. Data 
are presented as the mean ± SD of the mean. 

A549 cells were infected at MOI 1 with corresponding virus, at indicated time points (Figure 

18 A, B) cells were lysed in RLT buffer. RNA was extracted from lysed cells with RNAeasy 

kit. mRNA expression of IFN-ß and IFN-λ1 was measured by qPCR. The same RNA samples 

were used before (chapter 4.6.1) to measure MxA mRNA expression after GRW/Aa or 

SANGV infection of A549 cells. 

The expression of IFN-λ1 mRNA was stronger than the expression of IFN-ß mRNA in A549 

cells infected with GRW/Aa (Figure 18 A). Interestingly, SANGV induces similar IFN-ß 

mRNA expression kinetic as GRW/Aa (Figure 18 B). On the other hand, expression of IFN-

λ1 mRNA after SANGV infection appeared earlier (at 12 hours post infection) than in cells 

infected with GRW/Aa (Figure 18 B). Therefore, obtained IFN-ß and IFN-λ1 mRNA kinetics 

led us to conclude that both interferons play role in MxA induction after infection of A549 

cells with either GRW/Aa or SANGV. However, IFN-λ1 could be a primer inducer of MxA 

since induction of IFN-λ1 mRNA precedes the induction of IFN-ß mRNA (Figure 18). 

4.6.3 GRW/Aa and SANGV stocks contain different amounts of IFN-λ1 

Very recently Prescott and co-authors revealed that certain hantaviruses are able to induce 

type III IFNs in type I IFN-deficient Vero E6 cells [78]. This cell line is commonly used for 

hantavirus stock preparation. Furthermore, infection of HUH7 cell line with a virus stock 

containing type III IFNs influenced the MxA induction patterns [78]. 

Therefore, to elucidate whether our virus stocks – which were produced in Vero E6 cells - 

contain detectable amounts of IFN-λ1 we performed an IFN-λ1-specific ELISA. Vero E6-

 56 



 57

derived virus stocks of GRW/Aa, SANGV, HTNV and PHV were UV inactivated before they 

were evaluated. The IFN-λ1 ELISA revealed that GRW/Aa and HTNV stocks contained very 

low amounts of IFN-λ1 reaching concentrations of around 100 pg/ml. In contrast, SANGV 

stocks contained rather high IFN-λ1 concentrations of about 1,750 pg/ml. Comparable 

concentrations of IFN-λ1 were also found in PHV stocks (Figure 19 A). 

To purify viruses from interferons, we precipitated GRW/Aa and SANGV by 

ultracentrifugation. Vero E6-derived cell culture supernatants were replaced by fresh medium. 

We observed that the purified GRW/Aa stocks (GRW/Aa-ucf) contained again very low 

amount of IFN-λ1 comparable with the non-ultracentrifuged virus stocks (Figure 19 A). 

Purified SANGV stocks (SANGV-ucf), which showed high IFN-λ1 concentration prior 

purification, contained now very low IFN-λ1 amount as purified and non-purified GRW/Aa 

stocks (Figure 19 A). 

4.6.4 Influence of Vero E6-derived type III IFNs on MxA mRNA induction 

To verify the influence of Vero E6-derived IFN-λ1 on obtained MxA protein and mRNA 

kinetics we performed a function-blocking assay using an anti-IFN-λ1 antibody. To neutralize 

IFN-λ1 present in Vero E6-prepared stocks, viruses were pre-incubated with blocking anti-

IFN-λ1 antibody. Afterwards such pre-treated viruses were added into A549 cells. Cell 

samples were collected after 16 hours (SANGV) and on the day 4 (GRW/Aa) after infection. 

These time points were selected according to the strongest MxA mRNA expression detected 

in previous experiments (Figure 16 and Figure 17). As a control for antibody specificity and 

blocking efficiency, we pre-incubated in the same way recombinant human IFN-λ1 (rhIFN-

λ1) along with anti-IFN-λ1 neutralizing antibody. We observed that anti-IFN-λ1 neutralizing 

antibody completely inhibits the rhIFN-λ1-mediated MxA response (Figure 19 B, C). As an 

additional control for antibody specificity and sensitivity, we used recombinant IFN-ß (rhIFN-

ß) along with anti-IFN-ß neutralizing antibodies. We observed that although rhIFN-ß itself 

induces robust MxA responses, the anti-IFN-ß neutralizing antibody inhibited only rhIFN-ß-

mediated MxA responses, and not inductions of MxA mediated by GRW/Aa or SANGV 

stocks containing IFN-λ1. Controls indicated that the anti-IFN antibodies are neutralizing 

only their homologous targets (Figure 19). 

We observed that pretreatment of GRW/Aa stock with neutralizing anti-IFN-λ1 antibody did 

not influence the MxA mRNA expression (Figure 19 B). However, anti-IFN-λ1 antibody was 

able to prevent SANGV-mediated MxA mRNA expression (Figure 19 C). Nevertheless, 

pretreatment of viruses with blocking anti-IFN-ß had no influence on GRW/Aa and SANGV-

mediated MxA mRNA expression (Figure 19 B, C). 



For additional evidence that the presence of certain amount of Vero E6-derived type III IFNs 

in virus stocks plays a role in MxA induction, A549 cells were infected with virus stocks 

purified by ultracentrifugation (ucf). We observed that MxA mRNA expression after 4 days 

of infection of A549 cells with GRW/Aa-ucf stock was similar to non-ultracentifuged 

GRW/Aa virus stock (Figure 19 B). This indicates that amount of IFN-λ1 present in Vero E6-

prepared GRW/Aa stocks does not influence MxA response after GRW/Aa infection of A549 

cells. 

 

 

Figure 19: Influence of Vero E6-derived IFN-λ1 on MxA induction in A549 cells infected with 
GRW/Aa or SANGV. A) Amount of IFN-λ1 present in Vero E6-preapred virus stocks measured by 
ELISA. NC, negative control. Data are presented as the mean between three independently prepared 
stocks ± SD from the mean. B) GRW/Aa stocks purified from Vero E6-derived IFN-λ1 (either through 
function-blocking assay or ultracentrifugation) do not differ from untreated GRW/Aa stocks in their 
ability to induce MxA expression. C) SANGV stocks purified from Vero E6-derived IFN-λ1 (either 
through function-blocking assay or ultracentrifugation) differ dramatically from untreated SANGV stocks 
in their ability to induce MxA expression. MxA mRNA expression was analysed by qPCR and presented 
as a fold-induction in comparison to untreated A549 cells taken as a negative control (NC). Experiment 
was performed three times. Data are presented as the mean ± SD of the mean. 

In the case of A549 cells infected with purified SANGV stock (SANGV-ucf) we observed 

remarkable decrease in MxA mRNA expression in comparison to non-ultracentrifuged 

SANGV stock (Figure 19 C). Thus, we suspect that the observed very early induction of MxA 

in case of SANGV infection of A549 cells is due to the exogenous type III IFNs, transferred 

from the Vero E6-prepared virus stocks. 
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4.6.5 Protein kinase R phosphorylation in response to GRW/Aa and SANGV 
infection 

The role of protein kinase R (PKR) in innate antiviral defense against hantaviruses has not 

been clearly determined yet. Therefore, we analyzed activation of PKR by GRW/Aa and 

SANGV. 

 

 

Figure 20: No PKR phosphorylation in response to GRW/Aa and SANGV infection. PC, cells 
stimulated with poly I:C; NC, cells treated with PBS instead of virus: PKR, protein kinase R; p-PKR, 
phosphorylated form of PKR; eIF2a, translation initiation factor; p-eIF2a, phosphorylated form of eIF2a; 
N-protein, viral nucleocapsid protein. β-actin was taken as a reference protein (loading control). 
Representative results of two independent experiments are shown. 

 

A549 cells were infected with GRW/Aa or SANGV virus at MOI 1, cells were collected at 

day one, two, three, and four after infection. The phosphorylations of PKR (p-PKR) and its 

target, the translation initiation factor eIF2a (p-eIF2a), were examined by Western blot 

(Figure 20). In order to control stabilities of PKR and eIF2a proteins, expression of total PKR 

and total eIF2a was analyzed by Western blot as well. β-actin was taken as a reference protein 

(loading control). No difference in phosphorylation of both PKR and eIF2a was observed 

between infected and control cells, indicating that GRW/Aa as well as SANGV do not 

activate PKR in the established settings. However, we detected some level of eIF2a 

phosphorylation at all time points (Figure 20). The phosphorylation patterns of eIF2a were 

similar for GRW/Aa-infected, SANGV-infected and uninfected A549 cells, indicating that 

this phosphorylation was not virus-mediated. 
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Since we did not observe phosphorylation of PKR in response to GRW/Aa or SANGV 

infection of A549 cells, in the next step we tested the possibility if GRW/Aa or SANGV can 

inhibit the PKR activation.  

Poly I:C is a synthetic dsRNA and serves as a substrate for PKR. Upon the recognition of 

poly I:C, PKR gets activated and therefore phosphorylated. In a preparatory experiment, the 

minimum amount of poly I:C needed for PKR activation in A549 cells was found to be 0.5 μg 

/ 1 well (12-well plate format) (Figure 21). 

 

 

Figure 21: The minimum amount of poly I:C needed for PKR activation. A549 cells were transfected 
with indicated amount of poly I:C. 6 hours post transfection cells were lysed in protein lysis buffer. The 
level of PKR phosphorylation (p-PKR) was investigated by Western blot analyses. β-actin was taken as a 
reference protein (loading control). 

 

The next experiments were designed to investigate if the replicating virus is able to inhibit 

artificially stimulated (by the transfection of poly I:C) phosphorylation of PKR Therefore, we 

performed an infection of A549 cells with GRW/Aa or SANGV (MOI 1). After two and four 

days post infection, the infected cells were transfected with poly I:C in order to stimulate PKR 

phosphorylation. Six hours post transfection the cells were lysed in lysis buffer and stored at -

20ºC until use. The ability of the virus to inhibit stimulated PKR phosphorylation was 

assessed by Western blot (Figure 22 A and B). Experiments depicted on Figure 22 revealed 

that both viruses, GRW/Aa and SANGV, are not inhibiting PKR phosphorylation stimulated 

by poly I:C transfection (Figure 22 A lines 4 and 6 in comparison to control line 2). Even 

after four days of infection with GRW/Aa or SANGV, the poly I:C stimulated PKR 

phosphorylation was not inhibited by the replicating viruses (Figure 22 B lines 2 and 4 in 

comparison to control line 6). 
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Figure 22: Replicating GRW/Aa or SANGV do not inhibit artificially stimulated phosphorylation 
of PKR in infected A549 cells. A549 cells were either left untreated (lines 1 and 2, panel A; lines 5 and 
6, panel B) or infected with SANGV (lines 3 and 4, panel A; lines 1 and 2, panel B) or infected with 
GRW/Aa (lines 5 and 6, panel A; lines 3 and 4, panel B) for 2 (A) and 4 (B) days. Then untreated or 
infected cells were stimulated with poly I:C (lines 2, 4 and 6) for 6 hours, thereafter samples were 
collected. PKR, protein kinase R; p-PKR, phosphorylated form of PKR; eIF2a, translation initiation 
factor; p-eIF2a, phosphorylated form of eIF2a; N-protein, viral nucleocapsid protein. β-actin was taken as 
a reference protein (loading control). Representative results of two independent experiments are shown. 
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5 Discussion 

5.1 Genetic characteristics of the first DOBV isolate from Germany 

DOBV-associated HFRS is endemic in North-Eastern Germany. Clinical cases of DOBV-

infected humans are regularly diagnosed by serological methods (Robert Koch-Institut: 

SurvStat, http://www3.rki.de/SurvStat). Important to note that antibodies against DOBV 

highly cross-react with other hantavirus species (for instance with HTNV), therefore, 

serodiagnostics are not sensitive enough to finally conclude which virus species had infected 

a particular patient. However, there is molecular evidence that DOBV infects humans in 

Germany: one short DOBV-Aa S-segment sequence derived from a patient in Northern 

Germany has been previously published [100]; other two short DOBV-Aa M- and L-segment 

sequences were obtained within the current study. Very recently, A. agrarius has been 

reported to be a natural host of DOBV in this particular region although multiple spill-over 

infections to A. flavicollis were observed too [35]. 

Here we report on cell culture isolation and characterization of the first pathogenic DOBV 

strain from Germany. The new DOBV isolate was designated as GRW/Aa. Genome sequence 

and phylogenetic analyses clearly showed that GRW/Aa belongs to the DOBV-Aa lineage 

(carried by A. agrarius mice), although it was found in spill-over infected A. flavicollis 

rodent. To our knowledge, this is a first report on a successful hantavirus cell culture isolation 

from a spill-over infected animal. Such infections are assumed to be acute and transient, with 

a higher virus load, and tissues of spill-over infected animals might be even better starting 

material for virus isolation attempts than tissues of persistently infected natural hosts.  Indeed, 

the virus load in the lungs of the spill-over infected mouse was found to be higher in 

comparison with lungs of the other two A. agrarius mice (trapped in parallel). 

DOBV spill-over infections were recently observed to be rather common in Germany [35]. In 

addition, single DOBV-Af spill-over infection of A.sylvaticus and Mus musculus has been 

recently reported [97]. Since hantaviruses have a three-segmented RNA genome, such spill-

over infections could lead to the formation of viruses with reassorted genomes, as it has been 

observed for several orthobunyaviruses [121,122] and for hantaviruses as well [44-46]. In 

vitro generated reassortants have been observed between SNV and ANDV [123,124] and 

between SNV and Black Creek Canal virus (BCCV) [125]. Moreover, it has been recently 

shown that two strains, representing DOBV-Aa and DOBV-Af lineages, could be reassorted 

in vitro [72]. Nevertheless, the novel GRW/Aa isolate is not a reassorted virus, since our 

sequence and phylogenetic analyses of complete S-, M- and L-segments did not support any 
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reassortment events between GRW/Aa genome segments and other hantavirus strains (Table 

10, Figure 12). 

In addition, we observed the close clustering of GRW/Aa virus sequences with nucleotide 

sequences amplified from Northern German HFRS patients - H169 and H431 (Figure 14 A, B 

and C). Thus, all obtained data allowed us to conclude that the GRW/Aa virus could be taken 

as representative of the pathogenic hantavirus responsible for human infections in this area. 

5.2 SANGV, the first hantavirus from Africa 

SANGV is a first hantavirus from Africa detected in Hylomyscus simus trapped in Guinea, 

West Africa [14]. A seroepidemiological study based on a combination of screening and 

confirmatory assays revealed the presence of hantavirus-specific neutralizing antibodies in the 

average human population in Forest Guinea (seroprevalence 1.2%) and in patients with fever 

of unknown origin from the same region (seroprevalence 4.4%). Although SANGV-specific 

IgM and IgG antibodies were detected in one patient who suffered from fever of unknown 

origin [104], final evidence of SANGV vRNA being present in human specimens has not 

been obtained. Therefore, SANGV pathogenicity to humans has to be further investigated. 

We included SANGV in our receptor-blocking studies and investigated SANGV-mediated 

innate immunity induction patterns in order to estimate its pathogenicity potential. 

5.3 GRW/Aa and SANGV utilize distinct cellular receptors in order to maintain 
virus entry 

We identified cellular receptors which are important for GRW/Aa and SANGV entry. Our 

data revealed that the avß3 integrin and the DAF receptor are utilized by GRW/Aa as entry 

receptors (Figure 15). Obtained results are in good agreement with the literature and speak for 

the pathogenicity of GRW/Aa. It has been shown that pathogenic hantaviruses recognize ß3 

integrins which play a central role in regulating platelet activation and maintaining vascular 

permeability [49,52]. DAF has been also demonstrated to be a receptor for pathogenic HTNV 

and PUUV [55]. It has been reported for coxsackievirus that its attachment to the DAF 

receptor initiates cytoskeletal rearrangements and opening of the tight junctions allowing the 

virus to reach its CAR receptor [126]. Nevertheless, utilization of DAF receptor by other 

hantaviruses has not been assessed yet. We observed that non-pathogenic PHV can be 

inhibited by anti-DAF antibodies too. Therefore, our findings of PHV entry being efficiently 

inhibited by anti-DAF antibodies suggest that hantaviruses might use DAF for virus entry 

regardless their pathogenicity. 

However, in the case of SANGV, results of both qPCR and Western blot (Figure 15 A, B) 

clearly indicated that SANGV infection can be efficiently blocked only by anti-α5ß1 integrin 
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antibody. Recognition of ß1 integrins by non-pathogenic PHV has been previously shown 

[49]. Interestingly, although infection by both control viruses (HTNV and PHV) could be 

efficiently inhibited also by anti-DAF, this was not the case for SANGV which could be 

inhibited exclusively by ß1-specific antibodies (Figure 15). 

The usage of ß1 but not ß3 integrins as entry receptors by SANGV might suggest it being a 

non-pathogenic virus. However, as it has been mentioned in introduction, pathogenesis of 

hantaviruses include many processes such as platelets dysfunction, ß3 integrin-mediated 

dysregulation of endothelial cell barrier, contributions of innate and adaptive immune 

responses [59,36]. It might turn out that the recognition of ß1 integrin as entry receptor is not 

a decisive criterion to classify a virus as pathogenic or non-pathogenic. Nevertheless, 

correlations between SANGV receptor usage and its pathogenicity have to be further 

characterized. 

5.4 Induction of selected innate immunity markers in response to GRW/Aa and 
SANGV 

5.4.1 Induction of antiviral MxA 

As a further step towards virus characterization, we investigated the induction of innate 

immunity markers in response to GRW/Aa and SANGV infection. Since some research 

groups used A549 and HUH7 cells to study modulation of innate immunity after infection 

with different hantaviruses, we also used A549 and HUH7 as model cell lines in our study. 

We observed no MxA induction (up to day 4 post infection) on protein level in response to 

GRW/Aa infection of HUH7 cells. However, some basic and continuous expression of MxA 

mRNA (~ 10 fold induction in comparison to negative control) was detected in HUH7 cells 

exposed to GRW/Aa infection. Here we speculate that this level of MxA mRNA induction in 

HUH7 cells might be insufficient to produce an amount of MxA protein detectable by 

Western blot. Similar results for the absence of MxA protein expression after infection of 

HUH7 cells with pathogenic HTNV have been previously reported [71]. 

Given that lung epithelium is one of the main targets during hantavirus infection in humans 

and A549 cells are established from human lung epithelium, we were further concentrated on 

studying the induction of innate immunity markers in A549 cells. We observed delayed / late 

expression of MxA mRNA and protein after infection of A549 cells with GRW/Aa (Figure 16 

A, B). On the protein level similar MxA expression kinetics were obtained for HTNV and 

DOBV-SK/Aa [64,71,72]. Pathogenic hantaviruses could maintain such delayed induction of 

antiviral responses in order to increase its sufficient replication and dissemination within 
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tissue, which in turn could cause a prolonged inflammatory response and might contribute to 

the in vivo virulence [36]. 

An increase in MxA mRNA expression after SANGV infection of both A549 and HUH7 cell 

lines was detected already at 6 hours post infection (Figure 17 B, D). In parallel, an early 

induction of MxA protein expression (day 1 post infection) in response to SANGV infection 

was observed (Figure 17 A, C). Concerning MxA protein expression, SANGV resembles the 

behavior of PHV in a cell culture system [71]. Such early induction of antiviral responses 

might lead to efficient elimination of the virus and could explain the low virus titers in 

SANGV stocks. However, there was a gap in understanding how the virus induces such an 

early and strong MxA response in the absence of efficient replication at early time points and 

why MxA induction patterns stay constant over the time of virus growth (Figure 17 B, D). 

Therefore, we studied the mechanisms regulating MxA expression and measured induction of 

type I and III IFNs after SANGV, as well as after GRW/Aa infection. 

5.4.2 IFN-β and IFN-λ1 are potential inducers of MxA in A549 cells infected with 
GRW/Aa and SANGV 

It has been reported that pathogenic HTNV does not induce a strong type I IFN (IFN-α/β) 

response in cell culture [64,76], although “downstream” MxA expression is induced. Until 

recent time there was no explanation on how MxA can be induced in the absence of type I 

IFNs. In 2010 it has been shown that certain hantaviruses induce type III IFNs (IFN-λ1, -λ2 

and -λ3) in type I IFN deficient Vero E6 cells [78]. Furthermore, Stoltz and Klingström 

reported that MxA is induced by IFN-λ1 in a type I IFN-independent manner also in A549 

cells infected with HTNV [76]. We also detected only a minor induction of type I IFNs on the 

mRNA level in A549 cells infected with GRW/Aa. Although the induction of IFN-β in A549 

infected with GRW/Aa is very low, we cannot completely exclude the role of type I IFNs in 

GRW/Aa-mediated MxA induction pattern. However, consistent with published studies 

[76,78], we found a pronounced induction of type III IFNs in response to GRW/Aa infection 

of A549 cells (Figure 18 A). Evidence that induction of IFN-λ1 mRNA occurred before the 

induction IFN-ß, strongly suggests that MxA induction is mediated by type III IFNs in 

GRW/Aa infected A549 cells. 

We conclude that observed MxA expression patterns are due to de novo synthesized type III 

IFNs induced by the virus infection and not due to exogenous IFN-λ1 which was found in the 

Vero E6-prepared virus stock at a barely detectable amount. Following observations underline 

this conclusion:  

First, induction of INF-λ1 occurred along with the intracellular replication of GRW/Aa. 
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Second, Vero E6-prepared GRW/Aa virus stocks contain only low level of IFN-λ1 (Figure 19 

A), and this amount of IFN-λ1 was experimentally shown to be unable to induce MxA 

expression in A549 (data not shown). 

Third, pre-incubation of GRW/Aa virus stock with neutralizing anti-IFN-λ1 antibody did not 

influence MxA mRNA induction in response to GRW/Aa infection (Figure 19 B).  

Finally, the stock of GRW/Aa purified by ultracentrifugation induced the same level of MxA 

induction as the non-purified stock (Figure 19 B). 

However, in contrast to GRW/Aa, we found SANGV to be a good inducer of type III IFNs in 

type I IFN deficient Vero E6 cells (Figure 19 A). We were able to block MxA induction in 

A549 cells infected with a SANGV stock which was treated with the neutralizing anti-IFN-λ 

antibody. Moreover, we showed that a type III IFNs free SANGV stock does not induce an 

early MxA mRNA induction in A549 cells (Figure 19 C). Therefore, we suspect that observed 

early MxA induction in A549 cells infected with SANGV are due to exogenous type III IFNs, 

transferred from a Vero E6-prepared stock. 

The experience with SANGV stocks shows that in order to investigate the real virus-mediated 

induction of innate immunity, hantavirus stocks free of cytokines are needed. As shown by us, 

ultracentrifugation procedure offers a good tool for the purification of virus stocks. 

5.4.3 Influence of GRW/Aa and SANGV on protein kinase R (PKR) activity 

The important role of PKR in antiviral defense has been shown for many human viruses such 

as herpesviruses, poxviruses, influenza viruses, human immunodeficiency virus-1, hepatitis C 

virus and others [79,127]. These viruses utilize a number of strategies to counteract dsRNA-

dependent pathways to avoid the deleterious effects of the PKR. There are viral proteins that 

interfere with these pathways at different levels, by inhibiting PKR activation, sequestering 

dsRNA, inhibiting PKR dimerization, synthesizing PKR pseudosubstrates, activating 

antagonist phosphatases, or degrading PKR. For example, NS1 protein of influenza A 

(A/NS1) virus has been reported to interact directly with PKR, inhibiting its activity [128]. It 

has been also postulated that A/NS1 is sequestering dsRNA from PKR recognition. However, 

very few studies were so far reported which would analyze hantavirus-mediated PKR 

activation. Therefore, we performed experiments to study GRW/Aa interaction with PKR. 

We observed no PKR activation (phosphorylation) after infection of A549 cells with 

GRW/Aa or SANGV (Figure 20). One possible explanation could be that hantaviruses, in our 

case GRW/Aa and SANGV, evolved mechanisms to inhibit PKR activity. We performed 

PKR inhibition assay to investigate the ability of GRW/Aa and SANGV to inhibit artificially 

stimulated PKR activity (Figure 22 A, B). In our experimental settings, we failed to observe 
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such inhibition of artificially stimulated PKR by GRW/Aa as well as by SANGV. 

Nevertheless, a hantavirus-mediated inhibition of PKR still cannot be completely excluded, 

since there are many other mechanisms regulating PKR activity which effects cannot be 

evaluated in our experimental settings. For example, the most relevant explanation why we 

did not see inhibition of PKR by GRW/Aa and SANGV is that viruses sequester only their 

own virus-derived dsRNA, but not synthetic analogs of dsRNA. That means that hantaviruses 

do not recognize poly I:C as a dsRNA and consequently do not prevent poly I:C mediated 

stimulation of PKR. Such mechanism of sequestering of dsRNA has been proposed and 

discussed for influenza A-maintained inhibition of PKR activity [79,129,130]. 

Nevertheless, PKR induction and inhibition patterns observed in the present study allow us to 

conclude that GRW/Aa as well as SANGV infections neither activate PKR nor inhibit 

artificially stimulated PKR phosphorylation in our experimental settings. 

Availability of functional reverse genetics for hantaviruses would be a perfect tool in further 

characterization of functional interactions between hantaviruses and PKR. For example, it 

would be possible to study whether mutated hantavirus (lacking functional domains in 

nucleocapsid protein or/and viral polymerase) alters PKR activity as it was shown for 

influenza B virus recombinant mutants lacking complete NS1 protein or expressing its 

truncated forms [82]. At the moment no functional reverse genetic system is available for 

hantaviruses, which needs to be established to allow further progress. 

5.5 Hantaviruses and interferon induction 

The in vitro modulation of innate immunity by pathogenic and non-pathogenic hantaviruses 

seems not to be conclusively associated with virus pathogenesis. Contradictory results have 

been published, making it difficult to distinguish the behavior of pathogenic from non-

pathogenic virus in a cell culture system. There is a study demonstrating that pathogenic 

HTNV clearly induced the production of IFN-ß, whereas expression of this cytokine was 

barely detectable in the supernatant or in extracts from cells infected with low-pathogenic 

TULV. However, human endothelial cells infected with TULV start to express the antiviral 

MxA protein 34 hours earlier than HTNV infected cells [64]. Another work showed that 

overall cellular transcriptional responses were more altered by pathogenic SNV compared to 

non-pathogenic PHV [65]. Other research groups have observed major differences in the early 

interferon responses between pathogenic New York-1 virus (NY-1V), HTNV, Andes virus 

(ANDV) and non-pathogenic PHV hantavirus [67,68]. Moreover, a recent study has reported 

that inhibition of early IFN responses is necessary but alone insufficient for a hantavirus to be 

pathogenic, since the expression of TULV Gn protein cytoplasmic tail (Gn-T) regulates IFN 
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induction in similar way as pathogenic NY-1V, ANDV, and HTNV [131]. In summary, 

reported difficulties suggest that hantavirus pathogenesis is a complex process that includes 

not only contributions from immune responses (immune complexes, complement activation, 

cytotoxic T cells, etc.), but is also based on platelet dysfunction and the dysregulation of 

endothelial cell barrier functions. Therefore, availability of an animal model mimicking 

human hantavirus disease would be a perfect tool for the characterization of virulence 

executed by different hantaviruses. However, only one hamster model, imitating ANDV 

caused illness of humans, is described so far [132,133]. This model was used for the study of 

pathogenicity determinants of ANDV. The authors generated an in vitro reassortant virus 

containing S- and L-segments from SNV and the M-segment from ANDV. This reassortant 

virus elicited high titers and ANDV-specific neutralizing antibodies in infected hamsters. 

However, the infected animals did not show signs of HPS disease and the infection was not 

lethal, indicating that the M-segment alone is not sufficient to cause the disease [123]. 
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6 Conclusion 

Table 12: Molecular characteristics and pathogenicity potential of GRW/Aa from Germany  
and Sangassou virus from Africa 

 GRW/Aa SANGV 
virus species DOBV-Aa SANGV 

reservoir host 
rodents (family Muridae, 

subfamily Murinae) 
Apodemus agrarius 

rodents (family Muridae, 
subfamily Murinae) 
Hylomyscus simus 

spill-over reservoir host Apodemus flavicollis unknown 
geographical distribution Europe (north of Germany) Africa (Guinea) 

genome 
S-segment (nt) 
M-segment (nt) 
L-segment (nt) 

 
1,675 
3,644 
6,532 

 

1,746 * 
3,650 * 
6,531 * 

panhandle structure (bp) 22-29 17-19 * 
sign of intragenic recombination 
or reassortment in phylogenetic 

analyses 
no no * 

serological proof of human 
infections 

yes yes ** 

patient-derived sequence yes no 
cellular receptor (Vero E6) β3 integrins, DAF β1 integrins 

induction of type III IFNs (Vero 
E6) 

moderate strong 

induction of type I IFNs (A549) moderate moderate 
induction of type III IFNs (A549) delayed (2 dpi) early (16 hpi) 
induction of MxA mRNA (A549) late (3 dpi) early (6 hpi) 
influence of Vero E6-derived type 

III IFNs on observed MxA 
induction 

 
no 
 

strong 

induction of PKR 
phosphorylation (A549) 

no no 

inhibition of poly I:C stimulated 
PKR phosphorylation 

no no 

human disease HFRS ? 

* Klempa B., Witkowski P.T., Popugaeva E., Auste B., Koivogui L., Fichet-Calvet E., Meulen J., and Kruger 
D.H. (2011) Sangassou virus, the first hantavirus from Africa, displays distinct genetic and functional properties 
in the group of Murinae-associated hantaviruses. J Virol in revision.  
** [104] 

 

In summary, the current study presents molecular characteristics of two novel hantaviruses: 

GRW/Aa and SANGV. Based on these characteristics we tried to estimate the pathogenicity 
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potential of GRW/Aa and SANGV. Both viruses are members of Murinae-associated 

hantaviruses, however, GRW/Aa and SANGV exhibit completely distinct pathogenicity 

determinants in cell culture systems. As it was expected, GRW/Aa demonstrates properties of 

pathogenic hantaviruses. It recognizes β3 integrins as entry receptors in addition to DAF and 

induces late expression of MxA and type III IFNs. The final proof of GRW/Aa pathogenicity 

in humans was shown by phylogenetic analyses, where sequences from the GRW/Aa isolate 

cluster together with patient-derived sequences from Germany. 

Concerning SANGV, it displays unique in vitro properties. It recognizes β1 integrins as entry 

receptors, being the first virus not using DAF, and induces a strong type III IFNs response in 

Vero E6 cells. Whether these characteristics have some consequences for the SANGV 

pathogenicity remains to be answered. Nevertheless, properties observed within the current 

study make GRW/Aa and SANGV useful to be included in comparative studies focusing on 

hantavirus pathogenesis. 
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