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Abstract

A shooting method for two—point-boundary value problems for fully implicit index—
1 and -2 differential-algebraic equations is presented. A combination of the shooting
equations with a method of the calculation of consistent initial values leads to a system
of nonlinear algebraic equations with nonsingular Jacobian. Examples are given.
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1 Introduction

In this paper we consider the fully implicit index—2 system

J@(0,2(1,0 =0, t€ab], (1.1)

with the boundary condition

g(x(a),z(b)) = 0. (1.2)

Such problems arise as models of electrical networks, chemical reactions or index—reduced sys-
tems of mechanical motions. The possibility of the direct solution of given index—2 problems
is very useful because

o the index reduction changes the stability behaviour of the DAE
e it is easier to reduce an index—3 system by only one step than by two steps.

The realization of the shooting method is strongly connected with an integration method
that integrates index—2 problems well. This is given if

ker(f,) = N = const,

e.g. for the BDF-method. The presented shooting method links a procedure for the cal-
culation of consistent initial values (this procedure alone is very useful) with the shooting
equations, and the Jacobian of the whole method becomes nonsingular.

In Chapter 2 we introduce some projectors which are useful for the description of index—2
DAE’s. We define a Green function for the explicit representation of of the solution of a
linear index—2 DAE (Chapter 3). The numerical solution of (1.1),(1.2) by a shooting method
is presented in Chapter 4 and some remarks to the numerical realization you can find in
Chapter 5. Numerical examples complete the paper (Chapter 6).
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2 Index determination and projectors

We investigate the nonlinear DAE
f@'(t),2(t),4) =0 (2.1)

as an IVP or BVP. For the numerical approximation of (2.1) it is necessary to know which
index the DAE has.
Let 2, be a solution of the considered problem (2.1) and

A(t) = [yl (), w.(t),1) B(t) := folw, (1), 2.(1),1). (2.2)
We define the chain of matrix functions [Ma87]

AO = A, BO =B - AP/
Ay = A+ BiQy, (2.3)
Biy1 = (Bi — Aij1(PoPy - Piya) Po--- Pi_q) Py

Q); is defined to be a projector onto N; := ker(A;(?)), P; := I — Q; for ¢ > 0 and P, =: P.
Then the following definition is given.

DEFINITION. [Md91] The ordered pair {A, B} of continuous matriz functions is said to be
index—p—tractable if all matrices A;(t),j = 0,...,u — 1, within the chain (2.3) are singular
with smooth nullspaces, and A, (t) remains nonsingular.

The nonlinear DAFE (2.1) is said to be index—1-tractable locally around . if the pair of the
linearization (2.2) is so, too.

The nonlinear DAFE (2.1) is said to be index—p—tractable locally around z, for u > 1 if the
pair of the linearization (2.2) is so in a neighbourhood of the solution.

We are interested in the index—2-tractable case under the assumption that
ker(f,) = N = const, i.e. P'=0.
The following situation is given

Ay = Ao+ BoQ, By = (By— A(PP))P, .
Ay = A4 BiQy = (A+ BQ + BPQ.)(I — P,(PP)PQ,). (2.5)

Lemma 2.1 Denote by Q an arbitrary projector, and P := 1 — Q. Then the matrix
M:=1-Q7P
is nonsingular and its inverse is given by
M =T+097ZP.
Proor. We consider the equation
Mz =0.
It follows
2=QZPz=Pz=0,

and we have z = 0. O



Using Lemma 2.1 it is clear that
As is nonsingular < Ay := A+ BQ + BPQ, (2.6)

is nonsingular. However for arbitrary projectors ¢) and ¢); we can test the nonsingularity of
A pointwise without any knowledge of the derivative of a projector as in As.

Lemma 2.2 The following relations are valid

if PP = 0:
a.) A7'A = PP
if P = 0and Q1Q =0 : (2.7)
b.) AF'A = P—Qy
c)  A7'BQ = @
d.) A7'BPQ1 = Q1 — Pi(PQ1)PQ1

Proor. For P’ =0, (PQ1) = —(PPy) is fulfilled. We obtain the relations a.) and b.)
multiplying (2.5) from the right by P, P, and c.) by @. For d.) we multiply (2.5) by A;"
and use the relation b.) and c.). O

Sometimes it is very useful to choose a special structure of the projectors. We focus our
interest on the so—called canonical projector ¢ with

Q1= Q1A;'BP (2.8)
(cf. [M&91b]). This projector fulfils the condition ¢)1Q = 0 and it is really calculable, because

Q= Q1A;'BP = Q,A;'BP. (2.9)
For our further investigations we assume that

P'=0 (2.10)
and

@1Q =0, (2.11)

where 1 represents the canonical projector given in (2.9).

3 Representation of the solution for a linear index—2 BVP

In this chapter we present a solution of the linear system

AW () + BOs() = o)
Dyz(a) + Dyx(b) = 7.



First we consider the IVP (3.1) with the initial condition
P(s)Pi(s)(z(s) —a)=0. (3.3)

For the projector P, := I — )1 we prefer now the canonical projector ()1 given in (2.9).
(3.1),(3.3) is uniquely solvable for all ¢ with {qg € C' : Q1 Ay q € C'} (cf. [M&89]).

For better understanding the index—2 case we split the solution z into three parts:
w:= PPz, v:= PQiz and w:= Qx.

(With @1Q = 0 also PP, and Py are projectors.)
Multiplying (3.1) by PPy A, QP Ay and PQqAS! we obtain

u' — (PP u+ PPiA;'Bu = PP AYYq

—QQ1v' - QQ1(PQ1)u+ QPIA;'Bu+w = QPAj'q (3.4)
v = PQiA7'q

The Fundamental Matriz of a DAL is given by the solution of the homogeneous IVP

AX'+ BX = 0 (3.5)
P(s)Pi(s)(X(s,s)—1) = 0. (3.6)

Using (3.4) we have V := PQ1X =0, U := PP,X = PP,Y, where Y solves
Y' = (PP — PPLA;'B)Y,  Y(s,s)=1,
and W := QX = QQ1(PQ,)U — QP A ' BU. With (3.6) and QW = W, PPU = U we

create
X(t,s) = M()Y(t,s)P(s)Pi(s) (3.7)

with M(1) = (1 + QQQuPQLY(1) — Pi(1) A7 BIOIP(H)Pi(1)). Using Lemma 2.1 it is
easy to verify that

PPM =PP,M~'=PP.
Recall that

PP ()Y (t,8)P(s)Py(s) = Y(t,8)P(s)Pi(s) (3.8)
(cf. [M&S89]).

Remark 1 Using the special projector ¢ = QPlAQ_IB the splitted system (3.4) and also the
matrix M of the fundamental matriz X look a little bit easier. However, this projector is very
difficult to calculate, because of the derivatives in As.

Now we are looking for a representation of the solution of the IVP (3.1),(3.3). Using the
fundamental matrix Y'(¢,s) we have for the component u

u(t) = Y(1,5)( PPra + /t Y (s,7)PPLA; gdr). (3.9)



With (3.8) we transform (3.9) into
uw(t) =Y (t,s)P(s)Pi(s)(a + /: M(s)Y (s, 7)PPi(7T)h(T)dT)

with h(t) := PPy A;'q. For the other components we have
vo= PQlAglq and
w = QPAT ¢+ QQ1(PQ1)u— QPiAT Bu+ Q@
and therefore
x = ut+v+4+w
= Mu+q(t)
with (1) = (PQ1+ QP1) A3 4 + QQ1(PQ14; ")
¢
x(t) = X(t,s)(a+ / X(s,7)h(T)dT)+ ¢(1) (3.10)
represents the solution of the IVP (3.1),(3.3). Now we consider the solution z(¢) in ¢t = a and
t=0b.
z(a) = X(a,a)a+ g(a)and
v(b) = X(ba)(a+ [, X(a,m)h(r)dr)+q(b)
with unknown a. The boundary condition (3.2) requires
Sa = (D, X(a,a)+ DpX(b,a))a
= 53— DyX(b,a) [’ X(a,7)h(r)dr =: 7
with 7 = 7 — (Dad(a) + Ds(b).

Theorem 3.1 [Md91] Let (3.1), (3.2) be a tractable index—2 equation and the projectors
fulfil (2.10) and (2.11). Then, for arbitrary right-hand sides q with q € Cla,b], PQ1A;'q €
C'a,b] and v € im(D,, Dy) (3.1), (3.2) have a unique solution iff

(3.11)

ker(S) = im(l— PP) (3.12)

im(S) = im(Dgy, D). (3.13)
Proor. The unique solution of (3.1), (3.2) is related to the solution of the IVP (3.1), (3.3).
Then it becomes clear that only PPy« influences the solution. Hence, we require for «

a= PP (3.14)

We are looking for solutions of (3.11) in the set P := {z|z € im(PP;)}. The right-hand
side of (3.11) fulfils ¥ € im(D,, Dy). This means that (3.13) is a necessary condition for the
solvability of (3.11). The structure of X (¢, s) provides

S = 5P(a)Pi(a) or ker(S) D im(L — P(a)Pi(a)). (3.15)

— Let o € P be a solution of (3.11), then also a + § € P solves (3.11) with 8 € ker(5). The
uniqueness requires that P N ker(S) = {0} = ker(5) C im(/ — PPy). With (3.15) formulae
(3.12) follows.



— Let (3.12) be valid, and ay and a3 € P denote two solutions of (3.11). Then a3 —ay €
ker(5), but ker(S) NP = {0} and ay = ay. O

S~ denotes the generalized reflexive inverse of 5 with
STSST =57, 5575 =215
and
S7S = P(a)Py(a). (3.16)
This representation of S~ is possible if (3.12) is valid. We multiply (3.11) by 5~:
P(a)Pi(a)a = 577.
With (3.10) we have
x(t) = X(t,a)577

+ [P X (t, T)h(T)dT — ff X(t,a)S~ Dy X (b, 7)h(T)dT + ¢(1).
Using (3.16)
STDyX(b,a)= PPy — S D, X(a,a) (3.17)
is valid and, therefore,
X(t,7)—X(t,a)(PPL— 5 Dy X(a,a))X(a,7)= X(t,a)5 Dy X(a,T).
Now we introduce the Green’s function

) +X(t,a)ST Dy X(a,s) s >t
Gt 9) '—{ CX(t,a)S"DyX(bys) s < ¢ (3.18)
and the following Theorem holds.

Theorem 3.2 Let Theorem 3.1 be valid and S~ denotes a reflexive inverse of § with 575 =
PPi(a). The solution of the BVP (3.1),(3.2) has the representation

2(t) = X(t,a)577 + /ab G(t, T )h()dr + §(t).

4 Numerical solution by shooting method

The solution of BVP’s by shooting methods requires that we are able to integrate the consid-
ered equation. For DAE’s this means that we have to make available consistent initial values.
We find different ideas for the calculation of consistent initial values.

Numerical differentiation is used in the code DASSL (see also [LPG91]),
Formel manipulation is proposed by [Han90],

Special structure of the DAE is used by [AP91].

We use a general approach taking advantage of the given subspaces by using special projectors.
A further disadvantage of shooting methods for DAE’s is the singularity of the Jacobian. This
problem we overcome as in the index 1 case (cf. [Lam91]) by the combination of the shooting
equation with the equation for the calculation of consistent initial values.



4.1 Consistent initial values
We consider the nonlinear DAE
f@'(t),z(¢),t) = 0. (4.1)

For a better understanding of the index—2 case let us consider the transferable or index—1
case. The assumption ker(f,) = N () allows us to transform (4.1) into

F((PY(1) = Pa(t). 2(t).) = 0 (1.2)

(see [GMST]).
Index 1: We are looking for consistent initial values for the IVP (4.2) with

P(s)(z(s) —a)=0. (4.3)

We split @ = Pz + Q2 =: v + v and denote y := (Px) — P’z (recall that Py = y). Let us
define i := y 4 v, then (4.2) considered in ¢ = s is written as follows

J(Pn,utQn,s) =0 (4.4)
with known u = Pa and searched 7. The Jacobian of (4.4) is given by

which is nonsingular for the index—1 case.

Index 2: Now we transfer this technique to the index—2 case. Here we assume the stronger
condition that

ker(f,) = N = const. (i.e. P = const, P’ =0) (4.5)

This assumption does not restrict the class of numerically solvable problems. We know
(compare with the example in [GP84]) that only assumption (4.5) saves numerical success
for index—2 problems. With (4.5), (4.2) has the structure

f((Pz), z,t)=0. (4.6)
We represent (4.6) in a more detailed way

f((PPz) 4+ (PQqz),z,t) = 0Oor
f(PPz) — (PP) PP+ (PQia) — (PQ1) PPz, a,t)

(
o
—~
-
-3
~—

with the initial condition

(PPy)(s)(z(s) —a)=0. (4.8)
We split x into the components

x=PPix+PQiz+Qr=u+v+w

and we define

y = (PPz) —(PP)PPx, and

n o= y+ov+w. (4.9)



Here PPy = y is valid. Now (4.7) reads
PP+ 0" = (PQ1)u, ut (PQ1+Q)n, s) =0. (4.10)

The trouble in formula (4.10) is caused by the unknown term v'. Therefore, we consider
(4.10) in a neighbouring point s + h and replace v’ by the finite difference
h
, vt—w
ST
We use the symbol (-)* = (-)(s + h).

(Pan)h — PGy B

f o= f(PPim+ h

(PQ1)us u+ (PQ1+Q)n, s)=0 (4.11)
g _ (Pan)h - PQin
o= f(PPip)" + - -

{(PQ1Yu}", " + {(PQ1+Q)}", s+ h) =0 (4.12)

with
W = u+ hu' = u+ h(PPin+ (PP)u).
Theorem 4.1 Let the projector Q1 depend on w = PPyx and t only, P = 0 and Q1Q = 0.

Then the system (4.11),(4.12) has a nonsingular Jacobian in the point (y,+v,—(PQ1) s, Tw, 5)
if h is sufficiently small, where (.), is the part of x,.

Proor. The Jacobian is given by

of  9f
an ot
J = B B
oft ort
on on"
with
of _ A(PP, — 1P B(P
8_77 = ( 1= 3 Q1)+ B(PQ1 + Q)
0F
A= paray
i (4.13)
or' - _ LAPPQ, — h{A(PQ,) — BY'PP
o7~ T 1 — M{A(PQ1) — B}"PP
o _ {A(PP, + LPQ B(PQ, + Q)"
o 1+ 7 1)+ B(PQ1 + Q)
with A := f; and B := f]. Using the identities given in Lemma 2.2 and
(P - Q)PP = PP
(P=Q0PQ1 = -QC: (4.14)
PP = (P -Q)



for P’ = 0, we have

(4 0
J_(O Ag)“ (4.15)

with

T+ P((1+ 5)QQ: — (PQ1))PQ,
M=\ NP - QiY(PQy) — h{AF(A(PQ) — B} PPy

—L(P = Q{PQ:}" )
IT+{P((14+1)QQ: — (PQ1))PQ:1}" |~

To show the nonsingularity of pu, first we consider the equation

i ( g ) =0 (4.16)

with

I+ P+ 5)QQ1 — (PQ1))PQ1  — +(P — Q){PQ1}"
P HP-QOMPQY) T+ {P((1+ 1)QQ1 - (PQ))PQ}Y |

The result of the first equation of (4.16) after multiplying by @1 is

1& =0 (4.17)
and the second equation multiplied by Q¥ yields

Qrés = 0. (4.18)
Using (4.17) and (4.18) in (4.16) gives

&=6=0.

Now we consider the matrix

o 0 0
pe=p- ( h{A;Y(A(PQ,) — B)}"PP, 0 ) '

fi depends continuously on h and ji = p for h = h, i.e. if h is sufficiently small, then pu is
nonsingular. O

Remark 2 We consider (4.11), (4.12) for a linear DAE
AW(1) + B (1) = o(1)

and obtain
h_
A(s)(PPin + {Pan}h P _ (PQ1)v)
+B(s)(u+(PQ1+Q)n) = q(s) (4.19)
b
A(s+ W){ PP} + {PQW}h PO yroyyuy

+B(s + h)(u" + {(PQ: + Q)n}")

q(s +h). (4.20)



We multiply (4.19) by A7'(s) and (4.20) by A7 (s + h) and obtain

(Pan)h - PQ1n

(P —@Q1)(PPin+ - (PQ1)'w)
FAT B+ (PO + Q) = A7 ()g(s) (1.21)
(P - Qupriy+ LA PO ipg, gy
AT s+ WB(s + M+ (PQu+ QYY) = (A7) (4.2

The multiplication of (4.21) and (4.22) by PQ1 and {PQ}", respectively, yields
PQin = PQ1Aj'q(s)
{PQuny" = {PQ1A7"Ya(s+ h)

or

h _
lim {PQW} PQun
h—0 h

Using (4.23) we consider (4.19) for h — 0 and realize exactly the linear DAFE because

PPin+ (PQin) — (PQ1)w = (Px)

=0 = (PQ:143q) (4.23)

and
u+ (PQ1+Q)n==.

The accuracy of the numerical solution depends essentially on the condition of the matrix p.
We investigate the condition of the matrix g. Using Lemma 2.1 and PQ1(P — Q1) = 0, the
inverse of g is given by

. ( I=P((1+£)QQ1 = (PQ1))PQ1 = 1(P = Q{PQ:}" ) (4.24)
: Lip— QY (PQ.) - {P((1+1QQ) - (PQ.))PQ:}" |- '

We introduce the constants
K1 :=11QQ1|lcap K2 :=||PL(PQ1) PQ1|lclap-

Using the Taylor expansion (PQ1)" = PQy + h(PQy) + O(h?*) we obtain

2

il < (U4 By 4 B) + 2K+ O(h)
2

a7 < (U Ky o)+ 7Ky 4 O(h).

This proves the
Corollary The condition of i is bounded by

2
cond(i) < (14 K1+ K2) + R+ O(h))%.

Remark 3 The essential part of the estimation shows that cond(ji) ~ O(h™%) in the worst
case. This is not surprising because of the numerical differentiation.

10



4.2 The shooting method

We consider now a boundary value problem

f@'(),2(t),t) = 0, te€la,b], (4.25)
g(z(a),z(b)) = 0. (4.26)

The idea of shooting is well known. We subdivide the interval [a, b] into m subintervals
o=ty <ty <---<t,=0"b

and we look for the initial values z; := z(¢;),i=10,...,m — 1.
z(t; s, z) denotes the solution of the IVP (4.25) with

PPi(s)(z(s)—2)=0.
The z; have to fulfil the boundary condition

9(20, ¢(tmi tn—1, Zm—1)) = 0 (4.27)
and the matching condition

(PP1)i(z — 2(tiitiza, 2i-1)) = 0. (4.28)

(The symbol (-); reads like (-)(¢;)).

The disadvantage of the system (4.27),(4.28) is the singularity of the Jacobian (as in the
index—1 case). However we use the same idea that solves this problem in the index 1 case
(cf. [Lam91]), too. We combine the shooting equation with the equations (4.11),(4.12) for
the determination of the initial values. For this aim we split the variable z; into the parts

zi = (PP )iz + (PQu)izi + Qizi =2 ui + vi + wy

and with n; := y; + v; + w; (cf.(4.9)) we have z; = u; + (PQ1 + Q). The shooting equations
are given by

9(uo + (PQ1 + Q)onos (tms tm—1,Um-1)) = 0 (4.29)
ui—(PPl)ix(ti;ti_l,ui_l) =0 i=1,...,m—1 (4.30)

and the equations for the determination of the initial values in ¢; read

: N {PQin}t = (PQ1)in;

i = F((PP)in 3 — (PQ1)us,
w; + (PQ1+Q)ini, ;) =0 (4.31)
h_ .
P pppot+ TR gy,

ul + {(PQy + Q)imi}", ti + h) =0, 1=0,...,m—1.
For the variable u we have to ensure that
PPiu = u.
This is valid for ¢;,4 = 1,...,m — 1 by using (4.30). For ug we extend (4.29) to

g(uo + (PQ1+ Q)onos @(tm;tm—1,Um—1))+ K~ (I — PPy)oug = 0, (4.32)

11



where K is a nonsingular matrix with
im(g;’a’g;’b) @im(ff‘l(f — PP)y) = R".

For the calculation of the unknowns wug, - - -, u;,—1 we have to solve the equations (4.30) and
(4.32). But in (4.32) also 79 is engaged. This means that we extend our system to the
equations for the determination of the initial values (4.31) in the point .

Theorem 4.2 Let the assumptions of Theorem 3.1 and 4.1 be fulfilled and Q1 = Q1(t) only,
in this case system (4.32),(4.30) and (4.31) (for i = 0) has a nonsingular Jacobian.

Proor. We order the variables in the following way:

5 = (UO, .- '7um—177707773)7

then the Jacobian J is given by

Ga,u Gb,u Ga,v 0
My 1 :
J= : : (4.33)
My_y I
i, A
where we have used the following abbreviations
Ga,u = g;a + ](_I(I - PPl )07 Gb,u = g;ng(tmvtm—l)
Ga,v = g;ca(PQl + Q)O
M; = —(PP1)it1 X(tig1, 1)
o APQu)y + (BPP)o
" {=A0(PQ1)y + (BPP1)o} (I + O(h))
Jo denotes the matrix (4.13) in .

We investigate the equation

JE=0. (4.34)
J denotes the matrix with the structure of J, but the matrices Jy are replaced by Jy :=
( f(l)? ;(1)% ) £ (cf. (4.15)). The second to m—th equation of (4.34) is given by

g1 = (PP )ipa X (L1, 6w t=0,....,m—2. (4.35)
This leads to

U—1 = (PP1)m—1 X (tm-1,%0)uo.

The latter 2n—dimensional equations are given by

o\ _ [ —A(PQi)g + (BPP)o
Jo ( :773 ) a ( {=Ao(PQ1)}y + (BPP )oY (I 4 O(h)) )“O- (4.36)

12



We multiply the first equation of (4.36) by A;' and the second one by (A%)~1. Using (4.24)
and (2.8) we have

nw = (P—Q)(PQ1) — A 'BPP )ug (4.37)
= {(P—Qu)(PQ1) — A7'BPP Y + O(h))uo. (4.38)

Setting (4.37) in the first equation of (4.34) yields

(g, + KT = PP1)o)uo + go, X (tins tne1 )t —1 + 95, (PQ1 + Qoo
= (gh, + K7'(I = PP)o+ gb, X (tn, to) + g5, (—Q[Q1(PQ1) — A BIPPy)ug
= (0.1 - Q[Q1(PQ1) — Ay'BIPPy) + g, X (tm.to) + K~ (I = PPy)o))uo
= (g5, X(to,t0) + 9o, X (tn, to) + K~ (I = PPy )o)uo.

Using wg = PPjug we obtain
(92, X (10, t0) + g3, X (tms t0) )uo = Sug = 0,

and with (3.12) it follows that ug € ker(5) or ug = (I — PP;)z and this gives ug = 0. With
(4.35) we have u; = 0 and, using (4.36), 1o and nk = 0. The matrix J is a regular perturbation
of J, i.e. for h sufficiently small also J is nonsingular. O

Remark 4 To determine the unknowns

h h .
UQy - - -y Um—1,"70, Mo and Nis ;5 1=1,...;m—1

we have to solve the systems{(4.32), (4.30),(4.31) with i = 0} and (4.31) fori=1,---,m—1.
All these systems have a nonsingular Jacobian. Consequently, for the solution of the BVP
(1.1), (1.2) the represented shooting method is realizable with a common Newton-like method
(taking into consideration the structure of the Jacobian, of course).

However a part of the unknowns of the nonlinear algebraic system are partially projected
vectors (u = PPyu). The question is:

Does the Newton method save this condition ?

Or, in other words :

Is the correction Aw also a PP, projection?

To answer this question let us consider the nonlinear system

Sy = g(uo + (PQ1 + Q)omo, #(tmitm—1,um—1))+ K11 = PPy)oug (4.39)

S = up — (PPl)Zw(ti; ti—1, ui_l) i=1,...,m—1 (4.40)

iy

h_
J((PPr)ono+ PQinjg h(PQl)WO
S0, = —(PQ1)guo, uo + (PQ1 + @)oo, To) (4.41)

h_
m f({PPIU}g‘|‘ {PQin}g h(PQ1)0770

—{(PQ1)puo}"™, ufy + {(PQ1 + Q)omo}", to + h)

The Newton—correction A¢ = (Aug, ..., Attyy_1, Ano, Anl) =: (Au, A5l is given as the
solution of

JAE = —5(¢). (4.42)

13



Because of the structure of (4.42) (see Remark 4) we have to solve the linear systems

Ga,u Gb,u Ga,v 0

. Sg
My T S,

( Au ): — (4.43)
Ao
M=y 1 Sm-1),

................................... Son
Fuo JO

We solve (4.43) by elimination of A7 in the last equation of (4.43), and using this result in
the first equation of (4.43), i.e.

Aﬁo = _J(J_I(SOW + FuOAUO)- (444)
The first equation of (4.43) is given by
GamAuo + GbmAum_l + Gaﬂ]Aﬁo = —Sg (445)

and it is clear that only Ang influences (4.45). Using (4.37) and the abbreviation

( 710, ) = J5 'S0, (4.46)

02,0,
we have
Ang = —01,0, — AQ_IFl,uOAUO
and (4.45) is now represented as
(Ga = GawA7 " Fiug ) Aug + Gy oy At 1 = =5, + Ga 010, (4.47)
The system (4.47) and the matching conditions

M;Au; + Auiyq = _S(i-l—l) 1=0,....m—2, (4.48)

w’

of (4.43) form a linear system with block cyclic structure, as we know it from the shooting
methods for ODE’s. It is easy to verify that

Gaw — GawA3 Fi o, = gb. X(to,to) + K™Y — PPy)o. (4.49)
From (4.48) and the conditions of the fundamental matrix we have

Aty = X(tm—z2,t0)Aug+ (PP1)m—27, (4.50)
where z represents an expression in 5;, and M;. Using (4.49) and (4.50) we derive from (4.47)

(9. X (to, o) + 9o, X (tm, t0))+ KNI — PPy)o)Aug =

4.51
_Sg + Ga,vgl,On - Gb,u(PPI)m—sz ( )

or, shorter, with (3.11)

(S+ K1 - PP )o)Aug = d.
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with

d=—-5,+ Ga,vULO,, — Gpu( PP )2z, (4.52)
and the solution is given by

Aug=(S"4+ (U - PP )oK)d (4.53)
(see [Lam91], Lemma 2.2), where S~ represents a reflexive inverse of S with

578 = (PP)yand SS~ = K~(PP)oK.
For (4.53) we have

Aug = (S_SS_+(I—PP1)OI()d
((PPl)OS_ + (I — PPl)OI()d.

With (4.52) and the validity of Theorem 3.1 d € im(.9), i.e. d = S/3. We have

(I-PP)oKd = K(I-557)d
= K(I-557)53=0.

With Aug also the other corrections Aw;,7=1,...,m — 1 are (PP );—projections.
Corollary The Newton method for the solution of the nonsingular system (4{.39)-(4.41) does
not change the subspace condition of u (= PPyu).

5 Numerical realization

The application of a shooting method means that at least the integration of the given problem
over an (sub)interval is possible. In the case of DAE’s this implies that consistent initial values
in the shooting points are available. The rough algorithm for the solution of a TPBVP for
DAFE’s is given as follows:

1. Subdivision of the interval [a,b]
a=1g <t - <tm_1 <tm2b;

2. initial guess of the initial values z;,¢ = 1,---,m — 1, at the shooting points;
3. calculation of consistent initial values in the shooting points;
4. solution of the shooting equation;

5. if accuracy is high enough, then
print some nice solution pictures
else
goto 3
endif

To realize this algorithm we have to solve some standard problems of numerical mathemat-
ics, but with special structure. The main part is concentrated in step 4 — the solution of the
shooting equation. For the nonlinear system we use the very flexible solver NLSOLV devel-
oped by the author, which solves systems with arbitrary structure if solvers for the linear
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systems with this structure are available.

For the integration a BDF-code (IVPDAE) is used.

For the calculation of the nonlinear algebraic function and its Jacobian we have to calculate
in the shooting points the projectors ) and ¢); with (2.8) and we have to determine K in
(4.32).

5.1 The calculation of the projectors () and the canonical projector (),

For a given matrix A(:= f,) we have to calculate a projector ) with
im(Q) = ker(A).

Let
A=URPT

with P, — a permutation matrix of columns, U — an orthogonal matrix

. Rl R2 }7‘
"“lo o

Ry — nonsingular and r = rank(A), then

Q:=P, ( 8 _11%1_1]%2 )PCT

The UR~decomposition is performed by the Householder method with column pivoting. With
the aid of this projector () we calculate

Ay = A+ BQ

(see (2.4) for P’ = 0) and, using the same method, we calculate a projector Q1 with
im(Q) = ker(A;).

With Ay from (2.6) we calculate the canonical projector as
Q1= Q14;'BP

(see [M&91]).

5.2 The calculation of K

In contrast to the ODE’s, n additional conditions are not possible in DAE’s. Only dim(im(.5))
(see Th.3.1) conditions are allowed and, moreover, we know that

dim(im(9)) = dim(im(PP)y) =: 7.

We organize our method in such a way that the first r components of g contain the r condi-
tions, i.e. we have to look for a matrix K so that

K~YI-PP)o
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projects onto the last r+1, ..., n—th components only. We know that there exists a nonsingular
matrix T" with

(I—PPl)O:T(O I )T—l (5.1)

If we choose K = T, our problem is solved. Determination of T7':

With (5.1) we have

( 0 I ) =t =TI~ PP (5.2)
ty
and let 771 =: | : | and ¢! € R". With (5.2)
123
0
: 1
0 .
y = | (U=PP)o
r+1
: 123
123
is valid, but for us only ¢;, ¢+ = r + 1, ..., n is of interest, and for these vectors

t; = t]‘(I— PP1)0

is true if t; = j—th row of (I — PPy ). With this selection of K we have finally

KYI-PP) = ( 0 I )(I—PPl)O.

6 Examples

Let us start with the classical pendulum, but in a slightly modified version. We use the
representation

Ty = a3
zh = a4
¥y = —xjas (6.1)
vy = —woas+g
0 = 224231

and consider the solution with the boundary condition

21(0.55) = 0. (6.2)
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That means, we ask for the inital point from which the pendulum needs the time 0.55 to
reach the lowest point. (6.1) represents an index—3 DAE so that we have to reduce the index
(e.g. by differentiation). The index—2 version is given by

Ty = I3
zh = a4
¥t = —xyas (6.3)
vy = —woas+g
0 = T3 + o4

and the index—1 version by

Ty = I3
zh = a4
th = —zyzs (6.4)
ry = —xaas5+yg
0 = 224224 gry— (a2} + 2d)us.

What about the boundary conditions ? In the index— case we have to offer dim(P--- P,_q)
boundary conditions. For the index—2 pendulum the following matrices and projectors are
given:

100 00 0 0 10 0
01 000 0 0 0 -1 0
A=P=|l00100]|, B=|azs 0 0 0 21 |,
00010 0 25 0 0 a9
0 0 0 0 O r3 T4 1 9 0
Q:I_Pv
10 00 O 0000 O
01 00 O 0000 O
A=A+ BQ = 00 1 0 =z , Q1= 00 0 0 —x ,
00 0 1 a9 00 0 0 —=
0000 O 0000 1
1 0 00 z
01 00 1
A22A1—|-BPQ1: 0010 €Tl
00 01 T
00 0 0 —(a?+22)

The matrix As is nonsingular, so that this example is index—2 tractable.

0 0 0 0 0
0 0 0 0

1
T1T3 T1T4 $% 12

s=Q1A'BP = ——
Ql, Ql 2 $% —I— $%

ToX3 Talyg T2Xq $%

_— o o o

—r3 —Ig4 —I1 —I2

18



Pl,s =1- Ql,sv

1 0 0 0 0
0 1 0 0 0
22
_ _x1x3 _ T1x4 2 _ _Z1%2
PPl,s = x?—l—x% x?—l—x% x?—l—x% x?—l—x%
_ %23 _ _Ta®3y _ _%oxy 1

ri+73 ri+73 witey  wites

0 0 0 0 0

It is easy to see that dim(im(PPF; 5)) = 3. To guarantee the equivalence of (6.1) and (6.3) we
extend the boundary condition (6.2) to the condition

0 =21(0)% + 22(0)* - 1.

In the index—1 case, dim(im(P)) = 4 and we use the additional BC (because of the second
differentiation of the algebraic equation)

0= $1(0)$3(0) + $2(0)$4(0)

We use 2(0) = (1.0,0.3,0.0,0.0,1.0) as initial values for the single shooting. The theoretical
value for 25(0.55) is equal to 1. The computational results are:

Index Accuracy of h of finite z1(0) 22(0) 22(0.55)
integration  difference
1 10710 0.948702560 0.316169975 0.999999998
1 1076 0.948707...  0.31615... 0.999997...
2 1076 1073 0.9488... 0.3158... 0.99967...
2 107° 107° 0.9488... 0.3158... 0.99966...

The second example is published by Ascher and Spiteri in [AS93]. Consider

Ty = T2ty
vy = —wizy+ agy (6.5)
0 = (§)ai+a23-1

with the boundary condition

This is an index—2 DAFE and the exact solution for w = % is

1

1 =w sinwt, ¥y = coswt, y = 0.

Let us look for w fitting an observed function r(t), where the observations are made on
21(1) + 22(1). The necessary conditions for minimizing

N | —

/(wl + 29 — 7)2dt (6.6)
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yield

Ty = T2+ 21y

ahy = Wiy 4y

o =0

N =y wihe — 25 2ap - -
1 = YA twiA 2(3)961,u (z1 + 22— 1)
Ay = A= yde = 2uap — (21 Fag — )
Vo= 2w

0 = (%)%%er%—l

0 = 21A + 220
with boundary conditions
21(0) =0, »(0) =0, v(2) =0,

22(2)M(2) — (g)%l(z)Ag(z) = 0.

The matrix of the matrix chain A, is given by

1 0 0 0 0 O zo—z1 (14y) 0

0O 1 0 0 0 O r1w?—z2 (14y) 0

001 00O 0 0

Ay = 00 0 1 0 0 mtwsre-M1-y)+or(1+2(2)0)  (2(Z)%z1)+2020> —(2(F)%21y) (6.7)

0000 10 @1 =M+ A2 (1—y)+za (142p) (=2(Z)2e1)+222(1-y) T
000O0O0°1 0 471 Tow

000 O0O0TO 2 0

000000 0 -2

and it is very easy to see that A, is nonsingular. Projectors in the solution are given by

PP = 7PQ1:

oo oo oo oo
oo oo oo oo
OO RO O o oo
oo oo oo oo
oo oo oo oo
oo oo oo oo
oo oo oo oo
oo oo oo oo
oo ok O o OO
oo oo oo oo
oo oo oo oo
oo oo oo oo

oo oo oo O

oo oo o o o
oo oo o= OO
[=oien Bl en e BN S = =l en)

This shows in an impressive that this projector technique splits the different components of
the solution of a DAE very effectively.
Different functions r are used. At first, r is chosen as the exact solution of (6.5) and then a
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linear equidistant interpolation of this function with a different number of intervals (20, 16,
8, 4) is performed.

r(t) w
(2)%sin Zt + cos 5t 1.04719737
intervals : 20 1.04751092
16 1.04770058
8 1.04922216
4 1.05548500

The result for w lies in the accuracy of integration and small changes of the function r lead
to a moderate changing of w, too.
For 20 intervals the difference between the given function r and 1 + x5 is given by

xX1+X2-r

0.00175
0.0015 |
0.00125 |

0.001
0.00075
0.0005

0.00025
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For 4 intervals, r and z; + x4 are given by

x1 + X2
r _
1.4
- T X
// ~
e ~
l.2r - ~N
e ~
- ~
e ~N
s N
L s
0.5 1
0.8
0.6
0.4

and their difference by

X1+x2-1
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