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ABSTRACT 

I 

Abstract 

Light and plant hormones such as cytokinins are essential for plant growth and 
development. Only little information is available about how these signals influence the 
transcription of organellar genes. Arabidopsis thaliana possesses three nuclear-encoded 
phage-type RNA polymerases (RpoT) for organellar transcription. They are imported into 
plastids (RpoTp), mitochondria (RpoTm), or into both organelles (RpoTmp). Besides the two 
nuclear-encoded plastid polymerases (NEP), plastids contain an additional plastid-encoded 
RNA polymerase (PEP), which needs additional sigma factors for promoter recognition. 

Interested in the expression of RpoT genes and NEP-transcribed plastid genes in response 
to light we analyzed transcript levels of RpoT and rpoB genes in 7-day-old wild-type plants 
under different light conditions by quantitative real-time-PCR. The observed changes in 
transcript accumulation indicated that red, blue, and green light differentially stimulated the 
expression of all three RpoT genes. Further analyses using different photoreceptor mutants 
showed that light induction of RpoT gene expression is surprisingly complex based on a 
network of multiple photoreceptors and downstream pathways. 

Cytokinin signals are perceived by the histidine kinase (AHK) receptor family. There exist 
three different membrane-bound receptors: AHK2, AHK3 and AHK4/CRE1. These receptors 
are part of a two-component signaling system which transfers signals via phosphorelay 
mechanisms. Interested in the potential role of AHK2, AHK3 and AHK4/CRE1 in the 
transduction of cytokinin signals into the chloroplast, we analyzed the influence of cytokinin 
on plastidial transcription in receptor mutants. To gain more information on how plastid 
transcription by PEP is regulated by cytokinin, the influence of cytokinin in sigma factor 
mutants was also studied. 
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ZUSAMMENFASSUNG 

II 

Zusammenfassung 

Licht und Pflanzenhormone wie Cytokinine sind essentiell für das Wachstum und die 
Entwicklung von Pflanzen. Es ist nur wenig darüber bekannt, wie sie die Transkription 
organellärer Gene beeinflussen. In Arabidopsis thaliana gibt es drei kernkodierte Phagentyp-
RNA-Polymerasen (RpoT), welche für die organelläre Transkription verantwortlich sind. 
Diese werden in die Plastiden (RpoTp), die Mitochondrien (RpoTm) oder zu beiden 
Organellen (RpoTmp) transportiert. Neben den beiden kernkodierten RNA-Polymerasen 
(NEP) existiert in den Plastiden eine plastidärkodierte RNA-Polymerase (PEP), welche 
zusätzliche Sigmafaktoren zur Promotererkennung benötigt. 

Um die Lichtabhängigkeit der Expression der RpoT Gene sowie NEP-transkribierter 
Chloroplastengene zu analysieren, wurde die Akkumulation von RpoT- und rpoB-
Transkripten in 7-Tage alten Keimlingen unter verschiedenen Lichtbedingungen mittels 
quantitativer real-time PCR untersucht. Die beobachteten Änderungen in der 
Transkriptakkumulation deuten darauf hin, dass rote, blaue und grüne Wellenlängen die 
Expression der drei RpoT Gene unterschiedlich stark stimulieren. Untersuchungen an 
verschiedenen Lichtrezeptor-Mutanten zeigten, dass die Lichtinduktion der RpoT 
Genexpression überaus komplex ist und ein interagierendes Netzwerk aus multiplen 
Photorezeptoren und Transkriptionsfaktoren an der Signalweiterleitung beteiligt ist. 

Das Phytohormon Cytokinin wird durch Histidin Kinase Rezeptoren (AHK) detektiert. Es 
gibt drei unterschiedliche membran-gebundene Rezeptoren: AHK2, AHK3 und AHK4/CRE1. 
Diese sind Teil eines Zwei-Komponenten-Signalsystems, welches Signale mit Hilfe einer 
Phosphorylierungskette überträgt. Der Einfluss von Cytokinin auf die plastidäre Transkription 
wurde mit Hilfe von Cytokininrezeptor-Mutanten untersucht, um die Funktion von AHK2, 
AHK3 und AHK4/CRE1 zu analysieren. Um weitere Informationen darüber zu erhalten, wie 
die plastidäre Transkription durch PEP mittels Cytokinin reguliert wird, wurden die Effekte 
von Cytokinin auf die plastidäre Transkription in Sigmafaktor-Mutanten geprüft. 

 
 
 

Schlagwörter: 
Phagentyp-RNA-Polymerasen 

Organelläre Gentranskription 

Photorezeptoren 

Lichtinduktion 

Cytokinin 



TABLE OF CONTENT 

III 

Table of content 

Abstract ................................................................................................................................... I 

Zusammenfassung ................................................................................................................ II 

1 Introduction ..................................................................................................................... 1 

1.1 The transcription machinery of plastids ................................................................... 1 

1.2 Regulation of organellar transcription ..................................................................... 2 

1.2.1 Light ................................................................................................................. 2 

1.2.1.1 Light perception ............................................................................................. 3 

1.2.1.2 Light and plastidial transcription ................................................................... 6 

1.2.2 Phytohormones ................................................................................................. 7 

1.2.2.1 Cytokinin........................................................................................................ 8 

1.2.2.2 Cytokinin reception pathway ......................................................................... 9 

1.2.2.3 Cytokinin and chloroplasts .......................................................................... 10 

1.3 Aim of this work .................................................................................................... 11 

2 Materials and Methods .................................................................................................. 13 

2.1 Materials ................................................................................................................ 13 

2.1.1 Providers ......................................................................................................... 13 

2.1.2 Plant material .................................................................................................. 14 

2.1.3 Oligonucleotides ............................................................................................. 15 

2.1.4 Software ......................................................................................................... 15 

2.2 Methods .................................................................................................................. 16 

2.2.1 Surface sterilization of Arabidopsis thaliana seeds ....................................... 16 

2.2.2 Plant growth ................................................................................................... 16 

2.2.3 Microscopy ..................................................................................................... 17 

2.2.4 Isolation of nucleic acids ................................................................................ 18 

2.2.4.1 Isolation of total DNA ................................................................................. 18 

2.2.4.2 Isolation of total RNA .................................................................................. 18 

2.2.5 Analytical agarose gel electrophoresis of RNA ............................................. 18 

2.2.6 The reverse transcription of total RNA .......................................................... 18 

2.2.7 Quantitative real-time PCR with probes ........................................................ 19 

2.2.8 Quantitative real-time PCR with SYBR Green ........................................... 20 

2.2.9 Detection of proteins by Western blotting ..................................................... 21 



TABLE OF CONTENT 

IV 

2.2.10 Blotting of chloroplast genes.......................................................................... 21 

2.2.11 Chloroplast isolation ...................................................................................... 23 

2.2.12 Run-On Transcription Assay .......................................................................... 23 

2.2.13 Flow cytometric analysis of nuclear endo-polyploidy ................................... 24 

3 Results ........................................................................................................................... 25 

3.1 Analysis of light effects on the organellar gene expression .................................. 25 

3.1.1 Expression analysis of light-inducible control genes for Ler wild type ........ 27 

3.1.2 Expression analyses of phage-type RNA polymerase (RpoT) genes ............. 28 

3.1.2.1 RpoT transcript accumulation in white light for Ler wild type ................... 28 

3.1.2.2 RpoT transcript accumulation for different light qualities and in mutants .. 30 

3.1.2.2.1 RpoT transcript accumulation in red light for Ler wild type ..................... 30 

3.1.2.2.2 RpoT transcript accumulation in red light for phytochrome mutants ........ 31 

3.1.2.2.3 RpoT transcript accumulation in red light for cryptochrome mutants ....... 32 

3.1.2.2.4 RpoT transcript accumulation in red light for hy5 knockout mutants ....... 34 

3.1.2.2.5 RpoT transcript accumulation in blue light for Ler wild type ................... 35 

3.1.2.2.6 RpoT transcript accumulation in blue light for phytochrome mutants ...... 36 

3.1.2.2.7 RpoT transcript accumulation in blue light for cryptochrome mutants ..... 37 

3.1.2.2.8 RpoT transcript accumulation in blue light for hy5 knockout mutants...... 38 

3.1.2.2.9 RpoT transcript accumulation in green light for Ler wild type ................. 39 

3.1.2.2.10 RpoT transcript accumulation in green light for phytochrome mutants .... 40 

3.1.2.2.11 RpoT transcript accumulation in green light for cryptochrome mutants ... 41 

3.1.2.2.12 RpoT transcript accumulation in green light for hy5 knockout mutants.... 42 

3.1.2.3 Summary: RpoT transcript accumulation in different light qualities ........... 42 

3.1.3 Expression analyses of the plastidial rpoB gene ............................................ 43 

3.2 Analysis of cytokinin effects on the organellar gene transcription ........................ 45 

3.2.1 Influence of cytokinin in cytokinin-related mutants grown on medium ........ 45 

3.2.1.1 Characterization of cytokinin-related mutants ............................................. 45 

3.2.1.2 Cytokinin regulation of chloroplast size and chloroplast numbers .............. 47 

3.2.1.3 Cytokinin effects on the plastome copy numbers per cell ........................... 49 

3.2.1.4 Cytokinin effects on plastid gene transcription ........................................... 51 

3.2.2 Cytokinin effects on plastid gene transcription in seedlings sown on a net ... 52 

3.2.3 Cytokinin effects on plastid gene transcription/transcripts in sig-mutants .... 54 

 



TABLE OF CONTENT 

V 

4 Discussion ..................................................................................................................... 56 

4.1 Influence of light on RpoT transcript levels ........................................................... 56 

4.1.1 White light: differential stimulation of RpoT gene expression ...................... 57 

4.1.2 Red light: two classes of photoreceptors important for RpoT genes .............. 59 

4.1.3 Blue light: CRY-mediated down-regulation of RpoT gene expression .......... 60 

4.1.4 Green light: RpoT transcripts regulated via phytochromes and CRY2 .......... 63 

4.1.5 HY5: central signal integrator in all tested light conditions ........................... 64 

4.1.7 Summary: light effects on organellar RNA polymerases ............................... 65 

4.2 Influence of cytokinin on the organellar gene transcription .................................. 68 

4.2.1 Cytokinin application led to more, but smaller chloroplasts .......................... 68 

4.2.2 Cytokinin application increases plastome copy numbers .............................. 69 

4.2.3 All three receptors participate in regulating the plastid gene transcription .... 70 

4.2.4 Sigma factors are involved in the cytokinin-regulated gene transcription ..... 71 

4.2.5 Summary: regulation of plastidial gene transcription by cytokinin ............... 73 

Bibliography ........................................................................................................................ 75 

Abbreviations ...................................................................................................................... 91 

Acknowledgements ............................................................................................................. 93 

Curriculum Vitae ................................................................................................................. 94 

Publications and Conference Abstracts ............................................................................... 96 

Eidesstattliche Erklärung ..................................................................................................... 97 

 



INTRODUCTION 

1 

1 Introduction 

Plants and green algae contain plastids, which are organelles that originate from an ancient 

cyanobacterial endosymbiont (Gray, 1999; Martin et al., 2001). Plastids possess their own 

genome (plastome) encoding genes important for their function and biogenesis. However, 

most plastid genes have been transferred to the nucleus during endosymbiontic evolution 

(Martin et al., 2002; Stegemann et al., 2003; Timmis et al., 2004). Still, plastids have their 

own transcription machinery (see 1.1; Liere and Börner, 2007a,b; Liere et al., 2011). 

The expression of plastid genes is not only regulated post-transcriptionally but also to 

some extent on the transcriptional level in response to several external and internal stimuli 

(see reviews by Liere et al., 2011; Barkan, 2011). Nevertheless, how these specific signals are 

transmitted into the organelles and how they act on the transcription of plastid genes is largely 

unknown. In this thesis, new data will be presented that shed some light on the mechanisms 

that regulate organellar gene transcription in higher plants. 

1.1 The transcription machinery of plastids 

The complex transcription in plastids of dicots is based on two different kinds of RNA 

polymerases (Figure 1): a nuclear-encoded, phage-type and a plastid-encoded, eubacterial-like 

RNA polymerase (Maliga, 1998; Hess and Börner, 1999; Shiina et al., 2005; Toyoshima et 

al., 2005). Arabidopsis thaliana possesses three different nuclear-encoded phage-type RNA 

polymerases. They are encoded by the small family of RpoT genes. The gene products are 

imported into plastids (RpoTp), mitochondria (RpoTm), and are dual-targeted (RpoTmp) 

(Hedtke et al., 1997, 2000, 2002; Cahoon and Stern, 2001; Kobayashi et al., 2001; Richter et 

al., 2002). It was shown that RpoTp and RpoTmp represent the nuclear-encoded plastid RNA 

polymerase (NEP) in dicots (Chang et al., 1999; Kusumi et al., 2004; Azevedo et al., 2008). 

The plastid-encoded plastid RNA polymerase (PEP) is a multi-subunit enzyme 

homologous to bacterial RNA polymerases (Hess and Börner, 1999; Shiina et al., 2005; Liere 

and Börner, 2007 a,b). Functional PEP complexes consist of five core subunits (2 x α, β, β´, 

β´´), which are encoded by the rpoA, rpoB, rpoC1 and rpoC2 genes (Serino and Maliga, 

1998; Suzuki et al., 2004), which are associated with one of the nuclear-encoded sigma 

factors for promoter recognition in vivo. Six different sigma factors, AtSig1 to AtSig6, are 

present in Arabidopsis, which have partly overlapping functions controlling the transcription 

of plastid genes (see reviews by Allison, 2000; Lysenko, 2007; Schweer, 2010). 
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Figure 1: The transcriptional machinery of plastids. 

The transcription machinery of plastids consists of two different RNA polymerases. The nuclear-
encoded plastid RNA polymerase (NEP), which is related to phage-type single-subunit enzymes and 
the plastid-encoded plastid RNA polymerase (PEP), which is a multi-subunit enzyme homologous to 
bacterial RNA polymerases. PEP consists of the plastid-encoded α, β, β', and β'' core-subunits and the 
nuclear-encoded sigma factor required for promoter recognition. Both polymerases need additional, 
yet unknown transcriptional factors (TF) for their correct function. Based on Liere et al., 2011. 
 

1.2 Regulation of organellar transcription 

Advanced sensory systems allow higher plants to adjust their transcription in response to 

several exogenous and endogenous stimuli (Figure 2). Typical exogenous signals include 

light, mechanical forces, temperature, soil nutrients and humidity as well as presence of 

pathogens. Endogenous signals range from growth and developmental regulators to 

metabolites and defense signals (Gilroy and Trewavas, 2001). Regulation of organellar 

transcription by light and by the plant hormone cytokinin will be presented in more detail. 

1.2.1 Light 

Many important processes in higher plants are light-regulated including seedling 

photomorphogenesis, phototropism, chloroplast development, germination, circadian 

rhythms, flowering, and shade avoidance (Chen et al., 2004; Franklin et al., 2005; Jiao et al., 

2007; Franklin and Quail, 2010). Specific light qualities are required to modulate many 

processes in plants and plant cells. While red light controls processes such as seed 

germination, de-etiolation, shade avoidance and flowering (Casal et al., 2003; Franklin and 

Quail, 2010), blue light is generally essential for the regulation of stomatal opening, inhibition 

of hypocotyls elongation, phototropism, opening of apical hook, and chloroplast movement 
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(Banerjee and Batschauer, 2005; Yu et al., 2010). In addition, green light seems to be 

involved in controlling early developmental processes and is assumed to act antagonistically 

to blue light responses (Folta and Maruhnich, 2007). Furthermore, it was shown that certain 

light qualities mediated via specific photoreceptors strongly effect the expression of various 

genes in higher plants (Chun et al., 2001; Thum et al., 2001). 

 

 
Figure 2: External and internal signals which might affect organellar transcription. 

Plant growth and development in higher plants are regulated in response to a wide range of external 
and internal signals. The modulation of organellar transcription is an appropriate mechanism to adjust 
plant responses to changed growth conditions. Based on Gilroy and Trewavas, 2001. 
 

1.2.1.1 Light perception 

As sessile organisms, plants have evolved a number of different photoreceptors to perceive 

and respond to changing light conditions in their environment (Chory, 2010). At least twelve 

photoreceptors are known from Arabidopsis including five phytochromes (Smith, 2000; 

Franklin and Whitelam, 2004), two cryptochromes (Lin and Shalitin, 2003; Li and Yang, 

2007), two phototropins (Briggs and Christie, 2002; Christie, 2007; Inoue et al., 2008), and 

three Zeitlupe-like proteins (Imaizumi et al., 2003; Ulm and Nagy, 2005; Briggs, 2007; Kim 

et al., 2007). The diverse photoreceptors are defined by the color of light they predominately 
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absorb. Most important photoreceptors include the red light absorbing phytochromes (Quail et 

al., 1995) and the blue light absorbing cryptochromes (Cashmore et al., 1999; Lin and 

Shalitin, 2003). No specific photoreceptor for green light is known, but some of the green 

light responses are mediated via cryptochromes (Folta and Maruhnich, 2007). 

Phytochromes possess several functions in plant development such as the control of 

germination, stem elongation, leaf expansion, and photomorphogenesis (Quail, 2010). They 

are encoded by a small multigene family (Mathews and Sharrock, 1997), which consists of 

five members in Arabidopsis with PHYA and PHYB being the most prominent (Smith, 2000; 

Franklin and Whitelam, 2004; Chen et al., 2004). It was shown that the transcription of early 

responding genes in Arabidopsis under red and far-red light is mainly under control of PHYA 

(Tepperman et al., 2001; Tepperman et al., 2006). Furthermore, there are two sub-groups of 

phytochromes: type I phytochromes (PHYA) are photo-labile, while type II phytochromes 

(PHYB-PHYE) are photo-stable (Hirschfeld et al., 1998). In general, phytochromes exist in 

two photoreversible isomeric forms: Pr (r; red) absorbs red light (660 nm) and Pfr (fr; far red) 

absorbs far-red light (730 nm). Red light leads to a reversible conversion of inactive Pr into 

active Pfr (Quail, 2002). This is followed by a nuclear translocation of Pfr where it binds to 

transcription factors for direct regulation of nuclear transcription (Chen et al., 2004; Jiao et 

al., 2007). Vice versa, absorption of far-red light promotes the conversion of the active Pfr 

form into the inactive Pr form. 

Blue and UV-A light (340-520 nm) are sensed by phototropins, Zeitlupe-like proteins and 

cryptochromes. While the first two mainly mediate movement processes, cryptochromes 

regulate de-etiolation, photomorphogenesis, and flowering (Lin and Todo, 2005; Christie, 

2007; Li and Yang, 2007; Demarsy and Fankhauser, 2009). For example, it was also shown 

that cryptochromes are involved in regulation of early blue light induced gene expression 

(Ohgishi et al., 2004). Arabidopsis encodes genes for three different cryptochromes (cry1-

cry3). While CRY1 and CRY2 act as blue light receptors in higher plants, it is still unclear if 

CRY3 functions as a photoreceptor (Kleine et al., 2003). The photo-stable CRY1 regulates 

the transition from dark to light development under high light intensities, whereas the photo-

labile CRY2 controls photoperiodic flowering in response to low light intensities (Lin, 2002). 

Interestingly, the predominantly red light perceiving PHYA is also able to absorb blue light 

(Casal and Mazzella, 1998; Neff and Chory, 1998; Poppe et al., 1998). 
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Perception of light and regulation of light responses mediated by photoreceptors involve 

complex pathways (Figure 3). Therefore, many key transcription factors that serve as signal 

integration points are located in the light signaling networks downstream of photoreceptors 

such as phytochromes and cryptochromes (Jiao et al., 2007). One of the key players is LONG 

HYPOCOTYL 5 (HY5), a basic leucine zipper (bZIP) transcription factor (Koornneef et al., 

1980; Oyama et al., 1997; Ang et al., 1998; Ulm et al., 2004). Absent in darkness, it 

accumulates rapidly upon exposure to light and regulates the transcription of light-responsive 

genes (Ang et al., 1998; Chattopadhyay et al., 1998; Osterlund et al., 2000). Lee et al. (2007) 

analyzed the genomic binding sites of HY5, which revealed its role as a major high 

hierarchical regulator in plant development. Furthermore, HY5 promotes photomorphogenesis 

under red, far-red and blue light conditions (Lau and Deng, 2010). 

 

 
Figure 3: Simplified model of the light signaling pathway in Arabidopsis thaliana. 

Cryptochromes and phytochromes account for the perception of light signals. Light conditions with a 
relatively high red:far-red ratio turn phytochrome from the inactive, cytoplasma-localized Pr form to 
the active, nuclear-localized Pfr form. Blue light exposure triggers the photoactivation of CRY1, while 
CRY2 remains in the nucleus. HY5 is a key transcription factor located downstream of photoreceptors 
to serve as a signal integration point. The COP transcription factor acts as repressor of HY5 and is 
inhibited by PHY and CRY. COP: constitutive photomorphogenic protein, CRY: cryptochrome, HY5: 
long hypocotyl 5, PHY: phytochrome, r: red; fr: far-red. Based on Jiao et al., 2007. 
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1.2.1.2 Light and plastidial transcription 

Light acts as an environmental signal to adjust plant growth and development (Casal et al., 

2004; Jiao et al., 2007), but also plays an important role in activating the transcription of 

plastid and nuclear encoded genes involved in photosynthesis (Thompson and White, 1991; 

Rapp et al., 1992; Christopher and Mullet, 1994; Mayfield et al., 1995; Terzaghi and 

Cashmore, 1995; Link, 1996; Pfannschmidt et al., 1999a,b; Tsunoyama et al., 2002; 

Mochizuki et al., 2004; Tsunoyama et al., 2004; Granlund et al., 2009). For instance, it was 

shown that both red and blue light regulate the expression of photosynthesis-associated, 

nuclear-encoded proteins such as CAB and RbcS (Fluhr and Chua, 1986; Karlin-Neumann et 

al., 1988; Reed et al., 1994; Mazzella et al., 2001, Tyagi and Gaur, 2003). Light signals can 

even interact with plastid signals to ensure efficient chloroplast biogenesis (Ruckle et al., 

2007; Larkin and Ruckle, 2008). 

Light-dependent transcription of plastid genes in leaves has been widely studied before 

(Greenberg et al., 1989; Schrubar et al., 1990; Klein and Mullet, 1990; Baumgartner et al., 

1993; Du Bell and Mullet, 1995; Hoffer and Christopher, 1997; Satoh et al., 1997; Shiina et 

al., 1998; Baena-Gonzalez et al., 2001; Chun et al., 2001; Nakamura et al., 2003; Tepperman 

et al., 2006; Dhingra et al., 2006). Well-known examples of light-induced plastid genes are 

psbA, psbD-psbC, petG, rbcL, and atpB (Klein et al., 1988; Haley and Bogorad, 1990; Klein 

and Mullet, 1990; Sexton et al., 1990; Isono et al., 1997). The transcription of the psbD gene, 

which encodes the D2 photosystem II reaction center protein, is activated by blue light. 

Responsible for the light-induced activation is the psbD blue light responsive promoter 

(BLRP; Sexton et al., 1990). This promoter is found in the upstream region of the psbD gene 

of various plant species (Christopher et al., 1992; Wada et al., 1994; Allison and Maliga, 

1995; Kim and Mullet, 1995; To et al., 1996; Hoffer and Christopher, 1997; Kim et al., 1999; 

Thum et al., 2001). The nuclear-encoded sigma factor 5 (SIG5) was shown to be responsible 

for the blue light-induced activation of BLRP in Arabidopsis (Tsunoyama et al., 2002, 2004; 

Mochizuki et al., 2004; Nagashima et al., 2004; Onda et al., 2008). Chun et al. (2001) showed 

that blue light is also mainly responsible for the light-induced activation of chloroplast 

transcription as well as transcription of psbA and rbcL in Arabidopsis and tobacco. Both 

signal transduction pathways are assumed to involve reception of blue light by cryptochromes 

and phytochrome A (Chun et al., 2001; Thum et al., 2001; Mochizuki et al., 2004). 
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1.2.2 Phytohormones 

Phytohormones are small extracellular signal molecules, which can be easily transported 

through the entire plant. Hormones can act on nearby and distant cells and even low 

concentrations can result in significant effects (see review by Davies, 2004). Most 

phytohormones are derivatives of purines, amino acids, fatty acids or belong to the isoprenoid 

group (Figure 4). 

 

 
Figure 4: Different phytohormones regulate all aspects of plant growth and development. 

Most prominent members of the phytohormone family in Arabidopsis thaliana are abscisic acid 
(ABA), indole-3-acetic acid (IAA or auxin), brassinosteroids (BRs), cytokinin, gibberellic acid (GA), 
ethylene, jasmonic acid (JA) and salicylic acid. 
 

Prominent classic plant hormones are auxin, ethylene, cytokinin, gibberellins and abscisic 

acid (see reviews by Zhao, 2010; Lin et al., 2009; Sakakibara, 2006; Razem et al., 2006). 

Other identified plant growth regulators with characteristics of phytohormones include 

brassinolides, salicylic acid and jasmonic acid (see reviews by Asami et al., 2005; Chen et al., 

2009; Gfeller et al., 2010). As part of a coordinated network, plant hormones coordinate 

growth, development and responses to external stimuli. These processes are also influenced 

by various factors like light quality to mediate environmental changes (Weiler, 2003; 
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Vandenbussche et al., 2007; Lau et al., 2010). Phytohormone effects depend, among other 

things, on their site of action, concentration and plant developmental stage. In addition, the 

ratio of hormones plays a major role for their functionality, because different hormones often 

work in tandem. For example, early reports of Skoog and Miller (1957) revealed that shoot 

and root development is affected by the ratio of auxin and cytokinin. 

1.2.2.1 Cytokinin 

Discovered more than fifty years ago, cytokinins are a class of plant hormones, which 

showed the ability to trigger plant cell division in vitro (Miller et al., 1955; Miller et al., 

1956). Cytokinins are adenine derivatives carrying either an isoprene-derived or an aromatic 

side chain at the N6-position (see reviews by Mok and Mok, 2001; Sakakibara, 2006). These 

hormones occur either bound to certain tRNAs or as free cytokinins (Haberer and Kieber, 

2002). Isopentenyladenine (iP), zeatin (Z) and dihydrozeatin (DZ) are the most abundant 

natural occurring isopenoid cytokinins, while aromatic cytokinin such as 6-benzyladenine 

(BA) are only found in selected plant species (Strnad, 1997; Sakakibara, 2006). The 

distribution of the various cytokinins differs significantly within plant species, tissues and 

developmental stage (Haberer and Kieber, 2002). 

Cytokinins affect numerous aspects of development and physiology. For example, 

cytokinin is important for seed germination, leaf senescence, control of shoot and root 

meristem activity, photomorphogenesis and the flower/fruit development (Werner and 

Schmülling, 2009). Increased cytokinin levels improve resistance against several 

environmental stress factors such as drought, salts, cold- and heat-treatment, heavy metals and 

certain pathogens (see overview by Székács et al., 2000). Chloroplasts are among the main 

targets of cytokinin action. Early experiments by Richmond and Lang (1957) showed that 

cytokinins are able to delay the loss of leaf chlorophyll during leaf senescence. Nearly fifty 

years later, Brenner et al. (2005) identified among the genes that responded early to cytokinin 

treatment in Arabidopsis the plastidial genes petA, psbG, ycf10, ycf5 and matK. Cytokinins 

also play a major role in chloroplast differentiation (Chory et al., 1994; Kusnetsov et al., 

1994). 



INTRODUCTION 

9 

1.2.2.2 Cytokinin reception pathway 

Cytokinin signaling resembles the common bacterial two-component signaling systems, 

but is quite more complex (Figure 5; see reviews by To and Kieber, 2008; Santner et al., 

2009). Cytokinin signals are perceived by members of the histidine kinase (AHK) receptor 

family. Three different AHK plasma membrane receptors exist in Arabidopsis: AHK2, 

AHK3, and AHK4/CRE1/WOL (see review by Heyl et al., 2011). The perception of 

cytokinin leads to a phosphorylation of histidine phosphotransfer proteins (AHP), which in 

turn are translocated to the nucleus and further transfer phosphates to response regulator 

proteins (ARR; Suzuki et al., 2002). 

There are two types of response regulators: 10 type-A regulators which are composed 

solely of a receiver domain (Brandstatter and Kieber, 1998; D'Agostino and Kieber, 1999; 

Imamura et al., 1998) and 11 type-B regulators which have an additional output domain fused 

to the receiver (Kiba et al., 1999; Hwang and Sheen, 2001; Sakai et al., 2000). The 

phosphorylation of the type-B regulators leads to the activation of their output domain and to 

the transcriptional induction of cytokinin-induced genes, including those encoding type-A 

regulators (Hwang and Sheen, 2001). The type-A regulators act as repressors of cytokinin 

signaling via feedback regulatory mechanisms, whereas type-B regulators interact with 

various effectors to alter cellular functions (Cytokinin Response Factors, CRF; Hwang and 

Sheen, 2001; Mason et al., 2004; Rashotte et al., 2006). Recently, it was shown that a specific 

CRF domain defines cytokinin response factor proteins in higher plants (Rashotte and 

Goertzen, 2010). 

A large number of cytokinin-regulated genes are present in Arabidopsis thaliana (Rashotte 

et al., 2003; Peng et al., 2009). In addition, Arabidopsis thaliana possesses cytokinin 

oxidase/dehydrogenase enzymes (CKX), which inactivate cytokinins irreversibly in a single 

enzymatic step (Mok and Mok, 2001). Werner et al. (2003) engineered cytokinin–deficient 

transgenic Arabidopsis plants that overexpress members of the CKX gene family to analyze 

cytokinin function in the shoot and root meristem activity. These transgenic plants had 

strongly decreased cytokinin contents compared to wild-type plants. 
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Figure 5: Schematic representation of the cytokinin signaling pathway in Arabidopsis thaliana. 

Phosphorelay events mediate the hormone signaling from cytokinin receptors (AHK2, AHK3 and 
CRE1/AHK4) via AHP proteins to type-B response regulators including ARR1, which co-activate 
cytokinin-regulated gene transcription. The CRF proteins are also activated by cytokinin. AHK: 
Arabidopsis Histidine Kinase, AHP: Arabidopsis Histidine Phosphotransfer protein, ARR: Arabidopsis 
Response Regulator, CRF: Cytokinin Response Factors. Based on Santner et al., 2009. 

 

1.2.2.3 Cytokinin and chloroplasts 

Cytokinins are involved in the control of chloroplast biogenesis and function. Hormone-

regulated processes include chloroplast enzyme activities, pigment accumulation and the rate 

of photosynthesis (see overview by Zubo et al., 2008). Exogenously applied cytokinins 

delayed senescence of detached leaves (Romanko et al., 1969; Zubo et al., 2008). 

Interestingly, many enzymes for cytokinin biosynthesis as well as some cytokinins are present 

in chloroplasts (Benková et al., 1999; Kasahara et al., 2004; Polanská et al., 2007). 

Chloroplasts are also involved in the biosynthesis of abscisic acid, which acts as a cytokinin 

antagonist (Khokhlova et al., 1978; Koiwai et al., 2004). Cytokinin effects on the expression 

of nuclear genes encoding chloroplast proteins may at least in part account for plastidial 

responses (Chory et al., 1994; Kusnetsov et al., 1994; Hutchison and Kieber, 2002; Rashotte 

et al., 2003; Brenner et al., 2005; Kiba et al., 2005). 
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Recent data show that the application of cytokinin increased the transcription of some 

plastidial genes such as petA, psbA, matK, rrn16, and petD in leaves of barley, tobacco and 

Arabidopsis thaliana (Zubo et al., 2008; Brenner et al., 2005; Hertel, 2009). For example, 

total chloroplast transcription in barley was stimulated by a plastidial cytokinin-binding 

protein (zeatin-binding protein; ZBPChl) in an age-dependent manner (Kulaeva et al., 2000; 

Lyukevich et al., 2002). Many studies indicate a role of cytokinin in the regulation of 

plastidial transcript levels (Lerbs et al., 1984; Stabel et al., 1991; Masuda et al., 1994; Hande 

and Jayabaskaran, 1996; Kasten et al., 1997). Cytokinin was able to activate chloroplast 

transcription in Arabidopsis and in tobacco (Hertel, 2009). The stabilization of transcripts 

occurred very fast after 15 min of incubation with cytokinin, as indicated by increasing steady 

state levels. Chloroplast transcription however, responded much slower to the hormonal 

stimulus showing increased activity after two hours in Arabidopsis and three hours in tobacco. 

Microarray analysis showed that a high percentage of cytokinin-regulated genes are 

involved in transcriptional control or are associated with developmental processes (Brenner et 

al., 2005). Furthermore, transcripts of five plastid genes (petA, psbG, ycf10, ycf5, matK) were 

up-regulated early on, indicating either a rapid transfer of the signal to the chloroplasts or a 

direct, plastidial perception of the cytokinin signal. These results suggest that cytokinin might 

act under certain conditions on transcript accumulation, modification of transcripts, and 

translation in plastids (Brenner et al., 2005). 

1.3 Aim of this work 

Several studies describe the effects of light and/or hormones on chloroplast development 

and function (see 1.2.1 and 1.2.2). Not much is known though about regulation of organellar 

gene expression in response to light signals or exogenous application of cytokinin. However, 

the molecular mechanisms how the plant hormone cytokinin and different light qualities 

unfold their effects on organellar gene transcription are still under investigation. 

Therefore, quantitative real-time PCR analyses was applied in the present study to gain 

more information about light-induced expression of organellar RNA polymerases, 

accumulation of transcripts of genes encoding the nuclear-encoded organellar phage-type 

RNA polymerase (RpoT) and subunits of the plastidial eubacterial-type RNA polymerase 

(rpoB operon). To learn more about photoreceptors and light-related pathways involved in 

light-induced gene expression, wild-type seedlings and different photoreceptor mutants will 

be analyzed under selected light qualities. 
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To gain more information about the signaling pathways involved in cytokinin action in 

chloroplasts, activation of transcription of plastidial genes will be analyzed in several 

cytokinin-related mutants by run-on transcription assays in comparison to wild-type 

seedlings. Furthermore, the influence of cytokinin on cellular parameters such as chloroplast 

size, number, and DNA content will be studied. For studying the importance of sigma factors 

in cytokinin-dependent regulation of chloroplast transcription, accumulation of plastidial 

transcripts will be analyzed for activation by cytokinin in sigma factor mutants by run-on 

assays and quantitative real-time PCR in comparison to wild-type plants. 



MATERIAL AND METHODS 

13 

2 Materials and Methods 

2.1 Materials 

Chemicals and biochemicals were generally purchased from Biozym, ICN Biomedical, 

Roth, Merck, Serva, Sigma-Aldrich and Qiagen, unless specified otherwise. Ultrapure water 

was obtained from a USF Purelab Plus system. Sterilization of solutions, buffers and 

hardware, as well as inactivation of genetically modified material was carried out in the 

Varioklav 75 S steam sterilizer (Thermo Scientific) at 120 °C and 55 kPa for 20 min. 

 

2.1.1 Providers 

AppliChem AppliChem GmbH, Darmstadt, Germany 
Applied Biosystems Applied Biosystems, Weiterstadt, Germany 
Ambion Ambion, Inc., Austin, TX, USA 
Amersham Biosciences Amersham Biosciences Europe GmbH, Freiburg, Germany 
BD Biosciences BD Biosciences, Franklin Lakes, NJ, USA 
Biometra Biometra GmbH, Göttingen, Germany 
Bio-Rad Bio-Rad Laboratories, Richmond, VA, USA 
Biozym Biozym Diagnostik GmbH, Hameln, Germany 
Braun Braun GmbH, Kronberg, Germany 
Calbiochem Calbiochem Merck Biosciences GmbH, Schwalbach, Germany 
CLF CLF Plant Climatics GmbH, Wertingen, Germany 
Colgate-Palmolive Colgate-Palmolive Company, New York, NY, USA 
Duchefa Duchefa Biochemie B.V., Haarlem, The Netherlands 
DuPont DuPont de Nemours GmbH, Bad Homburg, Germany 
Epicentre Epicentre Biotechnologies, Madison, WI, USA 
Eurogentec Eurogentec, Seraing, Belgium 
Everlight Everlight Electronics, Taipeh, Taiwan 
Fermentas Fermentas GmbH, St. Leon-Rot, Germany 
Franz Eckert GmbH Franz Eckert GmbH, Waldkirch, Germany 
GE Healthcare GE Healthcare Europe GmbH, Freiburg, Germany 
Heraeus Heraeus, Hanau, Germany 
ICN ICN Biochemicals Inc., Ohio, Germany 
Invitrogen Invitrogen GmbH, Karlsruhe, Germany 
Jenoptik Jenoptik L.O.S. GmbH, Jena, Germany 
Macherey-Nagel Macherey-Nagel, Düren, Germany 
Metabion metabion international AG, Martinsried, Germany 
Millipore Millipore Corp., Bedford, USA 
Nalgene Nalgene®Labware, Rochester, NY, USA 
Operon Operon Biotechnologies GmbH, Köln, Germany 
peqLab peqLab Biotechnologie GmbH, Erlangen, Germany 
Perkin Elmer Perkin Elmer LAS GmbH, Rodgau, Germany 
Philips Philips Electronics, Amsterdam, The Netherlands 
Pierce Pierce, Rockford, IL, USA 
Promega Promega Corp., Madison, WI, USA 
Qiagen Qiagen, Hilden, Germany 
Roche Roche Diagnostics GmbH, Mannheim, Germany 
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Roth Carl Roth GmbH & Co. KG, Karlsruhe, Germany 
Serva Serva Feinbiochemika, Heidelberg, Germany 
Sorvall Kendro Laboratory Products GmbH, Langenselbold, Germany 
Sigma-Aldrich Sigma-Aldrich Corporation, St. Luis, MO, USA 
SMB GmbH Services in Molecular Biology GmbH, Berlin, Germany 
Stratagene Stratagene, La Jolla, CA, USA 
Thermo Scientific Thermo Scientific LED GmbH, Langenselbold, Germany 
USF USF, Seral Reinstwassersysteme GmbH, Germany 
Whatman Whatman Paper, Maidstone, UK 
Zeiss Carl Zeiss MicroImaging GmbH, Jena, Germany 

 

2.1.2 Plant material 

Arabidopsis thaliana wild-type plants were grown from seeds of the ecotype Columbia 

(Col-0) and Landsberg erecta (Ler). Seeds of photoreceptor mutants (Table 1) were kindly 

provided by Prof. Hellmann (Freie Universität Berlin) and Prof. Batschauer (Philipps-

Universität Marburg). Seeds of cytokinin-related mutants (Table 2) were kindly provided by 

Dr. Riefler and Prof. Schmülling (Freie Universität Berlin). Seeds of sigma factor mutants 

(Table 3) were ordered via GABI-Kat and NASC, while sig2 and sig4 mutants were kindly 

provided by Dr. Schweer (Ruhr-Universität Bochum). 

 
Table 1: Employed photoreceptor mutant plants. 

name mutation mutant 
denotation 

ecotype 
background 

phyA knockout of the gene phyA, leading to plants lacking the 
photoreceptor phytochrome A 

phyA-201 Ler 

phyB knockout of the gene phyB, leading to plants lacking the 
photoreceptor phytochrome B 

phyB-5 Ler 

phyA/phyB knockout of the genes phyA and phyB, leading to plants 
lacking the photoreceptors phytochrome A and B 

phyA-201/phyB-5 Ler 

cry1 knockout of the gene cry1, leading to plants lacking the 
photoreceptor cryptochrome 1 

cry1-1 Ler 

cry2 knockout of the gene cry2, leading to plants lacking the 
photoreceptor cryptochrome 2 

fha-1 Ler 

cry1/cry2 knockout of the genes cry1 and cry2, leading to plants 
lacking the photoreceptors cryptochrome 1 and 2 

cry1-1/fha-1 Ler 

hy5 knockout of the gene hy5, leading to plants lacking the 
transcription factor HY5 

hy5 Ler 

 
Table 2: Employed cytokinin-related mutant plants. 

name mutation mutant 
denotation 

ecotype 
background 

cre1 knockout of the gene cre1, leading to plants lacking the 
cytokinin receptor histidine kinase 1 

cre1-2 Col-0 

ahk2 knockout of the gene ahk2, leading to plants lacking the 
cytokinin receptor histidine kinase 2 

ahk2-5 Col-0 

ahk3 knockout of the gene ahk3, leading to plants lacking the 
cytokinin receptor histidine kinase 3 

ahk3-7 Col-0 
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ahk2/cre1 knockout of the genes ahk2 and cry1, leading to plants 
lacking the cytokinin receptors histidine kinase 2 and 1 

ahk2-5/cre1-2 Col-0 

ahk3/cre1 knockout of the genes ahk3 and cry1, leading to plants 
lacking the cytokinin receptors histidine kinase 3 and 1 

ahk3-7/cre1-2 Col-0 

ahk2/ahk3 knockout of the genes ahk2 and ahk3, leading to plants 
lacking the cytokinin receptors histidine kinase 2 and 3 

ahk2-5/ahk3-7 Col-0 

ARR1 fusion of the B-type response regulator ARR1 to the 
repressor motif SRDX, increase resistance to cytokinin 

35S::ARR1-SRDX Col-0 

CKX1 leading to cytokinin-deficient transgenic plants  35SAth::CKX1 Col-0 

 
Table 3: Employed sigma factor mutant plants.  

name mutation mutant 
denotation 

ecotype 
background 

sig1 knockout of the gene sig1, leading to plants lacking the 
sigma factor 1 

sig1-1 Col-0 

sig2 knockout of the gene sig2, leading to plants lacking the 
sigma factor 2 

sig2-1 Col-0 

sig3 knockout of the gene sig3, leading to plants lacking the 
sigma factor 3 

sig3-4 Col-0 

sig4 knockout of the gene sig4, leading to plants lacking the 
sigma factor 4 

sig4-1 Col-0 

sig5 knockout of the gene sig5, leading to plants lacking the 
sigma factor 5 

sig5-1 Col-0 

sig6 knockout of the gene sig6, leading to plants lacking the 
sigma factor 6 

sig6-2 Col-0 

 

2.1.3 Oligonucleotides 

Oligonucleotides were provided by Sigma-Genosys (Sigma-Aldrich) or Operon. Sequences 

of oligonucleotides are specified in the chapters, respectively. 

 

2.1.4 Software 

Primers for quantitative real-time PCR were designed using the ProbeFinder Software of 

the Universal ProbeLibrary Assay Design Center (Roche Applied Science, 

https://www.roche-applied-science.com/sis/rtpcr/upl). Design of text and graphics was carried 

out using Microsoft Office Word 2007, Microsoft Office Excel 2007, and Microsoft Office 

Power Point 2007. Statistical significance of data was investigated using GraphPad QuickCalc 

(GraphPad Software Inc, San Diego, USA, http://www.graphpad.com/quickcalcs/index.cfm). 

Radioactive signals were detected and quantified by scanning using Molecular Imager FX and 

Quantity One software, version 4.6.2 (Bio-Rad). Quantitative real-time PCR data were 

analyzed using the Sequence Detection Software v1.4 (Applied Biosystems). Flow cytometric 

data were analyzed using CELL QUEST Software v3.3 (BD Biosciences). 
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2.2 Methods 

2.2.1 Surface sterilization of Arabidopsis thaliana seeds 

Arabidopsis thaliana seeds were incubated in sterilization solution and shaken gently. 

After seven minutes they were harvested in a microcentrifuge and the supernatant was 

discarded. Seeds were then washed five times in sterile water. After the last washing step 

seeds were transferred to a petri dish with sterilized SEA medium. 

 
sterilization solution: 32 % (v/v) DanKlorix (Colgate-Palmolive); 0.8 % (w/v) N-lauryl-sarcosine 
  

2.2.2 Plant growth 

Seedlings for light induction analyses (red, blue and green light) 
 

Surface-sterilized Arabidopsis thaliana (ecotype Landsberg erecta) seeds were sown on 

sterilized SEA medium containing sucrose (10 g/L). Plants were grown in complete darkness 

at 23 °C. After seven days, a fraction of the seedlings was harvested directly as dark controls. 

The remaining etiolated seedlings were put into light of the respective wavelength and 

harvested after one, four, six, twelve and twenty-four hours. Different light regimes were 

achieved by placing LED arrays in a darkened chamber. Illumination for all experiments was 

obtained with light-emitting diode blue light (470 ± 35 nm; 4 µmol m-2 s-1) lamps (264-

7SUBC/C470/S400-A4; Everlight), red light (631 ± 20 nm; 11 µmol m-2 s-1) lamps 

(7343USRC/TL; Everlight) and green light (530 ± 35 nm; 3 µmol m-2 s-1) lamps (246-

7SUGC/S400-A5; Everlight). 

 
SEA medium: 0.44 % (w/v) MS basal medium (M0222; Duchefa); 0.05 % (w/v) MES in 

ultrapure water; 1.5 % (w/v) plant agar (P1001.1000; Duchefa); pH 5.7  
 
 
Seedlings for light induction analyses (white light) 
 

Surface-sterilized Arabidopsis thaliana (ecotype Landsberg erecta) seeds were sown on 

sterilized SEA medium containing sucrose (10 g/L). Plants were grown in complete darkness 

at 23 °C. After seven days, part of the seedlings was harvested directly as dark controls. The 

remaining etiolated seedlings were put into the light and harvested after one, four, six and 

twelve hours. Light intensity was set at  270 µmol m-2 s-1 (Lamp Master HPI-T Plus 400W 

E40; Philips). 
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Seedlings for cytokinin experiments (sown on net) 
 

Arabidopsis thaliana (ecotype Columbia Col-0 and Landsberg erecta) seeds were sown on 

top of polyamide-nets (mesh size 500 µM; Franz Eckert GmbH) laid out on a vermiculite/soil-

mix (1:1) in petri dishes. Plants were grown at 23 °C under illumination of 270 µmol m-2 s-1 

from luminescent tubes (Lamp Master HPI-T Plus 400W E40; Philips) with a 16-h 

photoperiod. After twelve days seedlings were cut and washed twice in water to remove 

residual soil particles. The seedlings were incubated in water under continuous illumination of 

270 µmol m-2 s-1 for 24 h. Subsequently, the seedlings were transferred to water or a solution 

of the synthetic cytokinin 6-benzyladenin (BA; 2.2 x 10-5 M; ICN) and kept for 6 h under the 

same light conditions. 

 
Seedlings for cytokinin experiments (sown on medium) 
 

Surfaced-sterilized Arabidopsis thaliana (ecotype Columbia Col-0) seeds were sown on 

sterilized Murashige and Skoog (MS) medium. For cytokinin treatment, sterilized seeds were 

sown on MS plates supplemented with 5 mM BA or without BA and grown for 11 days. 

Plants were grown at 23 °C under illumination of 270 µmol m-2 s-1 from luminescent tubes 

(Lamp Master HPI-T Plus 400W E40; Philips) with a 16-h photoperiod. 

 
MS medium: 0.44 % (w/v) MS basal medium (M0222; Duchefa); 0.05 % (w/v) MES in 

ultrapure water; 1 % (w/v) plant agar (P1001.1000; Duchefa); pH 5.7 
 
 

2.2.3 Microscopy 

For observation of chloroplasts in Arabidopsis leaf cells, ten first leaves from ten days-old 

plants grown on MS plates were cut and solubilized in organelle isolation solution. Samples 

were analyzed using a light microscope (Axioskop; Zeiss) with an oil immersion objective 

(Plan-NEOFLUAR 100 x/1.30 Oil; Zeiss) or a 40 x objective (Plan-NEOFLUAR 40 x/0.75; 

Zeiss). For the determination of the diameter of chloroplasts at least 100 chloroplasts were 

analyzed and for the comparison of the number of chloroplast per mesophyll cell at least 17 

cells were analyzed. 
 

isolation solution: 0.33 M sorbitol; 50 mM HEPES (pH 7.6); 2 mM EDTA; 1 mM MgCl2;  
0.1 % BSA; 1% PVP-40; 5 mM ß-mercaptoethanol 
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2.2.4 Isolation of nucleic acids 

2.2.4.1 Isolation of total DNA 

Total DNA from Arabidopsis samples was isolated using the DNeasy Plant Mini Kit 

(Qiagen) according to the manufacturer‗s protocol. The concentration of the DNA was 

determined spectrophotometrically using the Nanodrop® ND-1000 system (peqLab). 

 

2.2.4.2 Isolation of total RNA 

Total RNA from etiolated Arabidopsis samples was isolated using the RNeasy Plant 

Mini Kit (Qiagen) with Buffer RLT according to the manufacturer‘s protocol. Total RNA 

from green tissue was isolated using the TRIzol Reagent (Invitrogen) according to the 

manufacturer‘s protocol. RNA quality was controlled by denaturing agarose gel 

electrophoresis (see 2.2.5) and concentrations were quantified spectrophotometrically. 

 

2.2.5 Analytical agarose gel electrophoresis of RNA  

RNA samples were mixed with RNA loading dye, denatured at 95 °C for 10 min, 

incubated on ice for 5 min, and subsequently separated in a 1 % (w/v) agarose gel containing 
1/40 vol formaldehyde in 1x MEN running buffer. The voltage was set at 2.5 - 5 V/cm. RNA 

bands were subsequently visualized under UV-light excitation in the Gel Doc XR System 

(Bio-Rad). 

 
10x MEN: 200 mM MOPS; 50 mM NaAc; 10 mM EDTA; pH 7.0 with NaOH 
RNA loading dye: 1 ml formamide; 350 l formaldehyde, 200 l 10x MEN; 400 l glycerol;  

5 l 0.5 M EDTA, pH 8.0; 10 l 10 mg/ml EtBr; 2 mg bromophenol blue;  
2 mg xylene cyanol; ultrapure water ad 2 ml 

 

2.2.6 The reverse transcription of total RNA 

QuantiTect Reverse Transcription Kit (Qiagen) was used to eliminate remaining 

genomic DNA from the RNA samples and subsequently reverse-transcribe the RNA 

according to the manufacturer‘s protocol. 
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2.2.7 Quantitative real-time PCR with probes 

Primer pairs for quantitative real-time PCR of cDNA samples were designed to yield 

amplification products of 70-100 bp. The PCR reactions were carried out in a 7500 Real-Time 

PCR System (Applied Biosystems) using the TaqMan Fast Universal PCR Master Mix 

(Applied Biosystems) and the Universal Probe Library Set, Arabidopsis (Roche Applied 

Science) for detection according to the manufacturers protocols. Each reaction contained 

50 ng cDNA, 1 µM of each primer (Table 4) and 100 nM of the particular probe. The cycle 

protocol consisted of an initial step at 95 °C for 10 min to activate the polymerase, followed 

by 40 cycles of 15 s at 95 °C and 1 min at 60 °C. 

To verify removal of genomic DNA from cDNA samples, a negative control (without 

addition of reverse transcriptase) was included for each reverse transcribed RNA sample. 

Each of the biological and technical replicates was analyzed in triplicates per experiment. In 

addition, no-template controls (NTC) were included for each primer pair. Data were analyzed 

using the Sequence Detection Software v1.4 (Applied Biosystems). All quantitations were 

normalized to the amount of nuclear UBQ11 transcripts as internal standard using the 

CT method (2(-C
T
) = relative amount of transcripts; CT = CT 

target – CT 
internal standard). 

 

Table 4: Primers used in quantitative real-time PCR analyses (Roche Applied Science, USA). 

gene name nucleotide sequence (5’ 3’) position  probe # 
RpoTm  ACAGAAATTGCGGCTAGGG 

GGCATATGTGGCATTTGGA 
Chromosome I 6 

RpoTmp  CGATGCCATTGAACAAGAGAT 
TGTTCCTTCATAGAAGTTTCATTTTC 

Chromosome V 91 

RpoTp  TTGCAGAAGTGAAAGACATCTGA 
ATCGACCGTGTTACCCTCTC 

Chromosome II 21 

UBQ11  CTTATCTTCGCCGGAAAGC 
GAGGGTGGATTCCTTCTGG 

Chromosome IV 88 

cab1 TGCTGCACTACTCAACCTCAA 
AAAGCTTGACGGCCTTACC 

Chromosome I 52 

elip1 TTGCCGAAGTCACCATCTC 
GCAAGTCGCTAAACTTTGTGC 

Chromosome III 63 

AIP CGGTTTCGTACTTGGACCAG 
TTGGATGATCAAATCCAAACTCT 

Chromosome IV 13 

sig1 TCGCAGAAGAAAGTTAGAAATGC 
CCAGGGAGACCATTCAAAGA 

Chromosome I 110 

sig2 CGATGGTCCTTCCACTGAG 
CTGCTTCATCGCTTGTGAGA 

Chromosome I 110 

sig3 TCCCCATTCCCAAACAGA 
CACTAAAATACGTGGCCGAGA 

Chromosome III 101 
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sig4 CGCATGACATTGCAGGAA 
TTCATGTGTTCCCTTTTCACC 

Chromosome V 82 

sig5 CAAGTTGATGCAACCTATGAAGG 
CGGCTATTTCAGCTTCCCTA 

Chromosome V 103 

sig6 AATCGTGGACTCAACTTTCAGG 
ACTTTTCATTAGCCCCATGC 

Chromosome II 4 

psbD  TGCGACCTTATAATGCAATCG 
GGAAGACAGAAACAAAAACAGCA 

33146 
33185 

126 

rpoB  TCTCGGTCCGAAAAGTGC 
CGGGAACCCCTGAATCTAA 

24607 
24658 

154 

psaA ACACAACTGTCATTGTTCACACA 
GCAGCAGCACAACTATAGAG 

40774 
40816 

138 

 

2.2.8 Quantitative real-time PCR with SYBR Green 

Primer pairs were designed to yield amplification products of 70-100 bp. The PCR 

reactions were carried out in a 7500 Real-Time PCR System (Applied Biosystems) using the 

Power SYBR Green PCR Master Mix (Applied Biosystems) for detection according to the 

manufacturers protocols. Each reaction contained 0.1 ng total DNA and 1 µM of each primer 

(Table 5). The cycle protocol consisted of an initial step at 50 °C for 2 min, than a step at 

95 °C for 10 min, followed by 40 cycles of 15 s at 95 °C, 30 s at 60 °C and 45 s at 72 °C. 

To verify the specificity of DNA amplification products a dissociation curve was added for 

each of the 96 wells by subjecting the samples to a heat-denaturation over a temperature 

gradient from 60 °C to 95 °C at 0.03 °C/s. Each of the biological replicates was analyzed in 

two technical repetitions and a triplicate was used for each sample. In addition, no-template 

controls were included for each primer pair. Data were analyzed using the Sequence 

Detection Software v1.4 (Applied Biosystems). All quantitations were normalized to the 

amount of the nuclear-encoded single-copy gene RpoTm (gDNA) as internal standard using 

the CT method (2(-C
T
) = relative amount of transcripts; CT = CT 

target – CT 
internal standard). 

 
Table 5: Primers used in quantitative real-time PCR analyses (SYBR Green). 

gene name nucleotide sequence (5’ 3’) 5’ position 
RpoTm  AGCCTGTGCGTAATGCTATTCA 

GCCATCTTATCAGCCGGTAACT 
Chromosome I 

clpP TTGGTAATTGCTCCTCCGACT 
TATGCAATTTGTGCGACCC 

70767 
70693 

psbA AACTAAGTTCCCACTCACGACC 
CATCCGTTGATGAATGGCTAT‘ 

1063 
1146 
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2.2.9 Detection of proteins by Western blotting 

Protein samples prepared by homogenizing 7-d-old etiolated seedlings of Arabidopsis 

wild type and the phytochrome-deficient mutants were fractionated by SDS-PAGE (10 µg of 

total protein on a 7.5% PAA-gel) and blotted to a Hybond-C membrane (Amersham 

Bioscience). Samples were analyzed and the equal loading and transfer of proteins was 

monitored by staining the blot with Ponceau S (Sigma-Aldrich). The blot was probed with 

anti-Arabidopsis PHYA monoclonal antibody (Table 6). The PHYA antibody, Blocking 

Buffer I (AppliChem; no. A7099) and CrossDown Buffer (AppliChem; no. A6485) were 

kindly provided by Dr. Czarnecki (Humboldt Universität Berlin). Preparation of extracts from 

seedlings and immunochemical detection was carried out following the standard protocols as 

described in Sambrook and Russell (2001). 

 
Table 6: Antisera.  

antibody properties dilution  supplier 
anti-phyA raised against phytochrome A in Arabidopsis 1:2000 O. Czarnecki,  

HU Berlin  
secondary 
antibody 

anti-rabbit IgG-horseradish peroxidase conjugate 1:10000 Sigma-Aldrich 

 

2.2.10 Blotting of chloroplast genes 

Gene fragments were dotted onto nylon Hybond-N+ membrane (Amersham Bioscience). 

One µg of DNA of each gene fragment treated as described by Zubo and Kusnetsov (2008) 

was loaded onto the membrane in two replicates using a Bio-Dot apparatus (Bio-Rad). The 

gene-specific fragments used were kindly provided by Dr. Hertel and Dr. Zubo (Humboldt 

Universität Berlin), and are listed in Table 7. 

 
Table 7: Chloroplast genes analyzed in run-on assays. 

denotation nucleotide sequence (5’3’) 5’ position in ptDNA 
atpB AGGTCCTGTCGATACTCGCA 

ATCTAAAGGATCTACCGCTGGATA 
53022 
53766 

atpF GATTCTTTCGTTTACTTGGGTCAC 
TTTAATATCCTCTGCTTTCGGTTATC 

11544 
12428 

atpH TTTCTGCTGCTTCGGTTATTG 
GCTAATGCTACAACCAGGCCATA 

13275 
13479 

ndhB AATTTCTCAAACGAACCGCACTC 
TCCTATTCATGGGGATTCCGTAA 

96389 
97249 

ndhI GTCAACAAACCCTACGAGCTGC 
TCAATTCGTGACGATCATAAGTGG 

119278 
119649 

petA CATCCATTTCAAGTGCATATCC 
CTTATTATCCCTCCTGCCGTAG 

61745 
62300 
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petB TAGTAAATATGTTCCTCCGCATGTC 
GACGGCCGTAAGAAGAGGTAAT 

75710 
76235 

petD TAGCTAAAGGTATGGGTCACAATTATTAC 
AATCAAAAAGACGGTTGTCGC 

77242 
77594 

psaA GCAGCAGCACCAACTATGAGA 
GATCCTAAAGAAATACCGCTTCCTC 

40667 
41170 

psaB CGGGTCATATGTATAGAACGAACTTTG 
CAAGCCGAAATATCACAAGTACCAC 

38234 
39092 

psaC ATTAGAAATGATACCTTGGGATGGAT 
TGTTTCATGCCATAAATAAACTCGAAC 

117392 
117536 

psbA ACTTCTGTTTTTATTATCGCATTCATTG- 
TCCATACCAAGGTTAGCACGG 

515 
1368 

psbD GTAGCGGCTATATTTCGATTCATCC 
GCCATCCAAGCACGAATACCT 

33260 
33702 

psbE TTCATTGCGGGCTGGTTATT 
CAAAGGATCAAAACGGCCTGT 

64161 
64289 

psbK TAAAAGGATTTTTGATTGAGTAAGTTCAAC 
AAGAAAGAAAAGAGGTATTACGGGC 

6915 
7160 

rbcL ATATCTTGGCAGCATTCCGAGTAACT 
AGTATTTGCGGTGAATCCCCC 

55157 
55955 

accD ATGGTTGGGATGAGCGTTCT 
AAGTACCCGGATCAATCGAAA 

57223 
57885 

clpP CCGACTAGGATAAAGGATGCTATTG 
CCAAGAGGTTGATACCGAAATC 

70690 
70908 

rpoB TATTATATGATAGCGGCAGGAAATT 
ATAGGAGGATTCTTTCGCCACT 

24542 
25372 

rps4 ATCTTAGAAACCAATCACGCTCC 
AAACCGACGCATTTCCTATCT 

45314 
45779 

rps8 GATCGACTAACATCACGGAAAGTATTG 
TCTCGGTCTGTCATTATACCTTGA 

80147 
80423 

rps14 CCCGAAGGATGTGTCCAGATAG 
AGAAGAAGAGGCAAAAATTGGAAAA 

37009 
37212 

rps16 TCGCACTAACCCTAAATCCTTACTC 
CAAACTAGAGGAATGTTATGGTAAAACTTC 

5953 
6205 

rnn16 ATTGGGCGTAAAGCGTCTGTA 
GTAACGACTTCGGGCATGG 

101522 
102402 

trnK 3’-intron ACATCAAAATAAGATTGTACCGATCAG 
TGACAACAGTGTATGGACCAAATATAA 

4154 
4485 

trnK 5’-intron AGAAGCGAATCCACATACATAGAAATA 
ATAAGGAACCAAAGAAATTGAGTTTTC 

1657 
1884 

trnL AACGATCTCAAAAATGACGACC 
GGGAGTAGAGCTGGGGATAGAG 

47232 
47501 

ycf1 AATTCGGTCGTTGTGGTCGG 
TGCTAAATGCAGAGGCGCA 

109484 
109665 

ycf2 GATAGGAAGGGCTGTTGCACA 
5GGGTCGAGGACTCCTTCTCC 

92223 
92703 

ycf5 TTAGTACCAGCTCTCCAGTCCC 
ATAAAACCGATCAAAGCCACAA 

114838 
115368 

ycf10 TGGAATACTAGACAATGCGAAACTT 
TACAAGTGACGGAGATACACGATT 

60855 
61403 
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2.2.11 Chloroplast isolation 

Arabidopsis thaliana seedlings (3-4g) were homogenized in 180 ml isolation buffer. The 

homogenate was squeezed through two layers of Miracloth (Calbiochem-Behring) and 

centrifuged at 2,000g for 6 min. The pellet was resuspended in 4 ml isolation buffer and 

fractionated in a 35%/70% discontinuous Percoll gradient by centrifugation at 6,500g for 

15 min. Intact chloroplasts were collected at the interface between 35% and 70% Percoll, 

washed and resuspended in 0.5 ml isolation buffer. All procedures were performed at 4° C. 

The number of chloroplasts in the samples was determined by counting the organelles with a 

light microscope using a Fuchs-Rosenthal hemocytometer (Brown and Rickless, 1949). The 

chloroplasts were used for further run-on transcription. 

 
percoll buffer: 15g PEG-8000; 2.5g BSA; 2.5g Ficoll; ß-mercaptoethanol-free isolation buffer 

ad 500 ml 
isolation buffer: 5 mM ß-mercaptoethanol; 50 mM Tricine pH 8.0; 2 mM EDTA; 0.33 M 

sorbitol 
 

2.2.12 Run-On Transcription Assay 

Run-on transcription assays with 5x107 lysed plastids were carried out in a 100 µl volume 

by the method of Mullet and Klein (1987) and modified as described by Zubo (2008). 

Transcription was performed for 10 min at 25 °C in transcription buffer. The reaction was 

stopped by the addition of an equal volume of stop buffer. 
32P-labeled transcripts were isolated from chloroplasts as described by Zubo and 

Kusnetsov (2008) and hybridized to plastid genes blotted on a nylon membrane in a blotting 

buffer. Radioactive signals were detected and quantified by scanning using the Molecular 

Imager FX and Quantity One software (Bio-Rad). Cytokinin effects on transcription were 

considered significant if the signals differed at least twofold from the water control. Every 

experiment was repeated at least two times. 
 

transcription buffer: 50 mM Tris-HCl pH 8.0; 10 mM MgCl2; 0.2 mM CTP, GTP and ATP;  
0.01 mM UTP; 50 mCi [α-32P] UTP (Amersham); 20 units RNase- 
Inhibitor (Fermentas); 10 mM β-mercaptoethanol 

stop buffer: 50 mM Tris-HCl pH 8.0; 25 mM EDTA; 5% sarcosyl 
blotting buffer: 250 mM Na2HPO4; 7% SDS; 2.5 mM EDTA 
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2.2.13 Flow cytometric analysis of nuclear endo-polyploidy 

Relative gene copy numbers of the chloroplast genes psbA and clpP were determined by 

quantitative real-time PCR (see 2.2.8). In addition, for the correct calculation of gene copies 

per cell, knowledge of nuclear ploidy level was required. Flow cytometric measurements and 

sorting of nuclear suspensions were carried out as described by Barow and Meister (2003) 

using a FACS Aria flow cytometer (BD Biosciences). The C values of about 10,000 nuclei 

were measured per leaf sample, using in total three independent leaf samples per experiment. 

The mean C value was estimated as a weighted average using the formula [(2n2C) + (4n4C) 

+ (8n8C) …]/[n2C + n4C + n8C …], where n is the number of nuclei and C is the ploidy number 

(2C, 4C, 8C, …). Flow cytometric analysis was performed by Emilia Cincu (Humboldt 

Universität Berlin) and Dr. Fuchs (Leibniz Institute of Plant Genetics and Crop Plant 

Research, Gatersleben, Germany). 
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3 Results 

3.1 Analysis of light effects on the organellar gene expression 

Higher plants are sessile organisms and therefore possess a wide number of photoreceptors 

for detection of different light qualities in their environment (Chen et al., 2004; Chory et al., 

2010). Photoreceptor mutations lead to distinct phenotypes in Arabidopsis (Figure 6; 

Koornneef et al., 1980, 1991; Ahmad and Cashmore, 1993; Nagatani et al., 1993; Reed et al., 

1994; Oyama et al., 1997; Guo et al., 1998; Ahmad et al., 1998a). Phenotypic differences of 

wild-type plants and photoreceptor mutant seedlings (phyA, phyB, phyA/phyB, cry1, cry2, 

cry1/cry2, hy5) grown for seven days under a 16-h photoperiod were compared to those 

grown for seven days in complete darkness and are presented in Figure 6. While phyA and 

cry2 mutants exhibited no difference compared to the wild type under light condition, all 

others showed elongated hypocotyls growth (Figure 6A; Batschauer et al., 2007; Franklin and 

Quail, 2010). Furthermore, in cry1/cry2 mutants opening of the hypocotyl hook was slightly 

delayed. As expected, all dark grown seedlings showed the typical etiolated phenotype 

(Figure 6B), which is characterized by an elongated hypocotyl, not fully developed 

cotyledons within an apical hook, and the lack of chlorophyll (Franklin and Quail, 2010). 
 

 
Figure 6: Phenotypic differences of Arabidopsis wild type and photoreceptor mutants after seven 
days in light or darkness. 

Seedlings of Arabidopsis Landsberg erecta (Ler) wild type and photoreceptor mutants (phyA, phyB, 
phyA/phyB, cry1, cry2, cry1/cry2, hy5) were grown for seven days in white light (A) with a 16-h 
photoperiod (270 µmol m-2 s-1) or in complete darkness (B). Bar = 5 mm. 
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In addition, phenotypic differences of wild-type and photoreceptor mutant plants grown for 

seven days in complete darkness and then illuminated for twenty-four hours are presented in 

Figure 7. Interestingly, red, blue, or green light illumination for twenty-four hours was not 

sufficient to start a visual de-etiolation of the seedlings. The hypocotyl hook was still closed 

in all seedlings. This might be due to the short period of illumination or the use of 

monochromatic light instead of white light. Therefore, the influence of different light qualities 

on the expression of light-inducible control genes was tested in wild-type plants. 

 

 
Figure 7: Etiolated wild type and photoreceptor mutants after 24 h exposure to different light 
conditions. 

Seedlings of Arabidopsis Landsberg erecta (Ler) wild type and photoreceptor mutants (phyA, phyB, 
phyA/phyB, cry1, cry2, cry1/cry2, hy5) were grown for seven days in complete darkness and then 
exposed for twenty-four hours to (A) red light (11 µmol m-2 s-1), (B) blue light (4 µmol m-2 s-1) or 
(C) green light (3 µmol m-2 s-1). Bar = 5 mm. 
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3.1.1 Expression analysis of light-inducible control genes for Ler wild type 

No phenotypic differences were observed for wild-type plants and photoreceptor mutants 

after red, blue, and green light illumination. To further examine if the light system used was 

sufficient to generate clear light signals, the light-regulated expression of three specific light-

inducible genes was studied in Landsberg erecta (Ler) wild type (Figure 8). As control for red 

light inducible changes in the gene expression, the gene encoding auxin-induced protein (AIP) 

was chosen, for blue light the gene encoding chlorophyll A/B binding protein 1 (cab1) and for 

green light the gene encoding early light induced protein1 (elip1). Transcript accumulation 

was analyzed using quantitative real-time PCR with fluorescent TaqMan® probes to allow 

highly sensitive and specific quantification of gene expression. Light effects on transcript 

levels were considered significant if the transcript accumulation differed at least 2-fold from 

the transcript levels in darkness. 
 

 
Figure 8: Light-induced changes in the transcript accumulation of control genes. 

Seedlings of Ler wild type were grown in darkness for seven days and subsequently exposed to 6 h red 
light (11 µmol m-2 s-1), 4 h blue light (4 µmol m-2 s-1) or 1 h green light (3 µmol m-2 s-1), respectively. 
Samples were taken at the time points indicated. Analysis of transcript accumulation was done by 
quantitative real-time PCR. Data were normalized to the amounts of transcripts in darkness and are 
presented as means from two independent experiments ± SE. UBQ11 mRNA levels were used as 
internal standard. As control for red light inducible changes in the gene expression, the gene encoding 
auxin-induced protein (AIP) was chosen, for blue light the gene encoding chlorophyll A/B binding 
protein 1 (cab1) and for green light the gene encoding early light induced protein1 (elip1). 
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The illumination with the specific light qualities led to an increased transcript 

accumulation of the light-inducible genes compared to the dark control. Knockout of 

phytochromes under red light conditions as well as knockout of cryptochromes under blue 

light conditions led to a drastic reduction of the specific gene transcripts, respectively (data 

not shown). The observed changes in the transcript accumulation of these control genes 

reflected the estimated effects of the tested light conditions on gene expression as known from 

literature, even no phenotypic differences were observed (Gao and Kaufman, 1994; Hamazato 

et al. 1997; Teppermann et al., 2004; Dhingra et al., 2006). Consequently, changes in 

transcript levels of nuclear and plastidial genes in response to different light conditions were 

further analyzed with the tested experimental system to gain more information about the 

influence of light on organellar transcription. 

3.1.2 Expression analyses of phage-type RNA polymerase (RpoT) genes 

3.1.2.1 RpoT transcript accumulation in white light for Ler wild type 

The role of light in regulating nuclear and plastid gene expression has been widely studied 

before, but there is only little information available how light modulates the expression of 

organellar genes. It has been shown previously that steady-state transcript level of all RpoT 

genes increased when wild-type plants of the Col-0 background were illuminated with white 

light (Preuten, 2010). To exclude ecotype-related influences, the changes of RpoTm, RpoTmp 

and RpoTp transcript levels during white light exposure were analyzed in Ler wild-type 

plants. This additional analysis was needed since the photoreceptor mutants used in further 

studies were in a Ler background and various Arabidopsis ecotypes may differ in their 

response to light. For example, proteomic variations between Arabidopsis ecotypes were 

reported as well as differences in the release of volatile compounds in response to insect 

attacks (Chevalier et al., 2004; Huang et al., 2010). 

To analyze the changes of RpoTm, RpoTmp and RpoTp transcript levels during white light 

exposure in the Arabidopsis Ler ecotypes, seedlings were grown in darkness for seven days 

and subsequently exposed to white light with RNA samples taken after one, four, six, and 

twelve hours of illumination. Quantitative real-time PCR revealed an increase of the RpoT 

transcript amounts after illumination within six hours (Figure 9). 
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Figure 9: Accumulation of RpoT gene transcripts in wild-type plants in white light. 

Seedlings of Ler wild type were grown in darkness (d) for seven days and subsequently exposed to 
white light (270 µmol m-2 s-1). Samples were taken at the time points indicated above. Analysis of 
RpoTm (A), RpoTmp (B) and RpoTp (C) transcript accumulation was done by quantitative real-time 
PCR. (D) Synopsis of RpoT transcript levels as shown in A-C. Data were normalized to the amounts of 
RpoTs in darkness and are presented as means from two independent experiments ± SE. UBQ11 
mRNA levels were used as internal standard. 

 
Brief illumination of up to one hour led to a decrease in the amount of all transcripts to 

around two thirds of initial levels. Further illumination with white light led to an increase of 

all transcripts. RpoTm transcript levels increased more than twofold of those determined in the 

dark control after twelve hours (Figure 9A). In contrast, after twelve hours the amount of 

mRNA for RpoTmp was about four times (Figure 9B) and for RpoTp more than nine times 

higher (Figure 9C) than in dark controls. Generally, transcripts for all RpoT genes were found 

to be strongly light induced within six hours (Figure 9D). Light induction was most obvious 

for RpoTp, which encodes the plastid-targeted nuclear-encoded RNA polymerase (Liere et al., 

2004). These findings are in accordance to the results of Preuten (2010), where the transcripts 

of all three RpoT genes were found to be strongly light-induced within six hours after 

illumination. No ecotype-related differences for the transcript accumulation of RpoT genes 

between Col-0 and Ler wild type were found. 
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3.1.2.2 RpoT transcript accumulation for different light qualities and in mutants 

Experiments of Preuten (2010) with different phytochrome and cryptochrome knockout 

mutants revealed that the influence of different photoreceptors on the accumulation of 

transcripts of genes encoding the nuclear-encoded organellar phage-type RNA polymerase 

changes in the course of illumination with white light. To gain more information about the 

light induced expression of RpoT genes and involved pathways, additional analyses of 

transcript accumulation of RpoTm, RpoTmp and RpoTp in Ler wild-type plants and different 

photoreceptor mutants upon illumination with red, blue, and green light using quantitative 

real-time PCR analyses were performed. To this end, seedlings were grown in darkness for 

seven days and subsequently exposed to red, blue or green light with RNA samples taken 

after one, four, six, twelve and twenty-four hours of illumination. 

3.1.2.2.1 RpoT transcript accumulation in red light for Ler wild type 

In Ler wild-type plants an increase of all three RpoT transcripts was found within six hours 

of illumination with red light (Figure 10). RpoTm and RpoTmp transcript levels increased 

steadily upon exposure to light (Figure 10A+B). Particularly RpoTp transcript levels increased 

quickly (Figure 10C). After twenty-four hours RpoTp transcripts were doubled compared to 

the levels of the transcripts of the two other polymerases (7-fold compared to 3.5-fold). Taken 

together, RpoTp transcript levels increased significantly stronger than those of RpoTm and 

RpoTmp (Figure 10D). Red light strongly induces the RpoT transcript accumulation in Ler 

wild type, indicating that this light-quality might be important for the organellar transcription. 

To analyze how these light signals are perceived, the influence of red light on RpoT transcript 

levels was further studied in photoreceptor mutants; red light (phy) and blue light (cry) 

receptor knockout seedlings; and in knockout mutants for a central signal integrator (hy5). 
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Figure 10: Accumulation of RpoT gene transcripts in wild-type plants in red light. 

Seedlings of Ler wild type were grown in darkness (d) for seven days and subsequently exposed to red 
light (11 µmol m-2 s-1). Samples were taken at the time points indicated above. Analysis of RpoTm (A), 
RpoTmp (B) and RpoTp (C) transcript accumulation was done by quantitative real-time PCR. (D) 
Synopsis of RpoT transcript levels as shown in A-C. Data were normalized to the amounts of RpoTs in 
darkness and are presented as means from two independent experiments ± SE. UBQ11 mRNA levels 
were used as internal standard. 

 

3.1.2.2.2 RpoT transcript accumulation in red light for phytochrome mutants 

After one hour of illumination with red light a decrease of RpoT transcripts beyond the 

initial level of dark control was detectable for phytochrome mutants (Figure 11). This effect 

was most obvious for the phyB and phyA/phyB mutants, but was not found in wild type. In 

phyA and phyA/phyB mutants no induction of RpoTm and RpoTmp transcripts was found, 

while in phyB mutants a slight induction was detectable. In phyA mutants the amount of 

RpoTp transcripts increased slowly upon illumination (Figure 11A). After twenty-four hours 

RpoTp transcript levels were 2.2 times higher than in the dark. In phyB mutants the transcript 

abundance for RpoTp increased stronger (Figure 11B). RpoTp transcripts accumulated to 

almost six times higher levels after twelve hours. The accumulation pattern of the phyA/phyB 

mutants resembled that of the phyB mutants, but showed a weaker progression (Figure 11C). 

Apparently, only RpoTp gene expression was sufficiently induced by red light in phy mutants. 

However, overall effects were less pronounced than in the wild type (Figure 11D). Therefore, 

both phytochromes seem to be involved in the perception of red light. 
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Figure 11: Accumulation of RpoT gene transcripts in phytochrome mutants in red light. 

Seedlings of phyA (A), phyB (B) and phyA/phyB (C) mutants and Ler wild type (D) were grown in 
darkness (d) for seven days subsequently exposed to red light (11 µmol m-2 s-1). Samples were taken at 
the time points indicated above. Analysis of RpoT transcript accumulation was done by quantitative 
real-time PCR. Data were normalized to the amounts of RpoTs in darkness and are presented as means 
from two independent experiments ± SE. UBQ11 mRNA levels were used as internal standard. 

 

3.1.2.2.3 RpoT transcript accumulation in red light for cryptochrome mutants  

No induction of RpoTm and RpoTmp transcript levels was observed upon illumination of 

the blue light receptor knockout mutants cry1, cry2, and cry1/cry2 with red light (Figure 

12A-C). One exception was seen in cry1/cry2 mutants were the RpoTmp transcript levels at 

least showed a slight light induction after twelve hours (2-fold increase). In cry2 mutants, 

RpoTp transcript accumulation peaked after four hours of treatment with red light. Similarly, 

RpoTp mRNA levels in cry1/cry2 double knockout mutants strongly increased up to four 

times after twelve hours. However, this induction was not detectable in the single mutants. A 

knockout of one or both cryptochromes led to a reduction of all RpoT transcripts compared to 

the Ler wild type (Figure 12D). Comparable transcript levels were found only for RpoTp in 

the cry1/cry2 mutants after twelve hours of illumination. Nonetheless, the overall transcript 

accumulation of all three RpoTs was strongly inhibited in cryptochrome knockout mutants 

under red light conditions. 
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Figure 12: Accumulation of RpoT gene transcripts in cryptochrome mutants in red light.  

Seedlings of cry1 (A), cry2 (B) and cry1/cry2 (C) mutants and Ler wild type (D) were grown in 
darkness (d) for seven days subsequently exposed to red light (11 µmol m-2 s-1). Samples were taken at 
the time points indicated above. Analysis of RpoT transcript accumulation was done by quantitative 
real-time PCR. Data were normalized to the amounts of RpoTs in darkness and are presented as means 
from two independent experiments ± SE. UBQ11 mRNA levels were used as internal standard. 

 
The surprising effect that the blue light receptor knockout seedlings (cry) showed no 

induction of RpoT mRNA levels after red light treatment as was seen in wild-type seedlings 

(Figure 12), raised the question if the appropriate seeds were chosen for the experiments. 

However, not only the phenotypes of the mutant plants was as expected (Figure 6A), but also 

Western blot analyses confirmed the mutants to be accurate (Figure 13). Using a PHYA-

specific antibody, PHYA was only detected in wild type and phyB seedlings (lanes 1 and 3), 

but not in protein extracts from phyA and phyA/phyB mutants (lanes 2 and 4). Therefore, the 

results suggest a role of cryptochromes in mediating red light signals to activate RpoT 

transcript accumulation. 
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Figure 13: Immunoblot analysis of PHYA in 7-d-old etiolated seedlings of Arabidopsis wild type 
and the phytochrome-deficient mutants. 

PHYA was analyzed by immunoblot detection in 7-d-old-etiolated seedlings of Arabidopsis Ler 
wild type (wt), the phyA mutant (phyA), the phyB mutant (phyB), and the phyA/phyB double mutant 
(phyA /phyB). For the detection of PHYA a monoclonal antibody was used. Separation of 10 µg total 
protein on a 7.5% PAA-gel. Control: the large subunit of RuBisCo as detected by Ponceau staining is 
shown. 

 

3.1.2.2.4 RpoT transcript accumulation in red light for hy5 knockout mutants 

The knockout of hy5 does not completely inhibit light induced accumulation of RpoTm and 

RpoTp transcripts, but those of RpoTmp (Figure 14A). As seen before in the other mutants, 

transcript levels of all RpoT genes first declined before increasing upon further illumination. 

Only after twenty-four hours transcripts of RpoTm and RpoTp accumulated to more than two 

time higher levels compared to initial values; no increase of RpoTmp transcript levels was 

detectable under red light. The drastic decrease of RpoT transcripts in hy5 mutants suggests 

HY5 to play an important role in red light transduction to increase RpoT transcript levels 

(Figure 14B). 

 

 
Figure 14: Accumulation of RpoT gene transcripts in hy5 mutants in red light.  

Seedlings of hy5 mutants (A) and Ler wild type (B) were grown in darkness (d) for seven days 
subsequently exposed to red light (11 µmol m-2 s-1). Samples were taken at the time points indicated 
above. Analysis of RpoT transcript accumulation was done by quantitative real-time PCR. Data were 
normalized to the amounts of RpoTs in darkness and are presented as means from two independent 
experiments ± SE. UBQ11 mRNA levels were used as internal standard. 
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3.1.2.2.5 RpoT transcript accumulation in blue light for Ler wild type 

Interestingly, blue light was found to have no significant effect on the expression of all 

three RpoT genes in the wild type (Figure 15). A decline of transcripts after one hour was 

observed. Transcript levels of RpoTm (Figure 15A) and RpoTmp (Figure 15B) showed a slight 

increase until twelve hours of illumination and afterwards levels tended to decrease again. 

RpoTp mRNA levels were increased only 1.9 times in maximum (Figure 15C). After one day 

of illumination the transcript level decreased back to values of the dark control. Taken 

together, all three RNA polymerase genes showed similar accumulation patterns (Figure 15D) 

with RpoTp transcript levels increasing only slightly stronger than those of RpoTm and 

RpoTmp. Overall, however, illumination with blue light did not significantly induce an 

increase of RpoT transcript levels in Ler wild type. 

 

 
Figure 15: Accumulation of RpoT gene transcripts in wild-type plants in blue light.  

Seedlings of Ler wild type were grown in darkness (d) for seven days and subsequently exposed to 
blue light (4 µmol m-2 s-1). Samples were taken at the time points indicated above. Analysis of RpoTm 
(A), RpoTmp (B) and RpoTp (C) transcript accumulation was done by quantitative real-time PCR. 
Data were normalized to the amounts of RpoTs in darkness and are presented as means from two 
independent experiments ± SE. (D) Synopsis of RpoT transcript levels as shown in A-C. UBQ11 
mRNA levels were used as internal standard. 
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3.1.2.2.6 RpoT transcript accumulation in blue light for phytochrome mutants  

In phyA mutants transcript accumulation of RpoT mRNA peaked after twelve hours of light 

treatment to levels approximately 2- to 4-fold higher than in the dark (Figure 16A). RpoTp 

transcripts were nearly doubled compared to the wild type. In phyB mutants, the RpoT gene 

transcript accumulation increased after transfer to blue light (Figure 16B). Again, RpoTp 

transcripts increased most, accumulating to almost three times higher levels after twelve hours 

in light compared to dark controls. The transcript accumulation in blue light was also studied 

in phyA/phyB double knockout mutants (Figure 16C). In contrast, to the phy single knockout 

mutants, phyA/phyB double knockout mutants showed no significant difference to the wild 

type (Figure 16D). This data indicate that phytochromes are rather not involved in blue light 

perception. 

 

 
Figure 16: Accumulation of RpoT gene transcripts in phytochrome mutants in blue light. 

Seedlings of phyA (A), phyB (B) and phyA/phyB (C) mutants and Ler wild type (D) were grown in 
darkness (d) for seven days subsequently exposed to blue light (4 µmol m-2 s-1). Samples were taken at 
the time points indicated above. Analysis of RpoT transcript accumulation was done by quantitative 
real-time PCR. Data were normalized to the amounts of RpoTs in darkness and are presented as means 
from two independent experiments ± SE. UBQ11 mRNA levels were used as internal standard. 
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3.1.2.2.7 RpoT transcript accumulation in blue light for cryptochrome mutants 

The illumination with blue light did not induce an increase of RpoTm and RpoTmp 

transcript levels in the cry1 and cry2 mutants (Figure 17A+B). Interestingly, RpoTp transcript 

accumulation was clearly induced by exposure to blue light. The transcript levels were 

strongly increased within four hours, while longer light exposure did not change the mRNA 

level significantly further. Surprisingly, the lack of both cryptochromes, CRY1 and CRY2, 

had an additive effect of blue light on RpoT gene expression (Figure 17C). Here, although in 

case of RpoTm and RpoTmp only weakly, an influence of light on the transcript accumulation 

was clearly visible for all three RpoT genes, which was not detected in the cry single mutants. 

Within four hours both transcripts reached levels of 2.2 times higher than in dark grown 

seedlings and stayed constant upon further illumination. RpoTp transcript levels increased 

strongly within four hours of exposure to blue light with a peak value 7.5 times higher than 

initial values. 

 

 
Figure 17: Accumulation of RpoT gene transcripts in cryptochrome mutants in blue light. 

Seedlings of cry1 (A), cry2 (B) and cry1/cry2 (C) mutants and Ler wild type (D) were grown in 
darkness (d) for seven days subsequently exposed to blue light (4 µmol m-2 s-1). Samples were taken at 
the time points indicated above. Analysis of RpoT transcript accumulation was done by quantitative 
real-time PCR. Data were normalized to the amounts of RpoTs in darkness. UBQ11 mRNA levels 
were used as internal standard. 
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This is in stark contrast to the RpoT transcript abundance in the wild type, where blue light 

did not induce RpoT gene expression on transcript levels (Figure 17D). Therefore, the data 

suggest that indeed cryptochromes mediate blue light signals involved in RpoT expression. 

However, in opposite to red light (Figure 12), blue light signals perceived via cryptochromes 

seem to be rather involved in inhibiting light activation of RpoT expression. 

3.1.2.2.8 RpoT transcript accumulation in blue light for hy5 knockout mutants 

After blue light exposure the hy5 single knockout mutants showed similar to the cry 

mutants an increase for RpoTmp and RpoTp transcript levels (Figure 18A). RpoTmp transcript 

accumulation after twenty-four hours showed at least a very weak light induction via blue 

light. Again the strongest effects were detectable for RpoTp, where the induction reached a 

3.7-fold increase within twenty-four hours of illumination. The RpoTp transcript levels in hy5 

mutants were higher than in the wild type (Figure 18B), but not as high compared to the 

cry1/cry2 mutants (Figure 17C). Like in the wild type no induction of RpoTm transcripts 

under blue light was detectable. Similar to the cryptochromes, HY5 seems to serve as a 

central signal integrator involved in mediating blue light signals in repressing RpoT 

expression. 

 

 
Figure 18: Accumulation of RpoT gene transcripts in hy5 mutants in blue light. 

Seedlings of hy5 mutants (A) and Ler wild type (B) were grown in darkness (d) for seven days 
subsequently exposed to blue light (4 µmol m-2 s-1). Samples were taken at the time points indicated 
above. Analysis of RpoT transcript accumulation was done by quantitative real-time PCR. Data were 
normalized to the amounts of RpoTs in darkness and are presented as means from two independent 
experiments ± SE. UBQ11 mRNA levels were used as internal standard. 
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3.1.2.2.9 RpoT transcript accumulation in green light for Ler wild type 

The exposition to green light showed a very interesting accumulation pattern for the 

wild type (Figure 19A-C). After four hours of illumination an increase of all three RpoT 

transcript amounts was detectable. Although most pronounced for RpoTp transcript levels, 

RpoTm and RpoTmp mRNAs accumulated also to significant higher levels at this point in 

time (Figure 19D). Further light exposure led to a decrease of all transcripts back to levels 

found in darkness. Although often discussed as having less influence on organellar gene 

transcription when compared to red and blue light, here, green light treatment led to a distinct, 

albeit brief increase in RpoT transcript levels. 

 

 
Figure 19: Accumulation of RpoT gene transcripts in wild-type plants in green light. 

Seedlings of Ler wild type were grown in darkness (d) for seven days and subsequently exposed to 
green light (3 µmol m-2 s-1). Samples were taken at the time points indicated above. Analysis of RpoTm 
(A), RpoTmp (B) and RpoTp (C) transcript accumulation was done by quantitative real-time PCR. (D) 
Synopsis of RpoT transcript levels as shown in A-C. Data were normalized to the amounts of RpoTs in 
darkness and are presented as means from two independent experiments ± SE. UBQ11 mRNA levels 
were used as internal standard. 
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3.1.2.2.10 RpoT transcript accumulation in green light for phytochrome mutants 

The phyA and phyB mutants showed a drop of steady-state transcript levels for all RpoTs 

during four hours of illumination with green light (Figure 20A+B). After six hours, transcript 

levels started to exceed level of dark control values. Only RpoTp transcripts slightly increased 

beyond the level of two. In the phyA/phyB mutants steady-state levels of all RpoT genes did 

not change until twenty-four hours of light treatment (Figure 20C). At that moment, transcript 

abundance for all three RpoTs was just doubled compared to dark controls. Particularly 

noticeable is the complete lack of the distinct peak after four hours of green light treatment 

observed in wild-type seedlings (Figure 20D). Therefore, red light absorbing phytochromes 

seem to be involved in the perception of green light signals. 

 

 
Figure 20: Accumulation of RpoT gene transcripts in phytochrome mutants in green light. 

Seedlings of phyA (A), phyB (B) and phyA/phyB (C) mutants and Ler wild type (D) were grown in 
darkness (d) for seven days subsequently exposed to green light (3 µmol m-2 s-1). Samples were taken 
at the time points indicated above. Analysis of RpoT transcript accumulation was done by quantitative 
real-time PCR. Data were normalized to the amounts of RpoTs in darkness and are presented as means 
from two independent experiments ± SE. UBQ11 mRNA levels were used as internal standard. 
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3.1.2.2.11 RpoT transcript accumulation in green light for cryptochrome mutants 

The accumulation of all three RpoT genes in the cry1 mutants was induced by exposure to 

green light within six hours (Figure 21A). After six hours RpoTm and RpoTmp transcripts 

reached levels of around 2 times higher than in dark-grown seedlings. Related to the dark 

control, mRNA level of RpoTp were around 4.8 times in maximum at the same moment and 

decreased afterwards. In the cry2 mutants RpoTm and RpoTmp mRNA accumulation had not 

been stimulated at all after illumination with green light (Figure 21B). In contrast, after 

twenty-four hours RpoTp transcript levels accumulated to approximately 3.5 times higher 

levels compared to dark controls. The accumulation pattern for the cry1/cry2 double mutants 

resembles that of the cry2 single mutants (Figure 21C). In the cry1 single knockout mutants 

the peak for the RpoT genes was just shifted from four hours to six hours compared to the 

wild type (Figure 21D). The knockout of cry2 led to strong reduction of RpoT transcripts, 

indicating its major role in green light perception, while the knockout of cry1 led just to a 

shift of the transcript accumulation peak. 

 

 
Figure 21: Accumulation of RpoT gene transcripts in cryptochrome mutants in green light. 

Seedlings of cry1 (A), cry2 (B) and cry1/cry2 (C) mutants and Ler wild type (D) were grown in 
darkness (d) for seven days subsequently exposed to green light (3 µmol m-2 s-1). Samples were taken 
at the time points indicated above. Analysis of RpoT transcript accumulation was done by quantitative 
real-time PCR. Data were normalized to the amounts of RpoTs in darkness and are presented as means 
from two independent experiments ± SE. UBQ11 mRNA levels were used as internal standard. 
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3.1.2.2.12 RpoT transcript accumulation in green light for hy5 knockout mutants 

The continuous illumination with green light apparently led to no change for all RpoT 

transcript levels in hy5 mutants compared to dark control values (Figure 22A). The 

characteristic peak after four hours of light treatment, which was detectable in the wild type 

(Figure 22B) was completely missing in the hy5 mutants (Figure 22A). Generally, detected 

transcript levels for all three polymerases were found to stay around the level of the dark 

control, which suggests that HY5 is important not only for red and blue light, but also for 

green light signal transduction. 

 

 
Figure 22: Accumulation of RpoT gene transcripts in hy5 mutants in green light.  

Seedlings of hy5 mutants (A) and Ler wild type (B) were grown in darkness (d) for seven days 
subsequently exposed to green light (3 µmol m-2 s-1). Samples were taken at the time points indicated 
above. Analysis of RpoT transcript accumulation was done by quantitative real-time PCR. Data were 
normalized to the amounts of RpoTs in darkness and are presented as means from two independent 
experiments ± SE. UBQ11 mRNA levels were used as internal standard. 

 

3.1.2.3 Summary: RpoT transcript accumulation in different light qualities 

The observed changes in transcript accumulation indicated that white, red, blue, and green 

light differentially stimulated the expression of all three RpoT genes. In Ler wild-type plants 

the illumination with white or red light led to an increase of all RpoT transcripts. In contrast, 

blue light was found to have no significant effect on the expression, while during green light 

treatment the RpoT transcripts peaked after four hours. Studying the influence of red, blue and 

green light on the RpoT gene expression in photoreceptor mutants, a different influence of the 

receptor classes was revealed. Under red light conditions, phytochromes and cryptochromes 

seem to be involved in perception of red light signals. The repressive effect of blue light on 

the RpoT transcript accumulation is mediated via cryptochromes. Green light signals seemed 

to be perceived mainly by phytochromes and CRY2, while HY5 was confirmed as an 

important signal transduction factor under all tested conditions. 
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3.1.3 Expression analyses of the plastidial rpoB gene 

To date, the rpoB operon, which codes for the beta-subunit of the plastid-encoded plastid 

RNA polymerase (PEP), is known to be solely transcribed by the nuclear-encoded plastid 

RNA polymerases in Arabidopsis (NEP) (Swiatecka-Hagenbruch et al., 2007). Since both 

RpoTp and RpoTmp are considered to be NEP (Liere et al., 2011) and therefore responsible 

for rpoB expression, the question arose if an increase in RpoT transcript levels translates into 

higher amounts of rpoB RNA. Therefore the effect of light on the transcript accumulation of 

the plastidial rpoB gene was analyzed (Figure 23). 

 

 
Figure 23: Accumulation of rpoB gene transcripts in wild-type plants in different light qualities. 

Seedlings of Ler wild type were grown in darkness (d) for seven days and subsequently exposed to 
white light (A; 270 µmol m-2 s-1), red light (B; 11 µmol m-2 s-1), blue light (C; 4 µmol m-2 s-1) and 
green light (D; 3 µmol m-2 s-1), respectively. Samples were taken at the time points indicated above. 
Analysis of rpoB transcript accumulation was done by quantitative real-time PCR. Data were 
normalized to the amounts of rpoB in darkness and are presented as means from two independent 
experiments ± SE. UBQ11 mRNA levels were used as internal standard. 
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Although showing a distinct decrease after one hour of white light treatment, further 

illumination showed steadily increasing rpoB gene transcript accumulation until twelve hours 

after transfer to light (Figure 23A). The rpoB transcript accumulation occurred about eight 

hours later compared to the observed increase of RpoTmp and RpoTp transcripts under the 

same light conditions (Figure 9B+C) suggesting that enhanced transcript levels of these RpoT 

genes indeed translate into higher NEP activity in plastids. 

However, under additional tested blue, red and green light conditions, no induction of rpoB 

gene expression was detectable during twenty-four hours of light treatment (Figure 23B-D). 

This is in contrast to RpoTmp and RpoTp, which were light-inducible even by monochromatic 

light qualities. This suggests that additional factors might be involved in inducing rpoB 

transcript accumulation in response to light, which need more than one monochromatic light 

quality for full activation. 
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3.2 Analysis of cytokinin effects on the organellar gene transcription 

3.2.1 Influence of cytokinin in cytokinin-related mutants grown on medium 

The plant hormone group of cytokinins is known to play an important role during the plant 

life cycle regulating several important aspects of development. For example, cytokinins 

possess stimulatory activities in the shoot, while having negative regulatory effects in 

controlling of root elongation and branching (see for review Schmülling, 2004). The focus of 

this study is on the role of the histidine kinase receptors AHK2, AHK3, and AHK4/CRE1 as 

well as of the type-B response regulator ARR1 in the cytokinin-induced chloroplast 

transcription. 

3.2.1.1 Characterization of cytokinin-related mutants 

Interested in the potential role of the cytokinin receptors AHK2, AHK3 and AHK4/CRE1 

in the transduction of cytokinin signals to the chloroplast, the influence of cytokinin on 

plastidial transcription in receptor mutants was analyzed. Single knockout receptor mutants 

(ahk2, ahk3, cre1) as well as double knockout receptor mutants (cre1/ahk2, cre1/ahk3, 

ahk2/ahk3) were used in the further experiments (Riefler et al., 2006). 

Cytokinin-driven B-type response regulators (ARRs) regulate in general the transcription 

of their target genes. To analyze to which extent the B-type ARRs contribute to cytokinin-

regulated organellar transcription, the influence of exogenous cytokinin on transgenic 

35S::ARR1-SRDX (ARR1) plants was studied. It was shown that these plants displayed 

increased resistance and hence reduction of the early transcriptional response to cytokinin 

(Heyl et al., 2008). To further investigate the role of the endogenous cytokinin pool on the 

effect of exogenously applied cytokinin on the plastid transcription, cytokinin-deficient 

transgenic Arabidopsis plants were included in the experiments. 35SAth::CKX1 (CKX1) 

plants overexpress the cytokinin oxidase/dehydrogenase 1 gene (AtCKX1). The amount of 

enzymes which catalyze the degradation of cytokinin is enhanced and hence these mutants 

possess only 30 to 45% of wild-type cytokinin content (Werner et al., 2003). 
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To document the influence of cytokinin on the development of Arabidopsis plants, 

photographs of Col-0 wild type and seven different cytokinin-related mutants grown for ten 

days on medium, supplemented with or without cytokinin (BA, 6-benzyladenin), were taken 

(Figure 24). Most mutants did not alter significantly in morphological phenotypes when 

grown on MS plates without BA supplement. The cre1, ahk2 and ahk3 single mutants as well 

as the ARR1 transgenic plants exhibited seedling phenotypes comparable to the wild type. The 

ahk double mutants start to display secondary lateral root branching, which is not seen in wild 

type. In comparison to wild-type plants, the ahk2/ahk3 double mutants and the cytokinin-

deficient CKX1 plants interestingly displayed smaller phenotypes and downwards bending of 

the cotyledons. 

Furthermore, when grown on BA-containing medium, the root growth of the single and 

double cytokinin receptor mutants was as sensitive to BA as the wild-type control. Similarly, 

the cytokinin-resistance ARR1 and the cytokinin-deficient CKX1 mutants, showed also a 

negative effect of exogenously applied BA on root elongation. In contrast, first leaves of most 

cytokinin-related mutants seemed to be more developed compared to wild-type plants. 

Cytokinin inhibits root growth and branching, while promotes stem elongation and cell 

division. Therefore, the phenotypes of the wild-type and mutant plants were as expected. 

 

 
Figure 24: Cytokinin treatment influences mainly the root development. 

Wild-type plants (Col-0) and cytokinin-related mutants (cre1, ahk2, ahk3, cre1/ahk2, ahk2/ahk3, ARR1 
and CKX1) were grown for ten days on MS plates with 5 µM 6-benzyladenin (BA) or without (H2O). 
cre1/ahk3 mutants are not shown. Seedlings were grown in a 16-h-photoperiod of white light.  
Bar = 5 mm. 
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3.2.1.2 Cytokinin regulation of chloroplast size and chloroplast numbers 

The exogenous application of cytokinin (BA) led to a change of chloroplast size and 

number in wild-type plants (Okazaki et al., 2009). These changes could be a result of 

cytokinin-induced changes in the chloroplast division machinery. To gain more information 

about involved pathways, the specific effects of cytokinin on chloroplast size and number was 

studied by microscopy not only in Col-0 wild-type plants, but also in cytokinin-related 

mutants (cre1, ahk2, ahk3, cre1/ahk2, cre1/ahk3, ahk2/ahk3, ARR1, CKX1). 

As expected, a reduction of the chloroplast size as a result of cytokinin application was 

found in Col-0 wild-type plants (Figure 25). The mean chloroplast diameter was 6.5 µm in 

water-control plants compared to 5.0 µm in cytokinin-treated wild-type plants. Reductive 

effects of cytokinin on the chloroplast size were also observed for the ahk2 and cre1 single 

mutants as well as for the cytokinin-deficient CKX1 seedlings. A less pronounced reduction of 

the chloroplast size was found for the ahk3 single mutant, the cre1/ahk3 and cre1/ahk2 double 

mutants, and for the ARR1 seedlings. Interestingly, no significant differences in the 

chloroplast sizes were detectable in ahk2/ahk3 double mutants grown on plates with cytokinin 

to water control plants. Compared to the wild type, the chloroplast size was already reduced 

in ahk2/ahk3 mutants without any cytokinin treatment. 

 

 
Figure 25: Cytokinin treatment decreases the size of chloroplasts. 

Arabidopsis wild type and cytokinin-related mutant seedlings were grown for ten days on MS plates 
with 5 µM 6-benzyladenin (BA) or without (H2O). Cytokinin effects on chloroplast size are presented. 
For determination of chloroplast size means ± SE from each hundred individual chloroplasts are 
shown. Asterisks indicate a significant difference as calculated by Student‘s t test (p < 0.005). 
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Taken together, exogenously applied cytokinin appears to restrict chloroplast size as the 

diameter of chloroplasts in cytokinin-treated plants was smaller than in non-treated plants. 

The knockout of the two histidine kinases ahk2 and ahk3 led to complete inhibition of 

cytokinin-induced chloroplast size reduction. It is known, that both cytokinin receptors 

contribute to the cytokinin-regulated leaf cell formation and therefore the formation of 

chloroplasts might also be negatively affected in the double receptor mutants (Riefler et al., 

2006). 

Additionally, the average number of chloroplasts in mesophyll cells was determined for 

plants grown with or without application of cytokinin (Figure 26). This was done to analyze if 

the chloroplast size changed to compensate for altered numbers of chloroplasts per cell. For 

wild-type seedlings an about 1.5-fold higher number of chloroplasts was found in treated 

plants compared to the water control. For comparison, the largest difference between plants 

grown on medium with or without cytokinin was seen for ARR1 plants. The chloroplast 

numbers increased significantly in nearly all cytokinin-treated mutants compared to those in 

plants grown without cytokinin, but to different extent. Only in cytokinin-deficient CKX1 

seedlings treatment with BA did not increase the number of chloroplasts. 

 

 
Figure 26: Cytokinin treatment increases the number of chloroplasts per mesophyll cell. 

Arabidopsis wild type and cytokinin-related mutant seedlings were grown for ten days on MS plates 
with 5 µM 6-benzyladenin (BA) or without (H2O). Cytokinin effects on chloroplast numbers are 
presented. For determination of chloroplast numbers means ± SE from analyzing each 17 mesophyll 
cells are shown. Asterisks indicate a significant difference as calculated by Student‘s t test (p < 0.005). 
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To summarize, with exception of the cytokinin-deficient CKX1 (no change in chloroplast 

number) and ahk2/ahk3 mutants (no change in chloroplast size), exogenously applied 

cytokinin led to a larger number of smaller chloroplasts in most of the analyzed Arabidopsis 

plants. The results suggest that cytokinin led to an increase in the chloroplast division rate and 

hence to alterations of chloroplast parameters such as size and number. The presence of 

smaller chloroplast might also influence the plastome copy numbers per cell, therefore this 

plastidial parameter was studied next. 

3.2.1.3 Cytokinin effects on the plastome copy numbers per cell 

Endoreduplication is a common mechanism in plants, which leads to changes in nuclear 

DNA content. It is known from previous experiments in Arabidopsis that the mean ploidy 

levels (C-values, where 2C equals diploidy) can vary due to endoreduplication events (Barow 

and Meister, 2003; Zoschke et al., 2007). Furthermore, knowledge of nuclear ploidy levels is 

a prerequisite to quantify plastidial gene copy numbers relative to the nuclear DNA content. 

To study, if the increasing number of smaller chloroplasts per cell in cytokinin-treated plants 

has an influence on nuclear DNA ploidy levels (Figure 27) and plastome copy numbers 

(Figure 28), additional flow-cytometric analysis was performed. 

 

 
Figure 27: Cytokinin effects on genome ploidy levels in Col-0 wild type and mutant seedlings. 

Arabidopsis wild type and cytokinin-related mutant seedlings were grown for ten days on MS plates 
with 5 µM 6-benzyladenin (BA) or without (H2O). Changes in nuclear DNA content (ploidy levels) in 
different plants was measured by flow cytometry as outlined in Material and Methods section. Means 
from three independent experiments ± SE are presented. 
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Interestingly, average ploidy numbers increased slightly in nearly all plants after 

application of cytokinin by 1C (Figure 27). For example, in Col-0 wild type the average 

ploidy numbers changed from about 6 to about 7 genome copies per cell. In the 

cytokinin-related mutants mean C-values varied between 6C to 7C for water control 

conditions and between 7C to 8C for cytokinin treatment. No influence of cytokinin treatment 

on the nuclear ploidy levels were found in the cre1 single and the ahk2/ahk3 double mutants 

suggesting that the reception of cytokinin is indeed responsible for the observed increase in 

nuclear ploidy levels. 

Using the mean C-values (Figure 27) and the quantitative RT-PCR data on the amount of 

the plastidial genes psbA and clpP, determination of the average plastome copy numbers per 

cell was carried out. In general, BA treatment also resulted in an increase of the plastome 

copy numbers per cell (Figure 28). About 1200 plastome copies per cell were observed in 

non-treated wild-type plants. This correlates well with estimates of Zoschke et al. (2007) 

where 1000-1700 plastome copies per cell during Arabidopsis leaf development were found.  

 

 
Figure 28: Cytokinin effects on plastome copy numbers in Col-0 wild type and mutant seedlings.  

Arabidopsis wild type and cytokinin-related mutant seedlings were grown for ten days on MS plates 
with 5 µM 6-benzyladenin (BA) or without (H2O). Plastome copy numbers per cell in different plants 
are presented. Analysis of relative DNA content of Arabidopsis plastidial psbA and clpP genes in 
different plants was performed by quantitative real-time PCR. Data were normalized to the amount of 
nuclear RpoTm gene and expressed as 2-CT. Therefore plastome copy numbers per cell were 
determined by calculating the product of the average values of the two quantified genes and the mean 
C-value. Means from three independent experiments ± SE are presented. 
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However, in wild-type plants grown on medium with BA a significant rise in copy 

numbers up to 1900 plastome copies per cell was observed. In ahk2, ahk3, and ARR1 

seedlings also enhanced copy numbers were detected due to the cytokinin supplementation. 

Surprisingly, the highest overall copy numbers were found in ahk2 seedlings both untreated 

(about 2110 plastome copies per cell) and treated (about 2460 plastome copies per cell). 

Furthermore, the cytokinin receptor single (cre1) and double mutants (ahk2/ahk3, cre1/ahk2) 

showed no significant change in their plastome copy numbers due to BA treatment suggesting 

that cytokinin reception is indeed the reason for increasing plastome copy numbers. As 

expected, in plants with low endogenous cytokinin levels (CKX1) the addition of exogenous 

BA did not alter the plastome copy numbers. 

 

3.2.1.4 Cytokinin effects on plastid gene transcription 

To study if BA treatment and/or the increased plastome copies have an effect on plastid 

transcription, run-on analyses were performed with chloroplasts isolated from Arabidopsis 

seedlings grown for ten days on MS plates with or without 5 µM BA. The labeled transcripts 

were hybridized to DNA fragments of 31 chloroplast genes spotted on a nylon membrane. 

The selected chloroplast genes represented functionally important groups of chloroplast 

proteins and RNAs as well as NEP- and PEP-transcribed plastidial genes. The studied genes 

were split in two functional related groups for later analyses, housekeeping genes and 

photosynthesis-related genes (Table 8). To further investigate if cytokinin signals involved in 

regulation of chloroplast gene transcription are recognized via their standard pathways (To 

and Kieber, 2008), the transcriptional activity of plastidial genes was not only analyzed in 

Col-0 wild-type plants, but also in mutants for factors which act either at the level of 

cytokinin detection (ahk2/ahk3) or at the level of the cytokinin response regulation (ARR1). 

 

Table 8: Functional groups of chloroplast genes analyzed in run-on assays. 

functional group genes 
housekeeping genes accD, clpP, rpoB, rps4, rps8, rps14, rps16, rrn16, trnK1, trnK1, trnL, ycf1, ycf2, 

ycf5, ycf10 
photosynthesis-related 
genes 

atpB, atpF, atpH, ndhB, ndhI, petA, petB, petD, psaA, psaB, psaC, psbA, psbD, 
psbE, psbK, rbcL 
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In the wild-type plants and both mutants, the transcription in chloroplasts did not respond 

to cytokinin (Figure 29). Since the cytokinin effect on chloroplast transcription was 

considered significant if the run-on signals differed at least 2-fold from the water control, no 

significant response to BA was found. In all tested plants only an around 1.3-fold higher 

activation of transcription could be observed as a result of a cytokinin effect. Even for both 

classes of functional genes there was no significant response to the cytokinin treatment 

detectable. Therefore, although showing higher plastome copy numbers, the transcription 

activity in plants grown on medium with cytokinin most likely adapted to the permanent high 

cytokinin levels. 

 

 
Figure 29: Cytokinin effects on plastidial gene transcription in seedlings sown on MS medium. 

Arabidopsis wild-type plants and cytokinin-related mutant seedlings were grown for ten days on MS 
plates with 5 µM 6-benzyladenin (BA) or without (H2O). Ratios of the transcription rates in 
chloroplasts (photosynthesis-related and housekeeping genes) from cytokinin-treated Arabidopsis wild 
type and selected cytokinin-related mutant seedlings to the rates in chloroplasts from non-treated 
plants are presented as means from at least two independent experiments ± SE. 

 

3.2.2 Cytokinin effects on plastid gene transcription in seedlings sown on a net 

To circumvent adaption of plastid transcription to higher cytokinin levels, Arabidopsis 

wild-type plants and cytokinin-related mutants were cultivated on top of a net placed on soil 

for twelve days and cytokinin treatment was only performed for the last six hours. In 

experiments with barley, pre-incubation of the detached leaves for twenty-four hours on water 

in the light before BA application was found to be a prerequisite for pronounced cytokinin 

effects on chloroplast transcription (Zubo et al., 2008). Therefore, 12-day-old Arabidopsis 
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seedlings were cut, washed and then pre-incubated in water for twenty-four hours under 

continuous light. Afterwards the plants were transferred for additional six hours to a BA 

solution (2.2 x 10-5M) or water (control). Again, chloroplast isolation and run-on transcription 

assay were performed as described. 

Chloroplast gene transcription in Col-0 wild-type plants showed a significant response to 

cytokinin incubation for six hours (Figure 30). The incubation with cytokinin led for 

photosynthesis-related and housekeeping genes to around 2.3- to 2.4-fold higher activation of 

transcription, respectively. In contrast, cytokinin treatment of cytokinin-related mutants 

resulted in no or only slight induction of plastidial gene transcription. The effects of cytokinin 

on chloroplast transcription were reduced in all three kinase mutants, although more 

prominent in ahk3 and cre1 than in ahk2. As expected, the cytokinin effect on plastid 

transcription was even stronger reduced in ahk double mutants than in the single mutants. 

ARR1 mutants possess an increased resistance to BA due to the knockout of the response 

regulator ARR1, while in CKX1 mutants the cytokinin degradation is enhanced. 

Consequently, no BA-induced activation of chloroplast gene transcription was observed in 

cytokinin-deficient CKX1 and cytokinin-resistant ARR1 plants. 

 

 
Figure 30: Cytokinin regulation of chloroplast gene transcription in seedlings sown on net. 

Ratios of the transcription rates in chloroplasts (photosynthesis-related and housekeeping genes) from 
cytokinin-treated Arabidopsis wild type and cytokinin-related mutant seedlings to the rates in 
chloroplasts from non-treated plants are presented as means from at least two independent experiments 
± SE. Plants were cultivated on top of a net placed on soil. A 24-h pre-incubation of 12-day-old plants 
on water and subsequent incubation for six hours on water or BA solution was performed. 
Pre-incubation and incubation of the seedlings were carried out in the light. 
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The results indicated that histidine kinase receptors are functionally redundant. 

Nevertheless, influence of mutations in cre1 and ahk3 genes stronger abolished cytokinin 

action on chloroplast transcription then mutation in ahk2 gene. In addition, different groups of 

genes were regulated in different extends in receptor mutants (BA activation of transcription 

of housekeeping genes slightly stronger than those of photosynthesis-related genes). 

 

3.2.3 Cytokinin effects on plastid gene transcription/transcripts in sig-mutants 

Some of cytokinin-inducible genes were transcribed via plastid-encoded plastid RNA 

polymerase (PEP). To investigate the role of sigma factors needed for promoter recognition 

by PEP in the cytokinin signaling pathway, the influence of cytokinin on chloroplast 

transcription was analyzed in sigma factor mutants (sig-mutants) by run-on assays (Figure 31) 

and quantitative real-time PCR (Figure 32). 

 

 
Figure 31: Cytokinin regulation of chloroplast gene transcription in sigma factor mutants. 

Ratios of the transcription rates in chloroplasts (photosynthesis-related and housekeeping genes) from 
cytokinin-treated wild type and sigma factor mutant seedlings to the rates in chloroplasts from 
non-treated plants are presented as means from at least three independent experiments ± SE. Plants 
were cultivated on top of a net placed on soil. A 24-h pre-incubation of 12-day-old plants on water and 
subsequent incubation for 6h on water or BA solution was performed. 

 

An induction of chloroplast gene transcription was found in wild-type plants (Figure 31). 

Application of exogenous cytokinin led to a more than 2-fold activation of plastidial gene 

transcription. Similar to cytokinin-related mutants, transcription of housekeeping genes in sig-

mutants were found to be less affected compared to photosynthesis-related genes. Cytokinin 
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effects on total chloroplast transcription were slightly reduced in sig3, sig4, and sig5 mutants 

and significantly reduced in sig1, sig2, and sig6 mutants. No induction of plastidial gene 

transcription via BA was found for sig2 mutants, where the transcription level was less than 

half of the level in wild type. In contrast, the level of gene transcription in sig4 mutants was 

very similar to that in Col-0 seedlings. 

The negative effects on BA-induced gene transcription were more pronounced in sig2 and 

sig6 mutants than in the other mutants indicating that the sigma factors SIG2 and SIG6 may 

be predominantly involved in cytokinin-induced transcriptional changes. However, no effect 

of cytokinin on the steady-state levels of transcripts of the six sigma factor genes was found in 

Arabidopsis wild-type seedlings (Figure 32). For all tested sigma factor genes, the transcript 

levels after cytokinin application were as high as the levels under control conditions 

suggesting activation of PEP transcription in response to cytokinin treatment rather by post-

translational modifications of the sigma factors (Pfannschmidt and Liere, 2005) than 

activation of the expression of the sigma factors themselves. 

 

 
Figure 32: Effect of cytokinin on accumulation of sigma factor gene transcripts in wild type. 

Analysis of the accumulation of sigma factor mRNAs (sig1-sig6) was done by quantitative real-time 
PCR. Ratios of the transcript accumulation in cytokinin-treated and non-treated Col-0 wild-type 
seedlings are presented as means from three independent experiments ± SE. UBQ11 mRNA levels 
were used as internal standard. Plants were cultivated on top of a net placed on soil. A 24-h pre-
incubation of 12-day-old plants on water and subsequent incubation for 6 h on water or BA solution 
was done. 
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4 Discussion 

The regulation of organellar gene transcription is not only subject to post-transcriptional 

events (Barkan and Goldschmidt-Clermont, 2000; Monde et al., 2000; Stern et al., 2010), also 

exogenous and endogenous factors such as light, temperature, hormones, plastid type and 

chloroplast development possess effects on transcription of distinct organellar genes (Rapp et 

al., 1992; Mullet, 1993; Mayfield et al., 1995; Link, 1996; Liere and Börner, 2007 a,b). In this 

work, two of these parameters were at the focus of extensive analyses. Both, the effect of 

different light wavelengths on the transcript levels of organellar RNA polymerases as well as 

the effect of the plant hormone cytokinin on plastidial gene transcription, were assessed 

experimentally. 

4.1 Influence of light on RpoT transcript levels  

Light acts as an environmental signal to adjust plant growth and development (Casal et al., 

2004), but also plays an important role in activating plastid transcription in higher plants 

(Liere et al., 2011). The expression of a number of plastid and nuclear encoded genes 

involved in photosynthesis is regulated by light and additionally the expression of genes 

encoding mitochondrial proteins (e.g. components of the respiratory chain) is regulated in a 

light and/or circadian-dependent manner (Yoshida and Noguchi, 2011). As sessile organisms, 

plants have evolved a number of different photoreceptors for the response to light in their 

environment (Chory, 2010). Most important photoreceptors include the red light absorbing 

phytochromes (Quail et al., 1995) and the blue light absorbing cryptochromes (Cashmore et 

al., 1999; Lin and Shalitin; 2003). A specific photoreceptor for green light has yet to be 

identified (Folta and Maruhnich, 2007). 

Arabidopsis thaliana possesses three different nuclear-encoded phage-type RNA 

polymerase genes (RpoT). The gene products are imported into plastids (RpoTp), 

mitochondria (RpoTm) or are dual-targeted (RpoTmp). Apart from RpoTp and RpoTmp 

(NEP), plastids contain an additional plastid-encoded polymerase (PEP). The plastidial gene 

rpoB codes for the beta-subunit of the PEP, but has been reported to be solely transcribed by 

NEP (Swiatecka-Hagenbruch et al., 2007, 2008; Courtois et al., 2007). Both NEP and PEP 

contribute to the transcriptional activity in plastids, but NEP activity predominates during 

early developmental stages (Hajdukiewicz et al., 1997). 
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Dark-grown etiolated Arabidopsis seedlings were used to study the specific transcript 

accumulation of RpoT and rpoB genes under different light regimes using quantitative real-

time PCR. To test the light system used, responses of known light-regulated transcripts under 

specific light conditions were analyzed. As expected, light-responsive genes such as AIP (red; 

Tepperman et al.; 2004), cab1 (blue; Hamazato et al., 1997) and elip1 (green; Dhingra et al., 

2006), were strongly light-induced (Figure 8). 

4.1.1 White light: differential stimulation of RpoT gene expression 

Preuten (2010) has shown that steady-state transcript levels of all RpoT genes increased 

when wild-type plants of the Col-0 background were illuminated with white light. The present 

study was focused on the different light qualities and their receptors involved in the observed 

activation of RpoT transcript accumulation by light. Therefore, one strategy was to use known 

photoreceptor mutants to reveal their role in the light regulation of RpoT expression. 

However, the photoreceptor mutants used in this study have a Landsberg erecta (Ler) 

background. It is known from other publications that distinctions between different ecotypes 

exist (Chevalier et al., 2004; Huang et al., 2010). To exclude ecotype-dependent variations, 

changes of RpoTm, RpoTmp and RpoTp transcript levels in the Ler wild-type plants were also 

analyzed. A light-induced transcript accumulation for all RpoT genes within six hours after 

light exposure was found (Figure 9). The accumulation of RpoTp transcripts was affected 

more than those of RpoTm and RpoTmp. Compared to data of Preuten (2010), the RpoT 

transcript accumulation in Ler wild-type seedlings was similar to the one found in Col-0 

wild-type seedlings. As a result, ecotype-related variations of the light-inducible RpoT gene 

expression could be excluded. 

In addition, the accumulation of rpoB gene transcripts was analyzed to determine if the 

induction of RpoT genes by white light may be also associated with an enhanced expression 

of plastidial genes. It was shown that steady-state transcript levels of the plastidial rpoB gene 

increased when plants were illuminated with white light (Figure 23A). A steady increase in 

transcripts of rpoB was seen up to twelve hours of illumination. The results indicate that 

enhanced transcript levels of RpoT genes translate into higher NEP activity in plastids and 

might be responsible for the later increase of rpoB transcripts. These observations are in 

agreement with previous experiments in barley that showed the amount of NEP-transcribed 

plastid genes, including rpoB, to follow the pattern of RpoTp transcript accumulation 

(Emanuel et al., 2004). 



DISCUSSION 

58 

Interestingly, during the exposure to red, blue and green light no induction of rpoB gene 

expression was detected (Figure 23B-D). As mentioned earlier the rpoB operon is known to 

be transcribed by NEP. In tested monochromatic red, blue and green light conditions the 

presence of RpoTp alone may not be sufficient to activate the transcription of the rpoB operon 

and may need additional factors. Liere and Börner (2007 a,b; 2011) propose a model where 

NEP may need additional, yet unknown protein factors for promoter recognition. These 

unknown factors may need the entire spectrum of light to activate light induction of rpoB 

gene expression, as was seen after twelve hours of white light treatment. 

Recent studies in Arabidopsis showed that RpoTp plays a major role in transcription and 

biogenesis of the chloroplast (Hricová et al., 2006), while RpoTmp is supposed to be mainly 

active in non-green tissue (Emanuel et al., 2006). Recently, Kühn et al. (2009) could show 

that RpoTmp performs gene-specific transcription in mitochondria. Experiments with rpoTp 

mutants showed that RpoTmp is capable to at least partially substitute for RpoTp function 

(Courtois et al., 2007; Swiatecka-Hagenbruch et al., 2008). Preuten (2010) proposed that 

RpoTp is the key enzyme during light-induced plastidial transcription in etiolated seedlings, 

while Baba et al. (2004) implicated that RpoTmp plays a major role immediately after the 

start of chloroplast development during de-etiolation. The results in the present study are in 

accordance to the data of Preuten (2010), since the RpoTp transcript level showed the 

strongest induction by light in Arabidopsis Ler wild-type seedlings again underlying its 

important role in plastidial transcription during de-etiolation. 

It has been often reported in the literature that the plastid developmental status affects the 

expression of NEP and PEP as well as the expression of their plastidial target genes in higher 

plants. For example, experiments in maize (Cahoon et al., 2004) and barley (Emanuel et al., 

2004) could show that PEP-derived transcript levels increased as proplastids developed into 

chloroplasts. While RpoTp becomes less abundant as plastids mature, the mRNA levels of 

NEP-transcribed genes were found to be stable during plastid development (Cahoon et al., 

2004). Emanuel et al. (2004) suggested that high RpoTp transcript levels are needed to build 

up the plastid machinery for transcription (e.g. represented by rpoB; gene for PEP-subunit) 

and translation (e.g. represented by rpl2; gene for ribosomal protein of the large subunit) 

during the transition from proplastids to chloroplasts. Therefore, the influence of the plastid 

developmental status on the expression and activity of nuclear genes, including the phage-

type RNA polymerases, might involve specific signal transfer between the organelles, e.g. 

plastid-to-nucleus signaling (Emanuel et al., 2004; Woodson and Chory, 2008). 
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Taken together, all RpoT genes are light-inducible by white light, but to a different extent. 

Light-induced control of plastidial gene transcription mainly via RpoTp is important to ensure 

a rapid build-up of the photosynthesis apparatus in etiolated seedling probably using plastid-

to-nucleus signaling. The perception of light signals is mediated by different photoreceptors 

and involves complex pathways to modulate gene expression in response to light. To gain 

more information about the role of different photoreceptors in the signaling cascade, Ler 

wild-type seedlings and photoreceptor knockout mutants were exposed to monochromatic red, 

blue and green light. 

4.1.2 Red light: two classes of photoreceptors important for RpoT genes 

In the wild-type plants an increase of all RpoT transcripts was found within six hours of 

illumination with red light (Figure 10). The RpoT transcript accumulation was altered in 

knockout mutants for the red light absorbing phytochromes. In phyA and phyB single mutants 

as well as in phyA/phyB double mutants only RpoTp transcript accumulation was induced by 

red light (Figure 11). However, overall effects were less pronounced than in the wild type. 

Also changes in the RpoT transcript amounts were analyzed in knockout mutants for the blue 

light absorbing cryptochromes. In cry1 and cry2 single mutants, and cry1/cry2 double 

mutants, the transcript accumulation of RpoTs was strongly inhibited (Figure 12). The data 

support a model in which phytochromes and cryptochromes account for the perception of red 

light signals, because any missing photoreceptor resulted in a decrease of RpoT transcripts 

(Figure 33). 

Cryptochromes may possess additional blue light independent activities in the presence of 

red light and far-red light. The data suggest that cryptochromes can detect and even mediate 

red light signals, which led to an activation of RpoT transcript accumulation. Several blue 

light independent cryptochrome actions were reported before (see review by Yu et al. 2010). 

For example, Más et al. (2000) reported in a study about functional interaction between 

phytochrome B and cryptochrome 2 that cry2 mutant seedlings showed a longer period length 

of the circadian clock in red light. It is also known that cryptochromes may interact with 

phytochromes in the absence of blue light (Ahmad et al., 1998b; Más et al., 2000; Yu et al., 

2010). A synergistic interaction of red and blue light in the control of Arabidopsis gene 

expression and development was reported by Sellaro et al. (2009). More recently, Peschke 

and Kretsch (2011) showed that PHYA and cryptochromes are concomitantly involved in the 

regulation of gene expression under red and blue light in Arabidopsis seedlings. Experiments 
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by Strasser et al. (2010) with a quintuple phytochrome mutant demonstrated that Arabidopsis 

thaliana mutant seedlings indeed show detectable greening under red light. The red light 

signal seems to be detected via photoreceptors other than phytochromes. Together, the results 

indicate that under certain conditions cryptochromes are able to replace phytochrome function 

in red light signaling. 

 

 
Figure 33: Involvement of photoreceptors in the RpoT transcript accumulation (red light). 

Based on the data obtained in the different experiments in this study a model was developed that 
shows the involvement of photoreceptors in red light induced RpoT transcript accumulation. PHYA, 
PHYB, CRY1 and CRY2 account for the perception of red light signals. An arrow indicates a positive 
effect on transcript accumulation. 

 

4.1.3 Blue light: CRY-mediated down-regulation of RpoT gene expression 

Functional interaction between phytochromes and cryptochromes has been reported in 

various light responses such as the control of floral initiation (Guo et al., 1998; Mockler et al., 

1999), activation of chloroplast transcription (Chun et al., 2001; Thum et al., 2001) and 

recently, modulation of hypocotyl phototropism (Tsuchida-Mayama et al., 2010). 

Phytochromes are known mainly for their function as red light photoreceptors but they are 

able to absorb a wide spectrum of different wavelengths, including blue light (Schafer and 

Haupt, 1983; Shinomura et al., 1996; Folta and Spalding, 2001; Spalding and Folta 2005). 

Interestingly, blue light was found to have no significant effect on the expression of RpoT 

genes in the wild type (Figure 15). Compared to the wild type, in the phyA mutants as well as 

in the phyB mutants, a very weak light induction, mainly for RpoTp transcripts, was 
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detectable (Figure 16). The phyA/phyB double knockout mutants showed no significant 

difference to the wild type. In contrast to the RpoT transcript abundance in the wild type, cry1 

and cry2 single knockout mutants showed an increase for the RpoTp transcripts (Figure 17). 

Furthermore, the strongest increase for RpoTp was found for the cry1/cry2 double mutants. 

Despite its role as a potential sensor of red light, the data indicate that indeed 

cryptochromes mediate blue light signals involved in the RpoT gene expression. However, the 

monochromatic blue light perceived via cryptochromes seems to be involved in muting the 

light activation of RpoTs. A disruption of the signal pathway via knockout of the 

cryptochromes apparently cancels the nullifying effect of blue light on the RpoT transcript 

accumulation. Most likely, blue light recognized by a different kind of photoreceptors is, in 

the absence of cryptochromes, able to induce RpoT transcript accumulation. This is in 

accordance to recent findings by Peschke and Kretsch (2011), who demonstrated 

cryptochromes to be dispensable during the early-light regulated transcription of marker 

genes like HY5 by blue light. These data additionally suggest that blue light may be sensed by 

other photoreceptors, e.g., phytochromes or phototropins. 

A role of PHYA in the blue light response has been previously reported (Casal and 

Mazzella, 1998; Neff and Chory, 1998; Poppe et al., 1998). The data presented here cannot 

completely exclude an involvement of phytochromes in blue light induced RpoT transcript 

accumulation in cry mutants. The knockout of phytochromes in the presence of 

cryptochromes would not lead to a decrease of RpoT transcripts, since the transcript 

accumulation is already repressed. In the proposed model, blue light recognized by 

phytochromes would be able to induce RpoT transcript accumulation only in the absence of 

cryptochromes (Figure 34). To test this hypothesis and to clarify the precise function of each 

of the (possible) blue light photoreceptors, analysis of combinatorial multiple mutants might 

be necessary. The next step would be to analyze the effect of blue light on the RpoT transcript 

accumulation in a quadruple mutant (cry1/cry2/phyA/phyB) and corresponding triple mutants, 

by crossing the cry1/cry2 mutant with the phyA/phyB mutant. Similar experiments with 

combinatorial multiple mutants in Arabidopsis revealed for example that phototropins only 

play a minor role in blue light induced gene expression and are more likely involved in 

mediating photomovement responses (Ohgishi et al., 2004). However, it cannot be ruled out 

that in cry mutants phototropins or other yet to be identified photoreceptors are responsible 

for the observed activation of RpoT transcript accumulation. 
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Figure 34: Involvement of photoreceptors in the RpoT transcript accumulation (blue light). 

Based on the data obtained in the different experiments in this study a model was developed that 
shows the involvement of photoreceptors in blue light repressed RpoT transcript accumulation. CRY1 
and CRY2 account for the perception of blue light signals. In addition, blue light may be recognized 
by other photoreceptors like phytochromes. The blue light signals perceived by these receptors are 
somehow repressed by cryptochromes and induce RpoT transcript accumulation only in the absence of 
cryptochromes. An arrow indicates a positive effect on transcript accumulation, while a line with a 
blunt end indicates an inhibitory effect. 

 
Several microarray studies have been performed to investigate the influence of blue light 

on the organellar gene expression. Ma et al. (2001) used expressed sequence tag-based (EST) 

microarrays to study light control on the genome expression in 6-day-old Arabidopsis 

wild-type seedlings. 1096 ESTs were induced at least twofold by blue light, but more 

interestingly, 616 ESTs were repressed under the same light quality. Their results correspond 

to recent microarray experiments by Zhang et al. (2008) that showed 123 genes to be induced 

and 97 genes to be repressed by blue light in a CRY1-dependent manner. For example, after 

one hour of blue light exposure RpoTp gene expression was slightly enhanced in cry1 mutants 

compared to wild-type seedlings. Together, these data suggest that down-regulation of 

transcript levels by blue light seems to be a more common aspect. A potential role of the 

specific blue light effect on RpoT transcript accumulation under natural conditions remains to 

be elucidated. 
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4.1.4 Green light: RpoT transcripts regulated via phytochromes and CRY2 

The exposition to green light showed a very interesting accumulation pattern for the 

wild type (Figure 19). A strong increase of all three RpoT transcript amounts after four hours 

of illumination was detectable, while further light exposure led to a decrease of transcripts 

back to levels found in darkness. The knockout of one or two phytochromes led to reduction 

of the transcript amounts compared to the wild type (Figure 20). In the cry1 single knockout 

mutants the peak for the RpoT genes was just shifted compared to the wild type (Figure 21). 

In both cry2 and cry1/cry2 mutants no significant increase of RpoTm and RpoTmp transcript 

levels was detectable. In contrast, RpoTp transcript amounts were increased. According to the 

data, a model in which PHYA, PHYB and CRY2 contribute in the regulation of the RpoT 

transcript accumulation under green light is proposed (Figure 35). 

 

 
Figure 35: Involvement of photoreceptors in the RpoT transcript accumulation (green light). 

Based on the data obtained in the different experiments in this study a model was developed that 
shows the involvement of photoreceptors in green light induced RpoT transcript accumulation. PHYA, 
PHYB and CRY2 account for the perception of green light signals. An arrow indicates a positive effect 
on transcript accumulation, while a crossed out arrow indicates no light perception via a certain 
photoreceptor. 

 

The detection of green light signals via cryptochromes and phytochromes may be of 

advantage for the optimization of light capture under unfavorable growth conditions (Folta, 

2004; Folta and Maruhnich, 2007). Furthermore, Dhingra et al. (2006) proposed the existence 

of a hypermorphogenetic state in green light, which allows the plant to reach better light 

conditions through preservation of needed resources by the plastids. The biological role of 
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enhanced RpoT transcript levels after four hours of illumination with green light has to be 

further investigated. Despite this significant peak, the RpoT transcript accumulation in 

wild type was in the range of dark control levels, which might lead to reduction of overall 

plastid transcription. The proper development of chloroplasts might be affected and energy 

could be saved for other processes. 

4.1.5 HY5: central signal integrator in all tested light conditions 

The transcription factor HY5 acts downstream of photoreceptors like phytochromes and 

cryptochromes (Koornneef et al., 1980; Oyama et al., 1997; Ang et al., 1998; Ulm et al., 

2004). Absent in darkness, it accumulates rapidly upon exposure to light and regulates the 

transcription of light-responsive genes (Ang et al., 1998; Chattopadhyay et al., 1998; 

Osterlund et al., 2000). Furthermore, HY5 promotes photomorphogenesis in red, far-red and 

blue light conditions (Lau and Deng, 2010). Therefore, the RpoT transcript accumulation in 

hy5 mutants was additionally analyzed under red, blue and green light conditions. 

The present study confirmed the role of HY5 as a central signal integrator under all 

different light conditions for nuclear-encoded RNA polymerases. In HY5 deficient plants the 

expression of the RpoT genes was strongly affected compared to the wild-type results, 

suggesting that HY5 is important for the transfer of light signals to the RpoTs. As mentioned 

before, in red and green light a drastic decrease of RpoT transcripts in hy5 mutants was 

detectable (Figure 14+Figure 22), while blue light mediated inhibition was interrupted in hy5 

mutants (Figure 18). For example, in hy5 mutants an increase of transcripts after illumination 

with blue light was found, similar to what had been observed in cryptochrome knockout 

mutants. This suggests HY5 plays a major role downstream of cryptochromes in mediating 

blue light signals in repressing RpoT gene expression. In addition, HY5 may have a large 

influence on photoreceptor function itself. For instance, it was recently shown to be involved 

in the negative feedback regulation of PHYA signaling (Li et al., 2010). The important role of 

HY5 as a central integrator of light and hormones as well as in light-regulated plant 

development is known from the literature (Lee et al., 2007; Lau and Deng, 2010). For 

example, more than 60% of early PHYA- or PHYB-induced genes are targets of HY5 (Lee et 

al., 2007) To summarize, the data presented indicate that HY5 seems to be involved in both 

cryptochrome- and phytochrome-mediated effects on light-induced RpoT gene transcript 

accumulation under different light conditions. 
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4.1.6 Summary: light effects on organellar RNA polymerases 

Many light-induced processes require a complex regulation on multiple levels and through 

several interconnected pathways (Casal, 2000; Eisinger et al., 2003; Casal and Yanovsky, 

2005; Jiao et al., 2007; Peschke and Kretsch, 2011). In the present study, the focus lay on 

processes which occurred after illumination of etiolated 7-day-old Arabidopsis thaliana 

seedlings with different light qualities. Light-regulated processes during this developmental 

stage include seed germination and seedling photomorphogenesis. In Arabidopsis seedlings, 

photomorphogenesis is characterized by inhibition of hypocotyl growth, cotyledon opening 

and expansion, and the synthesis of the photosynthetic apparatus (Casal et al., 2003; Yu et al., 

2010). Under natural conditions (sunlight) the light spectrum ranges from UV-B to the far-

red, but different wavelengths can have specific effects during plant growth and development. 

For example, red light promotes seed germination (Casal et al., 2003), whereas blue light 

inhibits hypocotyl elongation (Yu et al., 2010). For the effective initiation of de-etiolation in 

higher plants the exposure to both red and blue light signals is essential. Light-induced 

changes of the organellar gene transcription which involves interactions of several 

photoreceptors might support these morphological and physiological changes. 

Several light-induced effects on the transcript levels of organellar RNA polymerases were 

shown in the present study. Rapid induction of RpoT transcript accumulation by red and blue 

light might be important for the fast adaptation of seedlings to light after growth in the 

darkness. Light-induced control of organellar gene expression and a fast build-up of the 

photosynthesis apparatus in etiolated seedling are important during light adaptation. It is often 

mentioned in the literature that the expression of many rapidly responding genes is regulated 

by red and blue light (Tepperman et al., 2006; Peschke and Kretsch, 2011). Green light 

signals are often discussed as acting antagonistic to red and blue light signals (Folta and 

Maruhnich, 2007). It might be possible that green light is sensed as an environmental stress 

signal. As sessile organisms plants need to optimize light capture under unfavorable growth 

condition. Despite a distinct peak, the RpoT transcript accumulation was not induced by green 

light. Small amounts of NEP might lead to a reduction of overall plastid transcription, which 

saves energy needed to reach better light conditions. 
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The entire spectrum of light is required for a correct light regulation of organellar genes. 

Under natural light conditions the contribution of different monochromatic light qualities may 

vary. This would explain the strong increase of RpoTs in white light, which is not seen under 

monochromatic blue or green light. The cross-talk between different photoreceptors is 

important to adjust the organellar transcription to natural light conditions. It is known that 

several synergistic and antagonistic interactions between phytochromes and cryptochromes 

exist in the control of plant growth and development (Casal and Mazzella, 1998; Casal, 2000). 

Therefore it would not be surprising if these interactions also influence the RpoT transcript 

accumulation. 

On one hand, an explanation for the observed results could be, that the same interactions of 

blue and red light, which are essential for seedling germination and development, are 

responsible for enhancing the expression of numerous genes including RpoTs in white light. 

On the other hand it was found that monochromatic red light induced RpoT transcript 

accumulation, while in experiments with monochromatic blue light no induction of RpoT 

transcripts occurred. As mentioned before phytochromes are able to detect red and blue light 

signals (see 4.1.3). Thus, another hypothesis would be that the blue light sensing activity of 

phytochromes was somewhat impaired by antagonistic cryptochrome activity to ensure that 

phytochromes perceive under natural light conditions primarily red light signals to promote 

RpoT transcript accumulation during early seedling development (Figure 36). Higher level of 

RpoT transcripts might translate into higher level of needed NEP-transcribed genes. 

The present study showed that light-induced regulation of RpoT gene expression is not 

only dependent on one class of photoreceptors, but utilizes the whole spectrum of 

phytochromes and cryptochromes to adjust gene expression in the natural environment. 

Additionally, analyzing effects of different light qualities on transcript levels of organellar 

genes transcribed by nuclear-encoded RNA polymerases via microarray analysis will be very 

interesting. Run-on analyses could provide more information about transcript stability and 

de novo synthesis. 
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Figure 36: Model for the regulation of RpoT gene transcript accumulation by red and blue light. 

Based on the data obtained in the different experiments in this study a model was developed that 
shows the involvement of phytochromes (PHY) and cryptochromes (CRY) in red and blue light 
regulated RpoT transcript accumulation. Monochromatic red light induced RpoT transcript 
accumulation (A), while in monochromatic blue light RpoT transcripts were repressed (B). It was 
hypothesized that the blue light sensing activity of phytochromes was somewhat impaired by 
antagonistic cryptochrome activity to ensure that phytochromes perceive under natural light conditions 
primarily red light signals to promote RpoT transcript accumulation (C). An arrow indicates a positive 
effect (+) on transcript accumulation, while a line with a blunt end indicates an inhibitory effect (-). 
Thickness of the lines corresponds to the importance of the respective receptor. 
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4.2 Influence of cytokinin on the organellar gene transcription 

The plant hormone cytokinin regulates many aspects of plant growth and development, 

including de-etiolation, circadian clock oscillation, chloroplast differentiation, root and shoot 

related processes, and responses to environmental stimuli (reviewed by Mok and Mok, 2001; 

Zheng et al., 2006; Kurakawa et al., 2007; Argueso et al., 2009; Werner and Schmülling, 

2009). Recent data showed that the application of cytokinin increases the transcription of 

some plastidial genes in barley, tobacco and Arabidopsis thaliana (Brenner et al., 2005; Zubo 

et al., 2008; Hertel, 2009). The responses of plastids could result indirectly from inducing the 

expression of some nuclear-encoded components of the plastid transcription machinery such 

as RNA polymerases or sigma factors. Another option could be that cytokinin may also 

directly affect the transcription apparatus of plastid genes via special signal transduction 

pathways. To gain additional information about the role of different hormone receptors and 

response regulators in plastid gene expression, the response to cytokinin in Col-0 wild-type 

seedlings and cytokinin-pathway-related knockout mutants was analyzed on several levels. In 

addition, cytokinin-deficient CKX1 mutants were used to study the influence of the 

endogenous cytokinin pool on the responsiveness to exogenous cytokinin. 

4.2.1 Cytokinin application led to more, but smaller chloroplasts 

To study which effects the addition of exogenous cytokinin has on the plastid division, 

microscopic analysis of chloroplast parameters like size and number were performed in Col-0 

wild-type plants and cytokinin-related mutants. In the present data, wild-type plants and most 

analyzed mutants displayed a larger number of smaller chloroplasts after exogenous 

application of cytokinin (Figure 25, Figure 26). Exceptions were found for the cytokinin-

deficient CKX1 mutants (no change in chloroplast number, but decreased chloroplast size) 

and the ahk2/ahk3 mutants (no change in chloroplast size, but increased chloroplast number). 

Mutations in single receptors did not cause strong changes in the cytokinin response, which 

indicates a high degree of redundancy in the function of these receptors. However, it seems 

that the CRE1/AHK4 receptor alone was not sufficient to mediate a full response to the 

cytokinin signal, since the combined loss of AHK2 and AHK3 resulted in no change in the 

chloroplast size after cytokinin application. The observed results indicate that synergistic 

effects of the cytokinin receptors AHK2 and AHK3 may be to some extent responsible for the 

cytokinin-regulated chloroplast division, since only the knockout of both receptors inhibits the 

effect of cytokinin on the chloroplast size. Cytokinin-deficiency caused a retardation of shoot 
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development in 35S:AtCKX transgenic plants (Werner et al., 2003). The lower endogenous 

cytokinin level in CKX1 mutants may at least in part be responsible that the effects of 

exogenously applied cytokinin on the chloroplast number were less pronounced compared to 

the wild type. 

Cytokinin may also influence chloroplast size and numbers via CRF transcription factors 

(CRF: Cytokinin Response Factor) that regulate the gene expression of plastid division 

components. For example, data by Okazaki et al. (2009) showed that exogenously applied 

cytokinin led, at least in part via CRF2, to elevated PLASTID DIVISION (PDV2) protein 

levels. This resulted in an increase of the number, but a decrease of size of chloroplasts in 

Arabidopsis thaliana (Okazaki et al., 2009). Higher plants can adapt to fluctuating 

environmental light situations through light-dependent chloroplast movement (see review by 

Takagi, 2009). The presence of a larger number of smaller chloroplast would be an asset 

when plants have to grow under varying light conditions. A recent study in tobacco showed 

that a large population of small chloroplast allows more effective chloroplast phototaxis, 

which allows efficient utilization of energy under dim light and minimization of photodamage 

caused by excess light (Jeong et al., 2002). 

4.2.2 Cytokinin application increases plastome copy numbers 

The plastid genome (plastome) of a typical higher plant is 120-160 kb in size and contains 

about 120 genes (Sugiura, 1992; Wakasugi et al., 2001). In a diploid plant cell only two 

copies of the nuclear genome, but up to thousands of copies of the plastome are present 

(Zoschke et al., 2007). Since most plastome-encoded gene products are involved in 

photosynthesis, adjusting copy numbers to changing demands might offer a potential for 

regulating chloroplast gene expression (Li et al., 2006). However, Zoschke et al. (2007) 

showed that plastidial gene expression is not regulated by plastome copy number, but rather at 

the transcriptional and post-transcriptional levels. Another theory for high plastome copy 

numbers is that they are needed to provide sufficient ribosomes for the developing plastid via 

genome amplification (Bendich, 1987; Rogers et al., 1993). Using quantitative real-time PCR, 

plastome copy numbers in wild type and cytokinin-related mutants were calculated and 

adjusted to the nuclear RpoTm gene copy numbers and the degree of nuclear genome 

polyploidization. This was done, because nucleoids can have different quantities of DNA and 

the degree of their ploidy can vary. The development of the photosynthetic apparatus in plants 

is associated with an increase of chloroplast numbers. Therefore, endopolyploidization has 
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been discussed as an option to adapt the number and expression of nuclear-encoded plastid 

proteins to these changing conditions (Galbraith et al., 1991). 

Average nuclear ploidy numbers (Figure 27) and plastome copy numbers (Figure 28) 

increased slightly in Col-0 wild type and nearly all cytokinin-related mutants after application 

of cytokinin. Furthermore, the cytokinin receptor single (cre1) and double mutants 

(ahk2/ahk3) showed no significant change in their nuclear ploidy levels and in their plastome 

copy numbers after BA treatment suggesting that cytokinin reception is indeed the reason for 

increasing values. The simple combination of AHK2 and AHK3 (cre1 mutants) as well as 

CRE1 alone (ahk2/ahk3 mutants) was not sufficient to transmit the cytokinin signal. 

However, the combination of AHK2 and CRE1 as well as of AHK2 and CRE1 together 

provided full cytokinin responsiveness. The presence of an increased number of smaller 

chloroplast in response to cytokinin treatment might influence the plastome copy numbers per 

cell. Previous findings in Zea species (maize; Oldenburg and Bendich, 2004; Zheng et al., 

2011) and Beta vulgaris (sugar beet; Rauwolf et al., 2010) suggest that the plastome copy 

number is at least in part dependent on plastid size and number. On the other hand, a direct 

influence of cytokinin on the plastome copy numbers cannot be excluded and should be 

further investigated. 

4.2.3 All three receptors participate in regulating the plastid gene transcription 

The regulation of the plastidial gene transcription by cytokinin in Col-0 wild-type plants 

and cytokinin-related mutants was studied using chloroplast isolation and run-on transcription 

assays. In Arabidopsis wild-type plants, which were grown on medium with cytokinin, the 

transcription in chloroplasts most likely adapted to the permanent high cytokinin levels 

(Figure 29). No significant hormone response was found compared to seedlings grown 

without cytokinin. In contrast, chloroplast gene transcription in wild-type plants grown on soil 

without cytokinin showed a significant light-dependent response to cytokinin after incubation 

for six hours (Figure 30). Housekeeping genes are required for the maintenance of basic 

cellular function, while photosynthesis-related genes encode proteins which are needed in 

photosynthetically active chloroplasts. Therefore, it was not surprising that the activation of 

transcription of housekeeping genes by cytokinin was slightly stronger than those of 

photosynthesis-related genes. 
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The effects of cytokinin on chloroplast transcription were reduced in all three kinase single 

mutants, although more prominent in ahk3 and cre1 than in ahk2. In double mutants the 

cytokinin effects were even more reduced than in the single mutants. The results indicated 

that the three histidine kinase receptors play essential, but functionally redundant roles in the 

cytokinin signaling pathway of Arabidopsis thaliana. Mutations in the cre1 and the ahk3 

genes stronger abolished cytokinin action on chloroplast gene transcription then a mutation in 

the ahk2 gene. This is in accordance to several reports that showed AHKs to be functionally 

overlapping regulators in cytokinin signaling (Higuchi et al., 2004; Nishimura et al., 2004; 

Riefler et al., 2006). It was suggested by Ishida et al. (2009) that ARR1, ARR10, and ARR12, 

together play essential but redundant roles in cytokinin signal transduction in Arabidopsis 

thaliana. In contrast, the results presented indicate a more prominent role of ARR1 in the 

cytokinin signal transduction pathway, since a knockout of ARR1 resulted in similar transcript 

accumulation pattern as observed in single receptor mutants. 

A decrease of chloroplast gene transcripts was also found in CKX1 mutants, which 

overexpress cytokinin-degrading CKX1 enzymes. This indicates that the internal cytokinin 

content might be an important signal for regulating the plastidial transcription maybe via 

restriction of the signal transduction pathway. Interestingly, microarray analysis showed that 

the cytokinin receptor gene CRE1 was down-regulated in 35S:AtCKX1 transgenic seedlings 

(Brenner, 2005). Cytokinin-deficient plants might use a sensitized signaling system to 

compensate for the lower internal cytokinin content (Brenner, 2005), but the overall response 

of the transgenic CKX1 mutants was reduced compared to the Arabidopsis wild type. In 

contrast, experiments with transgenic Nta:AtCKX2 tobacco showed an enhanced sensitivity 

for cytokinin (Hertel, 2009). These findings indicate that the cytokinin effects on plastid 

transcription depending on endogenous cytokinin can vary in different plant species. 

4.2.4 Sigma factors are involved in the cytokinin-regulated gene transcription 

Bacteria use a set of sigma factors to regulate their gene transcription. Sigma factors are 

cofactors that enable specific binding of RNA polymerase to gene promoters (Wösten, 1998; 

Schweer, 2010). They have also been found in several plant species, including Arabidopsis, 

maize, rice, wheat, and tobacco (Lysenko, 2007; Schweer, 2010). Six different sigma factors 

exist in Arabidopsis, which are activated in response to several environmental conditions. 

Although thought to have mostly overlapping roles in regulating plastid gene expression by 

PEP, some sigma factors were shown to exhibit developmentally timed gene specific 
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function. For instance, the promoters of rbcL and psbA are recognized by SIG2 early in 

seedling development, whereas stress-induced SIG5 is essential for the blue light induced 

transcription of the psbD operon (Lerbs-Mache, 2011). Some cytokinin-inducible genes in 

this study were transcribed via the plastid encoded RNA polymerase (PEP), which needs 

sigma factors for the correct promoter recognition. To investigate the role of sigma factors in 

the cytokinin signaling pathway, the influence of cytokinin on chloroplast transcription was 

analyzed in Arabidopsis sigma factor mutants by run-on assays (Figure 31) and quantitative 

real-time PCR (Figure 32). 

In wild-type plants an induction of chloroplast gene transcription was found, while the 

knock-out of distinct sigma factors led to reductive effects. Cytokinin effects on total 

chloroplast transcription were slightly reduced in sig3, sig4, and sig5 mutants and 

significantly reduced in sig1, sig2, and sig6 mutants. Together, the data indicated that some 

sigma factors like SIG2 and SIG6 might be more involved in cytokinin-induced 

transcriptional changes than others. According to recent reviews, SIG2 and SIG6 are major 

factor in early development and may be considered as ‗‗essential for vital plastid functions‘‘ 

in Arabidopsis thaliana (Schweer, 2010; Lerbs-Mache, 2011). Not surprising, SIG2 and SIG6 

knock-out plants display a chlorophyll-deficient phenotype (Shirano et al., 2000; Ishizaki et 

al., 2005; Loschelder et al., 2006). 

Regulation of plastid genome transcription via sigma factors potentially occurs at several 

levels (Lerbs-Mache, 2011). Differential expression of the sigma factors themselves provides 

one means in regulating plastidial gene expression. However, the modulation of sigma factor 

activity and/or specificity by post-transcriptional modifications such as phosphorylation and 

redox state is more common (Pfannschmidt und Liere, 2005; Shimizu, 2010). These 

mechanisms have probably evolved to shorten the signal transduction pathway to respond 

rapidly to changing environmental conditions (Lerbs-Mache, 2011). The present study 

showed no effect of cytokinin on the steady-state levels of transcripts of the six sigma factor 

genes in wild-type seedlings suggesting activation of PEP transcription in response to 

cytokinin treatment rather by post-translational modifications than activation of sigma-factor 

expression. 

The data suggest an important role of sigma factors in cytokinin-induced chloroplast gene 

transcription. To further investigate involved pathways microarray analysis and quantitative 

real-time PCR could be used to analyze target genes of sigma factors and their response to 

cytokinin. In addition, the detection of SIG2 and SIG6 proteins by Western Blot analysis in 
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cytokinin-treated seedlings would provide some interesting information about the amount of 

sigma factors actual present. Post-translational modification of sigma factors could be 

analyzed by mass spectrometry. 

4.2.5 Summary: regulation of plastidial gene transcription by cytokinin 

The role of cytokinin receptors and response regulators in the plastid gene expression of 

Col-0 wild-type seedlings and cytokinin-related mutants was analyzed on several levels. 

Taken together, the data show certain redundancies within the cytokinin signal perception 

system. However, the three receptors and their combinations contribute to a different extent to 

various processes. In accordance to data of Riefler et al. (2006), mutation of AHK2 alone did 

not or only slightly causes a change of cytokinin sensitivity. However, in several experiments, 

the ahk2 mutation enhanced the cytokinin resistance of ahk3 (chloroplast size, ploidy level, 

plastid gene transcription) or cre1 (plastid gene transcription) mutants. This indicates that 

AHK2 may function primarily in combination with AHK3 or CRE1. 

The response regulator ARR1 is involved in the cytokinin signal transduction, since in the 

ARR1 mutants the plastid gene transcript accumulation was strongly reduced compared to the 

wild type. The endogenous cytokinin content also influences the plastid gene transcription in 

response to exogenously applied cytokinin. In cytokinin-deficient CKX1 mutants, no 

activation of chloroplast gene transcription by cytokinin was found. The reduction of the 

cytokinin status, which has been achieved either by lowering the cytokinin content (CKX1 

mutants) or by reducing cytokinin signaling (ahk and ARR1 mutants), led to a decline of 

specific hormone responses, demonstrating e.g. that cytokinin is a positive regulator of plastid 

gene transcription. In addition, the presented data suggest a regulation of the plastid genome 

transcription via modulation of sigma factor activity and/or specificity by post-translational 

processes like e.g. phosphorylation. SIG2 and SIG6 seem to play an essential role in the 

cytokinin-response of young seedlings. A possible model for the regulation of chloroplast 

gene transcription by cytokinin in Arabidopsis thaliana is presented in Figure 37. 

Cytokinins promote crop productivity for instance by the activation of meristems in rice 

(Kurakawa et al., 2007) or increasing drought tolerance through suppression of drought 

induced leaf senescence in tobacco (Rivero et al., 2007). The rate of photosynthesis can be 

measured indirectly through the rate increase in biomass. An induction of photosynthesis-

related genes by cytokinin could lead to an improvement of photosynthesis and an increasing 

biomass production. For this reason, it is important to gain as much information as possible 
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about cytokinin signaling cascades and their organellar gene targets for generating stress-

resistant crop plants or achieve higher plant biomass for biofuel production. To investigate the 

influence of cytokinin on photosynthesis and/or light acclimation, analysis of photosystem I 

and II components like psaA and psbA on protein and RNA level would be interesting. 

 

 
Figure 37: Model for the regulation of chloroplast gene transcription by cytokinin. 

Cytokinin treatment leads to a significant induction of chloroplast gene transcription in 12-day-old 
Col-0 wild type soil-grown on top of a net. Each signaling step in the cytokinin signal transduction 
pathway is executed by a family of genes that largely act redundantly. Phosphorelay events mediate 
the hormone signaling from functionally redundant cytokinin receptors (AHK2, AHK3 and 
CRE1/AHK4) via AHP proteins to type-B response regulators (ARRs), which co-activate cytokinin-
regulated gene transcription in the nucleus. The CRF proteins are also activated by cytokinin via the 
AHPs to accumulate in the nucleus and activate transcription. The data presented suggests a major role 
of ARR1 in the cytokinin signaling pathway. How exactly the cytokinin signal is mediated to the 
chloroplast remains to be further investigated. One possibility would be via the transcription 
machinery of the plastids. The plastid-encoded plastid RNA polymerase (PEP) requires nuclear-
encoded sigma factors (SIG) for promoter recognition and additional, yet unknown transcriptional 
factors (TF) for their correct function. The post-translational modulation of sigma factors, e.g. SIG2 
and SIG6, may provide one way of cytokinin action on chloroplast transcription. AHK: Arabidopsis 
Histidine Kinase, AHP: Arabidopsis Histidine Phosphotransfer protein, ARR: Arabidopsis Response 
Regulator, CRF: Cytokinin Response Factor. Based on Santner et al., 2009. 



BIBLIOGRAPHY 

75 

Bibliography 

Ahmad, M. and Cashmore, A.R. (1993): HY4 gene of A. thaliana encodes a protein with 
characteristics of a blue-light photoreceptor. Nature 366 [6451], 162-166. 

Ahmad, M., Jarillo, J.A., Smirnova, O. and Cashmore A.R. (1998a): Cryptochrome blue-light 
photoreceptors of Arabidopsis implicated in phototropism. Nature 392 [6677], 720-723. 

Ahmad, M., Jarillo, J.A., Smirnova, O. and Cashmore A.R. (1998b): The CRY1 Blue Light 
Photoreceptor of Arabidopsis Interacts with Phytochrome A In Vitro. Mol Cell 1 [7], 939-948. 

Allison, L.A. (2000): The role of sigma factors in plastid transcription. Biochimie 82 [6-7], 537-548. 

Allison, L.A. and Maliga, P. (1995): Light-responsive and transcription-enhancing elements regulate 
the plastid psbD core promoter. EMBO J 14 [15], 3721–3730. 

Ang, L-H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A. and Deng, X-W. (1998): 
Molecular Interaction between COP1 and HY5 Defines a Regulatory Switch for Light Control 
of Arabidopsis Development. Mol Cell 1, 213-222. 

Argueso, C.T., Ferreira, F.J. and Kieber, J.J. (2009): Environmental perception avenues: the interaction 
of cytokinin and environmental response pathways. Plant Cell Environ 32 [9], 1147-1160. 

Asami, T., Nakano, T. and Fujioka, S. (2005): Plant brassinosteroid hormones. Vitam Horm 72, 479-
504. 

Azevedo, J., Courtois, F., Hakimi, M-A., Demarsy, E., Lagrange, T., Alcaraz, J-P., Jaiswal, P., 
Maréchal-Drouard, L. and Lerbs-Mache, L. (2008): Intraplastidial trafficking of a phage-type 
RNA polymerase is mediated by a thylakoid RING-H2 protein. Proc Natl Acad Sci USA 105 
[26], 9123–9128. 

Baba, K., Schmidt, J., Espinosa-Ruiz, A., Villarejo, A., Shiina, T., Gardeström, P., Sane, A.P. and 
Bhalerao, R.P. (2004): Organellar gene transcription and early seedling development are 
affected in the rpoT;2 mutant of Arabidopsis. Plant J 38 [1], 38-48. 

Baena-Gonzalez, E., Baginsky, S., Mulo, P., Summer, H., Aro, E-M. and Link, G. (2001): Chloroplast 
Transcription at Different Light Intensities. Glutathione-Mediated Phosphorylation of the 
Major RNA Polymerase Involved in Redox-Regulated Organellar Gene Expression. Plant 
Physiol 127 [3], 1044-1052. 

Banerjee, R. and Batschauer, A. (2005): Plant blue-light receptors. Planta 220 [3], 498-502. 

Barkan, A. (2011): Expression of plastid genes: organelle-specific elaborations on a prokaryotic 
scaffold. Plant Physiol 155 [4], 1520-1532. 

Barkan, A. and Goldschmidt-Clermont, M. (2000): Participation of nuclear genes in chloroplast gene 
expression. Biochimie 82 [6-7], 559-572. 

Barow, M. and Meister, A. (2003): Endopolyploidy in seed plants is differentially correlated to 
systematic, organ, life strategy and genome size. Plant, Cell and Environment 26, 571-584. 

Batschauer, A., Banerjee, R. and Pokorny, R. (2007): Cryptochromes. In: Light and Plant 
Development; Whitelam; G.C, Halliday K.J. (eds.). Blackwell Publishing, Oxford, UK, 17-48. 

Baumgartner, B.J., Rapp, J.C. and Mullet, J.E. (1993): Plastid Genes Encoding the 
Transcription/Translation Apparatus Are Differentially Transcribed Early in Barley (Hordeum 
vulgare) Chloroplast Development. Plant Physiol 101 [3], 781-791. 



BIBLIOGRAPHY 

76 

Bendich, A.J. (1987): Why do chloroplasts and mitochondria contain so many copies of their genome? 
Bioessays 6 [6], 279-282. 

Benková, E., Witters, E., Van Dongen, W., Kolár, J., Motyka, V., Brzobohaty, B., Van Onckelen, H. A. 
and Machácková, I. (1999): Cytokinins in tobacco and wheat chloroplasts. Occurrence and 
changes due to light/dark treatment. Plant Physiol 121 [1], 245-252. 

Brandstatter, I. and Kieber, J. J. (1998): Two genes with similarity to bacterial response regulators are 
rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10, 1009-1019. 

Brenner, W.G., Romanov, G.A., Köllmer, I., Bürkle, L. and Schmülling, T. (2005): Immediate-early 
and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide 
expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action 
through transcriptional cascades. Plant J 44 [2], 314-333. 

Briggs, W.R. (2007): The LOV domain: a chromophore module servicing multiple photoreceptors. J 
Biomed Sci 14 [4], 499-504. 

Briggs, W.R. and Christie, J.M. (2002): Phototropins 1 and 2: versatile plant blue-light receptors. 
Trends Plant Sci 7 [5], 204-210. 

Brown, R. and Rickless, P. (1949): A new method for the study of cell division and cell extension with 
some preliminary observation on the effect of temperature and of nutrients. Proc R Soc Lond B 
Biol Sci 136 [882], 110-125 

Cahoon, A.B. and Stern, D.B. (2001): Plastid transcription: a ménage á trois? Trends Plant Sci. 6 [2], 
45–46. 

Cahoon, A.B., Harris, F.M. and Stern, D.B. (2004): Analysis of developing maize plastids reveals two 
mRNA stability classes correlating with RNA polymerase type. EMBO Rep 5 [8], 801-806. 

Casal, J.J. (2000): Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. 
Photochem Photobiol 71 [1], 1-11. 

Casal, J.J: and Mazzella, M.A. (1998): Conditional synergism between cryptochrome 1 and 
phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple 
mutants in Arabidopsis. Plant Physiol 118 [1], 19-25. 

Casal, J.J. and Yanovsky, M.J. (2005): Regulation of gene expression by light. Int J Dev Biol 49 [5-6], 
501-511. 

Casal, J.J., Luccioni, L.G., Oliverio, K.A. and Boccalandro, H.E. (2003): Light, phytochrome 
signalling and photomorphogenesis in Arabidopsis. Photochem Photobiol Sci 2 [6], 625-636. 

Casal, J.J., Fankhauser, C., Coupland, G. and Blázquez, M.A. (2004): Signalling for developmental 
plasticity. Trends Plant Sci 9 [6], 309-314. 

Cashmore, A.R., Jarillo, J.A., Wu, Y-J. and Liu, D. (1999): Cryptochromes: Blue Light Receptors for 
Plants and Animals. Science 284 [5415], 760-765. 

Chang, C-C., Sheen, J., Bligny, M., Niwa, Y., Lerbs-Mache, S and Stern, D.B. (1999). Functional 
analysis of two maize cDNAs encoding T7-like RNA polymerases. Plant Cell 11 [5], 911–926. 

Chattopadhyay, S., Ang, L-H., Puente, P.; Deng, X-W. and Wei, N. (1998): Arabidopsis bZIP Protein 
HY5 Directly Interacts with Light-Responsive Promoters in Mediating Light Control of Gene 
Expression. Plant Cell 10 [5], 673-683. 



BIBLIOGRAPHY 

77 

Chen, M., Chory, J. and Fankhauser, C. (2004): Light Signal Transduction in Higher Plants. Annu Rev 
Genet 38, 87-117. 

Chen, Z., Zheng, Z., Huang, J., Lai, Z. and Fan, B. (2009): Biosynthesis of salicylic acid in plants. 
Plant Signal Behav 4 [6], 493-496. 

Chevalier, F., Martin, O., Rofidal, V., Devauchelle, A.D., Barteau, S., Sommerer, N. and Rossignol, M. 
(2004): Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 
4 [5], 1372-1381. 

Chory, J. (2010): Light signal transduction: an infinite spectrum of possibilities. Plant J 61 [6], 982-
991. 

Chory, J., Reinecke, D., Sim, S., Washburn, T. and Brenner, M. (1994) A role for cytokinins in de-
etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol 
104 [2], 339-347. 

Christie, J.M. (2007): Phototropin Blue-Light Receptors. Annu Rev Plant Biol 58, 21-45. 

Christopher, D.A. and Mullet, J.E. (1994): Separate Photosensory Pathways Co-Regulate Blue 
Light/Ultraviolet-A-Activated psbD-psbC Transcription and Light-lnduced D2 and CP43 
Degradation in Barley (Hordeum vulgare) Chloroplasts. Plant Physiol 104 [4], 1119-1129. 

Christopher, D.A., Kim, M. and Mullet, J.E. (1992): A novel light-regulated promoter is conserved in 
cereal and dicot chloroplasts. Plant Cell 4 [7], 785–798. 

Chun, L., Kawakami, A. and Christopher D.A. (2001): Phytochrome A Mediates Blue Light and UV-
A-Dependent Chloroplast Gene Transcription in Green Leaves. Plant Physiol 125 [4], 1957-
1966. 

Courtois, F., Merendino, L., Demarsy, E., Mache, R. and Lerbs-Mache, S. (2007): Phage-type RNA 
polymerase RPOTmp transcribes the rrn operon from the PC promoter at early developmental 
stages in Arabidopsis. Plant Physiol 145 [3], 712-721. 

D'Agostino, I.B. and Kieber, J.J. (1999): Phosphorelay signal transduction: the emerging family of 
plant response regulators. Trends Biochem Sci 24, 452-456. 

Davies, P.J. (2004): Plant Hormones: Biosynthesis, Signal Transduction, Action! (3rd Edition), Kluwer 
Academic Publishers, Dordrecht, The Netherlands, ISBN: 978-1-4020-2684-3. 

Demarsy, E. and Fankhauser, C. (2009): Higher Plants use LOV to perceive blue light. Curr Opin 
Plant Biol 12 [1], 69-74. 

Dhingra, A., Bies, D.H., Lehner, K.R. and Folta, K.M. (2006): Green Light Adjusts the Plastid 
Transcriptome during Early Photomorphogenic Development. Plant Physiol 142 [3], 1256-
1266. 

Du Bell, A.N. and Mullet, J.E. (1995): Differential Transcription of Pea Chloroplast Genes during 
Light-lnduced Leaf Development. Plant Physiol 109 [1], 105-112. 

Eisinger, W.R., Bogomolni, R.A. and Taiz, L. (2003): Interactions between a blue-green reversible 
photoreceptor and a separate UV-B receptor in stomatal guard cells. Am J Bot 90 [11], 1560-
1566. 

Emanuel, C., Weihe, A., Graner, A., Hess, W.R. and Börner, T. (2004): Chloroplast development 
affects expression of phage-type RNA polymerases in barley leaves. Plant J 38 [3], 460-472. 



BIBLIOGRAPHY 

78 

Emanuel, C., von Groll, U., Müller, M., Börner, T. and Weihe, A. (2006): Development- and tissue-
specific expression of the RpoT gene family of Arabidopsis encoding mitochondrial and 
plastid RNA polymerases. Planta 223 [5], 998-1009. 

Fluhr, R. and Chua, N.H. (1986): Developmental regulation of two genes encoding ribulose-
bisphosphate carboxylase small subunit in pea and transgenic petunia plants: Phytochrome 
response and blue-light induction. Proc Natl Acad Sci USA 83 [3], 2358-2362. 

Folta, K.M. (2004): Green Light Stimulates Early Stem Elongation, Antagonizing Light-Mediated 
Growth Inhibition. Plant Physiol 135 [3], 1407-1416. 

Folta, K.M. and Spalding, E.P. (2001): Opposing roles of phytochrome A and phytochrome B in early 
cryptochrome-mediated growth inhibition. Plant J 28 [3], 333-340. 

Folta, K.M. and Maruhnich, S.A. (2007): Green light: a signal to slow down or stop. J Exp Bot 58 
[12], 3099-3111. 

Franklin, K.A. and Whitelam, G.C. (2004): Light signals, phytochromes and cross-talk with other 
environmental cues. J Exp Bot 55 [395], 271-276. 

Franklin, K.A. and Quail, P.H. (2010): Phytochrome functions in Arabidopsis development. J Exp Bot 
61 [1], 11-24. 

Franklin, K.A., Larner, V.S. and Whitelam, G.C. (2005): The signal transducing photoreceptors of 
plants. Int J Dev Biol 49 [5-6], 653-664. 

Galbraith, D.W., Harkins, K.R. and Knapp, S. (1991): Systemic endopolyploidy in Arabidopsis 
thaliana. Plant Physiol. 96 [3], 985-989. 

Gao, J. and Kaufmann, L.S. (1994): Blue-light Regulation of the Arabidopsis thaliana Cab1 Gene. 
Plant Physiol 104 [4], 1251-1257. 

Gfeller, A., Liechti, R. and Farmer, E.E. (2010): Arabidopsis Jasmonate Signaling Pathway. Sci Signal 
3 [109], cm4. 

Gilroy, S. and Trewavas, A (2001): Signal processing and transduction in plant cells: the end of the 
beginning? Nat Rev Mol Cell Biol 2 [4], 307-314. 

Granlund, I., Hall, M., Kieselbach, T. and Schröder, W.P. (2009): Light Induced Changes in Protein 
Expression and Uniform Regulation of Transcription in the Thylakoid Lumen of Arabidopsis 
thaliana. PLoS ONE 4 [5], e5649. 

Gray, M.W. (1999): Evolution of organellar genomes. Curr. Opin. Genet. Dev. 9 [6], 678-687. 

Greenberg, B.M., Gaba, V., Canaani, O., Malkin, S., Mattoo, A.K. and Edelman, M. (1989): Separate 
photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in 
the visible and UV spectral regions. Proc Natl Acad Sci USA 86 [17], 6617-6620. 

Guo, H., Yang, H., Mockler, T.C. and Lin, C. (1998): Regulation of flowering time by Arabidopsis 
photoreceptors. Science 279 [5355], 1360-1363. 

Haberer, G. and Kieber, J.J. (2002): Cytokinins. New insights into a classic phytohormone. Plant 
Physio 128 [2], 354-362. 

Hajdukiewicz, P.T., Allison, L.A. and Maliga, P. (1997): The two RNA polymerases encoded by the 
nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. 
EMBO J 16 [13], 4041-4048. 



BIBLIOGRAPHY 

79 

Haley, J. and Bogorad, L. (1990): Alternative promoters are used for genes within maize chloroplast 
polycistronic transcription units. Plant Cell 2 [4], 323-333. 

Hamazato, F., Shinomura, T., Hanzawa, H., Chory, J. and Furuya, M. (1997): Fluence and wavelength 
requirements for Arabidopsis CAB gene induction by different phytochromes. Plant Physiol 
115 [4], 1533-1540. 

Hande, S. and Jayabaskaran, C. (1996): Cucumber chloroplast trnL (CAA) gene - nucleotide sequence 
and in vivo expression analysis in etiolated cucumber seedlings treated with benzyladenine 
and light. Indian Journal of Biochemistry & Biophysics 33 [6], 448-454. 

Hedtke, B., Börner, T. and Weihe, A. (1997): Mitochondrial and chloroplast phage-type RNA 
polymerases in Arabidopsis. Science 277 [5327], 809–811. 

Hedtke, B., Börner, T. and Weihe, A. (2000): One RNA polymerase serving two genomes. EMBO Rep 
1 [5], 435–440.  

Hedtke, B., Legen, J., Weihe, A., Herrmann, R.G. and Börner, T. (2002) Six active phage-type RNA 
polymerase genes in Nicotiana tabacum. Plant J 30 [6], 625–637. 

Hertel, S. (2009): Aspekte der plastidären Transkription – der Einfluss des Phytohormons Cytokinin 
und in vivo-Analysen zur Regulation des rpoB-Operons. PhD thesis, Humboldt-Universität zu 
Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, urn:nbn:de:kobv:11-100100125. 

Hess, W.R. and Börner, T. (1999): Organellar RNA polymerases of higher plants. Int Rev Cytol 190, 
1–59. 

Heyl, A., Riefler, M., Romanov, G.A. and Schmülling, T. (2011): Properties, functions and evolution of 
cytokinin receptors. Eur J Cell Biol, doi:10.1016/j.ejcb.2011.02.009 (30.06.11). 

Higuchi, M., Pischke, M.S., Mähönen, A.P., Miyawaki, K., Hashimoto, Y., Seki, M., Kobayashi, M., 
Shinozaki, K., Kato, T., Tabata, S., Helariutta, Y., Sussman, M.R. and Kakimoto, T. (2004): In 
planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA 101 
[23], 8821-8826. 

Hirschfeld, M., Tepperman, J.M., Clack, T., Quail, P.H. and Sharrock, R.A. (1998): Coordination of 
phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific 
monoclonal antibodies. Genetics 149 [2], 523-535. 

Hoffer, P.H. and Christopher, D.A. (1997): Structure and Blue-Light-Responsive Transcription of a 
Chloroplast psbD Promoter from Arabidopsis thaliana. Plant Physiol 115 [1], 213-222. 

Hricová, A., Quesada, V. and Micol, J.L. (2006): The SCABRA3 nuclear gene encodes the plastid 
RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell 
proliferation in Arabidopsis. Plant Physiol 141 [3], 942-956. 

Huang, M., Abel, C., Sohrabi, R., Petri, J., Haupt, I., Cosimano, J., Gershenzon, J. and Tholl, D. 
(2010): Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes 
Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 
and TPS03. Plant Physiol 153 [3], 1293-1310. 

Hutchison, C.E. and Kieber, J.J. (2002): Cytokinin signaling in Arabidopsis. Plant Cell (Suppl) 14: 
S47–S59. 

Hwang, I. and Sheen, J. (2001): Two-component circuitry in Arabidopsis cytokinin signal 
transduction. Nature 413 [6854], 383-389. 



BIBLIOGRAPHY 

80 

Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R. and Kay, S.A. (2003): FKF1 is essential for 
photoperiodic-specific light signalling in Arabidopsis. Nature 426 [6964], 302-306. 

Imamura, A., Hanaki, N., Umeda, H. and Nakamura, A. T. S. C. U. T. M. (1998): Response regulators 
implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc Natl Acad Sci USA 
95, 2691–2696. 

Inoue, S.-I., Kinoshita, T., Matsumoto, M., Nakayama, K.I., Doi, M. and Shimazaki, K.-I. (2008): Blue 
light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl 
Acad Sci USA 105 [14], 5626-5631. 

Ishida, K., Yamashino, T., Yokoyama, A. and Mizuno, T. (2009): Three type-B response regulators, 
ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction 
throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 49 [1], 47-57. 

Ishizaki, Y., Tsunoyama, Y., Hatano, K., Ando, K., Kato, K., Shinmyo, A., Kobori, M., Takeba, G., 
Nakahira, Y. and Shiina, T. (2005): A nuclear-encoded sigma factor, Arabidopsis SIG6, 
recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development 
in cotyledons. Plant J 42 [2], 133-144. 

Isono, K., Niwa, Y., Satoh, K. and Kobayashi, H. (1997): Evidence for transcriptional regulation of 
plastid photosynthesis genes in Arabidopsis thaliana roots. Plant Physiol 114 [2], 623–630. 

Jeong, W.J., Park, Y.I., Suh, K., Raven, J.A., Yoo, O.J. and Liu, J.R. (2002): A large population of 
small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few 
enlarged chloroplasts. Plant Physiol 129 [1], 112-121. 

Jiao, Y., Lau, O.S. and Deng, X.W. (2007): Light-regulated transcriptional networks in higher plants. 
Nat Rev Genet 8 [3], 217-230. 

Karlin-Neumann, G.A., Sun, L. and Tobin, E.M. (1988): Expression of Light-Harvesting Chlorophyll 
a/b-Protein Genes Is Phytochrome-Regulated in Etiolated Arabidopsis thaliana Seedlings. 
Plant Physiol 88 [4], 1323-1331. 

Kasahara, H., Takei, K., Ueda, N., Hishiyama, S., Yamaya, T., Kamiya, Y., Yamaguchi, S. and 
Sakakibara, H. (2004): Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in 
Arabidopsis. Journal of Biological Chemistry 279 [14], 14049-14054. 

Kasten, B., Buck, F., Nuske, J. and Reski, R. (1997): Cytokinin affects nuclear- and plastome-encoded 
energy converting plastid enzymes. Planta 201 [3], 261-272. 

Khokhlova, V.A., Karavaiko, N.N., Podergina, T.A. and Kulaeva, O.N. (1978): The antagonistic effect 
of abscisic acid and cytokinin on the structural and biochemical differentiation of chloroplasts 
in isolated pumpkin cotyledons. Cytology (Leningrad) 29, 1033-1039. 

Kiba, T., Taniguchi, M., Imamura, A., Ueguchi, C., Mizuno, T. and Sugiyama, T. (1999): Differential 
expression of genes for response regulators in response to cytokinins and nitrate in 
Arabidopsis thaliana. Plant Cell Physiol 40, 767–771. 

Kiba, T., Naitou, T., Koizumi, N., Yamashino, T., Sakakibara, H. and Mizuno, T. (2005): 
Combinatorial microarray analysis revealing Arabidopsis genes implicated in cytokinin 
responses through the His-Asp phosphorelay circuitry. Plant Cell Physiol 46 [2], 339–355. 

Kim, M. and Mullet, J.E. (1995): Identification of a sequence-specific DNA binding factor required 
for transcription of the barley chloroplast blue light-responsive psbD-psbC promoter. Plant 
Cell 7 [9], 1445–1457.  



BIBLIOGRAPHY 

81 

Kim, M., Thum, K.E., Morishige, D.T. and Mullet, J.E. (1999): Detailed architecture of the barley 
chloroplast psbD–psbC blue light-responsive promoter. J Biol Chem 274 [8], 4684–4692. 

Kim, W.-Y., Fujiwara, S., Suh, S.-S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G. and 
Somers, D.E. (2007): ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in 
blue light. Nature 449 [7160], 356-360. 

Klein, R.R. and Mullet, J.E. (1990): Light-induced Transcription of Chloroplast Genes. psbA 
transcription is differentially enhanced in illuminated barley. J Biol Chem 265 [4], 1895-1902. 

Klein, R.R., Mason, H.S. and Mullet, J.E. (1988): Light-regulated translation of chloroplast proteins. I. 
Transcripts of psaA–psaB, psbA, and rbcL are associated with polysomes in dark-grown and 
illuminated barley seedlings. J Cell Biol 106 [2], 289–301. 

Kleine, T., Lockhart, P. and Batschauer, A. (2003): An Arabidopsis protein closely related to 
Synechocystis cryptochrome is targeted to organelles. Plant J 35 [1], 93-103. 

Kobayashi, Y., Dokiya, Y., and Sugita, M. (2001): Dual targeting of phage-type RNA polymerase to 
both mitochondria and plastids is due to alternative translation initiation in single transcripts. 
Biochem Biophys Res Commun 289 [5], 1106-1113. 

Koiwai, H., Nakaminami, K., Seo, M., Mitsuhashi, W., Toyomasu, T. and Koshiba, T. (2004): Tissue-
specific localization of an abscisic acid biosynthetic enzyme, AOO3, in Arabidopsis. Plant 
Physiol 134 [4], 1697-1707. 

Koornneef, M., Rolff, E. and Spruit, C.J.P. (1980). Genetic control of light-inhibited hypocotyl 
elongation in Arabidopsis thaliana (L.) Heynh. Zeitschrift für Pflanzenphysiologie 100, 147-
160. 

Koornneef, M., Hanhart, C.J. and van der Veen, J.H. (1991): A genetic and physiological analysis of 
late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229 [1], 57-66. 

Kühn, K., Richter, U., Meyer, E.H., Delannoy, E., de Longevialle, A.F., O'Toole, N., Börner, T., Millar, 
A.H., Small, I.D. and Whelan, J. (2009): Phage-type RNA polymerase RPOTmp performs 
gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell 21 [9], 2762-
2779. 

Kulaeva, O.N., Karavaiko, N.N., Selivankina, S.Y., Kusnetsov, V.V., Zemlyachenko, Y.V., Cherepneva, 
G.N., Maslova, G.G., Lyukevich, T.V., Smith, A.R. and Hall, M.A. (2000): Nuclear and 
chloroplast cytokinin-binding proteins from barley leaves participating in transcription 
regulation. Plant Growth Regulation 32 [2], 329-335. 

Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H. and 
Kyozuka, J. (2007): Direct control of shoot meristem activity by a cytokinin-activating 
enzyme. Nature 445 [7128], 652-655. 

Kusnetsov, V.V., Oelmüller, R., Sarwat, M.I., Porfirova, S.A., Cherepneva, G.N., Herrmann, R.G. and 
Kulaeva, O.N. (1994): Cytokinins, abscisic acid and light affect accumulation of chloroplast 
proteins in Lupinus luteus cotyledons without notable effect on steady-state mRNA levels. 
Planta 194, 318-327. 

Kusumi, K., Yara, A., Mitsui, N., Tozawa, Y. and Iba, K. (2004): Characterization of a rice nuclear-
encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol 45 [9], 1194–1201. 

Larkin, R.M. and Ruckle, M.E. (2008): Integration of light and plastid signals. Curr Opin Plant Biol 11 
[6], 593-599. 



BIBLIOGRAPHY 

82 

Lau, O.S. and Deng, X.W. (2010): Plant hormone signaling lightens up: integrators of light and 
hormones. Curr Opin Plant Biol 13 [5], 571-577. 

Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I. and Deng, 
X.W. (2007): Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its 
Hierarchical Role in Light Regulation of Development. Plant Cell 19 [3], 731-749. 

Lerbs, S., Lerbs, W., Klyachko, N. L., Romanko, E. G., Wollgiehn, R. and Parthier, B. (1984): Gene 
expression in cytokinin-and light-mediated plastogenesis of Cucurbita cotyledons: ribulose-
1,5-bisphosphate carboxylase/oxygenase. Planta 162 [4], 289-298. 

Lerbs-Mache, S. (2011): Function of plastid sigma factors in higher plants: regulation of gene 
expression or just preservation of constitutive transcription? Plant Mol Biol 76 [3-5], 235-249. 

Li, Q-H. and Yang, H-Q. (2007): Cryptochrome Signaling in Plants. Photochem Photobiol 83 [1], 94-
101. 

Li, J., Li, G., Gao, S., Martinez, C., He, G., Zhou, Z., Huang, X., Lee, J.H., Zhang, H., Shen, Y., Wang, 
H. and Deng, X.W. (2010): Arabidopsis Transcription Factor ELONGATED HYPOCOTYL5 
Plays a Role in the Feedback Regulation of Phytochrome A Signaling. Plant Cell 22 [11], 
3634-3649. 

Li, W., Ruf, S. and Bock, R. (2006): Constancy of organellar genome copy numbers during leaf 
development and senescence in higher plants. Mol Genet Genomics 275 [2], 185-192. 

Liere K. and Börner, T. (2007a): Transcription of plastid genes. In: Grasser, K.D., editor. Regulation of 
transcription in plants. Oxford: Blackwell Publishing, 184-224. 

Liere, K. and Börner, T. (2007b): Transcription and transcriptional regulation in plastids. In: Bock, R., 
editor. Topics in current genetics: cell and molecular biology of plastids. Berlin/Heidelberg: 
Springer, 121-174. 

Liere, K., Weihe, A. and Börner, T. (2011): The transcription machineries of plant mitochondria and 
chloroplasts: Composition, function, and regulation. J Plant Physiol 168 [15], 1345-1360. 

Liere, K., Kaden, D., Maliga, P. and Börner, T. (2004): Overexpression of phage-type RNA 
polymerase RpoTp in tobacco demonstrates its role in chloroplast transcription by recognizing 
a distinct promoter type. Nucleic Acids Res 32 [3], 1159-1165. 

Lin, C. (2002): Blue Light Receptors and Signal Transduction. Plant Cell 14, S207-225. 

Lin, C. and Shalitin, D. (2003): Cryptochrome Structure and Signal Transduction. Annual Review of 
Plant Biology 54, 469-496. 

Lin, C. and Todo, T. (2005): The cryptochromes. Genome Biol 6 [5], 220.1-220.9. 

Lin, Z., Zhong, S. and Grierson, D. (2009): Recent advances in ethylene research. J Exp Bot 60 [12], 
3311-3336. 

Link, G. (1996): Green life: control of chloroplast gene transcription. Bio Essays 18 [6], 465-471. 

Loschelder, H., Schweer, J., Link, B. and Link, G. (2006): Dual temporal role of plastid sigma factor 6 
in Arabidopsis development. Plant Physiol 142 [2], 642-650. 

Lysenko, EA (2007): Plant sigma factors and their role in plastid transcription. Plant Cell Rep 26, 845-
859. 



BIBLIOGRAPHY 

83 

Lyukevich, T.V., Kusnetsov, V.V., Karavaiko, N.N., Kulaeva, O.N. and Selivankina, S.Y. (2002): The 
involvement of the chloroplast zeatin-binding protein in hormone-dependent transcriptional 
control of the chloroplast genome. Rus J Plant Physiol 49, 92–98. 

Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H. and Deng, X.W. (2001): Light control of 
Arabidopsis development entails coordinated regulation of genome expression and cellular 
pathways. Plant Cell 13 [12], 2589-2607. 

Maliga, P. (1998): Two plastid polymerases of higher plants: an evolving story. Trends Plant Sci 3, 4-6. 

Mandoli, D.F. and Briggs, W.R. (1981): Phytochrome control of two low-irradiance responses in 
etiolated oat seedlings. Plant Physiol 67 [4], 733-739. 

Martin, W., Hoffmeister, M., Rotte, C. and Henze, K. (2001): An overview of endosymbiotic models 
for the origins of eukaryotes, their ATP-producing organelles (mitochondria and 
hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382 [11], 1521-1539. 

Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., 
Hasegawa, M. and Penny, D. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and 
chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the 
nucleus. Proc Natl Acad Sci USA 99 [19], 12246–12251. 

Más, P., Devlin, P.F., Panda, S. and Kay, S.A. (2000): Functional interaction of phytochrome B and 
cryptochrome 2. Nature 408 [6809], 207-211. 

Mason, M.G, Li, J., Mathews, D.E., Kieber, J.J. and Schaller, G.E. (2004): Type-B response regulators 
display overlapping expression patterns in Arabidopsis. Plant Physiol 135 [2], 927-937. 

Masuda, T., Tanaka, R., Shioi, Y., Takamiya, K.-I., Kannangara, C.G. and Tsuji, H. (1994): Mechanism 
of benzyladenine-induced stimulation of the synthesis of 5-aminolevulinic acid in greening 
cucumber cotyledons: benzyladenine increases levels of plastid tRNAGlu. Plant Cell Physiol 
35 [2], 183-188. 

Mathews, S. and Sharrock, R.A. (1997): Phytochrome gene diversity. Plant Cell Environ 20 [6], 666–
671. 

Mayfield, S.P., Yohn, C.B., Cohen, A. and Danon, A. (1995): Regulation of Chloroplast Gene 
Transcription. Annu Rev Plant Physiol Plant Mol Biol 46, 147-166. 

Mazzella, M.A., Cerdan, P.D., Staneloni, R.J. and Casal, J.J. (2001): Hierarchical coupling of 
phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis 
development. Development 128 [12], 2291-2299. 

Miller, C.O., Skoog, F., von Saltza, M.H. and Strong, F.M. (1955): Kinetin, a cell division factor from 
deoxyribonucleic acid. J Am Chem Soc 77, 1392-1393. 

Miller, C.O., Skoog, F., Okomura, F., von Saltza, M.H. and Strong, F.M. (1956): Isolation, structure 
and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78, 1375-1380. 

Mochizuki, T., Onda, Y., Fujiwara, E., Wada, M. and Toyoshima, Y. (2004): Two independent light 
signals cooperate in the activation of the plastid psbD blue light-responsive promoter in 
Arabidopsis. FEBS Lett 571 [1-3] 26-30. 

Mockler, T.C., Guo, H., Yang, H., Duong, H. and Lin, C. (1999): Antagonistic actions of Arabidopsis 
cryptochromes and phytochrome B in the regulation of floral induction. Development 126 
[10], 2073-2082. 



BIBLIOGRAPHY 

84 

Mok, D.W.S. and Mok, M.C. (2001): Cytokinin Metabolism and Action. Annu Rev Plant Physiol Plant 
Mol Biol 52, 89-118. 

Monde, R.A., Schuster, G. and Stern, D.B. (2000): Processing and degradation of chloroplast mRNA. 
Biochimie 82 [6-7], 573–582.  

Mullet, J.E. (1993): Dynamic Regulation of Chloroplast Transcription. Plant Physiol 103 [2], 309-313. 

Mullet, J.E. and Klein, R.R. (1987): Transcription and RNA stability are important determinants of 
higher plant chloroplast RNA levels. EMBO J 6 [6], 1571-1579. 

Nagashima, A., Hanaoka, M., Shikanai, T., Fujiwara, M., Kanamaru, K., Takahashi, H. and Tanaka, K. 
(2004): The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the 
psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana. Plant Cell Physiol 45 
[4], 357–368. 

Nagatani, A., Reed, J.W. and Chory, J. (1993): Isolation and Initial Characterization of Arabidopsis 
Mutants That Are Deficient in Phytochrome A. Plant Physiol 102 [1], 269-277. 

Nakamura, T., Furuhashi, Y., Hasegawa, K., Hashimoto, H., Watanabe, K., Obokata, J., Sugita, M. and 
Sugiura, M. (2003): Array-Based Analysis on Tobacco Plastid Transcripts: Preparation of a 
Genomic Microarray Containing All Genes and All Intergenic Regions. Plant Cell Physiol 44 
[8], 861-867. 

Neff, M.M. and Chory, J. (1998): Genetic Interactions between Phytochrome A, Phytochrome B, and 
Cryptochrome 1 during Arabidopsis Development. Plant Physiol 118 [1], 27-35. 

Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S. and Ueguchi, C. (2004): Histidine kinase 
homologs that act as cytokinin receptors possess overlapping functions in the regulation of 
shoot and root growth in Arabidopsis. Plant Cell 16 [6], 1365-1377. 

Ohgishi, M., Saji, K., Okada, K. and Sakai, T. (2004): Functional analysis of each blue light receptor, 
cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc 
Natl Acad Sci USA 101 [8], 2223-2228. 

Okazaki, K., Kabeya, Y., Suzuki, K., Mori, T., Ichikawa, T., Matsui, M., Nakanishi, H. and 
Miyagishima, S.Y. (2009): The PLASTID DIVISION1 and 2 Components of the Chloroplast 
Division Machinery Determine the Rate of Chloroplast Division in Land Plant Cell 
Differentiation. Plant Cell 21 [6], 1769-1780. 

Oldenburg, D.J. and Bendich, A.J. (2004): Changes in the structure of DNA molecules and the amount 
of DNA per plastid during chloroplast development in maize. J Mol Biol 344 [5], 1311-1330. 

Onda, Y., Yagi, Y., Saito, Y., Takenaka, N. and Toyoshima, Y. (2008): Light induction of Arabidopsis 
SIG1 and SIG5 transcripts in mature leaves: differential roles of cryptochrome 1 and 
cryptochrome 2 and dual function of SIG5 in the recognition of plastid promoters. Plant J 55 
[6], 968–978. 

Osterlund, M.T., Hardtke, C.S., Wei, N. and Deng X-W. (2000): Targeted destabilization of HY5 
during light-regulated development of Arabidopsis. Nature 405 [6785], 462-466. 

Oyama, T., Shimura, Y. and Okada, K. (1997): The Arabidopsis HY5 gene encodes a bZIP protein that 
regulates stimulus-induced development of root and hypocotyl. Genes Dev 11 [22], 2983-
2995. 

Peng, Z.Y., Zhou, X., Li, L., Yu, X., Li, H., Jiang, Z., Cao, G., Bai, M., Wang, X., Jiang, C., Lu, H., 
Hou, X., Qu, L., Wang, Z., Zuo, J., Fu, X., Su, Z., Li, S. and Guo, H. (2009): Arabidopsis 



BIBLIOGRAPHY 

85 

Hormone Database: a comprehensive genetic and phenotypic information database for plant 
hormone research in Arabidopsis. Nucleic Acid Res 37, D975-982. 

Peschke, F. and Kretsch, T. (2011): Genome-wide analysis of light-dependent transcript accumulation 
patterns during early stages of Arabidopsis seedling deetiolation. Plant Physiol 155 [3], 1353-
1366. 

Pfannschmidt, T. and Liere, K. (2005). Redox regulation and modification of proteins controlling 
chloroplast gene expression. Antioxid. Redox. Signal. 7 [5-6], 607-618. 

Pfannschmidt, T., Nilsson, A. and Allen, J.F. (1999a): Photosynthetic control of chloroplast gene 
expression. Nature 397 [6720], 625-628. 

Pfannschmidt, T., Nilsson, A., Tullberg, A., Link, G. and Allen, J.F. (1999b): Direct transcriptional 
control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy 
distribution in plants. IUBMB Life 48 [3], 271-276. 

Polanská, L., Vicánková, A., Nováková, M., Malbeck, J., Dobrev, P., Brzobohaty, B., Vanková, R. and 
Machácková, I. (2007): Altered cytokinin metabolism affects cytokinin, auxin, and abscisic 
acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J 
Exp Bot 58 [3], 637-649. 

Poppe, C., Sweere U., Drumm-Herrel, H. and Schäfer, E. (1998): The blue light receptor 
cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana. Plant 
J 16 [4], 465-471. 

Preuten, T. (2010): Organellar gene expression – regulation of phage-type RNA polymerase transcript 
accumulation and analyses of mitochondrial gene copy numbers in Arabidopsis. PhD thesis, 
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 
urn:nbn:de:kobv:11-100173056. 

Quail, P.H. (2002): Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3 [2], 85-
93. 

Quail, P.H. (2010): Phytochromes. Curr Biol 20[12], R504-507. 

Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y. and Wagner, D. (1995): Phytochromes: 
Photosensory Perception and Signal Transduction. Science 268 [5211], 675-680. 

Rapp, J.C., Baumgartner, B.J. and Mullet, J.E. (1992): Quantitative Analysis of Transcription and 
RNA Levels of 15 Barley Chloroplast Genes. Transcription rates and mRNA levels vary over 
300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 267 [30], 21404-21411. 

Rashotte, A.M. and Goertzen, L.R. (2010): The CRF domain defines cytokinin response factor 
proteins in plants. BMC Plant Biol 10 [74], doi: 10.1186/1471-2229-10-74. 

Rashotte, A.M., Carson, S.D., To, J.P. and Kieber, J.J. (2003): Expression profiling of cytokinin action 
in Arabidopsis. Plant Physiol 132 [4], 1998-2011. 

Rashotte, A.M., Mason, M.G., Hutchison, C.E., Ferreira, F.J., Schaller, G.E. and Kieber, J.J. (2006): A 
subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a 
two-component pathway. Proc Natl Acad Sci USA 103 [29], 11081-11085. 

Rauwolf, U., Golczyk, H., Greiner, S. and Herrmann, R.G. (2010): Variable amounts of DNA related to 
the size of chloroplasts III. Biochemical determinations of DNA amounts per organelle. Mol 
Genet Genomics 283 [1], 35-47. 



BIBLIOGRAPHY 

86 

Razem, F.A., Baron, K. and Hill, R.D. (2006): Turning on gibberellin and abscisic acid signaling. Curr 
Opin Plant Biol 9 [5], 454-459. 

Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M. and Chory, J. (1994): Phytochrome A and 
phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant 
Physiol 104 [4], 1139-1149. 

Richmond, A.E. and Lang, A. (1957): Effect of Kinetin on Protein Content and Survival of Detached 
Xanthium Leaves. Science 125 [3249], 650-651. 

Richter, U., Kiessling, J., Hedtke, B., Decker, E., Reski, R., Börner, T. and Weihe, A. (2002): Two 
RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual 
targeting to mitochondria and plastids. Gene 290 [1-2], 95–105. 

Riefler, M., Novak, O., Strnad, M. and Schmülling, T. (2006): Arabidopsis cytokinin receptor mutants 
reveal functions in shoot growth, leaf senescence, seed size, germination, root development, 
and cytokinin metabolism. Plant Cell 18 [1], 40-54. 

Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S. and Blumwald, E. 
(2007): Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc 
Natl Acad Sci USA 104 [49], 19631-19636. 

Rogers, S.O., Beaulieu, G.C. and Bendich, A.J. (1993): Comparative studies of gene copy number. 
Methods in Enzymology 224, 243-251. 

Romanko, E.G., Hein, H.J., Kulaeva, O.N. and Nichiporovich, A.A. (1969): Effect of cytokinin on the 
physiological activity of chloroplasts. Progress Photosynthesis Research 1: 296-303. 

Ruckle, M.E., De Marco, S.M. and Larkin, R.M. (2007): Plastid signals remodel light signaling 
networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19 
[12], 3944-3960. 

Sakai, H., Aoyama, T. and Oka, A. (2000): Arabidopsis ARR1 and ARR2 response regulators operate 
as transcriptional activators. Plant J 24 [6], 703-711. 

Sakakibara, H. (2006): Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57, 
431-449. 

Sambrook, J. and Russell, D. W. (2001): Molecular cloning: a laboratory manual. Cold Spring Harbor 
Laboratory Press, Cold Spring Harbor, N.Y.; ISBN: 0879695773. 

Santner, A., Calderon-Villalobos L.I. and Estelle, M. (2009): Plant hormones are versatile chemical 
regulators of plant growth. Nat Chem Biol 5 [5], 301-307. 

Satoh, J., Baba, K., Nakahira, Y., Shiina, T. and Toyoshima, Y. (1997): Characterization of dynamics of 
the psbD light-induced transcription in mature wheat chloroplasts. Plant Mol Biol 33 [2], 267-
278. 

Schafer, E. and Haupt, W. (1983): Blue light effects in phytochrome-mediated responses. In 
Encyclopedia of Plant Physiology, Shropshire Jr., W. and Mohr, H. eds (New York: Springer-
Verlag). 

Schmülling, T. (2004): Cytokinin. In Encyclopedia of Biological Chemistry (Eds. Lennarz, W., Lane, 
M.D.), Academic Press/Elsevier Science. 

Schrubar, H., Wanner, G. and Westhoff, P. (1990): Transcriptional control of plastid gene expression in 
greening Sorghum seedlings. Planta 183, 101-111. 



BIBLIOGRAPHY 

87 

Schweer, J. (2010): Plant sigma factors come of age: flexible transcription factor network for regulated 
plastid gene expression. Endocytobio Cell Res 20, 1–20. 

Sellaro, R., Hoecker, U., Yanovsky, M., Chory, J. and Casal, J.J. (2009): Synergistic interactions of red 
and blue light in the control of Arabidopsis gene expression and development. Curr Biol 19 
[14], 1216-1220. 

Serino, G. and Maliga, P. (1998): RNA polymerase subunits encoded by the plastid rpo genes are not 
shared with the nucleus-encoded plastid enzyme. Plant Physiol 117 [4], 1165–1170.  

Sexton, T.B., Christopher, D.A. and Mullet, J.E. (1990): Light-induced switch in barley psbD-psbC 
promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J 9 
[13], 4485-4494. 

Shiina, T., Allison, L. and Maliga, P. (1998): rbcL Transcript Levels in Tobacco Plastids Are 
Independent of Light: Reduced Dark Transcription Rate Is Compensated by Increased mRNA 
Stability. Plant Cell 10 [10], 1713-1722. 

Shiina, T., Tsunoyama, Y., Nakahira, Y., Khan, M.S. (2005): Plastid RNA polymerases, promoters, and 
transcription regulators in higher plants. Int Rev Cytol 244, 1–68. 

Shimizu, M., Kato, H., Ogawa, T., Kurachi, A., Nakagawa, Y. and Kobayashi, H. (2010): Sigma factor 
phosphorylation in the photosynthetic control of photosystem stoichiometry. Proc Natl Acad 
Sci USA 107 [23], 10760-10764. 

Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M. and Furuya, M. (1996): Action 
spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis 
thaliana. Proc Natl Acad Sci USA 93 [15], 8129-8133. 

Shirano, Y., Shimada, H., Kanamaru, K., Fujiwara, M., Tanaka, K., Takahashi, H., Unno, K., Sato, S., 
Tabata, S., Hayashi, H., Miyake, C., Yokota, A. and Shibata, D. (2000): Chloroplast 
development in Arabidopsis thaliana requires the nuclear-encoded transcription factor sigma 
B. FEBS Lett 485 [2-3], 178-182. 

Skoog, F. and Miller, C.O. (1957): Chemical regulation of growth and organ formation in plant tissues 
cultured in vitro. Symp Soc Exp Biol 11, 118-131. 

Smith, H. (2000): Phytochromes and light signal perception by plants—an emerging synthesis. Nature 
407 [6804], 585-591. 

Spalding, E.P. and Folta, K.M. (2005): Illuminating topics in plant photobiology. Plant Cell Environ 1, 
39-51. 

Stabel, P., Sundås, A. and Engström, P. (1991): Cytokinin treatment of embryos inhibits the synthesis 
of chloroplast proteins in Norway spruce. Planta 183 [4], 520-527. 

Stegemann, S., Hartmann, S., Ruf, S. and Boch, R. (2003): High-frequency gene transfer from the 
chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100 [15], 8828-8833. 

Stern, D.B., Goldschmidt-Clermont, M. and Hanson, M.R. (2010): Chloroplast RNA metabolism. 
Annu Rev Plant Biol 61, 125–155. 

Strasser, B., Sánchez-Lamas, M., Yanovsky, M.J., Casal, J.J. and Cerdán, P.D. (2010): Arabidopsis 
thaliana life without phytochromes. Proc Natl Acad Sci USA 107 [10] 4776-4781. 

Strnad, M. (1997): The aromatic cytokinins. Physiol Plant 101 [4], 674-688. 

Sugiura, M. (1992): The chloroplast genome. Plant Mol Biol 19 [1], 149-168. 



BIBLIOGRAPHY 

88 

Suzuki, T., Ishikawa, K. and Mizuno, T. (2002): An Arabidopsis histidine-containing phosphotransfer 
(Hpt) factor implicated in phosphorelay signal transduction: Overexpression of AHP2 in plants 
results in hypersensitivity to cytokinin. Plant Cell Physiol 43 [1], 123-129. 

Suzuki, J.Y., Ytterberg, A.J., Beardslee, T.A., Allison, L.A., Wijk, K.J. and Maliga, P. (2004): Affinity 
purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the 
holoenzyme. Plant J 40 [1], 164–172. 

Swiatecka-Hagenbruch, M., Liere, K. and Börner, T. (2007): High diversity of plastidial promoters in 
Arabidopsis thaliana. Mol Genet Genomics 277 [6], 725-734. 

Swiatecka-Hagenbruch, M., Emanuel, C., Hedtke, B., Liere, K. and Börner, T. (2008): Impaired 
function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is 
compensated by a second phage-type RNA polymerase. Nucleic Acids Res. 36 [3], 785-792. 

Székács, A., Hegedüs, G., Tóbiás, I., Pogány, M. and Barna, B. (2000): Immunoassays for plant 
cytokinins as tools for the assessment of environmental stress and disease resistance. 
Analytica Chimica Acta 421 [2], 135-146. 

Takagi, S., Takamatsu, H. and Sakurai-Ozato, N. (2009): Chloroplast anchoring: its implications for 
the regulation of intracellular chloroplast distribution. J Exp Bot 60 [12], 3301-3310. 

Tepperman, J.M., Hwang, Y-S. and Quail P.H. (2006): phyA dominates in transduction of red-light 
signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Plant 
J 48 [5], 728-742. 

Tepperman, J.M., Zhu, T., Chang, H-S., Wang, X. and Quail, P.H. (2001): Multiple transcription-factor 
genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA 98 [16], 9437-
9442. 

Tepperman, J.M., Hudson, M.E., Khanna, R., Zhu, T., Chang, S.H., Wang, X. and Quail, P.H. (2004): 
Expression profiling of phyB mutant demonstrates substantial contribution of other 
phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38 
[5], 725-739. 

Terzaghi, W.B. and Cashmore, A.R. (1995): Photomorphogenesis. Seeing the light in plant 
development. Curr Biol 5 [5], 466-468. 

Thompson, W.F. and White, M.J. (1991): Physiological and molecular studies of light-regulated 
nuclear genes in higher plants. Plant Physiol Plant Mol Biol 42, 423-466. 

Thum, K.E., Kim, M., Christopher, D.A. and Mullet, J.E. (2001): Cryptochrome 1, Cryptochrome 2, 
and Phytochrome A Co-Activate the Chloroplast psbD Blue Light–Responsive Promoter. Plant 
Cell 13 [12], 2747-2760. 

Timmis, J.N., Ayliffe, M.A., Huang, C.Y. and Martin, W. (2004): Endosymbiotic gene transfer: 
organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5 [2], 123–135. 

To, J.P.C. and Kieber, J.J. (2008): Cytokinin signaling: two-components and more. Trends Plant Sci 13 
[2], 85-92. 

To, K.Y., Cheng, M.C., Suen, D.F., Mon, D.P., Chen, L.F.O. and Chen, S.C.G. (1996): Characterization 
of the light-responsive promoter of rice chloroplast psbD-C operon and the sequence-specific 
DNA binding factor. Plant Cell Physiol 37 [5], 660–666. 

Toyoshima, Y., Onda, Y., Shiina, T. and Nakahira, Y. (2005): Plastid transcription in higher plants. Crit. 
Rev. Plant Sci. 24 [1], 59–81. 



BIBLIOGRAPHY 

89 

Tsuchida-Mayama, T., Sakai, T., Hanada, A., Uehara, Y., Asami, T. and Yamaguchi, S. (2010): Role of 
the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J. 62 
[4], 653-662. 

Tsunoyama, Y., Morikawa, K., Shiina, T. and Toyoshima, Y. (2002): Blue light specific and differential 
expression of a plastid sigma factor, Sig5 in Arabidopsis thaliana. FEBS Lett 515 [1-3], 225-
228. 

Tsunoyama, Y., Ishizaki, Y., Morikawa, K., Kobori, M., Nakahira, Y., Takeba, G., Toyoshima, Y. and 
Shiina, T. (2004): Blue light-induced transcription of plastid-encoded psbD gene is mediated 
by a nuclear-encoded transcription initiation factor, AtSig5. Proc Natl Acad Sci USA 101 [9], 
3304-3309. 

Tyagi, A.K. and Gaur, T. (2003): Light regulation of nuclear photosynthetic genes in higher plants. Crit 
Rev Plant Sci 22 [5], 417-452. 

Ulm, R. and Nagy, F. (2005): Signalling and gene regulation in response to ultraviolet light. Curr Opin 
Plant Biol 8 [5], 477-482. 

Ulm, R., Baumann, A., Oravecz, A., Máté, Z., Adám, E., Oakeley, E.J., Schäfer, E. and Nagy, F. 
(2004): Genome-wide analysis of gene expression reveals function of the bZIP transcription 
factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA 101 [5], 1397-
1402. 

Vandenbussche, F., Habricot, Y., Condiff, A.S., Maldiney, R., Van Der Straeten, D. and Ahmad, M. 
(2007): HY5 is a point of convergence between cryptochrome and cytokinin signaling 
pathways in Arabidopsis thaliana. Plant J 49 [3], 428-441. 

Wada, T., Tunoyama, Y., Shiina, T. and Toyoshima, Y. (1994): In vitro analysis of light-induced 
transcription in the wheat psbD/C gene cluster using plastid extracts from dark-grown and 
short-term-illuminated seedlings. Plant Physiol 104 [4], 1259–1267. 

Wakasugi, T., Tsudzuki, T. and Sugiura, M. (2001): The genomics of land plant chloroplasts: gene 
content and alteration of genomic information by RNA editing. Photosynthesis Res 70 [1], 
107-118. 

Weiler, E.W. (2003) Sensory principles of higher plants: Plant Biochemistry. In: Angew Chem Int Ed. 
ISSN: 1521-3773; Wiley-VCH, Weinheim, 392-411. 

Werner, T. and Schmülling, T. (2009): Cytokinin action in plant development. Curr Opin Plant Biol 12 
[5], 527-538. 

Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H. and Schmülling, T. (2003): 
Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations 
indicating opposite functions of cytokinins in the regulation of shoot and root meristem 
activity. Plant Cell 15 [11], 2532-2550. 

Wösten, M.M.S.M. (1998): Eubacterial sigma-factors. FEMS Microbiol Rev 22 [3], 127-150. 

Woodson, J.D. and Chory, J. (2008): Coordination of gene expression between organellar and nuclear 
genomes. Nat Rev Genet 9 [5], 383-395. 

Wu, G. and Spalding, E.P. (2007): Separate functions for nuclear and cytoplasmic cryptochrome 1 
during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci USA 104 [47], 
18813-18818. 



BIBLIOGRAPHY 

90 

Yoshida, K. and Noguchi, K. (2011): How is the Respiratory Gene Expression Regulated in 
Illuminated Leaves? In: Kempken, F., editor. Advances in Plant Biology 1: Plant 
Mitochondria. Berlin/Heidelberg: Springer, 396-410. 

Yu, X., Liu, H., Klejnot, J. and Lin, C. (2010): The Cryptochrome Blue Light Receptors. In: The 
American Society of Plant Biologists. The Arabidopsis Book 8 [1], 1-27, URL: 
http://www.bioone.org/doi/full/10.1043/tab.00135 (23.01.11). 

Zhao, Y. (2010): Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61, 49-64. 

Zhang, X.N., Wu, Y., Tobias, J.W., Brunk, B.P., Deitzer, G.F. and Liu, D. (2008): HFR1 is crucial for 
transcriptome regulation in the cryptochrome 1-mediated early response to blue light in 
Arabidopsis thaliana. PLoS One 2 [10], e3563. 

Zheng, B., Deng, Y., Mu, J., Ji, Z., Xiang, T., Niu, Q-W., Nhua, N.-H. and Zuo, J. (2006): Cytokinin 
affects circadian-clock oscillation in a phytochrome B- and Arabidopsis response regulator 4-
dependent manner. Physiologia Plantarum 127 [2], 277-292. 

Zheng, Q, Oldenburg, D.J. and Bendich, A.J. (2011): Independent effects of leaf growth and light on 
the development of the plastid and its DNA content in Zea species. J Exp Bot 62 [8], 2715-
2730. 

Zoschke, R., Liere, K. and Börner, T. (2007): From seedling to mature plant: Arabidopsis plastidial 
genome copy number, RNA accumulation and transcription are differentially regulated during 
leaf development. Plant J 50 [4], 710-722. 

Zubo, Y.O. and Kusnetsov, V.V. (2008): Application of Run-on Transcription Method for Studying the 
Regulation of Plastid Genome Expression. Russian Journal of Plant Physiology 55 [1], 107-114. 

Zubo, Y.O., Yamburenko, M.V., Selivankina, S.Y., Shakirova, F.M., Avalbaev, A.M., Kudryakova, 
N.V., Zubkova, N.K., Liere, K., Kulaeva, O.N., Kusnetsov, V.V. and Börner, T. (2008): 
Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol 148 [2], 
1082-1093.



ABBREVIATIONS 

91 

Abbreviations 
°C degrees Celsius 
A, C, G, T, U nucleic acid bases (adenine, cytosine, guanine, thymin, uracil) 
ABA abscisic acid 
AHK Arabidopsis Histidine Kinase 
AHP Arabidopsis Histidine Phosphotransfer protein 
ARR Arabidopsis Response Regulator 
A.th. Arabidopsis thaliana 
ATP adenosine triphosphate 
b blue light 
BA 6-benzyladenine (cytokinin) 
BLRP blue light responsive promoter 
BR brassinosteroid 
BSA bovine serum albumin 
bp base pairs 
C ploidy number 
cDNA complementary DNA 
Ci Curie 
CKX cytokinin oxidase/dehydrogenase 
cm centimeter 
Col-0 ecotype Columbia (Arabidopsis thaliana) 
COP constitutive photomorphogenic protein 
CRF Cytokinin Response Factors 
cry cryptochrome 
CTP cytidine triphosphate 
d darkness or day(s) 
DNA deoxyribonucleic acid 
EDTA ethylenediaminetetraacetic acid 
e.g. exempli gratia (for example) 
et al. et altera (and others) 
EtBr ethidium bromide 
fr far-red light 
g gram or gravity or green light 
GA gibberellic acid 
GABI-Kat german plant genomics research program 
gDNA genomic DNA 
GTP guanosine triphosphate 
h hour(s) 
HCl hydrochloric acid 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
hy long hypocotyl 
IAA indole-3-acetic acid or auxin 
i.e. id est (that is) 
IgG Immunoglobulin G 
JA jasmonic acid 
kDa kilodalton 
KOH potassium hydroxide 
kPa kilopascal 
l liter 
LED light emitting diode 
Ler ecotype Landsberg erecta (Arabidopsis thaliana) 
m meter 
M molar 
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mg milligram 
µg microgram 
Mg2Cl magnesium chloride 
mm millimeter 
µm micrometer 
µM micromolar 
µmol micromol 
min minute(s) 
n number of nuclei 
NaAc sodium acetate 
NaCl sodium chloride 
Na2HPO4 disodium hydrogen phosphate 
NaOH sodium hydroxide 
NASC Nottingham Arabidopsis Stock Center 
NEP nuclear encoded plastid RNA polymerase 
nm nanometer 
NTC no template control 
MES 2-(N-morpholino) ethanesulfonic acid 
MEN MOPS-EDTA-NaAc-buffer 
MOPS morpholinopropan-sulfonic acid 
mRNA messenger RNA 
MS medium Murashige and Skoog medium 
p probability-value 
PAA polyacrylamide 
PAGE polyacrylamide gel electrophoresis 
PCR polymerase chain reaction 
PEG polyethylene glycol 
PEP plastid encoded plastid RNA polymerase 
pH potentia hydrogenii, -log [H+] 
phy phytochrome 
pmol picomol 
PVP polyvinylpyrrolidone 
qRT-PCR quantitative real-time PCR 
r red light 
RNA ribonucleic acid 
RpoT RNA polymerase of the T3/7-phage type 
rRNA ribosomal RNA 
RT reverse transcriptase 
s second(s) 
SE standard error  
SEA plant medium 
SDS sodium dodecyl sulfate 
sol. solution 
TF transcription factor 
Tris tris (hydroxymethyl)-aminomethane 
tRNA transfer RNA 
UTP uridine triphosphate 
UV ultra violet 
v version 
V Volt 
v/v volume per total volume 
vol volume 
w/v weight per volume (g/100ml) 
ZBP zeatin-binding protein 
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