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3. Prof. Dr. Thomas Heckelei

Tag der mündlichen Prüfung: 11.11.2016



Zusammenfassung

Die Struktur der Landwirtschaft hat sich in vielen westlichen Ländern grundlegend

geändert. In Westdeutschland, zum Beispiel, hat die Anzahl der Betriebe deutlich

abgenommen, während die durchschnittliche Betriebsgröße von 7, 4 ha im Jahr 1950

auf 42, 9 ha im Jahr 2013 stieg. Um diese Entwicklung zu verstehen, müssen insbeson-

dere die begrenzten Produktionskapazitäten berücksichtigt werden, die hinsichtlich

der verfügbaren landwirtschaftlichen Nutzfläche oder der ehemaligen Milchquote

existieren. Solche Kapazitätsbeschränkungen erzeugen einen direkten Zusammen-

hang zwischen demWachsen und Schrumpfen von Betrieben, da die Expansionsmög-

lichkeiten eines einzelnen Betriebes von frei werdenden Kapazitäten anderer Betriebe

abhängen. Aus diesem Grund wird hier zunächst ein dynamisch stochastisches Gleich-

gewichtsmodell entwickelt, das auf mikroökonomischen Entscheidungen basiert und

Markteintritt/-austritt für den Fall ausgeschöpfter Produktionskapazitäten darstellt.

Der Kapazitätspreis ist dabei markträumend in dem Sinne, dass die Anzahl neuer

Produktionseinheiten mit den aufgegebenen übereinstimmen muss. Die Industrie

konvergiert unter diesen Bedingungen gegen ein stationäres Gleichgewicht, in dem

Ein- und Austritt vorkommen, die Größenverteilung jedoch unverändert bleibt. Die

Anpassung an diesen Zustand wird u.a. beschleunigt, wenn die fixen Eintrittskosten

sinken. Eine Version des Modells wird dann auf den westdeutschen Milchsektor

angewendet, um den Einfluss einer Quote auf den Strukturwandel zu untersuchen.

Verglichen mit dem Szenario freienWettbewerbs hemmt eine nicht-handelbare Quote

die Anpassungsprozesse, während eine handelbare Quote Marktaustritte fördern

und zu einer höheren durchschnittlichen Produktivität führen kann. Die Phase nach

einer Quotenabschaffung ist geprägt von enormen Kapazitätsausweitungen und stark

fallenden Preisen, falls die fixen Eintrittskosten niedrig sind. Diese Entwicklung ist

weniger stark ausgebildet für höhere Eintrittskosten.

Schlagwörter: begrenzte Produktionskapazität; Markteintritt/-austritt; dynamisch

stochastisches Gleichgewicht; Strukturwandel
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Abstract

The agricultural industry in Western countries has undergone a substantial struc-

tural change. In West Germany, for instance, the number of farms declined notably

during the last decades while the average farm size increased from 7.4 ha in 1950

to 42.9 ha in 2013. A factor that needs to be considered when explaining this

development is the limited sectoral production capacity, which exists in terms of

agricultural land or the former milk quota regime. This limited capacity generates

a direct interrelation between farm growth and farm shrinkage as a single farm’s

investment option depends crucially on the possible release of production capacity

by competitors. The contribution of this thesis is twofold: First, a dynamic stochastic

equilibrium model is developed that accounts for microeconomic decision-making

and represents an industry operating at an upper capacity limit. The capacity price

is determined endogenously such that it offsets the mass of entering and exiting firms

in an equilibrium. It is proven that the industry tends to a stationary equilibrium

in the long-run, in which entry and exit still occur but the firm size distribution

remains constant. Moreover, the adjustment speed to this steady state increases if

either the discount factor or the fixed entry costs decrease. Second, the impact of a

production quota on industry dynamics is assessed with regard to the former milk

quota regime. After calibrating the model to the West German dairy sector, the

quota constrained industry performance is compared to a quota free setup. While

a non-tradable quota slows down the adjustment processes within the industry, a

tradable production quota can stimulate firm turnover and lead to a higher average

productivity level. If the entry costs are rather low, the transition phase after a

quota removal is characterised by an enormous expansion of production capacity

and a considerable output price drop. This development is less pronounced though

for higher entry costs.

Keywords: limited production capacity; firm entry and exit; dynamic stochastic

equilibrium; industry dynamics
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1. Introduction

Changes in the composition of an industry, such as number and size of firms, is

a fundamental phenomenon in market economies. Such changes stem from firms’

adjustment to an altering economic environment and are induced, for instance, by

price changes, policy changes, or technological progress (Dunne et al., 2013). While

the agricultural literature usually calls these adjustment processes within an in-

dustry ’structural change’, the economic literature refers to this phenomenon as

’industry dynamics’. In this thesis, both expressions will be used synonymously

describing changes in a sector’s composition that are provoked by market entries

and exits, growth and shrinkage of firms,1 changes in the production structure, or

the adoption of new key technologies (Caves, 1998). Understanding such adjustment

processes is of great interest because they determine a sector’s competitiveness (Jor-

genson and Timmer, 2011). Moreover, the industry’s evolution has consequences for

distributional issues, regional development, rural employment, and other policies

(Piet et al., 2012).

In the last decades, the agricultural production in Western European countries

has fundamentally changed as basic food production has been replaced by complex

(bio-) technological production systems. As a consequence thereof, the number of

farms has significantly declined. In Western Germany, for example, the number of

farms decreased from nearly 1.8 million in 1950 to just 260, 100 in 2013 (see left side

of Figure 1.1). On the other hand, the average farm size increased from 7.4 ha to

42.9 ha in the same time period (see right side of Figure 1.1). These two figures alone

illustrate that a considerable structural change has taken place in the agricultural

industry.

A peculiarity of agricultural sectors, which needs specific attention, is that im-

portant production factors are short in supply. This means their availability is re-

stricted. Prominent examples of such production factors include agricultural land

1Farms and firms will be used interchangeably throughout the thesis.
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Figure 1.1: Agricultural change in West Germany reflected by the number of farms
(left), total utilised land area (middle), and the average farm size (right).
Source: Bundesministerium für Ernährung und Landwirtschaft (BMELV)

and the milk quota, which affected the European dairy production from 1984 un-

til 2015. Both factors represent some kind of production capacity that is limited

to the sector level. While the available arable land constitutes a natural capacity

constraint, the milk quota served as a policy instrument that was designed to avoid

excess production and generate price support for milk producers.

The aforementioned shortage of production factors causes a strong interdepen-

dence of farms’ decisions within a region (e.g. Chavas, 2001). That is, farms usually

cannot grow in size unless other farms exit since only the capacity of ceasing firms

provides new factor supply like land or other limited inputs (cf. Balmann et al.,

2006). Hence, the price for such scarce production capacities strongly depends on

the exit/shrinking rate determining the amount of free capacity, as well as on the

expansion activities of other firms (e.g. Weiss, 1999; Zepeda, 1995; Richards and Jef-

frey, 1997). The impact of this scarcity on firms’ decision-making and the resulting

competition for such a production factor may further increase if some firms expect

to benefit from economies of size. Given that limited production capacity as such

represents a valuable asset, a firm’s liquidation value may increase under binding

capacity constraints.

The complex relationships between farms make a coherent analysis of structural

change difficult. In fact, decisions have to be made in a dynamic, stochastic en-

vironment as farms face both aggregate and firm-specific uncertainty. While price

fluctuations are a common phenomenon in agricultural markets that affect all com-

petitors,2 a solitary farm’s production process is also subject to idiosyncratic risk.

Firm-specific productivity shocks can stem, for instance, from bad weather condi-

tions or a suboptimal use of input factors. Due to the complete usage of production

2The development of the farm gate milk price in Germany, which is displayed in Figure A.1,
serves as an example of such price fluctuations.
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capacity, the dynamic evolution of industry structure plays an important role as

well. That means, farms must anticipate the potential release of production capac-

ity by competitors when they evaluate their own investment/disinvestment options.

These might be some reasons why other studies dealing with structural change in

agriculture analyse either farm growth or farm exit, but only little attention is spent

on the interrelation between both. The illustrations above indicate, however, that it

is necessary to consider farm growth and farm exit simultaneously.

The objective of this thesis is to investigate how farms’ entry/exit decisions are

mutually affected by the limited sectoral production capacity, and to find out what

this means for the evolution of industry structure. Two major research questions

are tackled in this context: First, how does a capacity constrained industry like the

agricultural sector evolve in the long-run, and second, how does such an industry

perform in comparison to an industry with unlimited capacity supply? A response

to the latter question is important from a policy perspective as it targets the impact

that possible production quota, like the European milk quota, has on the industry

dynamics. It is frequently hypothesised that the introduction of a production quota

slows down structural change and hinders efficient adjustment processes (Colman,

2000). But is this also true if quotas can be traded and thus increase the liquidation

value of exiting firms (Barichello, 1995)?

With regard to the first point, I develop a dynamic stochastic equilibrium model

that accounts for microeconomic decision-making and represents an industry oper-

ating at an upper capacity limit. The theoretic framework is based upon the seminal

work by Jovanovic (1982) and Hopenhayn (1992a), who first analysed simultaneous

entry and exit of firms in a dynamic, stochastic model. In contrast to their setup

however, in which capacity constraints do not play a role and new firms have hypo-

thetically free access to the industry, I assume that the total production capacity is

distributed among all active firms, and potential entrants are compelled to acquire

production capacity from exiting firms. The capacity price is determined endoge-

nously such that it balances the number of demanded units with the released ones.

Due to the dynamic nature of the model, the capacity value depends particularly on

the firms’ expected profits and, thus, on the prospective composition of the industry.

Here, changes in the industry structure are not only induced by firms’ entry/exit

decisions, but also driven by a stochastic component. Potential differences, as for

instance in firm size or production efficiency, are captured by a firm-specific pro-

ductivity parameter that follows a Markov process. I will show that this framework

possesses a dynamic equilibrium, in which the industry tends to a uniquely deter-

3



mined steady state in the long-run. This steady state is characterised by the fact

that essential parameters, such as the firm size distribution, remain constant over

time. Moreover, the industry’s adjustment speed to this steady state is particularly

defined by the size of the discount factor and the fixed entry costs.

The European Union has recently abolished a milk quota regime that was effective

for the last 30 years. This offers a perfect opportunity to answer the second research

question and analyse the impact that the introduction/abolition of a production

quota has on the industry dynamics. To this end, I apply an advanced version of

the introduced model to the Western German dairy sector, and compare the equilib-

rium outcome under different quota schemes (tradable, non-tradable) to a scenario

without production quota. While the non-tradable quota slows down the adjustment

processes within an industry, a tradable production quota can even stimulate firm

turnover and lead to a higher average productivity level. In light of the recent milk

quota abolition, I further visualise the transitional phase from a quota constrained

to a quota free industry. The period right after the quota removal is characterised

by an enormous expansion of production capacity and a considerable output price

drop if the sunk entry costs are low. But, many of those newly created production

units withdraw from the industry shortly thereafter, and the quota-free steady state

is attained. I find that this development is less pronounced for higher entry costs.

The remainder of this thesis is structured as follows. After discussing the rele-

vant literature about industry dynamics in Chapter 2, the theoretical framework is

developed in Chapter 3 and the convergence to a steady state is proven. The basic

model is modified and applied to the Western German dairy sector in Chapter 4.

Chapter 5 concludes.

4



2. Review of relevant literature

The analysis of industry dynamics is a well-established topic in agricultural eco-

nomics and much effort has been spent on modelling farm adjustment processes,

both theoretically and empirically (Balmann et al., 2006). However, most existing

models consider either single farms (eg. Foltz, 2004), adopt an aggregated view of the

sector (Wolf and Sumner, 2001), or compare cross-country differences (Adamopoulos

and Restuccia, 2014). Individual farm models account for dynamic stochastic adjust-

ment behaviour but only under the assumption of exogenous price processes, and

thus rational expectations equilibria on product and factor markets cannot be en-

sured with these models. In contrast, sectoral equilibrium models leave little room

for a micro-economic foundation of decision-making (Féménia and Gohin, 2011;

Verikios and Zhang, 2013). Only few modelling approaches take the interdependen-

cies of growing and shrinking farms into account when describing the adjustment

processes within a sector; these include multi-agent models, real options models and

game theoretic models.

Multi-agent models (MAM) consist of sets of rules defining how agents make in-

dividual decisions, and how they interact with each other and their environment.

Agent-based models have been quite successful in explaining stylised empirical facts

such as the path dependency of systems, which is not well accounted for by exist-

ing representative-agent equilibrium models (Balmann et al., 2013). An advantage

of this modelling framework is its flexibility. The agents’ heterogeneity with regard

to their production capacities and constraints can easily be implemented. The use-

fulness of MAM, however, is not unchallenged; they have been criticised because

the outcome of complex dynamic simulations is difficult to interpret and generalise

(Leombruni and Richiardi, 2005). Moreover, it is practically impossible to imple-

ment the concept of a rational expectations equilibrium.

Real option models have been developed to derive optimal investment and disin-

vestment strategies for firms facing uncertainty and sunk costs while having some
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managerial flexibility with regard to the timing of (dis)investments. Sunk costs usu-

ally reflect an investment’s (partial) irreversibility, which is a common feature of

many investments in reality, and commits a firm to its decision once it has been

made. Therefore, the possibility of postponing investment and waiting for other

market conditions has a positive value (option value) that must be considered when

analysing optimal investment/disinvestment strategies under uncertainty. In this re-

gard, Dixit (1989) shows that the optimal investment (disinvestment) trigger price

exceeds (falls below) its counterpart that is determined with the classical net present

value. But, these results are derived from a single firm’s point of view, and they are

based on the assumption of an exogenous price process (geometric Brownian mo-

tion). The impact from joint entries and exits on the aggregate output, and thus on

the price process, are not explicitly taken into account in this basic model.

Leahy (1993) proves, however, that the optimal (dis)investment strategies derived

for individual firms are also valid in a competitive environment with free market en-

try and homogeneous firms. As all firms are considered identical in this framework,

they must have the same strategies in a competitive equilibrium. This implies im-

mediately that all firms invest (disinvest) when the price reaches the upper (lower)

trigger threshold. Due to this conform behaviour the increased (decreased) aggre-

gate output will prevent the price from increasing (decreasing) any further. The

emerging endogenous price process is thus bounded between these reflecting bar-

riers. Although the value of (dis)investment is reduced under this bounded price

process, the trigger thresholds coincide with the traditional ones that are valid for a

solitary firm. A recent application of this framework to the agricultural context can

be found in the study of Feil and Musshoff (2013). These authors utilise a real op-

tions model to evaluate agricultural policy schemes in a dynamic stochastic context.

By applying heuristic solution procedures the authors are able to relax simplifying

assumptions of previous models that strive for closed-form solutions of the dynamic

equilibrium in a sector.

Many real option models have in common that they account for aggregate uncer-

tainty (e.g. through demand shocks) and presume firms to be homogeneous. But,

it is frequently observed that firms differ in their cost structure, their efficiency,

or their strategic position. As this kind of heterogeneity is expected to have se-

vere implications on industry dynamics, an incorporation of firm-specific differences

seems to be necessary. Caballero and Pindyck (1996), for instance, extend the basic

models of Dixit (1989) and Leahy (1993) by adding firm-specific uncertainty. They

find, however, that idiosyncratic shocks, which affect only an individual firm, have

6



less impact on the willingness to invest than aggregate shocks. Novy-Marx (2007)

investigates the investment strategies of heterogeneous firms in a competitive, un-

certain environment. The author can show that a heterogeneous industry structure

reduces the competitive effect on the option value and the timing of investment.

This means, firms have a higher option value and delay investment in the sense that

their trigger price is higher. In general, the real options framework is an appropriate

tool to analyse investment/disinvestment (or entry/exit) decisions in a competitive

industry. However, the focus is more on the optimal timing than on the direct inter-

dependency between investment and disinvestment, which is characteristic for the

agricultural industry.

Game theoretic approaches have been applied to analyse the relationship between

the dynamics of market structure and competition. While early research studies in

industrial organisation used to assume a one-dimensional causality between mar-

ket structure and firm behaviour (structure-conduct-performance paradigm), it is

widely accepted nowadays that the relationship between both is more complex. Sut-

ton (1991) already emphasised that the market structure is shaped by firm entry and

exit, which in turn depend on the firms’ expectations of future market structure and

nature of competition. This interdependency is also confirmed in empirical studies

by Syverson (2004) and Dunne et al. (2013), who investigate determinants defining

the market structure in the U.S. concrete industry, and in the sector of American

dentists and chiropractors respectively.

The seminal work by Ericson and Pakes (1995) defines a dynamic stochastic

game to describe the development of an oligopolistic market structure with het-

erogeneous firms. Such models are particularly useful for explaining the emergence

of asymmetric industry structures. Besanko and Doraszelski (2004) model a dy-

namic capacity accumulation game, for instance, with ex-ante identical firms and

reversible investment. The authors can show that an asymmetric industry struc-

ture arises under price (Bertrand) competition while firms stay symmetric if they

compete in quantities (Cournot competition). Hanazono and Yang (2009) consider

a dynamic entry/exit game, in which firms learn about their relative cost positions.

Their equilibrium findings confirm two frequent empirical observations: first, entry

occurs gradually over time with lower cost firms entering earlier than higher cost

firms, and second, exiting firms are those that entered the industry later.

Game theoretic models dealing with industry dynamics often neglect the possi-

bility of an upper capacity limit but treat capacity as a freely available production

factor. An exception to this is the paper by Esö et al. (2010). These authors model a

7



two-stage game, in which ex-ante identical firms compete for limited production ca-

pacity in an upstream market before facing Cournot competition in the downstream

market. They find that the industry remains symmetric if the available capacity is

sufficiently scarce. Surprisingly, an increased capacity gives rise to an asymmetric

industry structure with one large (capacity-hoarding) firm and a fringe of smaller

(capacity-constrained) firms. This outcome is somewhat contrary to the result of Be-

sanko and Doraszelski (2004), who illustrate that firms rather stay symmetric under

Cournot competition and potentially unlimited capacity supply. Summing up, we

can conclude that game theoretic models are capable of modelling the growth and

shrinkage of firms in a given market with endogenous supply or constrained capac-

ities. However, they are difficult to handle, particularly if firms are heterogeneous

and there are more than two firms within the market.1

Dynamic stochastic equilibrium models can sometimes provide a framework to

overcome this shortcoming. Authors like Jovanovic (1982) or Hopenhayn (1992a)

model a heterogeneous industry by a continuum of firms, when they analyse simul-

taneous entry and exit of firms in a dynamic, stochastic environment. Idiosyncratic

uncertainty, which every firm faces in its production process, thus cancels out at the

aggregate level. As a consequence, the evolution of the industry follows deterministic

paths, and changes in the industry structure can be pursued in greater detail.

Jovanovic (1982), for instance, sets up a selection model in which a single firm’s

productivity is repeatedly drawn from an individual distribution function. Although

this individual distribution is unknown to each firm when entering the industry, firms

can gather more and more information about their true distribution by observing a

new productivity level every period (Bayesian learning process). As the firms’ un-

certainty about their own productivity distribution continuously resolves this way,

relatively efficient firms stay in the industry while inefficient ones cease production

and leave the industry. In the long-run, however, the industry tends to a state that

does not contain entry and exit anymore. Next to this interesting result, Jovanovic’s

great achievement was to illustrate that an equilibrium in the proposed framework

is equivalent to the optimum of a social welfare function when firms are atomistic

and the industry is perfectly competitive. This finding is essential for many dynamic

stochastic models since it provides a convenient method to prove the existence of an

infinite-dimensional equilibrium.

Because stochastic models with an infinite time horizon are rather difficult to

1These are just few examples of studies that use a game theoretic approach for the analysis of
industry dynamics. More details can be found in Doraszelski and Pakes (2007), for instance.
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handle though, Hopenhayn (1992a) introduced the important concept of a station-

ary equilibrium. A stationary equilibrium can be considered as a particular dynamic

equilibrium, in which significant parameters do not change over time. Although the

overall firm size distribution does not alter in a stationary equilibrium, it may still

exhibit entry and exit of individual firms. Hopenhayn (1992a) proves the existence of

a stationary equilibrium for the case that the industry is perfectly competitive, and

the firm’s productivity follows a Markov process. In this state, firms leave the indus-

try as soon as their productivity shock falls below a reservation rule. The released

space is then occupied by new firms, who enter the industry to the same extent. To-

gether with the productivity shocks and the respective production decisions, entry

and exit thus determine the firm size and profit distribution within that industry.

Furthermore, Hopenhayn’s findings reveal that the size distribution is stochastically

increasing with age, meaning that larger firms have a higher probability of survival.2

In general, a stationary equilibrium can be understood as the steady state of a

dynamic system. The analysis of such a steady state offers a huge simplification to

complex dynamic models as the dimension reduces from infinite sequences to single

parameter values. A further advantage of the stationary equilibrium concept is that

comparative statics can be carried out quite easily. The effect that a possible pa-

rameter change or an introduction of policy instruments would have on the industry

can be evaluated by comparing the respective stationary equilibria.

Many authors thus apply the concept of stationary equilibria when dealing with

firm turnover and industry dynamics. Asplund and Nocke (2006), for instance, ex-

tend the simultaneous entry/exit model from Hopenhayn (1992a) to imperfectly

competitive markets. By comparing the resulting stationary equilibria they conclude

that the turnover rate is increasing in market size. Melitz (2003) adapts the steady

state idea to assess the impact of international trade on industry structure. He finds

that the most productive firms enter the export market while less productive firms

keep producing for the domestic market or leave the industry completely. From a

more global perspective this will lead to an international re-allocation towards the

more productive firms. The core model assumption that the patterns of entry and

exit are systematically related to productivity differences among firms is confirmed

by Fariñas and Ruano (2005). The authors show that sunk costs are one source

of persistent heterogeneity in productivity. This means lower productivity becomes

more likely in markets with high and sunk entry costs. Gomes (2001) and Miao

(2005) transfer the stationary equilibrium concept to a slightly different framework

2See also Bento (2014), who takes up the idea of Hopenhayn in modelling entry costs.
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as they investigate how liquidity constraints and financing costs affect the firms’

investment decisions.

While a lot of research papers deal with the existence or the properties of a sta-

tionary equilibrium, only little effort is spent on the question whether this steady

state is really attained in the long-run. Das and Das (1997) assert, for example, that

the evolution of industry structure does not necessarily follow monotone paths in a

dynamic equilibrium, and the adjustment of mature industries to the steady state

is rather an assumption than a trivial outcome of the industry dynamics. In fact,

industries that have been undergoing a consolidation process and are still display-

ing changes in the firm size distribution have certainly not achieved a steady state

yet. Moreover, it is rather unlikely that a steady state will persist forever in real

world industries because firms must continuously react to demand shocks or volatile

prices. Even without this kind of aggregate uncertainty it is rather difficult to rule

out cycles or fluctuations in the industry structure. Hopenhayn and Prescott (1992)

show convergence for stochastically monotone operators. But, this assumption is

generally not fulfilled in a dynamic entry/exit model. Does the industry tend to a

stationary equilibrium then anyhow? This question is answered in the next chapter.
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3. Industry dynamics under limited

capacity supply

It is well documented that also in industries with unlimited capacity supply firm

entry and exit can be positively correlated to each other (cf. Cabral, 1997; Caves,

1998). This correlation is even more pronounced though, when the available produc-

tion capacity is limited to the sector level, and potential entrants have to compete

with incumbents for that scarce factor. Our intention is to incorporate such a sec-

toral capacity limit into the dynamic, stochastic, entry/exit framework proposed by

Hopenhayn (1992a). For this reason, we assume that the total production capacity is

distributed among all active firms, and capacity units can be traded dircetly between

incumbents and potential entrants. Before producing any output new firms have to

build up production capacity. As they must acquire this capacity from withdrawing

firms, the potential entrants create a positive demand for capacity. This increases

the incumbents’ liquidation value, on the other hand, who can now sell their capacity

units to entrants after ceasing production. The emerging capacity price should then

offset the mass of entering firms with the mass of exiting ones in an equilibrium. We

will show that the industry possesses an infinite-dimensional dynamic equilibrium in

this setup, which converges to a uniquely determined steady state in the long-run.

We will illustrate especially that convergence takes place irrespective of the current

industry structure. The convergence rate depends on the size of the discount factor

as well as the size of the fixed entry costs. We find that a declining discount factor

increases the adjustment speed, and the same applies to the fixed entry costs. The

fixed entry costs have to be paid by new firms in addition to the capacity acquisition

costs. In contrast to the capacity costs, however, those costs are sunk after entering

the industry.

Compared to the models of Jovanovic (1982) and Hopenhayn (1992a), we do not

consider perfect competition in particular but presume a separable structure of the
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period profits instead. Although this is restrictive to some extent, such a separable

structure may also emerge in imperfectly competitive markets or under product dif-

ferentiation. In this case, however, an infinite-dimensional equilibrium is no longer

equivalent to the maximum of a social welfare function, and a different approach is

required to prove the existence of an equilibrium. As a consequence, we show the

existence of an equilibrium directly by utilising Schauder’s Fixed Point Theorem.1

The remainder of this chapter is structured as follows. After presenting the the-

oretical framework in Section 3.1, we give the formal definition of a dynamic equi-

librium and the stationary equilibrium as its steady state in Section 3.2. Section

3.3 covers the existence and uniqueness of such a stationary equilibrium, while nec-

essary conditions implying convergence of the firm size distribution are derived in

Section 3.4. The existence of an infinite-dimensional dynamic equilibrium converg-

ing to a steady state is then proven in Section 3.5. In Section 3.6, we show that

the convergence can be sustained even for altering entry distributions. Section 3.7

concludes.

3.1 The model

We set up a dynamic stochastic equilibrium model accounting for entry and exit

under limited sectoral production capacity. Competition takes place in discrete time

t ∈ N0, and the industry is composed of a continuum of firms that are distin-

guished according to their productivity level φ ∈ [a, b]. This stochastic parameter φ

is supposed to follow a Markov process with continuous state space S ≡ [a, b] and

conditional cumulative distribution function F (φ′|φ) = Prob(φt+1 ≤ φ′|φt = φ).

New firms are assigned with a productivity value that is drawn from the initial dis-

tribution ν with cumulative distribution function (cdf) G. We impose the following

assumptions:

(i) the conditional cdf F (φ′|φ) = Prob(φt+1 ≤ φ′|φt = φ) is continuous with

respect to φ′ and φ,

(ii) F is strictly decreasing in φ (stochastic dominance),

(iii) F (φ′|b) ≤ G(φ′) ≤ F (φ′|a) for all φ′ ∈ S,

1A formal definition of Schauder’s Fixed Point Theorem can be found in the Appendix A.1.
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(iv) F is continuously differentiable with respect to φ′ and there exists a constant

mF > 0 such that
dF (φ′|φ)

dφ′ ≤ mF , ∀φ′, φ ∈ [a, b], (3.1)

(v) G is a continuously differentiable distribution function satisfying

dG(φ)

dφ
≤ mG, ∀φ ∈ [a, b] and a constant mG > 0. (3.2)

If the conditional cdf is characterised by a density function p : [a, b] × [a, b] → R+,

then

F (φ′|φ) =
 φ′

a

p(φ, x)dx (3.3)

and assumption (iv) would simply imply p(φ, x) ≤ mF , ∀x, φ. We denote the prob-

ability kernel that is related to F and defined on the Borel sets B(S) by:

P (φ,A) :=


A

1(φ′)dF (φ′|φ) for A ∈ B(S). (3.4)

The following assumption should be met by the kernel P and the measure ν:

(CON) ∃ε > 0 such that for any A ∈ B(S) one of the following conditions is satisfied:
EITHER ν(A) ≥ ε and P (φ,A) ≥ ε, ∀φ ∈ [a, b]

OR ν(Ac) ≥ ε and P (φ,Ac) ≥ ε, ∀φ ∈ [a, b].

The set Ac is supposed to be the complement to the set A. Figure 3.1 illustrates

that condition (CON) basically requires all corresponding density functions (pdf)

to overlap. The distribution of productivity levels across firms in period t ∈ N0

is described by the probability measure µt : B(S) → [0, 1]. That is, for all sets

A ∈ B(S) the value µt(A) describes the share of firms having a productivity level φ

in A.

A new productivity level is revealed to all active firms at the beginning of each

period. Being aware of the productivity level, every firm needs to choose an optimal

output quantity or output price for its product. As in Asplund and Nocke (2006) the

exact type of competition at this production stage is not specified any further. Yet,

we assume that a single-period equilibrium exists for any given industry structure

µ, and the equilibrium profits of a firm with productivity φ are separable like

π(φ, µ) = g(φ)h(µ) = g(φ)h

 b

a

q(φ) dµ(φ)


. (3.5)
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Figure 3.1: Assumption (CON) is fulfilled on the left side, but not on the right side

This structure of period profits may indeed arise under perfect competition with

homogeneous goods (see the numerical example in Hopenhayn, 1992b) or in the

case of monopolistic competition with differentiated products (cf. Melitz, 2003).

Both functions g, h ∈ C1(R) are supposed to be continuously differentiable and

non-negative, such that the period profits π(φ, µ) ≥ 0 are always larger or equal to

zero. Since firms with a higher productivity level are assumed to make higher profits,

we further request g to be strictly increasing with respect to φ. In the single-period

equilibrium a firm’s profit will not just depend on its own productivity parameter

but also on the distribution of productivity levels across other firms. A high share

of productive firms should either intensify competition or lead to a higher aggregate

output, thus having a negative effect on the single firm’s profit. We account for this

by introducing the strictly decreasing function h and the aggregate variable

Q :=

 b

a

q(φ) dµ(φ) (3.6)

that reflects the total industry production output emerging under the industry struc-

ture µ in a single-period equilibrium . The function q : S → R+ is assumed to be

non-decreasing such that µ1

FOSD

≥ µ2 implies Q1 ≥ Q2 and π(φ, µ1) ≤ π(φ, µ2) for

a fixed productivity level φ.2 Furthermore, the industry output is bounded between

Qmin = q(a) and Qmax = q(b) for any probability measure µ on (S,B(S)).
As mentioned in the introduction, the total production capacity is supposed to

be limited to the sector level and completely distributed among established firms.

2The expression µ1

FOSD
≥ µ2 means that the measure µ1 (first order) stochastically dominates

µ2, i.e.

f dµ1 ≥


f dµ2 for any non-decreasing function f .
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Each firm can, thus, be considered as a marginal production unit that is equipped

with a marginal capacity unit. At the end of each period incumbents have the op-

tion to cease production and leave the industry. If they decide to do so, they release

their production capacity, which then becomes available to new firms. Due to the

boundedness of production capacity entrants are forced to buy capacity units from

exiting firms before setting up production. This creates a positive demand for ca-

pacity and induces firm turnover. The capacity is traded between both groups at a

common price yt ≥ 0, which exactly offsets the mass of exiting firms with the mass

of entrants in an equilibrium.

All firms are assumed to discount future profits with a constant factor 0 ≤ β < 1.

If w = {µt, yt}t∈N is an infinite sequence of probability measures and (bounded)

capacity prices, the value of an active firm with realised productivity φ at time t

can be defined recursively by

vt(φ,w) = π(φ, µt) + β max


yt,

 b

a

vt+1(φ
′, w) dF (φ′|φ)


. (3.7)

According to (3.6) each probability measure µt on (S,B(S)) is associated to an

aggregate industry output Qt. If z = {Qt, yt}t∈N denotes the sequence of output and

capacity values corresponding to the sequence w, an equivalent formulation of the

value function is given by

v(φ, zt) = π(φ,Qt) + β max


yt,

 b

a

v(φ′, zt+1) dF (φ′|φ)

, (3.8)

where zt := {Qj, yj}∞j=t denotes the sub-sequence starting at time t. Hence, the

value function consists of the current profits plus the discounted earnings that a

firm may generate in prospective periods. The latter part inside the curly brackets

is the continuation value designating the expected future profits of the firm if it

keeps producing. In contrast to this, the price of production capacity yt represents

the exit value, i.e. the value that an incumbent firm receives when it withdraws from

production by the end of the current period t.

Theorem 3.1. (a) A unique, continuous, and bounded solution v(φ, z) to equation

(3.8) exists. (b) The value function is strictly increasing in φ. (c) It is monotone

with respect to the sequences in z.

Proof. ad (a). Let f(φ, z) be a continuous, bounded function. We define the oper-
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ator T on the space of continuous, bounded functions by

Tf(φ, zt) := π(φ,Qt) + β max


yt,

 b

a

f(φ′, zt+1) dF (φ′|φ)

. (3.9)

The value function v thus constitutes a fixed point of the operator T . To show the

existence of such a fixed point, satisfying the properties in (a), we apply the sufficient

conditions of Blackwell (1965).

First, we illustrate that the operator T maps continuous, bounded functions into

other continuous, bounded functions. If f(φ, z) is continuous in both arguments,

then f(φ, z) :=  b

a
f(φ′, z) dF (φ′|φ) is also continuous with respect to φ and z (see

Stokey et al. (1989), Lemma 9.5 for a proof of this). The transition from zt →→ zt+1 is

a continuous mapping on the space of bounded sequences that can be characterised

by zt+1 = Γ(zt). As the period profits π(φ,Qt) are continuous by assumption, the

function

Tf(φ, zt) = π(φ,Qt) + β max

yt, f(φ,Γ(zt)) (3.10)

must be continuous as well. The boundedness of this function follows immediately

from the boundedness of zt and the compact support φ ∈ S = [a, b].

Second, T is a monotone operator. If f1 ≥ f2 for all possible combinations (φ, z),

the inequality  b

a

f1(φ
′,Γ(z)) dF (φ′|φ) ≥

 b

a

f2(φ
′,Γ(z)) dF (φ′|φ) (3.11)

holds and implies Tf1(φ, z) ≥ Tf2(φ, z) for all (φ, z).

Third, for any constant c ≥ 0 we have T (f + c)(φ, z) ≤ Tf(φ, z)+β c. According

to Theorem 5 in Blackwell (1965), T is a contraction operator with modulus β < 1

on the space of bounded, continuous functions. Banach’s Fixed Point Theorem (see

Appendix A.1), hence, asserts the existence of a unique, bounded, and continuous

solution v to equation (3.8).

ad (b). Due to the contractive behaviour of the operator T , the value function is

given by v = limn→∞ T nf , for any continuous and bounded function f . Furthermore,

the operator T preserves (weak) monotonicity meaning that: f(φ, z) non-decreasing

in φ implies that Tf(φ, z) is non-decreasing in φ. Thus, the limiting function v

must also possess this property. As π(φ,Q) is assumed to be strictly increasing with

16



respect to φ, however, the value function

v(φ, zt) = π(φ,Qt) + β max


yt,

 b

a

v(φ′, zt+1) dF (φ′|φ)


(3.12)

must be strictly increasing as well.

ad (c). Monotonicity of v with respect to z follows by the same argument as in (b).

In this case, monotonicity means that the value function increases with respect to

every single yt contained in the sequence z, and decreases with respect to every Qt.

If z, z′ are two identical sequences that differ just in the element yk < y′k (for some

k ∈ N), this implies v(φ, zt) ≤ v(φ, z′t). Analogously, for Qk < Q′
k and everything

else kept identical we get v(φ, zt) ≥ v(φ, z′t)

An incumbent stays in the industry as long as its continuation value exceeds the

exit value. The exit point xt characterises the critical productivity threshold for

staying in the industry:

xt := inf


φ ∈ S :

 b

a

v(φ′, zt+1) dF (φ′|φ) ≥ yt


. (3.13)

Firms with a productivity level φt ≥ xt keep producing while all firms with φt < xt

drop out of the industry. If the set in (3.13) is empty, we define xt := b.

At the end of each period new firms have the possibility to enter the industry.

The expected profits of an entrant are given by

ve(zt+1) :=

 b

a

v(φ, zt+1) dG(φ). (3.14)

New firms will enter the industry as long as their expected profits cover the entry

costs. The entry costs are composed of a fixed part ce ≥ 0, which is sunk afterwards,

and the variable part yt representing the costs for acquiring production capacity from

exiting firms. Free access to the industry implies that the condition ve(zt+1) ≤ ce+yt

must be satisfied in an equilibrium, and hold with equality if positive entry occurs.

We denote the mass of entering firms by Mt ≥ 0.3

Recall that the variable part of the entry costs will be determined endogenously

by supply and demand for production capacity. In our framework demand equals the

3In this context entry can be understood as the creation of a new marginal production unit.
This can either be created by a really new firm, or an established firm that tries to extend its
production capacity. As the entry option is supposed to be the same for all firms, we do not
differentiate between those two groups but refer to both as ’entering’ or ’new firms’.
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mass of firms willing to enter the industry, and supply is generated by the number

of firms leaving the industry. In an equilibrium the capacity price yt must be chosen

such that

Mt = µt([a, xt)), (3.15)

i.e. the mass of entrants must coincide with the mass of firms leaving the industry.

The industry has been defined as a continuum of firms. Because of this uncount-

able number of firms we do not have to deal with uncertainty on the aggregate

level. Hence, the evolution of industry structure follows deterministic paths, and

is completely specified by the entry/exit behaviour of firms.4 It can be described

recursively:

µt+1([a, φ
′)) =


φ≥xt

F (φ′|φ) dµt(φ) +Mt G(φ′). (3.16)

3.2 Equilibrium definitions

All firms are assumed to have perfect information on the current industry struc-

ture and their competitors’ entry/exit strategies. This allows them to foresee fu-

ture capacity prices {yt} and the aggregate industry output {Qt}. According to the

definition, each firm bases its optimal entry/exit policy on these sequences. If the

resulting entry/exit decisions, which are characterised by {Mt} and {xt}, give in

turn rise to the anticipated output and capacity sequences, then the industry is in

an equilibrium. We define:

Definition 3.1 (Dynamic Equilibrium). Let a continuous probability distribution

µ0 on the state space S be given. A dynamic equilibrium consists of bounded se-

quences {µ∗
t}, {Q∗

t}, {y∗t }, {x∗
t}, {M∗

t } such that for every t ∈ N0:

(i) the aggregate industry output Q∗
t is represented by (3.6),

and the period profits are given as π(φ,Q∗
t ) = g(φ) h(Q∗

t ),

(ii) the exit point x∗
t satisfies (3.13),

(iii) ve(zt+1) ≤ ce + y∗t with equality if M∗
t > 0,

(iv) the capacity market clears, i.e. entry equals exit M∗
t = µ∗

t ([a, x
∗
t )),

(v) µ∗
t follows the industry dynamics in (3.16).

4A deterministic development of the industry structure is justified by the law of large numbers.
Evidence can be found in Judd (1985) or Feldman and Gilles (1985)
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We will show in Section 3.5 that a dynamic equilibrium exists for any distribution

µ0. As the proof requires some preparation, however, we assume this being true

for the moment. It is evident that different starting distributions µ0 will provoke

different adjustment processes and, thus, lead to different equilibria. This begs the

question whether the industry tends to a uniquely determined steady state in either

case, or whether fluctuations will still occur in the long-run. We define a stationary

equilibrium as the steady state of the dynamic system laid out above.

Definition 3.2 (Stationary Equilibrium). A stationary equilibrium consists of a

vector (µ∗, Q∗, y∗, x∗,M∗) such that the constant sequences, constructed with these

values, satisfy the conditions (i)–(v) of a dynamic equilibrium. The following condi-

tions must hold in particular:

(i) Q∗ =


S

q(φ) dµ∗(φ) and π(φ,Q∗) = g(φ) h(Q∗),

(ii)


S

v(φ, z∗) dF (φ|x∗) = y∗,

(iii)


S

v(φ, z∗) dG(φ) = ce + y∗,

(iv) M∗ = µ∗([a, x∗)),

(v) µ∗([a, φ′)) =


φ≥x∗

F (φ′|φ) dµ∗(φ) +M∗G(φ′).

The stationary equilibrium can be understood as a particular dynamic equilibrium

starting from the invariant distribution µ0 = µ∗. It may still exhibit entry and exit

of firms. But, once the industry has achieved this state, the significant parameters

will stay constant over time.

An equilibrium without entry and exit of firms can arise if the fixed entry costs ce

are too high to be covered by the expected profits. This impliesMt = 0 (for all t ∈ N),
and the convergence to a steady state follows by exactly the same argument as in

Hopenhayn and Prescott (1992). In such a no-entry equilibrium multiple capacity

price sequences {yt}t∈N may furthermore satisfy the conditions (ii),(iii). We will rule

out this situation, however, later on. Since our study deals with the impact that

scarce production capacity has on entry/exit of firms, we assume that new firms are

really pushing into the industry and create a positive demand for capacity units.
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3.3 Existence of a stationary equilibrium

The properties of the value function can be translated one-to-one to the continuation

value. It is trivial that the continuation value

vc(φ, z) :=

 b

a

v(φ′, z) dF (φ′|φ) (3.17)

is continuous and (weakly) monotone with respect to φ, z. We have shown in The-

orem 3.1 that the value function v(φ, z) strictly increases with respect to the firm-

specific productivity level φ. As F (φ′|φ1) > F (φ′|φ2) for φ1 < φ2 by assumption,

this implies vc(φ1, z) < vc(φ2, z) for any positive, bounded sequence of aggregate

output and capacity prices z (cf. Lemma A.8). Hence, the continuation value is

strictly increasing in φ as well.

These features imply that the exit point, which has been defined as the critical

productivity threshold for staying in the industry, is a continuous function xt = γ(zt)

of the output/capacity sequence. If xt ∈ (a, b), then it must be the unique solution

to the equation  b

a

v(φ′, zt+1) dF (φ′|xt) = yt. (3.18)

According to the definition, the stationary equilibrium resembles a dynamic equi-

librium with constant output/capacity sequences. If z̄ = {Q, y}t∈N is such a constant

sequence, the continuation value will not depend on the time t anymore and can be

rephrased as:

vc(φ, z̄) =

 b

a

π(φ,Q) dF (φ′|φ) + β

 γ(z̄)

a

y dF (φ′|φ) +
 b

γ(z̄)

vc(φ′, z̄) dF (φ′|φ)


.

(3.19)

We will focus on constant sequences z̄ in the following. The next Lemma shows how

the continuation value reacts to changes in the parameters Q and y:

Lemma 3.2. The continuation value vc(φ, z̄) is almost everywhere differentiable

with respect to Q and y. The gradients are bounded by:

(i)
gF h′

min

1− β
≤ ∂vc

∂Q
(φ, z̄) ≤ 0

(ii) 0 ≤ ∂vc

∂y
(φ, z̄) ≤ β
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with gF =

 b

a

g(φ) dF (φ|b) and h′
min ≤ 0 being the minimal value of the derivative

h′(Q) on [Qmin, Qmax].

Proof. The differentiability follows by the monotonicity and continuity of vc (see

Kolmogorov and Fomin (2012), Chapter 9, Theorem 6, for instance). Hence, it suf-

fices to show the inequalities in (i) and (ii).

ad (i). The second inequality is clear. To show the first inequality, let us fix a

productivity level φ̄. An increase in the aggregate industry output Q has the highest

effect on the continuation value if the probability of exit is equal to zero and the

firm stays in the industry forever (eg. for y = 0). In this case γ(z̄) = a and the

continuation value is equal to

vc(φ̄, z̄) =
∞
t=0

βt

 b

a

π(φ,Q) dµ̄t(φ). (3.20)

Here, µ̄t denotes the distribution of the firm-specific productivity that a firm with

current productivity level φ0 = φ̄ will have at time t. Differentiating the expression

in (3.20) with respect to Q yields:

∂vc

∂Q
(φ, z̄) ≥

∞
t=0

βt

 b

a

∂π

∂Q
(φ,Q) µ̄t(φ)

= h′(Q)
∞
t=0

βt

 b

a

g(φ) µ̄t(φ)

≥ h′
min

∞
t=0

βt

 b

a

g(φ) dF (φ|b)

=
gF h′

min

1− β
.

Note that the exchange of summation and differentiation in the first line is justified

by Dini’s Theorem on uniform convergence.

ad (ii). The continuation value is clearly increasing with respect to the capacity

value. Therefore, the first inequality holds. A marginal change of y has the highest

impact on vc if γ(z̄) = b and the firm leaves the industry almost surely by the end

of the next period (eg. for y ≥ π(b,Q)
1−β

). The continuation value is then given by:

vc(φ, z̄) =

 b

a

π(φ′, Q) dF (φ′|φ) + βy. (3.21)
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Taking the derivative with respect to y implies that ∂vc

∂y
(φ, z̄) ≤ β.

It is trivial that the same properties apply to the expected profits ve of a new firm.

To see why this is true, we just need to replace the conditional cdf F (.|φ) by the

distribution G in the previous proof.

In a stationary equilibrium the expected value ve complies exactly with the total

price that firms pay for entering the industry. The equation ve(Q, y)−y = ce, which

must be satisfied according to Definition 3.2, thus determines the capacity price y∗

implicitly. If the firms’ incentive to enter the industry is high enough, the capacity

price can be characterised as a function y = κ(Q) of the aggregate industry output.

Lemma 3.3. If ve(Qmax, 0) ≥ ce, then there exists a continuous, decreasing function

κ : [Qmin, Qmax] → R+ such that the equality ve(Q, κ(Q)) − κ(Q) = ce holds for all

Q ∈ [Qmin, Qmax]. The function is bounded by

0 ≤ κ(Q) ≤
∞
t=0

βt

 b

a

π(φ,Qmin) dF (φ|b) = gF h(Qmin)

1− β
. (3.22)

Proof. For convenience, we first define the function H(Q, y) := ve(Q, y) − y. If we

fix an aggregate output level Q̄ ∈ [Qmin, Qmax], we must show that a unique capacity

price ȳ exists, which satisfies the equation H(Q̄, ȳ) = ce.

Existence. The function ve is decreasing with respect toQ. Therefore, the inequality

ve(Q̄, y) − y ≥ ce is clearly satisfied for y = 0. On the other hand, every capacity

value y ≥ gF h(Q̄)
1−β

would make the firm leave the industry immediately and, thus,

lead to

ve(Q̄, y)− y =

 b

a

π(φ, Q̄) dG(φ) + β y − y

≤ gF h(Q̄)− (1− β) y

≤ 0 ≤ ce.

Due to the continuity of ve(Q, y) in y there must be a value ȳ ∈

0, gF h(Q̄)

1−β


such

that ve(Q̄, ȳ) − ȳ = ce (Intermediate Value Theorem). This fact implies also the

boundedness statement in (3.22).

Uniqueness. Referring to Lemma 3.2, we have ∂ve

∂y
(Q, y) ≤ β. Hence, the function

H(Q, y) must be strictly decreasing with respect to y. This implies, however, that
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the value ȳ is uniquely determined. Since the value Q̄ has been arbitrarily chosen,

this defines a function y = κ(Q), which is subject to ve(Q, κ(Q))− κ(Q) = ce.

The continuity and monotonicity of κ(Q) follow immediately from the continuity

and (strict) monotonicity of the function H(Q, y).

Continuity. Let Qn → Q be a converging sequence of aggregate output values. We

define yn := κ(Qn) and y := limn→∞ yn. By construction H(Qn, yn) = ce holds for

all n ∈ N. The continuity of H implies H(Q, y) = limn→∞ H(Qn, yn) = ce. Hence, y

is a solution to the equation ve(Q, y) − y = ce. Due to the uniqueness of solutions,

however, we must have κ(Q) = y and κ(Qn) → κ(Q) for n → ∞.

Monotonicity. Assume that Q1 < Q2. As v
e decreases with respect to the aggregate

output, this yields ce = H(Q1, κ(Q1)) ≥ H(Q2, κ(Q1)). But, then we must have

κ(Q1) ≥ κ(Q2).

A crucial point in the dynamic equilibrium is that the mass of entering firms may

not exceed the amount of exiting ones (see condition (iv)). Consequently, the total

mass of the industry µt(S) must not vary over time. If the starting distribution µ0

constitues a probability measure, then the measures {µt}t∈N, which are derived from

µ0 via the industry dynamics (3.16), will form probability measures as well.

We define the linear operator Tx : M1(S,B) → M1(S,B) on the space of proba-

bility measures by:

Txµ(A) =


φ≥x

P (φ,A)dµ(φ) +


φ<x

ν(A)dµ(φ)

=

 b

x

P (φ,A)dµ(φ) + µ([a, x)) ν(A)

(3.23)

for x ∈ [a, b] and A ∈ B(S). Under the assumption that Mt = µt([a, xt)) holds,

equation (3.16) can thus be rewritten as

µt+1 = Txtµt. (3.24)

Notice here that Tx is not a monotone operator, i.e. it does not preserve first order

stochastic dominance in the sense: µ1

FOSD

≥ µ2 ̸⇒ Txµ1

FOSD

≥ Txµ2. This is

namely the reason why the convergence argument from Hopenhayn and Prescott

(1992) does not apply in our case. The assumption (CON), however, which has been

imposed on F (.|φ) and G, implies the following important result.
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Theorem 3.4. The operator Tx is contractive with respect to the total variation

norm ∥.∥TV . This means, there is an ε > 0 such that for any two probability measures

µ1, µ2 ∈ M1(S,B):

∥Txµ1 − Txµ2∥TV ≤ (1− ε)∥µ1 − µ2∥TV . (3.25)

Proof. Let x ∈ (a, b) be given and fixed. Assume that (CON) is fulfilled and A ∈
B(S). First, define the probability kernel

P̂x(φ,A) :=

ν(A) if φ ∈ [a, x)

P (φ,A) if φ ∈ [x, b]
(3.26)

This kernel satisfies the following properties:

(i) P̂x(φ,A) ≥ ε, ∀φ ∈ [a, b] OR P̂x(φ,A
c) ≥ ε, ∀φ ∈ [a, b],

(ii) Txµ(A) =

 b

a

P̂x(φ,A)dµ(φ).

For two probability measures µ1, µ2 there are finite measures λ, α1, α2 such that α1

and α2 are mutually singular, and µk = λ+ αk for k ∈ {1, 2} (see Lemma A.6). We

can conclude:

∥Txµ1 − Txµ2∥TV = ∥Txα1 − Txα2∥TV

(ii)
= 2 sup

A∈B(S)

 b

a

P̂x(φ,A)dα1(φ)−
 b

a

P̂x(φ,A)dα2(φ)


We fix A,Ac ∈ B(S) and suppose without loss of generality that the inequality

P̂x(φ,A) ≥ ε holds for all φ ∈ [a, b].5

It is clear that ε ≤ P̂x(φ,A) ≤ 1 for all φ ∈ S. Since λ(S) + αk(S) = 1, we get

that α1(S) = 1− λ(S) = α2(S). For this reason the inequality b

a

P̂x(φ,A)dα1(φ)−
 b

a

P̂x(φ,A)dα2(φ)

 ≤ (1− ε) α1([a, b]) (3.27)

must be satisfied. Recall that α1, α2 are mutually singular measures, and therefore

∥α1 − α2∥TV = α1([a, b]) + α2([a, b]) = 2α1([a, b]). Using this and (3.27) we obtain:

∥Txµ1 − Txµ2∥TV = 2 sup
A∈B(S)

 b

a

P̂x(φ,A)dα1(φ)−
 b

a

P̂x(φ,A)dα2(φ)


5If P̂x(φ,A

c) ≥ ε is true instead, we can just replace P̂x(φ,A) by 1 − P̂x(φ,A
c) and get the

same results.
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≤ (1− ε) ∥α1 − α2∥TV

= (1− ε) ∥µ1 − µ2∥TV

But, this had to be shown.

A major implication of the previous theorem is the existence of a stationary

distribution. In this context, a stationary distribution resembles a fixed point of the

mapping Tx.

Theorem 3.5. (a) The operator Tx has a unique fixed point, i.e. ∃ exactly one

probability measure λ ∈ M1(S,B) such that the equality λ = Txλ holds. (b) λ is a

continuous probability distribution.

Proof. ad(a). The space of probability measures M1(S,B) equipped with the to-

tal variation norm is a complete metric space.6 The statement thus follows from

Theorem 3.4 and Banach’s contraction mapping theorem.

ad(b). This follows from the fact that F (·|φ) and G represent continuous distribu-

tions themselves.

To show the existence of a stationary equilibrium, we first define the mapping

Tf : [a, b] → M1(S,B). The image of x ∈ [a, b] under Tf is supposed to be the

invariant probability measure of the operator Tx, i.e.

Tf (x) = µ, such that µ = Txµ. (3.28)

This mapping is well defined as, according to Theorem 3.5, each operator Tx has

exactly one fixed point.

Lemma 3.6. The mapping Tf is continuous.

Proof. Let {xn}n∈N ⊆ S be a sequence and xn → x for n → ∞. We have to show

that:

∥Tf (xn)  
µn

−Tf (x)  
µ

∥TV → 0, if n → ∞. (3.29)

For each set A ∈ B(S) we have

∥µn − µ∥TV = ∥Txnµn − Txµ∥TV

6For a proof of this fact see for example Stokey et al. (1989) p.343
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= ∥Txnµn − Txnµ+ Txnµ− Txµ∥TV

≤ ∥Txnµn − Txnµ∥TV + ∥Txnµ− Txµ∥TV

≤ (1− ε) ∥µn − µ∥TV + 2 µ([xn, x]).

This is equivalent to:

∥µn − µ∥TV ≤ 2

ε
µ([xn, x]).

As shown in Theorem 3.5 the invariant distribution µmust be continuous. Therefore,

the term on the right hand side tends to zero if n → ∞, and the statement is

proven.

A stationary equilibrium exists in the dynamic framework if an exit-point x∗ and

its corresponding invariant distribution µ∗ = Tf (x
∗) satisfy the entry/exit conditions

of Definition 3.2 at the same time. According to Lemma 3.3, the function y = κ(Q)

defines an capacity value for every output level such that the entry equality of a

stationary equilibrium is fulfilled. Taking this into consideration, the existence of a

stationary equilibrium reduces to the exit condition

x∗ = inf


φ ∈ S :

 b

a

v(φ′, Q∗, κ(Q∗)) dF (φ′|φ) ≥ κ(Q∗)


. (3.30)

This is essentially a fixed point problem since the aggregate outputQ∗ =

 b

a

q dTf (x
∗)

as well as κ(Q∗) are also functions of x∗.

By assumption, the conditional distribution F (.|b) stochastically dominates G.

For all x∗ ∈ S, we thus have b

a

v(φ′, Q∗, κ(Q∗)) dF (φ′|b) ≥
 b

a

v(φ,Q∗, κ(Q∗)) dG(φ)− ce

= ve(Q∗, κ(Q∗))− ce

= κ(Q∗).

As a consequence of this, the set in (3.30) cannot be empty, and the infimum will

be situated inside the interval [a, b]. The continuity of Q∗ and κ(Q∗) with respect

to x∗ implies, moreover, that the infimum denotes a continuous function itself. But,

then we can conclude the existence of a fixed point x∗ – and thus the existence

of a dynamic equilibrium – from the Intermediate Value Theorem. This proves the

following theorem:
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Theorem 3.7 (Existence of a stationary equilibrium). The dynamic, stochastic

framework laid out in Section 3.1 possesses a stationary equilibrium.

A stationary equilibrium without entry/exit will emerge whenever the continua-

tion value of a firm with productivity level φ = a is larger than the expected profits

of entrants. This would be the case for vc(a,Q∗, κ(Q∗)) ≥ κ(Q∗). A necessary con-

dition for positive entry and exit is a < x∗ < b. This would, for instance, be induced

by the assumption

ve(Q, 0)− ce > vc(a,Q, 0) (3.31)

⇔
∞
t=0

βt

 b

a

π(φ,Q) dµ̄e
t (φ)− ce >

∞
t=0

βt

 b

a

π(φ,Q) dµ̄a
t (φ). (3.32)

Here, µ̄a
t denotes the distribution of productivity levels that an incumbent firms with

current productivity φ = a will have at time t. By the same token, µ̄e
t displays the

productivity distribution of a new firm t periods after its entry. In this situation, the

firms’ prospective productivity distributions do not involve any exit probability. As

the assumed capacity value equals zero, firms neglect any exit possibility and will

stay in the industry almost surely. Due to the separability of the period profits, the

condition (3.32) can be generalized by

h(Qmax)
∞
t=0

βt

 b

a

g(φ) dµ̄e
t (φ)−

 b

a

g(φ) dµ̄a
t (φ)


> ce. (3.33)

So far, we have just shown the existence of a stationary equilibrium. The unique-

ness of this steady state will follow by the convergence argument that we will demon-

strate in the subsequent section.

3.4 Convergence to the steady state

It is clear that the industry converges to a steady state if β = 0 and ce = 0. In

this situation firms act myopically and just account for the very next period when

making their entry/exit decisions. The exit rule simplifies to

xt = inf


φ ∈ S :

 b

a

π(φ′, Qt+1) dF (φ′|φ) ≥
 b

a

π(φ′, Qt+1) dG(φ′)


(3.34)

= inf


φ ∈ S :

 b

a

g(φ′) dF (φ′|φ) ≥
 b

a

g(φ′) dG(φ′)


, (3.35)
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such that the exit-point does not depend on the aggregate output Qt+1, and accord-

ingly on the industry structure µt+1 anymore. The infimum in (3.35) is the same

xt = x∗ for all time periods, thus giving rise to a constant exit sequence in the equi-

librium. For any starting distribution µ0, the resulting industry structure in period t

is consequently given by µt = T t
x∗µ0.

7 Due to the contraction property of Tx∗ , which

was shown in Theorem 3.4, the sequence {µt}t∈N converges to a stationary distribu-

tion λ = Tx∗λ in the total variation norm. The convergence of those measures then

entails the convergence of all other relevant parameters {Qt}, {yt}, {Mt} for t → ∞.

If either β ̸= 0 or ce ̸= 0, however, convergence to a steady state is not straight-

forward. In this case, the dynamic development of the industry structure will likely

provoke a fluctuating sequence of exit-points {xt}t∈N. This leads to alternating op-

erators Txt such that we cannot infer the convergence to a stationary distribution

from the contractive behaviour of the mapping Txt any longer. Keeping in mind that

Tx1µ(A)− Tx2µ(A) =

 x2

x1


P (φ,A)− ν(A)


dµ(φ) (3.36)

for all sets A ∈ B(S) and x1 < x2, we rather have the inequality:

∥Tx1µ1 − Tx2µ2∥TV = ∥Tx1µ1 − Tx1µ2 + Tx1µ2 − Tx2µ2∥TV

≤ ∥Tx1µ1 − Tx1µ2∥TV + ∥Tx1µ2 − Tx2µ2∥TV

≤ (1− ε)∥µ1 − µ2∥TV + 2 µ2([x1, x2]).

(3.37)

Because of the last term, the difference between Tx1µ1 and Tx2µ2 will depend on the

distance of the two exit-points x1, x2 as well. Therefore, the inequality (3.37) does

not necessarily constitute a contraction, and the simple convergence argument from

the myopic scenario (β = 0) cannot be transferred to this case.

Generally speaking, the inequality above holds for all arbitrarily chosen values x1

and x2. In our analysis, however, these values are rather considered to be equilibrium

solutions representing the firm’s optimal exit-policy for current industry structures

µ1 and µ2. We conjecture therefore that the distance between two exit-points tends

to zero, i.e. |x1 − x2| → 0, whenever ∥µ1 − µ2∥TV → 0. This brings us to the

following method of resolution. We will illustrate that for any value (1− ε) < θ < 1

the inequality

∥Tx1µ1 − Tx2µ2∥TV ≤ θ ∥µ1 − µ2∥TV (3.38)

7Here, T t
x∗ denotes the t−fold composition of the operator Tx∗ .
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can be justified if x1, x2 are the exit-points referring to µ1, µ2 in an equilibrium, and

both the entry costs ce and the discount factor β are below some upper boundaries

c̄ > 0 and β̄ > 0. This would still imply contractive behaviour of the industry

structure and, thus, result in convergence of {µt}t∈N to a stationary distribution.

For a fixed (continuous) probability measure λ ∈ M1(S,B) and η > 0 we define

the distance function

dλ(η) := sup
µ:∥µ−λ∥TV ≤η

|xµ − xλ| (3.39)

indicating the maximum possible difference between the two corresponding exit-

points xµ and xλ in an equilibrium.8 It follows immediately from the definition that

dλ is an upward sloping function and limη→0 dλ(η) = 0. Furthermore, the shape of

the whole function will particularly be affected by the height of the entry costs and

the discount factor. We have discussed above why dλ ≡ 0 for ce = 0 and β = 0.

For convenience let λ = Txλ
λ henceforth denote the invariant distribution be-

longing to the stationary equilibrium, and let xλ be the solution of the exit-rule.

The assumptions imposed on F (·|φ) and G imply that λ is a continuous prob-

ability distribution, and its cdf Fλ satisfies dFλ(φ)
dφ

≤ mλ for some positive value

mλ = max{mF ,mG}. We can conclude from this that:

0 ≤ λ([x1, x2]) ≤ mλ · |x1 − x2|. (3.40)

According to (3.37), the contraction property (3.38) is satisfied as long as the in-

equality

(1− ε) ∥µ− λ∥TV + 2 λ([xµ, xλ]) ≤ θ ∥µ− λ∥TV (3.41)

holds for any probability measure µ ∈ M1(S,B). If ∥µ − λ∥TV = η, it suffices to

show that

(1− ε)η + 2mλdλ(η) ≤ θ η

⇔ dλ(η)

η
≤ θ − (1− ε)

2mλ

(3.42)

for all η ∈ [0, 2].

In the next step, we will determine a range for the possible exit solutions xµ. For

this purpose, let the probability measure µ describe the current industry structure at

time t and ∥µ− λ∥TV = η. Depending on the total variation η, we will construct an

interval I that is always centered around the stationary exit-point xλ and certainly

8The supremum in (3.39) is taken over all continuous probability measures µ ∈ M1(S,B).
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contains the exit solution xµ. As will become clear later on, the length of this interval

I will not just depend on the parameter η but also on the size of ce and β. If

z∗t = {Q∗
j , y

∗
j}∞j=t denotes the sequence that µ entails in an equilibrium,9 the exit-

point xµ must be subject to

xµ = inf


φ ∈ S :

 b

a

v(φ′, z∗t+1) dF (φ′|φ) ≥ y∗t+1


= inf


φ ∈ S : vc(φ, z∗t+1)− ve(z∗t+1) + ce ≥ 0


. (3.43)

If we introduce the function u(φ, zt) = max {yt+1, v
c(φ, zt+1)}, the exit-point can be

redefined by

xµ = inf


φ ∈ S :

 b

a

π(φ′, Q∗
t+1) dF (φ′|φ) + β

 b

a

u(φ′, z∗t+1) dF (φ′|φ)

−
 b

a

π(φ′, Q∗
t+1) dG(φ′)− β

 b

a

u(φ′, z∗t+1) dG(φ′) + ce ≥ 0


.

(3.44)

Using the separability of period profits, this is equivalent to

xµ = inf


φ ∈ S :

 b

a

g(φ′) dF (φ′|φ) + β

h(Q∗
t+1)

 b

a

u(φ′, z∗t+1) dF (φ′|φ)

−
 b

a

g(φ′) dG(φ′)− 1

h(Q∗
t+1)


β

 b

a

u(φ′, z∗t+1) dG(φ′)− ce


≥ 0


.

(3.45)

To simplify the notation, we define the function inside the curly brackets as sµ(φ),

such that xµ = inf

φ ∈ S : sµ(φ) ≥ 0


.

Let δa and δb denote the Dirac measures in a and b. These are defined for any set

A ∈ B(S) by

δa(A) =

1 if a ∈ A

0 if a /∈ A
and δb(A) =

1 if b ∈ A

0 if b /∈ A.
(3.46)

9Recall that we implicitly presume the existence of a converging dynamic equilibrium at this
stage. The proof requires some preparation and will be presented in Section 3.5.
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It is proven in Lemma A.9 that for any probability measure µ being subject to

∥µ− λ∥TV ≤ η the following inequalities hold:

µ+
η

2
δb

FOSD

≥ λ+
η

2
δa and µ+

η

2
δa

FOSD

≤ λ+
η

2
δb.

This allows us to specify boundaries for the aggregate output Qµ =
 b

a
q(φ) dµ(φ)

that materialises under the industry structure µ. The lower/upper boundaries de-

pend solely on the stationary distribution λ and the variational distance η between

both distributions: b

a

q(φ) dλ(φ)− η

2
(Qmax −Qmin)  

=:Qλ
min(η)

≤ Qµ ≤
 b

a

q(φ) dλ(φ) +
η

2
(Qmax −Qmin)  

=:Qλ
max(η)

(3.47)

For the sake of convenience, the lower boundary is henceforth denoted by Qλ
min(η)

and the upper boundary by Qλ
max(η) respectively. The aggregate output in the sub-

sequent period, which can be interpreted as a function of the exit-point

Qµ(x) =

 b

a

q(φ) dTxµ(φ), (3.48)

will also be situated in the interval

Qλ

min(η), Q
λ
max(η)


when the exit-point xµ is

close enough to the stationary solution xλ, and the contraction inequality (3.41) is

fulfilled.

Minimum and maximum capacity values depending on the variational difference

η can be found in a similar way. If we presume a constant industry output over

time, we can define yλmin(η) = κ

Qλ

max(η)

and yλmax(η) = κ


Qλ

min(η)

by means of

the function κ, which is the solution to the entry equality ve(Q, κ(Q))− κ(Q) = ce.

For the constant output/capacity sequences z̄min(η) =

Qλ

min(η), y
λ
max(η)


t∈N and

z̄max(η) =

Qλ

max(η), y
λ
min(η)


t∈N we define moreover

sL(η, φ) :=

 b

a

g(φ′) dF (φ′|φ) + 1

h (Qλ
max(η))


β

 b

a

u (φ′, z̄min(η)) dF (φ′|φ) + ce


−
 b

a

g(φ′) dG(φ′)− β

h

Qλ

min(η)
  b

a

u (φ′, z̄max(η)) dG(φ′) (3.49)
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and

sU(η, φ) :=

 b

a

g(φ′) dF (φ′|φ) + 1

h

Qλ

min(η)
 β  b

a

u (φ′, z̄max(η)) dF (φ′|φ) + ce


−
 b

a

g(φ′) dG(φ′)− β

h (Qλ
max(η))

 b

a

u (φ′, z̄min(η)) dG(φ′). (3.50)

When the output/capacity sequences referring to the distribution µ in an equilibrium

are subject to

Q∗

j

∞
j=t

⊂

Qλ

min(η), Q
λ
max(η)


and


y∗j
∞
j=t

⊂

yλmin(η), y

λ
max(η)


, the

monotonicity of h(·) and u(·) implies

sL(η, φ) ≥ sµ(φ) ≥ sU(η, φ) for all φ ∈ S. (3.51)

In this case, the intersection points of the functions sL, sU with the origin consti-

tute lower and upper boundaries to the exit solution xµ (see also Figure 3.2 for an

illustration). Regarding the definition of xµ in (3.45), the boundaries are formally

defined by:

xL(η) = inf

φ ∈ S : sL(η, φ) ≥ 0


, (3.52)

xU(η) = inf

φ ∈ S : sU(η, φ) ≥ 0


. (3.53)

The way, in which sL and sU have been designed, means that we can take xµ ∈
[xL(η), xU(η)] for granted. The monotonicity of sL, sU with respect to η implies

moreover that the intervals containing the exit solution are nested, i.e. if {ηj}j∈N is

a positive, decreasing sequence, the intervals Ij = [xL(ηj), xU(ηj)] satisfy Ij+1 ⊆ Ij. It

follows immediately from the continuity of sL, sU that the length of these intervals

tends to zero if ηj → 0. Since the exit-point xλ = xL(0) = xU(0) lies within all

intervals Ij, an upper bound for the distance function can be estimated by

dλ(η) ≤ max

|xL(η)− xL(0)| , |xU(η)− xU(0)|


. (3.54)

Lemma 3.8. The functions xL(η) and xU(η) are continuous with respect to the

distance paramter η ∈ [0, 2].

Proof. We just show the continuity of xL here as the continuity of xU follows by

exactly the same argument. Furthermore, the monotonicity and continuity properties
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s(φ)

sL(η1, φ) sU(η1, φ)

sλ(φ)

sµ(φ)

0 φ

s(φ)

sL(η2, φ) sU(η2, φ)

sλ(φ)

sµ(φ)

Figure 3.2: Illustration of the exit condition for different distances η1 > η2

of the value function can directly be transferred to the function sL. Hence, sL(η, φ)

is continuous in both parameters and strictly increasing with respect to φ.

The statement is proven by contradiction. We assume that xL is not continuous in

a point η̄ ∈ [0, 2]. Then, there is a sequence {ηm}m∈N such that ηm → η̄ for m → ∞
but

lim
m→∞

xL(ηm) = x̄ ̸= xL(η̄). (3.55)

By the defintion of xL, we must have sL(ηm, xL(ηm)) ≥ 0 for all m ∈ N. Since sL is

continuous this implies

lim
m→∞

sL(ηm, xL(ηm)) = sL(η̄, x̄) ≥ 0.

Two scenarios are possible. If sL(η̄, x̄) = 0, we can conclude from the infimum

property in (3.52) that sL(η̄, xL(η̄)) = 0. This, however, is a contradiction to the

strict monotonicity of sL(η, φ) with respect to φ.

If sL(η̄, x̄) > 0, the continuity of sL implies that sL(ηm, xL(ηm)) > 0 for all

m ≥ m0. Due to xL’s infimum property on S, the equality xL(ηm) = a applies for

all m ≥ m0 as well. But, then we have x̄ = a = xL(η̄), which contradicts (3.55).

The length of the interval Ij does not only depend on the distance parameter ηj.

As Figure 3.3 indicates, the slope of the functions s(φ) is also affected by the size

of the entry costs and the discount factor. In fact, sL and sU are situated closer to

each other if either the entry costs or the discount factor decline. Remember that

we have already argued at the beginning of this section why sL(ηj, φ) ≡ sU(ηj, φ)

for ce = β = 0, and the interval Ij just contains the stationary exit-point xλ in this

case.
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Figure 3.3: Illustration of the exit condition for a fixed distance η > 0 but declining
discount factor β and entry costs ce

Our goal is now to specify a range for the values ce and β, such that the contraction

condition in (3.42) is indeed satisfied for any η ∈ [0, 2]. Because of the boundedness

in (3.54), we do not have to analyse the expression dλ(η)
η

but can consider xL’s

differential quotient and show thatxL(η)− xL(0)

η

 ≤ θ − (1− ε)

2mλ

. (3.56)

The same applies, of course, to the function xU . In the following, we will exemplary

focus on xL however.

The crucial question is how xL reacts to changes in the distance parameter. Be-

cause the function essentially represents a solution to sL(η, xL(η)) = 0, the first

derivative can be computed by means of the chain rule10

x′
L(η̄) = −

∂sL
∂η


η̄, xL(η̄)


∂sL
∂φ


η̄, xL(η̄)

 . (3.57)

If the absolute value of this term can be bounded for all η̄ ∈ [0, 2] by the constant

value θ−(1−ε)
2mλ

then so will be the differential quotient in equation (3.56).11

According to Lemma A.8, the function
 b

a
g(φ′) dF (φ′|φ) is strictly increasing in

the productivity parameter φ. Hence, the derivative of this expression with respect

to φ must be larger or equal to zero. It is necessary, however, to rule out any saddle

10If sL(η, φ) > 0 for all φ ∈ S, then xL(η) = a and x′
L(η) = 0.

11This is a direct implication of the Mean Value Theorem, which states that xL(η)−xL(0)
η = x′

L(η̄)

for some η̄ ∈ (0, η).
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point here and presume that

d

dφ

 b

a

g(φ′) dF (φ′|φ̄)


≥ g′F > 0, ∀ φ̄ ∈ S. (3.58)

As a consequence of this, the estimate ∂sL
∂φ


η̄, φ̄


≥ g′F surely holds, too. The partial

derivative of sL with respect to η can be bounded by

0 ≤ ∂sL
∂η

(η̄, φ̄) ≤ −h′
min (Qmax −Qmin)

h2(Qmax)


β (2− β) gF h(Qmin)

(1− β)2
+

ce
2


. (3.59)

A proof of this inequality is presented in Lemma A.12. If both parts are combined,

it follows that12

h′
min (Qmax −Qmin)

g′F h2(Qmax)


β (2− β) gF h(Qmin)

(1− β)2
+

ce
2


≤ x′

L(η) ≤ 0. (3.60)

Hence, the contraction inequality (3.56) holds whenever

|h′
min| (Qmax −Qmin)

g′F h2(Qmax)


β (2− β) gF h(Qmin)

(1− β)2
+

ce
2


≤ θ − (1− ε)

2mλ

(3.61)

⇔ β (2− β) gF h(Qmin)

(1− β)2
+

ce
2

≤ (θ − (1− ε)) g′F h2(Qmax)

2mλ |h′
min| (Qmax −Qmin)

.

The same boundary can be derived for the function x′
U(η). Thus, the condition above

implicitly defines a positive range of discount factors and entry costs supporting

contractive behaviour of the industry.13 This brings us to the following convergence

statement.

Theorem 3.9 (Convergence to a stationary distribution). Let a continuous starting

distribution µ0 ∈ M1(S,B(S)) be given, and assume that ∥µt − λ∥TV =: ηt. If the

discount factor β as well as the entry costs ce satisfy the condition (3.61), then the

sequence µt+1 = TxL(ηt)µt converges in the total variation norm to the stationary

distribution λ. The same applies to the sequence µt+1 = TxU (ηt)µt.

Proof. The way, in which we have constructed the boundary condition for β and ce,

12Notice here that h′
min < 0 is the only negative term. All others terms are supposed to be

non-negative.
13Condition (3.61) does not necessarily specify the highest possible threshold for β and ce. The

estimate can, for instance, be improved if g′F is modified and more (higher order) terms are taken
into consideration.
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implies that the contraction condition (3.42) is fulfilled. It follows that

∥µt+1 − λ∥TV = ∥TxL(ηt)µt − Txλ
λ∥TV

≤ θ ∥µt − λ∥TV

= θ ∥TxL(ηt−1)µt−1 − Txλ
λ∥TV

≤ θ2 ∥µt−1 − λ∥TV

...

≤ θt+1 ∥µ0 − λ∥TV → 0 for t → ∞ since θ < 1.

The proof for µt+1 = TxU (ηt)µt is carried out in exactly the same way.

The convergence theorem implies some interesting findings. Notice, first of all,

that the convergence rate is displayed by the parameter θ. Referring to condition

(3.61), declining discount factors or entry costs validate smaller values for θ and,

thus, increase the speed of convergence. The highest possible convergence rate (1−
ε) is certainly achieved for the myopic scenario with no fixed entry costs (i.e. for

the caseβ = ce = 0). The proof also demonstrates why the stationary industry

equilibrium must be unique. If there were two different equilibria with stationary

distributions λ1 ̸= λ2, this would lead to the contradiction

∥λ1 − λ2∥TV = ∥Txλ1
λ1 − Txλ2

λ2∥TV ≤ θ ∥λ1 − λ2∥TV < ∥λ1 − λ2∥TV .

We can, moreover, conclude from Theorem 3.9 that the sequence µt+1 = Txtµt will

also converge to the stationary distribution λ for any exit-point sequence being

subject to xt ∈ [xL(ηt), xU(ηt)]. The existence of such a sequence representing the

equilibrium exit solutions is shown in the next section.

3.5 Existence of a converging dynamic equilib-

rium

In this section we will finally prove the existence of a dynamic equilibrium that

converges to a steady state in the long-run. The key to the proof is Schauder’s

Fixed Point Theorem, which generalises Brouwer’s Fixed Point Theorem to infinite-

dimensional Banach spaces. The theorem ensures that every continuous mapping
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of a compact, convex set into itself has a fixed point. Hence, we will proceed as

follows: First, we define a continuous mapping τ : ℓ∞ × ℓ∞ → ℓ∞ × ℓ∞ on the

space of bounded sequences such that a fixed point of this mapping coincides with

the dynamic equilibrium. Second, we use the contraction property derived in the

previous section to specify a compact, convex subset N ⊂ ℓ∞×ℓ∞, which is mapped

into itself by τ , i.e. τ(N) ⊆ N . According to Schauder’s Theorem, this mapping

possesses a fixed point, and therefore a dynamic equilibrium exists in the assumed

framework.

Let a continuous starting distribution µ0 ∈ M1(S,B(S)) as well as a sequence

of exit-points and capacity values {xt, yt}t∈N0 be given. This means that xt ∈ [a, b]

and yt ≥ 0 hold in particular for all t ∈ N0. We construct τ such that it maps

this sequence into another sequence of exit-points and capacity values. According

to the industry dynamics, the presumed exit sequence provokes a certain evolution

of industry structures µt+1 = Txtµt. Each distribution is connected to an aggregate

industry output via the equality

Qt =

 b

a

q(φ) dµt(φ). (3.62)

For the resulting output sequence {Qt}t∈N0 and the given capacity sequence {yt}t∈N0

we can determine new capacity values yt by
yt =  b

a

v(φ, zt+1) dG(φ)− ce (3.63)

= ve(zt+1)− ce. (3.64)

As before, the variable zt := {Qj, yj}∞j=t is supposed to denote the combined output-

capacity sequence starting from time t. The calculated capacity value yt is indeed

non-negative as long as the assumption ve(Qmax, 0) ≥ 0 from Lemma 3.3 is met.

These capacity values are then used to compute new exit-points by the rule

xt : = inf


φ ∈ S :

 b

a

v(φ′, zt+1) dF (φ′|φ) ≥ yt (3.65)

= inf

φ ∈ S : vc(φ, zt+1) ≥ yt. (3.66)

Both variables are calculated for each time period t ∈ N0 such that this yields a

new sequence {xt, yt}t∈N0 of exit-points and capacity prices. The mapping τ on the

space of bounded sequences is, thus, defined by τ : {xt, yt}t∈N0 →→ {xt, yt}t∈N0 . It is
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evident that this is a continuous mapping, and every fixed point of τ represents a

dynamic equilibrium in the sense of Definition 3.1.

The challenge is now to specify a compact N = N1 × N2 ⊂ ℓ∞ × ℓ∞ that is

mapped into itself by τ . We will define compact sets N1 ⊂ ℓ∞ for the exit sequences

and N2 ⊂ ℓ∞ for the capacity sequences separately. Because the space of bounded

sequences is infinite dimensional, the simple cartesian product of compact intervals

N1 = [a, b]× [a, b]× . . . does not form a compact set in this space. But, if sequences

{at}t∈N0 and {bt}t∈N0 exist such that |at − bt| → 0 for t → ∞ then the cartesian

product

N1 =
∞
t=0

[at, bt]

is a compact, convex set in ℓ∞ (see Lemma A.13 for a proof of this fact).

Such bounding sequences for the exit-points can be found by using the con-

vergence property from Theorem 3.9. If µ0 is the given starting distribution and

∥µ0 − λ∥TV = η̄, we set at := xL(θ
t η̄) and bt := xU(θ

t η̄). As the term θt η̄ → 0 for

t → ∞, this generates monotone sequences {at}, {bt} converging to the stationary

exit-point xλ. Hence, these sequences satisfy |at − bt| → 0 in particular, and we can

define a compact, convex subset for the exit sequences by

N1 :=

{xt}t∈N0 ∈ ℓ∞ : at ≤ xt ≤ bt, ∀ t ∈ N0


. (3.67)

The shape of the setN1 is depicted in Figure 3.4. Bounding sequences for the capacity

values are constructed in similar fashion. If we define values ct := κ

Qλ

max(θ
t η̄)

and

dt := κ

Qλ

min(θ
t η̄)

, then both sequences {ct}, {dt} tend to the stationary capacity

value yλ in the limit, and a compact, convex subset for the capacity sequences is

given by

N2 :=

{yt}t∈N0 ∈ ℓ∞ : ct ≤ yt ≤ dt, ∀ t ∈ N0


. (3.68)

As a final step it remains to be shown that the image of any combined sequence

{xt, yt}t∈N0 ∈ N1×N2 under the mapping τ is also an element of the subset N1×N2.

We will see that this is indeed the case, whenever the discount factor β and the entry

costs ce satisfy the inequality (3.61). Under this assumption the exit sequence {xt}
implies an evolution of the industry structure {µt} that is subject to ∥µt−λ∥TV ≤ θtη̄

for every time period t. Moreover, this involves an aggregate output sequence {Qt}
that is bounded by Qλ

min(θ
t η̄) ≤ Qt ≤ Qλ

max(θ
t η̄). But, if zt := {Qj, yj}∞j=t denotes
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bt = xU(θ
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at = xL(θ
tη̄)

x∗
t

Figure 3.4: Illustration of the mapping τ with respect to the exit sequence (left side)
and its fixed point (right side).

the derived output-capacity sequence, this means nothing else than

ct = ve(Qλ
max(θ

t η̄), ct)− ce

≤ ve(zt+1)− ce

= yt
≤ ve(Qλ

min(θ
t η̄), dt)− ce

= dt

and {yt}t∈N0 ∈ N2.

The mapping τ defines the exit-point as xt = inf

φ ∈ S : vc(φ, zt+1)− yt ≥ 0


.

We can conclude from the boundedness of zt that

sL(θ
tη̄, φ) ≥ vc(φ, zt+1)− yt ≥ sU(θ

tη̄, φ)

holds for all productivity levels φ ∈ S. This implies

at = inf

φ ∈ S : sL(θ

tη̄, φ) ≥ 0


≤ inf

φ ∈ S : vc(φ, zt+1)− yt ≥ 0


= xt

≤ inf

φ ∈ S : sU(θ

tη̄, φ) ≥ 0


= bt

for all times t and consequently {xt}t∈N0 ∈ N1. Hence, the sequence {xt, yt} is an

element of N1×N2, and according to Schauder’s Fixed Point Theorem the mapping

τ must have a fixed point. This allows us to make the following significant statement.

39



Theorem 3.10 (Existence of a converging dynamic equilibrium). Let the discount

factor β and the entry costs ce satisfy condition (3.61). For any continuous starting

distribution µ0 ∈ M1(S,B(S)) there exists a dynamic equilibrium that converges to

the uniquely determined steady state in the long-run.

Unfortunately, Schauder’s Fixed Point Theorem just guarantees the existence

of a dynamic equilibrium. The uniqueness of this equilibrium is not necessarily the

case, and we cannot fully exclude the existence of a non-converging equilibrium. The

advantage, however, is that we are not restricted to perfect competition. Many other

studies dealing with dynamic stochastic equilibria assume perfect competition, and

prove the existence of an equilibrium by utilising the equivalence of an equilibrium

to the optimum of a social welfare function and showing that this function possesses

a unique optimum. In our framework, a dynamic equilibrium may, instead, even

exist for monopolistic or oligopolistic competition.

To demonstrate that the convergence to a steady state is not trivial, and violations

of the model assumptions may lead to a diverging industry evolution, we first give an

example featuring the existence but not the convergence to a stationary equilibrium.

In a way, the following example can be interpreted as a simplified, discrete version

of the general model.

Example 3.1. In contrast to the continuous framework introduced in Section 3.1,

we presume that the firm-specific productivity φ just takes on three possible values,

and we define this discrete state space as row vector s = (s1, s2, s3). The productivity

process is given by the matrix

P = (pij) =


1 0 0

1 0 0

0 1 0

 (3.69)

containing the transition probabilities pij = Prob(φt+1 = sj|φt = si). The entry

distribution is supposed to be ν = (0, 0, 1). This means new firms almost surely

receive a productivity level φ = s3 when they enter the industry.

The structure of the industry at time t is reflected by the vector µt = (µt
1, µ

t
2, µ

t
3),

in which µt
j denotes the mass of firms with productivity φt = sj. The total industry

mass is thus given by µt(s) =
3

j=1 µ
t
j. In accordance to the general model, we

assume that µ(s) = 1 defines the capacity constrained size of the industry, and

the entry-mass M must be equal to the mass of exiting firms. For any exit-point
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si−1 < x ≤ si, we define the matrix

Px =



0 . . . 0
...

...

0 . . . 0

pi1 . . . pi3
...

...

p31 . . . p33


(3.70)

and obtain the industry structure in period t+ 1 by the equation

µt+1 = µt · Px +M · ν. (3.71)

The period profits are supposed to satisfy π(φ, µ) = g(φ) (µ(s))−1, with g being

subject to 0 < g(s1) < g(s2) < g(s3). For simplification, we assume that firms act

myopically (β = 0), and just account for the subsequent period when deciding about

entry and exit. The expected value of potential entrants is thus

ve(µ) = ν · π(s, µ) = g(s3) (µ(s))
−1 . (3.72)

Apart from the fixed entry costs g(s3)− g(s2) < ce < g(s3)− g(s1), new firms must

purchase production capacity at a price y. The firms’ continuation value, which

consists only of the expected profits in the upcoming period, is represented by the

vector

vc(µ) = P · π(s, µ) =


g(s1)

g(s1)

g(s2)

 (µ(s))−1 . (3.73)

An active firm remains in the industry as long as its continuation value is larger

than the capacity price, i.e. vc(µ) ≥ y.

The framework presented above possesses a stationary equilibrium. For the exit-

point x∗ = s3 and entry-mass M∗ = 1
2
, a stationary distribution is given by the

vector µ∗ =

0, 1

2
, 1
2


. Under this industry structure, entrants are willing to pay a

capacity price y∗ = g(s3)−ce. Hence, all firms with current productivity level φ = s1

or φ = s2 are better off ceasing production and leave the industry. This completes

the necessary conditions for a stationary equilibrium.

If a starting distribution µ0 = (0, α, 1 − α) with α ̸= 1
2
is presumed though, an

alternating dynamic equilibrium emerges. The exit-points x∗
t = s3, as well as the
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capacity values y∗t = g(s3)− ce, stay constant over time. But, the sequence of entry-

masses alternates as {M∗
t } = {α; 1− α;α; 1− α;α; ...}. Consequently, the industry

structure switches from µ2t = (0, α, 1 − α) in even periods to µ2t+1 = (0, 1 − α, α)

in uneven periods. We infer from this that the industry will never attain a steady

state in this setup.

The particular setup in Example 3.1 does not involve convergence to a steady

state. One reason for the alternating development is that the condition (CON) of

the general model is violated. However, even slight modifications of the framework

can change this outcome and lead to an adjustment of the industry to the stationary

equilibrium. One modification supporting this behaviour is described in the next

example.

Example 3.2. Referring to the model in Example 3.1, a different entry distribution

can lead to a converging dynamic equilibrium. If we presume the entry distribution

ν =

0, 1

2
, 1
2


, the expected value changes to ve(µ) = 1

2


g(s2) + g(s3)


(µ(s))−1. In

case the fixed entry costs are bounded by

1

2


g(s2) + g(s3)


− g(s2) < ce <

1

2


g(s2) + g(s3)


− g(s1),

a stationary equilibrium is given by the capacity value y∗ = 1
2


g(s2)+g(s3)


−ce, the

exit-point x∗ = s3, the entry-massM∗ = 2
3
, and the industry structure µ∗ =


0, 2

3
, 1
3


.

The dynamic equilibrium starting from the distribution µ0 = (0, α, 1 − α) is

characterised by the entry-mass M∗
t−1 = α


−1

2

t
+
t−1

j=0(−1)j

1
2

j
and the exit-

point x∗
t−1 = s3. This yields the industry structure

µt =


0, α


−1

2

t

+
t−1
j=0

(−1)j

1

2

j

,−α


−1

2

t

−
t−1
j=1

(−1)j

1

2

j


in period t. As time tends to infinity, this vector converges to the stationary distri-

bution µ∗ =

0, 2

3
, 1
3


, and the industry adjusts to the steady state.

3.6 Altering entry distributions

In our analysis we have presumed that the productivity distribution of entering firms

stays constant over time. This has been a necessary condition for the existence of

a stationary equilibrium. However, the entry distribution ν may randomly alter at
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some point in time due to technological progress. This would change the setup of

the model in such a way that the expected value of new firms needs to be modified,

and the original steady state can no longer be sustained. If the alternate distribution

is still subject to the convergence criteria though, the industry will adjust to a new

stationary equilibrium.

It is easy to see that the emerging stationary equilibrium is continuous with

respect to the underlying entry distribution ν. That is minor changes in the entry

distribution have only little impact on the steady state. Unfortunately, monotonicity

cannot be guaranteed in this context. This means, we cannot infer from ν1
FOSD

≥ ν2

that the same applies to the invariant distributions λ1 and λ2 arising in the respec-

tive stationary equilibria.

The aforementioned stochastic dominance of ν1 versus the entry distribution ν2

goes along with a higher willingness of new firms to enter the industry. In general,

this should also facilitate a higher capacity price in the stationary equilibrium al-

though exceptions to this finding do exist. If the consumers’ demand is very elastic

to aggregate output changes, the function h has a steep downward slope, and the

emerging capacity price under the distribution ν1 may be smaller than under ν2.

It is also possible that the entry distribution constantly changes over time and

forms a certain sequence {νt}t∈N. We will show that the industry still tends to a

stationary equilibrium as long as the predetermined sequence {νt}t∈N is monotone

and converging. Before we prove this statement, we have to make some slight mod-

ifications regarding the model though. Notice, first of all, that an altering entry

distribution changes the industry dynamics significantly. If the sequence {Gt}t∈N
represents the corresponding cumulative distribution functions, the industry struc-

ture is given by

µt+1([a, φ
′)) =


φ≥xt

F (φ′|φ) dµt(φ) +Mt Gt(φ
′). (3.74)

Hence, the operator Tx, which has been defined for a fixed, predetermined entry

distribution in (3.16), is no longer capable of reflecting the industry development.

We need to introduce a new operator Tν,x : M1(S,B) → M1(S,B) that does not

just account for different exit-values but also different entry distributions by

Tν,x µ(A) =


φ≥x

P (φ,A) dµ(φ) + µ([a, x)) ν(A). (3.75)
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If Mt = µt([a, xt)), the industry dynamics can be rephrased by µt+1 = Tνt,xt µt.

But, the contraction inequality in equation (3.37) is not valid anymore. Since we

deal with different entry distributions, we must adjust this inequality as follows:

∥Tν1,x1 µ1 − Tν2,x2 µ2∥TV

= ∥Tν1,x1 µ1 − Tν2,x1 µ1 + Tν2,x1 µ1 − Tν2,x1 µ2 + Tν2,x1 µ2 − Tν2,x2 µ2∥TV

≤ ∥Tν2,x1 µ1 − Tν2,x1 µ2∥TV + ∥Tν2,x1 µ2 − Tν2,x2 µ2∥TV + ∥Tν1,x1 µ1 − Tν2,x1 µ1∥TV

≤ (1− ε)∥µ1 − µ2∥TV + 2 µ2([x1, x2]) + ∥ν1 − ν2∥TV .

(3.76)

The last term indicates that the difference between two consecutive industry struc-

tures particularly depends on the difference between the two entry distributions ν1

and ν2. Consequently, a converging dynamic equilibrium can only exist if the differ-

ence between those entry distributions tends to zero in the long-run. We will point

out in following that convergence to a steady state can indeed be sustained if the

sequence {νt}t∈N is stochastically increasing (i.e. νt+1

FOSD

≥ νt for all t) and the lim-

iting distribution ν satisfies the necessary criteria from the previous sections. For

this purpose, we initially act on the assumption that such a converging dynamic

equilibrium exists. Based on this assumption, we start out to derive some key prop-

erties that help us prove the existence in a final step.

Notice first of all that switching entry distributions do not only control the evo-

lution of industry structure but also the expected value of new firms. This means,

the expectation in (3.14) is taken with respect to the different cdfs Gt now, and

the expected value vet (z̄) varies with the time t even if a constant output/capacity

sequence z̄ = {Q, y} is given. As the expected value reflects the firms’ willingness

to pay for production capacity, the emerging capacity values will be affected, too.

Hence, the function κ(Q), which determines the capacity value for a constant output

sequence and has been specified as solution to b

a

v(φ,Q, κ(Q)) dG(φ)− κ(Q) = ce, (3.77)

needs to be modified. Depending on the different entry distributions Gt and the

constant aggregate output level Q, we define the functions κt(Q) as solution to b

a

v(φ,Q, κt(Q)) dGt(φ)− κt(Q) = ce. (3.78)
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In principle, the functions κt possess the same qualities as the ones we derived

for κ in Lemma 3.3. Since the distributions {νt} are stochastically increasing, the

functions κt form an increasing sequence that converges to the function κ. Accord-

ing to Dini’s Theorem, the convergence is even uniform on the compact interval

[Qmin, Qmax]. This implies particularly that

sup
Q∈[Qmin,Qmax]

|κt(Q)− κ(Q)| = ∥κt − κ∥sup → 0 (3.79)

for t → ∞.

Just like the expected value of entrants, the exit-points will also be affected by the

altering entry distributions νt. Hence, we must adjust the function sµ(φ) and replace

the distribution G by Gt in equation (3.45).14 The resulting function is denoted by

stµ(φ). Accordingly, the functions sL, sU , which we introduced in dependency of G

and the stationary distribution λ, can no longer be used to specify lower and upper

boundaries to the exit solution xt
µ = inf


φ ∈ S : stµ(φ) ≥ 0


. Instead, we define the

constant sequences

z̄tmin(η) =

Qλ

min(η) , y
λ
max(η) + ∥κt − κ∥sup


j∈N

z̄tmax(η) =

Qλ

max(η) , y
λ
min(η)− ∥κt − κ∥sup


j∈N

and based on this the functions

stL(η, φ) :=

 b

a

g(φ′) dF (φ′|φ) + 1

h (Qλ
max(η))


β

 b

a

u

φ′, z̄tmin(η)


dF (φ′|φ) + ce


−
 b

a

g(φ′) dGt(φ
′)− β

h

Qλ

min(η)
  b

a

u

φ′, z̄tmax(η)


dGt(φ

′) (3.80)

and

stU(η, φ) :=

 b

a

g(φ′) dF (φ′|φ) + 1

h

Qλ

min(η)
 β  b

a

u

φ′, z̄tmax(η)


dF (φ′|φ) + ce


−
 b

a

g(φ′) dG(φ′)− β

h (Qλ
max(η))

 b

a

u

φ′, z̄tmin(η)


dG(φ′). (3.81)

Both stL and stU depend on the distance η = ∥µ−λ∥TV , which reflects the difference

between the industry structure µ at time t and the stationary distribution λ referring

to the steady state under the entry distribution G.

14Irrespective of the timing t, the distribution µ always entails the same equilibrium sequence if
the entry distributionG stays constant over time. This is not the case for altering entry distributions
though. The dynamic equilibrium differs whether µ occurs at time t or t′.

45



If the output/capacity sequences entailing µ in a dynamic equilibrium are subject

to 
Q∗

j

∞
j=t

⊂

Qλ

min(η) , Q
λ
max(η)


and


y∗j
∞
j=t

⊂

yλmin(η)− ∥κt − κ∥sup , yλmax(η) + ∥κt − κ∥sup


,

(3.82)

we can infer from h’s and u’s monotonicity that

stL(η, φ) ≥ stµ(φ) ≥ stU(η, φ) (3.83)

holds for all φ ∈ S. But, this implies immediately that the exit-point xt
µ is bounded

by

xt
L(η) = inf


φ ∈ S : stL(η, φ) ≥ 0


(3.84)

and xt
U(η) = inf


φ ∈ S : stU(η, φ) ≥ 0


, (3.85)

i.e. the intersection of stL and stU with the origin. From the convergence νt → ν we

can further deduce:

Lemma 3.11. Let {νt}t∈N be a stochastically increasing sequence of probability mea-

sures (i.e. νt+1

FOSD

≥ νt for all t) and ∥νt − ν∥TV → 0 for t → ∞. For any δ > 0

there exists a t0 ∈ N such that ∥xt
L − xL∥sup ≤ δ for all t ≥ t0. The same applies to

the functions xt
U and xU .

Proof. Recall that Gt and G mark the cdfs, which belong to the probability mea-

sures νt and ν. Because g, u are bounded, continuous, and increasing functions, the

presumed strong convergence ∥νt−ν∥TV → 0 involves also pointwise convergence of

the functions stL(η, φ) → sU(η, φ). In fact, the convergence is even uniform. This fol-

lows immediately from Dini’s Theorem since {stL(η, φ)}t∈N constitutes a monotone

sequence and (η, φ) is an element of a compact set.

The uniform convergence means that ∥stL− sL∥sup ≤ ε for an arbitrary ε > 0 and

sufficiently large t. This is equivalent to

sL(η, φ)− ε ≤ stL(η, φ) ≤ sL(η, φ) + ε (3.86)

for all (η, φ). We define the function on the left side as ŝL(η, φ, ε) := sL(η, φ)−ε, and

we denote the intersection with the origin by x̂L(η, ε) = inf {φ ∈ S : ŝL(η, φ, ε) ≥ 0}.
Since ŝL is continuous and strictly increasing with respect to φ, the function x̂L must
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be continuous as well. This implies x̂L(η, ε) → x̂L(η, 0) = xL(η) for ε → 0.

If {εm}m∈N is a decreasing sequence that converges to zero, then {x̂L(η, εm)}m∈N is

also a monotone sequence. For any arbitrary value δ > 0, we can thus refer to Dini’s

Theorem to find a m0 ∈ N such that |x̂L(η, εm)− xL(η)| < δ holds for all η ∈ [0, 2]

and m ≥ m0. In the same way, we can define the function šL(η, φ, ε) := sL(η, φ) + ε

as well as the intersection point x̌L(η, ε) = inf {φ ∈ S : šL(η, φ, ε) ≥ 0}, and find a

m1 ∈ N such that |x̌L(η, εm)− xL(η)| < δ holds for all η ∈ [0, 2] and m ≥ m1.

Let t0 ∈ N be chosen such that ∥st0L − sL∥sup ≤ min {εm0 , εm1}. According to the

inequality (3.86), we must have

x̌L(η, ε) ≤ xt
L(η) ≤ x̂L(η, ε). (3.87)

This implies

xL(η)− δ ≤ xt
L(η) ≤ xL(η) + δ (3.88)

for all t ≥ t0, and the Lemma is proven.

Recall that xλ characterises the exit-point, which belongs to the stationary equi-

librium under the entry distribution ν. The industry converges to this steady state

even in the case of altering entry distributions if the expression in (3.76) represents

a contraction. This applies, when a value θ̄ ∈ [θ, 1) exists such that

∥µt+1 − λ∥TV ≤ (1− ε)∥µt − λ∥TV + 2 λ([xt
µ, xλ]) + ∥νt − ν∥TV

≤ θ̄ ∥µt − λ∥TV .
(3.89)

Whether the latter inequality holds or not depends particularly on the difference

between the entry distributions νt, ν and the distance between the exit-points xt
µ, xλ.

While the term ∥νt − ν∥TV → 0 tends to zero by assumption, the term λ([xt
µ, xλ])

can be bounded by

λ([xt
µ, xλ]) ≤ mλ · |xt

µ − xλ|

≤ mλ ·max{|xt
L(η)− xλ|, |xt

U(η)− xλ|}
(3.90)

if the output/capacity sequences entailing the distribution µt in an equilibrium sat-

isfy condition (3.82). This brings us directly to the next result, which is essentially

an analogy to Theorem 3.9.

Lemma 3.12. Let {νt}t∈N be a stochastically increasing sequence of probability mea-

sures (i.e. νt+1

FOSD

≥ νt for all t) and ∥νt − ν∥TV → 0 for t → ∞. Furthermore,
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let β and ce be subject to the convergence criteria in (3.61). Based on the start-

ing distribution µ0 and the distances ηt := ∥µt−λ∥TV , we calculate the distributions

µt+1 = Tνt,xt
L(ηt)

µt. For any η̄ > 0, we can then find a t0 ∈ N such that ∥µt−λ∥TV ≤ η̄

for all t ≥ t0.

Proof. The Lemma is proven by induction. In the first step, we specify a t0 ∈ N
such that ∥µt0 − λ∥TV ≤ η̄. Afterwards, we show that ∥µt − λ∥TV ≤ η̄ implies

∥µt+1 − λ∥TV ≤ η̄ for any t ≥ t0.

Step I. For any δ > 0 there is a number t0 ∈ N such that both ∥νt − ν∥TV ≤ δ and

|xt
L(η)− xL(η)| ≤ δ hold for all η > 0 and t ≥ t0. This follows directly from Lemma

3.11, and we can further conclude that

λ([xt
L(η), xλ]) ≤ mλ ·

xt
L(η)− xλ


= mλ ·

xt
L(η)− xL(η) + xL(η)− xL(0)


≤ mλ ·


|xL(η)− xL(0)|+ δ


.

The contraction condition in (3.89) is thus satisfied if

(1− ε) η + 2mλ


|xL(η)− xL(0)|+ δ


+ δ ≤ θ̄ η

⇔ (1− ε) + 2mλ

xL(η)− xL(0)

η

+ (2mλ + 1)δ

η
≤ θ̄.

As β and ce are subject to the convergence criteria in (3.61), we havexL(η)− xL(0)

η

 ≤ θ − (1− ε)

2mλ

.

If we apply this property to the contraction condition above, we get

θ +
(2mλ + 1)δ

η
≤ θ̄

⇔ (2mλ + 1)δ

θ̄ − θ
≤ η

⇔ δ ≤ (θ̄ − θ)η

2mλ + 1
.

Let t0 be chosen such that δ is small enough to satisfy the inequality above for

the presumed distance η̄. The contraction inequality in (3.89) thus holds for all

t ≥ t0 and distributions µt that are subject to ∥µt − λ∥TV = ηt ≥ η̄ ≥ (2mλ+1)δ

θ̄−θ
.

As the maximum possible difference between two probability distributions is always
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bounded by ∥µ− λ∥TV ≤ 2, we can find a t1 ∈ N such that

θ̄t1∥µt0 − λ∥TV ≤ 2 θ̄t1 ≤ η̄. (3.91)

But, this implies ∥µt − λ∥TV ≤ η̄ for some t0 ≤ t ≤ t0 + t1.

Step II. Now, we show that the previous result gives rise to ∥µt+1 − λ∥TV ≤ η̄.

Because t ≥ t0, we have

∥µt+1 − λ∥TV ≤ (1− ε)∥µt − λ∥TV + 2λ([xt
L(ηt), xλ]) + ∥νt − ν∥TV

≤ (1− ε) ηt + 2mληt


θ − (1− ε)

2mλ

+
δ

ηt


+ δ

= θηt + 2mλδ + δ

≤ θη̄ + (θ̄ − θ)η̄

= θ̄η̄

≤ η̄.

This concludes the proof.

It is evident that the statement of Lemma 3.12 can also be deduced for the sequence

µt+1 = Tνt,xt
U (ηt)µt. Based on this, we can now show the existence of a converging

dynamic equilibrium for altering entry distributions. The procedure resembles the

one from Section 3.5. That means we construct a mapping τ : ℓ∞ × ℓ∞ → ℓ∞ × ℓ∞

such that a fixed point of this mapping coincides with the dynamic equilibrium. The

existence of a fixed point is proven by means of Schauder’s Fixed Point Theorem

once again.

Theorem 3.13 (Existence of a converging dynamic equilibrium for altering en-

try distributions). Let {νt}t∈N be a stochastically increasing sequence of continuous

probability measures (i.e. νt+1

FOSD

≥ νt for all t) and ∥νt − ν∥TV → 0 for t → ∞.

Furthermore, let β and ce be subject to the convergence criteria in (3.61). For any

continuous starting distribution µ0 ∈ M1(S,B(S)) there exists a dynamic equilib-

rium that converges to the uniquely determined steady state in the long-run.

Proof. We begin to construct the mapping τ on the space of bounded sequences. For

any sequence {xt, yt}t∈N0 of exit-points and capacity values we derive the probability

distributions µt+1 = Tνt,xtµt. The resulting aggregate industry output {Qt}t∈N0 and
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the assumed sequence {yt}t∈N0 allow us to calculate new capacity values by

yt =  b

a

v(φ, zt+1) dGt(φ)− ce. (3.92)

Here, zt = {Qj, yj}∞j=t denotes the output/capacity sequence starting at time t. A

new exit-point is defined as

xt := inf


φ ∈ S :

 b

a

v(φ′, zt+1) dF (φ′|φ) ≥ yt . (3.93)

It is clear that the mapping τ : {xt, yt}t∈N0 → {xt, yt}t∈N0 is continuous, and each

fixed point represents a dynamic equilibrium under altering entry distributions. To

apply Schauder’s Fixed Point Theorem, which guarantees the existence of a fixed

point in this case, we must specify a compact, convex set N = N1 ×N2 ⊂ ℓ∞ × ℓ∞

that is mapped into itself by τ .

A compact, convex set N1 for the exit-sequences can be constructed by means

of the functions xt
L and xt

U . Let {ηm}m∈N0 be a positive, decreasing sequence that

converges to zero if m tends to infinity. According to Lemma 3.11, we can find a

t0 ∈ N such that both

∥νt − ν∥TV ≤ (θ̄ − θ)η0
2mλ + 1

and

max

∥xt

L − xL∥sup, ∥xt
U − xU∥sup


≤ (θ̄ − θ)η0

2mλ + 1

(3.94)

hold for all t ≥ t0. As the proof of Lemma 3.12 illustrates, the contraction condition

is met in this situation, and we can determine a t̄0 ∈ N0 that is subject to 2 θ̄t̄0 ≤ η0.

The procedure is repeated for η1. This means, we first look for a number t1 ∈ N0

that satisfies the inequalities in (3.94) for η1. Afterwards, we calculate the smallest

value t̄1 ∈ N0 that implies η0 θ̄
t̄1 ≤ η1. If the described procedure is carried out for

every ηm, we get the maximum possible distance values

η̄t =



2 if 0 ≤ t ≤ t0

2 θ̄t−t0 if t0 < t < t0 + t̄0

ηm if tm + t̄m ≤ t < tm+1

ηm θ̄t−tm+1 if tm+1 ≤ t < tm+1 + t̄m+1.
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Based on this sequence {η̄t}, we can define lower boundaries for the set N1 by

at =

a if 0 ≤ t ≤ t0

xt
L(η̄t) if t0 < t

and upper boundaries by

bt =

b if 0 ≤ t ≤ t0

xt
U(η̄t) if t0 < t.

Since ηm converges to zero by assumption, we can conclude that η̄t → 0 for t → ∞.

Hence, both at → xλ and bt → xλ for t → ∞. A compact, convex set containing the

possible exit sequences is thus given by

N1 :=

{xt}t∈N0 ∈ ℓ∞ : at ≤ xt ≤ bt, ∀ t ∈ N0


.

Lower and upper boundaries for the capacity sequences are

ct =

κ(Qmax)− ∥κt − κ∥sup if 0 ≤ t ≤ t0

κ(Qλ
max(η̄t))− ∥κt − κ∥sup if t0 < t

and

dt =

κ(Qmin) + ∥κt − κ∥sup if 0 ≤ t ≤ t0

κ(Qλ
min(η̄t)) + ∥κt − κ∥sup if t0 < t

such that a compact, convex set for the capacity sequences can be defined as

N2 :=

{yt}t∈N0 ∈ ℓ∞ : ct ≤ yt ≤ dt, ∀ t ∈ N0


. (3.95)

Because of the switching entry distributions, the sets N1 and N2 defined here are

larger than the ones in Section 3.5. The shape of both sets is illustrated in Figure

3.5.

The final step is to show that τ maps the compact, convex set N = N1×N2 into

itself. To this end, let the output/capacity sequence {xt, yt}t∈N0 be an element of N .

As we can infer from Lemma 3.12, the exit sequence {xt}t∈N0 provokes an evolution

of industry structure {µt} that is subject to ∥µt − λ∥TV ≤ η̄s for all t ≥ s. The

resulting aggregate industry output is thus bounded by Qλ
min(η̄t) ≤ Qt ≤ Qλ

max(η̄t).
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y
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y∗t

ymax
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t0

t0 + t̄0

t1

Figure 3.5: Illustration of the sets N1 (left side), N2 (right side), and a possible fixed
point solution of the mapping τ .

If zt = {Qj, yj}∞j=t marks the output/capacity sequence starting at time t, we have

ct = κ(Qλ
max(η̄t))− ∥κt − κ∥sup

≤ κt(Q
λ
max(η̄t))

=

 b

a

v(φ,Qλ
max(η̄t), κt(Q

λ
max(η̄t))) dGt(φ)− ce

≤
 b

a

v(φ, zt+1) dGt(φ)− ce

= yt
≤
 b

a

v(φ,Qλ
min(η̄t), κt(Q

λ
min(η̄t))) dGt(φ)− ce

= κt(Q
λ
min(η̄t)) ≤ dt.

Consequently, the sequence {yt} must be an element of N2. The boundedness of the

sequence zt implies moreover that

stL(η̄t, φ) ≥ vc(φ, zt+1)− yt ≥ stU(η̄t, φ) (3.96)

holds for all φ ∈ S. But, this leads to

at = xt
L(η̄t)

= inf

φ ∈ S : stL(η̄t, φ) ≥ 0


≤ inf {φ ∈ S : vc(φ, zt+1)− yt ≥ 0}

= xt

≤ inf

φ ∈ S : stU(η̄t, φ) ≥ 0


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= xt
U(η̄t) = bt,

and we conclude that {xt} ∈ N1. Hence, τ(N) ⊆ N , and the existence of a fixed

point follows by Schauder’s Fixed Point Theorem.

In the analysis above, we focused particularly on an increasing sequence {νt}.
But, the results can analogously be deduced for a stochastically decreasing sequence

of entry distributions as well.

3.7 Conclusive remarks

In this chapter we have investigated how limited sectoral production capacity may

affect the industry dynamics. We have set up a dynamic stochastic framework, in

which the available production capacity is distributed and traded among all active

firms. If a firm decides to cease production, it releases a marginal capacity unit,

which then becomes available to potential entrants. By construction, the emerging

capacity price in period t clears the market in the sense that it equates the mass

of exiting firms with the mass of entering ones. Hence, the limited capacity sup-

ply creates an interdependency between firm entry and exit, which is even more

pronounced than in markets where capacity constraints are not an issue. We have

illustrated that the direct interaction between entering and exiting firms makes the

industry converge to a steady state in the long-run. Moreover, the convergence to

a stationary equilibrium can even be sustained for altering entry distributions. Al-

though the adjustment to a steady state seems to be a trivial outcome, it has not

formally been proven yet, and does not necessarily apply to every competitive in-

dustry as Example 3.1 has shown.

We have identified the fixed entry costs ce and the discount factor β as two

significant parameters affecting the speed of convergence. The speed, at which the

industry tends to a stationary equilibrium, increases when either one of those param-

eters decreases. If both parameters are sufficiently small, the stationary equilibrium

is uniquely determined, and the industry will attain this steady state no matter

what the current firm size distribution is. The adjustment path, however, depends

notably on the starting distribution. This means that different starting distributions

will evoke different parameter sequences in a dynamic equilibrium.

A crucial point in the proof has been the separability of period profits, i.e. the
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possibility to separate a firm-specific productivity term from the aggregate industry

output and, thus, from the overall firm size distribution. In our framework, we took

a multiplicative structure of the period profits π(φ,Q) = g(φ)h(Q) for granted. But,

the proof works also for other types of separability, as for instance the additive type

π(φ,Q) = g(φ) + h(Q), in a quite similar manner. If no kind of separability is given

though, the convergence proof becomes much more complicated.

A common feature of models dealing with firm entry and exit is that incum-

bents leave the industry whenever their outside option is superior to keeping up

production. In our setup, an incumbent’s outside option is basically dictated by

the willingness of entrants to pay for production capacity. Since each incumbent is

holding a marginal capacity unit, this creates a positive outside option for exiting

firms. If the scarcity of production factors does not play a role, and firms have the-

oretically free access to the market, the outside option is often set equal to zero. In

such a situation firm turnover is mainly driven by fixed production costs potentially

leading to a negative production value for inefficient firms.

We have disregarded fixed production costs in this study. But, fixed production

costs exist in many industries and can, to some extent, also be introduced in this

framework. As long as the fixed costs are rather low, the constructed mechanism to

trade capacity units between entering and exiting firms will still work, and the core

findings regarding the convergence to a stationary equilibrium will stay untouched.

Nevertheless, the resulting capacity costs {y∗t }t∈N0 will presumably be smaller than

in the equilibrium without fixed costs. A problem might occur when the fixed costs

are so high that no firm is willing to enter the industry. In this case the limited

capacity does not constitute a scarce production factor anymore, and the capacity

price will fall to zero. Moreover, less productive incumbents possibly have a negative

expected value because of the high fixed costs. They are better of ceasing production

then and will leave the industry anyway. As new firms have no incentive to enter

on the other hand, this leads to a shrinkage of the industry in terms of the total

mass µt(S), or rather the total amount of capacity units used. Hence, the trade of

production capacity fails to work here. To exclude such a scenario, we decided to

neglect fixed production costs in our analysis.

54



4. Impact of the milk quota

The dairy sector in the European Union (EU) is currently passing through a pro-

found adjustment process. Milk prices declined about 25 percent between 2013 and

2015, and this drop in prices puts considerable economic pressure on dairy farms.

In response to this development the EU has recently developed bailout plans for

milk producers who are in jeopardy (European Commission, 2015). One factor that

is cited to be responsible for the price decline is the abolition of the milk quota

system, which was effective between 1984 and 2015. Hence, this chapter addresses

the question of how production quotas affect the dynamics of an industry, as well

as reactions to signals of abolishment in the nearer future.

A strength of the previous modelling has been that the capacity price is deter-

mined endogenously and really offsets the mass of entering with the mass of exiting

firms. But, the introduced mechanism only works if the industry permanently op-

erates at the sectoral capacity limit, and the demand for production capacity at

a price zero exceeds the supply. We have already argued that this assumption is

not necessarily fulfilled when firms have to pay fixed costs and the period profits

become negative. In this case, net exit of firms is also possible, and the total size of

the industry may fall below the capacity limit. Since operational losses and net exit

of firms may very well occur in practice though, it is necessary to include such a

scenario in an application to the dairy sector. Hence, we must modify the previous

dynamic stochastic model using a different mechanism to reflect the limited sectoral

capacity under a production quota.

To this end, we pick up the dynamic, stochastic framework of Hopenhayn (1992a)

once again, and model a perfectly competitive but heterogeneous industry. Firms

are differentiated by their productivity level, which defines the variable production

costs and is subject to an AR(1)-process. As every firm can be considered an atom-

istic production unit in this framework, we must constrain both the total number of

production units possibly operating under a quota regime and the maximum output
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of each unit. To constrain the number of production units the mass of entrants must

not exceed the number of available production units. Therefore, the entry costs,

as well as the liquidation value of exiting firms, must correlate with the industry

structure. A measure that reflects the entry/exit differential and serves as a good

proxy for the used number of production units is the total industry mass. While a

high value indicates a high appraisal of production capacity, a low value stands for

unused capacity units. The overall limitation of production capacity is thus mod-

elled through a sharply increasing, continuous function that links both the entry

costs and the liquidation value to the total industry mass. This way, we gain some

flexibility and can account for fluctuations in the size of the sector. Nevertheless,

it comes at the cost that we have to presume an explicit function and the capacity

value is no longer determined by market clearance.

As a part of European Union the West German dairy industry was subject to a

production quota for the last 30 years. This offers a perfect opportunity to analyse

impacts of different quota schemes (tradable, non-tradable) and the fading out on

industry dynamics. We thus apply our theoretic model to this industry and answer

two major questions: First, how does the milk quota affect long-run industry dy-

namics? Second, how do farms react to the recent abolishment of the tradable milk

quota? We analyse the long-run effects by comparing the stationary equilibria with

and without quota. Surprisingly, we find that the firms’ average productivity level

under the tradable quota is higher than in the scenario without quota. We further

compare the short-run adjustment paths of the industry to the announcement of

quota termination, and find increasing output levels directly after the termination

of the quota scheme with price effects. These effects, however, vanish in the course

of time, and the industry develops towards the long-run equilibrium.

In addition to the analysis of steady-state properties, we consider a finite dynamic

equilibrium. This allows us to keep track of short-run effects in greater detail, and to

explore how the sector adjusts to the abolishment of the milk quota regime. More-

over, we illustrate how to calibrate a dynamic stochastic entry/exit-model using

farm-level panel data, as well as how to calculate a finite equilibrium numerically.

From an applied perspective we contribute to the current debate in the EU’s agricul-

tural policy. Our model results quantify the impact that abolishing the milk quota

has on firm turnover and the farm size distribution in this sector. This assessment

is important for deciding whether market interventions are necessary, and how they

should be designed.

56



The remainder of this chapter is structured as follows.1 In Section 4.1 we present

the dynamic stochastic framework and introduce both the stationary and the finite

dynamic equilibrium concept. Focus will be placed on incorporating limited sectoral

capacity into the farms’ value function. The existence of a stationary as well as a

finite dynamic equilibrium is proven in Sections 4.3 and 4.4. The model is applied

to the Western German dairy sector, and the respective calibration is presented

in Section 4.5. After describing the development of the dairy industry over recent

decades, we calibrate model parameters and calculate stationary as well as dynamic

market equilibria. Based on the equilibrium outcome we will discuss the effect of a

milk quota on farms’ entry and exit decisions in Section 4.5.4.

4.1 The formal model

The basic setup of our model draws closely upon the seminal papers of Jovanovic

(1982) and Hopenhayn (1992a), whose respective approaches explicitly allow us to

model endogenous entry and exit of the firms, which is crucial for analysing industry

dynamics under production quota constraints.

We consider a perfectly competitive industry with a continuum of firms producing

a homogeneous good (milk). Each firm takes the output price as given and chooses

its optimal production quantity. The output price will be determined by market

clearance. The inverse demand function D(Q) > 0 should be continuously differen-

tiable and strictly decreasing. We assume that limQ→+∞ D(Q) = 0, and competition

takes place in discrete time t ∈ N0.

All firms have the same production technology but they differ with respect to

their productivity level. That is, we account for firm-specific productivity differences,

which may be a result of farm size, capital stock, feed and livestock management or

natural conditions. The firm-specific productivity is supposed to be the only source

of uncertainty faced by the firms.

We model the firm’s individual productivity as a stochastic parameter φt ∈ R,
which follows the stationary AR(1)-process

φt+1 = ρφt + εt+1, ρ ∈ (0, 1) and εt+1
iid∼ N(ξε, σ

2
ε), (4.1)

and is assumed to be the same for all incumbents. The realisation of the error term

εt+1 is independent across firms and over time. The process as given in (4.1) inherits

1Parts of Chapter 4 are taken from Kersting et al. (2016).
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the Markov property and is time-homogeneous. Under the hypothesis φt = φ, it

follows that φt+1 ∼ N(ρφ+ξε, σ
2
ε). The density of this normal distribution is denoted

by

p(φ, z) :=
1
2πσ2

ε

exp


−(z − (ρφ+ ξε))

2

2σ2
ε


, (4.2)

and the conditional cdf F (φ′|φ) = Prob(φt+1 ≤ φ′|φt = φ) is given by

F (φ′|φ) =
 φ′

−∞
p(φ, z) dz. (4.3)

The function F (φ′|φ) constitutes a probability kernel and is continuous with respect

to both arguments. Moreover, it is strictly decreasing in φ if we keep φ′ fixed.2 That

is, all active firms can be explicitly distinguished by their current productivity level

φt. The distribution of these values across all firms thus expresses the state of the

industry in period t, which is denoted by the measure µt : B(R) → R+ defined on the

Borel sets of the real numbers.3 Hence, any changes of the industry structure caused

by the stochastic productivity process, as well as entry/exit of firms, translate into

changes of µt.

We further proceed upon the assumption that firms with higher productivity

levels are able to produce any amount of output q at lower costs. This property

is represented by a twice continuously differentiable cost function c(φ, q), which is

monotonically decreasing in φ with the limits

lim
φ→+∞

c(φ, q) = 0 and lim
φ→−∞

c(φ, q) = ∞, ∀q ≥ 0. (4.4)

Further, function c : R0
+ × R → R0

+ should satisfy c(φ, 0) = 0, and

∂c

∂q
> 0 with

∂c

∂q
(0, φ) = 0,

∂2c

∂q2
> 0,

∂2c

∂φ∂q
≤ 0, lim

q̄→+∞

∂c

∂q
(q̄, φ) = ∞.

(4.5)

In each period t of the planning horizon, all active firms have to choose their

own optimal production output. If no production quota exists, firms would take

the output price pt ≥ 0 as well as their current productivity level φt as given and

maximise

max
qt≥0

pt qt − c(φt, qt). (4.6)

2If φ1 < φ2, the distribution F (·|φ2) stochastically dominates F (·|φ1).
3µt does not need to be a probability measure. The total mass µt(R) may be smaller or larger

than one, indicating the size of industry.
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The first-order condition for a maximum in (4.6) implies that the optimal firm-

specific output q∗t satisfies

pt ≤
∂c

∂q
(φt, qt), with equality if qt > 0. (4.7)

The imposed restrictions on the cost function guarantee that for all valid combi-

nations of pt and φt, a unique solution q∗t = q∗(φt, pt) to (4.7) exists. The firm-specific

optimal output possesses the following properties:

Lemma 4.1. (i) The function q∗(φ, p) is continuous and (strictly) monotonic in-

creasing in p and φ. (ii) For all φ ∈ R, we have q∗(φ, p) > 0 if p > 0 and q∗(φ, 0) = 0.

(iii) q(φ, p) → ∞ if either p → +∞ or φ → +∞.

Proof. All statements follow immediately from the first order condition (4.7) and

the assumed structure of the cost function in (4.4), (4.5).

It is important to mention here that the firm-specific output is hypothetically

unbounded in this setup. This means that a firm’s output will tend to infinity when-

ever its productivity level tends to infinity. If the industry is subject to a production

quota, however, such a scenario should not be possible. We account for this by an

upper production limit qmax > 0 that is set to the single firm’s output in this case.

This boundary is supposed to be an exogenously given parameter that holds for all

firms. As a consequence, the optimal firm-specific output level under a production

quota must be redefined as q∗t = min {q∗(φt, pt), q
max}.

The aggregate industry output Qt = Qs(pt, µt) depends on the structure of the

industry µt and is given by

Qs(pt, µt) =


R
q∗t (φ, pt) dµt(φ). (4.8)

In case the integral on the right-hand side exists for any output price, we infer from

q∗’s properties that Qs(p, µ) is continuous and increasing with respect to p.

Production incurs a fixed cost cf > 0, which is the same for all firms and has to

be paid at the beginning of each period before a new productivity level is revealed to

incumbents according to the Markov process (4.1). Hence, the fixed costs are sunk

by the time firms get to know their new realisation of φt and choose the production

output. A firm’s profit per period is then

π(pt, φt) := pt q
∗
t − c(φt, q

∗
t )− cf , (4.9)
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with q∗t being the optimal firm-specific output level. The properties of c(φ, q) and

q∗ imply that the function π(φ, p) satisfies:

Lemma 4.2. (i) π is continuous in φ and p. (ii) π is strictly increasing in p, and

if p > 0, it is strictly increasing in φ. (iii) π(φ, p) → ∞ if either p → +∞ or

φ → +∞. (iv) π(φ, p) → −cf if either p → 0 or φ → −∞.

Proof. The statements follow from Lemma 4.1 and the presumed cost function.

At the end of each period firms have the option to leave or (re-)enter the mar-

ket. As potential entrants must build up production capacity before producing any

output, they need to pay entry costs kt when entering the industry. Although these

entry costs are supposed to be the same for all entrants, the respective amount will

depend on the non-/existence of a production quota. Having paid these entry costs,

each new firm is assigned to a productivity level drawn from the common cdf G,

which is supposed to be continuous and have compact support. This implies that

all entrants expect the same entry value by the time their exact productivity level

is revealed.

In a scenario without production quota the entry costs are simply given by a

constant value kt := ce ≥ 0. If either a tradable or non-tradable quota exists, how-

ever, the entry costs should be somehow related to the available number of produc-

tion/quota units. In this continuous framework each firm can be regarded as some

kind of marginal production unit that is linked to a marginal quota unit. A variable

serving as a measure for the number of active production units is then the total

industry mass µt(R). This parameter must be contained under a production quota

as the aggregate industry output (4.8) could become too large otherwise, and the

production quota designed to constrain exactly this aggregate output level would be

ineffective. For this reason, the mass of entering firms must be geared to the avail-

ability of production units. If the industry is subject to a quota regime, production

units become available to potential entrants merely when incumbent firms decide to

leave the industry and release their associated quota units. This means that exiting

firms create the supply of production units that are demanded by new firms.

The parameter µt(R) is directly determined by the balance between exiting and

entering firms; it increases whenever the number of entrants exceeds the mass of

exiting firms, and vice versa. Therefore, the value µt(R) can be interpreted as a

proxy for the availability of production units at the sector level. We utilise this fea-

ture and define the quota-constrained entry costs by kt := ce + k(µt(R)), with k
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being a positive, continuous, and non-decreasing function. Hence, the entry costs

are composed of two parts: entering firms have to pay the constant part ce matching

the unconstrained entry costs, and a variable part k(µt(R)) reflecting the additional

quota costs. The monotonicity of k implies that the entry costs increase with respect

to the number of firms willing to enter the industry. When we apply the model in

Section 4.5, we determine µt(R) = 1 as a rough upper boundary and define k as a

nearly perfectly elastic function around this point. Hence, the case µt(R) < 1 refers

to a situation with unused quota units, while µt(R) > 1 indicates an overflow of

production.

If the production quota cannot be traded among firms, the presumed structure of

the entry costs just builds an entry barrier. In this case the quota costs represent a

kind of penalty afforded by new firms to enter the industry. The total entry costs kt

thus coincide with the maximum value that entrants are willing to pay. As long as

the quota is not tradable, incumbent firms cannot benefit directly from other firms’

willingness to enter. Exiting firms get no compensation for ceasing production and

releasing their associated quota units. This changes, of course, when the quota be-

comes tradable. The previously-defined quota costs can then be captured by exiting

firms because they can sell their quota to potential entrants. This creates a positive

liquidation value for incumbents, which we define by rt := k(µt(R)). If the quota

is either non-tradable or the industry is not subject to a production quota, exiting

firms do not receive any compensation payment, and the liquidation value is set

equal to zero, rt := 0.

A firm bases its entry/exit decision on the expected discounted future profits. The

discount rate for all firms is supposed to be 0 ≤ β < 1. If the sequence y = {pt, rt}t∈N0

denotes the output prices and potential liquidation values for all periods, the value

of an incumbent with productivity φ at time t can be defined recursively by

vt(φ, y) = π(φ, pt) + β max


rt+1,


R
vt+1(φ

′, y)dF (φ′|φ)

, ∀ t ∈ N0, (4.10)

and is composed of the current profits plus the optional liquidation or continuation

value.

A firm stays in the industry as long as its continuation value offsets the liq-

uidation value, rt+1. The continuation value indicates the expected future profits

conditioned on the firm’s current productivity level. The exit-point xt describes the
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critical threshold for being indifferent between staying in or leaving the market,

xt := inf


φ ∈ R :


R
vt+1(φ

′, y)dF (φ′|φ) ≥ rt+1


. (4.11)

The assumptions made on the stochastic process and the period profits imply that

all firms with a productivity level above the exit-point φt ≥ xt stay in the industry,

while all firms with a lower productivity level φt < xt take the exit compensation

and quit. If the infimum in (4.11) does not exist, we are in a situation where no exit

occurs in period t and we formally set xt = −∞.

The expected profits of a firm willing to enter the industry at the end of period

t are given by

vet+1(y) =


R
vt+1(φ, y)dG(φ). (4.12)

We denote the mass of firms, which decide to enter at time t and start production

in the following period, by Mt. As this is the only kind of investment available to

any firm, this may also include established firms building up additional production

units. An increasing number of active firms will lead to a higher aggregate industry

output, and result in a lower market price. New firms will be entering the industry as

long as their expected future profits cover the entry costs, that is, in an equilibrium

we obtain vet+1 ≤ kt+1. This condition must hold with equality if Mt > 0.

Due to the large number of firms in the industry (recall that firms are assumed

to constitute a continuum), we do not have to deal with aggregate uncertainty.

The frequency distribution of productivity levels in upcoming periods is completely

specified by the stochastic productivity process and the entry/exit behaviour of

firms. For a given exit-point xt and entry-mass Mt, the industry structure in period

t+ 1 is

µt+1((−∞, φ′]) =


φ≥xt

F (φ′|φ)dµt(φ) +Mt G(φ′). (4.13)

If both µt and G have Lebesgue densities mt(z) and g(z), the state of the sector

µt+1 can also be characterised by its density

mt+1(z) =


φ≥xt

p(φ, z)mt(φ)dφ+Mt g(z). (4.14)
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4.2 Equilibrium definitions

As a direct consequence of (4.13), both industry output and market price follow

deterministic sequences. Firms are atomistic and cannot affect price by the choice of

their output quantity. However, firms have perfect information about the decisions of

others and are thus able to foresee the development of output prices. In a dynamic

equilibrium firms adjust their output as well as their entry/exit decisions to the

anticipated prices. These output prices, in turn, must be reinforced by the behaviour

of firms. Keeping this in mind, we define a dynamic stochastic equilibrium as follows:

Definition 4.1 (Dynamic Equilibrium). Given a starting distribution µ0, a dynamic

equilibrium consists of an infinite sequence of measures {µ∗
t}, and sequences {p∗t},

{Q∗
t}, {x∗

t}, {M∗
t } containing the market prices, aggregate industry output, exit-

points and entry-masses such that for each period t ∈ N the following conditions are

satisfied:

(i) The output market is cleared

p∗t = D(Q∗
t ),

Q∗
t = Qs(p∗t , µ

∗
t ).

(ii) The exit-rule (4.11) holds with x∗
t .

(iii) No more firms have an incentive to enter the industry, i.e. vet (y
∗) ≤ kt.

(iv) µ∗
t is determined recursively by (4.13).

One objective of this paper is to analyse the difference between a quota-constrained

and a quota-free industry based on the long-run industry dynamics. Therefore, we

focus on the concept of a stationary equilibrium, which is defined as the steady state

of the dynamic model laid out above.

Definition 4.2 (Stationary Equilibrium). A stationary equilibrium consists of a

vector (µ∗, p∗, Q∗, x∗,M∗) such that the constant sequences pt = p∗,Qt = Q∗, xt = x∗

and Mt = M∗ form a dynamic equilibrium for the starting distribution µ0 = µ∗.

The definition indicates that a stationary equilibrium is a particular dynamic

equilibrium starting from the stationary distribution µ0 = µ∗. Notably, it is a state

that still exhibits firm entry and exit. A common assumption is that the industry
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will sooner or later adjust to this steady state no matter what the current status

is. Since the industry will remain in this steady state once it has been achieved, it

allows us to analyse the long-run industry dynamics.

Next to those long-run properties, we also want to find out how firms react

to the abolition of a production quota. For this purpose, we take the firm size

distribution that emerges in a quota-constrained stationary equilibrium as starting

distribution µ0 := µ∗ for a dynamic equilibrium analysis. As the previously-defined

infinite dynamic equilibrium is not implementable, however, we must restrict the

time horizon to t = 0, ..., T < ∞ and calculate a dynamic equilibrium in this finite

framework. Notice that because of this restriction the value function at the end

of competition is just equal to the profits generated in the final period vT (φ, y) =

π(φ, pT ). A finite dynamic equilibrium can thus be defined as follows:

Definition 4.3 (Finite Dynamic Equilibrium). Given a starting distribution µ0,

a dynamic equilibrium consists of a finite sequence of measures {µ∗
t} and vectors

p∗,Q∗,x∗,M∗ containing the market prices, aggregate industry output, exit-points

and entry-masses for each period such that the conditions (i)-(iv) of an infinite

dynamic equilibrium are satisfied for all times t = 1, ..., T .

To some extent, the equilibrium outcome will be affected by the assumed length of

the planning horizon. Since we consider a finite time horizon, the function vt(φ,p
∗)

is essentially a discounted sum of expected future profits. The value of a firm at

time t will therefore depend on the number of time periods that are still to come.

At the beginning, firms take the industry development over the whole time span

into consideration, while they base their entry/exit decision on just a few upcoming

periods at the end of competition. An extension of the time horizon by one period

may thus have a strong impact on the value of a firm in the final periods. As firms

discount future profits by the factor β < 1, however, the impact on a firm’s value

in the first periods is less harsh and will possibly diminish in the long-run. For this

reason, we expect results to stabilise if the time horizon tends to infinity. However,

the numeric effort to calculate an equilibrium in this case will be enormous.

In the next two sections we prove both the existence of a stationary equilibrium

and the existence of a finite dynamic equilibrium in this continuous setup. The

proofs themselves also demonstrate how to calculate such equilibria as we transform

the dynamic equilibrium concept into a simple fixed-point problem. For numerical

reasons, however, it is convenient to discretise the state space and calculate both

the stationary and the finite dynamic equilibrium in a discrete framework. More
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information on the calculation can be found in Section 4.5, where the model is

finally applied to the Western German dairy sector.

4.3 Existence of an applied stationary equilibrium

A crucial part of the stationary equilibrium is that the industry structure does not

vary over time, although firms consistently leave and enter the industry. Therefore,

we first show the existence and uniqueness of an invariant distribution

µ((−∞, φ′]) =


φ≥x

F (φ′|φ) dµ(φ) +M ·G(φ′) (4.15)

with respect to the given exit-point and entry-mass (x,M).

For any Borel set A ∈ B(R) let P (φ,A) denote the probability kernel that corre-

sponds with the underlying AR(1)-process. It can be derived from the conditional

cdf F by

P (φ,A) =


A

1(φ′) dF (φ′|φ) =

A

p(φ, z) dz. (4.16)

This stochastic kernel describes the time homogeneous one-step transition proba-

bility. If a firm possesses the current productivity value φt = φ, the value P (φ,A)

reflects the probability that the subsequent productivity level φt+1 belongs to the

set A. The two-step transition probability Prob(φt+2 ∈ A|φt = φ) can be derived as

P 2(φ,A) =


R
P (φ′, A) dF (φ′|φ)

=


A


R
p(φ, φ′) p(φ′, z) dφ′ dz.

If we compute this integral, we will see that the two-step transition probability can

also be characterised by a Normal distribution. In general, we have:

Lemma 4.3. The n-step transition probability is given by the Normal distribution

P n(φ, ·) = N


φρn + ξε

n−1
j=0

ρj, σ2
ε

n−1
j=0

ρ2j


. (4.17)

Proof. By definition of P (φ, ·) the equality is trivial for n = 1. We show that the

statement is true for any n by induction. Hence, we assume that the statement holds

for n − 1. Let ϕ(z|ξ, σ2) denote the pdf of a Normal distribution with mean ξ and
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variance σ2. Using Lemma A.14 we get

P n(φ,A) =


R
P (φ′, A) dF n−1(φ′|φ)

=


A


R
ϕ


φ′
 φρn−1 + ξε

n−2
j=0

ρj, σ2
ε

n−2
j=0

ρ2j


p(φ′, z) dφ′ dz

=


A

ϕ


z

 ρ

φρn−1 + ξε

n−2
j=0

ρj


+ ξε , ρ

2σ2
ε

n−2
j=0

ρ2j + σ2
ε


dz

=


A

ϕ


z

 φρn + ξε

n−1
j=0

ρj, σ2
ε

n−1
j=0

ρ2j


dz.

This had to be shown.

As ρ < 1, the distribution P n(φ, ·) converges for n → ∞ to the Normal distribution

P∞(φ, ·) = N


ξε
1−ρ

, σ2
ε

1−ρ2


. This limiting distribution does not depend on the value

φ anymore, which means that it is the same for all firms. Based on this result, we

can now prove the existence and uniqueness of an invariant distribution.

Lemma 4.4. Let G be a continuous cdf with compact support. For any combination

of exit-point x and entry-mass M there exists a unique stationary distribution µ

satisfying

µ((−∞, φ′]) =


φ≥x

F (φ′|φ) dµ(φ) +M ·G(φ′). (4.18)

Proof. Assume that a vector (x,M) of exit-point and entry-mass is given. For any

Borel set A ∈ B(R) we define the stochastic kernel

P̂x(φ,A) =

P (φ,A) if φ ≥ x

0 if φ < x.
(4.19)

This defines a linear operator on the space of bounded measures as

P̂xµ(A) =


R
P̂x(φ,A) dµ(φ). (4.20)

Moreover, let ν(A) =

A
1(φ) dG(φ) be the probability measure that is induced

by the cdf G. With the help of these definitions, the condition for a stationary

distribution (4.18) can be rephrased as

µ = P̂x µ+M · ν. (4.21)
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As suggested by Kolmogorov and Fomin (2012), Chapter 23, Theorem 4, a stationary

distribution can be specified by the infinite series

µ = M

∞
t=0

P̂x

t
ν. (4.22)

Here, P̂x

t
denotes the t−fold application of the operator P̂x, and P̂x

0
= Id. is defined

as the identity operator on the space of bounded measures. It is easy to see that

this measure satisfies the stationary condition (4.21) as for any Borel set A ∈ B(R)

P̂x µ(A) +M · ν(A) = M

∞
t=1

P̂x

t
ν(A) +M · ν(A)

= M


∞
t=1

P̂x
t
ν(A) + P̂x

0
ν(A)


= µ(A).

To complete the proof, we must verify that the series in (4.22) converges. By as-

sumption, the measure ν has compact support C ⊂ R. Lemma 4.3, thus, implies that

for any δ > 0 there exists a number n0 ∈ N such that ∥P n(φ, ·)− P∞(φ, ·)∥TV < δ

for all φ ∈ C and n ≥ n0. As the limiting distribution P∞ is a Normal distribution,

we conclude P∞(φ,B) > 0 for the set B = (−∞, x). Hence, if δ is chosen small

enough, we can find an ε > 0 such that P n(φ,B) > ε for all φ ∈ C and n ≥ n0. For

any Borel set A ∈ B(R) we can infer:

0 ≤ M
∞
t=0

P̂x
t
ν(A)

≤ M
∞
t=0

P̂x
t
ν(R)

≤ M


n0
t=0

P̂x
t
ν(R) +

∞
n=0

(1− ε)n


< ∞.

The last inequality holds since the first sum is finite, and the second one tends to

the value 1
ε
. Hence, the series in (4.22) must converge. This concludes the proof.

The Lemma allows us to define a mapping (x,M) →→ µ(x,M) := M
∞

t=0 P̂x

t
ν that

assigns the stationary distribution µ to any given vector (x,M). This mapping pos-

sesses the following properties:
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Lemma 4.5. The mapping µ(x,M) has the following properties:

(i) It is continuous in both arguments.

(ii) It is (strictly) decreasing with respect to the exit-point x. If x1 < x2, and the

measures µ1 = µ(x1,M), and µ2 = µ(x2,M), we have that µ1(A) > µ2(A) for

all non-null sets A ∈ B(R).

(iii) It is (strictly) increasing with respect to the entry-mass M . If M1 < M2, and

the measures µ1 = µ(x,M1), and µ2 = µ(x,M2), we have that µ1(A) < µ2(A)

for all non-null sets A ∈ B(R).

Proof. ad(i). The continuity of µ(x,M) with respect to M is trivial. Therefore, we

fix a value M > 0 and prove the continuity with respect to x. By induction with

respect to t we first show that any term P̂x
t
ν is continuous in x. We begin with

the case t = 1. Let xn → x be a sequence converging to x for n → ∞. Moreover,

let B(x, ε) = {y ∈ R : |x − y| < ε} denote an ε−neighbourhood around x. If

xn ∈ B(x, ε), we have thatP̂xnν(A)− P̂xν(A)
 ≤ 

B(x,ε)

P (φ,A) dν(φ)

≤ ν(B(x, ε)) → 0 for ε → 0.

As ν is a continuous measure, the latter expression tends to zero whenever ε → 0.

We conclude from this that ∥P̂xnν − P̂xν∥TV = 2 supA∈B(R) |P̂xnν(A)− P̂xν(A)| → 0

for n → ∞, and the term P̂xν is continuous in x.

Now, we prove the continuity of P̂x

t
ν provided that P̂x

t−1
ν is continuous with

respect to x. To simplify the notation we introduce the measures Θ := P̂x
t−1

ν and

Θn := P̂ t−1
xn

ν, and presume that ∥Θn − Θ∥TV → 0 for n → ∞. If xn ∈ B(x, ε), this

implies:P̂ t
xn
ν(A)− P̂ t

xν(A)


=


φ≥xn

P (φ,A) dΘn(φ)−

φ≥x

P (φ,A) dΘ(φ)


=


∞

xn

P (φ,A) dΘn(φ)−
∞

xn

P (φ,A) dΘ(φ) +

∞
xn

P (φ,A) dΘ(φ)−
∞
x

P (φ,A) dΘ(φ)


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≤


∞

xn

P (φ,A) dΘn(φ)−
∞

xn

P (φ,A) dΘ(φ)

+


∞
xn

P (φ,A) dΘ(φ)−
∞
x

P (φ,A) dΘ(φ)


≤ ∥Θn −Θ∥TV +Θ(B(x, ε)) → 0 for ε → 0 and n → ∞.

By assumption, the first term tends to zero for n → ∞. As Θ is a continuous

measure, the latter term tends to zero for ε → 0. But, this means that P̂x
t
ν is

continuous in x. Accordingly, any finite sum
T

t=0 P̂x

t
ν is continuous with respect

to x. Since the aforementioned series converges for T → ∞ (cf. proof of Lemma 4.4),

the same applies to the mapping µ(x,M) = M
∞

t=0 P̂x

t
ν.

ad(ii). The monotonicity statement follows immediately from the representation of

µ(x,M) as infinite series and the definition of the operator P̂x in (4.20).

ad(iii). The monotonicity of µ(x,M) with respect to M is clear.

In the final part of this section we can now utilise the previous results and show

the existence of a stationary equilibrium.

Theorem 4.6 (Existence of a stationary equilibrium). Let G be a continuous cdf

with compact support, and both q∗ and π be integrable with respect to Normal distribu-

tions. A stationary equilibrium exists in the infinite framework if D(0) =: pmax < ∞,

and the AR(1)-process is stationary (ρ < 1).

The proof to this Theorem is based upon Brouwer’s Fixed Point Theorem (see

Appendix A.1), which states that every continuous function, mapping a compact,

convex subset of Rn into itself, possesses a fixed point. We utilise this property and

proceed as follows: First, we construct a continuous mapping (x,M) →→ τ(x,M) such

that a fixed point of this mapping coincides with the stationary equilibrium. Second,

we define a compact, convex subset N that is mapped into itself by τ . According

to Brouwer’s Theorem this implies the existence of a stationary equilibrium. We

distinguish between a scenario with and without capacity constraints.

Proof. (Without capacity constraints)

Step I. Let a tuple (x,M) of exit-point and entry-mass be given. Based on the

corresponding stationary distribution µ(x,M), we can derive the market clearing

output price pmc as solution to the equation

p = D


R
q∗(φ, p) dµ(φ)


. (4.23)
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The imposed assumptions on D(Q) and q∗(φ, p) guarantee that a unique solution

pmc exists. Due to the continuity of µ(x,M) (cf. Lemma 4.5), the market clearing

output price must be a continuous function of the exit-point x and entry-mass M

as well. The monotonicity of µ(x,M) induces, moreover, that pmc is increasing in x

and decreasing with respect to M .

Assuming that this output price emerges in all time periods, the firm’s value

function is given by the equation

v(φ, pmc) = π(φ, pmc) + βmax


0,


R
v(φ′, pmc) dF (φ′|φ)


. (4.24)

Since the function π is supposed to be integrable with respect to any Normal distri-

bution and β, ρ < 1, a unique solution to this equation (4.24) exists. The solution

is a continuous function v that possesses the same properties as the function π. In

particular, it is upward sloping with respect to the price pmc and strictly increasing

in the productivity parameter φ.4 As long as pmc > 0 we have the limiting behaviour

lim
φ→+∞

v(φ, pmc) = ∞ and lim
φ→−∞

v(φ, pmc) = −cf . (4.25)

According to Lemma A.15 the same must apply to the continuation value

vc(φ, pmc) =


R
v(φ′, pmc) dF (φ′|φ). (4.26)

This allows us to derive a new exit-point x by the exit-rule

x := inf {φ ∈ R : vc(φ, pmc) ≥ 0} . (4.27)

Due to the continuity and strict monotonicity of the continuation value with respect

to φ, the exit-point x must be a continuous function of the market clearing output

price pmc. A new entry-mass M can be specified by

M := min {Mmax,max {0, ve(pmc)− ce +M}} , (4.28)

where

ve(pmc) =


R
v(φ, pmc) dG(φ) (4.29)

4The existence of the value function v, as well as its properties, can essentially be derived by
the same argument as in the proof to Theorem 3.1. As the presumed state space S = R is not
compact though, the stationarity of the stochastic process (ρ < 1) is necessary to guarantee the
existence of a solution.
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denotes the expected value of entering firms, and Mmax stands for a maximum

possible amount of entrants.

Referring to the derived exit-point (4.27) and entry-mass (4.28), we can now define

the mapping τ(x,M) := (x,M). By construction τ maps a combination (x,M) of

exit-point and entry-mass to another combination (x,M) of exit-point and entry-

mass. Moreover, a fixed point of this mapping constitutes a stationary equilibrium

in terms of Definition 4.2. The mapping τ : R2 → R2 is continuous as the output

price pmc is continuous with respect to x,M , and both variables x,M are continuous

functions of pmc.

Step II. According to Brouwer’s Theorem the existence of a stationary equilibrium

is proven if we can find a compact, convex subset N ⊂ R2 that is mapped into itself

by τ(N) ⊆ N . We begin to determine a maximum possible entry-mass Mmax ≥ 0.

To this end we presume an industry structure µ = Mmaxν, and compute the value

Mmax such that the market clearing output price under this industry structure

satisfies ve(pmc) = ce. A higher entry-mass cannot occur in a stationary equilibrium

because ve(pmc) < ce for any stationary distribution

µ(x,Mmax) = Mmax

∞
t=0

P̂ t
x ν.

By assumption, the equilibrium output price is bounded by p∗ ∈ (0, pmax] . Hence,

solving the exit-rule (4.27) for pmc = pmax yields the minimum possible exit threshold

xmin. The monotonicity of the mapping µ(x,M) implies that a minimum justifiable

output price pmin arises for the stationary distribution µ(xmin,Mmax). Applying the

exit-rule to this minimum price allows us to derive a maximum possible exit-point

xmax.

A compact, convex subset N ⊂ R2 can now be defined as the cartesian product

N := [xmin, xmax]× [0,Mmax]. (4.30)

This set is mapped into itself by τ since every element (x,M) ∈ N leads to a market

clearing output price pmc ∈ [pmin, pmax]. By the way N has been designed this implies

(x,M) ∈ N , and we can conclude the existence of a stationary equilibrium.

Proof. (With capacity constraints)

The proof is carried out completely analogously to the one without capacity con-

straints.
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Step I. We look for a continuous mapping τ , whose fixed point reflects a stationary

equilibrium with capacity constraints. As before, we assume that a combination

(x,M) of exit-point and entry-mass is given, and derive the corresponding stationary

distribution µ(x,M) as well as the market clearing output price pmc. Although the

individual output boundary qmax comes into play here, the output price is still

uniquely determined and continuous in (x,M). Based on the stationary distribution

µ we also compute the capacity constrained entry costs k̄ = ce + k(µ(R)) and the

firms’ liquidation value r. Depending on the tradability of production units between

firms the liquidation value is either r = 0 (non-tradable capacity) or r = k(µ(R))
(tradable capacity). Both entry costs k̄ and liquidation value r form a continuous

function of the vector (x,M) because the function k is supposed to be continuous.

Compared to the unconstrained case, the value function turns into

v(φ, pmc, r) = π(φ, pmc) + βmax


r,


R
v(φ′, pmc, r) dF (φ′|φ)


. (4.31)

A continuous, monotone solution v to this equation exists by the same reasoning

as in the unconstrained case. But, the limiting behaviour alters slightly and is now

given by

lim
φ→+∞

v(φ, pmc, r) = ∞ and lim
φ→−∞

v(φ, pmc, r) = −cf + βr. (4.32)

for all pmc > 0. Based on the modified continuation value

vc(φ, pmc, r) =


R
v(φ′, pmc, r) dF (φ′|φ), (4.33)

we derive a new exit-point x by

x := inf {φ ∈ R : vc(φ, pmc, r) ≥ r} . (4.34)

The equilibrium entry condition ve(pmc, r) ≤ k̄ is used to deduce a new entry-mass

M := min

Mmax,max


0, ve(pmc, r)− k̄ +M


. (4.35)

As before, ve(pmc, r) signifies the expected value of entering firms, whileMmax marks

an upper mass of entrants that can possibly arise in a stationary equilibrium.

Being a composition of continuous functions, the mapping τ(x,M) := (x,M)

must be continuous itself. To prove the existence of a fixed point, and thus the

existence of a stationary equilibrium in the constrained case, we just need to find a
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compact, convex subset N ⊂ R2 such that τ(N) ⊆ N .

Step II. The maximum entry-mass Mmax ≥ 0 is determined in the same way

as for the unconstrained scenario. This means, we compute the value Mmax such

that ve(pmc, r) = k̄ for the industry structure µ = Mmax ν. By definition both

the entry-costs and the liquidation value are (strictly) increasing with respect to

the entry-mass. As the slope of k̄ is steeper than the one of ve(pmc, r) though, any

entry-massM > Mmax leads to ve(pmc, r) < k̄ and cannot be justified in a stationary

equilibrium.

A minimum exit-value xmin can be specified by solving the exit-rule (4.34) for

pmc = pmax and r = 0. The stationary distribution µ(xmin,Mmax) generates the

minimum market clearing output price pmin as well as the maximum liquidation

value rmax. If we insert these values into the exit-rule (4.34), we can derive the

maximum exit-point xmax. Hence, the compact, convex subset

N := [xmin, xmax]× [0,Mmax] ⊂ R2 (4.36)

is mapped into itself as τ(N) ⊆ N . According to Brouwer’s Fixed Point Theorem

this implies the existence of a stationary equilibrium.

The previous Theorem guarantees that the presented model possesses at least

one stationary equilibrium. While we cannot fully exclude multiple steady states in

the capacity constrained scenario, the stationary equilibrium is uniquely determined

in the unconstrained case. Why is that? As the value function is strictly increasing

with respect to the output price, there exists at most one price pmc such that the

unconstrained entry condition ve(pmc) = ce holds with equality. Given this output

price there is exactly one value x∗ obeying the exit-rule. According to Lemma 4.5

the mapping µ(x∗,M) must be strictly decreasing with respect to M . Therefore,

only one entry-mass M∗ can generate the stationary distribution µ(x∗,M∗) that

leads to the market clearing output price pmc. This implies the uniqueness of the

unconstrained stationary equilibrium.

Although we focus on stationary equilibria with positive firm entry and exit

in our further analysis, it is worth mentioning that theoretically a steady state

without entry/exit can also occur in this framework. If the fixed entry costs ce are

so high, for instance, that they cannot be covered by the highest possible expected

value ve(pmax), no firm has an incentive to enter the industry, and the only possible

stationary equilibrium consists of an empty industry.
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4.4 Existence of a finite dynamic equilibrium

A necessary condition for the existence of a finite dynamic equilibrium is the integra-

bility of q∗(φ, p) and π(φ, p) with respect to the relevant measures. If both functions

are integrable with respect to any Normal distribution, the properties in Lemma 4.2

translate one-to-one to the value function vt(φ,p, r), and also to the continuation

value

vct (φ,p, r) =


R
vt(φ

′,p, r) dF (φ′|φ). (4.37)

Hence, the continuation value is continuous and strictly increasing in φ. Further-

more, the limits

lim
φ→+∞

vct (φ,p, r) = ∞ and lim
φ→−∞

vct (φ,p, r) = −cf (4.38)

hold for every price vector p > 0 and liquidation vector r = 0. Having these prop-

erties at hand, we can now prove the subsequent proposition.

Theorem 4.7 (Existence of a dynamic equilibrium). Let µ0, G be continuous dis-

tributions with compact support, and both q∗ and π be integrable with respect to

Normal distributions. A dynamic equilibrium exists in the finite framework if the

demand function satisfies D(0) =: pmax < ∞.

The additional assumptions made in Theorem 4.7 imply that all integrals, which

will be considered in the following, exist. Just like for the stationary equilibrium,

the proof relies on Brouwer’s Fixed Point Theorem. The theorem states that every

continuous function, mapping a compact, convex space into itself, has a fixed point.

Hence, we will define a continuous mapping and illustrate, in the first step, that a

fixed point of this mapping constitutes a dynamic equilibrium. In a second step, we

will specify a compact, convex subset and show that the previously defined function

maps this set into itself.

Proof. (Without capacity constraints)

We show the existence of a dynamic equilibrium in the case without capacity con-

straints first. This implies rt = 0, kt = ce for all t, and

vt(φ,p) = π(φ, pt) + βmax


0,


R
vt+1(φ

′,p) dF (φ′|φ)

. (4.39)
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Step I. By condition (i) of Definition 4.3, the equilibrium prices p∗t must clear the

output market in every single period, i.e. the equality

pt = D(Qs(pt, µt)) = D


R
q∗(φ, pt)dµt(φ)


(4.40)

must be satisfied. The properties of D(Q) and q∗(φ, p) imply that for any given in-

dustry structure µt a unique solution pmc
t to (4.40) exists (Intermediate Value The-

orem). Considering the industry dynamics (4.13), pmc
t will be a continuous function

of all previous exit-points x0, ..., xt−1 and entry-masses M0, ...,Mt−1.
5 Furthermore,

the market clearing output price pmc
t is upward sloping in xj and downward sloping

with respect to Mj (this holds for any j ∈ {0, ..., t− 1}).
Now, we construct an operator τ : R2T → R2T that maps a given vector (x,M) of

exit-points and entry-masses to another vector (x,M). For any vector (x,M) ∈ R2T ,

containing a number of exit-points xt and entry-masses Mt, we can derive the re-

sulting industry structures µt according to the transition rule (4.13). The market

clearing output prices pmc
t are then determined by the equality (4.40). Given this

output price vector pmc, we can define the mapping τ(x,M) = (x,M) by:

xt := inf


φ ∈ R :


R
vt+1(φ

′,pmc)dF (φ′|φ) ≥ 0


, (4.41)

Mt := min

Mmax

t ,max

0 , vet+1(p

mc)− ce +Mt


. (4.42)

The value Mmax
t determines an upper boundary to the entry-mass, which can

possibly arise in an equilibrium and will be specified later on. It is trivial that

(4.41) coincides with the exit-rule of our equilibrium definition, and equation (4.42)

rephrases the entry condition (iii). Hence, the values xt represent the critical pro-

ductivity thresholds under the price vector pmc. According to (4.38), the function

vct (φ,p) tends to infinity for φ → +∞. Therefore, the infimum in (4.41) does indeed

exist for any output price vector. The solution xt will be a continuous function of

pmc as the continuation value is continuous and strictly increasing with respect to

φ. It is evident that the same applies to the values Mt. Hence, the mapping τ , which

is a composition of continuous functions, must be continuous itself. The way we

have constructed τ implies, moreover, that a fixed point of this mapping describes

an equilibrium.

Step II. In the remainder we will specify a compact, convex subset N ⊂ R2T

such that τ(N) ⊆ N , i.e. τ maps N into itself. First, recall that the output prices,

5Recall that µ0, F (.|φ) and G are all supposed to be continuous distributions
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which may occur in an equilibrium, are bounded by p∗t ∈ (0, pmax]. This allows

us to determine lower boundaries for the exit-points. We define the price vector

pmax := (pmax, ..., pmax), which would for instance arise in an empty industry. The

corresponding solutions of the exit-rule with respect to pmax determine the mini-

mum attainable values xmin
t .

Next, we define the upper boundary Mmax
t for the entry-masses that can materi-

alise in an equilibrium. Note first, that the expected value of entrants can be written

as

vet (p) =
T
j=t

βj−1


R
π(φ, pj) dµ̄j(φ), (4.43)

with µ̄t ≡ G and µ̄j being the distribution of a firm’s productivity in period j. These

measures depend implicitly on the firm’s optimal exit decisions (with respect to any

given price vector p), and the total mass µ̄j(R) displays the probability of still being

active in period j. In an equilibrium, the firm’s exit policy must coincide exactly

with the exit-points xt, ..., xT−1.

Now, we turn this around and define a firm’s productivity distribution in period

j as an explicit function of given exit-points xt, ..., xj−1. The distribution is denoted

by the measure

λj((−∞, φ′]) =

 ∞

xt

· · ·
 ∞

xj−1

F (φ′|φj−1) dF (φj−1|φj−2) · · · dF (φt+1|φt)dG(φt).

(4.44)

This implies λj = µ̄j whenever the exit-points xt, ..., xj−1 represent an optimal exit

policy (as they do, for instance, in an equilibrium).

For any given vector of exit-points x = (x0, ..., xT−1) there exists an entry-mass

M0 such that

ve1(p
mc,x) =

T
j=1

βj−1


R
π(φ, pmc

j ) dλj(φ) ≤ ce. (4.45)

The reason for this is simply that all output prices pmc
1 , ..., pmc

T tend to zero if the exit-

points are fixed andM0 → ∞. Hence, we define M̄x := inf {M0 ≥ 0 : ve1(p
mc,x) ≤ ce}

as the smallest entry-mass satisfying (4.45). Furthermore, λj((−∞, φ′]) → 0 if any

exit-point xk → ∞ and k ∈ {t, ..., j − 1}. Therefore, we can find exit values x̄j−1

such that 
R
π(φ, pmax) dλj(φ) ≤

ce
T

(4.46)

for any xj−1 ≥ x̄j−1.

Recall that the market clearing output price in period t is a continuous function
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of all previous exit-points and entry-masses. Hence, the function ve1(p
mc,x) is also

continuous with respect to M0 and x. On the compact subset

X := [xmin
0 , x̄0]× · · · × [xmin

T−1, x̄T−1],

there must be a maximum value Mmax
0 = supx∈X M̄x < ∞ that satisfies the in-

equality in (4.45) for every exit vector x ∈ [xmin
0 ,∞)× · · · × [xmin

T−1,∞). The values

Mmax
1 , ...,Mmax

T−1 are determined by exactly the same procedure.

To determine maximum attainable exit values xmax
t , we need to calculate the

minimum output prices first. It is clear that the output prices are minimised if

the aggregate output is maximised. This is the case if no exit takes place and the

maximum amount of firms Mmax
t enters the industry in each period t. Hence, the

entry/exit-vector (x,M) = (−∞, ...,−∞,Mmax
0 , ...,Mmax

T−1 ) yields the minimum jus-

tifiable output prices (pmin
1 , ..., pmin

T ), which are given by market clearance (4.40). By

taking the minimum over all t = 1, ..., T we can also determine an absolute minimum

price pmin > 0 that serves as a lower boundary to all market clearing output prices.

Solving the exit-rule for the constant price vector pmin = (pmin, ..., pmin) thus yields

the maximum possible exit values xmax
t .

With all those exit and entry values at hand, we define the subset N ⊂ R2T by

the cartesian product

N := [xmin
0 , xmax

0 ]× · · · × [xmin
T−1, x

max
T−1]× [0,Mmax

0 ]× · · · × [0,Mmax
T−1 ]. (4.47)

Obviously, this compact, convex set is mapped into itself by the operator τ . If we

take any (x,M) ∈ N , the resulting output prices pmc
t will be in [pmin, pmax]. Due

to the construction of N and the monotonicity of the continuation value vct (φ,p),

which was mentioned right at the beginning of the proof, the resulting exit-pointsxt must lie inside the interval [xmin
t , xmax

t ]. Furthermore, the calculated entry valuesMt are surely between 0 and Mmax
t . This implies (x,M) ∈ N , and we have indeed

τ(N) ⊆ N .

Summing up, we have argued that τ : N → N is a continuous mapping on a

compact space. In compliance with Brouwer’s Theorem this mapping possesses a

fixed point. The fixed point essentially represents a finite dynamic equilibrium and,

thus, the theorem is proven.

Proof. (With capacity constraints)

Now, we turn to the scenario where the total production capacity is limited to the
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sector level, and show the existence of a dynamic equilibrium in this case. The proof

is carried out in the same fashion as the previous one. But, we request that the entry

costs are kt = ce+k(µt(R)), with k(x) being an upward sloping continuous function

satisfying k(0) = 0 and limx→∞ k(x) = ∞. If production capacity is tradable among

firms, we define the liquidation value as rt = k(µt(R)). Otherwise, we set rt = 0. Let

the vector r = (r1, ..., rT ) comprise these exit premiums. The value function thus

alters into

vt(φ,p, r) = π(φ, pt) + βmax


rt+1,


R
vt+1(φ

′,p, r) dF (φ′|φ)

. (4.48)

Note, that the continuity and monotonicity properties with respect to φ and p

remain unchanged. Moreover, the firm’s value at t increases with respect to all

subsequent exit premiums rt+1, ..., rT .

Step I. We construct a continuous mapping τ : R2T → R2T . For any entry/exit-

vector (x,M) the industry structures µt and market clearing output prices pmc
t

are derived as before. This time, however, we also calculate the capacity values kt

and rt based on µt(R). The operator τ(x,M) = (x,M) is then determined by the

exit/entry-rules

xt := inf


φ ∈ R :


R
vt+1(φ

′,pmc, r) dF (φ′|φ) ≥ rt+1


(4.49)

Mt := min

Mmax

t , max

0 , vet+1(p

mc, r)− kt+1 +Mt


(4.50)

The constant Mmax
t is the maximum amount of firms that will possibly enter the in-

dustry by the end of period t. The exact value Mmax
t will be specified later on. Recall

that τ is again a continuous mapping, and the dynamic equilibrium is characterised

as a fixed point of τ .

Step II. The challenge is once more to specify a compact, convex subset N ⊂ R2T

such that τ(N) ⊆ N . Utilising the constant price vector pmax allows us to compute

a Mmax
t such that

vet+1(p
max, r) =


R
vt+1(φ,p

max, r) dG(φ) ≤ ce + k(Mmax
t ). (4.51)

Here, we presume that new firms enter an empty industry, and rj = k(Mmax
t ) for

all j = 1, ..., T . Firms having entered the industry in period t and paid capacity

costs k(Mmax
t ) can, thus, recapture the same (discounted) value as exit premium in
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prospective periods. The discount factor β < 1 guarantees that a solution to equa-

tion (4.51) exists. Because vet (p, r) ≥ vet+1(p, r) for any constant vectors p, r ≥ 0,

we will have Mmax
t−1 ≥ Mmax

t .

By the same approach as in the unconstrained case, we compute minimum jus-

tifiable output prices with the vector (x,M) = (−∞, ...,−∞,Mmax
0 , ...,Mmax

T−1 ). The

minimum of the market clearing output prices constitutes the lower boundary pmin.

We can also determine an upper boundary for the exit premium by

rmax = k


T

j=1

Mmax
j


. (4.52)

This implies minimum and maximum values for the exit-points by

xmin
t := inf


φ ∈ R :


R
vt+1(φ

′,pmax, rmax) dF (φ′|φ) ≥ 0


, (4.53)

xmax
t := inf


φ ∈ R :


R
vt+1(φ

′,pmin,0) dF (φ′|φ) ≥ rmax


. (4.54)

The compact, convex subset N ⊆ R2T is set up in the same way as in the uncon-

strained proof:

N := [xmin
0 , xmax

0 ]× · · · × [xmin
T−1, x

max
T−1]× [0,Mmax

0 ]× · · · × [0,Mmax
T−1 ]. (4.55)

For any entry/exit-vector (x,M) ∈ N , the resulting output prices pmc
t must be in

[pmin, pmax], and the exit premium satisfies rt ∈ [0, rmax]. Consequently, the exit-

points xt, which are related to p∗ and r, will lie inside the interval [xmin
t , xmax

t ]. Due

to the definition of Mt, the vector (x,M) = τ(x,M) will indeed be an element of the

set N . Hence, we have τ : N → N , and can apply Brouwer’s Fixed Point Theorem

to conclude that a finite dynamic equilibrium exists in the constrained case.
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4.5 Dynamics in the Western German dairy in-

dustry

4.5.1 Stylised facts: agricultural policy and development of

the dairy farm size distribution

In 1984, the EU introduced the milk quota system as a reaction to the tremendous

excess supply caused by massive price support from the 1970s onwards, e.g., inter-

vention prices for butter and powder. In the initial years of the quota scheme, pro-

duction rights were not transferable between farms. This restriction has been relaxed

over time, from family transfers and regional but rental transfers–some attached to

grassland-transfer–to official sales within auctions for Eastern and Western Germany

from 2000 until 2015, though first restricted to be traded at the state-level only. With

the 2003 reform of the Common Agricultural Policy (CAP), direct payments were

decoupled from production levels. Considerable reductions in price regulations and

other market interventions have led to increased milk price volatility. Within the

health check of the reform of 2003, the fading out of the milk quotas was stipulated.

Since then, price supports and other market interventions have been reduced with a

stepwise enhancement of the overall production quantity limitation, to have ended

in April 2015. These policy changes have likely contributed to falling milk prices at

that time (cf. Figure A.1 in Appendix A.3). Hence, farms were exposed to further

pressure to adjust, for instance, their production quantity, their size, or even decide

about continuing production.

A frequently used indicator for industry dynamics is the development of farm-

size distribution over time. The latter can be measured either by the number of cows

or the milk output per farm. Here, we start with the number of cows per farm: in

Western Germany, the number of dairy farms declined from 1,216,700 in 1960 to

90,200 in 2010 (Statistisches Bundesamt), while the average farm size increased, viz.

from an average of 5 cows per farm in 1960 to 43 cows per farm in 2010 (Statistisches

Bundesamt), with considerable increases in farm productivity at the same time. The

average milk yield per cow increased from 3.6 tons per cow and year in 1964 to 6.9

in 2009. The rather strong consolidation process accompanied with an altered farm

size distribution as visualised in Figure 4.1. While the share of the small farms (less

than 10 cows per farm) sharply declined over time, the medium (10-49 cows) and

large (more than 50 cows) farms increased in number and share of total number of
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Figure 4.1: Dairy farm size distribution in Western Germany 1960-2010
Source: Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten 1960-
2011

dairy farms. The share of the large and very large farms particularly increased in

more recent years (starting in the mid 1990s).

Figure 4.2 illustrates changes in the farm size distribution between the years 2000

and 2008 based on farm-specific data from the Farm Accountancy Data Network

(FADN) for both the number of cows (left-hand side) and milk output (right-hand

side). We estimated a kernel density based on a Gaussian kernel and used a dis-

tribution in natural logs for specialised dairy farms only. The right-shift of both

distributions confirms the growth in average farm size and the industry’s consolida-

tion process, also for the shorter time period. Since the market has been influenced

by the milk quota for more than 30 years, this begs the following questions: To

what extent has the development been provoked by the quota, and how would the

distribution look without quota limitations?

The empirical literature does not yet provide a clear answer on how the quota

affected industry dynamics, or what will happen in the nearer future. Some argue

that structural change in the dairy sector might be accelerated after the quota re-

moval, where this effect is expected to be stronger the tighter the transfer rules of the

milk quota in the quota period are (Bailey, 2002). Nevertheless, even in EU Mem-

ber States where the quota trade scheme is rather well organised, e.g. the United

Kingdom (UK), the milk quota scheme could have been proven to foster inefficient

production structures (Colman, 2000; Colman et al., 2002). Moreover, as Oskam

and Speijers (1992) show, considerable increases in the capital costs of farms that

bought or leased quota might hinder investments in efficient production structure.

Richards (1995) and Richards and Jeffrey (1997) even find evidence that the milk
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Figure 4.2: Dairy farm size distribution in 2000 and 2008 for Western Germany
Source: EU-FADN-DG AGRI 1997-2011

quota scheme reduces the investment rate of dairy farms in Canada, thus hindering

farm growth and the necessary adaptations of technical progress. Thus, it is undis-

puted that even tradable quotas have an impact on the dairy production industry

dynamics and their removal will influence farmers’ decision-making.

In what follows, we will examine this effect in greater detail and calculate and

compare the stationary equilibrium for two scenarios: the equilibrium of a capacity-

constrained sector, that is, with production quotas, and an unconstrained sector,

which reflects a potential situation after the production quota scheme. For this, we

first calibrate the model to the German dairy sector as a benchmark.

4.5.2 Model calibration

Figure 4.2 indicates that the Western German dairy sector has obviously not been

in a stationary equilibrium during recent years. We use 2003 as a reference point

to calibrate our model to the Western German dairy sector. At this time the milk

quota was already tradable among farms. Further, in 2003 the decoupling of direct

payments from production was decided. The data is provided by the EU-FADN-DG

AGRI 1997-2011, and the sample contains information on 1,500 specialised dairy

farms between 1997 and 2011.

Cost function

We assume a single output and multiple input production technology. Output q is

raw milk and assumed to be Cobb-Douglas in inputs n1, ..., nk with a stochastic
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Figure 4.3: Distribution of dairy cows (left) and milk output (right) across farms in
2003 with adjusted normal distributions
Source: EU-FADN-DG AGRI 1997-2011

productivity component denoted by φ:

q = c nα1
1 . . . nαk

k eφ. (4.56)

We use the estimates of Petrick and Kloss (2012) to calibrate the production function

for Western German dairy farmers with the inputs labour, land, working capital,

fixed capital and number of cows since these authors refer to the same data base.

The cost function is given by:

c(φ, q) = h


q

exp(φ)

 1
α

, (4.57)

with constant term h and α =


αj. For a given productivity φ the optimal firm-

specific output level in period t is thus given by

q∗(φ, pt) =
α pt

h

 α
1−α

e
φ

1−α . (4.58)

This functional form implies that the optimal output level q∗ follows a log-normal

distribution if φ is normally distributed, that is,

µφ
t = N(ξφ, σ

2
φ) ⇔ µq

t = LN(ξq, σ
2
q ). (4.59)

Starting distribution of productivity levels across farms

We calibrate a starting distribution µφ
0 using the farm-level output distribution in

2003. Figures 4.3 and 4.4 suggest that milk output is close to being log-normally
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distributed across farms. To fit a log-normal distribution μq
0 to the observed firm-

specific output values qit (for farms i = 1, ..., n), we refer to (4.58), where the cost

function parameter h is adjusted such that the corresponding distribution of pro-

ductivity values ϕit is centered-normal: μϕ
0 = N(0, σ2

ϕ).

Distribution of new farms

The nature of the farm accountancy data does not allow us to clearly define new

firms. Therefore, we assume that the group of new firms is part of the group of

investing firms (cf. Section 4.1), and select those farms from the sample that have

increased their number of cows by at least 20% from 2002 until 2003. These farms’

milk output distribution is similarly approximated, that is, by a log-normal one (see

right side of Figure 4.4). In a second step, the output distribution is used for the

normal distribution of productivity levels: G = N(ξg, σ
2
g).

Demand function

The demand function for milk is supposed to have constant price elasticity η. Gen-

erally speaking, an isoelastic demand function is given by Q(p) = b p−η, or the

corresponding inverse demand function D(Q) =
(
Q
b

)− 1
η . Here, we refer to Thiele

(2008) to calibrate the demand for dairy products in Germany; this author reports

a price elasticity of about η = 1.00. Parameter b will be adjusted such that the mar-

ket clearing output price matches the observed one in 2003. Given that the average

milk price is p2003 = 0.32 e/kg and the observed distribution of milk output denoted

by μq
2003, the 2003 calibrated demand function is given by

p2003 =

(
1

b

∫ ∞

0

y dμq
2003(y)

)− 1
η

. (4.60)

Productivity process

According to the formal model, a farm’s productivity is assumed to follow an AR(1)-

process:

ϕit = ρ ϕi,t−1 + εit, with ρ ∈ (0, 1) and εit ∼ N(ξε, σ
2
ε). (4.61)

As the output levels are optimally chosen with respect to a farm’s productivity level

ϕit, the process parameter ρ may be estimated by means of the milk output per

farm. Let qit denote the milk yield per farm i and year t; we normalise the values
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20%.
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by the average farm level production over time q̄t =
1
n

n
j=1 qjt as follows:

qit = qit
q̄t

=
exp


φit

1−α


1
n

n
j=1 exp

 φjt

1−α

 . (4.62)

For simplicity we let ēt =
1
n

n
j=1 exp

 φjt

1−α


. Taking logs on both sides yields

log( qit) = log


exp


φit

1−α


ēt


=

φit

1− α
− log(ēt)

=
ρφi,t−1 + εit

1− α
− log(ēt) + ρ log(ēt−1)− ρ log(ēt−1)

= ρ log(ēt−1)− log(ēt) + ρ


φi,t−1

1− α
− log(ēt−1)


+

εit
1− α

= a+ ρ log(qi,t−1) + εit,
with εit ∼ N


0, σ2

ε

(1−α)2


. We apply this log-log specification to the FADN data and

estimate the parameters a, ρ and σ2
ε using a dynamic panel estimator in line with

Arellano and Bond (1991).6

6The dynamic model applied to panel data causes the lagged dependent to be endogenous
because of unobserved farm-specific effects. Accordingly, we use the second- and higher-order lags of
the output variables as instruments and estimate the model by the generalised method of moments
(cf. Bond (2002) for a similar model).
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Fixed costs

We infer the fixed costs cf from the development of the output distribution over time.

For simplicity we presume the costs to be constant over incumbents. To estimate the

average fixed costs we use the definition of the critical productivity level in (4.11).

Given that the transition from µq
t to µq

t+1 is induced by passing the exit-point xt,

our idea is to specify the fixed costs by estimating the critical productivity level as

a threshold. By (4.11), each firm at the critical productivity level φ = xt must be

indifferent between staying in or leaving the industry. Fixed costs are derived such

that the continuation value of the indifferent firms exactly offsets the liquidation

value, which is zero in the case without quota.

First we must calibrate the critical threshold level. Given that our base year is

2002, we log-normally approximate the distribution of milk output in 2002, denoted

by µq
2002. Accordingly, the 2002 productivity levels follow a normal distribution µφ

2002.

Second, according to (4.13) and (4.14) the distribution of productivity levels across

farms is uniquely determined by the current distribution, the stochastic productivity

process, and the entry/exit of farms. If µφ
2002 = N(ξ, σ2), then µφ

2003 is given by the

density function

mφ
2003(z) =

1
2π(σ2

ε + σ2ρ2)
e
− (z−(ρξ+ξε))

2

2(σ2
ε+σ2ρ2) (1− F̂ (x2002)) +

M2002
2πσ2

g

e
− (z−ξg)

2

2σ2
g , (4.63)

with F̂ being the density function of a N


σ2ρ(z−ξε)+σ2
εξ

σ2
ε+σ2ρ2

, σ2
εσ

2

σ2
ε+σ2ρ2


random variable.

The function constitutes a probability density as long as the mass of entry equals

the mass of exit. Presuming that M2002 = µφ
2002((−∞, x2002)), the density function

depends solely on the critical exit threshold x2002 for the given parameters.

Third, we will estimate the critical threshold level x2002 using the method of max-

imum likelihood (ML). To set up the likelihood function we use the observed and

independent farm-specific output values in 2003 (q1,2003, ..., qn,2003) and the corre-

sponding productivity levels φ1,2003, ..., φn,2003 based on equation (4.58):

L(x2002) =
n

k=1

mφ
2003(φk,2003;x2002). (4.64)

Maximising the likelihood function in (4.64) yields the estimate of the threshold

level.

The continuation value of a firm with productivity level φ = x2002 must coincide

with its liquidation value. If no tradable quota exists, firms giving up production
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will not be able to generate any positive liquidation value. That is why rt+1 = 0

must hold for all periods. Further, according to (4.11) the following equality must

hold: ∫
R

v2003(ϕ
′, y)dF (ϕ′|x2002) = 0. (4.65)

Since the continuation value contains the expected future profits, which in turn

include fixed costs and depend on future output prices, we choose the level of fixed

costs cf such that (4.65) is satisfied. For simplicity, we assume a constant price

sequence y = {p2003,0} consisting of the observed milk price in 2003.

Entry and quota costs

Given that the data contains a wide range of investment levels, determining a single

and reliable value for farm-specific entry costs remains a challenge. For this reason we

utilise the following three values, ce = 0/10, 000/20, 000 e in our calculations. The

low entry costs may describe a situation in which farms possess stable capacities that

are unused due to quota constraints but can easily be converted to new production

units. In contrast to this, the medium and high entry costs may refer to a case in

which such unused stable capacities do not exist but must be built from scratch by

new firms.

If the industry is constrained by a quota, new firms must buy production rights

in addition to the constant entry costs. To determine quota costs in the model,

we use the relation that under a tradable quota the quota costs coincide with the

liquidation value. Referring to the theoretical model, the total industry mass μt(R)

is determined by the balance of farms leaving and entering industry. For this reason,

we define the quota costs as an upward-sloping function of the industry mass

k(μt(R)) =
cf
2
exp

[
100 (μt(R)− 1)

]
. (4.66)

The function k rises extremely if the mass of new farms outweighs the exiting

ones, and the total industry mass exceeds one. At this point, entry is no longer

profitable, and hence μt(R) = 1 serves as a rough upper boundary to the industry’s

size. Under production quotas, entry costs are composed of the quota costs and the

constant part ce, that is, kt = ce + k(μt(R)). The exit premium rt, which is the

value that firms receive while selling their production rights in the case of exiting

the sector, equals (4.66). By this definition we guarantee that the quota confines the

total size of the industry.
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Upper production boundary (for the quota case)

The maximum firm-specific output is bounded under a production quota. As the

upper boundary must hold for all farms, it does not seem appropriate to simply

take the maximum observable output value from the data as a proxy for this. In

this case, the upper boundary would be so high that too many farms are left with

the chance to grow and increase their output, thus making the production quota

ineffective. Therefore, as a compromise we opted for a value qmax = 600 t that is

above the farms’ average milk output, but below the maximum observable output

level.

Table 4.1 summarises the calibrated parameter values. The estimated stochastic

productivity process is ρ = 0.99, that is, close to one and almost a random walk.

Together with the rather low volatility measure σ2
ε = 0.0009, this indicates that

farms operate at a rather stable productivity level over time. That is, a farm with

productivity φt = φ̄ in period t will likely achieve a similar productivity level in the

consecutive period t+ 1. Note that one time period represents one year.

The fixed costs (cf ) value captures all costs in the production process that do not

vary in production output such as fixed insurance rates, expenditures for pensions, as

well as depreciation of machinery and buildings stemming from previous investments.

Related to prices and output quantities observed, the specified fixed costs seem to

be at a relatively low level. Still, every farm not able to cover this absolute value

with its production profits will be forced to leave the industry. One should keep in

mind that those fixed costs are also paid by new farms once they have entered the

industry. Thus, the additional but constant entry costs ce, comprise all additional

investments that are obligatory to set up production but are not covered by the

fixed costs and do not involve quota cost.

4.5.3 Equilibrium calculation

Because of the numerical effort it is convenient to calculate both the stationary and

the dynamic equilibrium in a discrete framework. This requires us to determine a

finite state space for the firm-specific productivity values and transform the origi-

nally continuous setup into a discrete one. Here, we apply the method described by

Tauchen (1986).

In relation to the estimated distribution of new firms G = N(ξg, σ
2
g) and the
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Functional form Specified parameters

Demand function D(Q) =
(

Q
b

)− 1
η

b = 81, 470; η = 1.00

Cost function c(ϕ, q) = h
(

q
exp(ϕ)

) 1
α

h = 0.0376; α = 0.86

Productivity process ϕt+1 = ρ ϕt + εt+1, and εt+1 ∼ N(ξε, σ2
ε) ρ = 0.99; ξε = −0.0027; σ2

ε = 0.0009

Starting distribution μ0 = N(ξ0, σ2
0) ξ0 = 0.0000; σ2

0 = 0.0085

Distribution of new firms G = N(ξg , σ2
g) ξg = 0.0150; σ2

g = 0.0105

Discount factor – β = 0.9

Fixed costs – cf = 4, 602 e

Entry costs (free access) – ce = 0/10, 000/20, 000 e

Max. possible output – qmax = 600 t

Table 4.1: Utilised functional forms and estimated parameters
Source: Estimations based on Farm Accountancy Data Network

volatility of the AR(1)-process, we define the discrete state space as a (row) vec-

tor s = (s1, ..., sn) consisting of n = 1, 000 equidistant points inside the interval

[−0.4, 0.6]. If w = |sj+1 − sj| denotes the distance between two consecutive states,

the distribution of new firms is reflected by a stochastic (row) vector g = (g1, ..., gn),

with

gj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G
(
sj +

w
2

)
, if j = 1

G
(
sj +

w
2

)−G
(
sj − w

2

)
, if 1 < j < n

1−G
(
sj − w

2

)
, if j = n.

(4.67)

The stochastic productivity process turns into a n × n transition matrix P = (pij)

with conditional probability pij = Prob(ϕt+1 = sj|ϕt = si). Based on the estimated

AR(1)-process, we define the transition probability for any fixed productivity level

ϕ = si by

pij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F
(
sj +

w
2
|si
)
, if j = 1

F
(
sj +

w
2
|si
)− F

(
sj − w

2
|si
)
, if 1 < j < n

1− F
(
sj − w

2
|si
)
, if j = n.

(4.68)

Here, F denotes the conditional cdf that refers to the estimated AR(1)-process

(see (4.3)). The state of the industry in period t is represented by a (row) vector

μt = (μt
1, ..., μ

t
n) in which the value μt

j displays the mass of firms with productivity

level ϕt = sj. The total mass of the industry, which was denoted by μt(R) in the

continuous framework, is now equal to μt(s) =
∑n

j=1 |μt
j|. The industry dynamics

can be determined as follows. For any entry-mass M and exit-point si−1 < x ≤ si,
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we define the matrix

Px =



0 · · · 0
...

...

0 · · · 0

pi1 · · · pin
...

...

pn1 · · · pnn


. (4.69)

The industry structure in period t+ 1 is then given recursively by

µt+1 = µt · Px +M · g. (4.70)

The aggregate industry output that arises from an industry structure µt and output

price pt is equal to

Qs(µt, pt) = µt ·


q∗t (s1, pt)

...

q∗t (sn, pt)

 . (4.71)

Hence, the market clearing output price pmc
t (µt) is the unique solution to the equa-

tion pt = D(Qs(µt, pt)).

To calculate a dynamic equilibrium in the finite time horizon T < ∞, we apply

the same fixed point concept as in the existence proof (see Section 4.4). This means,

we construct a mapping τ : R2T → R2T such that a fixed point of this mapping

corresponds with the dynamic equilibrium. The numerical approach presented here

can be used to compute a quota-constrained as well as a quota-free equilibrium.

For any given starting distribution µ0 and entry/exit-vector (x,M) ∈ R2T , we

can determine the industry structures µ1, ..., µT according to the (discrete) transi-

tion rule (4.70). Based on these structures, we can immediately derive the market

clearing output prices pmc = (pmc
1 , ..., pmc

T ) and the entry costs k1, ..., kT . By defi-

nition kt = ce if no quota exists, and kt = ce + k(µt(s)) if the industry is subject

to a quota. The firms’ liquidation value is thus given by rt = k(µt(s)) in case of a

tradable quota and by rt = 0 otherwise. This allows us to specify the firms’ value

for every period t and productivity level si by means of backward induction. The

value function in the last period is reflected by the (column) vector

vT =


π(s1, p

mc
T )

...

π(sn, p
mc
T )

 . (4.72)
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With this vector at hand, we can work backwards and specify the value function for

all other times t = 1, ..., T − 1 by

vt =


π(s1, p

mc
t )

...

π(sn, p
mc
t )

+ β max



rt+1

...

rt+1

 , P · vt+1

 . (4.73)

With respect to these vectors, we can now derive new exit-points xt and entry-massesMt.

The firms’ continuation value is given by the vector vct+1 = P · vt+1. This means,

the i-th entry of the vector vct+1 represents the continuation value of a firm with

current productivity level φt = si. By definition, the exit-point xt refers exactly to

the smallest value si ∈ {s1, ..., sn} such that vct+1(si,p
mc) ≥ rt+1 > vct+1(si−1,p

mc).

The new entry-masses are computed as Mt = max {0 , g · vt+1 − kt+1 +Mt}. This
defines the mapping τ(x,M) = (x,M). The finite dynamic equilibrium can be

derived with any algorithm that is suitable to find a fixed point of τ .

The approach to calculate a stationary equilibrium pretty much resembles the

procedure for the finite dynamic case. Again, we construct a mapping τ , whose

fixed point is equal to a stationary equilibrium. In contrast to the finite dynamic

case, however, the dimension of this mapping reduces significantly as τ : R2 → R2.

Any combination of exit-point and entry-mass (x,M) ∈ R2 is associated to a

stationary distribution by the condition µ = Px · µ +M · g. If I denotes the n × n

identity matrix, the stationary distribution can simply be computed with the formula

µ = M · g · (I − Px)
−1. (4.74)

For the stationary industry structure µ we can derive the market clearing output

price pmc, the entry costs k = ce (quota-free) or k = ce+k(µ(s)) (quota-constrained),

and the liquidation value r.

The value function is represented by a n-dimensional (column) vector v that

contains the firm value for every productivity level s1, ..., sn and satisfies the equation

v =


π(s1, p

mc)
...

π(sn, p
mc)

+ β max



r
...

r

 , P · v

 (4.75)

Due to the contraction property (β < 1), we can choose an arbitrary initial vec-

tor and iterate on the value function until a sufficient degree of convergence is
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reached. Analogous to the finite dynamic equilibrium, the firms’ continuation value

is vc = P · v, and the new exit-point x is the smallest value si ∈ {s1, ..., sn} such

that vc(si, p
mc) ≥ r > vc(si−1, p

mc). The entry-mass M = max {0 , g · v − k +M}
completes the mapping τ(x,M) = (x,M). It is obvious that a stationary equilibrium

coincides with the fixed point of the mapping τ . Hence, the stationary equilibrium

can be computed with any suitable fixed point algorithm.

4.5.4 Findings

First we present the steady-state results. We have computed stationary equilibria

for three scenarios, which reflect three different eras of the milk market policy in the

EU. First is a scenario with a non-tradable milk quota that was effective in the early

years. Second is a scenario with a tradable milk quota that came later, and third is a

deregulated market without any production quota, which has been prevailing since

April 2015. The calculations were carried out with the calibrated parameter values

as presented in Table 4.1, and we applied the numerical method described above.

The stationary equilibrium results are presented in Table 4.2, and include the

following: the product price p∗, the aggregate milk output Q∗ (projected for West-

ern Germany), the size of the dairy industry represented by the measure µ(R), the
mass of firms entering the dairy industry M∗, the critical exit-point x∗ defining the

productivity threshold whether firms stay in the dairy industry, the average pro-

ductivity φ̄, as well as the average output of the firms q̄. Further, we present the

turnover rate that relates the mass of entering firms to the total size of the industry,

and thus captures the long-run industry dynamics.

The level of milk prices as shown in Table 4.2 is rather close to observed milk

prices in the EU. This shows that the calibration of the model produces reason-

able results. As expected the price (aggregate output) is higher (lower) under quota

regimes compared to an unregulated sector. The price (quantity) effects are higher

for a non-tradable quota. We note that the differences in prices between the three

scenarios depend on the size of the entry costs. The lower the entry costs are, the

more pronounced are the differences in prices and quantities. This finding can be

explained by the fact that entry costs have a similar effect to quota costs.

Comparing the turnover rates reveals that the industry dynamics are slowed down

by a non-tradable quota. Over all levels of entry costs, the steady state distribution

under a non-tradable production quota reveals the lowest average productivity level.

This holds particularly under low or medium entry cost levels, where output prices
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Scenario Output Agg. Total Entry Exit Avg. Avg. Turnover
Price Output Ind. Mass Mass Point Prod. Output Rate

p∗ (ct/kg) Q∗ (Mio. t) μ(R) M∗ x∗ ϕ̄ q̄ (in t) (in %)
ce = 0 e
Non-trad. quota 29.007 24.548 1.015 0.041 -0.047 0.108 276.7 4.04
Trad. quota 27.222 26.158 1.014 0.246 0.101 0.165 295.1 24.26
No quota 25.198 28.258 1.427 0.351 0.102 0.165 226.6 24.60

ce = 10,000 e
Non-trad. quota 29.025 24.533 1.020 0.040 -0.049 0.107 275.1 3.92
Trad. quota 28.016 25.417 1.006 0.088 0.024 0.146 289.1 8.75
No quota 27.318 26.066 1.008 0.078 0.015 0.141 296.0 7.74

ce = 20,000 e
Non-trad. quota 29.113 24.459 1.012 0.038 -0.052 0.105 276.5 3.75
Trad. quota 28.757 24.762 0.997 0.051 -0.024 0.121 284.2 5.12
No quota 28.456 25.024 0.867 0.042 -0.028 0.119 330.4 4.84

Table 4.2: Stationary equilibrium outcome for the calibration shown in Table 4.1
Source: Author’s own calculations

are considerably higher compared to the scenario without quota. This in turn leads

to a relatively small exit-value, that is, even rather unproductive firms keep produc-

ing, whereas under free market conditions only more productive firms would stay in

the industry. Accordingly, a lower turnover rate is observed under a non-tradable

quota. Surprisingly, we find the opposite result for the tradable quota regime at least

for medium and high entry costs. That is, the tradable quota does not reduce the

speed of adjustment within the industry as compared to the non-tradable quota.

This can be explained by the higher critical productivity (exit-point) that prevails

under tradable quota. The larger exit-points reflect the opportunity to sell quota,

which in turn increases the incentive for less productive firms to leave the industry.

Also noteworthy is the higher average firm-specific productivity level under a

tradable quota regime compared to a scenario without a quota. This can again be

explained by the increased incentive of unproductive firms to exit induced by the

quota value serving as an exit premium. Moreover, the hurdle rate is higher for en-

tering firms due to quota acquisition costs. An interesting outcome can be observed

for the average firm-specific output level. When the entry costs are zero, the aver-

age output level under a production quota is higher than in the scenario without a

quota. This is somewhat astonishing since the firm-specific output is bounded under

a quota regime. As the optimal firm-specific output is an upward-sloping function of

the output price, however, the significantly lower price causes firms to produce less

output in the equilibrium. This is the reason why the unconstrained output level is

lower on average.

The entire distribution of the productivity levels is displayed in Figure 4.5. The

area below these curves coincides exactly with the total industry mass. Apparently,

93



−0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

6
Stationary equil. distributions for ce=0

z = Productivity level

m
(z

) =
 D

en
si

ty
 fu

nc
tio

n

 

 

no quota
trad. quota
non−trad. quota

−0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

6
Stationary equil. distributions for ce=10000

z = Productivity level

m
(z

) =
 D

en
si

ty
 fu

nc
tio

n

 

 

no quota
trad. quota
non−trad. quota

−0.4 −0.2 0 0.2 0.4 0.6
0

1

2

3

4

5

6
Stationary equil. distributions for ce=20000

z = Productivity level

m
(z

) =
 D

en
si

ty
 fu

nc
tio

n

 

 

no quota
trad. quota
non−trad. quota

Figure 4.5: Stationary equilibrium distributions of productivity levels φ
Source: Author’s own calculations

the distribution of firm-specific productivity for a non-tradable quota is not signifi-

cantly affected by the level of the entry costs. In contrast to this, the productivity

distribution in the no-quota case is rather sensitive to changes in the entry costs. If

the entry costs are zero, the stationary distribution without a quota differs notably

from the quota-constrained distributions. The graphs illustrate, however, that the

differences between a quota-constrained and a quota-free stationary equilibrium de-

cline as the entry costs increase. This finding is also supported by the results in Table

4.2. We therefore conclude that the impact of a production quota on the long-run

equilibrium diminishes with increasing entry costs and can be be interpreted in the

long-run as additional entry costs.

Relating these findings to the empirical distribution of the Western German

milk production industry, consolidation processes have been noted over time. Zim-

mermann and Heckelei (2012) note that high prices, as was the case under the quota

regime, might lead to industry structure conservation. In contrast to their empirical

estimation approach, we find differences in the industry structure under different

quota schemes, which can be traced back to the production limitation.

Next, we turn to the short-run adjustment of the industry. Tables 4.3–4.5 depict

the evolution of the industry under a fading quota regime for the different levels

of entry costs. Starting with the steady state equilibrium under a tradable quota,

farmers anticipate that production quotas will be ceased after five years. This means

that the time lag between the announcement and the actual end of the milk quota

regime is five years, which mimics the situation that dairy farmers faced in the EU.

We decided to restrict the total time horizon to 100 periods when calculating the

dynamic equilibrium. Although it would be possible to consider even longer time

horizons, we find that the additional effect, which a time extension would have on

the crucial first 20 periods, is extremely small. We thus refrain from presenting more

than 20 periods.

94



Period Output Agg. Total Entry Exit Avg. Avg. Quota
Price Output Ind. Mass Mass Point Prod. Output Costs

t p∗t (ct/kg) Q∗
t (Mio. t) μt(R) M∗

t x∗
t ϕ̄t q̄t (in t) (ct/kg)

Stat. equil.
27.222 26.158 1.014 0.246 0.101 0.165 295.1 7.4

(Trad. quota)
1 27.209 26.170 1.016 0.236 0.097 0.166 294.6 9.2
2 27.209 26.170 1.014 0.227 0.096 0.167 295.3 7.4
3 27.213 26.166 1.011 0.220 0.095 0.168 296.1 5.5
4 27.223 26.157 1.007 0.212 0.094 0.168 297.3 3.5
5 27.242 26.139 0.999 0.205 0.094 0.169 299.3 1.6
6 25.155 28.307 2.446 1.676 0.102 0.077 132.4 0
7 25.154 28.307 2.086 1.033 0.102 0.107 155.2 0
8 25.154 28.307 1.903 0.742 0.102 0.125 170.1 0
9 25.155 28.307 1.799 0.594 0.102 0.136 180.0 0
10 25.155 28.307 1.734 0.514 0.102 0.143 186.8 0
11 25.155 28.307 1.689 0.466 0.102 0.148 191.8 0
12 25.155 28.307 1.656 0.437 0.102 0.151 195.6 0
13 25.155 28.307 1.631 0.417 0.102 0.154 198.6 0
14 25.155 28.307 1.610 0.403 0.102 0.155 201.1 0
15 25.155 28.307 1.593 0.393 0.102 0.157 203.3 0
16 25.155 28.307 1.579 0.386 0.102 0.158 205.1 0
17 25.155 28.307 1.566 0.380 0.102 0.159 206.8 0
18 25.155 28.307 1.556 0.375 0.102 0.160 208.2 0
19 25.155 28.307 1.546 0.371 0.102 0.161 209.5 0
20 25.155 28.307 1.537 0.368 0.102 0.161 210.7 0

Stat. equil.
25.198 28.258 1.427 0.351 0.102 0.165 226.6 0

(No quota)

Table 4.3: Dynamic equilibrium outcome for entry costs ce = 0 e
Source: Author’s own calculations

Table 4.3 describes the connecting path from the stationary equilibrium with

tradable quota to the one without quota. We find that in the first five periods, a

quota has a positive value to farms which is, however, declining. This development

could actually be observed in the years prior to the quota being abolished in the

EU. Due to the depreciating quota value, the exit option becomes less attractive

to incumbents, and the critical productivity threshold for staying in the industry

decreases in the last quota constrained periods.

As long as the industry is subject to the tradable production quota, the output

price stays at a relatively high level. Moreover, the output price may even increase

if the industry approaches the final periods of the quota regime. In period six, the

first year without a quota, however, the output price drops significantly. If the entry

costs are zero, this price decline is the result of the large mass of new firms and

the increased total industry mass. Tables 4.4 and 4.5 show that the price effect is

less pronounced for higher entry costs. In this case, the total size of the industry

shrinks right after the quota removal since the number of exiting firms exceeds the

mass of entrants. Hence, the declining output price is not provoked by the entry of

additional production units but by the repeal of the firm-specific output boundary.

Very productive farms whose output has been constrained by the quota can now

extend their production. This leads to an increased aggregate industry output and
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Period Output Agg. Total Entry Exit Avg. Avg. Quota
Price Output Ind. Mass Mass Point Prod. Output Costs

t p∗t (ct/kg) Q∗
t (Mio. t) μt(R) M∗

t x∗
t ϕ̄t q̄t (in t) (ct/kg)

Stat. equil.
28.016 25.417 1.006 0.088 0.024 0.146 289.1 2.7

(Trad. quota)
1 28.011 25.421 1.009 0.087 0.023 0.146 288.4 3.6
2 28.017 25.415 1.007 0.082 0.022 0.146 288.9 2.9
3 28.028 25.405 1.004 0.078 0.021 0.146 289.6 2.2
4 28.046 25.390 1.000 0.072 0.019 0.146 290.6 1.5
5 28.074 25.364 0.992 0.064 0.017 0.147 292.4 0.7
6 27.318 26.066 0.943 0.016 0.015 0.153 316.4 0
7 27.317 26.066 0.962 0.063 0.015 0.148 310.1 0
8 27.317 26.066 0.969 0.072 0.015 0.146 307.8 0
9 27.318 26.066 0.973 0.075 0.015 0.145 306.5 0
10 27.318 26.066 0.976 0.076 0.015 0.145 305.5 0
11 27.318 26.066 0.979 0.077 0.015 0.144 304.6 0
12 27.318 26.066 0.981 0.077 0.015 0.144 303.9 0
13 27.318 26.066 0.984 0.077 0.015 0.144 303.2 0
14 27.318 26.066 0.985 0.077 0.015 0.143 302.7 0
15 27.318 26.066 0.987 0.078 0.015 0.143 302.2 0
16 27.318 26.066 0.989 0.078 0.015 0.143 301.7 0
17 27.318 26.066 0.990 0.078 0.015 0.143 301.3 0
18 27.318 26.066 0.991 0.078 0.015 0.143 300.9 0
19 27.318 26.066 0.992 0.078 0.015 0.142 300.5 0
20 27.318 26.066 0.993 0.078 0.015 0.142 300.2 0

Stat. equil.
27.318 26.066 1.008 0.078 0.015 0.141 296.0 0

(No quota)

Table 4.4: Dynamic equilibrium outcome for entry costs ce = 10000 e
Source: Author’s own calculations

goes along with a moderate price drop.

The average productivity levels were found to increase in the last five quota pe-

riods, irrespective of entry cost levels. What actually happens after quota removal

depends on the size of entry costs, though. If the entry costs are zero, the average

productivity level sharply declines after the market has been opened because of the

new entrants and the considerably lower output price. But after reaching its peak in

the first post-quota period, the industry starts to shrink in terms of production units

(net exit of firms). This means more and more unproductive firms cease production,

and the average productivity level soars again. In contrast to this, the average pro-

ductivity level spikes immediately after the quota removal if the entry costs are at

either a medium or high level. As less (or even no firms) enter the industry right

after the quota has been abolished, the rise in average productivity is simply gener-

ated by the exit of the least productive firms. Nevertheless, the average productivity

decreases again by the time more firms enter the industry.

The development of average output values resembles the sequence of average pro-

ductivity levels to some extent. If the entry costs are zero, the average firm-specific

output drops extremely after the quota removal and recovers thereafter. When the

entry costs are higher, however, the average output level increases up to a peak

value before it adjusts to the steady state solution. The latter case has exactly been
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Period Output Agg. Total Entry Exit Avg. Avg. Quota
Price Output Ind. Mass Mass Point Prod. Output Costs

t p∗t (ct/kg) Q∗
t (Mio. t) μt(R) M∗

t x∗
t ϕ̄t q̄t (in t) (ct/kg)

Stat. equil.
28.757 24.762 0.997 0.051 -0.024 0.121 284.2 1.0

(Trad. quota)
1 28.753 24.765 0.998 0.052 -0.023 0.121 283.9 1.1
2 28.763 24.756 0.995 0.046 -0.024 0.121 284.6 0.8
3 28.784 24.738 0.990 0.040 -0.026 0.121 285.9 0.5
4 28.825 24.703 0.980 0.032 -0.028 0.122 288.5 0.2
5 28.956 24.592 0.942 0.000 -0.030 0.125 298.8 0.0
6 28.054 25.382 0.900 0.000 -0.021 0.129 322.5 0
7 28.129 25.314 0.871 0.000 -0.023 0.131 332.5 0
8 28.203 25.248 0.845 0.000 -0.024 0.132 342.0 0
9 28.276 25.183 0.821 0.000 -0.026 0.133 350.9 0
10 28.348 25.119 0.799 0.000 -0.027 0.134 359.9 0
11 28.420 25.055 0.776 0.000 -0.027 0.135 369.2 0
12 28.427 25.049 0.788 0.033 -0.028 0.131 363.5 0
13 28.427 25.049 0.797 0.040 -0.028 0.129 359.7 0
14 28.427 25.049 0.803 0.041 -0.028 0.128 356.9 0
15 28.427 25.049 0.808 0.041 -0.028 0.127 354.6 0
16 28.427 25.049 0.813 0.042 -0.028 0.126 352.5 0
17 28.427 25.049 0.817 0.042 -0.028 0.125 350.6 0
18 28.427 25.049 0.821 0.042 -0.028 0.124 348.9 0
19 28.427 25.049 0.825 0.042 -0.028 0.124 347.4 0
20 28.427 25.049 0.828 0.042 -0.028 0.123 346.0 0

Stat. equil.
28.456 25.024 0.867 0.042 -0.028 0.119 330.4 0

(No quota)

Table 4.5: Dynamic equilibrium outcome for entry costs ce = 20000 e
Source: Author’s own calculations

observed in the European Union after the milk quota removal in April 2015. One

reason might be that once the herd size has been determined, farmers tend to pro-

duce more to cover fixed costs. As noted by the EU commission’s short term outlook

(13/2015), this effect seems to be more pronounced in grass-fed production systems,

that is, rather affordable forage systems.

Summing up, we can conclude that the short-run adjustments after a quota re-

moval depend on the size of the fixed entry costs. This refers particularly to the

mass of entering firms, the average productivity level, and the average firm output,

as these parameters follow substantially different adjustment paths for low and high

entry costs. The adjustment paths in Tables 4.3–4.5 indicate, however, that irre-

spective of the entry costs any parameter sequence converges to its unconstrained

stationary solution. Hence, the industry tends to the quota-free steady state in the

course of time.
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4.6 Final remarks

This chapter has examined how a constrained sectoral production capacity in the

agricultural industry affects farms’ entry and exit decisions. We have presented a

method to incorporate tradable/non-tradable production quotas into a dynamic

stochastic framework with endogenous entry and exit of firms. The long-run effects

of the quota on industry structure are evaluated by comparing steady state equilib-

ria with and without production constraints. However, the concept of a stationary

equilibrium does not fully capture the dynamics of an industry. To trace changes of

the sector composition and the productivity distribution over time, we additionally

calculate finite dynamic equilibria for a fading out scenario of the milk quota, as

recently took place in the EU.

Our results have important implications for the economic appraisal of produc-

tion quotas. Quotas have not only been criticised for negative welfare effects due to

price distortions. It has also been argued that the introduction of production quotas

hinders adjustment processes in an industry and thus retains inefficient production

structures (Colman, 2000). Our results show that this simple view on the effect of

production quotas needs to be qualified, particularly when discussing the fading out

of production quotas. We find that a non-tradable quota reduces firm turnover and

leads to lower average productivity levels, but this is not always true for a tradable

quota. A tradable milk quota regime may instead increase the turnover as well as

average productivity of firms. This happens if entry costs accrue that reduce firms’

willingness to enter the market, irrespective of whether a quota exists or not. In

that case the fluctuation of firms is rather low and a tradable quota provides an

incentive for firms with low productivity to cease production that does not exist in

an unregulated market.

The results of the finite dynamic equilibrium model are particularly useful for

understanding the current development in the EU dairy sector. Our model correctly

predicts the decline of the quota price during the fading out phase of the quota

regime. The model also offers an explanation for the drop in milk prices that could

be observed shortly before and after the removal of the quota. The further develop-

ment of milk prices, however, hinges on the level of entry costs. In the case of low

entry costs, the industry adjusts rather quickly to the new steady state equilibrium

since new firms readily enter the market. In contrast, under high entry costs new

farms are reluctant to enter the market, even though quota costs no longer accrue.

The increase of aggregated output rather results from the productivity growth of
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incumbent farms, and prices eventually recover from the plunge after quota removal.

In reality, entry costs vary considerably among firms. While some farms can acti-

vate idle production capacities at low marginal costs, others will incur considerable

investment costs. Moreover, environmental regulations, such as the new phosphate

directives in the Netherlands, constitute a limiting factor to dairy farms that is com-

parable to a production quota for milk.

In view of the current milk crisis, bailout plans for milk producers in jeopardy

may help in the short run but this may also provide incentives for rather unproduc-

tive firms to continue. In view of our findings, such short-run market interventions

should be discussed more critically since the turnover of firms cannot be prevented,

and propping up unproductive firms for too long may only lead to a longer tran-

sition phase before reaching the steady state. Our results further contribute to the

debate over using voluntary quantity limitations to stabilise milk prices: quantity

limitations do not prevent industry dynamics–depending on other costs, dynamics

might even be accelerated. Thus, from an economic perspective, the intervention

in the short run is not well justified, and further de-regulation should be pushed

forward rather than re-activating price support or production limitation schemes.
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5. Conclusions

The agricultural industry is a sector that has undergone a significant consolidation

process for quite some decades now. Exemplary for this is the decreasing number of

farms on the one hand, and the increasing average farm size on the other hand. This

thesis has investigated to what extent this development can be explained by limited

sectoral production capacity that exists in terms of agricultural land or is generated

by a production quota. As many other studies dealing with industry dynamics do

not account for the resulting direct interdependency between firm entry and exit,

the focus has been on incorporating this feature into a theoretic model. I opted for

a dynamic stochastic framework here because it is suitable to consider the industry

as a whole, and it simplifies the integration of a sectoral capacity limit. Moreover,

the introduction of firm-specific uncertainty allows us to display the heterogeneous

industry structure that exists in agriculture. The assumption of uncountable small

firms forming the industry (a continuum) secures that changes in the industry struc-

ture are really induced by entry/exit decisions on a microeconomic level. A further

benefit of this approach is that the uncertainty washes out at the aggregate level,

and the evolution of industry structure follows deterministic paths. Changes in the

sector’s composition can thus be traced in much detail.

The analysis in Chapter 3 has shown that the industry adjusts to a steady state

in the long-run no matter what the current industry structure is. Although many

studies implicitly assume such a behaviour, it is by no means a trivial result. As I

pointed out in Example 3.1, even small violations of the model assumptions may

prevent the convergence to a stationary equilibrium and lead to an alternating devel-

opment instead. Such a development can also occur, of course, if external parameters

do not remain constant over time but are subject to variations. Increasing fixed or

entry costs, a fluctuating consumer demand, or a changing entry distribution lead

to a perpetual adjustment and prevent the persistence of a steady state. The proof

illustrates, however, that during a period in which the external environment remains

stable there is always the tendency to achieve a steady state. According to Section
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3.6, this tendency is still valid when the entry distribution stochastically increases

over time and converges to a limiting distribution. The speed, at which the industry

approaches the ultimate steady state in this case, is clearly reduced though.

Although some interesting findings could be derived from this dynamic, stochas-

tic modelling, the utilised framework has also some drawbacks. First, the model

abstracts from output price stochasticity, which seems unrealistic considering the

volatility of agricultural markets in general and milk markets in particular. Aggre-

gate uncertainty could be introduced through demand shocks. However, this would

generate real options effects and complicate the firms’ decision problem consider-

ably as the firms’ value function would depend on two random processes. Therefore,

most research studies consider either aggregate or idiosyncratic uncertainty, but do

not include both at the same time. Second, we virtually treat production capacity

as a homogeneous good, and assume that a unique capacity value emerges in an

equilibrium. While this assumption certainly applies to a quota regime, it is less ac-

curate for agricultural land. In fact, a wide range of price levels exists in agricultural

land markets as both soil quality and regional circumstances, such as high livestock

density or biogas production in a region, play an important role (cf. Hüttel et al.,

2013). It is difficult, however, to account for such spatial differences in a dynamic

stochastic equilibrium model. An econometric or game theoretic approach might be

more suitable to explain such price differences and analyse local industry dynamics.

Although arable land features some anomalies as production factor, its limited

availability seems to have a comparable impact on farm entry and exit as a trad-

able production quota. According to the stationary equilibria in Section 4.5.4, this

means particularly that adjustment processes within the agricultural sector can be

accelerated, and the firm turnover rate may be higher. These findings are based on

the comparison of steady states. The question arises, however, whether the industry

is actually in such a steady state, or whether it will at least attain such a state in the

future. The observable changes in the firm size distribution indicate that the agri-

cultural industry is rather not in a steady state (see Figure 1.1 or Figure 4.2). One

possible explanation for this may be that investments in the agricultural industry are

usually made by established farms and not so much by completely new farms. In fact,

incumbents often possess different investment options than new firms, particularly

when they can benefit from economies of size. The presented dynamic, stochastic

equilibrium model, however, does not include economies of size. Any kind of firm,

either new or established, must formally enter the industry to set up an additional

marginal production unit. If the entry distribution remains constant, the average
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productivity of such a production unit is the same at all times. This might not be

realistic, considering that predominantly established farms invest in additional pro-

duction units, and also technological progress increases the firms’ productivity. A

possible way of adapting the model to this feature could be to proceed as in Section

3.6 and allow for shifts in the entry distribution. This could reflect the common

observation that the structure in the agricultural industry is still changing.

The agricultural sector is not the only industry operating at a capacity limit. In

fact, there are also some other prominent industries that have to deal with a capacity

limit. Generally, such a shortage of production capacity arises either from natural

reasons or is induced by institutional policies. The arable land area, for instance,

constitutes a natural boundary to the total production capacity and falls into the

first category. But, also the limited takeoff/landing spots at highly frequented air-

ports can be cited here as they confine the maximum number of airlines operating at

that airport (cf. Borenstein, 1988). In contrast to this, the second case occurs when-

ever governments decide to issue broadcasting licenses or introduce a quota system

(cf. Hoppe et al., 2006). Examples for this are the milk quota, of course, or the

carbon dioxide (CO2) emission rights, which are intended to reduce the greenhouse

gas emissions and have been imposed essentially on manufacturing and energy gen-

erating firms (cf. Ishikawa and Kiyono, 2006; Elliott et al., 2010; Scotchmer, 2011).

These are just few examples of industries that have already been affected by lim-

ited sectoral production capacity. Although the milk quota in the European Union

was abolished recently, the impact of limited capacity on the industry dynamics

might gain even more attention in the future. Particularly industries relying on non-

reproducible production factors or natural resources might be concerned by limited

production capacity. The introduction of CO2 certificates by various governments

shows that also ecological damages caused by firms belong to this category. Although

I particularly focused on the milk quota in Western Germany, the utilised framework,

as well as some major results, can surely be transferred to other quota regimes, too.

Therefore, this work offers some interesting insights for those policy-makers, who de-

cide on introducing quota systems. Nevertheless, the impact of a production quota

on the industry dynamics should not be the only decision criterion when it comes to

introducing or abolishing a quota regime. A further important question related to

this topic but going beyond the scope of this study is how a quota affects producer

and consumer surplus. While a production quota often leads to a higher output

price, and thus entails a lower consumer surplus, its impact on the producer surplus

is not clearly defined. A deeper investigation of this issue is necessary though for a
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final assessment of production quota.
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A. Appendix

A.1 General mathematical concepts and theorems

Theorem A.1 (Banach Fixed Point Theorem). Suppose that N is a non-empty,

closed set in a Banach space, and the operator τ : N → N is contractive, i.e.

∥τ(x)− τ(y)∥ ≤ ρ ∥x− y∥

for all x, y ∈ N and some 0 ≤ ρ < 1. Then τ has a fixed point, which means, there

exists an element x ∈ N such that τ(x) = x.

Theorem A.2 (Brouwer Fixed Point Theorem). Suppose that N is a non-empty,

compact, convex subset of Rn, where n ≥ 1, and that τ : N → N is a continuous

mapping. Then τ has a fixed point, which means, there exists an element x ∈ N

such that τ(x) = x.

Theorem A.3 (Schauder Fixed Point Theorem). Let N be a nonempty, compact,

convex subset of a Banach space and τ : N → N a continuous mapping. Then τ has

a fixed point, which means, there exists an element x ∈ N such that τ(x) = x.

Theorem A.4 (Dini’s Theorem on Uniform Convergence). Let K be a compact

metric space and f : K → R a continuous function. Let fn : K → R (n ∈ N) be a

sequence of continuous function such that {fn}n∈N converges pointwise to f and

fn+1(x) ≥ fn(x), ∀ x ∈ K and n ∈ N.

Then the convergence is uniform, meaning ∥fn − f∥sup = supx∈K |fn(x)− f(x)| → 0

for n → ∞. The same statement applies to a decreasing sequence fn+1 ≤ fn.
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The total variation norm (TV-norm) is defined for signed measures µ ∈ M(S,B).
Signed measures, in general, do not need to be positive. They may assign either

positive or negative values to sets A ∈ B(S). The definition of the TV-norm rests

upon the next theorem.

Theorem A.5 (Jordan Decomposition Theorem). Let µ ∈ M(S,B) be a signed

measure and S+, S− ∈ B(S) a disjoint decomposition of S such that µ(A) ≤ 0 for

A ⊆ S− and µ(A) ≥ 0 for A ⊆ S+. In this case uniquely determined non-negative

measures µ+ and µ− exist that satisfy:

(i) µ = µ+ − µ−

(ii) µ+(A) = µ(A ∩ S+) and µ−(A) = µ(A ∩ S−)

Definition A.1 (Total variation norm). Let µ ∈ M(S,B) be a signed measure with

Jordan decomposition (µ+, µ−). The measure

|µ| := µ+ + µ− (A.1)

is called variation of µ. The total variation is defined as the value

∥µ∥TV := |µ|(S) = µ+(S) + µ−(S). (A.2)

An equivalent formulation of the total variation norm is

∥µ∥TV = sup


n

k=1

|µ(Ak)| : A1, ..., An form finite disjoint decomposition of S


.

Definition A.2 (Mutually singular measures). Let µ, λ ∈ M+(S,B) be finite and

non-negative measures. If there are disjoint sets A,B ∈ B such that µ(C) = µ(C∩A)
and λ(C) = λ(C ∩B) for all C ∈ B, then µ and λ are mutually singular. Notation:

µ⊥λ.
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Lemma A.6. Let µ1, µ2 ∈ M1(S,B) be probability measures. Then there are non-

negative measures λ and α1, α2 such that:

(i) µk = λ+ αk, for k = 1, 2 and α1⊥α2

(ii) ∥µ1 − µ2∥TV = 2 sup
A∈B

|µ1(A)− µ2(A)| ≤ 2

Proof. A proof of these statements can, for instance, be found in Stokey et al.

(1989).

Definition A.3 (Strong convergence of probability measures). Let {µt}t∈N be a se-

quence of probability measures. We say that µt converges strongly to the probability

measure µ if ∥µt − µ∥TV → 0 for t → ∞.

Definition A.4 (Weak convergence of probability measures). Let {µt}t∈N be a

sequence of probability measures. We say that µt converges weakly to the probability

measure µ if

lim
t→∞


S

f dµt =


S

f dµ (A.3)

for all bounded, continuous functions f .

Lemma A.7. (i) When Ft, F mark the cumulative distribution functions associated

with µt, µ, an equivalent formulation of weak convergence is given by: Ft(x) → F (x)

for all continuity points x of F . (ii) Strong convergence implies weak convergence.

Definition A.5 (First order stochastic dominance). Let µ1, µ2 ∈ M+(S,B) be

bounded, non-negative measures that have the same total variation µ1(S) = µ2(S).

We say that µ1 stochastically dominates µ2 if
S

f dµ1 ≥

S

f dµ2 (A.4)

for any bounded, measurable, and increasing function f . (Notation: µ1

FOSD

≥ µ2)

When µ1 and µ2 are particularly probability measures with cdfs F1 and F2, first

order stochastic dominance is equivalent to F1(x) ≤ F2(x) for all x ∈ S.
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Lemma A.8. Let F,G be cumulative distribution functions such that G(x) < F (x)

for all x ∈ (a, b). That means, G strictly dominates F . If f(x) is a strictly increasing

(continuous) function, we have: b

a

f(x) dF (x) <

 b

a

f(x) dG(x). (A.5)

Proof. Integrating both expressions by parts yields b

a

f(x) dF (x) = f(x)F (x)
b
a
−
 b

a

f ′(x)F (x) dx

and  b

a

f(x) dG(x) = f(x)G(x)
b
a
−
 b

a

f ′(x)G(x) dx.

This implies: b

a

f(x) dG(x)−
 b

a

f(x) dF (x) = f(x) (G(x)− F (x))
b
a
−
 b

a

f ′(x) (G(x)− F (x)) dx

=

 b

a

f ′(x)  
>0

(F (x)−G(x))  
>0

dx

> 0

But, this had to be shown.

A.2 Lemmas and proofs used in Chapter 3

Lemma A.9. Let λ ∈ M1(S,B) be a fixed probability measure. For all probability

measures µ that satisfy ∥µ− λ∥TV ≤ η the following inequalities hold:

(i) µ+ η
2
δb

FOSD

≥ λ+ η
2
δa

(ii) µ+ η
2
δa

FOSD

≤ λ+ η
2
δb

Notice here that δa and δb denote the Dirac measures in a and b.

Proof. Recall that the stochastic ordering
FOSD

≥ is actually defined for probability

measures. This concept is extended here to bounded measures that have the same

107



total mass. Without loss of generality let ∥µ−λ∥TV = η. According to Lemma (A.6)

there exist measures γ, α1, α2 such that µ = γ+α1, λ = γ+α2 and α1⊥α2. We have

∥µ− λ∥TV = ∥α1 − α2∥TV

= α1(S) + α2(S)

= 2 α1(S)

and obtain α1(S) = η
2
. Because α1(S) · δb

FOSD

≥ α1, α2

FOSD

≥ α1(S) · δa, we can

conclude that

γ + α1(S) · δb + α1

FOSD

≥ γ + α2 + α1(S) · δa

⇔ µ+
η

2
δb

FOSD

≥ λ+
η

2
δa.

This proves statement (i). The inequality (ii) follows by the same argument.

Lemma A.10. The derivative of the capacity function κ is bounded by:

gF h′
min

(1− β)2
≤ κ′(Q) ≤ 0, for all Q ∈ [Qmin, Qmax]. (A.6)

Proof. We fix an aggregate output level Q̄ ∈ [Qmin, Qmax]. Recall that the function

κ has been implicitly defined as solution to ve(Q, κ(Q)) − κ(Q) = ce. This implies
d
dQ


ve(Q̄, κ(Q̄))− κ(Q̄)


= 0. By means of the chain rule that is equivalent to

0 =

∂ve

∂Q
(Q̄, κ(Q̄)) ∂ve

∂y
(Q̄, κ(Q̄))


·


1

κ′(Q̄)


− κ′(Q̄)

=
∂ve

∂Q
(Q̄, κ(Q̄)) +

∂ve

∂y
(Q̄, κ(Q̄)) · κ′(Q̄)− κ′(Q̄)

and we can conclude

κ′(Q̄) =

∂ve

∂Q
(Q̄, κ(Q̄))

1− ∂ve

∂y
(Q̄, κ(Q̄))

. (A.7)

The boundaries for ∂ve

∂Q
and ∂ve

∂y
, which have been derived in Lemma 3.2, thus yield

the statement.
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Lemma A.11. The following inequalities hold for all Q̄ ∈ [Qmin, Qmax]:

(i) 0 ≤
 b

a

u(φ, Q̄, κ(Q̄)) dG(φ) ≤ gF h(Qmin)

1− β

(ii)
gF h′

min

(1− β)2
≤ d

dQ

 b

a

u(φ, Q̄, κ(Q̄)) dG(φ)


≤ 0

Proof. ad(i). The first inequality is clear. According to the definition, we have the

function u(φ, Q̄, κ(Q̄)) = max

κ(Q̄), vc(φ, Q̄, κ(Q̄))


. Since both terms inside the

max option are bounded above by the value gF h(Qmin)
1−β

(which follows directly from

Lemma 3.3), this implies statement (i).

ad(ii). Recall that for any constant sequence of output and capacity values z̄ =

{Q, y}t∈N, the solution to vc(x, z̄) = y is represented by a continuous function x =

γ(Q, y) (see also (3.18) for this). Therefore, we can rephrase the function

 b

a

u(φ,Q, y) dG(φ) =

 γ(Q,y)

a

y dG(φ) +

 b

γ(Q,y)

vc(φ,Q, y) dG(φ). (A.8)

Taking the partial derivatives of this expression with respect to Q and y yields:

∂

∂Q

 b

a

u(φ, Q̄, ȳ) dG(φ)


=

b
γ(Q̄,ȳ)

∂vc

∂Q
(φ, Q̄, ȳ) dG(φ) (A.9)

∂

∂y

 b

a

u(φ, Q̄, ȳ) dG(φ)


= G


γ(Q̄, ȳ)


−G(a) +

b
γ(Q̄,ȳ)

∂vc

∂y
(φ, Q̄, ȳ) dG(φ).

(A.10)

Combining both parts and utilising the chain rule allows us to calculate the gradient

0 ≥ d

dQ

 b

a

u(φ, Q̄, κ(Q̄)) dG(φ)



=

b
γ(Q̄,ȳ)

∂vc

∂Q
(φ, Q̄, ȳ) dG(φ) + κ′(Q̄)

Gγ(Q̄, ȳ)

−G(a) +

b
γ(Q̄,ȳ)

∂vc

∂y
(φ, Q̄, ȳ) dG(φ)


≥ gF h′

min

1− β


G(b)−G(γ(Q̄))


+

gF h′
min

(1− β)2


G(γ(Q̄))−G(a) + β


G(b)−G(γ(Q̄))


=

gF h′
min

(1− β)2


G(b)−G(a)


  

=1

.
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Here, the first inequality is trivial. The second inequality follows from Lemma 3.2

and Lemma A.10. This concludes the proof.

Lemma A.12. The partial derivatives of the functions sL and sU with respect to η

are bounded by

(i) 0 ≤ ∂sL
∂η

(η̄, φ̄) ≤ −h′
min (Qmax −Qmin)

h2(Qmax)


β (2− β) gF h(Qmin)

(1− β)2
+

ce
2



(ii)
h′
min (Qmax −Qmin)

h2(Qmax)


β (2− β) gF h(Qmin)

(1− β)2
+

ce
2


≤ ∂sU

∂η
(η̄, φ̄) ≤ 0

Proof. The statement is straightforward if we recall the definitions ofQλ
min(η), Q

λ
max(η)

and apply the boundaries in Lemma A.11 to the first derivative.

Lemma A.13. Let {at}t∈N0 and {bt}t∈N0 be bounded sequences such that at ≤ bt. If

the distance |at − bt| → 0 for t → ∞, then the cartesian product N =
∞

t=0[at, bt] is

a compact, convex subset in the space of bounded sequences ℓ∞.

Proof. Note, first of all, that the space of bounded sequences is a Banach space. A

subset N of a Banach space is compact if it is closed and has a finite covering of

ε-balls (see Zeidler (1995) for instance). That is for every ε > 0 there is a finite

number of vectors V1, ..., VJ ∈ N such that

min
1≤j≤J

∥ζ − Vj∥∞ ≤ ε for all ζ ∈ N.

In the space of bounded sequences, the norm of an element ζ = {xt}t∈N0 ∈ ℓ∞ is

defined as ∥ζ∥∞ = supt |xt|.
To prove the compactness of the aforementioned cartesian product, we fix an

ε > 0 and determine a T ∈ N such that |at − bt| < ε for all t ≥ T . Obviously, the

finite cartesian product C =
T

t=0[at, bt] ⊂ RT+1 is compact and, hence, possesses

a finite covering of ε-balls. Consequently, a finite number of vectors W1, ...,WJ ∈ C

can be found such that each element of C is in some ε-ball around Wj. By setting

Vj = (Wj, aT+1, aT+2, ...) ∈ N for each j = 1, ..., J , we can accordingly create a

finite covering of ε-balls for the subset N =
∞

t=0[at, bt] ⊂ ℓ∞. This means for every

sequence ζ ∈ N there is at least one element Vj with ∥ζ − Vj∥∞ ≤ ε. But, this

implies the compactness of N .
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To show the convexity of N , we assume that ζ1, ζ2 ∈ N with ζ1 = {xt}t∈N0 and

ζ2 = {yt}t∈N0 . For any value α ∈ (0, 1), we have at ≤ αxt+(1−α)yt ≤ bt. Hence, the

element αζ1+(1−α)ζ2 must be in the set N as well and the convexity is proven.

A.3 Lemmas and proofs used in Chapter 4

Lemma A.14. Let ϕ(z|ξ, σ2) denote the pdf of a Normal distribution with mean

ξ and variance σ2. If p(φ, z) = 1√
2πσ2

ε

exp

− (z−(ρφ+ξε))2

2σ2
ε


defines the probability

density derived from an AR(1)-process, the following equality holds:
R
p(φ, z) ϕ(φ|ξ, σ2) dφ = ϕ(z|ρξ + ξε, ρ

2σ2 + σ2
ε). (A.11)

Proof. It is fairly easy to verify that

p(φ, z) ϕ(φ|ξ, σ2) = ϕ(z|ρφ+ ξε, σ
2
ε) ϕ(φ|ξ, σ2)

= ϕ(z|ρξ + ξε, ρ
2σ2 + σ2

ε) ϕ


φ

 ρσ2(z − ξε) + ξσ2
ε

ρ2σ2 + σ2
ε

,
σ2σ2

ε

ρ2σ2 + σ2
ε


.

As the first term does not depend on φ anymore, and the second one is a Normal

density integrating up to one, this implies the equality in (A.11).

Lemma A.15. Let p(φ, z) = 1√
2πσ2

ε

exp

− (z−(ρφ+ξε))2

2σ2
ε


denote the probability den-

sity derived from an AR(1)-process, and let the function f : R → R+ be continuous,

increasing, and integrable with respect to any Normal distribution. The function

g(φ) :=


R
f(z) p(φ, z) dz (A.12)

is then continuous, increasing, and integrable, too.

Proof. The monotonicity of g follows from Lemma A.8, and the integrability with

respect to Normal distributions follows from Lemma A.14. To show the continuity

in φ, we assume that φn → φ for n → ∞. Based on this sequence, we define the

functions hn(z) = f(z) p(φn, z). As f is supposed to be continuous, this implies

hn(z) → f(z) p(φ, z) for all z. For φ̄ = supn∈N φn we further have

0 ≤ hn(z) ≤ f(z) p(φ̄, z).
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Since the function f(z) p(φ̄, z) is integrable with respect to z, we can apply the

Theorem on Dominated Convergence and get

lim
n→∞

g(φn) = lim
n→∞


R
hn(z)dz =


R
f(z) p(φ, z) dz = g(φ). (A.13)

This proves the continuity of g.
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Figure A.1: Farm gate price for milk in Germany
Source: Zentrale Markt- und Preisberichtsstelle (1996-2010), Bundesanstalt für
Landwirtschaft und Ernährung (2011-2015)
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