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Abstract

This paper considers model uncertainty for multistage stochastic programs. The data

and information structure of the baseline model is a tree, on which the decision problem

is de�ned. We consider �ambiguity neighborhoods� around this tree as alternative models

which are close to the baseline model. Closeness is de�ned in terms of a distance for

probability trees, called the nested distance. This distance is appropriate for scenario

models of multistage stochastic optimization problems as was demonstrated in (P�ug and

Pichler, 2012). The ambiguity model is formulated as a minimax problem, where the the

optimal decision is to be found, which minimizes the maximal objective function, within

the ambiguity set. We give a setup for studying saddle point properties of the minimax

problem. Moreover, we present solution algorithms for �nding the minimax decisions

at least asymptotically. As an example, we consider a multiperiod stochastic produc-

tion/inventory control problem with weekly ordering. The stochastic scenario process is

given by the random demands for two products. We �nd the worst trees within the am-

biguity set and determine a solution which is robust w.r.t. model uncertainty. It turns

out that the probability weights of the worst case trees are concentrated on few very bad

scenarios.
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1 Introduction

The standard assumption in stochastic optimization is that the probability laws of the un-

certain parameters are known and only the realizations are unknown at the time of decision

making. Experience with applications has shown that the choice of the appropriate probabil-

ity model is crucial for the quality of the solution. Typically the structure of the parametric

model is chosen in a more or less adhoc manner (e.g. by specifying that the data come from

Gaussian process) and the parameters of the model are estimated on the basis of a sequence of

past observations. Not only that trusted results of parameter estimates are con�dence regions

and not point estimates, but also the model class itself can be chosen erroneously. On the

basis of the available information a whole set of models could represent the real phenomenon

equally well, we call this fact model ambiguity. A careful decision maker should then take all

these equivalent models into account when looking for the robust decision strategy.

The notion of ambiguity was introduced by (Ellsberg, 1961). In the words of D. Ellsberg,

ambiguity is :

...a quality depending on the amount, type, reliability and unanimity of information

and giving rise to one's �degree of con�dence� in an estimate of relative likelihoods. (p.

657).

One way to deal with ambiguity is to investigate the stability of the optimal solution in

stochastic programming: The notion stability refers to continuity properties of the optimal

solution with respect to to model parameters, see e.g. (Robinson and Wets, 1987), (Römisch

and Schultz, 1991), (Rachev and Römisch, 2002). However, the solution considered in these

stability investigations is always with respect to one single model and the question of how to

improve decisions under endogenous model uncertainty is not addressed.

The idea of optimal decisions under ambiguous stochastic models appeared in an early

attempt by (Scarf, 1958). He studies an optimal single product inventory problem under and

unknown demand distribution with known mean and variance. The problem was formulated

as a linear inventory problem seeking the stockage policy which maximizes the minimum pro�t

considering all demand distributions with given mean and standard deviation.

More sophisticated approaches assume that true underlying probability model belongs to

a given class of models and has motivated the utilization of general minimax decision rules;
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it was pioneered in the mid-1960s by (Zácková a.k.a. Dupacová, 1966). This approach was

applied for the class of stochastic LPs with recourse, where results where formulated in terms

of two person zero-sum games. The minimax solution was introduced as an optimal pure

strategy of the �rst player in the game and developed further in (Dupa£ová, 1980, 1987). In

(Jagannathan, 1977) the class of an ambiguity set consisting of all probabilities with given

�rst two moments was studied for linear stochastic problems with simple recourse. In general,

minimax approach is regarded as a body which bridges the gap between the conservatism of

robust optimization and the speci�city of stochastic optimization where the optimal decisions

are sought for the worst case probability models by obtaining the best possible decisions for

the most adverse considered circumstances.

There is no unique nomenclature for the ambiguity problem. Synonymous names are:

model uncertainty problem, minimax stochsastic optimization and distributionally robust prob-

lem.

Many parametric/ nonparametric proposals for ambiguity sets for two-stage problems have

been made and analyzed among which, the probability models are de�ned by certain proper-

ties such as the support and the moment of corresponding probability distributions or neigh-

borhoods with respect to some appropriate distances. A list of popular classes of probability

models is introduced in (Dupa£ová, 2001, 2010) and a very fast growing literature dealing with

model uncertainty either from theoretical or applied viewpoint can be found in (Chen and Ep-

stein, 2002),(Cala�ore, 2007),(Shapiro and Kleywegt, 2002),(Shapiro and Ahmed, 2004),(P�ug

and Wozabal, 2007),(Thiele, 2008),(Delage and Ye, 2010),(Goh and Sim, 2010).

In this paper we introduce a concept for distributionally robust decision making for multi-

stage stochastic optimization problems. Multistage stochastic optimization is a well established

framework for sequential decision making under uncertainty and is successfully applied in var-

ious �elds such as dynamic portfolio choice, energy production, transportation and telecom-

munication.

Since we consider multistage decision models, information structure plays a crucial role.

When time passes, the initially unknown uncertain scenario values can gradually be observed.

Stage-by-stage, the amount of information increases and planning decisions have to be made

at each time stage based on the available information, i.e., decisions are taken at times t =

0, ..., T−1 with typically di�erent levels of information. We denote the random scenario process
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by ξ := (ξ1, ..., ξT ) and the pertaining multistage decision sequence by x = (x0, x1, ..., xT−1).

The indices of the random process and the decision process di�er by one, since at time t, a

decision is to be made but the realization of the random process will be observable only at time

t+1. In addition, decisions at each time step t may depend only on the actual outcomes of the

random variables up to time t, they must be non-anticipative with respect to the observations

after time t, i.e., xt = xt(ξ
t) with ξt = (ξ1, ..., ξt). For a broad technical presentation of

multistage stochastic programming refer to (Birge and Louveaux, 1997), (P�ug and Römisch,

2007) and (Ruszczynski and Shapiro, 2003).

The pecularity of the multistage situation is the fact that model uncertainty has to be

de�ned in terms of the conditional distributions of the scenario process and not just of its

multivariate distribution. Some literature exists dealing with distributionally robustness for

multistage programs. In (Delage and Ye, 2010) the authors study distributionally robust

stochastic programs where the mean and covariance of the primitive uncertainties are them-

selves subject to uncertainty. In (Goh and Sim, 2010) the approach is extended to allow for

non-anticipativity requirements.

Since for multistage optimization problems, not only the marginal distributions of the

scenario process but also the information structure should be taken into account, we argue here

that it is quite natural to base the ambiguity set on the nearness of the nested distributions.

To this end, we apply the concept of nested distances for the nested distributions. Neglecting

the information structure and looking only at the multivariate distributions of the scenario

processes lead to counterintuitive examples (cf. (P�ug and Pichler, 2012), Example 1. and

(Heitsch et al., 2006)). On the other hand, the nested distance, initially introduced by (P�ug

and Pichler, 2012) is a suitable concept for dealing with the information structure as well.

The paper is organized as follows, in the next section an introduction to risk-neutral

multistage stochastic programing and notions of ambiguity and model uncertainty is given.

In section 3, the distributionally robust counterpart of a risk-neutral multistage stochastic

optimization problem is presented and theoretically discussed. Section 4 is devoted to our

proposed solution algorithm. In section 5 we discuss the application of our approach to a

classical stochastic multiperiod inventory control problem. For implementation we consid-

ered a problem of reasonable size in order to re�ect the technical part of the algorithm in a

representable manner. Finally section 6 re�ects the main results and conclusions.
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2 Multistage Stochastic Optimization

Here, we brie�y discuss the risk neutral formulation to multistage linear stochastic optimization

problem. Consider the problem

min
x
{E[H(x, ξ)] : x ∈ X, x C F; P ∼ (Ω,F, P, ξ)}, (2.1)

where H is a real-valued cost function, depending on decision sequence x = (x0 , ..., xT−1 ) and

a stochastic scenario process ξ = (ξ1, ..., ξT ). The stochastic process ξ describes the economic

environment of the decisions (e.g. future prices, demands, external supplies,... ) and is de�ned

by its nested distribution. Assume for a moment that this process is de�ned on a given �ltered

probability space (Ω,F, P ), where F = (F1, . . . ,FT ) is a �ltration such that ξt is measurable

w.r.t. Ft, which is denoted by ξtCFt (and for the whole process ξCF). The nested distribution

is the collection of conditional distributions of ξt given Ft−1, written as ξt|Ft−1, more precisely

of the nested structure (((ξT |FT−1), ξT−1|FT−2) . . . )ξ2|F1)ξ1. It turns out that the nested

distribution is the right concept to formulate the distribution of the scenario process and the

information structure given by the �ltration independent of a concrete probability space. That

is, two processes which may be de�ned on di�erent probability spaces, but can - together with

the respective �ltrations - be mapped to each other by a bijective transformation, share the

same nested distribution. For a proof and more about the concept of nested distribution see

(P�ug, 2010) . We denote the nested distribution by P and notice that it can be concretized to

a process ξ de�ned on a �ltered probability space (Ω,F, P ) if a concrete model is needed. The

notation P ∼ (Ω,F, P, ξ) symbolizes this. We assume that the decisions at stage t are non-

anticipative, i.e. measurable w.r.t. Ft and lie in a given nonrandom constraint set Xt ⊆ Rdt .

For a baseline model P ∼ (Ω,F, P, ξ) and an alternative model P̃ ∼ (Ω̃, F̃, P̃ , ξ̃) a concept of

distance for the nested distributions has been introduced, which allows to quantify the model

error.

De�nition 1. (P�ug and Pichler, 2012) The multistage nested distance of order r ≥ 0 of two

nested-structures P ∼ (Ω,F,P, ξ) and P̃ ∼ (Ω̃, F̃, P̃ , ξ̃) is the optimal value of the optimization

problem
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min
π

(
´
d(ξ(ω), ξ̃(ω̃))rπ[dω,dω̃])

1
r

subject to π[A× Ω̃|Ft ⊗ F̃t] = P [A|Ft] (A ∈ FT , 1 ≤ t ≤ T ).

π[Ω×B|Ft ⊗ F̃t] = P̃ [B|F̃t] (B ∈ F̃T , 1 ≤ t ≤ T )

(2.2)

Here the in�mum in (2.2) is taken among all bivariate probability measures π de�ned on

FT ⊗ F̃T and d is a distance for the realizations of the stochastic scenario processes, for

instance

d(ξ, ξ̃) =
T∑
t=1

M∑
m=1

wmt |ξmt − ξ̃mt | (2.3)

where wmt are some weights, re�ecting discounting in time and reweighting di�erent dimensions

of the M -dimensional process ξ. The optimal value of (2.2) is the nested distance of order r

and denoted by dlr(P, P̃).

The nested distance is de�ned for the nested distributions and is independent of the re-

spective realizations on concrete probability spaces. Notice that in particular the processes ξ

and ξ̃ can be de�ned on di�erent probability spaces. It has been proved by (P�ug and Pichler,

2012) that if the criterion function H is Lipschitz in ξ and convex in x, then the optimal value

of the decision problem (2.1) is Lipschitz w.r.t. the nested distance.

While (2.1) describes the general form of a multistage stochastic optimization problem, such

problems are often formulated in a �nite discrete setup, especially for making them tractable

by numerical optimization. Finite nested distributions can be represented by node- and arc

valuated trees, where the tree structure re�ects the �ltration, the node valuation represents

the values of the stochastic scenario process ξ and the arc valuation encodes the conditional

probability distributions. Again we refer to (P�ug, 2010) for a thorough treatment of scenario

tree (better: equivalence classes of scenario trees) as representations of nested distributions.

In the following, we consider scenario trees as �nite versions of nested distributions. Trees are

characterized by the node sets Nt per stage and the predecessor relations ≺. If i ∈ Nt−1 ,

j ∈ Nt and i is a direct predecessor of j, we write i = j− and j ∈ i+. If k is any predecessor

of j we write k ≺ j 1. The node set N0 consists only of the root and the node set NT can be

identi�ed with the probability space Ω . If j ∈ Nt and i ∈ Nt−1 with i = j−, then probabilities
1Notation preds(j) denoting the predecessor of j in Ns, with s < t might also be used. If s = t − 1 the

notation is written as predt−1(j) or j−.
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Q(i, j) sitting on the arcs represent the conditional probabilities of reaching node j from node

i. The Q(i, j) 's are the basis for calculating the unconditional probabilities P (i) for every

node. The unconditional probabilities Pi sitting on the leaves NT of the tree represent the

probability distribution P on Ω = NT . The specialization of De�nition 1 for the tree situation

is given by De�nition 2. In the following, we only consider the nested distance of order r = 1,

however all results can be generalized for r > 1.

De�nition 2. The nested distance of order r = 1 between two tree models P and P̃ is given

by the optimal value of the following large linear program

dl(P, P̃) = min
π

∑
i,j∈NT

d(i, j) π(i, j)

subject to
∑
j∈l+

π(i, j|k, l) = Q(k, i) (k ≺ i, l)∑
i∈k+

π(i, j|m,n) = Q̃(l, j) (k, l ≺ j)∑
i,j
π(i, j) = 1

π(i, j) ≥ 0

. (2.4)

Here d(i, j) are distances between the leaves i ∈ NT and j ∈ ÑT are given by a distance

between the paths leading to i resp. j similar to (2.3). π(i, j) runs through all joint probability

distributions on Ω × Ω̃ = NT × ÑT , which we call transportation plans. The conditional

probabilities in a transportation plan are given by π(i, j|k, l) = π(i,j)∑
i′≺k, j′≺l π(i′,j′)

2, therefore

the constraints in (2.4) can be reformulated for the unconditional probabilities P and P̃ as

P (i) ·
∑

i′≺k, j′≺l π(i′, j′) = P (k) ·
∑

j′≺l π(i, j′) (k ≺ i, l)

P̃ (j) ·
∑

i′≺k, j′≺l π(i′, j′) = P̃ (l) ·
∑

i′≺k π(i′, j) (k, l ≺ j).

2This quotient necessitates inclusion of constraint
∑
i,j

π(i, j) = 1, otherwise every multiplication of any

feasible transportation plan π, would be feasible.
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Figure 2.1: Visualization of transportation matrix π and distance matrix d for two trees. i, j
are leaf and k, l are generic intermediate nodes.

When P and P̃ are given, reformulated problem (2.4) is indeed a linear program and reads:

dl(P, P̃) = min
π

∑
i,j∈NT

d(i, j) π(i, j)

subject to P (i) ·
∑

i′≺k, j′≺l π(i′, j′) = P (k) ·
∑

j′≺l π(i, j′) (k ≺ i)

P̃ (j) ·
∑

i′≺k, j′≺l π(i′, j′) = P̃ (l) ·
∑

i′≺k π(i′, j) (l ≺ j)∑
i,j
π(i, j) = 1

π(i, j) ≥ 0

In Figure 2.1, the nested structure of transportation matrix π (induced by two trees of the

same height and structure) together with the schematic distance matrix d is depicted.

The concept of nested distance provides us with a tool for constructing ambiguity neighbor-

hoods around nested distributions. In the next section the distributionally robust counterpart

of model (2.1) is derived and discussed.

3 Multistage distributionally robust stochastic optimization

The distributionally robust counterpart of (2.1) is given by
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min
x

max
P∈P
{EP[H(x, ξ)] : x ∈ X, x C F},

where P denotes an ambiguity set of probability models. In the present work we consider balls

with radius ε around a baseline model P w.r.t the nested distance

P = {P̃ : dl(P, P̃) ≤ ε}. (3.1)

The distributionally robust counterpart reads now

min
x
{max

P̃
EP̃[H(x, ξ)] : x ∈ X, x / F̃, P̃ ∼ (Ω̃, F̃, P̃ , ξ̃), dl(P, P̃) ≤ ε}. (3.2)

Problem (3.2) is quite di�cult to solve. Even in the single-stage case, it requires algorithms

for nonconvex optimization such as DC-algorithms, see (Wozabal, 2010). For this reason, we

will consider a smaller ambiguity set, where we �x the tree structure and only vary the arc

probabilities. To this end, introduce the following notation: Let T denote a tree with given

structure valuated by the scenario process. The leaf set (the scenarios) of T is denoted by

Ω = NT . The probability valuations are given by the scenario probabilities P = (Pi)i∈NT . The

fully valuated tree is denoted by P(T, P ). Even in cases that the structure and the values of

the scenario process are �xed and only the scenario probabilities vary, it would be inconsistent

to de�ne simply ambiguity sets as neighborhoods of P , such asP̃ :
∑
i∈NT

|Pi − P̃i|r ≤ εr
 . (3.3)

The reason is that an ambiguity set of the form (3.3) does not respect the tree structure.

As was already said, we restrict ourselves in the following to alternative models, which

are de�ned on the same tree structure of the baseline model, but only vary the probabilities.

However we keep the ambiguity set as a ball in the nested distance sense, i.e. we specify (3.1)

to

Bε = {P̃ : dl(P(T, P ),P(T, P̃ )) ≤ ε} (3.4)
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and set

Pε =
{
P(T, P̃ ) : P̃ ∈ Bε

}
.

The �nal formulation of the ambiguity extension problem is now

min
x

max
P̃∈Pε
{EP̃[H(x, ξ)] : x ∈ X, x C F}. (3.5)

In the next section, we amplify the ambiguity set to its convex hull in order to apply a minimax

theorem and identify a saddle point. In addition, we show that the worst case model is also

contained in the original ambiguity set.

3.1 A minimax Theorem

The famous minimax theorems (von Neumann, 1928),(Fan, 1953),(Sion, 1958) and all the

references therein, assert that the min and the max can be interchanged in (3.5). The validity

of such theorems is related to convexity/concavity properties of the criterion function and

topological properties of feasible sets. Therefore the question must be answered in what

respect nested distributions allow convex combinations. It would be incorrect to just form

convex combinations of the scenario probabilities, since such a combination is not invariant

w.r.t. equivalent permutations of the leaves, i.e. cannot be formulated in terms of the nested

distributions. The correct notion of convex combinations however is compounding.

De�nition 3. If P and P̃ are nested distributions, then the compound with probability λ is

given by

C(P, P̃;λ) =


P with prob λ

P̃ with prob 1− λ
.

If P and P̃ are tree models, then C(P, P̃;λ) is also a tree model, where from a new root

subtree P can be reached with probability λ and subtree P̃ can be reached with probability

1− λ. Denote by P+ the degenerated compound model, where the baseline model P is chosen

with probability 1. It is equivalent to P , but has an additional root, from which subtree P

can be reached with probability 1.
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It turns out, that our ambiguity set Pε is not convex (w.r.t. compounding). Therefore

we consider its closed convex hull P̄ε. The structure of this convex hull is discussed in the

Appendix 7.1. For the extended ambiguity set P̄ε we can prove the following minimax theorem,

which follows from general minimax theorems cited above.

Theorem 4. Let H(x, ξ) be convex in x with a convex and compact decision set X. Then

min
x∈X

max
P̃∈P̄ε

EP̃[H(x, ξ)] = max
P̃∈P̄ε

min
x∈X

EP̃[H(x, ξ)]

and a saddle point (x∗, P̃∗) exists, i.e.

EP̃[H(x∗, ξ)] ≤ EP̃∗ [H(x∗, ξ)]≤ EP̃∗ [H(x, ξ)].

Moreover, P̃∗ ∈ Pε (and not just in P̄ε).

Proof. The proof of this Theorem can be found in the Appendix 7.1.

In the next section we present a stage-wise approach for constructing the nested neighbor-

hood.

3.2 Ambiguity sets de�ned by transportation kernels

We have seen, that in its general form, problem (3.5) has a complex structure. In construction

of models P(T, P̃ ) only scenario probabilities di�er from the baseline model P(T, P ) as long as

the respective nested distance remains small. However, the measurability of decisions x w.r.t

F i.e. x / F ensures the comparability of the decisions of both models (2.1) and (3.5).

In order to describe the nested distance in a recursive form, we introduce the notion of

transportation subplans. A transportation subplan indexed with pair node (k, l) transports

the elements of k+, the set of direct successors of k, into l+, the set of direct successors of l

and must satisfy the following marginal constraints

∑
l≺j
π(i, j|k, l) = Q(k, i)∑

k≺i
π(i, j|k, l) = Q̃(l, j).

(3.6)
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From Pi = Q(i) ·Q(predT−1(i)) · · ·Q(pred1(i)), P̃j = Q̃(j) · Q̃(predT−1(j)) · · · Q̃(pred1(j))

and satisfying constraints (3.6), all these subplans are concatenated to the full transportation

plan :

π(i, j) = π(pred1(i), pred1(j)|1, 1) · · · π(predT−1(i), predT−1(j)|predT−2(i), predT−2(j)) ·

π(i, j|predT−1(i), predT−1(j)) (3.7)

Emphasizing here that we are considering only the cases where the models are based on the

same tree T implies that only the probabilities vary between these close (in nested distance

sense) models. In this case, we would rather use the notion of transportation subkernels

instead of transportation subplans. For arbitrary nodes k, l ∈ Nt and k ≺ i the subkernel is

the probability distribution in the set l+(l ≺ j) such that

Kt(j|i; k, l) ≥ 0,
∑
l≺j

Kt(j|i; k, l) = 1, (∀ (i, j) ∈ Nt+1 k ≺ i, l) where Kt(j|i; k, l) =
π(i, j|k, l)∑
j
π(i, j|k, l)

,

The relation between transportation subkernels and transportation subplans is given by:

π(i, j) = K1(pred1(j)|pred1(i); 1, 1) · · ·KT−2(predT−1(j)|predT−1(i); predT−2(i), predT−2(j)) ·

KT−1(j|i; predT−1(i), predT−1(j))×Q(i) ·Q(predT−1(i))× · · ·Q(pred1(i)) (3.8)

Therefore transportation kernel K(i, j) is the composition of subkernels Kt, t = 1...T − 1:

K(i, j) = K1 ◦ · · · ◦KT−1(i, j)

= K1(pred1(j)|pred1(i); 1, 1) · · ·KT−2(predT−1(j)|predT−1(i); predT−2(i), predT−2(j))

·KT−1(j|i; predT−1(i), predT−1(j)). (3.9)

For a given baseline probability distribution P = (Pi)i∈NT we shall de�ne the new probability

distribution P̃ by P̃j =
∑

i,j∈NT
K(i, j) ·Pi, hence P̃ = K ◦P = K1 ◦ · · · ◦KT−1P . Then problem

(3.2) can be written in the form

min
x∈X

max{
K

EK◦P [H(x, ξ)] s.t. K = K1 ◦ ... ◦KT−1,
∑

i,j∈NT

d(i, j) ·K(i, j) · Pi ≤ ε}. (3.10)
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It is noticeable that expression
∑

i,j∈NT
d(i, j)K(i, j)Pi ≤ ε in (3.10) is multilinear in transporta-

tion subkernels K1, ...,KT−1. In applications for ambiguity problems P and Q are �xed and

P̃ and Q̃ , regarded as worst tree candidates, are constructed with the feasible corresponding

transportation supkernels such that dl(P,K ◦ P ) ≤ ε. Optimization over these subkernels is

done stage-by-stage repeatedly by optimizing (for �xed decisions) the subkernels at each stage.

Algorithmically, this procedure is done by successive linear optimization. This Algorithm for

multistage stochastic optimization problems has been implemented and the results are being

analyzed in the subsequent sections.

4 Solution Algorithm - Successive Convex Programming

To begin with we consider only the general saddle point problem rather than any speci�c. In

a continuous form of f(x, y) where f is convex in x ∈ X and concave in y ∈ Y, a saddle point

solution (x∗, y∗) is a tool for decision makers to evaluate the computation of optimal response

to the worst strategy. In such equlibria, neither the decision maker, nor the opponent would

bene�t by deviating from saddle point. Classical methods based on the gradient/subgradient

for solving the saddle point problems have been of great interest since the seminal work of

(Arrow et al., 1958). In classical setting, several algorithms have been proposed. Consider the

unconstrained problem

min
x∈Rn

max
y∈Rm

{f(x, y)}, (4.1)

under convex-concavity assumptions of f in problem (4.1), for a given x, f(x, y) has an uncon-

strained maximizer with respect to y and for given y, an unconstrained minimizer with respect

to x. A necessary and su�cient condition for a joint optimum is satis�ed by ζ∗ = (x∗, y∗) which

solves the the simultaneous system of equations: E(ζ) ≡

 ∇x f(x, y)

−∇y f(x, y)

 = 0. Sometime is

even more convenient to solve problem

min
ζ
{1

2
‖E(ζ)‖22} (4.2)

rather than E(ζ) = 0, (Rustem and Howe, 2002). Authors in (Demynov and Pevnyi, 1972) and

(Danilin and Panin, 1974) proposed a gradient based algorithm for unconstrained problem (4.1)
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based on direction dk and step size strategy αk such that su�cient progress at each iteration

is ensured. Besides, in (Rustem and Howe, 2002), more saddle point computation algorithms

are presented and discussed. Quadratic approximation algorithm for constrained problems

based on (Qi and Sun, 1995), interior point saddle point algorithm for constrained problems

as elaborated in (Sasai, 1974) and �nally a Quasai-Newton algorithm for nonlinear systems.

In distributionally robust multiperiod stochastic setting, the algorithm should be tailored

in order to �t the complex structure of ambiguity sets and at the same time guarantees the

convergence to the equilibrium strategy. Due to the dissimilarity between decisions' space X

and models' space Pε in our setting, gradient based algorithms are avoided. In addition, direct

coordinate wise approach i.e., moving in one step from decisions' space to models' space is

subject to oscillation3.

For the problem at hand, the criterion function is F (x,P) = EP[H(x, ξ)]. We iteratively

�nd a saddle point by stage wise approximating the ambiguity set Pε by a �nite set. In

particular, the following variant is proposed and the proof of convergence is discussed.
xk+1 = arg minx∈X max1≤l≤k F (x, P̃l)

P̃k+1 = arg maxP̃∈Pε F (xk+1, P̃)

(4.3)

In the following, the iterative manner of solution procedure is shown in Algorithm 1. At each

iteration a new model P(T, P̃ ), in short: P̃, which is in ε nested distance of baseline model

P(T, P ), in short: P, is included in the model and therefore the size of the problem increases

at each iteration. It is noticed that step 3. itself encompasses the stage wise procedure of the

constructing P(T, P̃ )s discussed in 3.2.

Proposition 5. Let X and P̄ε be compact sets and (x,P) 7→ F (x,P) = EP[H(x, ξ)] be jointly

continuous, then every cluster point of the iteration given by (4.3) is minimax solution.

Proof. The proof of this Proposition can be found in the Appendix 7.2.

3Notice that even under strict convex-concavity and compactness of X and Y the convergence of xk+1 = argmin x∈X f(x, y
k)

yk+1 = argmaxy∈Y f(x
k+1, y)

is not guaranteed.
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Algorithm 1 Successive Convex Programming

0. Let k = 0 and determine the value of ε

1. Start with the �base line� model, i.e. Pkε = {P}

2. Solve the outer optimization problem:

∥∥∥∥∥∥∥∥
min u
s.t EP[H(x, ξ)] ≤ u for all P ∈ Pkε

x ∈ X,
x / F

7−→ (xk, uk)

3. Fix xk and solve the inner optimization problem:
∥∥∥∥ max EP̃[H(xk, ξ)]

s.t P̃ ∈ Pkε
7−→ (P̃k) and Pk+1

ε =

Pkε ∪ {P̃k}

4. We stop if there is no improvement in uk, otherwise go to 2.

Note : In practical implementation we might

� choose a stopping criteria θ s.t. uk+1 − uk ≥ θ, or

� specify in advance the number of iterations k (This means that the number of models included
in set Pε to be determined at the beginning).

In the following section the proposed algorithm is implemented and computational results

for a classical multiperiod production/inventory control problem are presented and discussed.

5 Implementation and Computational Results

5.1 Multiperiod Production/Inventory Control Problem

To picture the implications of our proposed algorithm, in this section a simpli�ed multistage

stochastic optimization problem - a multiperiod production/inventory control problem - is im-

plemented and numerical results are shown. This example4 is used to illustrate the multistage

approach to stochastic modeling and its ambiguity extension.

In this problem the production volume of two products is decided while maximizing the ex-

pected net pro�t derived from selling the products under stochastic demands of the subsequent

weeks with �xed selling prices, production, inventory and external supply costs. Deciding on

4The numerical example is taken from AIMMS optimization modeling ((Bisschop, 2012), Chapter 17.).
However, all computational procedure, solution algorithms and results analysis are implemented in MATLAB
R2012a.
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Figure 5.1: Demand requirements (product1,product2) and the binary tree structure

how much of each product types to produce during a particular week forms the decision vari-

ables. The production machine is designed to produce both types and there is an overall

production capacity.The stochastic demand is characterized in terms of scenarios and a tree

terminology is used to describe event probabilities and multistage scenarios. The demand sce-

narios are represented on a binary tree with not necessarily equal event probabilities. In Figure

5.1, the tree structure and demand requirements of both products is depicted. In Figure 5.2,

however, the demand scenarios of both products and the corresponding scenario probabilities

are shown separately.

5.1.1 Mathematical Modeling Summary

In Table 1, the symbols de�ning the parameters, decisions and decision dependent variables

of the model are introduced. The full mathematical model in nodal representation is formu-

lated too. Note that decisions are only de�ned for emanating nodes and thus not for leaf

(terminating) nodes.
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Figure 5.2: Demand scenarios of product1 and product2 and the corresponding scenario prob-
abilities

Table 1: Nomenclature
Parameters

prb Selling price for each product b = 1, 2

pcb Production cost of each product b = 1, 2

icb Inventory cost of each product b = 1, 2

ecb External supply cost of each product b = 1, 2

c Maximum overall production capacity

x̄i Maximum inventory capacity

initb Initial stock level of product b = 1, 2

db Demand for product b = 1, 2

Decision Variables

xbf Production volume of product b for b = 1, 2

Decision Dependent Variables

xbi Inventory level of each product b = 1, 2

xbe External supply of each product b = 1, 2

v Pro�t

17



max
∑
n

P (n)v(n) ∀n ∈ N (5.1)

subject to
∑
b

xbf (n−) ≤ c ∀n ∈ N \ N 0 (a)

xbi(n−) + xbf (n−) + xbe(n)− db(n) = xbi(n) ∀n ∈ N \ N 0 (b)∑
b

xbi(n) ≤ x̄i ∀n ∈ N (c)

xbi(n−) + xbe(n) ≥ db(n) ∀n ∈ N \ N 0 (d)∑
b

prbdb(n)−
∑
b

[pcbxbf (n−) + icbxbi(n) + ecbxbe(n)] = v(n) ∀n ∈ N \ N 0 (e)

xbf ≥ 0

xbi ≥ 0

xbe ≥ 0

The objective of this inventory control model is to maximize the total expected net pro�t

(P (n) is the unconditional probability of reaching node n ∈ N ) under the following constraints.

Constraint (a) ensures that the total production volume is bounded above with the overall

capacity. (b) states that the inventory determined at each reachable node by the inventory

at the predecessor node plus the production volume at the predecessor node plus the external

supply at that not minus the demand pertaining to that node, while (c) illustrates the max-

imum inventory capacity constraints. Constraint (d) ensures the stochastic demand of both

product is met at each node. (e) is an accounting equation for the net pro�t position at each

node which is derived from the sales revenue minus the total costs consisting of production,

inventory and external supply. The revenues and the cost parameters are presented in Table 2.

In the next section �rst the optimal solution of the original multistage problem (5.1) is shown

and further the maximin solution of distributionally robust extension of (5.1) is presented and

discussed. Distributionally robust extension of this example seeks for equilibrium strategies

that ensure the maximum expected net pro�t under the most adverse demand scenarios.
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Table 2: Parameters : Revenues, Costs and Capacities
Product prb(¿/unit) pcb(¿/unit) icb(¿/unit) ecb(¿/unit) initb x̄i c

product1 300 12 5 195 17
52 46

product2 400 10 5 200 35

5.2 Computational Results

Optimal Solutions of the original problem

Based on the multistage stochastic optimization problem developed in (5.1) and the input data

provided, the optimal value of expected net pro�t is 7, 688(¿). In Figure 5.3, an overview of

the optimal scenarios for decision variables x1
f , x

2
f and pro�t v are shown. Solution scenarios

for both products follow a rather simple uniform pattern. One direct e�ect of optimal deci-

sions on pro�t scenarios is observed in the sudden decrease of net pro�t levels at stage one,

since satisfying the emanating demand at stage two requires a compensatory act by external

purchasing for both products.

Worst Tree Visualizations

The stage wise algorithm for construction of worst trees which was discussed in section 3.2 is

implemented. As it is expected by increasing the ambiguity radius the largest probability would

be associated to a scenario which for given solutions has the worst outcome. As ε increases

the worst tree turns out to be less and less complex. The ambiguity sets are constructed

for ε = 1, 6, 11, 16 the analogy behind the range of varying ε empirically is simply ranging

between [min d(i, j), max d(i, j)], where d(i, j), as de�ned before, is the distance between

demand scenarios i and j. Regardless of demand levels for products 1 and 2, in Figure 5.4,

the scenario probabilities of the respective tree structure for increasing ambiguity radius is

depicted. It is observed that at the largest radius, ε = 16, remaining scenarios 3 and 4 form

the worst tree.
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Figure 5.3: Optimal solution scenarios

Figure 5.4: Tree structure of problem (5.1) and diminishing worst trees for increasing ambiguity
radii
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Figure 5.5: Sensitivity of decisions under model ambiguity-product1

Maximin Solutions of the production Scenarios for di�erent ambiguity radii

In Figures 5.5 and 5.6, the maximin solution of production scenarios for product1, product2

and its sensitivity with respect to increasing ambiguity radius is shown. It is noticeable that

including rather than only one �baseline� demand model, one direct e�ect is re�ected in more

diverse production scenarios which is observable by for product1 by comparing the top graph

in Figure 5.3 with Figure 5.5, and for product2 by comparing the middle graph in Figure 5.3

with Figure 5.6. At �rst this results might seem quite controversial, since worst scenarios

are getting simpler and simpler structure as epsilon increases, where the decision scenarios

are revealed to be more complex. This might be seen as incorporating more models in the

neighborhood of �best guess�, those decisions are taken which are good for all included models.

This phenomenon also has an impact on all decision dependent scenarios which in this example

are the external purchase xbe and inventory level xbi for b = 1, 2 and consequently on pro�t

scenarios.
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Figure 5.6: Sensitivity of decisions under model ambiguity-product2

Price of Ambiguity

A fundamental result in maximin setting of this example is that at solution x∗ we have the

following inequality

EP̃∗ [H(x, ξ)] ≤ EP̃∗ [H(x∗, ξ)] ≤ EP[H(x∗, ξ)] (5.2)

This inequality indicates the robust nature of maximin equilibrium in presence of worst cases

and , on the right side, ensures the improvement of the optimal solution if worst case does

not occur, whereas on the left side, shows the potential deprivations if worst case is realized.

In Figure 5.7(left), the numerical results of inequality (5.2) shows the optimal solution to

the original problem, distributionally robust problem and worst case problem against the

increasing ambiguity radii. It practically shows 1. the price that decision makers pay to obtain

the robust solution is 4.71% decrease in expected net pro�t at the largest neighborhood and

2. how much do they gain by cautiously robustifying themselves against the worst odds. In

this speci�c example, in addition to the increasing ambiguity radius, in Figure 5.7(right), the

maximin solution incorporating up to 4 models at each ε-neighborhood is pictured. A closer

look, shows from a speci�c radius, there is no more improvement in the maximin solution i.e.,

there is an upper bound for the price to gain the robust solution.
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Figure 5.7: Left: The price to pay for gaining robust solution Right: Ambiguity surface

6 Concluding Remarks and further work

In this paper an algorithm to robustify a multistage stochastic optimization problem with

ambiguity about the underlying probability model is presented. This robust counterpart of

the original problem is constructed by the worst case approach with respect to the probability

models which are in an ε nested neighborhood of a baseline model. We considered only �xed

scenario values and assumed the changes in the underlying model, however the algorithm has

the possibility for this extension subject to more technical complication. It can be expected

that by high performance and parallel computing methods ambiguity problems for quite large

trees can be solved.

The nested distance is a very new concept that appropriately incorporates the �ltration

structure in the multistage stochastic optimization models. In our approach, we considered

minimax w.r.t worst case (a bunch of them) which is getting a simpler and simpler structure as

epsilon increases (maybe at the largest radius even sits on a single scenario) . The decisions,

however, shown to be more and more complex. The reason for this phenomena might be

the inclusion of more models and decisions should be taken which are optimal for all models,

hence it turns out that we have more bushy decision scenarios when the ambiguity radius gets

larger and larger. Moreover, it is seen that there is a threshold for epsilon range, at which no
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improvements appear in decisions and objective function.
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7 Appendix

7.1 The proof of Theorem 4.

We �x a �nite tree T with a given structure and with the values of the scenario process sitting

on its nodes. By determining the scenario probabilities P = (Pi)i∈NT the corresponding nested
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distribution P(T, P ) is formed. The alternative models are P(T, P̃ ) with a variant P̃ of the

scenario probabilities. The notion of compound can be generalized to in�nitely many elements:

Let P be the family of all probability measures on NT , which is - since NT is a �nite set - a

simplex. Let Λ be a probability measure from P. The compound C(P(T, P̃ ),Λ) is de�ned as

C(P(T, ·),Λ) = P(T, P̃ ) where P̃ is distributed according to Λ,

meaning that the compound is obtained by �rst sampling a distribution P̃ according to Λ and

then taking the model P(T, P̃ ). Refer to Figure 7.1. in which C(P(T, ·),Λ) is illustrated for

probability measure Λ with �nite support . If Λ sits on P̃ (1), P̃ (2), .., P̃ (k) with probabilities λl

for 1 ≤ l ≤ k, then compound model has k nodes at stage 1 and to the l-th node of stage 1

the subtree P(T, P̃ (l)) is associated, i.e.

C(P(T, ·),Λ) =
k∑
l=1

λlP(T, P̃ (l))

where the convex combination
∑k

l=1 λlP(T, P (l)) is in the sense of compounding. Notice that

the tree of C(P(T, P̃λ),Λ) is of height T + 1. Thus original tree P(T, P ) to be comparable with

C(P(T, P̃λ),Λ) , we assume that a further root (with probability one) is appended to the tree

of P(T, P ) and denote this extended tree by P+(T, P ). In the following, we write P(T,Λ) for

C(P(T, ·),Λ).
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Figure 7.1: The compound convex structure of trees P(T, P̃ (l)) and augmented tree P+(T, P )

The convex hull of the set

Pε =
{
P(T, P̃ ) : P̃ ∈ Bε

}
with

Bε = {P̃ : dl(P(T, P ),P(T, P̃ )) ≤ ε}

is the set

P̄ε = {C(P(T, ·),Λ) : Λ is a probability measure on Bε}. (7.1)

The convexi�ed problem (3.2) is rewritten to

min
x∈X

max
P̃∈P̄ε

{EP̃[H(x, ξ)] s.t. x / F, P̃ = (Ω,F, P̃ , ξ)}. (7.2)

Notice that in the formulation (7.2) the decision variables x must coincide in all randomly

sampled subproblems, cf. Figure 7.1. By safeguarding ourselves against any random selection

of elements of Bε, we automatically safeguard ourselves against the worst case in Bε.The next

step is to calculate the nested distance between two elements of P̄ε. For two leaves i resp. j of
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the tree T the distance is de�ned as the distance of the corresponding paths leading to i resp.

j, i.e.,

d(i, j) =
T∑
t=1

M∑
m=1

wmt |ξm(predt(i))− ξm(predt(j))|

Assume that for all i 6= j ,there exist constants c,C > 0 such that c ≤ d(i, j) ≤ C. Let

∥∥∥P − P̃∥∥∥ =
∑
i∈NT

∣∣∣Pi − P̃i∣∣∣ = 2− 2
∑
i∈NT

min(Pi, P̃i).

It follows that
c

2
·
∥∥∥P − P̃∥∥∥ ≤ dl(P(T, P ),P(T, P̃ )) ≤ C

2
·
∥∥∥P − P̃∥∥∥ . (7.3)

In order to show (7.3) notice that an optimal transportation plan can transport a mass of

min(Pi, P̃i) from i to i with distance 0. Thus only the masses 1−
∑
i∈NT

min(Pi, P̃i) have to be

transported, over distances which lie between c and C, whence the assertion follows. Notice

well that the use of the distance
∥∥∥P − P̃∥∥∥ is only to demonstrate compactness. While the

topologies generated by the two metrics
∥∥∥P − P̃∥∥∥ and dl(P(T, P ),P(T, P̃ )) are the same (due

to relation (7.3)), balls are quite di�erent in the two metrics and only the latter metric is

appropriate for nested distributions. Next we see that P̄ε is compact, since it is the continuous

image of the set of all probability measures on Bε, which is a compact set, since Bε itself

is compact. Thus all conditions for the validity of the minimax Theorem are ful�lled and a

saddle point (x∗,P(T,Λ∗)) must exist. Now we prove the equation

dl(P(T,Λ),P+(T, P )) =

ˆ
dl(P(T, P̃ ),P(T, P )) Λ(dP̃ ). (7.4)

In order to see this, assume �rst that Λ is �nite, say P(T,Λ) =
k∑
l=1

λlP(T, P̃ (l)). Then:

dl(P(T,Λ),P+(T, P )) = dl(
k∑
l=1

λlP(T, P̃ (l)),P+(T, P ))

=
k∑
l=1

λl[dl(P(T, P̃ (l)),P(T, P ))] .

If Λ is not �nite, it can be approximated by �nite measures and therefore the relation (7.4)
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holds in general. Finally, we show that the worse case model P̃∗ happens at a single tree and

not a mixture of trees: Let x∗ be the minimax decision, i.e.

EP̃[H(x∗, ξ)] ≤ EP̃∗ [H(x∗, ξ)]≤ EP̃∗ [H(x, ξ)].

Let the saddle point model be P̃∗ = P(T,Λ∗). The support of Λ∗ is closed (hence com-

pact) and the continuous function P̃ 7→ EP(T,P̃ )[H(x∗, ξ)] takes its maximum at some dis-

tribution P̃ ∗. Since dl(P(T, P̃ ∗),P(T, P )) ≤ ε by construction, P(T, P̃ ∗) ∈ Pε and therefore

EP(T,P̃ ∗)[H(x∗, ξ)] ≤ EP̃∗ [H(x∗, ξ)]. On the other hand,

EP̃∗ [H(x∗, ξ)] =

ˆ
EP(T,P̃ )[H(x∗, ξ)] dΛ(P̃ ) ≤ EP(T,P̃ ∗)[H(x∗, ξ)].

Consequently, EP(T,P̃ ∗)[H(x∗, ξ)] = EP̃∗ [H(x∗, ξ)], which shows that the saddle point model

can be chosen from Pε. This concludes the proof.

7.2 The proof of Proposition 5.

Here we prove the convergence of iterative procedure


xk+1 ∈ arg minx∈X max1≤l≤k F (x, P̃l)

P̃k+1 ∈ arg maxP̃∈Pε F (xk+1, P̃)

.

Denote by F k = max1≤l≤k F (xk+1, Pl), then F k+1 = max1≤l≤k+1 F (xk+2, Pl) and by mono-

tonicity F k+1 ≥ F k. Since the function F is bounded, F k converges to F ∗ := supF k. More-

over, by compactness, the sequence xk has one or several cluster points. Let x∗ such a cluster

point. We show that F ∗ = maxP̃∈Pε F (x∗, P̃). Since always F ∗ ≤ maxP̃∈Pε F (x∗, P̃), sup-

pose that F ∗ < maxP̃∈Pε F (x∗, P̃). Then there must exist a P̃+ such that F (x∗, P̃+
) > F ∗.

By continuity this inequality must then hold in a neighborhood of x∗ and therefor there

must exist a xk for which the same inequality holds. However, this contradicts the con-

struction of the iteration. Finally, we show that x∗ ∈ arg minx∈X maxP̃∈Pε F (x, P̃). If, not,

there must exist a x+ such that maxP̃∈Pε F (x+, P̃) < maxP̃∈Pε F (x∗, P̃). Hence, by construc-

tion max1≤l≤k F (x+, P̃l) ≥ max1≤l≤k F (xk+1, P̃l) = F kand letting k tend to in�nity, one sees
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that maxP̃∈Pε F (x+, P̃) ≥ F ∗ = maxP̃∈Pε F (x∗, P̃) and this is a contradiction which shows that

x∗ is the cluster point and thus every cluster point is a solution of the minimax problem.
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