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Abstract

For autonomous mobile robots, a solid world model is an important prerequisite for decision
making. Current state estimation techniques are based on Hidden Markov Models and
Bayesian filtering. These methods estimate the state of the world (belief) in an iterative
manner. Data obtained from perceptions and actions is accumulated in the belief which
can be represented parametrically (like in Kalman filters) or non-parametrically (like in
particle filters). When the sensor’s information gain is low, as in the case of bearing-only
measurements, the representation of the belief can be challenging. For instance, a Kalman
filter’s Gaussian models might not be sufficient or a particle filter might need an unreasonable
number of particles.
In this thesis, I introduce a new state estimation method which doesn’t accumulate infor-

mation in a belief. Instead, perceptions and actions are stored in a memory. Based on this,
the state is calculated when needed. The system has a particular advantage when processing
sparse information. This thesis presents how the memory-based technique can be applied
to examples from RoboCup (autonomous robots play soccer). In experiments, it is shown
how four-legged and humanoid robots can localize themselves very precisely on a soccer field.
The localization is based on bearings to objects obtained from digital images. This thesis
presents a new technique to recognize field lines which doesn’t need any pre-run calibration
and also works when the field lines are partly concealed and affected by shadows.
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Zusammenfassung

Für mobile autonome Roboter ist ein solides Modell der Umwelt eine wichtige Vorausset-
zung um die richtigen Entscheidungen zu treffen. Die gängigen existierenden Verfahren zur
Weltmodellierung basieren auf dem Bayes-Filter und verarbeiten Informationen mit Hid-
den Markov Modellen. Dabei wird der geschätzte Zustand der Welt (Belief) iterativ ak-
tualisiert, indem abwechselnd Sensordaten und das Wissen über die ausgeführten Aktionen
des Roboters integriert werden; alle Informationen aus der Vergangenheit sind im Belief
integriert. Wenn Sensordaten nur einen geringen Informationsgehalt haben, wie zum Bei-
spiel Peilungsmessungen, kommen sowohl parametrische Filter (z.B. Kalman-Filter) als auch
nicht-parametrische Filter (z.B. Partikel-Filter) schnell an ihre Grenzen. Das Problem ist
dabei die Repräsentation des Beliefs. Es kann zum Beispiel sein, dass die gaußschen Modelle
beim Kalman-Filter nicht ausreichen oder Partikel-Filter so viele Partikel benötigen, dass
die Rechendauer zu groß wird.
In dieser Dissertation stelle ich ein neues Verfahren zur Weltmodellierung vor, das Infor-

mationen nicht sofort integriert, sondern erst bei Bedarf kombiniert. Das Verfahren wird ex-
emplarisch auf verschiedene Anwendungsfälle aus dem RoboCup (autonome Roboter spielen
Fußball) angewendet. Es wird gezeigt, wie vierbeinige und humanoide Roboter ihre Position
und Ausrichtung auf einem Spielfeld sehr präzise bestimmen können. Grundlage für die Lo-
kalisierung sind bildbasierte Peilungsmessungen zu Objekten. Für die Roboter-Ausrichtung
sind dabei Feldlinien eine wichtige Informationsquelle. In dieser Dissertation wird ein Ver-
fahren zur Erkennung von Feldlinien in Kamerabildern vorgestellt, das ohne Kalibrierung
auskommt und sehr gute Resultate liefert, auch wenn es starke Schatten und Verdeckungen
im Bild gibt.

v





Contents

1 Introduction 1
1.1 State Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Soccer Robot Localization Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The Probabilistic Paradigm 5
2.1 Sequential State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Bayesian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Bayes’s Theorem, Law of Total Probability . . . . . . . . . . . . . . . . . 6
2.2.2 Belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Probabilistic Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Probabilistic State Transition Model . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Bayes Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Bayes Filter Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Discrete Bayes Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.5 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Bayes Filter Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Inaccurate State Transition Models . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Recovery From Kidnaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Sparse Information and High Uncertainty . . . . . . . . . . . . . . . . . . 16

3 The Memory-Based Paradigm 21
3.1 Introductory Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Navigation On Sea Using Nautical Charts . . . . . . . . . . . . . . . . . . 22
3.1.2 Kidnapping in a Hallway . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Propagation of Systematic Error . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Different Ways to Accumulate Information . . . . . . . . . . . . . . . . . 32
3.2.2 Discussion of Introductory Examples . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Memory-Based State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



Contents

3.3.2 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 State Estimation Using Least Squares . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Properties of Memory-Based State Estimation . . . . . . . . . . . . . . . 40
3.3.5 Algorithmic Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Proof-of-Concept Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Bearing-Only Localization 49
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Simultaneous Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Incorporating Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Calculating the Robot’s Pose . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Generating Templates for Particle Filters . . . . . . . . . . . . . . . . . . 57

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Experiments in Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Experiments on a Four-Legged Robot . . . . . . . . . . . . . . . . . . . . 64

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 A Vision-Based Compass for Soccer Robots 71
5.1 Field Line Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Utilizing Scan Lines for Image Analysis . . . . . . . . . . . . . . . . . . . 72
5.1.2 Layered Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.3 Classified Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.4 Scan Line Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.5 Field Line Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.6 Neighborhood Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.7 Filtered Neighborhood Graph . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.8 Line Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.9 Filtered Line Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.1.10 Field Lines and Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Memory-Based Direction Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.1 Applying the Memory-Based Paradigm . . . . . . . . . . . . . . . . . . . 98
5.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Compass and Bearing Localization 103
6.1 Odometry Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Cause and Effect of Faulty Odometry Data . . . . . . . . . . . . . . . . . 103
6.1.2 Recursive Odometry Correction . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.3 Real-World Odometry Correction Examples . . . . . . . . . . . . . . . . . 106

6.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.1 Applying the Memory-Based Paradigm . . . . . . . . . . . . . . . . . . . 109

viii



Contents

6.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Discussion 117
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Acknowledgements 121

Bibliography 123

ix





1 Introduction
In 1920, the term robot was first used by Czech writer Karel Capek in his play R.U.R. (Rossum’s
Universal Robots). The robot concept was then taken over by authors like Stanislaw Lem and
Isaac Asimov in their science-fiction novels. Less than a century later, robots are not fiction any
longer: they play an important role in our lives. Robotics has emerged as an amazing field of
study with an endless list of robot-related research topics.
Stationary robots, like the ones at assembly lines, are common since many decades. The

construction of mobile robots is more challenging. They can be useful in a lot of places: in
disaster areas, in space, on the moon or on other planets, in caves or mines, under water,
airborne, in hospitals, in homes or gardens, on streets, etc. (cf. [33]). The mobile nature of
such robots sets high requirements for the hardware. A lasting power supply and good actuator
design are among the biggest hardware related challenges. Autonomous mobile robots are a
special form of mobile robots [69, 40]. Such robots act on their own, making decisions based
on their sensory input. For autonomous mobile robots, the selection of sensors and the way the
sensor data is processed are important design criteria [24].
Robots to perform very simple tasks can be constructed with a direct coupling between sensors

and actors, similar to Braitenberg vehicles [9]. However, for more complex behavior some sort
of internal representation is needed. A good representation of the robot’s environment is a good
basis for autonomous decision making [77, 55]. When such a representation can’t be created
based on the measurements made at a single time point, some form of data integration has to
be done. Sparse sensor information and noisy measurements are the biggest challenge when
creating a reliable model of the world.
A good example of robots with complex behavior are soccer playing robots. My engagement

in RoboCup motivated the research described in this thesis. RoboCup is an annual competition
where teams of autonomous robots play soccer. The vision of the RoboCup initiative is that
in 2050 a team of humanoid man-like robots will play against the world champion team of
human soccer players - and will win [10, 14]. In today’s RoboCup leagues, there are smaller
humanoid robots and wheeled robots. Until 2008, there also were 4-legged dog-like robots
(Sony’s Aibo). Our research group participated in RoboCup competitions with the Aibo Team
Humboldt and the GermanTeam (with colleagues from Bremen, Darmstadt, and Dortmund)
[12, 21, 63, 62, 61, 59, 60, 6].
While improving the skills of our team’s 4-legged robots, I found the creation of a solid world

model as a basis for decision making to be the biggest challenge. All aspects of the world around
a robot that are important for decision making can be denoted as the robot state. Robotic
literature provides many state estimation techniques; there are a lot of approaches for different
purposes [77, 32, 3, 54, 81]. However, I had the desire to improve state estimation quality
for robotic soccer and problems with similar specifics. Many of the existing techniques were
developed for different robot types (wheel-based instead of legged robots) or different sensors
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1 Introduction

(laser-range finders instead of cameras). Additionally, soccer robots have limited processing
power due to weight constraints, excluding a lot of the existing methods. The permanent
physical interaction with other robots adds even more challenges.
This thesis contributes a novel method of state estimation that was inspired by my work with

the four-legged robots. Based on that, a localization method for soccer robots is introduced.
Data extracted from the robot’s camera serves as input to this localization method. I describe
a new approach to extract soccer field lines from digital images. All these methods proved to
be useful for four-legged and for humanoid robots.

1.1 State Estimation Problem
In robotics, state estimation denotes techniques that enable a robot to model those aspects of
its environment that are relevant for decision making. Examples of qualities-of-interest are the
robot’s position and relative positions to objects around it. An important characteristic of most
environments is that they change over time. Examples are: moving objects, moving persons,
changing light, changing temperature, etc. Some of the changes can be caused by the robot itself,
others might have different reasons. As autonomous mobile robots have to make consecutive
decisions, the state estimation goal is to create a continuous world model that describes parts
of the real world and reflects all relevant changes.

Sensors An important prerequisite for a robot to obtain a world model are its sensors. Sensors
measure certain real world quantities more or less directly. While a digital thermometer is a
device to measure temperature, in reality, it measures an electrical component’s resistance that
reacts to temperature. The resistance measurement itself might, in fact, be a voltage and current
measurement.
However, there can be quantities of interest for which no sensor exists or the robot might not

be equipped with such a sensor. For example, a robot might be interested in a certain object’s
speed. If the robot’s only sensor is a digital camera, it has to take several images to calculate the
object’s speed. A robot trying to determine its position using landmark observation is another
example where multiple measurements have to be combined to calculate a certain quantity.
Strictly speaking, a sensor is a device that produces measurements, usually numeric values,

that somehow correspond to real-world states. A sensor is useful for state estimation when the
relationship between its measurements and the world state is known. Such a description of a
sensor is often referred to as a sensor model, cf. section 2.2.3.

State Changes Apart from sensors, another important means for a robot to update its world
model is knowledge about state changes. Imagine a robot that came up with a representation of
its position within its environment. When it performs actions, like move forward, it can update
its world model, based on knowledge about the effect of the actions, without using any sensor.
This is an example for a state change caused by a robot’s action.
The state can also change on its own. For instance, a moving object changes its position

over time depending on its speed. Another example is the temperature of a hot object cooling
down over time. In such cases, the world model can be updated using knowledge about physical

2



1.2 Soccer Robot Localization Specifics

properties, like momentum or friction. The moving object example shows that certain qualities,
like speed, might be of interest when updating the world model. While a robot might just be
interested in the position of a certain object for decision making, calculating its speed can be
important to determine the position.
The description of how the state changes, depending on the previous state and possible actions

of the robot, is often referred to as state transition model, cf. section 2.2.4.

Common State Estimation Techniques There are a lot of robot state estimation methods.
They differ in the way the sensor and the state transition model are represented. Another
distinction between different state estimation techniques is how information is processed and
stored.
A state estimation approach common in robotics is Bayesian filtering. Different Bayes filter

types are described in chapter 2. Popular ones are particle filters [77, 15, 32, 1] and Kalman
filters [49, 81, 51]. All Bayesian techniques use probabilistic sensor and state transition models.
The state is described by an approximation of a probability density function over the state space.
This state description is updated, iteratively, using the current sensor readings and knowledge
about state changes. The methods differ in the way this function is approximated.

1.2 Soccer Robot Localization Specifics
Localization of robots on a soccer field is an interesting state estimation application. Many
existing self-localization methods were designed for robots equipped with laser range finders.
The focus of this thesis is on robots that use cameras as their main sensor, which brings its own
problems. More difficulties arise from the dynamic nature of soccer games. These are the main
challenges of vision-based soccer robot self-localization:

• Limited angle of view. Compared to laser range finders and 360◦ cameras, regular cameras
have a limited angle of view. This holds true even for wide angle cameras and results in
less sensory input.

• Unsuitable direction of view. The direction a robot looks in is often determined by the
most important object in the environment; this means that all other objects are seen less
often. An example is a soccer robot staring at the ball and seeing less of the goals and
field lines.

• Sparse or poor information in sensor readings. A camera provides only bearing information
with high accuracy. Vision-based distance measurements are usually inaccurate.

• Systematic error in odometric data. The effects of actions performed by legged robots are
less predictable than the ones of wheeled robots because of the long kinematic chains. Joint
wear-out can lead to systematic error in odometric data. For example, a robot attempting
to walk on a straight line might walk along an arc.

• Physical interaction with other robots. The more often a robot collides with environmental
objects or with other robots, the less accurate its information about the effects of the

3



1 Introduction

executed motions. A robot also might get stuck on the way through its environment
while still performing forward motions. Collisions and obstructions might lead to a large
deviation between the assumed and the real motions, this is often referred to as kidnapping,
cf. 2.4.2.

1.3 Contributions
The statement of this thesis is that state estimation accuracy can be improved, compared to
iterative state estimation techniques, when it is not done sequentially but based on a short-term
memory of perceptions and performed actions.
The main contribution of this thesis is the memory-based paradigm. It is a guide to how to

solve state estimation problems. The method can process sparse sensor information, is able to
cope with kidnappings and can handle systematic error; these are challenges for iterative state
estimation techniques.
Furthermore, two memory-based self-localization methods and a vision system for field line

detection are introduced. All techniques presented here were proven to work on real-world data.
While in this thesis examples from RoboCup are used to illustrate and verify the novel meth-

ods, they are not limited to the robotic soccer domain.

1.4 Outline
Chapter 2 wraps up existing state estimation techniques. The probabilistic paradigm and the
concept of sequential state estimation are described. Additionally, the Bayes filter and its
applications, like the Kalman filter and particle filters, are discussed. Particular attention is
paid to the limitations of Bayesian filtering.
Chapter 3 introduces the memory-based paradigm. It is a supplementation and an alterna-

tive for the probabilistic paradigm. The chapter gives motivation for this paradigm, describes
the mathematic foundations of memory-based state estimation (MBSE), introduces algorithmic
variants of MBSE, and proves the concept.
In chapter 4, an MBSE application is given which uses only horizontal landmark bearings to

localize a robot. Experiments that were done on a four-legged robot (Aibo) are used to illustrate
the method’s effectiveness and accuracy.
Chapter 5 describes a vision-based compass for soccer robots. The chapter contributes a

vision system which recognizes field lines on soccer fields, without any pre-run calibration, and
an MBSE method using recognized field lines to determine the robot’s heading.
In chapter 6, an MBSE localization method is introduced which uses this rotation estimation

and horizontal bearings. An important component of this method is the correction of faulty
odometry based on the rotation estimates.
Chapters 5 and 6 contain the description of experiments that were conducted on a humanoid

robot.
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2 The Probabilistic Paradigm

A robotic paradigm defines principles for designing certain aspects of a robot architecture.
Past robotic research has created a lot of paradigms. Popular paradigms were described by
R.R. Murphy [53]. The hierarchical paradigm, the reactive paradigm, and the hybrid deliber-
ate/reactive paradigm provide different ways to organize the robotic primitives sense, plan, and
act. Other paradigms focus on more specific components, like perception or action selection.
Which paradigm fits best, in a given scenario, depends on the problem’s specifics. Robotic
architectures can follow more than one paradigm when the principles stated by the paradigms
don’t exclude each other.
A paradigm used for state estimation on many robots is the probabilistic paradigm which was

introduced and promoted by Thrun, Burgard, and Fox [77, 29, 27, 26, 34]. It pays tribute to
the uncertainty in perception and action. With this paradigm, perception problems are seen as
state estimation problems where the state is represented using a probability distribution. The
knowledge about the probabilistic properties of the robot’s sensors and actuators can be used to
anticipate uncertainty. Such a prediction can be used for action selection in order to minimize
the robot’s uncertainty. While many very powerful methods follow the probabilistic paradigm,
there are also disadvantages of methods based on this paradigm.
In this chapter, the basic concepts of the probabilistic paradigm are introduced. Additionally,

some problems that might appear with robots following this paradigm are highlighted. Sec-
tion 2.1 describes the concept of sequential state estimation, section 2.2 introduces Bayesian
filtering, section 2.3 shows the most popular Bayes filter applications, and section 2.4 discusses
limitations of methods based on the Bayes filter. These limitations were my main motivation to
develop the memory-based paradigm, which is introduced in chapter 3.

2.1 Sequential State Estimation

The state estimation goal in robotics is to find out certain parameters about the world around
the robot and the relation between the robot and the world. Those parameters are of interest for
decision making. Classical examples for parameters describing the state are the robot’s position
within its world and the relative position of environmental objects. To be useful for decision
making, there must be an estimation of the state for each moment in time. So, each state of the
sequence of states has to be estimated. The concept of sequential state estimation is described
in a couple of books and articles [23, 75, 76].
The evolution of states can be seen as a Markov process [7, 57], assuming a future state only

depends on the current state, not on the previous states. A state that fulfills this condition is
denoted as a complete state [77]. In some cases, the complete state has to contain parameters
that might not be of interest. For example, the robot’s speed and acceleration might needed to

5
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x t-1 x t

u tu t-1

z t-1 z t

x t+1

z t+1

ut+1

Figure 2.1: Hidden Markov Model. The states xi are not directly visible. A state xi depends
only on state xi−1 and the control action ui. An observation zi depends only on the
state xi.

be included in the complete state; while for decision making, just the robot’s position is needed.
However, when modeling the evolution of states as a Markov process, the states are sets of

unknown parameters. The only information sources for changes in the world are the robot’s
sensor readings and knowledge about the actions the robot performs. So, such systems can be
described using Hidden Markov Models [58, 31]. The vector describing the (unknown) state
at time t is denoted xt, the vector describing the sensor readings is denoted zt, and the one
describing the performed actions is denoted ut. Figure 2.1 depicts a Hidden Markov Model that
describes the connection between states, sensor readings, and performed actions.
With such a model, state estimation techniques based on Bayesian filtering can be applied.

The following sections give more details.

2.2 Bayesian Filtering

In this section, the well known Bayes filter is introduced. For simplicity, the algorithm and
all the prerequisites are given in discrete form; while in all cases there is also a corresponding
continuous version. Thorough introductions to Bayesian filtering can be found in [77] and [22].

2.2.1 Bayes’s Theorem, Law of Total Probability

The Bayes filter uses two theorems from probability theory which are repeated here. The Law of
total probability [57, 11] gives the probability p(x) for an event x when the conditional probability
p(x|y) is given for each event y out of a set of mutually exclusive events whose probabilities sum
to unity:

6



2.2 Bayesian Filtering

Theorem 1. (Law of total probability)

p(x) =
∑
y

p(x|y)p(y)

Bayes’s theorem [57, 11] gives the relation between p(x|y) and p(y|x):

Theorem 2. (Bayes’s theorem)

p(x|y) = p(y|x)p(x)
p(y)

2.2.2 Belief

Let Xt be a random variable describing the state to be estimated (the hidden state) at time t.
If xk is a specific state, out of the set of all possible states, then p(Xt = xk) gives the probability
for the hidden state to be xk. The set {pk,t} denotes the discrete probability distribution that
contains the probability for all possible states at time t. This probability distribution is often
denoted as belief at time t. The discrete Bayes filter is a recursive algorithm operating on
such discrete probability distributions. Its inputs are the probability distribution at time t− 1,
denoted as {pk,t−1}, the sensor readings zt at time t, and the descriptions ut of actions performed
at time t. The output is the probability distribution {pk,t} at time t.

2.2.3 Probabilistic Sensor Model

A sensor model describes the sensor properties. A probabilistic description can be given using
the measurement probability p(z|x), which is the probability for the sensor to measure z, given
that the current state is x. Note that this is a forward model. For a given system, it usually
is easier to provide such a forward model (what is the expected measurement, given a specific
state) than to provide the opposite (how is the state restricted, given a specific measurement).

2.2.4 Probabilistic State Transition Model

A state transition model (called motion model, when the state contains just parameters de-
scribing the robot’s pose) describes how the state changes based on the robot’s controls. A
probabilistic description can be given using the state transition probability p(xi|xi−1, u) which is
the probability for the system to change from state xi−1 to state xi, given the control u. Note
that this is also a forward model.

2.2.5 Bayes Filter Algorithm

The Bayes filter algorithm is based on the notions and theorems introduced above. Algorithm 2.2
shows the discrete variant of the algorithm. The algorithm updates the probability distribution
{pk,t} (the belief) for each step in time. This is done in two steps. The control update or
prediction step calculates the prediction p̄(Xt = xk) for all states xk. The prediction is the
probability for the robot to be in a specific state, given the last belief {pk,t−1} and the current

7
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Input: {pk,t−1}, ut, zt
1 foreach k do
2 p̄(Xt = xk) =

∑
i p(Xt = xk|Xt−1 = xi, ut) · p(Xt−1 = xi)

3 p(Xt = xk) = η · p(zt|Xt = xk) · p̄(Xt = xk)
4 end
5 return {pk,t}

Algorithm 2.2: Discrete Bayes filter.

measurement ut. For that calculation, the state transition model is used and the law of total
probability (Theorem 1) applied.

The correction step or measurement update includes the current measurement zt. The new
belief is calculated based on the prediction p̄(Xt = xk) and the current measurement for all
states xk and tt. For that calculation, the sensor model is used and Bayes’s theorem (Theorem 2)
applied. Note that in Bayes’s theorem, 1/p(zt) is replaced by the normalizer η. This normalizer
η has to be chosen such that all probabilities of the new distribution sum to unity.

A classical example to show how the Bayes filter works is a one-dimensional experiment where
a robot walks down a hallway. This robot has a sensor that detects whether (or not) it is in front
of a door. It localizes using the knowledge about the door positions, the actions it performs,
and its sensor readings.

Figure 2.3 shows such an experiment’s simulation result. In this experiment, the robot walks
from left to right in 10 cm steps, performing a measurement every fifth step. For illustration
purposes, the robot is simulated such that there is no error in the measurement and no error
in the motion execution. However, for the belief calculation using the discrete Bayes filter the
following measurement probabilities are assumed:

p(Zt = door |Xt = in-front-of-door) = 0.95
p(Zt = ¬door|Xt = in-front-of-door) = 0.05
p(Zt = door |Xt = ¬in-front-of-door)= 0.30
p(Zt = ¬door|Xt = ¬in-front-of-door)= 0.70

Furthermore, these state transition probabilities are used:

p(Xt = x |Ut = walk-10-cm, Xt−1 = x)= 0.15
p(Xt = x+ 10 cm|Ut = walk-10-cm, Xt−1 = x)= 0.70
p(Xt = x+ 20 cm|Ut = walk-10-cm, Xt−1 = x)= 0.15

These values lead to the Gaussian-like peaks in the belief. When the robot reaches the first
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Figure 2.3: Robot-in-hallway experiment. The robot is visualized by the black vertical bar at the
bottom of the diagrams. A gray circle shows that the door sensor does not detect
a door; a red circle symbolizes a door detection. The light gray rectangles are the
doors, the dark gray curve shows the belief. The robot starts at x = 0 and walks
from left to right. The single diagrams show how the robot’s belief changes.
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door, the sequence of simulated (error-free) door detection measurements is:

¬in-front-of-door( 0 cm)
¬in-front-of-door( 50 cm)
¬in-front-of-door(100 cm)
¬in-front-of-door(150 cm)
in-front-of-door(200 cm).

Only the first door has a 200 cm free space to the left. So, the belief calculated using the discrete
Bayes filter has a single maximum after this sequence. The confidence (maximum likelihood)
increases while the robot passes more doors on its way down the hallway.
In section 2.4.2, this experiment is used in a slightly modified version to show how the Bayes

filter performs when kidnappings occur.

2.3 Bayes Filter Applications

The discrete Bayes filter variant can be understood as an implementation of the continuous form.
However, there are many other filters based on the Bayes filter. They are briefly introduced in
this section. A detailed introduction is omitted, as it can be found in many publications. Links
to literature are given in the respective subsections.
The difference between the Bayes filter implementations is how they represent the belief. Based

on this representation, two filter classes are distinguished: Parametric filters approximate the
belief based on a fixed functional form (usually a Gaussian) of the distribution; nonparametric
filters represent the belief using a finite number of values, where these values in some way
correspond to regions in state space.
In the following subsections, three parametric filters (Kalman, extended Kalman, unscented

Kalman) and two nonparametric filters (discrete Bayes, particle) are introduced.

2.3.1 Kalman Filter

The Kalman filter (KF) is a parametric filter. Informative introductions can be found in [49, 81,
51]. The Kalman filter uses a Gaussian, specified by its mean and its covariance, to describe the
belief at a certain time. As the Kalman filter is a Bayes filter variant, it consists of a prediction
step and a measurement update step. The Kalman filter is a valid Bayes filter implementation
when the following three conditions hold:

• The state transition probability can be described using a linear function and a Gaussian
error: xt = Atxt−1 +Btut + εt

• The measurement probability can be described using a linear function and a Gaussian
error: zt = Ctxt + δt

• The initial belief is normally distributed
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Systems that fulfill these conditions are called linear Gaussian systems. The Kalman filter
can be extended to nonlinear problems. Two variants, the extended Kalman filter and the
unscented Kalman filter are described in the following subsections. There are also extensions to
the Kalman filter that address the unimodality. A technique known as multi-hypothesis Kalman
uses a mixture of Gaussians to represent the current state.

2.3.2 Extended Kalman Filter
The extended Kalman filter (EKF) is a parametric filter. Instructive descriptions can be found
in [77] and [73]. The extended Kalman filter does not require a linear system. So, the state
transition and the measurement probabilities can be described with

xt = g(ut, xt1) + εt and
zt = h(xt) + δt

where g and h are nonlinear functions.
The EKF algorithm works like the KF algorithm but adds linearization. This linearization

is achieved using first order Taylor expansion. The gradient to the functions is expressed using
Jacobians. An excellent, detailed extended Kalman filter description can be found in [73].

2.3.3 Unscented Kalman Filter
The unscented Kalman filter (UKF) is a parametric filter. Insightful descriptions can be found
in [48] and [79]. The unscented Kalman filter uses a different form of linearization, called the
unscented transform. The functions g and h are not approximated like in the EKF. Instead,
the algorithm calculates sigma points which are transformed using g and h. Based on the
transformed sigma points, the transformed mean and covariance are calculated. The basic idea
of the sigma points is that they probe how a nonlinear function changes the shape of the Gaussian
to be transformed.
The mean of the original Gaussian and two more points per dimension are used as sigma points.

These points are placed around the mean depending on weight factors. The UKF approximates
the Gaussian of the transformed function more accurately than the EKF, especially when there is
a high nonlinearity near the mean of the original distribution or when there is high uncertainty
in the original distribution. A more detailed comparison of the EKF and the UKF is given
in [54].

2.3.4 Discrete Bayes Filter
The discrete Bayes filter algorithm is the straightforward implementation of the continuous
version and is given in algorithm 2.2. It is a nonparametric filter. Technical descriptions are
given in [77] and [29]. When the state space itself is continuous, this filter is called histogram
filter. The state space is decomposed into a finite number of bins by the algorithm. There
are several ways this decomposition can be achieved. The most simple is to decompose the
state space in equal-sized grid cells. Both the accuracy and the computational complexity are
increased when the cell size is decreased.
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Dynamic decomposition techniques take the posterior distribution’s shape into account. An
example for such a technique are density trees. They decompose the state space recursively,
resulting in a decomposition that has a higher resolution at regions with higher probability.
Another example is selective updating, which only updates the bins exceeding a user-defined
threshold. With these dynamic decomposition techniques, the computational complexity of the
discrete Bayes filter can be drastically decreased.

2.3.5 Particle Filter

Like histogram filters, particle filters are nonparametric filters. Particle filters have become
widely used for robotic localization. There is a lot of literature that gives an overview [77, 15, 32,
1] and there are many publications that describe particle filter applications [26, 20, 78, 28, 64, 65].
A particle filter approximates the probability distribution using a random sample set drawn from
the distribution. These samples are called particles. An important advantage of this method
is that it is nonparametric and so can describe a lot of different distributions without knowing
parameters like mean and covariance. Another benefit is that such samples can be passed
straightforwardly through nonlinear transformation functions.
A particle can be seen as a hypothesis for the state. The more particles in a certain state

space region, the higher the probability for that region in the approximated distribution. The
higher the total particle number, the more accurate the approximation.
Like all other Bayes filter implementations, the particle filter consists of a prediction and a

correction step to incorporate the knowledge about the actions and the measurements. The
current action is incorporated by moving each particle in state space. These moves are based on
a sample drawn from the distribution which describes the state transition probability. Measure-
ments are incorporated by assigning each particle a weight which depends on the measurement
probability.
Additionally, particle filters have a third step, called resampling. In that step, a new particle

set is drawn from the particle set created by the prediction step, using the weights from the
correction step. That operation’s consequence is that some particles are no longer in the set,
while some points in state space are represented by more than one particle in the set.

2.4 Bayes Filter Limitations

In the previous sections, the Bayes filter and its most important applications were introduced.
Which application is suited best depends on the problem’s characteristics. Several filter tech-
nique comparisons can be found in the literature [22, 54, 79, 48, 49, 73, 81].
With respect to accuracy, it can be said that the Bayes filter in its continuous form provides

the best results (ignoring the computational complexity). Histogram filters can approximate
this accuracy arbitrarily well, where the grid cell size determines how good the approximation
is. The same holds true for particle filters where a higher particle number leads to a better
approximation. However, to represent probability distributions describing high uncertainty, a
very high particle number is needed.
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Figure 2.4: Accurate position estimation. The blue curve shows the real position of a robot
moving along a line with constant speed. The red curve shows the position estimated
by a discrete Bayes filter.

This section discusses how these techniques can cope with three particular problems: inaccura-
cies in the state transition model, kidnappings, and sparse sensor information. The limitations of
the Bayes filter applications outlined below are my motivation for introducing the memory-based
paradigm, described in chapter 3.

2.4.1 Inaccurate State Transition Models

This subsection discusses how a Bayes filter performs when the state transition model is inac-
curate, using the following experiment.
Imagine a robot moving along a straight line, equipped with a single distance sensor. This

sensor measures the distance to a fixed point along the line on which the robot moves. The robot
moves from a position with x = 0 cm to a position with x = 500 cm. On each step, the robot
measures the distance to the origin and intends to move 10 cm. The distance sensor is quite
noisy and has a Gaussian error with a 75 cm standard deviation. The mean of that Gaussian
distribution is equal to the robot’s distance to the origin (there is no systematic error) and the
standard deviation does not depend on that distance. The motion command execution (move
10 cm) is quite accurate: the standard deviation is 1 cm and there is no systematic error.
Figure 2.4 shows how good a discrete Bayes filter, using the models given above, can estimate

the robot position. The high motion model accuracy leads to a high stability of the position
result, as the Bayes filter incorporates past measurements with a relatively high weight.
Figure 2.5 shows what happens, if determining the position is just based on the most current

measurement; the estimated position jumps with each measurement.
The Bayes filter requires an accurate state transition model in order to provide an accurate

estimate. Figure 2.6 shows how the discrete Bayes filter estimates the position, for the above
experiment, when there is a systematic error of 10 cm per step in the motion model. This
systematic error accumulates and leads to an increasing deviation between the estimated and
the real position.
In every case, the best solution for this problem is to avoid systematic error in the motion

model. However, this is hard to achieve in some cases. Legged robots are an example where
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Figure 2.5: Position estimation based on the most current measurement. The blue curve shows
the real position of a robot moving along a line with constant speed. The red
curve shows the position estimation result which incorporates only the most current
measurement. The noisy sensor leads to a noisy position estimation.
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Figure 2.6: Position estimation using a state transition model with a systematic error. The blue
curve shows the real position of a robot moving along a line with constant speed.
The red curve shows the position estimated by a discrete Bayes filter using a motion
model with a large systematic error. While the low noise in the state transition
model leads to a smoothing of the noisy sensor data, it also leads to an accumulation
of the systematic error.
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Figure 2.7: Increased amount of assumed noise reduced the effect of the systematic error. The
blue curve shows the real position of a robot moving along a line with constant
speed. The red curve shows the position estimated by a discrete Bayes filter using
a motion model with a large systematic error and a large standard deviation. The
large standard deviation prevents the systematic error from accumulating. On the
other hand, it prevents the incorporation of enough sensor data to smooth the sensor
errors, leading to jumps in the estimated position.

state transition models can have large systematic error. The motion model for a legged robot
describes how it moves when certain motion commands (e.g. walk forward, make a side step, etc.)
are executed. Besides the usual noise, there are reasons for deviations between the command
and the result that can not be considered noise but are of systematic nature. Causes for such
systematic error can be joint attrition, weak batteries, a different ground structure, etc.
A quick solution, to prevent systematic error from ruining the estimated state, is to increase

the assumed noise. Figure 2.7 shows this for the example introduced above. The standard
deviation of the motion model used by the discrete Bayes filter was increased to 30 cm. The
result is, the filter relies more on current measurements, avoiding error accumulation. However,
this also leads to significant jumps in the estimated position.
While increasing the assumed noise in the state transition model can help to reduce the effects

of unknown systematic error, a better solution is to add a probabilistic model for the systematic
error. However, this can only be achieved by adding a dimension to the state space which
represents the amount of the systematic error; leading to a higher computational complexity.
The memory-based paradigm, introduced in chapter 3, provides a means to cope with unknown
systematic error without adding computational complexity.

2.4.2 Recovery From Kidnaps

The ability to recover from failure or real sudden state changes is an important filter property. A
frequent reason for a sudden robot state change is collision with another robot. While collision
usually does not lead to a large position change, the effect on the robot’s rotation can be
significant. A robot getting stuck while trying to move is another example where its estimated
and real state diverge quickly.
What happens when a collision occurs can be illustrated with a modified version of the door
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experiment introduced in section 2.2. The difference to the original experiment is that the robot
moving to the right, along a hallway, while sensing doors is being teleported to the location with
x = 350 cm as soon as it reaches the location with x = 250 cm. Imagine another robot that
accidently crashes into the robot, causing a sudden one-meter long jump. However, the robot
affected by that jump has no special sensor to detect it.
Figure 2.8 illustrates that experiment and shows how the discrete Bayes filter responds to that

kidnapping. Two noteworthy observations can be made. The first one is that the robot’s belief
is wrong until it has passed the last door. The second is that the position error (the distance
between the maximum of the probability distribution and the real position) is two meters, for
most of the time, between the kidnapping and the filter stabilization. So, the error is twice as
high as the real position change caused by the collision impact.
This experiment shows that a discrete Bayes filter takes a while to recover from kidnapping.

How long a filter needs to recover depends on how much the kidnapping affected the represen-
tation quality. One reason for a long recovery time is a high certainty before the kidnapping.
Another one is sensors providing only inaccurate information. If kidnapping takes place between
two positions that look similar, the recovery also takes longer. Imagine being kidnapped from
one floor of an office building to the same position in another floor.
However, a good probabilistic model for such kidnap situations can help to minimize the

recovery time. The drawback of describing possible kidnappings, using the state transition
model, is that it adds high uncertainty to the posterior distribution. So, for some Bayes filter
implementations, the computational complexity increases. For instance, a particle filter needs
more particles to represent a more uncertain belief. Note that some Bayes filter implementations
can not cope with kidnapping without modifications (Kalman filter, EKF, UKF).
Accurate sensors are a good prerequisite to quickly recovering from kidnapping. They help

the filter stabilize as they produce higher certainty in the belief. Section 5.1 shows how accurate
percepts can be obtained for a RoboCup scenario.
Another way to cope with kidnapping is to restrict the influence of old measurements on the

current belief. Percept selection strategies which pick the best subset of the past observations
are part of the memory-based paradigm, introduced in chapter 3.

2.4.3 Sparse Information and High Uncertainty

Another important property for state estimators is how they can cope with sparse information
and high uncertainty. The state estimation goal is to decrease the uncertainty about the state.
Typically, uncertainty is reduced with each sensor measurement and increased with each state
transition. The less information provided by a single measurement, the more information has to
be accumulated to achieve a specific certainty for the state. Additionally, the uncertainty added
by state transitions should not exceed the certainty added by measurements. In this subsection,
several classes of sparse measurements are introduced and discussed.

2.4.3.1 Noisy Measurements

The more noisy a measurement, the less information it contains. Imagine a stationary robot. If
that robot wanted to find out its distance to a nearby wall using a very noisy distance sensor,
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Figure 2.8: Robot-in-hallway experiment with kidnapping. The robot is visualized by the black
vertical bar at the bottom of the diagrams. A gray circle shows that the door sensor
does not detect a door, a red circle symbolizes a door detection. The light gray
rectangles are the doors and the dark gray curve shows the belief. The robot starts
at x = 0 and moves to the right. The diagrams show how the robot’s belief changes.
The kidnapping is shown in the first diagram where the robot is instantly moved
from position x = 250 (red bar) to position x = 350 (gray bar). The second and
third diagram show how the robot’s belief does not represent the correct position
while it is moving to the right. The last diagram shows that the position of the
belief’s maximum corresponds to the real position when the robot has passed the
last door.
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it has to make many measurements. The more noisy the sensor, the more measurements the
robot has to make in order to reach a threshold for the probability for the most likely position.
This example illustrates how important it is for a filter to be able to represent sparse informa-

tion adequately. While parametric filters can represent such sparse information commendably,
for example by a Gaussian distribution with a high standard deviation, nonparametric filters
usually need many values to represent such distributions.
For the example given above, a Kalman filter provides satisfactory results, independent of

the sensor’s standard deviation. In contrast, a particle filter needs more particles to be able
to process the measurements of a sensor with higher standard deviation. As the robot in the
example above is stationary, there is no uncertainty added between two measurements. So,
another good way to calculate the robot position is to average all past measurements. This very
simple method does not need an internal representation of the current state (like parameters µ
and σ for the Kalman filter or a particle set) which is updated in each step. Instead, it simply
needs a memory containing all past measurements. The memory-based paradigm, introduced in
chapter 3, is based on this idea.

2.4.3.2 Measurements Providing Sparse Information

High noise is not the only reason for a sensor to just provide sparse information. The information
a given measurement z provides depends on the number of different states in the state space X
that lead to the measurement z. The sensor characteristics can be described with a function
fs(x) = z which returns the expected (noise-free) observation z for a given state x. This
function’s domain is the state space X, the set of all possible measurements Z is its image. As
soon as for a given measurement z there is more than one state x with fs(x) = z (the function
fs is not bijective), this measurement is insufficient to determine the state.
In the remainder of this subsection, different measurement classes are introduced, all of which

have the non-bijectivity of the function fs in common.

Detector Measurements Detector measurements are provided by detection sensors. A sensor
which detects whether a robot is in front of a door or not was introduced above. A sensor
mounted on an airplane detecting whether it is above land or water is another example. Similarly,
a sensor with a defined angle of view is thinkable, that is, a sensor that detects whether a
landmark is within a certain angle of view. While for all those measurements the corresponding
function fs is a boolean function, there are also sensors that map from states in the state space
to elements of a classification set. Imagine a sensor that detects whether a robot is next to a
red, green, or yellow wall.
How much information is contained in such a detector’s measurement depends on the world

setup. In a long hallway with only a few doors, a door detection provides more information
than a no-door detection of a door. That’s why measurements that signal the absence of a
certain feature are sometimes called negative information. However, the example with the sensor
which detects whether an airplane is above water or land shows that the amount of information
provided by a detector’s measurement depends on what the world looks like. The fact worth
noting here is that in most cases detector measurements provide only sparse information, as the
more information is contained in a measurement, the less likely it is to make it.

18



2.4 Bayes Filter Limitations

The following example shows how the accumulation of sparse information can be used to
resolve a multivariate measurement. In this example, a robot moves down a hallway which
contains two doors, the distance between the doors is 2 meters. If the robot moves more than
2 meters and then detects a door, it can conclude that it must be in front of the first door. This
"conclusion" can be made by a Bayes filter.
The difficulty here is that the sparse information, of not seeing a door, has to be represented

by the belief probability function. Many parametric filters are not suitable to represent this
special kind of posterior distributions. Parametric filters need a high resolution to represent
such sparse information. A particle filter, for example, needs enough particles to represent the
sparse information provided by not seeing the doors.
The memory-based paradigm, introduced in chapter 3, does not rely on belief representations

and thusly evades the problem illustrated above.

Distance Measurements Distance measurements provide the distance to landmarks. There
are two main forms of distance sensors. The first form provides the distance to a point in space.
A measurement of such a sensor constrains the possible positions to a circle or a sphere. The
second form measures the distance to a line in space, for example the distance to a wall or, in
RoboCup, the distance to a field line. Such a measurement constrains the robot’s position to a
single line, or two lines when the landmark can be observed from two different sides.
Imagine a typical localization scenario, where the x-coordinate, the y-coordinate, and the

rotation of a robot are to be determined. Then, two (perfect) distance measurements to two
different, unique, and distinguishable landmarks restrict the possible locations to two points,
the intersecting points of the resulting circles. A special case occurs, when the robot position is
somewhere on the line between the two landmarks, then the resulting circles touch at a single
point. With a distance measurement to a third landmark, the position can be determined
exactly. However, the robot’s rotation can not be determined just using distance measurements.
Two (perfect) distance measurements to two different, unique, and distinguishable lines are

sufficient to determine the robot’s position when these lines are not parallel and observable from
only one side, for example: distance measurements to two different walls in a room. However,
field lines in RoboCup are indistinguishable and observable from both sides. The observation
of two field lines constrains the position to many symmetrically arranged points. Again, the
robot’s rotation can not be determined using just distance measurement to lines.
How distance measurements can be processed following the memory-based paradigm is de-

scribed in 3.3.3.

Bearing-Only Measurements Bearings are another example for sparse measurements. A bear-
ing sensor renders the bearing to a landmark. For a three-dimensional state space (x-y-position
and heading), the information provided by a bearing does not constrain the robot’s position.
However, for a given position (x, y) it constrains the robot’s heading α. The sensor can be
described by the equation z = arctan(yl−y, xl−x)−α where z is the resulting measurement for
a given state described by the coordinates (x, y) and the heading α. The landmark’s position is
given by (xl, yl).
The difficulties particle and Kalman filters have with integrating bearing measurements are a
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big motivation for the memory-based paradigm. Chapters 4 and 6 introduce robot localization
methods which use horizontal bearings to landmarks.
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3 The Memory-Based Paradigm

This chapter introduces the memory-based paradigm which is both a supplementation and an
alternative to the probabilistic paradigm. While methods based on the probabilistic paradigm
are very powerful and have led to a large number of impressive robotic applications, they have
to be used cautiously in many situations.
For a given state estimation problem, good reasons to choose a Bayes filter variant, especially

a particle filter, are that such filters are easy to implement and produce good results. These
properties of probabilistic methods involve a certain danger of abusing the parameters of the
methods. Classic examples are: increasing the number of particles when the estimation results
differ from the expectations, adding motion or sensor noise when the filter is not reactive enough,
or reducing the motion noise when the results are too unsteady. While the use of probabilistic
methods is often appropriate, their nature sometimes seduces into treating the symptoms instead
of the cause when problems arise.
There are also some cases where the use of probabilistic methods is not advisable. For example,

when the probabilistic models that describe a system are not known or require a too high
dimensional state space. Some limitations of the Bayes filter and its applications were already
discussed in section 2.4.
The memory-based paradigm is an approach to state estimation which can better cope with

the issues brought up above. My main criticism of the methods based on the Bayes filter is that
the sole place for a robot to store and accumulate information is the belief, which follows from
the Markov assumption and the notion of the complete state. This can lead to problems when
the information is sparse, kidnapping occurs or there is systematic error. In this chapter, the
memory-based paradigm is introduced, which provides new methods for state estimation.
Section 3.1 shows state estimation problems which can be approached using memory-based

techniques. In section 3.2, the motivation for the introduction of the memory-based paradigm is
given. Section 3.3 provides the definition of memory-based state estimation (MBSE) and possible
algorithmic variants. In section 3.4, experiments and their results are given, which validate the
concept. Sections 3.3 and 3.4 are based on [43] and [46]. Parts of [46] were created with Heinrich
Mellmann.

3.1 Introductory Examples

In this section, several examples of simple state estimation problems are given that motivate the
introduction of memory-based methods.
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3 The Memory-Based Paradigm

3.1.1 Navigation On Sea Using Nautical Charts

The art of plotting navigation courses on nautical charts can be seen as one of the oldest state
estimation methods. Even in the times of GPS, it is more than useful to examine ancient
navigation techniques. In this subsection, the most important means of plotting and piloting on
nautical charts are introduced.
The navigational goal at sea is to determine the position and heading of ones ship on a map.

For this purpose several navigational instruments can be used. The most important is a compass,
which gives the direction to the magnetic north pole. A compass can also be used to measure
horizontal bearings to landmarks like lighthouses, steeples, buoys, or windmills. There are a
lot of navigational aids, like lighthouses or radio navigation systems, which provide bearings or
distances, when appropriate instruments like radio receivers ore binoculars are on board. There
is also a large number of instruments that simplify the analysis of natural landmarks like stars
or coast lines; the Sextant is the most prominent.
The speed of a vessel, relative to the surrounding water, can be measured using a chip log and

a stopwatch. In the early days, usually an hour-glass was used as a stopwatch. Chip logs usually
consisted of the log-line wound on a reel and a wooden board weighted with lead. The log-line
was knotted with a defined and uniform spacing. Modern instruments for speed measurement
usually use impellers or Doppler Sonars. Sonars are active acoustic locators; a depth sounder is
one of the most common instruments in this category. It uses the knowledge about the speed of
sound in water to determine the depth, using the time between a sent signal and its echo caused
by reflection at the sea floor.
The navigational instruments mentioned can be affected by considerable errors. Compasses

can be influenced by the ship itself, by other vessels, or by the earth’s magnetic field’s natural
fluctuations. Speed measurements can be disturbed by wrong distance measurements (currents,
vegetation, etc.) and by wrong time measurements (inaccurate clocks). Measurements taken by
instruments which rely on the sound speed in water can be affected by the water’s temperature,
pressure, or salinity. However, with additional measurements or correction tables, the influence
of such errors can be minimized.
With the instruments described above, it is possible to track a ship’s position, when a nautical

chart is available. In the remainder of this section, the basic concepts of plotting courses on
nautical charts are introduced. This technique is well-documented; good introductions are given
in [82], [67], and [56]. Based on this, design goals for the memory-based paradigm will be
introduced in 3.2.3.

3.1.1.1 Lines of Position

A line of position (LOP) constrains the possible position of a ship to a single line. An LOP
can be drawn when a compass measurement (ship’s angle relative to north) and a bearing to a
landmark of known-position (ship’s angle relative to a landmark) are available. Figure 3.1 gives
an example.
An LOP is drawn as an arrow pointing to the landmark. It is labeled with the time of the

observation and the angle to north. An LOP can be obtained without a compass when an
observed sector light with known position changes its color while passing it. This also requires
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11:30102°

Figure 3.1: Line of position (LOP). The shown LOP was obtained by a bearing to the blue
lighthouse and a compass measurement which was already corrected (due to the
deviation between the magnetic and the true north). An LOP should be labeled
with the time when the observation was made and its bearing (the angle to true
north).

that the bearings of the sectors are known.
Another way to obtain an LOP without a compass is the usage of a range. A range is an LOP

defined by characteristic points with known position. When such two landmarks are observed
aligned (both points have the same bearing), the ship is on the line defined by the position of
these two points. Such characteristic points can be landmarks, points resulting from alternating
convex and concave parts of a coastline, or points defined by tangents to islands. The higher
the distance between the two points that define a range, the higher the accuracy of the LOP.
Additionally, the distance to the closer landmark should not be too high.

3.1.1.2 Cross Bearings

Cross bearings are the most common way to obtain a position fix. A position fix gives the
ship position. A cross bearing can be obtained when two different landmarks are visible at the
same time or at nearly the same time. The faster the ship moves, the lower the time difference
between the two observations should be. The position is given by the point where the two LOPs
intersect. Figure 3.2 gives an example.
To get the most accurate results, the two bearings should intersect at an angle close to 90◦.

When three observations can be made at the same time, the resulting LOPs usually intersect in
three different points. In such a case, the triangle’s center is used for the position fix. To take
possible errors into account, instead of a single point, a position area can be constructed. This
is done by replacing the LOPs by corresponding sectors. The area where the sectors, created
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Figure 3.2: Position fix and dead reckoning. A position fix can be created when two LOPs can
be obtained at the same time. A position fix is marked with an ellipse, the label
"Fix" and the relevant time. The label and time are underlined. The closer the angle
between the lines to 90◦, the more accurate the position fix. Dead reckoning lines are
always drawn from the last fix. They are labeled with the ship’s speed and heading.
When the course or the speed changes or when an observation is made, a new dead
reckoning line is drawn. The ends of dead reckoning lines are marked with "DR" and
the relevant time.

by different observations, overlap is the position area. Constructing such areas can be helpful
when hazardous areas have to be avoided.

3.1.1.3 Dead Reckoning

When no observations can be made, the vessel position can be tracked using emphdead reckoning.
This is possible using knowledge about the ship’s heading and speed. Each time the ship changes
its course or its speed, a new line is drawn on the chart that represents the movement since the
last change. Additionally, a new line is drawn when an observation is made. This is important
for the construction of running fixes which are introduced below. Such dead reckoning lines are
labeled with the relevant speed and heading. The end of such lines is marked with a semi-circle,
the label "DR" and the time. Figure 3.2 illustrates this.
A path of dead reckoning lines is always started at the last position fix. It is obvious that this

technique is prone to the accumulation of systematic error. However, the more known about
possible influences like currents or the wind speed, the more precise the results.
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Fix 11:30

DR 11:45

C 156C

S 4.5

11:45
092°

EP 11:45

Figure 3.3: Estimated position. A single observation allows the construction of an estimated
position when the dead reckoning path since the last position fix is known. The esti-
mated position is the position on the LOP obtained by the observation being closest
to the according dead reckoning position. The symbol for an estimated position is a
square labeled with "EP" and the time.

3.1.1.4 Estimated Positions

When only a single observation is made, leading to just one LOP, this can be used to obtain an
estimated position. This is done using the dead reckoning position of the observation time. The
estimated position is the point on the LOP resulting from the observation closest to the dead
reckoning position. That point is constructed by intersecting the LOP with a perpendicular line
that goes through the estimated position. An estimated position is marked with a square on
the chart, the letters "EP" and the time. Figure 3.3 gives an example.
Note that dead reckoning lines obtained after the construction of an estimated position are

drawn starting from the last dead reckoning position; dead reckoning paths always start at the
last position fix. Estimated positions are not used as a starting point for new dead reckoning
lines. This is important for the construction of running fixes, which are introduced in the next
section.

3.1.1.5 Running Fixes

When two observations are made at two different times, a running fix can be created. This
can even be done using a single landmark. As with the construction of a position fix, the
most accurate results are achieved when the two LOPs intersect at an 90◦ angle. In order to
construct a running fix based on two LOPs constructed from two observations, the respective
dead reckoning positions are needed. Figure 3.4 shows a scenario where two LOPs and a dead
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Figure 3.4: Running fix. Two observations at two different times can be used to construct a
running fix. This can be done when there are two LOPs and a corresponding dead
reckoning path. The construction of the running fix for this scenario is shown in
figure 3.5.

reckoning path, starting at the last fix, are drawn on the chart.
Based on the dead reckoning positions, the complete distance and direction the ship moved

in between the observations can be constructed. This is done by connecting the dead reckoning
position which belongs to the first observation with that of the last observation by a thin line.
Then the first observation’s LOP is advanced to the time of the second observation. To do this,
a construction line is drawn which starts somewhere on the first LOP and is parallel to the
line which connects the two dead reckoning positions and has the same length. The advanced
LOP is drawn parallel to the original one and through that construction line’s end. Figure 3.5
illustrates this.
Note that the position of the fix where the dead reckoning path starts has no influence on the

position of the running fix. Even the error in the dead reckoning which occurs before the first
observation has no effect on the position of the running fix, as just the dead reckoning difference
between the two observations is used. This is a very important property of a running fix. The
construction of a running fix is a good way to recover from errors in the dead reckoning position
or in estimated positions.

3.1.1.6 Scale of Reliability

The different position estimates introduced can be sorted based on their reliability leading to
this order, starting with the most reliable:

• Position fix
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Figure 3.5: Running fix. A running fix for two LOPs that where obtained at different times is
constructed by advancing the first LOP. The green LOP is moved by the difference
between the positions DR 12:15 and DR 11:45. That moved line (the dotted green
line) is intersected with the blue LOP to obtain the running fix. A running fix is
labeled with "RFix" and the corresponding time.

• Running fix

• Estimated position

• Dead reckoning position

This order is given in [82] and is quite obvious. A position fix uses just current observations and
does not include any (unprecise) dead reckoning information. For a running fix, dead reckoning
information is used but just starting at the second-to-the-last observation. One observation used
for a running fix is current, the other can have a certain age. An estimated position uses one
current observation and can be influenced by a large dead reckoning error, as the dead reckoning
information is used starting at the last fix, which can be old. However, it is still better than just
a dead reckoning position which uses no current observations.
The scale of reliability given above is a strong motivation for the introduction of the memory-

based paradigm. A basis of the piloting technique introduced above is to rely on current infor-
mation as much as possible. Another principle is to draw all information available on the chart
such that it can be used later, when necessary. Memorizing all actions and observations is a
principle of the memory-based paradigm as well.
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Figure 3.6: Robot-in-hallway-experiment with kidnapping. Figure 2.8 is repeated here to simplify
comparison to figure 3.7 on the opposite page. The kidnapping is shown in the first
diagram, the robot is instantly moved from position x = 250 (red bar) to position
x = 350 (gray bar). The second and third diagram show how the robot’s belief does
not represent the correct position while it is moving to the right. The last diagram
shows that the position of the belief’s maximum corresponds to the real position
when the robot has passed the last door.
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Figure 3.7: Robot-in-hallway-experiment with kidnapping. For these diagrams the belief was not
calculated recursively from one step to the next. Instead, it was calculated starting
with an equal distribution and iterative for the steps highlighted by circles. Note
that this increases the calculation time, as instead of one update per step, a number
of updates has to be performed. First diagram: The position x = 700 is the only
one where the observations sequence shown (no door, no door, door, no door, door)
can end when the robot is moving right. This is represented by the belief. From
this position on, the robot’s belief has recovered from kidnapping. Second diagram:
Only at position x = 900, a sequence of four doors observed near-by can end. Third
diagram: An observation sequence (door, no door, door, no door, no door) can only
end at position x = 1000.
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3.1.2 Kidnapping in a Hallway

In section 2.2, the Bayes filter was described using the classic example of a robot which tries
to localize itself in a hallway. Section 2.4.2 used that example to illustrate how a Bayes filter
performs after kidnapping. The result of the experiment with the kidnapping was that the
robot’s belief, after the kidnapping, was wrong and needed some time to recover. Figure 3.6
shows this experiment again. The time to recover can be reduced by adopting the state transition
model in a way which represents the probability to be kidnapped. However, it can be difficult
to obtain such a model.
The concepts position fix and running fix, introduced in the last section, provide inspiration

for another solution. While there is no counterpart to a position fix for the robot-in-hallway-
scenario, as the robot’s position in the hallway can not be determined when the robot is not
moving, there is an analogy to the running fix. However, to obtain a running fix in a hallway
typically more than two observations are needed. It is worth noting again that, for a running fix,
only a limited set of current measurements and dead-reckoning information is needed. Previous
data can be considered obsolete. Consequently, a running fix is perfectly suited to recover from
kidnapping. While in the nautical chart example two bearings are needed for a running fix, the
number of measurements needed in the hallway scenario is not fixed. Even if it is assumed that
there are no measurement errors, the number of observations needed can vary. How many last
observations are needed, depends on the map and the last observations.
Assume all door measurements and actions of a robot moving down a hallway are recorded.

Then two questions are crucial to calculate a running fix: How many past measurements are
needed and how to calculate the position, based on these measurements. Assume some unspec-
ified algorithm picks the minimum number of measurements needed from the memory. Then,
a Bayes-like algorithm can calculate a belief, based on these observations and the actions per-
formed in-between. This method can be understood as a sliding-window approach, with a flexible
window size. Figure 3.7 shows how this works, for the data used before. With this method of
calculating the position just based on the minimal number of needed observations, the position
recovers faster after the kidnapping. However, the calculation time is longer than when a regu-
lar Bayes filter is used. In each step, the Bayesian update has to be done once for each of the
selected observations, instead of just once.

3.1.3 Propagation of Systematic Error

In section 2.4.1, it was shown how an inaccurate state transition model can lead to the accumu-
lation of systematic error, when a Bayes filter or one of its variants is used. The example used
there was a robot equipped with a sensor, measuring the distance to a fixed point on the line
it moved along with constant speed. Figure 3.8a) shows, again, how a Bayes filter accumulates
the systematic error.
When no information about the amount of the systematic error is available, the accumulation

of systematic error can be avoided by increasing the assumed value of noise in the state transition
model. This is a way to make the system forget older measurement more quickly. However, as
such a modified model does not represent the true effect of motion commands, it leads to sudden
jumps in the estimated position. Figure 3.8b) illustrates this.
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Figure 3.8: Coping with systematic error. The blue curves show the real position of a robot
moving at constant speed. a) The red curve shows the position estimated by a
Bayes filter, using a motion model with a large systematic error. b) The amount of
assumed noise was increased to reduce the effect of systematic error. However, this
prevents the incorporation of enough sensor data in order to smooth sensor error,
leading to the jumps in the estimated position. c) In each step, only the last 10
measurements were used to calculate the position. So, the systematic error is not
accumulated, while the curve is still smooth.
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Unknown systematic error in the motion model is a widespread problem for autonomous
robots. Imagine a couple of the same type robots, all in a slightly different physical condition
because of wear and tear. Each of these robots would show a slightly different reaction when
executing the same motion command. An appropriate probabilistic modeling would require to
measure the systematic error for each robot. Another way would be to add a dimension to the
state space which describes the systematic error. These variants require additional calibration
efforts or a significant calculation time increase.
Again, introducing a concept similar to a running fix can solve this problem. The basic idea

here is to consider only a limited set of measurements for position estimation. This evades the
accumulation of systematic error, as older measurements are not considered, while the original
models for the state transitions and for the sensor can still be used, leading to a smooth model
with minor systematic error. Figure 3.8c) shows this for the distance sensor example.

3.2 Motivation
In section 2.1, the concept of sequential state estimation was introduced. The foundation for
this state estimation variant are Hidden Markov Models. In this section, what distinguishes
memory-based state estimation from the well-known approach based on Hidden Markov Models
is described.
For the examples given in the previous section, how different state estimation methods perform

is presented. Different ways to accumulate information are given in 3.2.1; while, the discussion
is in 3.2.2. Based on this discussion, I state my design goals for memory-based state estimation
in section 3.2.3.

3.2.1 Different Ways to Accumulate Information

This section presents different ways to accumulate information. Different state estimation forms
can be seen as different ways to accumulate information.

3.2.1.1 Direct State Estimation

The purpose of state estimation is to find the best approximation for the state of a system.
Commonly, this state can not be observed directly. A classic state estimation example is self-
localization. When a perfect position sensor is available, there is nothing left to be done. More
generally, there is no need for sophisticated state estimation technique when there are sensors
which provide at least as much information as needed to determine the position in every time-
step. Formally, such Direct State Estimation can be seen as a function fD which calculates the
current state ~xt at time t based on the vector ~zt of observations at time t:

~xt := fD(~zt) (3.1)

This direct form of state estimation does not use the knowledge about the actions ut which
led the system from state xt−1 to state xt. Direct State Estimation is not applicable when there
are less sensor readings available than needed to determine the state directly. Looking at a
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thermometer just once to estimate the temperature in a room is an example of Direct State
Estimation.

3.2.1.2 Hidden Markov Models for State Estimation

As soon as the information obtained at a single moment is not sufficient to determine the
state, information has to be accumulated over time. This is done in the Hidden Markov Model
approach for state estimation; a detailed description was given in section 2.1. In this approach,
the current state is represented as a probability function bel(xt) which is called the belief of xt.
The current state is calculated by a function fHMM usually realized by a Bayes filter variant
(cf. 2.2.5), using the last state’s belief bel( ~xt−1), the current measurement ~zt, and the action ~ut
executed at the transition from ~xt−1 to ~xt:

~xt := fHMM (bel( ~xt−1), ~zt, ~ut) (3.2)

Bayesian filters can use probabilistic sensor and motion models and accumulate information
over time. Following the Markov Assumption, this information aggregation can be done from
state to state, as long as the current state contains enough information. So, it is often referred
to as recursive state estimation.

3.2.1.3 Memory-Based State Estimation

If the assumption to have a representation of a complete state in each time-step is given up, a
function fM can be defined which calculates the current state xt based on the current and all
past observations ~z0:t and all past control actions ~u0:t:

~xt := fM ( ~z0:t, ~u0:t) (3.3)

I call such state estimation variantsmemory-based state estimation (MBSE). Strictly speaking,
Direct State Estimation is a variant of MBSE which only uses the last observation ~zt. Hidden
Markov Model based state estimation can also be seen to be a variant of MBSE. In this case,
the function fM has to calculate all recursion steps of function fHMM in each time-step (which
would break the recursion idea). There are many existing approaches which extend HMM -based
localization methods using memory-based techniques: [50, 74, 18, 72].
The concept of MBSE, as introduced, is a simple prototype; a detailed introduction is given

in section 3.3.

3.2.2 Discussion of Introductory Examples

In section 3.1.1.5 it was described, what a running fix is: a way to use a past and a current
observation (landmark bearing), with accumulated dead reckoning information to obtain a po-
sition estimate. How does this relate to the three ways to accumulate information that were
introduced in the previous section?
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The calculation of a running fix is not possible via Direct State Estimation as information has
to be accumulated over time. As defined in (3.1), with Direct State Estimation the state xt is
calculated based on a function that only uses the last observation: ~xt := fD(~zt). No old state
or old observations are available.
The position construction using simple geometry, falls into the class of memory-based state

estimation. To draw the LOP that is propagated depending on the dead reckoning path, the
LOP obtained at the first observation time is needed. In this case, the nautical chart is the
memory that stores the vector of all observations ~z0:t. The vector of control actions ~u0:t is also
stored in the chart, in the form of dead reckoning paths. The propagated and the current LOP
intersection can be calculated using a function as introduced in (3.3): ~xt = fM ( ~z0:t, ~u0:t).
However, it is also possible to determine the position based on the observation sequence and

the dead reckoning measurements using an approach based on Hidden Markov Models. Three
prerequisites are needed: First, a probabilistic sensor model, which gives the expected compass
and bearing measurements for each possible position; second, a probabilistic state transition
model, which describes the probability of moving from one position to another, given a certain
action (which can be derived from the measurement of moved distance); and third, a way to
represent the current belief, which depends on the Bayes filter variant chosen. With these
prerequisites, the position estimation can be done, starting from an equal distribution for the
belief, sequentially adding the bearing observations and the dead reckoning.
While the geometry-based approach is simple and straightforward, the HMM-based approach

is more general. For a lot of state estimation problems, it is easier to provide a sensor and a
motion model than to pursue geometric considerations, which can get complicated when con-
tradictory information has to be processed. The HMM-approach can cope with that without
additional efforts. In the example of calculating a running fix with an HMM-based approach,
more measurements can be integrated very easily; while for the geometric approach rules are
needed how to proceed when the LOPs don’t intersect at a single point.
On the other hand, the HMM-approach needs a complete representation of the current state.

This has to be a probability density function over the state space in order to be able to accumulate
information over time. While a complete discrete representation leads to high memory usage
and high computational costs, there are several solutions to reduce this complexity. Particle
filters approximate the function using a particle set; Kalman filters assume the function to be
a multivariate normal distribution. However, these approximations have their weaknesses. For
example, a very high particle number is needed when the information that has to be integrated
is sparse (does not provide a lot of information at once).
The principle of MBSE is to combine the advantages from the HMM-approach with those of

approaches based on geometric considerations. It should be as generic as the HMM-approach:
The sensor and the motion model are the only environmental information needed. It should be
as light-weight as the geometry-based approach: no internal representation of the state should
be needed to calculate the state. More detailed design goals are given in the next section.

3.2.3 Design Goals
The goal of memory-based state estimation is to provide means for state estimation that exceed
the ones given by existing approaches. The motivation stems from weaknesses of existing meth-
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ods, especially methods based on Bayesian filtering. In section 2.4, the weaknesses of the Bayes
filter applications were discussed. In sections 3.1 and 3.2.2, some ideas to cope with these issues
were given. In this section, the design goals for the memory-based paradigm are formulated
which are based on those ideas and on the properties of Bayesian methods.
As MBSE should be an improvement, compared to state estimation based on Bayesian filter-

ing, it should have the merits of most of those methods. I regard the main properties of methods
based on Bayesian filtering as:

• Generality: The formulation of the algorithms is not specific to a domain or a state space.
The only domain specific things are the sensor model, the state-transition model, and the
state space structure. These models provide the description of the respective system.

• Usage of forward models: To estimate a system’s state, a description is needed that provides
information on the connection between the system state, observations within the system,
and possible influences to the system. The nature of Bayesian filters allows this system
description to be given using forward models: the sensor and the motion model. A big
advantage of this is that forward models are usually easy to obtain.

An important design goal for MBSE is that it has the properties listed above. Additionally,
MBSE should have these properties:

• Capability to cope with systematic error : The system should be able to cope with unknown
systematic error. In section 2.4.1, it was shown how the results of Bayesian filtering could
be affected by systematic error.

• Capability to quickly recover from kidnapping: If information is stored recursively in a
belief, it can take a while until the system can recover from kidnapping. This problem was
discussed in section 2.4.2.

• Capability to process sparse data: One of the main disadvantages of accumulating sparse
information using probability functions over a state space is that a high resolution is
needed, which leads to high computational costs (cf. section 2.4.3).

3.3 Memory-Based State Estimation

This section describes the main principles and the basic mathematic foundations of MBSE.
Sections 3.3.1 and 3.3.2 introduce the formalities needed to describe the system and justify

it, section 3.3.3 describes the method itself. In section 3.3.4, a proof is given showing that the
method delivers the same results as a Bayes filter when certain assumptions hold. In section 3.3.5,
some algorithmic implementations are presented.

3.3.1 Definitions

This section presents some prerequisite terminology.
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Definition 3. (Observation function)
An observation function fs gives the expected observation z for each state x:

fs : X −→ Z, x 7−→ fs(x),

where X is the set of all possible states, Z the set of all possible observations, and z = fs(x).

If a probabilistic sensor model p(z|x) (cf. 2.2.3) is given, the corresponding observation function
is

fs(x) = arg max
z
p(z|x).

Definition 4. (Control function)
A control function fc describes the new state xi when the previous state was xi−1 and the action
ui was performed:

fc : X,U −→ X,x, u 7−→ fc(x, u),

where X is the set of all possible states, U the set of all possible actions, and xi = fc(xi−1, u).

If a probabilistic state transition model p(xi|xi−1, u) (cf. 2.2.4) is given, the corresponding
control function is

fc(xi−1, u) = arg max
xi

p(xi|, xi−1, u).

Note that the control function does not model the sensor’s probabilistic properties. In the
same way, only a deterministic effect of actions can be described by the control function.

Definition 5. (Reverse control function)
A control function’s reverse f∗c (x, u) is defined with

f∗c : X,U −→ X,x, u 7−→ f∗c (x, u),

such that f∗c (fc(x, u), u) = x. For a given state xi and an action u, the reverse function calculates
the state xi−1 before the action execution: xi−1 = f∗c (xi, u).

Definition 6. (Concatenated Controls) The concatenation of two actions uiuj is defined such
that

fc(x, uiuj) = fc(fc(x, ui), uj).

Note that concatenation usually is not commutative.

Proposition 7. The reverse of concatenated actions equals the recursive reversion of the single
actions: f∗c (x, uiuj) = f∗c (f∗c (x, uj), ui).

Definition 8. (Accumulated Controls)
For the sake of simplicity, the symbol vm is introduced to describe the concatenation of the last
m actions:

vm := un−m+1, ..., un.
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Figure 3.9: Hidden Markov Model. The states x0, x1, ..., xn are not directly visible. A state
xi depends only on the state xi−1 and the action ui. An observation zi depends
only on the state xi. The nodes u0 and zn are shaded as the method always starts
with an observation (z0) and ends with an action (un). Additionally, the connection
between the actions u1, ..., un and the accumulated controls v1, ..., vn is illustrated
(vm is the sum of the last m actions, which is the sum of all actions since un−m+1,
cf. Defi nition 8).

With this defi nition and proposition 7, it is easier to describe a sequence of previous states,
given a current state xn and a sequence of actions u1, ..., un that led to this state:

xn−m = f∗c (xn, vm).

Figure 3.9 illustrates the connection between u1, ..., un and v1, ..., vn.

3.3.2 Memory Organization

Two information types are available: the sequence of sensor data (observations) and the sequence
of control data (actions). These two types of information are organized in a memory which is
a matrix M with two columns and n rows. The fi rst column is a vector ~z = (z0, z1, ..., zn) that
contains the sequence of observations where the most current observation is zn. The second
column is a vector ~u = (u0, u2, ..., un) that stores the associated control data.

Each row is a tuple (zi, ui) that contains an observation and the corresponding action at the
observation time. The number of rows in the matrix increases with each observation. To be
able to process more than one observation at the same time, an action is allowed to be of type
do-nothing.

3.3.3 State Estimation Using Least Squares

MBSE utilizes the memory described above. This section presents the kind of information
delivered by a single measurement, what is known from a single observation in the past, and
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a) b)

Figure 3.10: Information gain of a single measurement. White circle: landmark position.
Black dot: simulated robot position. a) Gray line: bearing from the robot
to the landmark. The squared difference between the real and the expected
landmark bearings is illustrated by the function in the background: f1(x, y) =
(arctan(yl − y, xl − x)− α)2, where α is the angle between north and the bearing
from the robot to the landmark. Note that bright areas stand for low function
values and dark areas for high. b) Gray circle: distance measurement from the
robot to the landmark. The squared difference between the real and the expected
distance measurements to the landmark is illustrated by the function in the back-
ground: f1(x, y) = (

√
(yl − y)2 + (xl − x)2 − d)2, where d is the distance between

the robot and the landmark.

what is known from all observations in the past.

3.3.3.1 Information Gain of a Single Measurement

Usually, a single measurement does not provide enough information to determine the state.
However, a measurement z constrains the set of possible states according to the observation
function defined in 3:

Xz := (x ∈ X : fs(x)− z = 0).

A larger set based on an expected maximum error of t in the measurement can also be defined:

X(z),(t) := (x ∈ X : (fs(x)− z)2 < t2).

The likelihood for a state x can be defined as the squared error, resulting from the squared
difference between the real and the expected measurement:

f1(x) := (fs(x)− z)2 .

Figures 3.10 and 3.11 show this function for selected examples.
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a) b)

90 90

Figure 3.11: Information gain of a single depth measurement. a) Map of the Baltic Sea, taken
from [5]. The black circle with the small number shows the robot’s simulated
position and the result of a single depth measurement (90 meters) b) Function
f1(x, y) = (d(x, y) − s)2 shows the squared difference between the real and the
expected measurements for each location. The function d(x, y) delivers the depth,
for position (x, y), as stored on the map, s is the depth measurement. Places with
a small difference are shown bright.

3.3.3.2 Information Gain of a Past Measurement

When constraining the state by past measurement information, the actions since the observation
have to be included. With the reverse of the control function defined in 5, the set

Xz,u := (x ∈ X : fs(f∗c (x, u))− z = 0)

of possible states (assuming perfect measurements and execution of controls) can be defined.
With the assumption of a maximum error tz in the measurement, the larger set

X(z,u),(tz) := (x ∈ X : (fs(f∗c (x, u))− z)2 < t2z)

of possible states can be defined. Finally, a function that describes the likelihood for being in
state x after executing control action u and having made the observation z in the beginning can
be defined:

f2(x) := (fs(f∗c (x, u))− z)2 .

This likelihood is given by the squared difference between the real measurement and the expected
measurement in the state f∗c (x, u) calculated from x using the reversed motion model.

3.3.3.3 Information Gain of Multiple Past Measurements

To accumulate the information of multiple past measurements, I define the function

fM (~z, ~u) := arg min
k

n∑
t=1

(fs(f∗c (xk, vt))− zn−t)2 (3.4)
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which calculates the state x with the smallest sum of squared differences between the real
measurement zn−i and the expected measurement, for all states f∗c (x, vi). Additionally, the
value of the minimum is a measure of how good the measurements fit. If the measurements are
perfect, the minimum value is 0. The more discrepancies there are between measurements, the
higher the minimum value.

3.3.4 Properties of Memory-Based State Estimation

This section shows that the way to calculate the state using fM (~z, ~u) as defined above produces
the same results as Bayesian filtering under the assumption that there is no error in the action
execution and Gaussian error in the sensor measurements.

Assumption 9. There is no error in the motion model:

p(Xt = xk|Xt−1 = xi, ut) =
{

1, f∗c (xk, ut) = xi
0, otherwise

Assumption 10. The sensor model has Gaussian error:

p(z|Xt = xk) = N
[
fs(xk), σ2

]
(z),

with N
[
µ, σ2] being the normal distribution with mean µ and variance σ2.

Theorem 11. Let ~u = u1, ..., un be an action sequence and ~z = z0, ..., zn−1 be a sequence of
corresponding measurements. Then the state xm = fx(~z, ~u) determined by MBSE is equal to
the state xb = arg maxk p(Xt = xk) calculated by iterative Bayesian filtering (cf. algorithm 2.2)
when the assumptions 9 and 10 hold.

Proof. Consider line 2 of algorithm 2.2

p̄(Xt = xk) =
∑
i

p(Xt = xk|Xt−1 = xi, ut) · p(Xt−1 = xi).

Following assumption 9 (no randomness in the motion model), the sum can be eliminated:

p̄(Xt = xk) = p(Xt−1 = f∗c (xk, ut)).

Substitution in line 3 of algorithm 2.2

p(Xt = xk) = η · p(zt|Xt = xk) · p̄(Xt = xk)

gives
p(Xt = xk) = η · p(zt|Xt = xk) · p(Xt−1 = f∗c (xk, ut)).
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The iteration of n observations and controls results in

p(Xn = xk) = ηn−1 · ηn−2 · ... · η1·
p(zn−1|Xn−1 = f∗c (xk, un)) · p(zn−2|Xn−2 = f∗c (xk, un−1un)) · ...·
p(X0 = f∗c (xk, u1u2...un))

= p(X0 = f∗c (xk, vn)) ·
n∏
i=1

ηi · p (zn−i|Xi = f∗c (xk, vi)) ,

using the definition of concatenated controls (definition 6). The first term1 and the ηi can be
joined to a constant ζ1 resulting in

p(Xn = xk) = ζ1

n∏
i=1

p(zn−i|Xi = f∗c (xk, vi)).

Since ln is a strictly increasing function, it holds true that

arg max
k

p(Xn = xk) = arg max
k

ln(p(Xn = xk))

therefore that

arg max
k

p(Xn = xk) = arg max
k

(
ln ζ1 +

n∑
i=1

ln p(zn−i|Xi = f∗c (xk, vi))
)

can be deduced. According to assumption 10, it holds true that

p(z|x) = 1
σ
√

2π
exp

(
−1

2

(
z − fs(x)

σ

)2)

which implies

ln(p(z|x)) = −1
2

(
z − fs(x)

σ

)2
+ ζ2 .

Applying this, finally results in

arg max
k

p(Xn = xk) = arg min
k

n∑
i=1

(fs(f∗c (xk, vi))− zn−i)2 .

This equation’s left side is the state calculated by iterative Bayesian filtering, while the right
side is the state as determined by MBSE, cf. (3.4) in section 3.3.3.3. This proves theorem 11.

1The term p(X0 = x) describes the a-priori probability distribution of the robot state. At this point, it is assumed
that the initial robot state is unknown and therefore uniformly distributed, which implies that p(X0 = x) is
a constant for all x.
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Figure 3.12: Stepwise grid refining. The global minimum of the function is found using a grid.
The grid spacing is reduced in several steps.

3.3.5 Algorithmic Variants

Calculating

fM (~z, ~u) := arg min
k

n∑
t=1

(fs(f∗c (xk, vt))− zn−t)2

can be done in several ways. A few of them are shown in this section. Some of the methods
reduce the number of states when looking for the minimum. Other variants reduce the number
of measurements that have to be incorporated.

3.3.5.1 Reducing the Number of Locations

Several ways to reduce the number of locations for which the function f(x, y) has to be calculated
are discussed in this subsection.

Stepwise Grid Refining This method calculates the function only for the positions (x, y) which
are located on a grid with a spacing of d. The value of d has to be chosen, depending on the
domain, so that there is always a grid point close to the real minimum of the function. The
algorithm finds the grid cell with the function’s minimal value. This grid cell is used to define
a new grid around this cell with smaller spacing. This process is repeated until the desired
position precision is determined. Figure 3.12 shows an example.

Gradient Descent The function’s minimum can also be found using the gradient descent
method (cf. [71]). Parameters for the algorithm, like number of iterations and step length,
have to be chosen depending on the domain. Figure 3.13a) shows an example. The gradient
descent algorithm can run into local minima. However, once the true minimum has been found
(for example using the stepwise grid refining method described above), choosing this position
as the starting position, in the next step, should prevent the algorithm from switching to the
wrong local minimum.
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a) b)

Figure 3.13: a) Gradient descent. The function in the background results from combining
three bearings to the landmark (white rhombus). As there is only one local and
global minimum, the gradient descent finds the robot’s position (marked by the
black circle). The line illustrates the path of the gradient descent. b) Gradient
descent with multiple starting points. To be sure not to end in a local minimum,
gradient descent is started at several positions. The function in the background
results from combining three distance measurements. The starting points are chosen
by randomly selecting points out of the set X(z,u),(tz) which contains all possible
positions taking only measurement s into account. The set of gradient descent runs
finds all three of the function’s local minima.

Gradient Descent with Multiple Starting Points Another way to solve the problem of local
minima is to select a set of starting positions and run the gradient descent method for each
of these positions. The run that ends up with the lowest minimum can be considered to have
found the global minimum. However, some care should be taken when selecting starting posi-
tions. I propose a way to choose starting positions based on the knowledge obtained from the
last measurement s. The set of starting positions is defined as a random subset of X(z,u),(tz)
(cf. 3.3.3.1) with a fixed number of elements, where z is the last measurement, u the control
action performed since that measurement, and tz the maximum expected measurement error.
The set’s size and the threshold value tz have to be chosen depending on the domain. This set
should contain at least one position near the global minimum, which is a good starting position
for gradient descent. Figure 3.13b) gives an example.

Dimension Reduction This section shows how the calculation can be simplified when the sensor
model fulfills special requirements. Let fs(~x) be the sensor model which predicts a measurement
for a state vector ~x = (x1, ..., xn) of dimension n. In section 3.3.3.2, the function

f2(~x) := (fs(f∗c (~x, ui))− zi)2

was defined, which calculates the difference between the measurement and the expectation for
a given state ~x for an observation (zi, ui). Consequently, the solution of equation

zi = fs(f∗c (~x, ui))
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is a set of states ~x for whose elements the expectation is identical to the measurement. If the
first n − 1 components of ~x are fixed and the expectation is required to be identical with the
measurement, a constraint for the component xn of ~x can be obtained that is used to define the
function

c ((x1, ..., xn−1), zi, ui) := xn.

That function c is used to define a function

h(x̃) :=
k∑
i=1

(c̄(x̃)− c(x̃, zi, ui))2

which shows, for each partial state x̃ = (x1, ..., xn−1), how good several observations (zi, ui) fit
together. The function c̄(x̃) is defined as

c̄(x̃) = 1
k

k∑
i=1

c(x̃, zi, ui).

With these functions, the position can be estimated:

~xbest =
(

argminx̃(h(x̃))
c̄(argminx̃(h(x̃)))

)
.

This increases the calculation speed as the dimension of x̃ is only n− 1.
In a 2-D world with bearing sensors, this leads to

y = c(x, α,∆) = yl −∆y − (xl − x−∆x) · tan(α)

where ∆x and ∆y are the components of ∆ := fc(vi). Figure 3.14 illustrates functions c and h,
for example. A detailed description of the dimension reduction for a three-dimensional example
(position and rotation) can be found in [42].

3.3.5.2 Reducing the Number of Used Measurements

The second method to reduce the computational costs of the algorithm is to reduce the number
of measurements. So far, no restrictions on the size of the memory were specified. This means
the longer the robot runs, the more information is processed.

Remove Old Measurements Removing older measurements is an obvious solution to this
problem. Several strategies for selecting observations are shown in chapter 4.

Remove Measurements with a Low Contribution In this section, an observation selection
strategy based on the contribution of a measurement is explored. First, a function is defined
which calculates the direction of the steepest decent of function f at position x

a(~x,M) = max
~y:|~y|=ε

{∇f(~x+ ~y,M)},
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Figure 3.14: Dimension reduction. Three measurements were taken. The lines of black circles
show the result of the computation of function c(x, α,∆) for several discrete values
of x for each observation (α,∆). The brown circles show the function c̄(x). The size
of the brown circles illustrates function h(x). The position xbest, with the smallest
value of h, is marked by the large orange circle. Figure 3.13 shows the function f
for the same experiment.

where ∇ is the nabla operator (cf. [11]). Note that this function can also be applied to a local
extremum as for the steepest decent is searched for at all locations ~x + ~y with a distance of ε
to ~x. With that, the contribution of an observation set N with respect to all observations M is
defined as the angular difference between the directions of the steepest decent:

c(N,M) := 1− a(xbest,M) · a(xbest, N)
|a(xbest,M)| · |a(xbest, N)| ,

where xbest = argminx f(x,M). For practical reasons, ε should be greater than the difference
between the real minimum and the estimated minimum xbest of the function f .
The function c(N,M) which calculates the contribution can be used to define selection strate-

gies for observations. The simplest option is to keep the number of elements in N fixed; as
soon as a new observation is made, the observation with the lowest contribution is deleted.
Figure 3.15 shows the result of this strategy for experiments with bearing and distance sensors
in a 2-D world.

3.4 Proof-of-Concept Experiments
To test and demonstrate the state estimation method I chose a self-localization scenario from
RoboCup. This section describes the experiments.

3.4.1 Experimental Setup

The testing scenario was bearing-only localization [44, 43] on a RoboCup field. In this case,
the only measurements are horizontal landmark bearings. There are six unique landmarks (the
two goal posts of each goal and center beacons) and fourteen ambiguous landmarks (field line
intersections). The landmark setup is shown in figure 3.16a). All tests were done in simulation.
Like on a real robot, in simulation the bearing sensors had a limited field of view (60 degrees) and
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a) b)

Figure 3.15: Selecting observations based on their contribution. The figures show two exam-
ples. One from a bearing measurement example and another one from a distance
measurement example. The faded measurements were not considered as they were
marked to have a low contribution during the past robot run. Only the measure-
ments taken at the highlighted places are used to calculate the position.

a Gaussian error with a 6 degrees standard deviation. The motion model used had an error of 10
percent of the amount of the action in all three dimensions (x, y, rotation). This error causes the
dead-reckoning robot position to drift away from ground truth (see figure 3.16b). Additionally,
small kidnappings were added as they appear regularly in RoboCup games when robots collide.
To test self-localization, the robot followed a virtual ball that was moved around on the field,
producing the path shown in figure 3.16b). The positions of this path were compared to the
corresponding ground truth positions.

3.4.2 Experimental Results
To measure the localization quality, for each time step the difference between the position
estimated by the memory-based approach and the ground truth position was determined. This
was done for three different scenarios. The first is localization based only on motion data
(initialized with the true position in the first step). The second version used the complete
history of measurements and executed motions for position calculation. In the last experiment,
only the last observations of each landmark type were used. Results are shown in table 3.1 and
figure 3.16c,d).
As explained above, using only motion information results in a estimated position drift, leading

to a high deviation. Using all information still has this problem because of the kidnappings.
Using the landmark selection strategy that selects the last five observations of each landmark
type leads to the best results. However, due to the small number of measurements and the noise,
the position is subject to small jumps.
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a) b)

c) d)

Figure 3.16: Experimenal results. a) The artificial landmarks of a RoboCup field. Circles: unique
markers for horizontal bearings (center beacons, goal posts). Small crosses: Inter-
sections of field line (not distinguishable). b) Dashed line: The true path the robot
took in simulation, starting in the left bottom corner; Solid line: result of local-
ization based only on the knowledge about the action effects. Note that the result
gradually drifts away from ground truth because of the noise added to the motion
model and the small kidnappings. Circles with arrows along the solid line: Poses
where the robot was kidnapped randomly (simulating charging by other robots).
c) Solid line: result of memory-based localization using all perceptions. d) Solid
line: result of memory-based localization using only the last perceptions of each
landmark type.

Selection strategy Error in mm
motion only 277, 4± 183, 4
all landmarks 52, 3± 21, 7

last 5 of each landmark type 25, 7± 19, 8

Table 3.1: Experimental results. The selection strategies are denoted in the left column. The
right column contains the resulting averaged difference between the calculated posi-
tion and the ground truth.
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In this chapter, a localization method based on the memory-based paradigm, cf. chapter 3, is
introduced. Localization is an important component of almost every autonomous mobile robot.
The ability to localize, with respect to a map, is crucial for decision making. A big part of the
existing work in localization is based on the use of range sensors like sonar, laser range finders,
and radar [68] [16] [70] [80].

Digital cameras are an alternative to the sensors mentioned above. Since processors became
faster, image processing algorithms which extract features, like landmarks, can be used to create
the input for localization methods. However, the information that can be obtained from digital
images is of a different nature. The range measuring capabilities are limited compared to sonar
sensors, laser range finders, and radar. Another disadvantage is that cameras usually have a
limited angle of view. In contrast to the poor range measurement capabilities of vision-based
systems, horizontal bearings can be determined very easily. Thusly, there are some bearing-only
approaches for localization [18, 72].

However, the existing bearing-only localization approaches are based on sequential estimation
techniques. In contrast to existing approaches, the method proposed in this chapter does not
need internal representation of the robot’s position, updated by alternating motion and sensor
updates. Instead, the location is calculated by applying constraints on the robot’s position which
are derived from the observations and performed actions stored in a short-term memory. The
method strictly follows the memory-based paradigm and makes use of the concepts dimension
reduction (introduced in 3.3.5.1) and measurement selection (introduced in 3.3.5.2).

While the memory-based method described in this chapter can be used for bearing-only lo-
calization, it can also be used as a template generator for localization with particle filters. This
is useful when more than just bearing information has to be processed. The distribution of
the template positions reflects the position calculation accuracy, which depends on the selected
landmark configuration.

The method described in this chapter was developed for and tested on an Aibo robot. However,
it is not limited to that platform.

Section 4.1 motivates the memory-based approach. Section 4.2 describes the method in detail.
Section 4.3 describes the experiments that were done in simulation and conducted on Sony Aibo
robots. A discussion follows in section 4.4.

This chapter is based on [42], [44], and [47]. Log files with ground truth data used for the
experiments were recorded by Max Risler.
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4.1 Motivation
Compared to distance measurements, high precision is the advantage of bearing measurements.
Vision-based distance measurements to landmarks are usually less reliable. There are three
main methods to obtain the distance to a landmark: stereo vision, size measurements, and
vertical bearings. Common to them all, the reliability decreases with an increased distance to
the landmark used. That is not the case for horizontal bearings. Bearings to far-away landmarks
are as precise as to near landmarks.
Stereo vision can be affected by poor object matching. Size-based distance measurements

are sensitive to obstructions and can be inaccurate with low resolution cameras. A partially
obstructed landmark can still be used to obtain a bearing, while distance measurement based
on the landmark’s size, in the image, is affected by the obstruction. The use of vertical bearings
has the disadvantage that the camera’s orientation to the ground has to be exactly known to
obtain precise distance measurements.
In the last years, methods based on the Bayes filter have been the standard approach to

the localization problem. These methods need a probabilistic model of the sensors and the
motions, as well as an internal probabilistic state representation (belief). As the representation
is a probability density distribution, it is suitable to be used for information integration. The
existing methods perform so well on robots equipped with infra-red distance sensors or laser
range finders because this type of sensory information can be accumulated by belief probability
distributions very easily, even if the models chosen are only a rough approximation of the
distribution. However, for a classic localization problem (x, y, θ), where x and y are coordinates
and θ is the orientation, a single bearing does not provide enough information to determine
the position; at least three measurements are needed. When the robot moves between these
measurements, the information has to be accumulated and combined with odometric data. The
low information gain of bearings can cause the need for additional efforts in the representational
design. Depending on the approximation type (Gaussians, grid, particles), there are different
limitations. For example, the resulting distribution of a single bearing measurement might not
be Gaussian. This can cause difficulties for Kalman filters as the they approximate the state
using Gaussians. The fact that a single bearing is only a weak position constraint causes a high
number of particles to be needed with a particle filter. With a grid-based approach, a high-grid
resolution is needed to accumulate the bearing information.
The method described in this chapter was motivated by the experiences collected with the

localization method our team used in RoboCup for the Aibo robots. A particle filter was used,
as described in [25, 19, 83, 39, 4, 2, 3]. Our method is described in [66, 65, 64]. In RoboCup game
situations the distance measurements to landmarks are very error-prone, because such size-based
measurements are affected by visual obstructions caused by other robots. However, the particle
filter was unable to accumulate the information provided by the bearings. The memory-based
approach presented in this chapter can cope with sparse information (bearing-only, limited angle
of view).
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Figure 4.1: Odometry and horizontal bearings. Top: five images with six horizontal bearings (1:
right goal post, 2: left goal post, 3 and 4: center landmarks, 5 and 6 goal posts)
Bottom: gray arrows show the robot’s odometry at different times, bold arrows show
the odometry associated with the horizontal bearings.

4.2 Localization

As stated above, bearing-only localization works using two kinds of input: bearing measurements
and odometry data. The vector

~α = (αl1 , αl2 , ..., αln)

contains the measured bearings to the landmarks l1, l2, ..., ln. These angles were measured at
different times t1, t2, ..., tn.
The second input is the knowledge about the robot’s actions. The vector

~u = (u1, u2, ..., un)

contains the robot’s odometry at times t1, t2, ..., tn.
A robot can obtain these vectors ~α and ~u by storing its observations and the according

odometry in a buffer. Figure 4.1 shows a visualization of such a buffer.
In this section, a function F (x, y, ~α, ~u) is defined that describes the likelihood of a robot being

at position (x, y) on the field. This function can be used to calculate the robot position (the
position of the function’s maximum) or to generate templates for particle filter localization.
Subsection 4.2.1 discusses a case where the robot is stationary; section 4.2.2 incorporates

odometry. In sections 4.2.3 and 4.2.4, it is shown how the robot’s position can be calculated
and how template poses for particle filters can be generated.
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Figure 4.2: Determining the robot’s position by three horizontal bearings to known landmarks.
Black lines: horizontal bearings. Large circles: circles given by two bearings and two
landmarks.

4.2.1 Simultaneous Observations

In this subsection, two different methods are shown which can be used to determine the position
of a stationary robot. The first uses well-known simple geometry; the second is a constraint-
based approach.

Pose Estimation Using Simple Geometry When a robot perceives three landmarks without
moving between the observations, the position calculation is straightforward: with the known
landmark positions, a single circle can be constructed for each bearing pair. The circle radius is
determined by the angle difference and the distance between the landmarks. The intersection
point of the circles is the only possible robot position. Figure 4.2 shows an example.

Pose Estimation Using Angular Constraints A single observation of a landmark l at a certain
relative angle constrains the angle ϑl the robot can have at a certain position (x, y) on the field.
This angle is given by

ϑl(x, y) = arctan
(
yl − y
xl − x

)
− αl

where (xl, yl) is the landmark position, on the field, and αl is the relative angle to the landmark.
Figure 4.3a) shows this function. When two bearings to two landmarks are given, the function

Dl1,l2(x, y) = (ϑl1(x, y)− ϑl2(x, y))2
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4.2 Localization

describes the likelihood of being at position (x, y). Figures 4.3b) and 4.4a,b) show function D for
several examples. The function’s shape represents how good a certain landmark pair is suited to
constrain the position on the field. For example, a plateau in this function (like in figure 4.3b)
means a small error in an observation leads to a large error in the resulting position.
The function Dl1,l2(x, y), introduced above, describes for each position (x, y) how good the

angles ϑl1 and ϑl2 obtained from two different horizontal bearings match. To use more than two
observations αl1 , αl2 , ..., αln , the average angle of all resulting ϑl1 , ϑl2 , ..., ϑln can be calculated
for each position (x, y) using this formula

ϑaverage(x, y) = arctan


n∑
i=1

sin(ϑli(x, y))
n∑
i=1

cos(ϑli(x, y))
.


Figure 4.5a) shows function ϑl(x, y) for three different landmarks and the resulting average
angle. Using ϑaverage(x, y), the function

G(x, y) =
n∑
i=1

(ϑaverage(x, y)− ϑli(x, y))2

can be defined which describes how similar the angles ϑl are. This function has its maximum at
the position (x, y) which fits best with all observations αl1 , αl2 , ..., αln . Furthermore, the function
provides an estimation of the position error for known errors in the observation. Figure 4.5b)
shows this function for three observations.

4.2.2 Incorporating Odometry

To incorporate odometry, the function υl(x, y,∆odometryl
) is defined which determines the robot’s

angle at position (x, y) when the landmark l was seen at angle αl and the robot moved
∆odometry(∆x,∆y,∆φ) since the observation. Figure 4.6a) illustrates these parameters and the
resulting angle υl. To determine υl, a triangle is defined which has its corners at position (xl, yl)
of the landmark l (angle β), at position (x, y) (angle γ), and at position (x0, y0) where the
observation was taken (angle δ). Figure 4.6b) shows this triangle. Note that in this triangle
(xl, yl) and (x, y) are fixed. The position of (x0, y0) can be calculated using the angle ω from
(x, y) to (xl, yl) and the distance ∆d which the robot walked:

x0 = x+ cos(ω + γ) ·∆d

y0 = y + sin(ω + γ) ·∆d

where γ follows using sine rule:

γ = π − δ − β

= π − αl − arctan
(∆y

∆x

)
− arcsin

(∆d · sin(δ)
dl

)
.
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4 Bearing-Only Localization

a)

b)

Figure 4.3: Angular constraints for location estimation. a) The red lines show the angle ϑl1 on
the field, for each position. This angle results from a given horizontal bearing: the
goal post marked with the black arrow. b) The green lines show the angle ϑl2 on the
field that results from a bearing to the right goal post. The gray-scale grid, in the
background, shows the square of the difference (ϑl1 −ϑl2)2 between the angles. This
function has a peak near the positions covered by the circle obtained using simple
geometry.
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a)

b)

Figure 4.4: Angular constraints for location estimation. a) The difference (ϑl1 − ϑl3)2 between
the angles resulting from the bearings to the left goal post and the right center flag.
b) The difference (ϑl2 − ϑl3)2 between the angles resulting from the bearings to the
right goal post and the right center flag.
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4 Bearing-Only Localization

a)

b)

Figure 4.5: Similarity of angles. a) The thin lines show the angles ϑl(x, y) for three differ-
ent observations. The bold line shows the average angle. The robot’s position is
constrained to the positions where the angles are similar. b) Function G(x, y) is
displayed as a height map. White: small difference between the angles, black: large
difference between the angles. The red circles are obtained from the method using
simple geometry described above.

56



4.3 Experiments

Note that there can be two possible values for γ when the distance dl to the landmark is smaller
than the distance ∆d walked. With the known position it (x0, y0) follows that

υl(x, y,∆odometryl
) = ϑ(x0, y0) + ∆φ.

When the robot is at position (x, y), has seen the landmark l at angle αl some time ago, and
has moved by ∆odmetryl

since that observation, the function υl gives the angle the robot must
have. Similar to the function G from section 4.2.1, a function

F (x, y) =
n∑
i=1

(υaverage(x, y)− υli(x, y))2

is defined which describes the likelihood of the robot being at position (x, y). This function can
incorporate an arbitrary number of observations from the past and does not need any internal
representation of the position updated by alternating sensor and motion updates. The selected
sensor information ~α and the corresponding motion information ~u are processed simultaneously.

4.2.3 Calculating the Robot’s Pose

The position of the maximum of function F , given in the last section, is the robot’s position. The
robot’s rotation can immediately be calculated using υaverage or the angle υl0 defined by the last
observation. When a fast and rough estimation of the robot pose is wanted, the maximum can
be determined by an iteration through the function’s domain. When a more accurate estimation
is wanted, it can be obtained by means of standard methods, like Gradient Descent, with only
a few iterations. Note that such methods usually find only local maxima of the function.

4.2.4 Generating Templates for Particle Filters

Often, there is more information than the horizontal bearings to unique landmarks to determine
the robot’s pose. In such cases, the function F , described in section 4.2.2, can be used to create
template poses for sensor resetting. This is in particular useful when only a small number of
particles can be used because of computational limitations. To obtain a fixed number of samples,
function F can be normalized such that all values are between 0 and 1:

F ′ := 1
(1 + F 2) .

Then, a template pose can be created at each position (x, y) with random() < F ′(x, y)n where
n is a parameter to adjust how much the sample poses can deviate from the maximum. Figure
4.7 shows templates obtained from function F .

4.3 Experiments
To test the method described in the previous section, several experiments were conducted. In
this section, the accuracy of the localization algorithm is shown. Experiments concerning the
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Figure 4.6: Geometrical considerations to determine the robot’s angle υl.
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a) b)

c) d)

e) f)

Figure 4.7: The function F (x, y). White: high likelihood; black: low likelihood; Arrows: position
templates that can be used for sensor resetting in particle filters. Note that usually
only a small number of these templates are used. Small circles: the landmarks that
were used for position calculation. Large circle: the robot’s pose (known from the
simulation). Path: the way the robot walked.
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landmark selection were done in simulation and described in section 4.3.1. An experiment using
only two landmarks to localize as well as a comparison to vision-based ground truth were done
using a real Aibo robot and are shown in section 4.3.2.

4.3.1 Experiments in Simulation

The method described in section 4.2 can process an arbitrary number of observations. This
experiment’s goal was to find out which information from the short-term memory is sufficient
for localization. Several strategies to select landmark observations were compared. To be able
to compare several selection strategies, recorded data created using a simulation of an Aibo on
a soccer field was used. In this simulation, a typical RoboCup approach-ball-behavior was used.
With this behavior, the robot walks to the ball in a curve while panning the head to scan for
landmarks. The ball was moved around randomly on the field. The recorded data consists of
images, head joint sensor data, odometry data and perfect ground truth data for comparative
purposes. The total path length is 80 meters. The log-file consists of 6600 frames where 30
frames correspond to one second.
Using the camera images and the knowledge about the camera’s direction of view (obtained by

the sensor readings), the robot can determine the horizontal bearings to six unique landmarks:
the left and right post of each goal and two artificial beacons at the center line.
The algorithm can be fed with any combination of observations from the perception history.

These four selection strategies were implemented:

• select all observations within the last 200 frames

• select the last observations of each landmark type

• select the last two observations of each landmark type

• select the first and the last observation of each landmark type within the last 200 frames.

Note that choosing 200 frames as a limit is arbitrary but motivated by the fact that within
these 200 frames the robot scans a 180◦ range at least two times. Figure 4.8 shows which
landmarks are observed in which frame and what the different strategies select. Figures 4.9
and 4.10 show an illustration of perceptions and odometry data. The selected landmarks are
highlighted.
To compare the accuracy of the method, depending on the different inputs, the average posi-

tion and angle error were measured for the full 80 meter run, for each selection strategy. The
results are shown in table 4.11. Figure 4.12 shows the deviation between the ground truth
position and that determined by the method.
The experiment showed that the method localizes a robot very precisely. The selection strategy

has an influence on the localization accuracy. Best results are obtained by the strategies which
use information from the entire range of the 200 frames slot. This is because information about
the position can be obtained when landmarks are seen from different perspectives, caused by
the robot’s motion. However, it does not matter how many observations are combined. Even
the simplest strategy that selects observations from the whole 200 frames slot (the first and the
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Figure 4.8: Landmark selection strategies. The horizontal axis gives the index in the observation
memory. The latest observations have index zero. The oldest data is 210 frames old.
Colored bars indicate frames when certain types of landmarks were observed. Small
black vertical lines indicate the selected frames. Strategy 1) select last occurrence
of each landmark type. Strategy 2) select first and last frame of each landmark type
within the last 200 frames. Strategy 3) select last two occurrences of each landmark
type. Strategy 4) select all landmarks within the last 200 frames.
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Figure 4.9: Landmark selection strategies. Black arrows show the relative path the robot walked
during the 200 frames. Colored lines indicate the measured bearings at different
times. Bold gray lines indicate the selected observations. Strategy a) select last
occurrence of each landmark type. Strategy b) select first and last frame of each
landmark type within the last 200 frames.
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Figure 4.10: Landmark selection strategies. Black arrows show the relative path the robot walked
during the 200 frames. Colored lines indicate the measured bearings at different
times. Bold gray lines indicate the selected observations. Strategy a) select last two
occurrences of each landmark type. Strategy b) select all landmarks within the last
200 frames.
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selection strategy pos. error (cm) angle error (deg)
last of each type 9.0±16.1 0.9±0.06
last two 8.3±12.2 0.3±0.06
first and last 7.3±8.0 0.6±0.06
last 200 frames 7.3±9.6 0.4±0.06

Table 4.11: Results of localization tests. Position and angle error of the method for different
landmark selection strategies. All results were obtained using data recorded from a
simulation (80 total meters of movement, 6600 frames).

Figure 4.12: Position deviation. The black lines connect the ground truth position and the
position obtained by the method described in this section for each fifth frame. The
landmark selection strategy was all landmarks in last 200 frames.

last observation of each landmark type) performs very well. A minimal example illustrating this
strategy’s power is given in the next section.

4.3.2 Experiments on a Four-Legged Robot

In this section, the setup and the results of the experiments conducted on a real robot are
described. An Aibo ERS-7 robot, built by Sony, was used for the experiments. This robot
has a pan-tilt camera with a resolution of 208x160 pixels. All tests were done on a RoboCup
soccer field (size: 6 m x 4 m) where the posts of the two goals and two beacons, at the half
way line, can be used as landmarks. The horizontal bearings to the landmarks needed for the
location approach were extracted from images and joint sensor data by the method given in [41].
One experiment shows that the method equips the robot with something like stereo vision. In
another experiment, the performance of the system was analyzed.

Pseudo Stereo Vision In this experiment, the robot uses bearings to only two landmarks.
This is not enough information to localize when odometry is not incorporated. The robot had

64
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to walk over a RoboCup field from one side line to the other, observing one of the goals. During
this walk, it first observes just the right goal post, then both posts, and, in the end, only the
left post. As soon as the left goal post is seen, there is enough information to localize, using
the first and the last observation of both goal posts (landmark selection strategy first and last
of each type (cf. section 4.3.1)).
Figure 4.13a) shows an illustration of the robot’s motion and its observations. Figure 4.13b)

shows a plot of function F (x, y) at the first time the left goal post is seen and the resulting path
for the rest of the run. With this experiment, it was shown that incorporating odometry is a
benefit for bearing-only localization. Just two beacons are sufficient to determine the position
when the robot’s moves change its observing position.

Generating Particle Filter Template Poses The bearing-only localization approach was devel-
oped as a replacement for the distance-based sample template generation, used by our team’s
particle filter self-localization [66, 65, 64]. The old method was no longer usable after a rule
change that reduced the number of beacons around the field.
The method described in section 4.2.2, as a sample template generator, was added in a way

described in section 4.2.4. The particle filter uses 200 particles.
To measure the quality of the improvements, an Aibo robot was steered via remote control

over the soccer field in our lab, performing an s-like shape on the field. The robot’s head
performed the typical Aibo scan motion, looking around and searching for the ball and the
landmarks. During this process, log data was recorded, containing camera images, head joint
values, odometry data, and ground truth robot positions, obtained by a ceiling mounted camera.
Such log-files can be played back to feed algorithms with data. The recorded log data was used
to compare different parameterizations of the approach.
For this experiment, again, the landmark selection strategy first and last of each type (cf. sec-

tion 4.3.1) was choosen.
Three localization methods were compared:

1. The particle filter implementation used by the GermanTeam in RoboCup (not using sample
templates)

2. The method described in section 4.2.3 using the maximum of F (x, y)

3. Particle filter localization using sample templates as described in section 4.2.4.

To compare the ground truth and the determined robot position, the distance between these
positions was averaged for the entire run, for each of the methods. The result was that the
relative error (compared to field size) of the plain particle filter was 9.13%, the error of the
maximum-method 5.13%, and the error of the particle filter using sample templates 3,18% to
3,74% (depending on the number of samples).
Figures 4.14 and 4.15 show a visualization of the path the robot walked and the paths obtained

by the localization methods. The influence of the number of samples used for reseeding is given
in table 4.16.
The overall result of the experiments is that without template generation there were random

jumps and a large deviation from the ground truth robot pose. With sample template generation,
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Figure 4.13: A moving robot localizes using bearings to two landmarks. a) Circle: current relative
robot position. Arrows: odometry history. Thin lines: bearings to right and left
goal post. Bold lines: bearings used for localization. b) Background: function
F (x, y) when the left goal post was seen. Bold line: the path the robot walked.
Thin line: the localization result (since possible). Circles: the goal posts used for
localization.
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a)

b)

Figure 4.14: Comparing ground truth robot position and localization result. Blue line: ground
truth robot position. Red line: self localization result. a) Particle filter, no sample
templates used. b) New approach: Maximum of F (x, y).
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a)

b)

Figure 4.15: Comparing ground truth robot position and localization result. Blue line: ground
truth robot position. Red line: self localization result. a,b) Two different runs of a
particle filter using sample templates generated by the new approach.
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4.4 Discussion

num. of reseeded samples 0 1 2 10 20 plain
deviation in cm 54.8±21.6 21.7±13.1 19.1±13.0 19.5±12.6 22.4±17.0 30,8±20,7
deviation relative to field length 9,13% 3,63% 3,18% 3,25% 3,74% 5,13%

Table 4.16: Results of localization tests. In the experiment, the position obtained by the ap-
proach introduced in this chapter was compared with that obtained by the ceiling
camera. The table shows the average distance between the two positions for the
whole run, repeated six times. To show how reseeding influences the localization
quality, the experiment was conducted with different re-sampling rates (top row).
The table shows that even a single reseeded particle in each frame improves self-
localization, drastically. Adding more samples has almost no effect. The last row
gives the results for the plain maximum-method (no particle filter).

using one sample per frame, the resulting trajectories were smoother and closer to the ground
truth.

4.4 Discussion
In this chapter, an approach for bearing-only self-localization incorporating odometry was pre-
sented. It does not depend on distance measurements which are often inaccurate, when obtained
by the size of far-distant landmarks. The new approach works on an observation buffer and the
robot’s odometry history. The robot’s position can be estimated directly, by this data, without
alternating sensor and motion updates.
However, the method also provides good positions for sensor resetting in particle filters. Tests

in simulation and on a real Aibo robot, with ground truth by a ceiling camera, showed the
robustness of the approach. Further experiments have to show whether the localization method
can cope with larger odometry errors, caused by strong physical interaction with opponents in
RoboCup games.
The method does not need an internal position estimate representation updated by alternating

sensor and motion updates. The observation and motion information from the robot’s sensor
history is processed directly. A big advantage is that no wrong model from the past can disturb
the current pose estimation. However, false observations lead to a false position. Even simple
strategies of landmark selection perform very well.
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5 A Vision-Based Compass for Soccer Robots

A compass is a very useful sensor. It was the most important navigational instrument for many
centuries. Nowadays, many autonomous robots make use of compasses, as the direction relative
to the ground, is an important information for decision making. This also holds true for soccer
robots. However, sometimes the use of a magnetic compass is not possible because of too many
environmental influences or disturbances by the robot itself. Alternatives like gyrocompasses
also can not be used in most cases.
In this chapter, a vision-based compass for soccer robots is described. The system is designed

for soccer robots equipped with a camera. It uses the white lines of the soccer field as features.
The output is the robot’s orientation relative to the field. The system was implemented and
tested on an Aibo robot, as well as on a humanoid robot.
The advantage of a precise compass is that it simplifies the localization task. It reduces a three-

dimensional problem to a two-dimensional one, which increases performance. How a compass
helps navigation at sea was presented in chapter 3.1.1. Additionally, bearing measurements
contain more information when combined with a compass. Chapter 6 shows this.
The system introduced in this section consists of two components. Section 5.1 describes the

vision system. Section 5.2 describes the rotation estimation that uses the output of the vision
system and follows the memory-based paradigm. A discussion follows in section 5.3.

5.1 Field Line Detection

This section describes a vision system able to detect field lines in images provided by a robot’s
camera. The challenge is to detect field lines reliably, despite many disturbances. Such dis-
turbances can be other robots which can be as white as the field lines (e.g Sony’s Aibo, or
Aldebaran’s Nao). The soccer field’s environment can also be very cluttered and may contain
objects that look like field lines. Many soccer robots have movable cameras that look around
while the robot plays, to detect, track, or scan for certain objects, like the ball or the goals.
The system described here does not require any special head motion. Especially, it works with
a typical robotic soccer head moving strategy; which looks at the ball most of the time and
scans for goals, other robots, and landmarks, in between. This technique does not require any
calibration to lighting conditions. It makes use of the contrast between the field and field lines.

Section Outline The vision system uses scan lines to analyze an image. Section 5.1.1 describes
how scan lines are distributed over an image. Based on these scan lines, the vision system
extracts features using a sequence of representations. These sub-steps are introduced in sections
5.1.3 to 5.1.10.
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Figure 5.1: Scan lines. An image captured by an Aibo camera with vertical scan lines.

5.1.1 Utilizing Scan Lines for Image Analysis

The image is scanned vertically using many scan lines. Vertically means perpendicular to the
horizon. If the robot’s cinematic chain ensures that the horizon is almost parallel to the upper
and lower image borders, the scan lines can also be placed parallel to the image’s left and right
borders to simplify implementation. Figure 5.1 shows how the scan lines are distributed over an
image. The distance between two neighboring scan lines is 8 pixels, in this case.
The width of the images provided by the Aibo is 208 pixels which results in 26 scan lines

per image. As the Aibo’s horizontal opening angle is 57◦, the angular spacing between two
neighboring scan lines is approximately 2◦. This spacing is appropriate for field line detection,
as well as for other scanning purposes, like ball and opponent detection. If the camera used has
a different resolution or a different opening angle, the distance (in pixels) between the scan lines
should be adapted such that the resulting angular spacing is approximately 2◦, to get similar
results.

5.1.2 Layered Representations

To detect field lines, an image is analyzed along scan lines as described above. The vision
system uses a lot of representations in a sequential order of refinements. With each refinement,
those representations contain more accurate information about field lines. Figure 5.2 shows this
sequence of representations.
The remainder of this section contains a detailed description of all those intermediate repre-

sentations. Section 5.1.3 shows how brightness changes in the image are extracted. Section 5.1.4
shows how scan line parts are labeled, depending on such brightness changes. Section 5.1.5
describes how candidates of pixels on scan line edges are generated and pre-filtered. While until
this step, just vertical relations are analyzed, from the next step on, also horizontal relations
will be taken into account. Section 5.1.6 describes how a neighborhood graph is created which
represents all field line candidates in an image. Section 5.1.7 describes how this graph is filtered.
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Pixels on Scan Lines

Classi�ed Transitions

Scan Line Parts

Field Line Segments

Neighborhood Graph

Filtered Neighborhood Graph

Line Clusters

Filtered Line Clusters

Field Lines and Corners

Figure 5.2: Sequence of representations. All representations used while detecting field lines. The
source representation is pixels on scan lines. The target representation is field lines
and corners, relative to the robot. The first three representations (green background)
are scan-line based. This means only vertical relations of pixels and detected ob-
jects are used. Starting from the fourth representation (blue background) horizontal
relations are also taken into account. This distinction is important when the com-
plexity of the system is analyzed. The subsections in this section describe how the
representations shown are calculated in this sequence.
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Sections 5.1.8 and 5.1.9 show how, from the graph representation, different subgraphs are ex-
tracted which belong to different field lines. Finally, section 5.1.10 describes how field lines and
corners are extracted.

5.1.3 Classified Transitions

Each scan line is divided into segments based on the y-channel intensity of the image, which
represents the brightness. If the camera provides images in a different color space, the brightness
has to be calculated accordingly. Figure 5.3b) shows an intensity diagram for the scan line
highlighted in figure 5.3a). For segmentation, the scan lines are analyzed from bottom to top.
Each transition from one pixel to the next is classified as up, down, or neutral, based on an

appropriate threshold t. When the intensity difference from one pixel to the next is above the
threshold, the transition is classified as up, when it is below the negation of the threshold, it is
classified as down. In all other cases, the transition is classified as neutral.
The threshold should be chosen such that field lines in the image cause transitions between

pixels to be classified as up or down. The threshold should not be too low to avoid noise on the
field to be classified as up or down. Likewise, the threshold should not be too high to classify
all transitions caused by a field line as either up or down.
Figure 5.4 shows the result of such a classification for a good, a too low, and a too high

threshold. A threshold of t = 10 proved to be good for almost any lighting condition on any
field, at different competition sites, as well as in different labs. So, the threshold t is considered
a constant that doesn’t need calibration. Figure 5.5 shows the intensity diagram of a single scan
line and the corresponding transition classification.

5.1.4 Scan Line Parts

Based on the transition classifications, the scan lines are partitioned. Let t1, t2, ..., tn be the
transition sequence along a scan line with n+ 1 pixels. A subsequence ti, ..., tj with 1 ≤ i, i ≤ j,
and j ≤ n is called a scan line part when all transitions belong to the same class (up, down, or
neutral) and the transitions before and after the subsequence belong to a different one:

class(ta) = class(tb) (∀(a, b) : i ≤ a ≤ j ∧ i ≤ b ≤ j)
class(ti) 6= class(ti−1)
class(tj) 6= class(tj+1)

With this notion of a scan line part, each scan line falls into a sequence s1, s2, ..., sm of m parts.
Each part si has a class with class(si) ∈ {up, down, neutral}, a start point, an end point, a
minimal intensity, and a maximal intensity. The starting point is the starting point of the first
transition and the end point is the end point of the last transition. Therefore, the end point of
one part is identical with the starting point of the next part. Figure 5.6a) shows such scan line
parts in an intensity diagram.
With the method described so far, a field line crossing a scan line can be detected by finding

an up part followed by a neutral part and a down part. For a distant field line, which has a
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Figure 5.3: Intensity diagram. a) Scan line. b) Intensities of all three channels along that scan
line. The colored bar at the bottom shows the color of each pixel along the scan line.
The peak near x-coordinate 85 is caused by the field line. (The x-axis is vertical, the
top-most pixels have x-coordinate 0 and the-bottom most pixels 159).
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a) b)

c)

Figure 5.4: Transition classification. Transitions between two adjacent pixels are classified,
based on the difference of intensities and the threshold t. In all above images, the
transitions labeled gray are labeled neutral, white are the up-transitions and black
the down-transitions. The scan lines are analyzed from bottom to top. a) t = 1:
Noise on the field is classified as up or down. b) t = 10: All transitions at field
lines are classified as up or down. c) t = 50: Only some transitions at field lines are
classified as up or down.
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Figure 5.5: Intensity diagram and transition classification. The graph shows the intensity of the
upper part of the scan line highlighted in figure 5.3a). The different shades of gray
in the bar, at the bottom, shows the brightness of the pixels along the scan line.
To classify the transitions, the scan line was analyzed from bottom to top, which
corresponds to from right to left in this figure. The dark gray circles mark transitions
classified as up and the light gray circles mark transitions classified as down.

small width in the image, the neutral part can be missing. However, also objects other than the
field line can cause such a pattern of parts.
A simple filter can reduce the number of false detections when a field line was detected earlier

on the same scan line. For this filter, the intensity range range(s) of a part s is defined to be
the difference between the maximum and minimum intensity of that part. The filter is applied
while scanning all parts for a up - down sequence. It memorizes the maximum intensity range
of all up and down parts examined on that scan line so far and marks parts with an intensity
range lower than half the maximum range as neutral. This filter relies on two facts: First, when
an image is scanned from bottom to top the first high contrast found on a scan line is usually
caused by a field line. Second, field lines cause the highest contrast compared to other objects.
The filter can be understood as a calibration of the typical intensity range caused by a field

line. Note that this calibration is re-initialized for each scan line. Figure 5.6b) shows the parts
shown in figure 5.6a) after the filter has been applied.

5.1.5 Field Line Segments

The next step to detecting field lines is finding field line segments, these are based on the
segmented scan lines. The neutral segments are not considered. Let s1, ..., sn be the sequence
of up and down segments along a single scan line. With condition

C0(i) := class(si) = up ∧ class(si + 1) = down (5.1)
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Figure 5.6: Intensity diagram and scan line parts. The graph shows the intensity of the upper
part of the scan line highlighted in figure 5.3). The rectangles show the according
scan line parts. The rectangle width represents the length of the scan line parts.
The rectangle height represents the intensity range. The up parts are dark gray, the
down parts light gray, and the neutral parts pink. a) shows the parts created from
transition sequences with the same classification (see the circles at the bottom). b)
shows the parts after the filter described in this section was applied. Note that in b)
there are more neutral parts.
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a) b)

c) d)

Figure 5.7: Scan line segments and field line segment candidates. a) and b) Images of a field
line and other robots. Scan line segments are shown gray (neutral), white (up), and
black(down). c) and d) Field line segment candidates. The field line causes the
creation of correct candidates. The other robots also cause a lot of candidates.

being true for all i where si is an up segment followed by a down segment, a set C of all such
up-down pairs can be defined:

F0 := {(si, si+1) : C0(i)}. (5.2)

These pairs are called field line segments.
Each such field line segment (si, si+1) has a start coordinate (the up segment’s start point)

and an end coordinate (the down segment’s end point). For later usage, the Euclidian distance
between the start and the end coordinate is denoted with width(si, si+1). Figure 5.7 shows
sample images with segmented scan lines and field line segments created as described above.
As shown by this figure, field line segments are created for all intersections of field lines and
scan lines. However, such field line segments are not only created for field lines. Also other
objects, like robots, can cause pairs of up-down segments along scan lines. Therefore, more
criterions are used to distinguish field lines from other objects. These criterions are formalized
in additional conditions for pairs of up-down segments (si, si+1). The conditions are defined
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Figure 5.8: Conditions to remove false positives. Condition 1: The line segment width decreases
towards the horizon. The sky-blue segments are longer than another segment below
on the same scan line. This is why they are removed by C1.

as Boolean functions Cm(i) with the index of the up segment as a parameter. With such an
additional condition the set of field line segments can be specified as

F1 := {(si, si+1) : C0(i) ∧ Cm(i)}.

Below, four such additional conditions are introduced.

Condition 1 The line segment width decreases towards the horizon. The law of perspective
says: field lines farther away from the robot appear smaller in the image and closer to the
horizon. As a consequence, the field line width decreases, along a scan line, from bottom to top.
This gives the first additional condition:

C1(i) := ∀0 ≤ k < i : width(si, si + 1) ≤ width(sk, sk + 1). (5.3)

Figure 5.8 shows which false positives can be filtered using this condition.

Condition 2 There is no down segment with a high intensity range outside an up-down pair
below si. Large decreases in the brightness, along a scan line, without a preceding increase are
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considered a disturbance and suppress further field line detections, along this scan line:

C2(i) := ∀0 ≤ k < i : class(sk) = up ∨
class(sk) = down ∧ class(sk−1) = up ∨
range(sk) < 30.

With this condition bright robot parts with a strong shadow below can be avoided as being
recognized as field lines, as well as bright robot parts situated above dark parts. Figure 5.9a)
gives an example image with segmented scan lines, figure 5.9b) shows the intensity diagram for
this example.

Condition 3 For (si, si+1) and all pairs below, the up and the down segment have a similar
intensity range. As for field lines, the brightness change on both sides is similar, condition

C3(i) := ∀0 ≤ k ≤ i : ¬C0(k) ∨ 0.5 ≤ range(sk)
range(sk + 1) ≤ 2

can be used to remove other objects. C0(k) is the condition defined in (5.1) and is true when
(sk, sk+1) is an up-down pair. Figure 5.10a) gives an example image with segmented scan lines.
Figure 5.10b) shows the intensity diagram for that example.

Condition 4 The width of (si, si+1) matches the expected width. If the camera’s position and
rotation relative to the ground are known, the expected field line width in the image can be
calculated based on its position in the image. Figure 5.11a) shows the expected field line width
for different positions in the image.
Condition 1, given in (5.3), compares the relative width of candidate segments. It can be

applied without knowing the head’s position relative to the ground. As long as it is known
which image edge is the upper, even the head’s rotation is not needed for that condition to be
checked. However, when the camera’s position and rotation relative to the ground are known,
the width of field line segment candidates can be compared to the expected width, leading to
the additional condition

C4(i) := width(si, si+1) ≤ widthexpected(si, si+1) ∗ c,

where widthexpected(si, si+1) is the expected width for the position of the pair (si, si+1). The
constant c is used to compensate for the fact that scan lines aren’t necessarily perpendicular to
the field lines. The value of c = 2.5 proved to be adequate allowing the scan lines to intersect
the field lines at an angle of up to 70◦ as arctan(2.5) ≈ 70.
Note that condition C4 only restricts the maximum width of segments (si, si+1). For simplicity,

the expected width is also approximated by an upper estimate. To calculate widthexpected(si, si+1),
the center point of (si, si+1) is projected to the ground plane. Then the distance between the
camera and this projected point is used to estimate the field line width in the image. It is as-
sumed that the plane containing the field line is perpendicular to the camera’s optical axis. Of
course this only holds true when the camera is looking down (the optical axis is perpendicular
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Figure 5.9: Conditions to remove false positives. a) Condition 2: There is no down segment
with a high intensity range outside an up-down pair below si. Below the sky-blue
segments, there is a large decrease in brightness not paired with an increase just
before. This is considered a hint for a robot’s shadow or some other disturbance and
causes C2 to be false for the sky-blue segments. b) Intensity diagram for the scan
line marked with yellow arrows in a). The down segment near x = 85 causes the
pairs of up and down segments near x = 15 and x = 50 not to be considered as field
lines, see the sky-blue segments in a)
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Figure 5.10: Conditions to remove false positives. Condition 3: For (si, si+1) and all pairs
below, the up and the down segment have a similar intensity range. a) The sky-
blue segments can not be field lines as the intensity range of the up segment differs
too much from the intensity range of the down segment. b) Intensity diagram for
the upper part of the scan line marked with yellow arrows in a). The up segment
around x = 47 and the down segment around x = 35 differ too much in their
intensity range to be considered field lines.
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a)

b)

Figure 5.11: Conditions to remove false positives. Condition 4: The width of (si, si+1) matches
the expected width. a) Expected field line width. The length of the yellow lines
illustrates the expected field line width at the corresponding black dots. b) The
sky-blue segments can’t be caused by field lines as they don’t match the expected
field line width at the respective positions.
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to the field). However, all other configurations lead to a smaller field line width in the image.
So, the expected size, calculated this way, can be used as an upper bound.

Applying all Conditions Let F be the set of field line segments defined using all those con-
straining conditions:

F := {(si, si+1) : C0(i) ∧ C1(i) ∧ C2(i) ∧ C3(i) ∧ C4(i)}. (5.4)

Then, F contains less false positives than the set F0, defined in (5.2), without losing real field
line segments. Figure 5.12 gives an example. While most of the false positives can be filtered
based on processing single scan lines, not all false positives can be excluded in the way described
above.
The next section describes how the spatial configuration of detected field line segments is used

to find the actual field lines and to determine their position and extension in the image.

5.1.6 Neighborhood Graph

To calculate the neighborhood graph, the field line segments of all scan lines are incorporated. It
is the first in the series of representations (cf. 5.1.2) for whose calculation a horizontal relation
is used.
Before defining the neighborhood graph, some notation is introduced: in accordance with the

notation common to graph theory, and given for example in [8], let a directed graph G be an
ordered pair of disjoint sets (V,E) such that E is a subset of the set V × V of ordered pairs of
V . If G is a graph, then V = V (G) is the set of vertices of G, while E = E(G) is the set of
edges of G.
Furthermore, let v ∈ F be a segment in the set of field line segments and let I(v) denote the

index of the scan line that contains v, with the index 0, for the left-most scan line. Then the
function

N1(v) := arg min
w

(|v, w|), w ∈ F, I(w) = I(v) + 1

denotes the closest neighbor to v on the next scan line to the right. The function

N2(v) := arg min
w

(|v, w|), w ∈ F, I(w) = I(v) + 1, w 6= N1(v)

denotes the second closest neighbor to v on the next scan line to the right.
The neighborhood graph N = (V,E) is a directed graph where the set of vertices V (N) is

equal to the set F of field line segments:

V (N) := F.

The set of edges E(N) is defined using the neighbor functions introduced above:

E(N) := {(v, w) ∈ V × V : w = N1(v) ∨ w = N2(v)}.

Therefore, for each field line segment v the set of edges E contains one directed edge to the
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a)

b)

Figure 5.12: Field line segments. The field line segments as defined by (5.4) is represented by
the white lines in the images. To obtain these sets, all conditions described in this
section were applied. a) Some false positives remain. These are filtered by further
processing. b) Image with a lot of field lines. Almost every intersection of a scan
line and a field line caused a field line segment. There are only a few false positives.
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Figure 5.13: Neighborhood graph. The white lines represent the field line segments. The vertices
of the neighborhood graph are represented by white circles, the edges by black lines.
Note that the neighborhood graph is a directed graph. As all edges are directed
from left to right, the direction is not represented graphically to avoid the figure
becoming cluttered. Thick lines represent the edges connecting a vertex v with its
closest neighbor N1(v) on the next scan line to the right, thin lines show the edges
to the second closest neighbor N2(v).

closest and another one to the second closest neighbor on the next scan line to the right. If the
scan line right of the one containing v contains no field line segments, there is no edge leaving v.
If the scan line right of the one containing v contains just one field line segment w, there is just
the edge (v, w) leaving v. Figure 5.13 shows the neighborhood graph N = (V,E) for the sample
image introduced in figure 5.12b).

Properties of Neighborhood Graphs As can be seen in figure 5.13, some of the neighborhood
graph’s edges cover field lines in the corresponding image and some don’t. Under the assumption
that there are field line segments for all intersections of scan lines with field lines, all field lines
are covered by edges of the neighborhood graph. If for some field line parts the creation of field
line segments failed, these parts are not covered by edges.
Note that for the majority of vertices v, the edge (v,N1(v)) covers a field line and the edge

(v,N2(v)) does not cover one. However, (v,N1(v)) might not cover a field line in some cases, for
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Figure 5.14: Filtered neighborhood graph. The filtered neighborhood graph N ′ represented by the
white circles and the black edges was created based on the neighborhood graph N ,
shown in figure 5.13. The graph N ′ contains only those edges from N contained in
at least one Aligned Path of length 3. Nodes not contained in any Aligned Path are
removed. Note that also the filtered neighborhood graph is a directed graph.

example, when v or N1(v) is not on a field line or when v and N1(v) are on different field lines.
There are also cases where the edge v,N2(v) covers a field line. This happens when the first
neighbor already covers another field line (e.g. at field line corners) or a false positive. Adding
edges to a third neighbor does not increase the coverage of field lines by edges, as there are no
configurations of field lines where more than two field lines meet each other at a single point.

5.1.7 Filtered Neighborhood Graph

The neighborhood graph is filtered in order to remove those edges which do not cover a field line
in the image. To define the filtered neighborhood graph N ′(V ′, E′), some preliminary definitions
are made.
As common in graph theory, a directed path is a directed graph P (V,E) of the form

V (P ) = {v0, ..., vl}, E(P ) = {(v0, v1), ..., (vl−1, vl)}.
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Figure 5.15: Filtered neighborhood graph containg edges that cover parts of an image without a
field line. This is a very rare case. However, it does not cause the creation of a
false field line percept, as no line cluster is created (cf. section 5.1.8).
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The length l(P ) := |E(P )| is defined as the number of edges in P .
A graph G′ = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. This relation

can be denoted by G′ ⊆ G.
Additionally, let ~c(v) define the vector that describes the center coordinates of a field line

segment v in the image. Then, the angle between a pair of adjacent edges between field line
segments (vi, vi+1), (vi+1, vi+2) is defined as:

6 (vi, vi+1), (vi+1, vi+2) := 6 ~c(vi)− ~c(vi+1),~c(vi+1)− ~c(vi+2).

Let P be a path with the set of vertices V (P ) = {v0, ...vl} ⊆ F being field line segments, let the
path have at least two edges: l(P ) ≥ 2. Then the function a(P ) is defined as:

a(P ) =
{
true , ∀0 ≤ i ≤ l(P )− 2 : 6 (vi, vi+1), (vi+1, vi+2) < 30◦
false , otherwise

A path P with a(P ) = true is called an Aligned Path.
The filtered neighborhood graph N ′ = (V ′, E′) is a subgraph of the neighborhood graph N =

(V,E) with

E′ = E(N ′) := {e ∈ E(N) : ∃P ⊆ N(e ∈ E(P ) ∧ a(P ) ∧ l(P ) ≥ 4)}

and
V ′ = V (N ′) := {v ∈ V (N) : ∃w ∈ N((v, w) ∈ E′ ∨ (w, v) ∈ E′)}.

The graph N ′ is obtained by deleting all edges from N not contained in an aligned path with
at least four edges. Note that vertices not contained in any of the edges in E′ are also removed
from N .
Figure 5.14 shows the filtered neighborhood graph that corresponds to the neighborhood graph

shown in figure 5.13.

Properties of Filtered Neighborhood Graphs Removing of edges from the neighborhood graph,
as described above, results in a graph where almost all edges cover a field line in the image.
It is very unlikely that objects not being field lines will cause the creation of aligned field line
segments. Figure 5.15 gives an example of this very rare case. However, most of these cases are
filtered by additional processing, cf. 5.1.8.

5.1.8 Line Clusters

While the filtered neighborhood graph is already a good representation of field lines in the image,
it does not represent the individual field lines. Different field lines can be represented by a single
connected region in the graph. The example in figure 5.14 shows three connected subgraphs.
One of them represents the side line, a ground line part, and two lines of the penalty area. The
second subgraph represents another ground line part. The third one represents a section of the
center circle.
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Figure 5.16: Projection of the image from 5.14 to the ground. In this projection, the angle
between field lines is nearly 90◦. The robot camera is vertically above the origin
of the coordinate system. While in the original image field lines appear step-like,
because of the low camera resolution, this effect is amplified in the projection. The
amount of amplification is higher for distant field lines.
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Figure 5.17: Projection of the filtered neighborhood graph from figure 5.14 to the ground. Note
that only the graph parts close to the goal are shown; the center circle is outside
the depicted area. The image in the background is there for illustration purpose
only, the graph was not calculated based on the projected image but as described
above. Just the single nodes of the graph were projected.

The next field line detection step is to split the filtered neighborhood graph into line clusters
so each cluster contains only field line segments that belong to the same field line. For this, the
fact that the angle between intersecting lines on the field is 90◦ can be used. However, the angle
between field lines in the image differs depending on the perspective. Significantly, this angle
can be quite low (for example, in the field corner in figure 5.14), making it difficult to detect
the corner. So, the filtered neighborhood graph projected to the ground is used.
Figure 5.16 shows the image from figure 5.14, projected to the ground. In this projection, the

angle between field lines is almost 90◦. Note that only the image parts below the horizon can be
projected to the ground. Such a projection is based on knowledge about the camera’s position
and rotation relative to the ground. The camera’s opening angles are also needed.
However, not every pixel of the image needs to be projected to the ground. Just the center

coordinate ~c(v) is projected for each vertex v of the filtered neighborhood graph N ′. Figure 5.17
gives an example.
With such a projection of the vertices, a greedy algorithm can be defined that extracts subsets

of edges from the filtered neighborhood graph N . This algorithm starts with the left-most node
in the graph and adds edges to the current cluster by selecting the closest neighbor to the last
added edge. A new cluster is started whenever the direction of the new edge has an angle of more
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Figure 5.18: Cluster creation. To create edge clusters, angles in the projected graph are com-
pared. Red lines: angle of the last three edges that were picked by the algorithm.
Orange lines: angle of current edge. Angle between red and orange lines: When
this angle is above the threshold of 45◦, a new cluster is created. The figure shows
all angle comparisons that led to the creation of a new cluster.

than 45◦ to the angle defined by the last three edges that were added to the cluster. When a new
cluster is created, the old cluster is added to the list of found clusters and its edges are removed
from the current graph, nodes without adjacent edges get deleted. Figure 5.18 illustrates the
angle comparison for all cases where a new cluster was created. Figure 5.19 illustrates the line
clusters generated by the cluster creation algorithm.

Properties of Line Clusters The main property of a line cluster, created as described above,
is that all contained nodes belong to the same field line. Only in rare cases a line cluster can
contain nodes from more than one field line. However, it can happen that objects like white
robot legs cause a line cluster to be created. Figures 5.20a) and b) show examples of such false
positives.

5.1.9 Filtered Line Clusters

While the line clusters are already a good representation for field lines, a simple filter can
additionally reduce the likelihood of false positives. The filter operates on single line clusters.
For each line cluster, the line segments that belong to the nodes in the cluster are taken into
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Figure 5.19: Line clusters. a) Line clusters as found by the greedy cluster creation algorithm.
Each cluster is shown in a different color. The nodes where two clusters intersect
belong to both clusters. This is illustrated by the small colored circle around the
node. Note that the cluster with index 2 (caused by the center circle) is outside
the depicted area. b) Line clusters shown in the image, each cluster is shown in a
different color.
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a) b)

c) d)

Figure 5.20: Line clusters and filtered line clusters. a,b) Line clusters as found by the greedy
cluster creation algorithm. Each cluster is shown in a different color. c,d) Filtered
line clusters. False positives were eliminated. The line clusters which were caused
by the robot’s legs were removed because their boundaries are not parallel (cf.
condition 2).
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account. Based on these, the upper and the lower boundary line for the line cluster are created
by applying linear regression to all upper and all lower line segment points. The following
conditions must be fulfilled for a line cluster to be considered for further processing:

Condition 1 Boundaries don’t deviate from straight lines. Line segments are stripes of equal
width. This is why single points which form the boundary line should not deviate more than a
certain threshold from the line calculated by linear regression.

Condition 2 Almost parallel boundaries. The upper and the lower boundary have to be almost
parallel. This, again, reflects the fact that field lines are stripes of equal width. Perspective
distortion plays only a minor role because the field line width is small, compared to the camera
height.

Condition 3 Line cluster is not bent. Curved lines (like the center circle, or other objects)
should be filtered out. For this the angle created by a line cluster’s center point and its end
points should almost be 180◦.

Properties of Filtered Line Clusters Filtered line clusters contain almost no false positives. A
single field line might be represented by more than one line cluster. Figures 5.20c) and d) give
examples of successfully removed line clusters which were caused by robot legs.

5.1.10 Field Lines and Corners
The result of all image processing are field lines and field line corners. Field lines are calculated
based on the filtered line clusters. Line clusters located on straight lines close to each other are
grouped together. Based on all line segments which belong to such a field line group, a straight
line which represents the field line, in the image, is calculated using linear regression.
Field line corners are calculated based on those straight lines. A field line corner is character-

ized by its center (the point were the field lines meet) and its direction. There are L-like corners
T-like corners and X-like corners. For an L-like corner, the direction is the bisection of the angle
defined by the two lines. A T-like corner is the combination of two L-like corners, an X-Like
corner is the combination of four L-like corners. The corner direction is important for the visual
compass introduced in section 5.2. Note that there are also virtual corners at the intersections
of straight lines representing field lines which don’t meet each other (e.g. the side lines and the
penalty line). This is intended, as those virtual corners are valuable localization landmarks.
Figures 5.21 and 5.22 show field lines and corners detected by the methods described above.

5.2 Memory-Based Direction Calculation
This section describes how field lines and corners detected by the vision system described in
the previous section can be used to estimate Compass Data for a robot. Compass data, ba-
sically, gives information about the robot’s rotation. Different kinds of compass data can be
distinguished:
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Figure 5.21: Field lines and corners. Green lines: detected field lines. Note that the center
circle was successfully excluded. Red arrows: the starting points mark the corner
locations. The heading marks the corners directions.

a) b)

Figure 5.22: Field lines as detected by the image processing method described in this section.

97



5 Vision-Based Compass

Full compass data provides the robot rotation with respect to a reference direction (the angle
provided is between −180◦ and +180◦).
Semi compass data is the kind of information provided by a compass where the needle’s north

and south are indistinguishable. The angle provided is between −90◦ and +90◦ and it is unknown
whether there is a 180◦ offset to the reference direction.
Quarter compass data is the kind of information provided by a compass, instead of a needle,

containing a cross pointing in four directions, with an angle of 90◦ between the directions. In
this case, the angle provided is between −45◦ and +45◦ and it is unknown whether the offset to
the reference direction is 0◦, 90◦, 180◦, or 270◦.
In this section, it is shown how quarter compass data can be determined. This is done following

the memory-based paradigm. Section 5.2.1 shows how the paradigm is applied. In section 5.2.2,
results of experiments conducted with a humanoid robot are discussed.

5.2.1 Applying the Memory-Based Paradigm

Following the memory-based paradigm (cf. 3.3), the robot state x can be estimated, based on
past observations ~z and control data ~u, using this function:

fM (~z, ~u) := arg min
k

n∑
t=1

(fs(f∗c (xk, vt))− zn−t)2.

For this, an observation function fs which gives the expected observation z for each state is
needed, cf. definition 3. A second prerequisite is a control function fc which gives a new state
xi based on the previous state xx−1 and the performed control action ui, cf. definition 4. Note
that vt denotes the accumulation of the last t control actions.

Defining the State Space, the Sensor and the Control Data The state estimation goal, de-
scribed in this section, is to determine quarter compass data. The state space is one-dimensional.
The vector ~z of all observations is a sequence of angles derived from field line percepts. While

a field line percept is a straight line in an image, using the information about the camera’s
position and heading relative to the robot, this can be transformed to a straight line on the
ground relative to the robot. This straight line can be described using Hesse normal form,
cf. [11]: ~r · ~n = c. All field line percepts in ~z are represented by the angle of their normal vector
~n; the distance to the origin is ignored. Note that all angles are normalized between −45◦ and
+45◦.
The control action vector ~u is derived from the odometry data sequence. The control action

ui is defined as the relative odometry data at time ti.

ui := oc(ti, ti+1).

Observation and Control Function With these definitions for the state, the kind of measure-
ments, the control data characteristics, the observation and the control function specific for this
application of memory-based state estimation can be defined. The observation function fs cal-
culates, for a robot rotation (α) (normalized between −45 and +45), the expected angle to any
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5.2 Memory-Based Direction Calculation

detected field line. Due to the normalization and the use of the Hesse normal form, the function
is trivial:

fs(α) := α.

The control function fc calculates, for a rotation αi−1 and a control action given by a robot’s
pose (xo, yo, αo), a new position:

fc(αi−1, αo) := αi−1 + αo.

With the definition of these functions, memory-based state estimation can be applied.

Percept Selection Strategies While deriving the robot’s angle relative to a field line from a field
line percept is quite accurate when the robot is not moving, it can become quite inaccurate when
walking. Especially humanoid robots might have an inaccurate representation of their camera’s
relative position and orientation while walking. This can lead to errors in the projection to the
ground. However, because of the cyclic and symmetric nature of walking motions, the effect
of the errors can be eliminated by incorporating more than one measurement. A low number
of percepts were enough (for humanoid robots and Aibo robots) to get reliable results. This is
discussed further in the next section. For all experiments, the number of field line percepts used
for rotation estimation was set to five.

5.2.2 Experiments

This section describes the experiments which were conducted to test the rotation estimation
method introduced in the previous section. The tests were done with a humanoid robot.

Setup The experiments were done using a humanoid robot constructed at TU Darmstadt [30].
The robot has two built-in cameras; one in the head and one in the chest. The head camera can
be horizontally panned and vertically tilted to control the viewing direction. The horizontal and
vertical angles of view are 44◦ and 34◦. The chest camera has a wider angle of view; its viewing
direction is fixed. All experiments were done on a RoboCup Humanoid League [17] soccer field
which is 4.5 meters long and 3 meters wide. The field boundaries are marked by white lines
of width 5 cm. Additionally, there are a center line and lines which form rectangular penalty
areas, next to the goals.

Objectives The goal of the experiments is to test that the overall system, consisting of the field
line detection as described in 5.1 and the rotation estimation described in this section, works as
expected. To do so, estimation results are compared to ground truth. An important aspect of
the experiments is to show that faulty odometry data, especially systematic error, do not affect
the accuracy of the rotation estimation. Additionally, the estimation results are compared to a
reference estimation done by a particle filter.

Recorded Data For the experiments, repeatedly, the robot was approaching a ball from varying
starting positions. This was realized by activating the standard soccer behavior which walks
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5 Vision-Based Compass

in a curve behind the ball and then tries to kick it to the opponent goal. The standard vision
and localization methods of the Darmstadt Dribblers [30] were active to achieve this. While
the robot walked to the ball, the ball was moved around on the field to create motion patterns
typical for soccer games. Each of the single robot runs had an approximate length of 5 meters.
This data was recorded in the experiments to off-line test memory-based rotation estimation:

• The rotation matrix which describes the spatial position and orientation of the head camera
relative to the ground.

• Images taken by the head camera.

• Odometry data derived from the executed motions of the robot.

This data was recorded to validate the estimation results:

• Ground truth data obtained using a ceiling camera based tracking system [13] which detects
a colored marker attached to the robot. Ground truth data contains the real robot’s
position and orientation.

• Reference position and rotation created by the particle filter based localization system
running on the robot.

All data was recorded at a rate of approximately 8 frames per second. Note that the particle
filter which calculated the reference rotation uses goals, beacons, and field lines detected in
images of both cameras (by the Darmstadt Dribblers vision system); while the memory-based
rotation estimation only uses field lines detected in the image of the head camera (by the system
introduced in 5.1).

Data Analysis All experimental runs consist of approximately 110 frames of data. Based on
this, the rotation was estimated for each frame. Note that no rotation estimate is created
until five field lines or corners are detected. Usually, this happens within the first 10 frames.
All estimated rotations are compared to ground truth. Additionally, the particle filter reference
rotation is compared to ground truth. For each run, the mean and standard deviation of the angle
error are calculated based on the, approximately 100, frames containing a rotation estimate.

Results The analysis of the reference rotation shows that it can be affected by systematic error:
While most runs had a mean angle error of 2◦, some runs had a mean angle error of up to 10◦.
In none of the runs, the maximum mean angle error of the memory-based rotation estimation
was above 3◦ which is close to the expected 0◦ mean angle error. For both the memory-based
and the reference estimation, the standard deviation of the angle error was approximately 15◦
for all experimental runs.
Figure 5.23 shows the estimation results for an experiment where the robot walked in a curve

towards the ball. The results are compared to ground truth data and odometry data. To
illustrate the deviation, the relative odometry data was initialized with the first value of ground
truth data.
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Figure 5.23: Experimental results. The rotation estimation’s result is quarter compass data. To
compare it to the ground truth rotation, all four possible directions are illustrated.
The estimation result and the ground truth match very good. The faulty odometry
has no negative influence on the estimation’s accuracy.
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Figure 5.24: Experimental results. The rotation estimation’s result is quarter compass data. To
compare it to the ground truth rotation, all four possible directions were illustrated.
The estimation’s result and the ground truth match very well. The faulty odometry
starting at frame 110 has affected the particle filter (blue curve). Memory-based
rotation estimation (green curve) was not affected.
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5 Vision-Based Compass

Figure 5.24 shows a different run, where the robot walked to the ball and then performed a
sharp turn left because the ball moved away. It can be seen that odometry data for this turn
is affected by a large systematic error. This error led to a poor estimation using the particle
filter. However, the memory-based rotation estimation performed very well in that case. In
section 3.1.3, this advantage of memory-based state estimation was discussed.
Note that the tests done on an Aibo robot revealed that, because of the low height of the

camera above the ground, field lines are not seen often enough to enable a continuous rotation
estimation. The only exception is the goal keeper which constantly sees the penalty lines.
However, unfortunately, the ground truth tracking system didn’t cover the goal areas of the
field. That’s why no qualitative data is given here.

5.3 Discussion
In this chapter, a vision-based compass for soccer robots is presented. One part of it is a vision
system which recognizes field lines and corners in images. The output of the vision system are
the position of field lines and corners relative to the robot. The second component is a memory-
based rotation estimation which uses the vision system’s output and odometry data. The result
is the robot’s heading on the field.

Vision System The vision system works based on scan-lines and thus has low computational
costs. It does not need any lighting specific calibration. A variant of it was used in the 2007 and
2008 RoboCup four-legged league competition. The layered filtering ensures that false positives
are very unlikely. A design principle of the system is that a not detected field is better than
a wrongly detected one. So, only a small number of perceptions has to be selected by the
memory-based rotation estimation; while the estimation accuracy is already high.

State Estimation The three advantages of memory-based state estimation, as outlined in chap-
ter 3, are its ability to cope with sparse information, with kidnappings, and with systematic error
in the state transition model.
Information can be sparse for two reasons: high noise or low contribution compared to the

state space. Because of the strict false positive filtering, field line perceptions are not very noisy.
They also have a high contribution: a single percept already provides rotation information. So,
the ability of memory-based state estimation to process sparse information is not needed in this
case.
However, the ability to cope with kidnappings is shown by the fact that, in all experimental

runs, the rotation estimation is reliable after the first couple of frames containing field line
percepts. Furthermore, the experiments show that the memory-based rotation estimation can
cope with systematic error in odometry data. The mean angle error (determined using ground
truth data) is always close to zero, in contrast to the particle filter approach which accumulated
this error. The visual compass described in this chapter is used for the localization method
given in the next chapter.
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6 Compass and Bearing Localization
In this chapter, a localization method is described which uses compass data, as introduced in
chapter 5, and horizontal bearings. It is the memory-based state estimation equivalent to the
nautical example from section 3.1.1.
Ground localization is typically a three dimensional problem (x-position, y-position, and rota-

tion have to be determined). This is why all calculations dealing with the state to be estimated
are three dimensional. The localization method described in this chapter splits this in two sub-
problems: rotation estimation (one dimensional), and position estimation (two-dimensional).
This leads to less complex calculations which can be performed very quickly. The rotation
estimation component has already been described in the previous chapter.
This chapter is structured as follows. A way to correct faulty odometry using compass data is

given in section 6.1. This is an important prerequisite for the position estimation described in
section 6.2. Experiments were done with a humanoid robot on a RoboCup soccer field, using the
same setup as described in 5.2.2. For horizontal bearings, the goal posts were used. A discussion
follows in section 6.3.

6.1 Odometry Correction
This section describes how to use compass data to correct faulty odometry data. Section 6.1.1
describes why odometry can be faulty and how this can influence localization. Section 6.1.2
describes how the rotation component of odometry data can be corrected while a robot moves.
In section 6.1.3, it is shown how the correction performs on real-world data.

6.1.1 Cause and Effect of Faulty Odometry Data
Good odometry data is an important prerequisite for mobile robot localization. For wheeled
robots, odometry data can be achieved by measuring the number of revolutions for each wheel.
With calibration explicit for factors like ground slipperiness good results can be achieved.
Issues are more complex for legged robots. The deviation between intended movement and

movement actually executed is much higher for such robots. This deviation can depend on
many factors. Some of them are static; while others may change over time. Examples are
ground slipperiness, the degree of joint wear out, battery level, and joint temperature.
It is hard to correct such factors with pre-run calibrations. Figure 6.1 gives examples of how

this deviation typically looks, even though the robot was calibrated.
The better odometry data matches ground truth data, the better it works for self-localization.

Errors in the rotation component of odometry data have had the biggest impact on the deviation
between ground truth and odometry data. Even slight rotation errors can quickly lead to large
distance deviations.
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Figure 6.1: Faulty odometry data. Two typical odometry data recordings. The pink curves show
the paths a humanoid robot walked over a soccer field while following a ball. This
ground truth data was obtained using a camera mounted from the ceiling, watching
a colored marker attached to the robot. The orange curves depict the recorded
odometry data. While odometry data is relative, for this depiction, it was initialized
with the first ground truth pose to visualize the deviation.
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6.1 Odometry Correction

Unfortunately, rotation errors are hard to compensate for with pre-run calibration. They
depend on factors which can constantly change. Joint wear out and temperature changes are
not distributed evenly within the robot. This can lead to asymmetric behavior, resulting in
rotation which deviates from the anticipated one. The nature of the ground can also lead to
unforeseeable deviations in the rotation. Especially carpets have the property that the amount
of slipperiness depends on the robot’s walking direction. The result is a robot executing motions
with constant rotation, following an ellipse instead of a circle.

6.1.2 Recursive Odometry Correction

This section describes how to use rotation estimates, as described in the previous chapter, to
correct odometry.

The Relative Nature of Odometry Data Odometry data provides the predicted accumulated
effect of robotic motion. For a given time ti the odometry data

o(ti) := (xi, yi, φi)

is a pose that describes how the robot moved, relative to the pose it had at time t0. The
difference

o(ti, tj) := o(tj)− o(ti)

describes the relative movement between times ti and tj . This relative movement is also a pose:

o(ti, tj) = (x(i,j), y(i,j), φ(i,j)).

This means there are two ways to store an odometry data sequence. One possibility is the
absolute way, with a sequence of poses relative to the pose at time t0, given as:

o(t1), ..., o(tn).

The relative way is to give a sequence of poses, relative to each other:

o(t0, t1), o(t1, t2), ..., o(tn−1, tn)

How to obtain relative from absolute data was shown above. Obtaining absolute from relative
data is also straightforward. The odometry data for a given time is the sum of all previous
relative movements:

o(tn) =
n−1∑
i=0

o(ti, ti+1).

This can also be described in a recursive fashion:

o(tn) = o(tn−1) + o(tn−1, tn).
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6 Compass and Bearing Localization

Odometry Correction The odometry data correction goal at time tn is to provide a sequence
of corrected odometry data, in the absolute way:

oc(t1), ..., oc(tn).

The correction is done recursively. To calculate the corrected odometry oc(ti) at time ti, the
current rotation estimation α(ti), the current relative (not corrected) odometry o(tn−1, tn), and
the previous corrected odometry oc(ti−1) at time ti−1 are needed.
The corrected odometry oc(t0) at time t0 is defined as:

oc(t0) := (0, 0, α(t0)).

This is a pose at the origin of the coordinate system, heading in the direction given by the
estimated rotation at this time t0.
For the recursive calculation, some prerequisites are calculated. The angle

δ(ti) := α(ti)− φ(oc(ti−1))

is the difference between the estimated angle and the angle of the last absolute corrected odom-
etry pose. The length of the current relative odometry is given as:

l := |o(ti−1, ti)|.

This is used to define the vector

~d := (l cos(δ(tn)), l sin(δ(tn))).

With this, the corrected odometry is defined as:

oc(ti) := (|oc(ti−1) + ~d|, α(ti)).

This correction results in the robot’s rotation, given by the odometry, always matching the
estimated rotation. The length of the relative odometry is not changed, only the heading of the
pose is corrected to match the estimated rotation.
Figure 6.2 shows a sequence of odometry data and how it gets corrected using the mechanism

introduced in this section.

6.1.3 Real-World Odometry Correction Examples

In this section, how good the correction method described above works on real-world data is
discussed. Figure 6.1 depicts faulty odometry data. This data was obtained by a humanoid
robot following a moving ball on a robot soccer field. The real robot position was tracked by
an external camera using the method described in [13]. This allows accuracy evaluation of the
odometry data and its correction.
Note that the ground truth data is a sequence of absolute poses, while the odometry data

is a sequence of relative poses. To show the accuracy of odometry data, it is transformed to a
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Figure 6.2: Odometry data correction. The red lines show a sequence of poses representing
odometry data. This sequence is corrected using a rotation information sequence
which corresponds to the arrows at the green line. The corrected odometry data is
depicted in green.

sequence of absolute poses by adding the first ground truth pose to all odometry poses.

It can be seen very easily that the odometry data reflects the distance the robot walked quite
well. This was achieved through pre-run calibration. However, the odometry data’s rotational
component is affected by an obvious error. The two robot runs chosen for illustration have a
right prone deviation. The robot measured a stronger right turn and a weaker left turn than
actually performed.

Figure 6.3 shows the correction results for the two runs of the humanoid robot. As expected,
the correction is so good that when initialized with the first ground truth data, the odometry
data and the ground truth data are very close. The corrected odometry data is a perfect
prerequisite for localization.

6.2 Localization

This section shows howmemory-based state estimation can be applied to the localization problem
where compass data and horizontal bearings are given. In 6.2.1 the localization method is given;
in 6.2.2 the outcome of experiments is described.
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Figure 6.3: Corrected odometry data. Two typical recordings of odometry data. The pink curves
show the paths a humanoid robot walked over a soccer field while following a ball.
This ground truth data was obtained using a camera mounted on the ceiling, watch-
ing a colored marker attached to the robot. The orange curves depict the recorded
odometry data. The red curves show the odometry data corrected by the estimated
position. The faulty and the corrected odometry data were both initialized with the
first ground truth pose, to depict the deviation.
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6.2.1 Applying the Memory-Based Paradigm

Following the memory-based paradigm (cf. 3.3), the robot state x can be estimated, based on
past observations ~z and control data ~u, using this function:

fM (~z, ~u) := arg min
k

n∑
t=1

(fs(f∗c (xk, vt))− zn−t)2.

For this, an observation function fs that gives the expected observation z for each state is
needed, cf. definition 3. A second prerequisite is a control function fc that gives a new state xi
based on the previous state xx−1 and the performed control action ui, cf. definition 4. Note that
vt denotes the accumulation of the last t control actions.

Defining the State Space, the Sensor and the Control Data The localization method de-
scribed in this chapter is based on a compass data sequence, horizontal bearings to landmarks of
known position, and (corrected) odometry data. As the rotation is given by the compass data,
just the translational component of the robot’s pose has to be estimated. The state space is
two-dimensional.
To simplify all calculations, the compass data and the bearing measurements relative to the

robot are combined, such that the vector ~z of all observations is a sequence of absolute landmark
bearings. The vector of control actions ~u is derived from the sequence of corrected odometry
data. The control action ui is defined as the translational component of the relative odometry
data at time ti.

ui := t(oc(ti, ti+1)).

These simplifications can be illustrated utilizing the navigation example given in section 3.1.1.
All bearings are stored relative to north; odometry is a sequence of two-dimensional vectors
in a north-aligned coordinate system. The advantage is that the information provided by the
compass is not stored separately but integrated in vectors ~z and ~u. For practical reasons, on a
soccer field, north can be defined as the direction from one goal to the other.

Observation and Control Function With these definitions for the state, the kind of measure-
ments, and the control data characteristics, the observation and the control function specific to
this application of memory-based state estimation can be defined. The observation function fs
calculates, for a position (x, y) and a landmark l with known coordinates (xl, yl), the expected
angle between the robot’s heading and the landmark:

fs(x, y) := arctan(yl − y, xl − x).

The control function fc calculates for a position (xi−1, yi−1) and a control action, given by a
two-dimensional vector (xo, yo), a new position:

fc((xi−1, yi−1), (xo, yo)) := (xi−1 + xo, yi−1 + yo).

With the definition of these functions, memory-based state estimation can be applied. Fig-
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a) b)

Figure 6.4: Goal percepts. Two images of a goal. a) Horizontal bearing to the left goal post was
determined. b) Horizontal bearing to both goal posts was determined.

ure 6.4 shows goal posts recognized in images using a method similar to the one given in [45].
Figure 6.5 shows the resulting function fM (~z, ~u) for these goal observations. Each landmark
observation contributes to fM with a function having minima along a straight line given by the
angle to the landmark and the motion since the observation. These straight lines conform to
the lines of position (LOP) introduced in section 3.1.1.
Figure 6.6 shows the corresponding LOPs for the functions depicted in figure 6.5. Note that

the calculation of these lines is not part of the localization method; they are just given for
illustration.

6.2.2 Experiments

This section describes the experiments which were conducted to test the localization method
introduced in this chapter. The tests were done with a humanoid robot using the same data sets
as described in section 5.2.2. The memory-based rotation estimation uses the estimated rotation
(cf. 5.2), corrected odometry data (cf. 6.1), and horizontal bearings to goal posts (obtained as
described in [45]). A very simple percept selection strategy was chosen: for each of the four goal
posts (left, right; blue, yellow) the last five observations were selected to estimate the position.

Objectives The goal of the experiments is to test the localization accuracy. This is done by
comparing the estimation results to ground truth. Additionally, the estimation results are com-
pared to a reference estimation done by a particle filter. Important aspects of the experiments
are to show that the method is able to process the sparse information provided by the bearings
and that the initial position is estimated as soon as enough bearings are available.

Data Analysis All experimental runs consist of approximately 110 frames of data. Based on
this, the pose was estimated for each frame. The minimum was searched for on a 10 cm spaced
grid. Note that no pose estimate is created until at least two goal posts are seen and the rotation
is estimated. Usually, this happens within the first 20 frames. All estimated poses are compared
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Figure 6.5: State estimation function. Black: fM = 1; White: fM = 0. a) Function fM (~z, ~u)
after observing the left goal post (cf. figure 6.4a). b) Function fM (~z, ~u) after one ob-
servation of the left goal post and one observation of both goal posts (cf. figure 6.4b).
The red dot marks the global minimum of fM .
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Figure 6.6: Lines of position. LOPs created based on the controls and sensor readings used
to calculate fM (background) a) after observing the left goal post. b) after two
observations of the left goal post and one observation of both goal posts.
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to ground truth. For this, a coordinate system is used which has its origin at the ground truth
position and its x-axis parallel to the ground truth heading. For each estimate, the vector from
the origin to the estimated position describes the localization error. In the same way, the particle
filter poses are compared to ground truth.

Results The mean position error is, as expected, close to zero for the memory-based localization
(40 mm) and for the particle filter (55 mm). However, the standard deviation for the memory-
based localization is lower (164 mm) compared to the particle filter (245 mm). Compared to the
field length, the memory-based method’s standard deviation is 3.3%, the particle filer’s 4.9%.
These numbers were calculated based on a 192 position comparisons along a total distance
of 8.7 m. The error distribution, for both methods, is shown in figure 6.7. Figure 6.8, for
two experimental runs, depicts a comparison between ground truth data and the results of the
memory-based localization and the particle filter.

6.3 Discussion
In this chapter, a memory-based localization method was introduced that works on compass
data, horizontal bearings, and odometry data.

Odometry Correction An important part of the system is the odometry correction which uses
vision-based compass data and compensates for error in the rotation component. The idea is,
to overcome the faultiness of odometry data based on intrinsic measurement by continuously
incorporating rotation data obtained by visual perception. In the RoboCup example, this works
very good because field lines are seen in almost every image. While the memory-based approach
helps to avoid the accumulation of systematic error in general, the correction is particularly
helpful when the robot moves between the observation of bearings used for position estimation.

Localization The three advantages of memory-based state estimation, as outlined in chapter 3,
are its ability to cope with sparse information, with kidnappings, and with systematic error in
the state transition model. These advantages are verified by the experiments. The system is
able to process the sparse bearing information. Because of the good odometry correction, there
is no systematic error to handle. However, the ability to cope with kidnappings is shown by the
fact that, in all experimental runs, the position estimation is reliable after the first couple of
frames containing goal posts.
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Figure 6.7: Localization error distribution. The diagrams show the distribution of localization
error. Each dot represents a single position estimate’s offset to the corresponding
ground truth pose, which is the localization error. a) Error distribution for memory-
based localization. b) Error distribution for particle filter results.
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Figure 6.8: Localization results. Results of two experimental runs. A humanoid robot walked
over a soccer field while following the ball. Pink: real paths the robot walked (ob-
tained by a camera mounted on the ceiling). Blue: localization results. Green:
particle filter results.
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7.1 Conclusions

In this thesis, the state estimation problem is discussed. After presenting related work, a new
state estimation approach is motivated and described. Based on this new approach, several
localization applications for soccer robots are introduced.

Related Work Chapter 2 presents the existing methods based on Bayesian filtering and Hid-
den Markov Models. These have weaknesses when sparse information has to be processed,
kidnappings occur, or there is systematic error.
Methods based on Bayes filters accumulate data gained from perceptions and actions in the

belief. The belief is a representation of the probability density function that describes the
state. All such methods approximate this function in one or another way. The weaknesses
of the different approaches are caused by the data-loss which comes with the approximation.
The degree of data-loss depends on the problem’s specifics and the approximation method. In
general, non-parametric filters can support a wider range of problems than parametric filters.
However, increasing the approximation accuracy leads to higher computation times.

The Memory-Based Paradigm The main contribution of this thesis is the memory-based
paradigm, given in chapter 3. It is a guide to how to solve state estimation problems. Memory-
based state estimation reuses aspects of the Bayesian techniques and is inspired by the principles
of ship navigation at sea. The key difference to techniques based on Hidden Markov Models
is how information is stored and processed. Methods which follow the memory-based paradigm
store perceptions and actions, and calculate the state or aspects of it when needed.
Important properties of this approach are: its generality (independence of specific state esti-

mation problems), the usage of forward models (which are easily obtainable), the capability to
cope with systematic error, the capability to quickly recover from kidnapping, and the capability
to process sparse data.

Memory-Based State Estimation Applications This thesis describes two localization methods
for robot soccer which follow the memory-based paradigm. They are able to process the sparse
information provided by landmark bearings and can cope with unreliable odometric information.
The method given in chapter 4 is able to localize using only horizontal bearings to landmarks.
Several landmark selection strategies are evaluated.
The method given in chapters 5 and 6 incorporates information obtained from field lines.

Based on a novel image analysis method, a vision-based compass is introduced. Rotation esti-
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7 Discussion

mates provided by this compass are used to correct faulty odomety data and are combined with
horizontal bearings for position estimation.
All these methods are validated with experiments on real robot data obtained from four-legged

and humanoid robots. The localization results were compared to ground truth data.

7.2 Outlook

This work shows alternatives and supplementations to state estimation techniques based on
Hidden Markov Models and Bayesian filtering. Some aspects of the concept introduced in this
thesis are worth deeper investigation. The techniques introduced here are a good starting point
for further research.

Negative Information The main example for sparse information used in this thesis are land-
mark bearings. Another example is negative information. The notion of negative information
and how particle filters can be adapted to be able to process that kind of information are dis-
cussed in [35, 37, 36, 38]. Negative information is the information provided by detection sensors
about the absence of certain objects. For instance, information like there is no landmark in
the current image can be considered negative information. Parametric filters are usually not
designed to cope with this kind of information. Nonparametric filters need a high resolution to
store negative information. This leads to high computational costs. Methods which follow the
memory-based paradigm are perfectly suited to process negative information. However, this was
not done in the examples given in this thesis. Using negative information could further improve
localization accuracy on soccer fields.

Percept Selection Strategies In sections 3.3.5 and 4.3, landmark selection strategies are dis-
cussed. The strategies given there are of a pragmatic nature. A more thorough examination of
the subject could bring forth rules for better percept selection strategies. Some basic work on
that has already been done in our research group [52]. Percept selection helps to solve several
problems: the fewer percepts to be processed, the higher the computation speed. Selecting the
right combination of percepts can also reduce the estimation error. Lastly, the negative effect of
kidnappings on the state estimation accuracy can be minimized by not selecting percepts prior
to kidnappings. The research question of interest is how to obtain a good subset of all percepts.

Optimization Techniques Any implementation of memory-based state estimation has to calcu-
late the minimum position of the function given in definition 3.4. Several methods are suggested
in this thesis. In section 3.3.5, a grid-based approach and two methods based on gradient de-
scent are introduced. The experiments in chapters 4, 5, and 6 use the grid-based method. For
cases with more dimensions, the chosen optimization algorithm might be more important. The
interesting question here is how the problem’s specifics can be used to select an optimization
algorithm and its parameters.
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7.3 Final Remarks

7.3 Final Remarks
It is amazing how the capabilities of robots have improved since my first encounter with RoboCup
in 2001. Looking at how robot soccer games have changed since than, I’m confident that the
RoboCup initiative will achieve its aim and hold a match between humanoid robots and the
2050 human soccer world champion. I am happy that with this thesis the goal that the robots
will win comes a bit closer.
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