-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dokumenten-Publikationsserver der Humboldt-Universitat zu Berlin

Nonlinear differential-algebraic equations
with properly formulated leading term

R. Marz

1 Introduction

In [BaMi], a uniform theory for investigating linear differential-algebraic equations
(DAESs) and their adjoint equations was proposed. By means of an additional coef-
ficient matrix it is exactly fixed which derivatives of the solutions searched for are
actually involved in the equation. Such a DAE is of the form

AW(D(B)z(t))" + B(t)x(t) = q(t),t € T, (1.1)
where the coefficients A(t) and D(t) match well.
As a nonlinear version,

Az (), ) (DE)2(1)) + b(x(t),£) = 0, (1.2)

can be taken into account first (e.g. [HiM4&]). However, with somewhat more con-
sistency, we obtain equations of the form

Az (t), £)(d(@ (), £)) + b(z(t), ) = 0, (1.3)

which we want to investigate in this paper.
Note that it is just this sort of equations that result in the simulation of electric
circuits, which is the origin of DAEs (e.g. [EsTi|). In this case, a transition to

Az (t), )dy (2 (t), )2’ (8) + b(a(t), £) + A(z(t), )dy(z(t), ) = 0

is problematical.

In the next section (§2) we will determine what we mean by a properly formulated
leading term. In §3 DAEs with index p, p € {1,2} will be characterized by alge-
braic criteria. §4 is devoted to linearization and perturbation theorems. A special
structure, which is important for electric circuits for instance, will be analyzed in
§5. Finally, constraint sets will be investigated in §6.

2 Properly formulated leading terms and
an equivalence theorem

We investigate the equation

A(z(t), t)(d(z(t), 1)) + b(z(t),t) = 0, (2.1)
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with coefficient functions A(x,t) € L(R",R™),d(x,t) € R" and b(z,t) € R™,z €
D C R",t € T C R, that are continuous in their arguments, and which have the
continuous partial derivatives A, d;,b,. Denote D(z,t) = d(z,1).

Definition 2.1 The leading term in (2.1) is said to be properly formulated if
ker A(z,t)® im D(x,t) =R",xz € D,t € T, (2.2)

and if there exists a projector function R € C'(Z, L(R")) such that R(t)> = R(t),
ker A(z,t) = ker R(t), im D(x,t) = im R(t), and d(z,t) = R(t)d(z,t) holds for
reD,tel.

Consequently, the matrices A(x,t) and D(z,t) have constant rank for properly for-
mulated leading terms. The subspaces A(x,t) and im D(x,t) are independent of x
and have bases from the class C'. It holds that A = AR, D = RD.

If A(x,t) and D(z,t) fulfil the condition (2.2), but only ker A(z,t) is independent
of z and smooth, then we have, with a projector P4 € C'(Z, L(R")), the relation
A(z,t) = A(x,t)Pa(t) and, hence

Az (t), 1) (d(x(t),1))" = A((D), 1) (Pa()d(2(1), 1)) = A((t), 1) Py (D)d(2(1), 1).

Then, with A(z,t) := A(x,t), d(z,t) = Pu(t)d(z,t), blz,t) = blx,t)—
—A(x,t)P)(t)d(z,t), the equation

A(z(t), ) (d(z(t), 1)) +b(x(t),t) =0 (2.3)

has a proper leading term because of im D(x,t) = im P4(t). We can proceed anal-
ogously if only im D(z,t) is independent of x, or if the last condition of Definition
2.1 in not fulfilled. Hence, a proper formulation can be obtained if (2.2) holds and
if one of the characteristic subspaces is independent of z and comes from C'*.

Definition 2.2 A function © € C(Z,,R™),Z, C Z, is said to be a solution of
equation (2.1) if z(t) € D,t € T, and d(z(.),.) € CY(Z,,R"), and if equation (2.1)
18 fulfilled pointwisely.

Unfortunately, regularity conditions do not define a linear function space here in
general. In case d(x,t) = D(t)x is linear itself (cf. (1.2)), a linear solution space is
available by C}, ;== {z € C: Dz € C'}.

Fortunately, it is relatively simple to transform equation (2.1) into a (1.2) form.
This allows the application of standard-notions and -methods (differentiability, lin-
earization etc.) that are based on linear funtion spaces.

We form the natural extension for equation (2.1) with proper leading term

A(z(t), ) (R(t)y (1)) + b(x(t),t) = 0, (2.4)
y(t) — d(z(t),t) = 0. (2.5)
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With 7= (%), A=(1), d(.0)=R()y, DE0=D(1)=(0,R(1), b(F0=(, ")

0 y—d(z,t)
we can write (2.4), (2.5) as

A®),t)(D)T(t) + b(T(t),t) = 0. (2.6)

Due to ker A(Z,t) = ker A(z,t), im D(t) = im R(t) = im D(z,t) also (2.6) has a
properly formulated leading part with R(t) = R(t) as the corresponding projector.
Now the linear function space

C%z{fz(i)EC:ET:RyEC’I} (2.7)

offers itself as solution space for (2.6). For (2.6) we seek functions 7 € C whose
function values lie in the domain of definition D of the coefficients and fulfil equation
(2.6) pointwisely.

If z.(.) is a solution of the original equation (2.1), then the pair z.(.),y.(.) with
y+(t) := d(x.(t),) is obviously a solution of the class C5 for (2.6). If, reversely, a
pair z,(.), y.(.) from CL forms a solution of (2.6), then d(z.(.),.) = Rd(z.(.),.) =
Ry, € C' also holds because of Ry, € C', and z,(.) is a solution of equation (2.1).

Theorem 2.3 Let the leading term of (2.1) be properly formulated.
(i) The the leading term of the extension (2.6) is properly formulated, too.
(i) The equations (2.1) and (2.6) are equivalent via the relation y(.) = d(x(.),.).

The sets
My(t) :={x €D :b(z,t) € im A(x,t)}

and
Mo(t) = {7= <z> €D XR":b(x,t) € im A(x,t),y =d(z,t)}
= {TeDxR":2e€ Myt),y=d(z1)}.

are the geometrical location of the solutions of (2.1) and (2.6), respectively, It always
holds that o
x(t) € My(t), Z(t) € My(t).

The problem in how far these sets are filled with solutions leads to notions of indices
and corresponding solvability statements.

3 Subspaces, matrix chain and index
In this section we define characteristic subspaces and matrix chains for (2.1) and

(2.6).
Further, let B(y,xz,t) = (A(x,t)y)s + by(z,t) for y € R*, 2 € D,t € T and
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B(y,7,t) == (AT, 1)y). + bz(7, 1) for y € R*, 7 € D x R*, ¢t € Z. More precisely, we

have S {A(xo, t)yL N { _”g?xti) ?] = { é(g(:f :)) ? ]

For the original equation (2.1) we form for x € D,t € Z,y € R™:

Go(z,t) = A(z,t)D(z,1),

No(z,t) = kerGy(z,t),
So(y,z,t) = {z€R™:B(y,x,t)z € im Gy(z,t)},
Gi(y,z,t) = Go(z,t)+ By, z,t)Qo(x,1t)

with a projector Qo(x,t) € L(R™) onto Ny(x,t),

Py(z,t) = I —Qo(x,t),
Ni(y,z,t) = kerGy(y,z,t),
Si(y,z,t) = {z€R™: B(y,z,t)Py(z,t)z € im Gi(y,x,t)}.

For (2.6) this yields Go(z,t) = AT, t)D(T,t) ete. forT € D x R, t € T,77 € R".
No(t) = R™ x ker R(t) depending on ¢ only and being smooth is a special feature of
(2.6).

Now, the relations among the subspaces of (2.1) and (2.6) are important, because
the index will be defined via these subspaces later on.

Lemma 3.1 Let equation (2.1) have a proper leading term, then

No(t) N So(7,Z,t) = (No(z,t) N So(y,x,t)) X0 (3.1)

Ni(@78) N 51(7,7,1) = {(§) € R"xR" : £=Qo(w, )€, 7=R(1)7,

(3.2)
D(z,t) v + € € Ni(7,z,1) N Si(7, :z:,t)}.

Proof We determine

Gom.0) = Aoy = | o 460,
No(t) = (’Cy ER™ X R": A(x,t)y = O}ZRmxkerR(t),

A
{

_ {(C> B(7,z,t)C € im A(ffat),—D(x,t)g+7:0}
) e sen).
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:vazmv=Duwgc6&@w¢ﬁ

:( € No(z,t) N So(y,x,t),y = 0} :

0 - 0 0
I— R(t) ) , Po(t) = ( 0 R(#) ) we also have
o]
B(y,z,t) A(z,t)
—D(z,t) I — R(1)

= {(): Rt)y = =D(w,t)a + (I - R(1)3

with a € R™, 3 € R", B(y,z,t)a + A(z, 1) = 0}

_ {(4) : R(t)y = —D(z,t)a with o € Sg(y,x,t)},

;
M@zt = {(): B@z0C+ A, 1)y =0,D(,)C = 0,7 = R(t)y }
= {(9): e No(a, 1), = R(1)7,0 = (A, ) D(a, 1)+
+B(7, 7, )Qo(x, ))(D(w,t) 7 +C) |
= {(§):¢=Qolw, )¢, 7 = Ry, D) 7 +C € MGz, 1)
Finally, we obtain
¢ = Qo(w,t)¢,7 = R(t)y = =D(x,)a,a € So(F, 2,t), D(x,1) 7 +C € Ni(7, , 1)
for (g) € N\(3,7,t) N S1(7,T,t). Thus,
B(y,z,t)Po(x, 1)(D(x, 1)y +C) = B(y,,t)Po(x, 1) D(x, )"y
— —B@,x,)Py(r,)a € im Gi(7,t)
because of B(F,z,t)a = Go(x, thw, i. e,
B(@, v, t) Po(, ) = (Go(, t) + B(@, #,8)Qo(, 1)) (Po(, )w — Qo(x, t)a). O
Conclusion 3.2 For (2.1) and (2.6) it holds that
dim(No(t) N So(y, 7, 1)) = dim(No(z,t) N So(y, z,t))

and
dim (N, (y,7,t) NS, (7,7, 1)) = dim(N, (g, z,t) N S, (7, z,t)).
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Definition 3.3 An equation (2.1) with properly formulated leading term is called a
DAE of index 1 if

No(z,t) N So(y,x,t) =0 for x € Dt €L,y e R,
or a DAFE of index 2 if

dim(Ny(x,t) N So(y, z,t)) = const,
Ni(y,z, t)N Si(y,xz,t) = 0 for x €Dt €I, yecR".

Theorem 3.4 The original equation (2.1) with proper leading term and its natural
extension (2.6) have the index € {1,2} simultaneously.

Now we continue the above matrix chain with
G2(y7 xZ, t) = Gl(ya xZ, t) + B(ya X, t)P()(l', t)Ql(ya z, t)

and
G2(7,7,t) :== G1(7, 7, ) + B(7, T, t) Po(t)Q: (7, T, 1),

where Qi (y,v,t) € L(R™), Q,(y,z,t) € L(R™™) are projectors onto Ni(y,z,t)
and Ni(7,T,t), respectively. We will investigate only problems (2.1) with index
w, v € {1,2} here, hence,

Ni(y,z,t) ® Si(y,z,t) = R™, (3.3)

holds on principle, in fact for 4 = 1 with Ny(y,z,t) = 0, Si(y, z,t) = R™ trivially,
and for g = 2 due to [GrM4], Theorem A.13. Hence, we may assume that Q(y, z, t)
projects onto Ni(y,x,t) along Si(y,x,t).

Analogously, let Q, (7,7, t) be the projector onto N, (7,7, t) along S (9, T, t). Simple
computation now yield

Lemma 3.5 For pu € {1,2} it holds that

— 0 D™\ —— — o _
Q, = ( 0 %’SIID_ ),DPlD =DP,D-,DQ,D =DQ,D",

and DQ,G, = (DQ:G,* DQ,D").

4 Linearization and perturbation theorems
First, we consider the equation
A(x(t),t)(D(t)xz(t)) + b(x(t),t) = 0, (4.1)

i.e., the case that D(z,t) = D(t)xz,x € D,t € Z. Later on, we apply the obtained
results via (2.6) to the general form (2.1).
We fix z, € C}(Z,,R™) with z,(t) € D,t € Z,. Let Z, C T be compact. For all
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x from a sufficiently small neighbourhood U(z.,) of z, in C}(Z,, R™) we can define
the map

F : Uz, CCH(T,,R™) = C(Z,,R™),
F(x) = A(z(.),.)(Dx)' () +blx(.),.),x € U(x,), (4.2)

and we can write equation (4.1) as

where F is Frechét-differentiable. The derivative
Fo(z) € Ly(CH(Z.,R™), C(Z,,R™))
is given by

Fe(x)Ax = A(z(),.)(DAz) () + B(Dx)'(.),z(.),.)Ax(.)
for Az € C,(Z.,R™), (4.3)

where we assume natural norms on C}(Z,, R™) and C(Z,, R™).

For applying the implicit function theorem (e.g.[KaAk]), the property of the image
im F,(x,) is of crucial importance.

With A, (t) = A(z.(t),t), B«(t) = B((D(t)x.(t)), z(t), t),t € Z,, the linear DAE

A, () (D(t)Ax(t)) + B.(t)Ax(t) = q(t),t € L, (4.4)
is nothing else but the equation
Fo(z)Ax = q.

Let S.o(t), Nuo(t), G4 (t) etc. denote the chain of subspaces and matrices generated
for (4.4).

Lemma 4.1 Let the DAE (4.1) have a properly formulatd leading term. Let
DP.D ,DQ..D” € CYZ,, L(R")).

(i) The index-p-property, u € {1,2}, transforms itself from (4.1) onto the lin-
earization (4.4).

(ii) For up =1, F(x,) is surjective.
(iii) For u = 2 it holds that im Fp(x,) = C! (Z.,R™).

DQ*IG:QI
P r o o f. The assumption (i) immediately results from the construction of the
subspaces and the matrices in §3. The assumptions (ii) and (iii) are concluded from
the existence theorems for linear DAEs in [BaM4|. O

Conclusion 4.2 In the indez-2 case, imF,(x,) is a non-closed proper subset in
C(Z.,R™).
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If the DAE (4.1) has a dynamic degree of freedom, it has to be completed by initial
or boundary conditions. Since A and D are singular, we cannot expect a degree of
freedom m as in the case of regular DAEs, but a lower one. An IVP with the initial
condition x(tp) = xy € R™ is not solvable in general. Hence, x, has to be consistent
to an extend.

Basing on our experience with linear DAEs ([BaMél]), we impose an initial condition
for (4.1) with ¢ty € Z, in the form

D(ty)m(z(ty) — 2°) = 0 with 2° € R™, (4.5)
where 7 € L(R™) will still have to be fixed. By means of the mapping

Frvp : U(r) COH(T.,R") — O(Z,,R™) x Lc,
Lic = im D(ty)m,
Frvp(z) = (Fz,D(ty)rx(t)), x € U(x,), (4.6)

we can describe the IVP (4.1), (4.5) in a compact way by
Frvp(x) = (0, D(to)wz?).
Now, the equation
Frve(x) = (¢, D(to)mz°)
corresponds to the perturbed IVP
A(z(t), t)(D()x(t)) + b(x(t), 1) = q(t), t € L, (4.7)
D(to)m(x(ty) — 2°) = 0. (4.8)

Theorem 4.3 Let (4.1) be a DAE with proper leading term and index p € {1,2},
and let x, € CH(Z,,R™) be a solution of (4.1) and

DP,D~,DQ.. D~ € C'(Z., L(R")), 7 := P, (to).
Further, for x € U(x.), let
D(1)Q.1(t)Gaa(t)™'b(x(t),t) be continuously differentiable w.r.t. t. (4.9)

(i) If p = 1, then the IVP (4.7),(4.8) is uniquely solvable on I, for arbitrary
2% € R™ with |D(ty)(x° — x.(ty))| < o, and ¢ € C(Z,,R™) with || q ||c< T,
o,7 > 0 sufficiently small. For the solutions x € C}(Z,,R™) it holds that

l2 =2 lloy, < const (ID(to) (" — 2. (o)) |+ || ¢ ll)-

(ii) If u = 2, then the IVP (4.7),(4.8) is uniquely solvable on I, for arbitrary
20 € R™ with
Dlto)r(a — 2.(t0)| < & and g € Oy, (T B || q | +
| (DQ.GLq) < T, 0,7 > 0 sufficiently small.
For the solutions x € C},(Z.,R™) it holds that

|z —allcy, < const (ID(to)m (2° = 2. (o)) |+ [ ¢ |loo
+ 1 (DQuGH ) ).
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(iii) The solution x of the IVP (4.1), (4.8) is continuously differentiable w.r.t. x°.
The sensitivity matriz x,o(t) =: X (t) € L(R™) satisfies the IVP

A(x(t),t) (D)X (1)) + B((D(t)x(t)), z(t),t) X (t) = 0, teL,
D(to)m (X (to) —I) = 0.

Remark: If we take into account that P, (t) = I, Q.1(t) = 0 for = 1, then the
smoothness assumptions of Theorem 4.3. are always trivially given in this case. For
p = 2 the regularity condition (4.9) implies restrictions of the admissible structure
of (4.1). The following condition is sufficient for (4.9):

D e CY(Z,, L(R",R™)),
B(z,t) := D(t)Q.1(t)Ga(t)~'b(z,t) is continuously differentiable and
V. (Po(t)x + sQo(t)x,t)Qo(t)xr € im G,y (t),s €[0,1],z € D,t € T,. (4.10)

Namely, then ((x,t) = B(Py(t)x,t) is true and for z(.) € U(x,) it holds that
@@, ) = FBPMzt) = FADMH™DM(1),1) = Bu(DE)”D(H)x(t), 1)
{D(t)~ D(t)x(t) + D(t)~ (D(t)x(t))'} +5:(D(t)~D(t)x(t),t). The condition (4.10)
is equivalent to

Woo(t)b. (Po(t)z + sQo(t)z, )Qo(t)x € im Wio(t) Buo(t)Qo(2). (4.11)

If the derivative free part of (4.1) is linear in z or if (4.1) is a DAE in Hessenberg
form, then (4.11) is given.

Proof of Theorem 4.3:
Frvp «(z,) is a bijection from CL(Z,,R™) onto C(Z,,R™) x Lz¢ for = 1.
For u = 2, Frvp.(z.) is injective but not surjective. According to Lemma 4.1,

iIIl:FIVP x(IL’*) X LIC = C%QHG’}I (I*,Rm) X LIC’ = X.

Equipped with a natural norm, X is a Banach space. We summarize the two cases
that © =1, 4 = 2 by using Q,; =0, P,; =1 for p=1.
For the mapping

H(z,d,q) := Frvp(x) — (q,d), = €lU(z,),(q,d) € X
it holds, due to the condition (4.9), that
H(x,d, q) € X.
With d, := D(ty)mx.(ty) we obtain
H(w,,d.,0) =0, Hy(ws,ds,0) = Frvpa(z.).

Hy(xs,ds,0) is a homeomorphism for ;1 = 1 as well as for p = 2. Due to the im-
plicit function theorem there exists a uniquely determined continuously differentiable
mapping

f:B(d,,0) x B(0,7) C X — Ch(Z,,R™)
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with f(d.,0) = z., H(f(d, q),d,q) = 0, || f(d,q)—f(d.,0) [lcy < K(|d—d.|+ || ¢ ||x)
for |[d —d.] <o, ¢ [lx:=[l ¢ o + || (DQu1G.50)" = 7.

Then the two assumption (i) and (ii) follow because of d = D(ty)ma®.
In particular, f(d,0) is continuously differentiable w.r.t. d, i.e., the solution x(.)
of the IVP (4.1) with D(ty)mz(to) = d has a continuous derivative w.r.t. d. With
d = D(to)mz° this implies z,0(t) = z4(t)D(to)m. As usually, the variational equation
(4.10) now results by differentiation w.r.t. 2°. O

If we introduce a perturbation index for (4.1.) analogously to the standard case of
DAEs, then the inequalities in (i) and (ii) mean that a DAE (4.1) with index p has
the perturbation index p, pu € {1, 2}, too.

For the extended system (2.4), (2.5) and for (2.6), respectively, it holds with T = (Z),
AT = (,7) that

Fumaz — (A ITSO 4 BRI

s (), ) Ax(.) )
Ay() = D(x(.), ) Aa(.) '

(-
In particular, the equation Fz(7,)AZ = (q,7) with 7, = ( ) is nothing else but the
linear DAE

Az (1), ) (R(D) Ay (1)) + BI(R(@)y« (1)), (1), ) Ax(t) = q(1),
Ay(t) — D(z(t), ) Az (t) = r(t). (4.12)

Now, let z,(.) be a solution of the nonlinear equation (2.1) and y, = d(z.(.),.)-
Then 7. (.) solves the extended form (2.4), (2.5) with y. = Ry, = d(z.(.),.).
With the coefficients

B.(t) = B((d(z.(t), ))',«T*( ) ) (4.13)
(4.12) can be reduced to
AR Ay (1) + B.(H)Ax(t) = q(t),
Ay(t) — D.(t)Ax(t) = r(t). (4.14)
For r(t) = 0 this yields
A (BO(Da() Az (1) + B () Ax(t) = g(t), (4.15)

which can be regarded as a linearization of the initial equation (2.1).

By Theorem 3.4 and Lemma 4.1 the index p € {1,2} is transformed from (2.1) to
(4.14) and (4.15).

Now, let N,g, S0, G41 etc. be the subspaces and matrices of the chain formed for
A,, D, and B, from (4.13).

We investigate the perturbed IVP

A(z(t), )(d(x(2),1))" + b(x(D), 1) = q(t), (4.16)
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D.(to)mD. (o) (d(x(to), to) — y°) = 0, (4.17)
y* € R", q € C(Z.,R™).
For 7 = I the initial condition (4.17) simplifies to R(to)(d(x(to),t0) — y°) = 0, i.e.,

d(z(to), to) = R(to)y". (4.18)

Theorem 4.4 Let the DAE (2.1) with proper leading part be of index p = 1. Let
z.(.) be the solution of (2.1) on the interval Z,. Further, let m = I. Then the
IVP (4.16), (4.18) is uniquely solvable with a solution x(.) defined on I, for q €
C(Z,R™), || q [|[o< 7, ¥* € R, |R(t)(y° — d(z.(t0),%0))| < o, 7,0 > 0 sufficiently
small. z(.) depends continuously differentiably on y°. It holds that

2z =2l + [[d(z(),.) —d(z:(),.) len
< const(|R(to)(d(z(to), to) — d(x4(to), t0)) |+ || ¢ |lo)-

Proof of the theorem: We form the extended system for the DAE (4.16) and
apply Theorem 4.3 for p=1. O

In the nature of things DAEs of index 2 require a higher regularity of some compo-
nents. Here it is essential in how far we can assume (4.9) for the extended equation
(2.6). We have (cf. §2)

n(@,t) = D(t)Q.(t)G.(t)"'b(T,1)
= n(z,t) + D(t)Qui(t) Du(t) (y — d(, 1)) (4.19)
with
n(z,t) == D, () Q1 (t)Gaa(t) " b(x, 1). (4.20)

In the case of a linear original equation (2.1) with A(z,t) = A(¢), b(z,t) = B(t)z +
q(t), d(z,t) = D(t)x the expressions (4.19), (4.20) simplify to

n(@,t) = DH)Qi(t)G2(t) 'q(t) + D)Q:(t)D(t) "y
n(z,t) = DH)Qi(t)x + D()Q:1(t)G(t) "q(t).

It is natural to demand that DQ,G5'q € O for index-2 DAEs, and likewise that
DQ@,D~ € C'. Thus, condition (4.9), which requires that 7(Z(.),.) has to belong
to the class C' for continuous z(.),y(.) and continuously differentiable (Ry)(.), is
fulfilled for (2.1) in the linear case.

Theorem 4.5 Let the DAFE (2.1) with proper leading term be of index yu = 2. Let
z, € C(Z,,R™) be the solution of (2.1), and D,P.,D,, D.Q.1 D, be continuously
differentiable. Moreover, let m := P, (to).

Let n(z(.),.) € CYZ,,R") for all x € C(Z,,R™) from a neighbourhood of . and for
y € Ch(Z.,R") from a neighbourhood of y. = d(x.(.),.).
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(i) For
€C) g0 (To R Mlallo + 1(D.Qu G5 0) I < T,
y* € R", D P D, (y" — d(w.(to), t0))| < o,
7,0 > 0 sufficiently small, the IVP (4.16), (4.17) is uniquely solvable and for
the solution x € C(Z,,R™) it holds that

[ = Zulloo + [ld(z(.), ) = d(z.(), )

< const {Jlqlloc + [[(D:Qu1G%0) [l
+ [Du(to)mDi(to) (d(2(to), to) — d(z.(to), %0))]}-

(ii) The solution x(.) of the IVP depends contiuously differentiably on y°.

P roof We use the extended form (2.6) for (2.1) and write the IVP (4.16), (4.17)
in the following way (cf. §§1,2)

A(z, (1), ) (D®)Z(1))" + b (1), 1) = q(t), (4.21)

D(to) Pua(to) (®(to) — 7") = 0, (4.22)
with D(to)P.i(to) = (0 D.P,D;) and g(t) = (“ E)t)) For (2.6), the condition (4.9) is
given by the assumption.

q € C'IQ é_1(1',“]1{"””) holds if and only if ¢ € C*!
Theorem 4. 3 yields the assertion. O
We formulate a further perturbation theorem, whose assumptions are possibly easier

to be checked.

D.QuG) (Zy, R™). Consequently,

Theorem 4.6 Let the DAE (2.1) with proper leading term be of index yu = 2. Let
z, € C(Z,,R™) be the solution of (2.1), and let D,P., D, , D,Q.1D; as well as D,x,
be continuously differentiable. Let m := Py (ty).

For all x € C},_(Z.,R™) from a neighbourhood of x. let n(z(.),.) and d(z(.),.) be
continuously differentiable. Then the assumptions from Theorem 4.5 remain true,
where the solutions of the IVP (4.16), (4.17) are even from Cp,_(Z,,R™).

P roof. We check immediately whether the linear index-2 DAE (4.12) has solutions

Az € Cp (L, R™), Ay € CR(Z.,R") for right-hand sides ¢ € C', Q) (Z,R™),r
CH(T.RY). With X := C} (T, R") x CH(T.R") and ¥ = C} , . (T, R") x

CL(Z.,R") we obtain Fz(T,) € Ly(X,Y),imFx(T,) =Y.
Then the related mappping Frvp ,(T.) acts bijectively between the spaces X and
Y X Lc. By assumption it holds that 7, = ( ) €X.

The regularity conditions for n(z,t) and d(z,t) ensure that F(Z) € Y is always true
for 7 € X from a neighbourhood of #,. We can further argue analogously to the
proof of Theorem 4.3, where the mapping H(7, d,q) := F;vp(T) — (7, d) operates in
the spaces X X Lic x Y and Y x L;c now. O

The additional regularity conditions in case of DAEs of index p = 2, which shall
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guarantee certain properties of the mappings (the images F (%) have to lie in the
"right” space), imply restrictions on the admissible structure.

An interesting special class of DAEs, which is important for applications, consists
of DAEs for which Ny(z,t) does not depend on z, i.e.,

ker D(z,t) = No(t), x€D,teT, (4.23)

and Py(t) is continuously differentiable w.r.t. t. Quite often Ny(z,t) is even inde-
pendent of x and ¢.
Then it holds that

d(z,t) = d(Py(t)z,t), ze€D,tel, (4.24)

and further d,(x,t) = d.(Py(t)x,t), in particular,
D, (t) = dp(Py(t)x«(t),t).

Lemma 4.7 Let (2.1) be a DAFE with proper leading term. Let (4.3) be valid and
d e CY(D x I,R"), Py € CYZ, L(R™)). Let z, € C(Z,,R™) be a solution of the
DAE (2.1).

(i) Then Pyx.,D,, D, and D.x, are continuously differentiable on Z,.
(i) d(z(.),.) is continuously differentiable on I, for all x € C}, (Z,,R™).

P r o o f. Provided that Pyz, is continuously differentiable, then D,(t) =
d(Po(t)z.(t),t) is so, too. As a reflexive generalized inverse with C'-projectors
Py(t) = D.(t)" D.(t), R(t) = D.(t)D.(t)~ also D,(t)~ is continuously differentiable.
Furthermore, D,z, = D,Pyx, belongs to the class C'. Then z € C’}D* (Z.,R™)
implies

d(z(.),.) = d(D,(.)" D.(.)z(.),.) € CYZ,,R").

It remains to show that Py, is actually C'. Therefore, we investigate the function
K(z,y,t) ==y —d(z,t), v €D,y R" teT.

We have K(z.(t),y.(t),t) = 0, and K,(x.(t),y.(t),t) = —D.(t) acts bijectively
between im Py(t) and im R(t).

For each t € Z, the equation K(z,y,t) = 0 provides a solution function ((.,?)
with K(C(y,1),y,1) = 0, ((y,t) = Po(t)C(y, 1), C(y,1) = C(R(D)y, 1), Po(t).(t) =
C(y«(t),t). Then the regularity of Py, results from that of , since y.(t) is contin-
uously differentiable. O

For a better understanding let us remark that, in case of d(z,t) = D(t)x + §(¢), the
equation y — D(t)x — §(t) = 0 leads to y = R(t)y and Py(t)x = D(t)"y — D(t)74,
i.e., ((y,t) = D(t)"y — D(t)~0(t).

For nonlinear DAEs (2.1) satisfying the assumptions of Lemma 4.7, i.e., DAEs with a
smooth function d and an only time-dependent smooth subspace Ny, it is convenient
to work with the function space Cp (Z.,R™) = Cp_(Z.,R™). (2.1) can be left in the
original form or we may take

(d(x(t),1))" = de(Po()2(t), 1) (Po ()2 (1)) + di(Po(t)(1), 7).
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5 Special systems of circuit simulation

The modified nodal analysis (MNA) used in industrial simulation packages gener-
ates, for large classes of circuits, systems of the form (cf. [EsTi])

Ac(g(Ale(t), 1) +be(e(t), jr(t), jv (1) = 0
(0(L(®), 1)) +br(e(t), ju(t),jv () = ) (5.1)
by (e(t), jr(t), jv (t)) —0

where e(t), ji(t), jv(t) denote the nodal potentials and the currents of inductances
and the voltage sources, respectively. The functions ¢(z,t) and ¢(w,t) are continu-
ously differentiable and the Jacobians ¢,(z,t), ¢, (w,t) are positive definit. With

e A, 0O . T
=1 j. |, A:= 0 I ], daxt):= ( qé(lc et,)t ) :
jV O O ]L)
bc(eajLajVat)
. qz(A;reat) 0 7 L . .
M(l‘at) T < 0 ¢w(jL;t) ) b({L‘,t) bL(eajLajVat)

bV(ea.jLa.jV7t
it holds that . . o o
D:=d,=MA",Gy:=AD = AMA",
imGy = irnfl,ker Go=kerD=ker A".

The matrix Go(z,t) has a nullspace Ny that is independent of = and ¢. Obviously,
(5.1) is nothing else but

A(d(z(t),t))" + b(z(t),t) = 0. (5.2)

If im D(z,t) is independent of x, then (5.2) has a proper leading term. Because of
the constant nullspace Ny, Lemma 4.7 is relevant.

If im D(z, ) changes with z, we can put A = AP; in (5.2) and shift the constant
projector P; with ker P; = kerA below the derlvatwe The DAE

A(Psd(z(t),1)) + b(z(t),t) = 0 (5.3)

has a proper leading term with constant subspace Np and R = Pj;. Here, too,
Lemma 4.7 may be applied. Moreover, P;D(z,t) is also constant now.
On the other hand, we can differentiate

A(d(x(t),1) = A{M (x(t), ) (AT (1)) + di(x(t), 1)}
and investigate the equation
AM (z(t),t) (AT (1)) + b(z(t), t) + Ady(x(t),t) = 0. (5.4)

If ker(AM(m,Nt)) is independent of z, (5.4) represents a DAE with proper leading
term. If ker(AM (z,t)) depends on x, we proceed to

AM(z(t),t)PL(AT2(t)) + b(z(t),t) + Ady(x(t), 1) = 0. (5.5)
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Combined version are also possible, the choice depends, among other things, on the
subspaces im D(x,t), D(x,t)S(z,t), D(z,t)Ni(z,t) being constant in case of

A(z(t), t)(d(x(t), 1)) + b(x(t),t) = 0.

Both versions, (5.3) as well as (5.5), have a constant im D(z,t). For them, it holds
uniformly that

Si(z,t) = {z: by(z,t)Pyz € im (AD(z,t) + by(z,1)Qp)}.

Then we have D(x,t)S:(v,t) = P;D(x,t)S,(x,t) for (5.3), whereas D(x,t)S,(z,t) =
ATS (z,t) is true for (5.5).

6 Constraints
Obviously, all solutions z, € C}(Z.,R™) of the DAE
A(z(t),t)(D(t)z(¢t)) + b(z(t),t) =0 (6.1)
have to satisfy the condition z(t) € My(t),t € Z., with the constraint set
My(t) :={z € D:b(x,t) € im A(x,1)}. (6.2)

For DAEs of index p = 1, My(t) is completely filled with solutions and My(ty) is
the set of consistent initial values at time ¢ty € Z (cf. [HiM&]).

Theorem 6.1 Let (6.1) be a DAE of index yp = 1. Let ty € T and xo € My(to).
Then there exists a unique (mazimal) solution z, € ChH(Z,,R™) with I, > t,

x4 (to) = y.
P r o o f. Because of xy € Mg(to) there exists a yo = R(ty), yo € R", with
A(l‘o, tO)D(tO)D(tO)_yg + b(l‘o, to) = 0.

With 2 = D(t)" D(t)x + Qo(t)x = D(t) u + Qo(t)w, w := Qo(t)x + D(t) y, u :=
D(t)z we find
Az, t)D(t)D(t) y + b(z,1)
= AD®#) u+ Qu(t)w,t)D(t)w + b(D(t)"u + Qo (t)w, t)
= Fl(u,w,t).

It holds that f(UO,U)O,to) = 0 for Uy = D(to)fl)g, Wy = Qo(t())fli() + D(to)iyo.
Moreover,

Fu(ug, wo, to) = G1(D(to)wo, D(to) “uo + Qo(to)wo, to) = G1(yo, To, to)

is regular in case of index y = 1. Consequently, the implicit function theorem
implies the local equivalence of the relations F(u,w,t) = 0 and w = w(u,t) with a
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continuous function w(u,t), which has a continuous partial derivative w,(u,t) and
for which wo = w(uy,tp) is true.
The regular IVP

u'(t) — R'(t)u(t) = D(t)w(u(t),t), u(te) = ug (6.3)

has a solution v € C'(Z,,R™) for which u(t) = R(t)u(t),t € Z,, holds. Then the
function z(t) := D(t)~u(t) + Qo(t)w(u(t),t),t € Z,, is the desired solution. O
Behind Theorem 6.1 is the idea that the dynamics of a DAE is dominated by an
inherent regular differential equation (here, in case of u = 1, the differential equation
(6.3)), and representations of the solution result from the constraints.

In the case of DAEs (6.1) of index p = 2, hidden constraints have to be taken into
account. Under the assumptions of the following lemma these hidden constraints
can be described relatively easy.

Lemma 6.2 Forthe DAFE (6.1) of index p = 2 let im G4 (y, x,t) not depend on y and
Qo(t)x. For a continuously differentiable projector Wi (x,t) € L(R™), ker Wy (x,t) =
im Gi(y,z,t), let the relation

Wl(l',t) :WI(PU(t)l',t),l' ED,tEI, (64)

be valid. Then
(Whb)(z,t) = (Whb)(Py(t)x,t),x € D, t € T, (6.5)

18 also true.

P r o o f. By construction, W;BQy = 0 and W;(Ay),Qoz = 0 for all z € R™ hence,
Wib,Qo = Wi(B — (Ay).)Qo = 0.
Finally, we have
(Whb)(z,t) = (Wib)(Po(t),t)

_ /0 (Wib)a (52 + (1 — ) Po(t)2) Qo (£)wds

_ /OI{WII(...)QO(t)xb(...) Wb (. )Qo(t)z}ds =0. O

The structure introduced in Lemma 6.2 allows us to differentiate the equation
(Wib)(z,t) = 0 along a solution and thus to find the hidden constraints. More
precisely, let D(¢) and D(¢)~ be from C'. Then the function (W;b)(x.(t),t) is con-
tinuously differentiable for each solution z, € Cp(Z,,R™). x.(t) € My(t) implies
(W1b)(z.(t),t) = 0,t € T, and (W1b)(D(t)” D(t)x«(t),t) = 0,t € I,, respectively,
and differentiation yields

(W1b)(D ()™ D(t)z.(1), 1) (D ()~ D(t)2.(1))" + (Wib)y (D(t)” D(t)z.(1), t) = 0.
From (6.1) we obtain immediately

D) (D(t)a.(t))” = —=D(t)" Al (t), 1) bl (1), 1)-
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This makes clear that
x.(t) € Hy(t),t € L.,

with
Hi(t) = {xeD : (Wib)y(x,t)(D(t)” D(t)x — D(t)~ Az, t)"b(x,1))
+(W1b)(Py(t)x,t) = 0}
must be true. Thus, #;(¢) describes a hidden constraints. A(x,t)” is a reflexive

generalized inverse with A(z,t)” A(z,t) = R(t).
It can be supposed that there are no further hidden constraints for ;4 = 2 and that

Mi(t) = Mo(t) N HA (1), t € T,

represents the sharp geometrical location of the solution of the DAE (6.1) that is of
index p = 2.

Furthermore, it can be supposed that, under regularity conditions admitting the
existence of the tangent space T, M;(t), the relations

Po(t)Tli(t) = Po(t)sl(y,l’,t),
DWT,M.(t) = D(t)Si(y,x,1)

hold for x € M (t), y = —A(x,t)"b(z,1).
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