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Summary 

A major pathway involved in neuronal development and the maintenance of neuronal circuits 

in adult brain is the PI3K - PTEN - Akt pathway. PI3K is the major kinase involved in the 

generation of PIP3 at the membrane by the phosphorylation of PI(4,5)P2.This action is 

antagonized by the well-studied tumor suppressor PTEN. The presence of PIP3 at the 

membrane leads to activation of downstream targets such as the protein kinase Akt. Akt 

kinase comprises three isoforms (Akt1-3) which are activated upon phosphorylation of the 

residues S473 and T308 (numbered according to Akt1). Knock-out animals for the individual 

isoforms as well as double knock-outs have shown differential as well as redundant functions 

of the three isoforms. However, their individual role in neuronal signaling pathways has not 

yet been studied in great detail. 

The aim of this study was to obtain further insight into differential Akt isoform signaling in 

response to changes in the activity of PI3K and PTEN pathway. A new isoelectric focusing 

method was established in order to overcome limitations of commonly used biochemical 

methods (e.g. Western blot). The fully automated capillary-based isoelectric focusing method 

allowed us to separate Akt proteins according to their charge, therefore, providing a refined 

read-out to study dynamics of Akt phosphorylation in a neuronal background. 

In the course of this project we were able to identify previously undescribed features of Akt 

phosphorylation and activation. First, we could provide evidence for an uncoupling of the two 

activating phosphorylation events at S473 and T308 in neuroblastoma cells and differential 

sensitivities of Akt1 forms towards PI3K inhibition. Secondly, we found a transient shift in Akt 

isoform activation and abundance during postnatal rat brain development. Thirdly, we were 

able to show that the activation of different Akt isoforms is dependent of the upstream signal 

as well as the age of the neuron. Immature neurons were found to be highly responsive to 

BDNF treatment, whereas mature neurons were most responsive to EGF stimulation leading 

exclusively to activation of Akt2 in an EGFR- and PI3K/p110α-dependent manner. In 

contrast, stimulation of Akt phosphorylation by the loss of PTEN led to an activation of mainly 

Akt1 forms, which suggests inherent differences in the Akt pools that are accessible to 

growth factors dependent PI3Ks as compared to the pools that are controlled by PTEN.  

 

In summary, this thesis demonstrates the presence of complex phosphorylation events of Akt 

in a developmental- and signal-dependent manner in neurons.  
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Zusammenfassung 

Ein wichtiger Signalweg während der neuronalen Entwicklung und zur Erhaltung der 

neuronalen Netzwerkstrukturen im adulten Gehirn ist der PI3K - PTEN- Akt Signalweg. PI3K 

ist eine Kinase welche hauptsächlich PI(4,5)P2 zu PIP3 phosphoryliert. Dieser Reaktion wird 

von dem Tumorsuppressor PTEN entgegengewirkt. Die Erhöhung der PIP3 Konzentration an 

der Membran löst die Aktivierung weiterer nachgelagerter Proteine, z. B. Akt, aus. Akt ist 

eine Kinase die drei verschiedene Isoformen (Akt1-3) besitzt, welche durch die 

Phosphorylierung von S473 und T308 (nummeriert nach Akt1) aktiviert werden. Knock-out 

Modelle für die einzelnen Isoformen, sowie Knock-outs von mehreren Isoformen zusammen, 

haben gezeigt, dass obwohl sich die Funktionen der einzelnen Formen zum Teil überlappen, 

bei Verlust einzelner Isoformen, nicht alle Funktionen von anderen Isoformen kompensiert 

werden können. Trotz allem ist bis heute die genaue Rolle der einzelnen Isoformen in einem 

neuronalen Zusammenhang nur wenig untersucht. 

Das Ziel dieser Arbeit war, eine detailliertere Analyse der einzelnen Akt Isoformen nach der 

Aktivierung des vorgeschalteten PI3K - PTEN Signalweges. Dazu wurde im Labor eine neue 

Methode zu isoelektrischen Fokussierung etabliert um die bisherigen Limitationen der 

herkömmlichen biochemischen Methoden (z.B. Western blot) zu überwinden. Die 

vollautomatische, Kapillaren-basierte Methode der isoelektrischen Fokussierung trennt 

Proteine nach ihrer Ladung auf und erlaubt uns somit eine Analyse der Dynamik von Akt 

Phosphorylierungen in neuronalen Zellen. 

Im Zuge dieser Arbeit konnten wir bisher unerkannte Merkmale der Akt Aktivierung und 

Phosphorylierung identifizieren. Zuerst konnten wir zeigen, dass die Phosphorylierung von 

S473 und T308 in Neuroblastomazellen unabhängig voneinander auftreten kann und das 

verschiedene Akt1 Moleküle unterschiedlich auf die Inhibition von PI3K reagieren. Außerdem 

konnten wir Verschiebungen in der Aktivierung und in der Expression der unterschiedlichen 

Isoformen während der postnatalen Gehirnentwicklung der Ratte feststellen. Des Weiteren 

konnten wir zeigen, dass die Aktivierung von Akt von dem Signal und dem Alter der Neurone 

abhängig ist. Noch nicht vollständig differenzierte Neurone reagieren vor allem auf BDNF 

Stimulation, wohingegen adulte, differenzierte Neurone hauptsächlich auf EGF reagieren und 

dort explizit Akt2 über EGFR und PI3K-p110α Signale aktiviert wird. Im Gegensatz dazu führt 

der Verlust von PTEN zu einer Aktivierung von hauptsächlich Akt1. Dies führt uns zu der 

Schlussfolgerung, dass unterschiedliche Akt Populationen auf Wachstumsfaktoren und auf 

PTEN Verlust reagieren.  

 

Zusammenfassend zeigt diese Arbeit einen komplexen Zusammenhang der 

Phosphorylierung von Akt auf, welcher Signal- und Entwicklungsabhängig ist.  
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Abbreviations 

Akt   Proteinkinase B 

APS    Ammonium persulfate 

BDNF   Brain-derived neurothrophic factor 

BSA   Bovine serum albumin 

cIEF   Capillary-based isoelectric focusing 

CNS   Central nervous system 

CO2   Carbon dioxide 

CREB   cAMP response element-binding protein 

dH2O   Distilled water 

DIV    Days in vitro 

DMEM   Dulbecco´s modified eagles medium 

DMSO   Dimethylsulfoxide 

DNA    Deoxyribonucleic acid 

DNA-PK  DNA-dependent protein kinase 

DTT   Dithiothreitol 

E   Embryonic day 

EDTA    Ethylene diamine tetraacetic acid 

EGF   Epidermal growth factor 

EGFR   Epidermal growth factor receptor 

EGFRi   EGFR inhibitor (Gefitinib) 

ERK1/2  Extracellular signal regulated kinase ½ 

FCS   Fetal calf serum 

GAPDH  Glycerin aldehyde-3-phosphate dehydrogenase 

GF   Growth factor 

GFAP   Glial fibrillary acidic protein 

GPCR   G-protein coupled receptor 

GSK3ß  Glycogen synthase kinase-3 beta 

h    Hours 

HEK    Human embryonic kidney cells 

HRP   Horseradish peroxidase 

IB   Immunoblot 

IC   Immunocytochemistry 

IGF-1   Insulin-like growth factor 1 

IP   Immunoprecipitation 

kDa    Kilodalton 
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KO    Knock-out 

LFQ   Label free quantification 

mA   Miliampere 

MAP2   Microtubule-associated protein 2 

MAPK   Mitogen-activated protein kinase 

mass spec  Mass spectrometry 

MCM7   Mini-chromosome maintenance protein 7 

min    Minutes 

mL   Mililiter 

mM   Milimolar 

mTOR   Mammalian target of rapamycin 

mTORC2  mTOR complex 2 

ng   Nanogram 

nm    Nanometer 

nM   Nanomolar 

NMDAR  N-Methyl-D-aspartate receptor 

NP   NanoPro 100 

P    Postnatal day 

PBS    Phosphate buffered saline 

PDK1   3-Phosphoinositide-dependent kinase-1 

PFA    Paraformaldehyde 

PH   Pleckstrin-homology 

PHLPP  PH domain and leucine rich repeat protein phosphatases 

PHTS   PTEN harmatoma tumor syndrome 

pI   Isoelectric point 

PI3K   Phosphoinositide-3-kinase 

PI3Ki   PI3K inhibitor (GDC-0941) 

PIP2   Phosphatidylinositol-4,5-bisphosphate 

PIP3   Phosphatidylinositol-3,4,5-trisphosphate 

PKC   Proteinkinase C 

PP   Phosphatase 

PP2A   Protein phosphatase 2A 

PSD-95  Postsynaptic density protein 95 

PTEN   Phosphatase and tensin homologue deleted on chromosome ten 

PTM   Posttranslational modification 

P/S   Penicillin/Streptomycin 

RFP   Red fluorescent protein 
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RGC   Retinal ganglion cell 

rpm    Rounds per minute 

RT    Room temperature 

RTK   Receptor tyrosine kinase 

sec    Seconds 

SDS    Sodium dodecyl sulfate 

SDS-PAGE  SDS- polyacrylamide gelelectrophoresis 

TBS-T   Tris buffered saline with Tween20 

TFEB   Transcription factor EB 

TPA   Tetradecanoyl phorbol acetate 

TrkB   Tyrosine receptor kinase B 

TrkBi   TrkB inihibitor (GNF5837) 

U    Unit 

V    Volt 

WB    Western blot 

WM   Wortmannin 

w/o   without 

WT   Wild type 

μL   Microliter 
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1. Introduction 
The mature brain is composed of more than one billion neurons [Stiles and Jernigan 2010]. 

From birth to adulthood the brain mass increases up to 6x of its initial weight due to 

increasing neuron size and addition of glial cells [Bandeira, Lent, and Herculano-Houzel 

2009]. Structural changes still occur during childhood until early adolescence [Stiles and 

Jernigan 2010]. Brain development is characterized as a complex series of adaptive and 

dynamic processes. Neurons are the information processing cells of the brain and form 

synapses with each other to build up networks that are responsible for all our feelings, 

actions, sensations and thoughts. The appropriate connectivity of neurons is ensured on a 

molecular level by tightly regulated signaling events. Essential for a correct axonal outgrowth 

and wiring are attractive and repulsive guidance cues and their respective receptors. The 

four main guidance molecules during axonal outgrowth are semaphorins, netrins, slits and 

ephrins [O’Donnell, Chance, and Bashaw 2009]. The axonal guidance process during brain 

development consists of three main segments. First, the expression of a correct complement 

of receptors and guidance cues of the neurons and surrounding tissue. Second, an 

appropriate localization of the receptors to specialized structures at the tips of extending 

axons, termed growth cones, and correct trafficking of the guidance cues to the extracellular 

environment. Third, signaling mechanisms must be in place to integrate and transmit signals 

from the surface receptors into changes in the growth cone actin cytoskeleton [O’Donnell, 

Chance, and Bashaw 2009]. Actin cytoskeleton reorganization, including, for example, the 

formation of structures like F-actin patches, lamellipodia and filopodia is linked to Rho activity 

[Kreis et al. 2014]. A master regulator for Rho activity is the presence of the lipid 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the plasma membrane [Hawkins et al. 

2006]. Being the main kinase involved in PIP3 production, the phosphoinositide 3-kinase 

(PI3K) pathway and its negative regulator, the tumor suppressor gene phosphatase and 

tensin homologue deleted on chromosome ten (PTEN) [Eickholt et al. 2007], regulates 

various cellular processes, including neuronal differentiation, survival, migration, axonal 

extension and guidance [Eickholt et al. 2007]. 
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1.1. PI3K/PTEN in health and disease 

PI3Ks are a protein family comprising eight different isoforms divided in three classes 

according to their protein structure, function and associated regulatory subunit [Hawkins et 

al. 2006]. This worked focused on the class I PI3Ks, which can be further subdivided into 

class IA and IB. Class IA enzymes consist of a catalytic p110 (α, β, δ) subunit which can be 

associated with any of the five regulatory subunits: p50α, p55α, p85α, p85β or p55γ. The 

smaller subgroup of class IB enzymes all have the same catalytic subunit, p110γ, associated 

with the regulatory subunit p87 or p101 [Gross and Bassell 2014]. The main function of 

class I PI3Ks is their lipid kinase activity at the plasma membrane. They generate PIP3 by 

phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2). Thereby PI3Ks are the main 

enzymatic activity involved in the generation of PIP3. The dual specific phosphatase PTEN, 

on the other hand, directly antagonizes PI3Ks, as it dephosphorylates PIP3 to PIP2 at the 

plasma membrane [Cantley 2002]. PI3K can be activated through two upstream receptors, 

being receptor tyrosine kinases (RTK) and G-protein coupled receptors (GPCR), following 

activation by extracellular stimuli (e.g. growth factor binding) [Gross and Bassell 2014]. 

Aberrant PI3K signaling due to mutations in the catalytic subunit has been implied in a 

variety of pathological changes. For example, activating mutations in the PI3K-p110α subunit  

Figure 1: PI3K-PTEN signaling pathway. PTEN functions predominately at the plasma membrane, 
converting phosphatidylinositol 3,4,5-trisphosphate (PIP3) to phosphatidylinositol 4,5-bisphosphate 
(PIP2), thereby directly antagonizing the activity of phosphoinositide 3-kinase (PI3K). PI3K is activated 
by growth factor (GF) binding to receptor tyrosine kinases (RTK). Upon PIP3 availability the 
downstream effector Akt gets phosphorylated at Serine 473 and Threonine 308, by the kinases 
mTORC2 and PDK1, respectively. Akt has many different effector proteins, some of which are shown 
in the figure (NFκB, GSK3β, mTOR). 
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are linked to megalencephaly with developmental delay and epilepsy [Rivière et al. 2012]. A 

hyperactivation of PI3K due to mutations in the p110α subunit have been grouped with other 

overlapping clinical diagnoses as ‘PIK3CA-related overgrowth spectrum’ [Di Donato et al. 

2015]. Mutations in the PI3K-p110β subunit have been shown to be connected to fragile X 

syndrome and autism [Gross and Bassell 2014; Cuscó et al. 2009]. p110γ, the least studied 

PI3K catalytic subunit in the brain, has been found to be involved in NMDAR signaling. 

Interestingly, mutations in this specific isoform have been identified in autism spectrum 

disorder patients [Gross and Bassell 2014]. The PI3K-p110δ subunit is essential for axonal 

outgrowth and it is activated downstream of the neuregulin-1 receptor ErbB4. Deregulation of 

p110δ signaling has been found to be involved in schizophrenia, highlighting again, the 

central function of PI3K signaling during brain development [Eickholt et al. 2007; Law et al. 

2012]. Furthermore a role for p110δ has been described in sciatic nerve regeneration [Park 

et al. 2010]. But independent of the catalytic subunit, activation of PI3K class I enzymes 

leads to an increase of PIP3 at the plasma membrane leading to recruitment and subsequent 

activation of pleckstrin-homology (PH) domain containing proteins (e.g. Akt). This 

accumulation of PIP3 can be antagonized by the dephosphorylation of the lipid by PTEN. 

PTEN was originally identified as a tumor suppressor gene in 1997 [Li et al. 1997], its 

mutations leading to a wide variety of cancers and developmental disorders combined under 

the term ‘PTEN hamartoma tumor syndrome (PHTS)’, including Cowden syndrome and other 

proliferative syndromes [Li et al. 1997]. Nowadays it is well established that PTEN mutations 

also play a major role in brain tumors and neurological disorders such as macrocephaly, 

autism and mental retardation [Butler et al. 2005; Lugo et al. 2014; Zhou and Parada 2012]. 

Accordingly, a loss of PTEN in adult mice hippocampal neural stem cells causes an increase 

in neurogenesis leading to macrocephaly with an enlarged dentate gyrus and a disorganized 

granule cell layer [Kwon et al. 2006]. Additionally, these mice also show an impaired social 

behavior and frequent seizures, closely resembling the phenotype found in human patients 

with PTEN mutations [Amiri et al. 2012]. The PTEN gene is located on chromosome 10q23 

[Myers et al. 1997]. While PTEN encompasses protein and lipid phosphatase functions, it is 

the latter that mediates direct antagonism of PI3Ks. The activity and subcellular localization 

of PTEN is regulated by posttranslational modifications (PTMs) such as 

phosphorylation [Kreis et al. 2014]. Phosphorylation of the C-terminus of PTEN also has an 

influence on the conformational state of the protein. A highly phosphorylated C-terminus 

leads to a closed protein conformation thereby preventing PTEN membrane binding, 

whereas an unphosphorylated C-terminus results in an open protein conformation, allowing 

membrane association of PTEN [Vazquez and Devreotes 2006; Kreis et al. 2014]. In this 

context the phosphorylation sites S380, T382, T383 and S385 are thought to negatively 

regulate PTEN phosphatase activity but favor stabilization of the protein [Song, Salmena, 
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and Pandolfi 2012]. PTEN plays a key role in developing neurons as the antagonist of PI3K 

signaling. In young neurons PTEN was found to be associated with microtubules, away from 

the actin rich periphery of growth cones, malfunction or mislocalization at this stage is implied 

in neurodegeneration and autism [Chadborn et al. 2006; Kreis et al. 2014]. Later in mature 

neurons, PTEN loss can lead to a severe disarrangement of dendritic spine morphology 

causing pathologies such as epilepsy or autism [Kreis et al. 2014]. Recently, a longer, 

membrane-permeable variant of the lipid phosphatase has been identified, termed PTEN-

Long [Hopkins et al. 2013; Pulido et al. 2014] This protein can be secreted from cells and 

antagonize PI3K signaling and cancer progression in vitro and in vivo [Hopkins et al. 2013]. 

The balance between PI3K and PTEN signaling is important to maintain a healthy cell. 

Besides its major function as antagonist in PI3K signaling, PTEN has also been proposed a 

PI3K-independent function involving its protein phosphatase activity, for example, in cell 

migration, cell cycle arrest or actin cytoskeleton rearrangement [Song, Salmena, and 

Pandolfi 2012; Myers et al. 1997; Kreis et al. 2014]. PTEN interacts with the actin filament 

binding protein Drebrin. PTEN dephosphorylates Drebrin in response to, for example 

neuronal activity, and can thereby induce dynamic remodeling of the actin cytoskeleton 

[Kreis et al. 2014].  
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1.2. Protein kinase B (Akt) 

Figure 2: Schematic view of Akt isoforms 
[Matheny and Adamo 2009]. Akt is found in 
three isoforms, Akt1, Akt1 and Akt3. They 
possess a N-terminal Pleckstrin homology (PH) 
domain, a kinase domain and a C-terminal 
hydrophobic domain (HD). Akt3 is found in an 
alternative splice variant (Akt3-γ1). Akt isoforms 
have two activating phosphorylation sites T308 
(T309, T305) and S473 (S474, S472) and one 
constitutive phosphorylation site at T450 (T451, 
T447). 

 

 

A major downstream effector of the PI3K/PTEN pathway is Akt. Akt is a Serine/Threonine 

kinase which was originally discovered as an oncogene in 1977, but has now also been 

shown to play a role for example during axon outgrowth [Matheny and Adamo 2009; Dajas-

Bailador et al. 2014]. There are three Akt isoforms in mammals, encoded by three genes, 

namely Akt1, Akt2 and Akt3 [Matheny and Adamo 2009], which encode for the three Akt 

family members Akt1, Akt2 and Akt3 (also referred to as PKBα, PKBβ and PKBγ) [Testa and 

Bellacosa 2001]. All three isoforms share approximately ~80% sequence homology and 

possess an N-terminal PH domain, which enables the proteins to bind PIP3. Further in the C-

terminus lies the kinase domain and a C-terminal hydrophobic domain (see Figure 

2) [Matheny and Adamo 2009].  

Over recent years, some work has indicated isoform specific cellular functions in mediating 

neuronal responses. Distinct functions of the three isoforms in different tissues are regulated 

by differential activation of the isoforms as well as different expression patterns. Akt1 is the 

most ubiquitously expressed isoform and Akt1-/- mice are viable but smaller than wild type 

mice, displaying growth defect in fetal and postnatal stages [WS Chen et al. 2001; Cho, 

Thorvaldsen, et al. 2001]. However, a significant number of pups died in neonatal stages 

(P0-P3), suggesting lethal defects during this period. The brain size of Akt1-/- mice is reduced 

by ~14% but is proportional with the overall reduction in body size [Cho, Thorvaldsen, et al. 

2001]. In humans, activating Akt1 mutations have been shown to cause Proteus syndrome, a 

syndrome characterized by skin, connective tissue and brain overgrowth [Lindhurst et al. 

2011]. Downregulation of Akt1 due to aberrant DNA methylation has been linked to patients 

with schizophrenia [Wockner et al. 2014]. In vitro, Akt1 has been found mainly being present 

in the cytoplasm and its loss may be compensated by Akt2 and/or Akt3 expression, but Akt1 

cannot completely compensate loss of Akt2 or Akt3 [Diez, Garrido, and Wandosell 2012; 

Santi and Lee 2010]. Further, Akt1 has been described as a major contributor to tumor 
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initiation but does not induce tumor progression [H Guo et al. 2014; Endersby et al. 2011; 

Turner et al. 2015]. The Akt2 isoform is enriched in Insulin-responsive tissue and seen as the 

‘metabolic’ Akt isoform. Loss of Akt2 leads to a diabetic phenotype in mice, and knock-out 

animals show no reduction in brain size [Cho, Mu, et al. 2001]. Interestingly, heterozygous 

Akt2+/- animals were found indistinguishable from wild type animals [Cho, Mu, et al. 2001]. An 

connection of this isoform with a hypoglycemic phenotype in humans has also been 

shown [Hussain et al. 2011]. Since mitochondria play a central role in many metabolic 

cellular processes, together with the observation that Akt2 mainly localizes with these 

organelles, suggest that out of the three Akt isoforms, Akt2 is the one important for metabolic 

functions. In vitro, the disruption of Akt2 leads to a reduction in neuronal survival and axon 

length [Diez, Garrido, and Wandosell 2012; Santi and Lee 2010]. Interestingly, loss of Akt1 

does not induce a diabetic phenotype or impaired lipid metabolism as found in Akt2-/- mice. 

Therefore, it has been suggested that Akt2 plays non-redundant functions at least in the 

control of cellular metabolism [Cho, Thorvaldsen, et al. 2001]. Out of the three isoforms, Akt3 

demonstrates the most restricted protein expression pattern, as this isoform is mainly found 

in brain and testes and the Akt3 protein presents a higher nuclear expression when 

compared to both other isoforms, at least in vitro [Diez, Garrido, and Wandosell 2012; Santi 

and Lee 2010]. It is also the only isoforms with a reported, alternative, shorter splice variant 

(Akt3-γ1) [Brodbeck, Hill, and Hemmings 2001]. Diez et al. found Akt3 to be the dominant 

regulator of differentiated neuron growth [Diez, Garrido, and Wandosell 2012]. In agreement, 

Akt3-/- mice have a ~20% decrease brain size due to smaller and fewer cells. These mice, 

similar to Akt1-/- mice, also show no impairment of glucose metabolism even though Akt3 is 

expressed in adipocytes and responsive to Insulin. Homozygous Akt1-/- Akt3-/- double knock-

out mice are not viable and die around E11/12 due to major defects in the nervous and 

cardiovascular development [Z Yang et al. 2005]. In contrast to Akt1-/- mice, Akt3-/- mice show 

impaired mammalian target of Rapamycin (mTOR) signaling, again suggesting differential 

signaling and specificity of the three Akt isoforms [Easton and Cho 2005]. The levels of 

ribosomal protein S6 phosphorylation, a downstream effector of mTOR signaling, was 

reduced by ~50% in Akt3 knock-out brains [Easton and Cho 2005]. In contrast to the reduced 

brain size in mice upon Akt3 loss, Akt3 de novo missense mutations, as well as mutations in 

PIK3CA (gene encoding the PI3K p110α subunit) leading to increased kinase activity have 

been found to be associated with megalencephaly syndromes in humans [Rivière et al. 

2012]. Further, Akt3 has been identified to be the critical isoform in human glioblastomas 

being the most frequently amplified isoform. It was found to play a role in DNA repair 

therefore, promoting progression of these tumors [Turner et al. 2015]. Turner et al. also 

tested tumors derived from dysfunction of the other Akt isoforms. They found a distinct 

pattern for phosphorylated Akt, Akt1 derived tumors led to increased phosphoAkt most in the 
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nucleus, Akt2 derived tumors showed membranous phosphoAkt enrichment and Akt3 

derived tumors showed high levels of phosphoAkt in the cytoplasm and nucleus [Turner et al. 

2015]. In summary, reported redundant and non-redundant roles of the three Akt isoforms 

and their implication in pathological phenotypes in different cells and tissues emphasize the 

importance of a more precise analysis of the separate isoforms.  

1.2.1. Phosphorylation and activation of Akt isoforms 

All Akt isoforms, except Akt3-γ1, possess the two activating phosphorylation sites 

Threonine 308 and Serine 473, numbered according to Akt1 (see Figure 2). Phosphorylation 

of the T308 site is sufficient for Akt activation, however full activity is only achieved by 

phosphorylation of T308 and S473 [Najafov, Shpiro, and Alessi 2012]. Binding of Akt to PIP3 

via its PH domain facilitates a change in protein conformation which allows a second kinase, 

PDK1, to phosphorylate the T308 site of Akt. PDK1 also contains a PH domain, 

consequentially is able to associate PIP3, which generates close proximity of the substrate 

(Akt) and the kinase (PDK1) at the plasma membrane during growth factor induced activation 

of PI3Ks [Mora et al. 2004]. PDK1 phosphorylates and directly activates up to 23 proteins of 

the AGC family, including Akt. PDK1 resides in the cytoplasm in an active conformation 

(whilst Akt gets activated at the plasma membrane) but substrate access is driven by its 

recruitment to the plasma membrane. Evidence in support of this was indicated by 

generating knock-in mice with a catalytic active PDK1 containing a mutant PH domain that 

prevents PIP3 binding. These mice show a smaller brain size due to reduced PI3K signaling 

activity, which was shown  by reduced Akt activation after BDNF stimulation [Zurashvili et al. 

2013]. The co-recruitment of Akt and PDK1 to the membrane following PIP3 generation in 

response to, for example, growth factor stimulation results in close proximity of the two 

proteins, which leads to phosphorylation of Akt T308 by PDK1. This mechanism represents 

the primary pathway for Akt activation under normal conditions in vivo. The S473 Akt amino 

acid residue, on the contrary, is phosphorylated by mTORC2, but other kinases (e.g. DNA-

PK) have also been proposed [Sarbassov et al. 2005; Ikenoue et al. 2008]. After its 

phosphorylation S473 can bind PDK1 via its PIF-pocket, which, again, increases the 

proximity of the substrate (Akt) to the kinase (PDK1), leading to enhanced phosphorylation of 

the T308 residue [Najafov, Shpiro, and Alessi 2012]. Therefore, it seems that Akt T308 can 

be phosphorylated by PDK1 in a PIP3- or in a PDK1 PIF-pocket-dependent manner. At the 

same time, however, it is evident that the exact order of phosphorylation of the two activating 

sites is not fully understood yet. Nevertheless, it is now generally accepted, that three 

components are essential for Akt activation: membrane binding of the protein, 

phosphorylation of T308 by PDK1 and phosphorylation of S473 by mTORC2.  
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1.2.2. Beyond S473 and T308: Further regulation of Akt by different 
modifications and phosphatases 

Recently, two further phosphorylation sites at the C-terminus (S477 and T479) have been 

characterized that promote and even enhance S473 phosphorylation and leading to 

increases in the activation of Akt [P Liu et al. 2014]. In this way, the phosphorylation of 

p(S473)Akt causes the hydrophobic motif to bind to an α-helix in the catalytic domain of Akt, 

which was shown to stabilize the active protein [Hart and Vogt 2011]. Akt hyperactivation can 

lead to uncontrolled cell proliferation and resistance to apoptosis; therefore, both activating 

phosphorylation sites not only have different kinases but also different phosphatases 

controlling the protein activity. Protein phosphatase 2A (PP2A) dephosphorylates the T308 

whereas PH domain and leucine rich repeat protein phosphatase (PHLPP) dephosphorylates 

the S473 site [Hwang et al. 2013; Gao, Furnari, and Newton 2005]. In total 20-22 

phosphorylation sites for Akt have been validated [H Guo et al. 2014], resulting in a very 

complex and tightly regulated signaling component. All three isoforms have a constitutive 

phosphorylation site at T450 which has been shown to be important for the stability of the 

protein [Facchinetti et al. 2008]. In general, the stoichiometry or hierarchy of this multitude of 

phosphorylation events on Akt molecules and their relationship with T308/S473/T450 fully 

activated Akt species is largely unknown.  

Phosphorylation is not the only PTM influencing the activity of Akt. Over the years more and 

more other PTMs have been the focus of research. It has been shown that ubiquitination of 

Akt on K63 can lead to signaling activation and protein trafficking [W-L Yang et al. 2009]. 

Further, sumoylation of Akt at K276 has been shown to increase Akt kinase activity in a 

phosphorylation-independent manner [Lin, Liu, and Lee 2015]. In contrast, O-GlcNAcylation 

of Akt has an inhibitory effect on Akt phosphorylation [S Wang et al. 2012].  

 

Generally, Akt is activated by upstream growth factor binding inducing PI3K activity, leading 

to increased availability of PIP3 at the plasma membrane, resulting in phosphorylation and 

therefore, activation of Akt. Downstream, Akt has numerous targets influencing cell 

proliferation, apoptosis and specifically in neurons it promotes axon specification via 

glycogen synthase 3ß (GSK3β) and also governs neuronal polarization [Zurashvili et al. 

2013]. The regulation of GSK3β by Akt has also been shown to be directly involved in 

necrosis of neurons [Q Liu et al. 2014]. Akt also directly phosphorylates the 14-3-3 protein 

and SRPK2 thereby regulating the cell cycle and cell death of rat primary cortical 

neurons [Jang et al. 2009]. In healthy brains Akt activates the cAMP response element-

binding protein (CREB) which functions as a nuclear transcription factor. This interaction has 

been found to be altered in the hippocampus of diabetic mice, and there leading to cognitive 

dysfunction [Xiang et al. 2015]. Furthermore, because Akt itself or upstream components 
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such as PI3K or the epidermal growth factor receptor (EGFR), are mutated in a great variety 

of cancers leading to Akt hyperactivation, many groups have focused their research on Akt 

inhibitors as a therapeutic target [Hers, Vincent, and Tavar 2011; Vivanco et al. 2014; She et 

al. 2008]. Vivanco et al. could identify a kinase-independent function of Akt in cancer 

progression showing the importance of a more detailed understanding of Akt activation, 

function and isoform specificity [Vivanco et al. 2014]. 

1.2.3. Influence of growth factors on Akt activity 

In mammals, 20 distinct families of RTKs are encoded in the genome, which in response to 

specific ligand binding regulate a great diversity of cellular processes, including cell survival, 

proliferation and differentiation, cell metabolism, and cell migration [Schlessinger 2004]. One 

growth factor known to activate PI3K and therefore Akt, is the epidermal growth factor (EGF) 

[Laketa et al. 2014]. The RTK binding EGF belongs to the EGFR family consisting of four 

members, ErbB1-4 or HER1-4, which are ubiquitously expressed in a number of different 

tissues including epithelial, mesenchymal and neuronal tissue [Roskoski 2014]. Only the 

134 kDa protein ErbB1, referred to as EGFR, is able to bind EGF. Following ligand 

engagement, the receptor dimerizes to be fully functional. ErbB1 can form homo- or 

heterodimers with all other three members of the EGFR family. Upon activation, 

heterodimers consisting of ErbB1 and ErbB3 are phosphorylated at potentially six Tyrosine 

resides, which leads to the recruitment of PI3K by interacting with the regulatory PI3K-p85 

subunit [Roskoski 2014]. Therefore, following EGF binding, an increase in PIP3 at the plasma 

membrane and downstream phosphorylation of Akt occurs by direct EGFR – PI3K 

interaction. In contrast, during EGF induced activation of the extracellular-signal-regulated 

kinase1/2 (ERK1/2) pathway, ErbB1 forms dimers with all other family members and the 

signal is propagated via the adaptor protein Grb2. In this cascade, Grb2 leads to downstream 

activation of ERK1/2 via Ras/Raf [Roskoski 2014].  

The EGFR has been found overactivated in a wide range of cancers, whilst loss of EGFR 

protein leads to neurodegeneration with astrocytic proliferation defects and lower survival of 

postmitotic neurons [Sibilia et al. 1998; Roskoski 2014]. In Drosophila the asymmetric 

distribution and activation of EGFR was found to be necessary for axonal 

branching [Zschätzsch et al. 2014]. Severe downregulation of EGFR in neurons is also 

implied in developmental abnormalities [Bruban et al. 2015]. This emphasizes the importance 

of a tight regulation of EGFR expression at the plasma membrane during developmental 

processes. 

EGF binding to its receptor induces an internalization of EGFR, which was shown to 

terminate the signal by, most likely, lysosomal degradation [Laketa et al. 2014]. Interestingly, 

high PIP3 levels at the plasma membrane (independent of ligand binding to the receptor) also 
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leads to internalization of EGFR but results in full recycling of the receptor [Laketa et al. 

2014]. The PI3K-dependent activation of Akt by EGF has been shown to differentially 

influence the Akt isoforms in different esophagal cancer cell lines. In these experiments, EGF 

treatment led to overlapping and distinctive phosphorylation patterns of the three Akt 

isoforms and allowed the categorization of cells in three groups. In the first group of cells, all 

three Akt isoforms were activated by EGF. The second group exhibited activation of Akt1 and 

Akt2, but not Akt3, whilst the third group responded with Akt1 only following stimulation with 

EGF [Okano et al. 2000]. Activation of Akt via the EGF-EGFR-PI3K axis has also been 

shown to initiate medullablastoma migration enhancing metastasis in an EGF concentration 

dependent manner [Dudu et al. 2012]. An inhibitory role of EGF signaling has been found in 

neural stem cells, where EGF negatively influences motoneuron differentiation via the PI3K-

Akt pathway [Ojeda et al. 2011]. 

Another growth factor known to induce Akt phosphorylation and therefore, activation is the 

brain-derived neurotrophic factor (BDNF). BDNF was found to favor neural stem cell 

proliferation and neuronal growth in vitro via activation of Akt [Islam, Loo, and Heese 2009; J 

Yang et al. 2016]. In order to initiate downstream signaling, BDNF also binds to a RTK, the 

neurotrophin tyrosine receptor kinase B (TrkB). BDNF binding to TrkB leads to receptor 

dimerization and subsequent autophosphorylation of different Tyrosine residues leading to 

activation of downstream effectors including PI3K-Akt and ERK1/2 [Huang and McNamara 

2010]. It has been shown that TrkB can also undergo transactivation by non-neurotrophin 

ligands. For example, in mouse cortical precursor cells TrkB was found to be transactivated 

by EGF rather than BDNF, thereby regulating migration of early neuronal cells in the 

cortex [Puehringer et al. 2013]. Malfunction of TrkB has been associated with different 

neurological diseases such as epilepsy, depression and schizophrenia [Huang and 

McNamara 2010]. In consonance, a decrease in total BDNF levels also effects brain 

pathology. Reduced BDNF levels are implicated in diverse neurodegenerative diseases such 

as Alzheimer disease, Huntington and Parkinson [Bathina and Das 2015]. 

1.3. Protein separation by capillary-based isoelectric focusing 

Classical biochemical methods commonly applied to the analysis of protein phosphorylation 

often rely on the use of phospho-specific antibodies, for example for Western blot (WB) or 

ELISA. However, phospho-specific antibodies require a priori knowledge of specific 

phosphorylation sites and the production of quality antibodies to the phospho-motif can be 

time-consuming and costly. In recent years, the usage of mass spectrometry (mass spec) for 

systemic analysis of protein phosphorylation has gained acceptance [St-Denis and Gingras 

2012]. For this project, in order to investigate the phosphorylation status of the different Akt 
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isoforms a new method other than WB was required. The advantage of good working 

antibodies for the different Akt isoforms and phosphorylation sites in WB harbored the 

drawback of only analyzing Akt isoforms or Akt phosphorylation. To overcome this limitation 

we employed an assay that is based on separating proteins according to their isoelectric 

point (pI). Individual phosphorylation events cause a shift in the pI due to the increase in 

negative charge on a protein. Here, we used the NanoPro™100 device from Protein 

Simple Inc. as a capillary-based isoelectric focusing method (cIEF) to investigate the 

phosphorylation status of Akt in a neuronal background. This method was first described in 

2006 for its great advantage of sensitivity as it could assess a protein sample of only 25 

cells [O’Neill et al. 2006]. cIEF provides a platform to resolve isoforms and individual 

phosphorylation events. The assay is highly reproducible as it uses a 5 cm and 400 nL 

capillary where proteins, following charge separation, are bound covalently to the inner wall 

by UV-light. The capillaries are then incubated with a specific primary antibody and a 

horseradish-peroxidase coupled (HRP) secondary antibody which are flowed through the 

capillary. Visualization of bound antibodies to proteins is carried out by 

chemiluminescence [O’Neill et al. 2006; Michels et al. 2012]. It was previously demonstrated 

that due to its high sensitivity, this cIEF assay requires 1000-fold less protein than other 

isoelectric focusing or WB methods, making it an interesting platform for clinical research 

where patient samples are sometimes difficult to obtain in large quantities [Michels et al. 

2012; JQ Chen et al. 2013]. Using cIEF, analysis of clinical specimen for a variety of 

oncoproteins unraveled their expression patterns and phosphorylation status presenting a 

first step for the development of new cancer therapeutics [Fan et al. 2009]. The cIEF method 

has also been employed in the search for biomarkers by using phosphorylation of ERK1/2 as 

a read-out [JQ Chen et al. 2013] as well as to assess the efficiency of Tyrosine kinase 

inhibitors in chronic myeloid leukemia [Aspinall-O’Dea et al. 2015]. Various other studies 

have used the cIEF method to assess Akt in cancer cells and non-neuronal lines [H Guo et 

al. 2014; Sabnis et al. 2014; Iacovides et al. 2013]. These studies mainly concentrated on 

Akt1 and Akt2 expression, as Akt3 could only be found in a subset of breast cancer 

cells [Iacovides et al. 2013]. The non-phosphorylated forms of Akt1 were found at pI ranging 

from 5.6 – 5.8 and non-phosphorylated Akt2 was identified between 5.9 – 6.0 [H Guo et al. 

2014; Iacovides et al. 2013; Sabnis et al. 2014]. Guo et al. detected p(T308)Akt and 

p(S473)Akt in colon cancer cells, proofing the ability of this method to gain detailed insights 

into Akt activity and signaling [H Guo et al. 2014]. We used this method to analyze the 

temporal isoform-specific Akt activation regulated by manipulation of upstream signaling 

cues such as PI3K activation or PTEN loss. Furthermore we used cIEF to identify a complete 

Akt profile, with all three isoforms, in neuronal cells and brain tissue. 
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Figure 3: Schematic view of the capillary isoelectric 
focusing method. The lysate is automatically loaded into a 
glass capillary and proteins are separated according to 
their charge. After the separation process, the proteins 
are immobilized by UV light. Target proteins are identified 
using a specific primary antibody and immuno-probed 
using a HRP-conjugated secondary antibody and chemi-
luminescent substrate. A peak profile corresponding to 
the amount of protein detected at different pIs is 
generated as a read-out (figure has been modified after 

http://www.proteinsimple.com/simple_western_assays.ht 
ml #charge_based _assays). 
 
 

1.4. Aim of the project 

Motivated by an apparent lack in available information concerning Akt isoform-specific 

phosphorylation in neurons, this project focused on the change of Akt isoform activity in a set 

of different experimental paradigms in neuronal cells and brain tissue. Due to the limitations 

of conventionally used biochemical methods, we established and validated a novel method to 

analyze the phosphorylation status of the different Akt isoforms. Akt1-3 kinases are 

specifically activated by two phosphorylation events on residues T308 and S473 upon growth 

factor signaling. However, we still lack a clear understanding of the complexity and regulation 

of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based 

isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and 

the developing brain and identify previously undescribed features of Akt phosphorylation and 

activation. For the first time, we were able to show all three Akt isoforms with cIEF in a 

neuronal background. In this project we could demonstrate the presence of complex 

phosphorylation events of Akt in a signal-dependent manner in neurons of different 

developmental stages. We provide evidence for uncoupling of S473 and T308 

phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. The 

analysis of developmental regulated Akt signaling in postnatal rat brain tissue showed a 

transient shift in Akt isoform phosphorylation and activation pattern during early postnatal 

brain development, at stages corresponding to synapse development and maturation. This 

complex relationship between PTMs and activity of Akt and the non-redundant role of the 

three isoforms built the base for this project for the investigation of Akt phosphorylation of the 

different isoforms within the PI3K-PTEN-Akt pathway and brain development.  
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2. Materials and methods  

2.1. Materials 

2.1.1. Chemicals 

Table 1: List of chemicals 

Name Company Catalog number 

A66 Selleckchem No. S2636  

Acrylamide National Diagnostics No. EC-890  

Aqueous Inhibitor Mix Protein Simple No. 040-482  

Ammoniumpersulfate (APS) Roth No. 9592.2  

AS252424 Tocris No. 3671  

B27 Life Technologies No. 17504044  

β-Mercaptoethanol Sigma No. M7522  

BDNF R&D Systems No. 248-BD-005  

Bicine/CHAPS Lysis Buffer Protein Simple No. 040-764  

Bovine Serum Albumin (BSA) Roth No. 8076.4  

DABCO Roth No. 0718.1  
Dulbecco's Modified Eagle 
Medium (DMEM)  Invitrogen No. 31331028  

DMSO Applichem No. A3672,0100  

DMSO Inhibitor Mix Protein Simple No. 040-510  

Dithiothreitol (DTT) Applichem No. A1101,0010  

ECL Western Blotting Substrate Promega No. W1001  

Ethanol Roth No. P075.5  

Fetal calf serum (FCS) Biochrom No. S0115  

GDC-0941 Selleckchem No. S1065  

GlutaMax Invitrogen No. 25030-024  

Glycerine Sigma No. G5516  

GNF5837 Axon Medchem No. 2248  

Goat Serum Gibco No. 16210-072  

IC87114 Calbiochem No. 528118  

Insulin Sigma No. I9278  

Methanol Roth No. CP43.4  
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Milk powder, blotting grade Roth No. T145.3  

Mowiol Sigma No. 81381  

NanoPro100 Masterkit Protein Simple No. CBS3000  

NanoPro Premix G2 Protein Simple No. 040-972  

Neurobasal-A Invitrogen No. 21103-049  

NP-40 US Biological No. 3500  

PageRuler Protein ladder Thermo No. 112289  

Paraformaldehyde (PFA) Merck No. 1040051000  

Penicillin/Streptomycin Invitrogen No. 15070-063  

Phosphate Buffered Saline (PBS) Applichem No. A9191,0012  

Phosphatase Inhibitor Cocktail 2 Sigma No. P5726  

Phosphatase Inhibitor Cocktail 3 Sigma No. P0044  

pI Standard ladder 3 Protein Simple No. 040-646  

Ponceau Red Sigma No. 09189  

Poly-Ornithine Sigma No. P8638  

Protease Inhibitor Cocktail 3 Calbiochem No. 539134  

Resolving Buffer National Diagnostics No. EC-892  

RIPA Buffer Sigma No. R0278  

Roti®-Load  Roth No. K929.1  

Rotiphorese® SDS-PAGE Roth No. 3060.2  

Sodium Azide (NaN3) Sigma No. S2002  

Sodium Chloride (NaCl) Roth No. 9265.1  

Sodium Deoxycholate Applichem No. A1531,0100  

Sodium Dodecyl Sulfate (SDS) Calbiochem No. 428029  

Stripping Buffer Applichem No. A7140  

Temed Merck No. 1107320100  
Tetradecanoyl-phorbol-acetate 
(TPA) Sigma No. P8139  

TGX-221 Cayman Chemical No. 10007349  

Tris Hydrochloride (Tris-HCl) Roth No. 9090.3  

Triton-X-100 US Biological No. T8655  

Trypsin EDTA Life Technologies No. 25300-062  

Tween-20 Calbiochem No. 655205  

Wortmannin Sigma No. W1628  
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2.1.2. Buffers and solutions 

Table 2: List of Buffers  

Name Chemical composition 

Running Gel (8%) 

 

4,8 mL dH2O 

2,5 mL Resolving Buffer 

2,7 mL Acrylamide 

100 µL APS (10%) 

10 µL Temed 

 

Stacking Gel (3,75%) 

 

3,1 mL dH2O 

1,25 mL Stacking Buffer 

0,65 mL Acrylamide 

25 µL APS (10%) 

5 µL Temed 

Stacking buffer (pH 6,8) 

0,5 M Tris-HCl 

0,4% (w/v) SDS 

200 mL dH2O 

TBS-T (10x, pH 7,4) 

2L dH2O 

50mM Tris-HCl 

150 mM NaCl 

0,05% Tween-20 

DMEM for N1E-115 cells 

500 mL DMEM with pyruvate 

1% (v/v) mL Penicillin/Streptomycin 

10% (v/v) mL FCS 

200 mM GlutaMax 
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Name Chemical composition 

Neurobasal medium for primary 
neurons 

50 mL Neurobasal-A 

1% (v/v) mL Penicillin/Streptomycin 

2% (v/v) mL B27 

200 mM GlutaMax 

Blocking solution (in PBS) 

2% BSA 

1% (v/v) Goat serum 

0,1% (w/v) Sodiumazide 

(0,2% (v/v) Triton-X-100) 

Mowiol 

5 g Mowiol 

20 mL PBS 

10 mL Glycerine 

2,5% (w/v) DABCO 

RIPA lysis buffer (500 mL in H2O) 

50 mM Tris-HCl 

150 mM NaCl 

0,5% (w/v) Sodiumdeoxycholate 

1% (v/v) NP-40 

0,1% (w/v) SDS 
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2.1.3. Cells and animals 

Table 3: Cells and animals 

Name Company 

C57/bl6 mice FEM 

Wistar rats FEM 

N1E-115 cells stock in the lab 
 

2.1.4. Antibodies 

Table 4: Primary antibodies (IC: Immunocytochemistry, IB: Immunoblot, cIEF: Capillary isoelectric 
focusing, m: monoclonal, p: polyclonal) 

Name Company Source Concentration 

α-Tubulin Sigma, #T6199 mouse (m) IB: 1:3000 

Akt-pan Cell Signaling, #9272 rabbit (p) IB: 1:1000 
cIEF: 1:50 

Akt1 Millipore, #05-669 rabbit (m) IB: 1:1000 
cIEF: 1:50 

Akt2 Cell Signaling, #3063 rabbit (m) IB: 1:1000 
cIEF: 1:50 

Akt3 Upstate, #03-383 rabbit (p) IB: 1:1000 
cIEF: 1:50 

p(Thr34)Akt Upstate, #07-789 rabbit (p) IB: 1:500 

p(Thr308)Akt Cell Signaling, #2965 rabbit (m) IB: 1:1000 
cIEF: 1:25 

p(Tyr326)Akt Santa Cruz, #sc-109904 rabbit (p) IB: 1:500 

p(Thr450)Akt Cell Signaling, #9267 rabbit (p) IB: 1:1000 
cIEF: 1:25 

p(Ser473)Akt Cell Signaling, #4060 rabbit (m) IB: 1:1000 
cIEF: 1:25 

p(Ser474)Akt2 Cell Signaling, #8599 rabbit (m) IB: 1:1000 

Bax Santa Cruz, #sc-493 rabbit (p) IB: 1:1000 

Cyclin B1 Santa Cruz, #sc-70898 mouse (m) IB: 1:500 

Cyclin E Santa Cruz, #sc-377100 mouse (m) IB: 1:1000 

EGFR Millipore, #04-290 mouse (m) IB: 1:1000 

p(Tyr1068)EGFR Cell Signaling, #2234 rabbit (m) IB: 1:500 

ERK1/2 Cell Signaling, #4695 rabbit (m) IB: 1:1000 

p(Thr202/Tyr204)ERK1/2 Cell Signaling, #4370 rabbit (m) IB: 1:1000 
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GAPDH Calbiochem, #CB1001 mouse (m) IB: 1:5000 

GFAP SynapticSystems, #173002 rabbit (p) IB: 1:1000 

GSK3ß Cell Signaling, #9832 mouse (m) IB: 1:1000 

p(Ser9)GSK3ß Cell Signaling, #9323 rabbit (m) IB: 1:1000 

MAP2 Cell Signaling, #4542 rabbit (p) IB: 1:1000 

MCM7 Santa Cruz, #sc-9966 mouse (m) IB: 1:500 

p(Ser2448)mTOR Cell Signaling, #5536 rabbit (m) IB: 1:500 

p53 Santa Cruz, #sc-6243 goat (p) IB: 1:1000 

PSD-95 NeuroMab, #K28/43 mouse (m) IB: 1:5000 

PTEN Cell Signaling, #9559 rabbit (m) IB: 1:2000 

S6 Ribosomal Protein Cell Signaling, #2217 rabbit (m) IB: 1:1000 

p(Ser235/236)S6 Cell Signaling, #4856 rabbit (m) IB: 1:1000 

Tau1 Millipore, #MAB3420 mouse (m) IB: 1:1000 

TFEB Bethyl, #A303-673A-T rabbit (p) IC: 1:500 
 
Table 5: Secondary antibodies 

Name Company Source Concentration 

Alexa Flour 488 goat-anti-rabbit Invitrogen, #A11006 rabbit IC: 1:1000 

HOECHST Sigma, #14530  IC: 1:100.000 

HRP-conjugated anti-rabbit-IgG Vector Labs, #PI1000 rabbit IB: 1:3000 
HRP-conjugated anti-mouse-
IgG Vector Labs, #PI2000 mouse IB: 1:3000 

HRP-conjugated anti-goat-IgG Santa Cruz, #2020 goat IB: 1:3000 

HRP-conjugated goat-anti-rabbit Protein Simple, #040-656 rabbit cIEF: 1:100 
HRP-conjugated goat-anti-
mouse Protein Simple, #040-655 mouse cIEF: 1:100 
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2.1.5. Kits 

Table 6: Kits 

Name Company Catalog number 
Coomassie Brilliant Blue R-250 
Staining Solutions Kit BioRad Laboratories No. 161-0436 

Pierce® BCA Protein Assay Kit Thermo Scientific No. 23225 
 

2.1.6. Equipment and software 

Table 7: Machines 

Name Company 

Centrifuge 5430R Eppendorf, Germany 

Table centrifuge MiniStar VWR, USA 

NanoPro™100 Protein Simple Inc., USA 

Fusion SL Camera Vilber Lourmat, Germany 

HERAcell CO2 Incubator Heraeus, Germany 

Confocal microscope TCS SP5 Leica, Germany 

Mini Protean Tetra System BioRad Laboratories, USA 
 

 

Table 8: Software 

Name Company 

CompassTM Protein Simple, USA 

ImageJ National Institutes of Health, USA 

Prism 5 GraphPad Software, USA 
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2.2. Methods 

2.2.1. Cell culture 

Culture and treatment of N1E-115 cells 

N1E-115 were routinely maintained at 37 °C and 5% CO2 in DMEM supplemented with 10% 

heat inactivated FCS, 200 mM GlutaMax and 100 U/mL Penicillin/Streptomycin (P/S). For 

treatments, N1E-115 cells were seeded in a 12-well plate at a density of 26.000 cells/cm2. 

They were kept in DMEM without serum for 48 hours prior to growth factor treatment. 100 nM 

Insulin was added directly to the medium for indicated time periods. Following treatments, 

the cells were washed twice with ice-cold PBS and lysed. For Western blot (WB) analysis 

cells were lysed in 100 µL RIPA buffer, for analysis by capillary isoelectric focusing (cIEF) 

cells were lysed in 100 µL Bicine/CHAPS buffer per well. 

For PI3K inhibition experiments, cells were routinely kept in DMEM containing 10% FCS. 

Two days after plating the cells, 5nM – 1µM Wortmannin (WM) was applied for up to 

30 minutes. Again, right after treatment the cells were washed twice with ice-cold PBS and 

lysed according to use. 

 

Culture and treatment of mouse primary neurons 

Primary cortical neuronal cultures were prepared from wild type or PTENfloxed/floxed C57/bl6 

mouse embryos at E16 and kept at 37 °C and 5% CO2 in Neurobasal-A supplemented with 

2% B27, 200 mM GlutaMax and 100 U/mL P/S. Half of the medium was refreshed once a 

week and cells were kept either for 7 days (7 DIV) or 3 weeks (21 DIV). For biochemical 

analysis, cortical neurons were seeded in 12-well plates on poly-L-ornithine coated 

coverslips at a density of 79.000 cells/cm2. To stimulate the cells, different growth factors 

(100 nM Insulin, 50 ng/mL BDNF, 40 ng/mL EGF) were applied directly to the medium, gently 

mixed, and incubated for 15 min.  

Prior to EGFR inhibition treatments, cortical neurons were starved in Neurobasal-A medium 

without B27 for 5 hours. For the last hour of starvation, the EGFR inhibitor (10 nM or 1 µM 

Gefitinib) was added either in the presence or absence of the receptor agonist. 

To test the role of the different catalytic PI3K subunits (p110α,β,γ,δ), unstarved cortical 

neurons were treated with specific subunit inhibitors (GDC-0941, AS252424, IC87114, A66, 

TGX-221) for 30 min. Directly after treatment the cells were washed twice with ice-cold PBS 

and lysed according to use. For WB, cells were lysed in 100 µL RIPA buffer, for subsequent 

analysis by cIEF cells were lysed in 100 µL Bicine/CHAPS buffer per well. 

The time course samples of cortical development in vitro (2 DIV – 21 DIV) were kindly 

provided by Annika Brosig.  
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Viral infection of primary cortical neurons  

Viruses used in this work were kindly provided by Dr. Till Mack. To briefly summarize the 

generation, a modified lentiviral vector was used, in which a human Synapsin-1 promoter 

drives the expression of the RFP-Cre transgene. Lentiviruses were produced by co-

transfecting HEK293T cells with the lentiviral vector and two helper vectors, pVSVg and 

pCMV-delta R8.9 [Xue et al. 2009; Lois et al. 2002]. Viral supernatants were collected 48 

hours after transfection. The supernatant was aliquoted and stored at -80 °C. For in vitro 

experiments, 150 µL virus particles were added to one well of a 12-well plate with cultured 

floxed PTEN neurons 12 days after plating (12 DIV). 9 days post-transduction neurons (21 

DIV) were harvested in either 100 µL RIPA or Bicine/CHAPS buffer with freshly added 

inhibitors and lysates were prepared for WB or cIEF. 

 

Culture and treatment of rat primary hippocampal neurons 

Primary hippocampal neurons were prepared from P1 Wistar rats and kept at 37 °C and 5% 

CO2 in Neurobasal-A supplemented with 2% B27, 200 mM GlutaMax and 100 U/ml P/S. Half 

of the medium was refreshed once a week and cells were kept for 3 weeks (21 DIV). For 

immunochemical analysis, the cells were seeded in 24-well plates on poly-L-ornithine coated 

coverslips at a density of 21.000 cells/cm2. Treatments were carried out in the same way as 

described for cortical neurons. 

 

Whole rat brain lysates 

For whole brain lysates, kindly provided by Beate Diemar, Wistar rats were sacrificed at 

different ages (P0 – 30 weeks) and the entire forebrain was collected. The brains were lysed 

in RIPA buffer, aliquoted and stored at -80 °C until further use.  

 

Astrocyte culture 

Astrocytes for this work were kindly provided by Dr. Kai Murk. To briefly summarize the 

culture, prior to seeding cortical astrocytes, culture dishes were coated with a solution 

consisting of 0,025% collagen and 15 µg/mL poly-L-ornithine for 30 min at 37 °C and 5% 

CO2. After removing the solution from the dishes, astrocytes were seeded immediately. 

Astrocytes were obtained from E16.5 C57/bl6 mice and plated onto T75-flasks with 15 ml 

DMEM containing 10% FCS and 1% P/S. They were grown at 37 °C with 5% CO2 in a cell 

incubator until they reached 80-90% confluence.  
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2.2.2. Biochemical methods 

Protein isolation  

For whole protein extraction the cells were lysed and scraped using RIPA lysis buffer. 

Following incubation on ice for 20 min, lysates were centrifuged for 20 min at 14.000 rpm at 4 

°C. The supernatants were harvested and stored at -80 °C for analysis.  

 

Immunoprecipitation (IP) 

21 DIV cortical neurons from a T75 flask were lysed in 900 µL RIPA containing protease and 

phosphatase inhibitors. The cells were scraped off the flask, transferred into Eppendorf 

tubes, vortexed and rotated at 4 °C for 25 minutes. After again vortexing the samples they 

were centrifuged at full speed for 25 minutes. The supernatant was replaced and 1/10 kept to 

probe in WB later as total cell lysate. To preclear the lysate 60 µL G-protein agarose beads 

per sample were prepared. The beads were spun down at 4500 rpm for 4 minutes. Followed 

by two washes with 1x PBS by spinning them down at 6000 rpm for 3 minutes. PBS was 

aspirated with a syringe between washing steps. All centrifugation steps were performed at 

4 °C. Finally beads were washed once with RIPA and then resuspended in 60 µL (original 

volume) RIPA. The cleared supernatant from above was added to the beads and rotated at 

4 °C for 1 hour. Afterwards the lysate - bead mixture was spun down at 6000 rpm for 

3 minutes. The precleared supernatant was transferred to new tubes with 10 µL p(T308)Akt 

antibody and rotated over night at 4 °C. On the next day fresh beads were prepared as 

described above. The lysate - antibody mixture was added to the newly prepared beads and 

rotated for 2 hours at 4 °C. The tubes were spun down at 6000 rpm for 3 minutes. The 

supernatant was harvested and kept to probe later for p(T308)Akt analysis by WB. The pellet 

was washed 5x in RIPA. Following the last centrifugation the pellet was resuspended in 2x 

Roti®-load (20 µL/sample) and boiled at 95 °C for 5 minutes. After centrifugation the 

supernatant was replaced into a new tube using a syringe. 20 µL 1x Roti-load was added to 

the remaining pellet and again boiled at 95 °C for 5 minutes and centrifuged. The 

supernatant was added to the previous supernatant, together providing the IP sample to test 

in WB. 

 

N1E-115 and primary cortical lysates for NanoPro100 

N1E-115 cells or primary cortical neurons were washed twice with ice-cold PBS and 

afterwards lysed with 100 µL Bicine/CHAPS containing 1x aqueous inhibitor and 1x DMSO 

inhibitor. After incubation on ice for 20 minutes, the lysate was centrifuged for 20 minutes at 

14.000 rpm at 4 °C and the supernatant was transferred into a new tube and aliquoted. 

Aliquots were stored at -80 °C. For ʎ-phosphatase treatments N1E-115 protein samples were 
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incubated with or without phosphatase for 30 minutes at room temperature (RT) directly 

before performing WB analysis or cIEF. 

 

Quantification of protein concentration 

The protein concentration of a sample was quantified using the Pierce®BCA Protein Assay 

kit. The method was carried out following the instructions of the supplier 

(http://www.piercenet.com/instructions/2161296.pdf). Protein samples were diluted 1:5 and 

the assay was performed in 96-well plates, which were incubated at 37 °C for 30 minutes. 

The concentration was then measured photometrical at 562 nm. 

 

SDS-PAGE 

Protein samples for immunoblot analysis were obtained from N1E-115 cells or primary 

cortical neurons (see section 2.2.1). 4x Roti®-load was added to the protein extracts, which 

were boiled at 95 °C for 5 min. The separation was carried out on a 3,75% stacking gel and a 

8% running SDS gel. Until the samples reached the running gel a voltage of 60 V was used, 

before the voltage was increased to 120 V. 

 

Western blot (WB) analysis 

Blotting was carried out with nitrocellulose membrane using a tank transfer system from Bio-

Rad. The membrane was blotted for 2 hours at 400 mA. In order to check the blot the 

membrane was placed in a petri dish with Ponceau red to visualize proteins. The color was 

washed off with 1x TBS-T before the detection reaction. 

 

Immunodetection 

After complete removal of Ponceau red, membranes were blocked in 5% skim milk for at 

least 30 minutes at RT. The membranes were first incubated with a primary antibody (see 

Table 4) in 5% skim milk overnight at 4°C. The next day after washing three times with 1x 

TBS-T, nitrocellulose membranes were incubated with secondary horseradish peroxidase 

(HRP) conjugated antibody (see Table 5) in 5% skim milk for at least 1 hour at RT. After 

washing, the immunoreaction was visualized using ECL Western Blotting substrate and 

expose using Vilber Lourmat System®. After exposure the procedure of immunodetection 

was repeated for the loading control. Anti-GAPDH (1:5.000) or anti-αTubulin (1:5.000) was 

incubated overnight at 4 °C in 5% skim milk and HRP-conjugated anti-mouse IgG (1:3.000) 

was used as secondary antibody.  



  Materials and methods 
 

-24- 

Membrane ʎ-phosphatase treatment 

The SDS gel and blotting of the proteins to a nitrocellulose membrane were done as 

described above. After the transfer the membrane was washed twice in 1x TBS-T, followed 

by one wash in 0,1 M Tris (pH 8,5) and one wash in 0,1 M Tris (pH 8,5) with 5 mM MgCl2 for 

10 minutes each, to remove the TBS-T. The membrane was transferred to 0,1 M Tris 

(pH 8,5) containing 5 mM MgCl2 with or without (control) ʎ-phosphatase at a final 

concentration of 10 U/mL and incubate for 5 hours at RT. After the treatment the membrane 

was washed twice in 1x TBS-T for 10 minutes each. After washing the membrane, 

immunodetection was carried out as described above. 

2.2.3. Immunocytochemistry 

Staining of primary hippocampal neurons 

Primary hippocampal cultures were kept until 21 DIV (see 2.2.1). In order to fix the cells, half 

of the medium was replaced by warm 4% PFA for 5 minutes. Afterwards the medium/PFA 

mixture was removed and replaced solely by 4% PFA for another 15 minutes. The fixed 

neurons were washed twice with PBS. At this point the neurons can be kept in PBS + 

sodiumazide at 4 °C.  

For staining of the neurons, they were first permeabilized in blocking buffer containing 0,1% 

Triton-X-100 for 1 hour. After the permeabilization process the cells were incubated with the 

primary antibody in blocking buffer. After an hour the coverslips were washed three times 

with PBS, 5 minutes each. The secondary antibody was also prepared in blocking solution 

and left on the cells for 30 minutes. For antibody dilutions please refer to Table 4 and Table 

5. The coverslips were again washed three times with PBS, 10 minutes each. During the last 

washing step HOECHST dye (1:100.000) was added to the PBS, in order to stain the 

nucleus of the cells. Finally the coverslips were mounted onto glass slides using Mowiol. 

Slides were left to harden at RT overnight and afterwards stored at 4 °C. 

 

Confocal microscopy 

Confocal images of rat primary hippocampal neurons were acquired with an upright laser 

microscope (Leica TCS SP5) equipped with a 20x, 40x and 63x (oil-immersion) objective 

using sequential scanning with the 488 nm line of the Argon laser, and the 543 nm and 

633 nm from a helium-neon laser (for AlexaFluor 488, AlexaFluor 568 and AlexaFluor647, 

respectively). The nuclear HOECHST staining was captured with the 405 nm diode laser. Z-

stacks were generated using a 0.3 µm step size. Background correction and adjustment of 

brightness and accordingly contrast was performed using ImageJ software. 

  



  Materials and methods 
 

-25- 

2.2.4. NanoPro100 Akt assay 

A master mix of (5-8) nested G2 Premix, pI standard ladder 3 and an additional 5.5 pI 

standard was prepared. According to a final protein concentration of 75 - 125 ng 

protein/capillary, Bicine/CHAPS as sample diluent, DMSO inhibitor and the protein sample 

were added to the ampholyte containing master mix. For the DTT treatment, N1E-115 cell 

lysates were incubated in Bicine/CHAPS + 53 mM DTT for 5 minutes at RT. Afterwards 

samples were mixed with the inhibitor and G2 Premix as described above. DTT had a final 

concentration of 40 mM when samples were loaded in the capillary. Samples and antibodies 

were transferred to the assay plate. Luminol/peroxide, washing buffer, catholyte and anolyte 

were used according to manufacturer protocol. During the fully automated process of the 

NanoPro100 assay the proteins were separated by isoelectric focusing for 40 min at 

21000 µW, followed by immobilization through UV exposure for 100 sec. Primary antibodies 

(see Table 4) were incubated in the capillary for 4 hours with two subsequent wash steps of 

150 sec each. The secondary antibody was incubated in the capillary for 1 hour with two 

subsequent wash steps of 150 sec each. Last, luminol/peroxide reagent was passed through 

the capillaries and chemiluminescence was detected. Bound primary antibodies were 

detected with HRP goat-anti-rabbit secondary antibody at 1:100 dilutions. Analysis of the 

optimal linear detection range identified 240 sec exposure as optimal, which was used for all 

figures and quantification of cIEF experiments unless stated differently. Peak integration and 

pI marker calibration was performed using Compass™ software as previously described 

[O’Neill et al. 2006]. 
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3. Results 
The aim of the project was to get further, more detailed insight into the PI3K/PTEN – Akt 

signaling pathway, with emphasis on the differences on activation of the different Akt 

isoforms depending on upstream cues. In order to do so, we developed a cIEF assay to 

monitor Akt in neuronal tissues. Important results are discussed throughout this section in 

order to clarify the findings for the reader. 

3.1. Akt cIEF assay development and peak identification 

To investigate the different Akt isoforms and their post-translational modifications (PTM) 

standardized biochemical methods (e.g. Western blot) have certain limitations. For example, 

with WB it is possible to assess the total phosphorylated protein isoforms with phospho-

specific antibodies or the abundance of one isoform, independent of its PTMs, with isoform-

specific antibodies. Therefore, we made use of capillary isoelectric focusing (cIEF). We used 

the NanoPro100™ from Protein Simple (USA) to separate proteins according to their net 

charge, allowing the separation and detection of phospho-forms as well as isoforms of the 

same protein by a single antibody. The basic parameters for this assay were optimized using 

N1E-115 neuroblastoma cells. Initially we used the panAkt antibody to assess the peak 

profile of N1E-115 cells. These lysates gave a panAkt profile with 10 peaks. The NanoPro 

assay detects proteins in their native state therefore, leading to the detection of protein 

complexes and quaternary structures found in cell signaling pathways. In order to try 

optimizing our Akt cIEF assay we used DTT to slightly denature the proteins, thereby getting 

a greater resolution, better peak efficiency and reducing the numbers of non-specific 

interactions. However, the usage of DTT on the N1E-115 cell lysates did not provide a better 

resolution in comparison to untreated cell lysates (see Figure 4A). Therefore, we did not use 

DTT for further experiments. We also established the optimal exposure time for our assay. 

The NanoPro device provides six pre-set exposure times ranging from 30 - 960 sec. We 

quantified the area under each detected peak in order to test for linearity with increasing 

exposure times. We found an optimal range from 240 - 480 sec, the maximum exposure of 

960 sec did not improve the signals. In fact, at higher exposure times the area proportions 

were non-linear (see Figure 4B). After setting the basic parameters for the assay we 

employed it in different cell types. To study Akt in a neuronal context, we used N1E-115 and 

primary cortical cell lysates, as well as whole brain lysates. Using WB we could show, that all 

three Akt isoforms are expressed in all of the different lysates (see Figure 5A). When N1E-

115 cell lysate were probed with a panAkt antibody, we identified 10 peaks in the cIEF 

profile, with corresponding isoelectric points (pIs) of 5.06, 5.14, 5.21, 5.31, 5.42, 5.53, 5.61, 

5.68, 5.76  and  5.85.  Probing  cell  lysates of  primary cortical  neurons, the panAkt antibody  
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Figure 4: Optimization of the cIEF Akt assay. (A) Untreated or 40 mM DTT treated N1E-115 cells 
were analyzed with the panAkt antibody by cIEF in order to compare the resolution of the peaks. (B) 
The area under the peaks (in %) was calculated for different exposure times. A slight change in 
linearity for some peaks (5.06, 5.14, 5.31) was only observed after 960 sec exposure 
 

 

resulted in the same peak profile of 10 conspicuous peaks with identical pIs (5.06, 5.14, 5.21, 

5.31, 5.42, 5.53, 5.61, 5.68, 5.76 and 5.85), however, one additional, more acidic peak 

species with a pI of 5.01 was identified. The peak profile detected for brain lysate presented 

all of the N1E-115 cell specific peaks, with the exception of the 5.85 peak (see Figure 5B). 

Across the different neuronal samples tested the relative abundance of Akt molecules 

changed significantly, this is representative of potential context dependent modifications or 

cell/tissue specific alterations in the isoform expression profiles. To get further, more detailed 

insight into the neuronal peak profiles, we used the isoform-specific antibodies recognizing 

Akt1, Akt2 or Akt3 (see Figure 5C). In N1E-115 cells, the most acidic peaks - 5.06, 5.14, 

5.21, 5.31, 5.42, 5.53, 5.61, 5.68 - with 5.53 showing the largest signal, were recognized by 

the Akt1 antibody. The Akt2 antibody gave a more restricted panel with two evident peaks at 

pIs of 5.68 and 5.85, the latter showing the largest signal. Detection using the Akt3 antibody 

gave two specific peaks at pIs 5.61 and 5.76, with 5.76 being the dominant signal. In 

addition, three non-specific peaks with a pI >5.80 were found, which may represent the upper 

band detected by WB of N1E-115 cell lysate (see Figure 5A). Comparison of the peak 

profiles of primary cortical neurons with that of brain lysate, showed similar peak patterns, 

except that the Akt2 antibody recognized an additional peak at 5.61 in whole brain lysate. In 

accordance with previous publications [WS Chen et al. 2001; Cho, Thorvaldsen, et al. 2001], 

Akt1 was the most abundant isoform in all three neuronal lysates, however, it exhibited minor 

changes in the specific pI value across the samples. In neuroblastoma cells, the main Akt1 

molecule was found at pI 5.53, in cortical neurons at 5.42, whereas in brain lysate at a pI of 

5.61. These results suggest that the extent of PTMs seem to vary between different cell 

types. In conclusion, these results support the validity of the Akt cIEF assay in in its 

application to analyze neuronal lysates. cIEF provides highly reproducible results and pIs 
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detected for the three Akt isoforms are in agreement with previous reports of Akt profiles 

established in cancer cells [H Guo et al. 2014; Iacovides et al. 2013; Sabnis et al. 2014]. 

Figure 5: Akt cIEF assay development and peak identification. (A) Western blot analysis of Akt 
isoforms (Akt1-3) in cell lysates obtained from N1E-115 neuroblastoma cells, primary cortical neurons 
(21 DIV) and embryonic mouse brain (E16.5). (B) Capillary isoelectric focusing (cIEF) analysis of the 
cell lysates using a pan-Akt antibody shows a regular Akt profile with 9-10 conspicuous peaks that are 
separated according to protein charge distribution (isoelectric point, pI). (C) cIEF analysis of cell 
lysates using isoform-specific Akt antibodies. In cIEF profiles, Akt1 peaks are colored in green, Akt2 in 
blue and Akt3 in red. Peaks with mixed Akt isoforms are colored in yellow.  

3.1.1. Identification of phospho-specific Akt peaks in cIEF 

In order to determine the phospho-states of the different peaks, phosphate groups in the 

lysates were removed with ʎ-phosphatase. The functionality of this treatment was checked 

by WB analysis using p(S473)-, p(T308)-, and p(T450)Akt antibodies (see Figure 6A). The 

complete loss of phosphoAkt signal confirms the specificity of the treatment. When the same 

samples were tested with the panAkt antibody by cIEF, ʎ-phosphatase treatment resulted in 

the absence of cIEF peaks between pI 5.06 and 5.42, identifying these as phosphorylated 

Akt forms (see Figure 6B). At the same time, the 5.53 and 5.76 peaks showed the greatest 

increase in signal and a new peak at 6.02 emerged. These signals were categorized as the 

three non-phosphorylated Akt isoforms (see Figure 6B). To confirm unequivocally the loss of 

phosphorylation by cIEF, we used the phospho-specific antibodies pS473, pT308, or pT450. 

Phosphorylation on T450 has previously been characterized as a constitutive Akt 
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phosphorylation event, unresponsive to activation of the protein [Facchinetti et al. 2008] and, 

indeed, detection using the p(T450)Akt antibody in cIEF produced the exact same peak 

profile as the panAkt antibody (see Figure 6C). However, the specificity of the p(T450)Akt 

antibody towards phosphorylated Akt species was confirmed by ʎ-phosphatase treatment 

leading to a loss of any signal (see Figure 6D). 

Figure 6: Identification of phospho-specific Akt peaks and peak distribution after ʎ-Phosphatase 
treatment in N1E-115 neuroblastoma cells. (A) N1E-115 cell lysates were treated with ʎ-Phosphatase 
before Western blot analysis using indicated antibodies. (B) The same cell lysates were analyzed 
using cIEF; peak profiles demonstrate the loss of peaks with a pI <5.42 after ʎ-Phosphatase 
treatment, identifying them as phosphorylation containing peaks. (C) N1E-115 cell lysates were 
analyzed by cIEF using phospho-specific Akt antibodies. (D) After ʎ-Phosphatase treatment of N1E-
115 cell lysates, the three phosphorylation-specific Akt antibodies did not detect any peaks, confirming 
the specificity of cIEF in detecting phosphorylated Akt species.   
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The new occurring peak with the pI of 6.02 was not detected with the p(T450)Akt antibody. 

Combing this observation together with the results of the Akt2 isoform-specific antibody, we 

characterized this peak as non-phosphorylated Akt2. This led us to the hypothesis, that 

under basal conditions phosphorylated Akt2 is more abundant when compared to the non-

phosphorylated form in mouse neuroblastoma cells. The results for the Akt3-specific 

antibody and the phosphatase treatment indicate that non-phosphorylated Akt3 peaks 

at 5.76. Because this peak is also recognized by the p(T450)Akt antibody, we assume a 

degree of heterogeneity within the peak, most likely consisting largely of non-phosphorylated 

Akt3 with a minor population of phospho-Akt2 molecules. For the first time, we were able to 

identify the Akt3 protein with cIEF in neuronal cells. Our detected pI of murine Akt3 with 5.76 

is slightly higher than the theoretical prediction of 5.71 (http://web.expasy.org/compute_pi/). 

Antibodies of the two activating phosphorylation sites T308 and S473 recognized, as 

expected, the most acidic peaks of the cIEF profile. Both antibodies detected four peaks in 

untreated N1E-115 cells (5.06, 5.14, 5.31 and 5.42), with p(S473)Akt detecting an additional 

fifth peak at 5.53 (see Figure 6C). These slightly different cIEF profiles of the two activating 

Akt phosphorylation sites led us to the conclusion that, at least under basal conditions, 

phosphorylation of the two activating sites can occur independent of each other. Moreover, 

the T308 and S473 phosphorylation containing peaks most likely also contain other 

phosphorylation sites and vary in their modifications by other PTMs (i.e. ubiquitination, 

sumoylation). Up to 22 validated Akt phosphorylation sites have previously been reported [H 

Guo et al. 2014]. We tested commercially available antibodies for the known phosphorylation 

sites T34 and Y326 but were not able to obtain specific signals with either WB or cIEF. A 

summary table with all peaks detected under basal conditions and ʎ-Phosphatase treated 

cells can be found in Figure 7. 

Figure 7: Summary of cIEF identified Akt peaks. (A) Table showing identified cIEF peaks using 
different Akt antibodies (AB) in cell lysates obtained from neuronal cells. (B) Table showing identified 
cIEF peaks using different Akt antibodies in NIE cell lysates treated with ʎ-phosphatase. In both 
tables, Akt1 specific peaks are colored in green, Akt2 in blue and Akt3 in red. Peaks with mixed Akt 
isoforms are colored in yellow.  
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3.2. Dynamics of Akt phosphorylation in N1E-115 cells 

To get a better understanding of the relationship between the two activating Akt 

phosphorylation sites (T308 and S473) after growth factor stimulation, we stimulated N1E-

115 cells with Insulin for different time periods, before analysis of cell lysates using cIEF and 

WB. Prior to stimulation, cells were starved for 48 hours in serum-free medium to erase 

baseline phosphorylation. As shown by WB, no phosphorylation was detectable using this 

starvation protocol (see Figure 8A, top), which was confirmed by testing cell lysates also with 

the two phospho-specific antibodies p(T308)- and p(S473)Akt in cIEF (see Figure 8B and C, 

left panels). To verify proper loading of the capillaries, the lysates of starved N1E-115 cells 

were probed with the panAkt antibody (see Figure 8A, bottom). A solid Akt phosphorylation 

was already detectable after 1 min Insulin stimulation with both phospho-specific antibodies 

in WB and cIEF (see Figure 8A-C). Detection of Akt phosphorylation upon acute Insulin 

treatment by WB revealed little insight into the phosphorylation dynamics, as it merely 

revealed a general increase in phosphorylated Akt with no changes in signal strength 

between 3 and 10 min of Insulin stimulation (see Figure 8A). In comparison, resulting cIEF 

profiles unraveled unique Akt phosphorylation features, as phosphorylation on S473 and 

T308 appeared to occur parallel in a cooperative process in time. Peak increases were first 

observed in the less acidic peaks 5.42 and 5.31. At later time points, there was a gradual 

appearance and increase of more acidic, and often poorly resolved peaks with pIs of 5.06 - 

5.14. This result suggests that Akt undergoes different modifications in response to Insulin 

signaling in neuroblastoma cells before reaching steady-state levels after 15 min Insulin 

stimulation. Steady state profiles were characterized by four prominent acidic peaks in both 

p(S473)- and p(T308)Akt profiles (with pIs of 5.06, 5.14, 5.31 and 5.42), as well as an 

additional one in case of pS473 (pI of 5.53) (see Figure 8B and C, right panels). The latter 

peak was only faintly detected by the pT308 antibody and most likely corresponds to the 

p(S473)Akt form identified in N1E-115 lysates under basal conditions (see Figure 6C). It has 

to be noted, that the 5.21 peak detected with the panAkt antibody was not detected with 

neither the p(S473)Akt nor the p(T308)Akt antibody. However, because pT450 detected the 

5.21 peak (see Figure 6C) and because it was sensitive to treatment with ʎ-phosphatase 

(see Figure 6D), we surmise that this peak may present forms of Akt precursors for S473 or 

T308 phosphorylation. 

We quantified the area under each peaks at each time point to compare p(S473)-and 

p(T308)Akt levels. We found that the maximal signal for both antibodies was reached after 

10 min Insulin treatment, followed by small decreases at 15 min (see Figure 8D and E). The 

four to five peaks detected with each antibody showed a different behavior over time. The 

only peak with a steady increase over the entire 15 min was the 5.53 peak with the S473 

antibody  (see Figure 8D).  Comparison  of  the of  S473 and T308  peaks  dynamics  in time    
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Figure 8: Dynamics of Akt phosphorylation in response to Insulin in N1E-115 cells. (A) N1E-115 cells 
were starved for 48 hours before Insulin stimulation for different times (1-15 minutes). Cell lysates 
were analyzed by Western blotting using indicated antibodies (top). Lysate of starved N1E-115 cells 
was analyzed by cIEF with the panAkt antibody (bottom). (B) N1E-115 cell lysates were analyzed in 
parallel by cIEF using p(S473)Akt antibody and, (C) p(T308)Akt antibody. (D) The area under each 
peak was quantified for p(S473)Akt and, (E) the p(T308)Akt antibody, demonstrating the 
phosphorylation dynamics in time of individual peaks. 
 

 

identified differences and similarities of specific Akt phosphorylation forms. For example, the 

peak previously identified as Akt1 (pI 5.06) showed a steady increase during the course of 

the first 10 min of Insulin treatment followed by a small decrease over the next 5 min of 

incubation, when monitored with the p(S473)Akt antibody (see Figure 8D). In contrast, when 

monitored with p(T308)Akt, this peak showed an oscillating pattern with a maximum after 

5 min during the 15 minutes Insulin stimulation (see Figure 8E). The peaks previously 

identified to contain Akt1/Akt2 (pI 5.42) showed overlapping patterns for both phospho-

specific antibodies over the time course of stimulation, characterized by a rapid increase to 

maximal levels at 1 and 10 min of treatment (see Figure 8D and E). It should be noted here 

that we cannot exclude the possibility that the peaks identified by cIEF are mixed with 

respect to p(S473)- and p(T308)Akt, as well additional phosphorylation or other 

modifications. Given the complexity of growth factor-induced Akt phosphorylation cIEF 

profiles, a certain level of heterogeneity should be expected. Nevertheless, our results 
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support the assumption that both S473 and T308 phosphorylation events can occur 

uncoupled of each other during growth factor stimulation. 

3.3. Dynamics of Akt dephosphorylation in N1E-115 cells 

Experimental conditions for the inhibition of the pathway had to be defined. Using 

Wortmannin, a steroid metabolite of the fungi Penicillium funiculosum, Talaromyces 

wortmannii [Brian et al. 1957], a well-established, covalent inhibitor of PI3Ks, we first 

performed concentration- and time course experiments to assess the optimal WM 

concentration and treatment duration for our experiments. The phosphorylation of Akt, a 

PI3K downstream effector, was used as a read-out. Shown in Figure 9, we reached a good 

inhibition of PI3K after 30 minutes treatment with 200 nM WM. These conditions (200 nM, 30 

min) were used in all subsequent WM experiments, as it leads to an almost complete loss of 

Akt phosphorylation at the two activating phosphorylation sites, S473 and T308.  

Figure 9: Wortmannin concentration and time course. (A) N1E-115 cells were treated with 5 nM – 
1 µM Wortmannin for 30 minutes, with the two highest concentrations leading to almost complete loss 
of Akt phosphorylation. (B) N1E-115 cells were treated with 200 nM Wortmannin up to 30 minutes. Akt 
phosphorylation was almost completely lost. 
 

 

WB analysis confirmed the gradual decrease in p(S473)- and p(T308)Akt over time, with 

complete removal of Akt phosphorylation after 30 min of WM treatment (see Figure 10A, 

top). In accordance, no signal in the peak profiles of p(S473)- and p(T308)Akt after 30 min 

WM treatment was detected by cIEF (see Figure 10B and C, right panel). To verify proper 

loading of the capillaries, the lysates of 30 min WM treated N1E-115 cells were probed with 

the panAkt antibody (see Figure 10A, bottom). Analysis of Akt dephosphorylation in response 

to inhibition of PI3K in time identified differential progression of events. We found, that in 

comparison to  p(S473)-,  the p(T308)Akt site seems to be more sensitive to WM treatment in 
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Figure 10: Dynamics of Wortmannin-induced Akt dephosphorylation in N1E-115 cells. (A) N1E-115 
cells were treated with the PI3K inhibitor Wortmannin (WM) at 200 nM for different periods of time (3-
30 minutes) before Western blot analysis using indicated antibodies (top). Lysate of 30 min WM 
treated N1E-115 cells was analyzed by cIEF with the panAkt antibody (bottom). (B) Cell lysates were 
analyzed in parallel using cIEF with p(S473)Akt and, (C) p(T308)Akt. (D) The area under each peak 
was quantified for p(S473)Akt and, (E) the p(T308)Akt signal. 

 

WB and cIEF analysis (see Figure 10). Upon short WM treatment, cIEF detected an 

unexpected, specific and transient increase in S473 phosphorylation in the identified Akt1 

peak at pI 5.14 (see Figure 10B and D). This effect was specific for the peak with pI 5.14 

(and to some extent also for the 5.31 peak), but not for other peaks that showed similar 

patterns for both S473 and T308 dephosphorylation (see Figure 10B-E). This suggests that 

at least for some Akt forms, loss of PIP3 results in transient upregulation of phospho-S473 

but not phospho-T308. Importantly, we obtained similar patterns in different neuronal cell 

system, including primary cortical neurons (not shown here), which suggest this increase to 

reflect a regulatory component of Akt phosphorylation that occurs upon loss of PI3K signaling 

inputs.  
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3.4. Akt dynamics during postnatal brain development 

The importance of the PI3K/Akt signaling pathway during brain development is known and 

recognized in the field. To get more detailed information of the dynamics of Akt 

phosphorylation and endogenous profile of the different isoforms during normal brain 

development we used our newly established Akt assay. Therefore, we collected brains from 

Wistar rats at different postnatal (P0 – P21) and adult stages (10, 30 weeks). Analysis of 

these brain extracts by WB with antibodies against components of the PI3K and ERK 

pathway involved in neuronal development showed, that in general, the expression and/or 

phosphorylation levels of a number of signaling proteins analyzed were downregulated either 

shortly before (at P15-P21; pERK, pGSK3β, p(T308)-, p(S473)- or p(T450)-Akt) or just after 

hard wiring was completed (after P21; S6, pS6, GSK3β). A general downregulation during 

postnatal and adult stages was also found for the panAkt antibody. On the other hand, 

whereas the amount of Akt1 seemed to remain stable for all the different ages tested, Akt2 

and Akt3 protein levels show either steady increases in expression (Akt2) or remain high 

(Akt3) during postnatal development until P21, before sharply decreasing to lower expression 

levels (see Figure 11A). Total PTEN expression did not change during the time of 

development analyzed in this work. It has also to be noted, as the phosphorylation of ERK 

decreases the total amount of ERK protein seems to increase with age. Further, we analyzed 

different proteins important for cell division and proliferation as markers for neuronal cell 

cycle. The G2/mitotic-specific Cyclin B1 is a regulatory protein involved in mitosis and 

showed decreasing expression levels in postnatal brain. Cyclin E plays a critical role in the 

G1 phase and in the G1-S phase transition, shows higher expression in P0 and P7 brain 

lysates than Cyclin B1, but also decreases with age and was only little expressed in the brain 

of 30 week old mice. Another marker we examined was MCM7, this protein is essential for 

the initiation of DNA replication, and similar to the expression profile of the Cyclins we see 

the expected decrease in protein levels proportional to increasing age. In comparison, we 

analyzed expression levels of PSD-95, a protein which is almost exclusively located in the 

post synaptic density of neurons and is involved in anchoring synaptic proteins, as a marker 

for the brain maturation. PSD-95 levels increase with the age of our samples. Accordingly, 

the expression level of Tau1, a protein functioning in modulating the stability of axonal 

microtubules, another marker for brain maturation, also increases in older brain samples and 

shows a high phosphorylation of the protein, as detected by multiple upper bands (see 

Figure 11A). When the brain samples were analyzed by cIEF, prominent shifts in the peak 

profile occurred throughout postnatal development for panAkt, Akt1, p(S473)Akt, (see Figure 

11B-E), whereas the profiles for Akt2 and Akt3 remained largely unchanged (see Figure 

11F, G). The cIEF profile of p(T308)Akt demonstrated dynamic changes similar to that of the 

p(S473)Akt profile, with a transient increase in highly acidic peaks at P7/P15. We 
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hypothesize, that the identified cIEF peak shift to more acidic Akt forms that occurred during 

postnatal development signifies altered phosphorylation during stages corresponding to 

synapse development and maturation. 

Figure 11: Analysis of PI3K signaling strength during rat brain development. (A) Western blot analysis 
of rat brain lysates obtained at different postnatal and adult stages (P0 – 30 weeks) using antibodies 
against structural and signaling proteins related to neuronal development, including components of the 
PI3K/PTEN and ERK signaling pathways. The same lysates were analyzed by cIEF using, (B) panAkt, 
(C) p(S473)Akt, (D) p(T308)Akt, or the isoform specific antibodies recognizing, (E) Akt1, (F) Akt2 or, 
(G) Akt3. The most prominent changes in Akt peak distribution during brain development and 
maturation occurs in the Akt1 isoform.  
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3.5. Non-specific binding of the p(T308)Akt antibody 

During our extensive analyses of primary neuronal or whole brain lysates by WB (see section 

3.4, 3.6 and 3.7), we consistently noticed an upper band detected by the p(T308)Akt 

antibody with a size of approximately 70 kDa. This band correlated precisely with the 

appearance of the basic T308 peaks in cIEF profiles of the same samples. Subsequent 

analysis identified this band not to be detected in different other cell lines, including N1E-115, 

HEK293T and COS-7 (data is not shown). During postnatal stages in brain development, the 

‘upper band’ detected with the p(T308)Akt antibody was hardly detected at P0, and 

increased gradually until P15 to maximum levels (see Figure 12B). Furthermore, its 

expression and first appearance in very mature neuronal cultures (20 DIV) sparked our 

interest to identify the exact origin of this signal (see Figure 12A). Initial experiments with λ-

phosphatase treatment using Akt isoform-specific antibodies in vitro were inconclusive at the 

level of identifying whether this band corresponded to an additional Akt band. However, λ-

phosphatase treatment of transferred proteins on a nitrocellulose membrane revealed the 

disappearance of the band verifying it to be phospho-specific (see Figure 12C). Probing 

primary neuronal lysates with the p(T308)Akt antibody in cIEF gave a profile similar to that 

found for N1E-115 cells, showing 4 distinct, acidic peaks at 5.14, 5.31, 5.42 and 5.53. 

Additionally, 3-4 very basic peaks with their pI ranging from 5.75 to 5.9 appeared (see Figure 

23C). Again, these peaks were only detected in primary neuronal or whole brain lysates. A 

series of pharmacological treatments (including PI3K inhibitors) to establish the relationship 

of these T308 bands/peaks to specific T308-Akt bands/peaks showed that they do not share 

the same pharmacological profile (data not shown).  

In order to identify the nature of these additional signals detected by WB and cIEF, we used 

the p(T308)Akt antibody for immunoprecipitation (IP) of the protein from adult mouse brain. 

The IP was run on a SDS-Gel, stained with Comassie and the upper band at ~70 kDa 

excised. Following in-gel digestion, the band was then analyzed by mass spectrometry 

(mass spec). The mass spec experiments were performed by Erik McShane in the group of 

Prof. Matthias Selbach at the Max-Delbrück Center for Molecular Medicine in Berlin. The 

results obtained suggested the additional signals detected by WB and cIEF to be a classic 

form of protein kinase C (PKC) (see Figure 12D). PKC is phosphorylated by PDK1, the same 

kinase phosphorylating Akt at T308 [Mora et al. 2004]. Therefore, a cross-reactivity of the 

p(T308)Akt antibody with PKC is against expectation but not digressive as both proteins 

show a high sequence homology around the T308 region of Akt (see Figure 12E). To confirm 

the nature of the upper band and the additional basic peaks in cIEF to be PKC we treated 

neurons with TPA for 24 hours, as it has been reported to downregulate classic PKCs 

[Leondaritis, Petrikkos, and Mangoura 2009]. After the 24 hour TPA treatment the upper 

band in WB as well as the most basic peaks in cIEF detected with the p(T308)Akt were no 
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longer detected (see Figure 12F). Therefore, we conclude, that the p(T308)Akt antibody from 

Cell Signaling that we used in our experiments shows a cross-reactivity with phosphorylated 

PKC proteins. 

Figure 12: Non-specific p(T308)Akt band. (A) Rat whole brain lysates showed, additionally to the Akt 
band at ~55 kDa, an upper band at ~70 kDa when probed with p(T308)Akt antibody. (B) The same 
band was detected in mature (20 DIV) primary cortical neurons. (C) When the nitrocellulose 
membrane was treated with λ-phosphatase the band was lost. (D) The table shows the top six hits 
from the mass spec analysis performed on the isolated ~70 kDa band from a SDS gel after IP with the 
p(T308)Akt antibody from whole mouse brain lysates. The results are ranked for their label free 
quantification (LFQ) intensity [Cox et al. 2014]. PKC isoforms are highlighted in red. (E) A sequence 
alignment of Akt1 and PKCγ, the top hit from mass spec analysis, shows the similarities in the protein 
sequence around the T308 site of Akt. (F) 21 DIV cortical lysates were treated with TPA for 24 hours. 
When probed with cIEF (left panel) the three most basic peaks disappeared. Probing the same lysates 
by WB (right panel), showed no detection of the upper p(T308)Akt band after TPA treatment. 
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3.6. Differential sensitivity of Akt to growth factor stimulation in 
immature and mature neurons in vitro 

Numerous studies have highlighted the importance of the PI3K/PTEN/Akt pathway during 

almost all major stages of the neuronal maturation program, including neurite outgrowth, 

neuronal polarization, axonal branching and synapse formation [Waite and Eickholt 2011; 

Eickholt et al. 2007; Cosker et al. 2008]. Activation of this pathway has been reported to 

primarily depends on growth factors like BDNF, Insulin and IGF-1 [Sosa et al. 2006; Islam, 

Loo, and Heese 2009]. To get further insight into growth factor signaling during neuronal 

maturation, we used the newly established cIEF assay to compare Akt phosphorylation upon 

growth factor stimulation in immature (7 DIV) and mature (21 DIV) primary cortical neurons in 

vitro. 7 DIV cortical neurons have already polarized and both axons and dendrites extend 

and adopt complex branched morphologies. Additionally, during this stage, bulk 

synaptogenesis is beginning. In contrast, in 21 DIV cortical neurons further growth and 

branching of dendrites is terminated, spines are mature and action potentials can be 

measured. 

7 DIV neurons were treated with EGF, BDNF or Insulin for 15 min. WB analysis revealed the 

greatest increases in phospho-Akt (S473 and T308) in cultures that had been treated with 

BDNF, although all three growth factors activated the PI3K pathway and led to enhanced Akt 

phosphorylation. It could further be noted, that BDNF, out of the growth factors tested, 

exclusively activated MAPK/ERK1/2 signaling (see Figure 13A). When the same cell lysates 

were analyzed by cIEF, BDNF led also in this assay to the highest increase in Akt 

phosphorylation for both activating phosphosites, S473 and T308 (see Figure 13B and C). 

The majority of peaks that were increased upon BDNF stimulation (pI 5.06 – 5.31) are 

consistent with phosphorylated Akt1 species (see Figure 5C for comparison). EGF and 

Insulin treatment only induced minor increases in phospho-Akt species when analyzed by 

cIEF. Interestingly, it seemed that the T308 phosphorylation site was more sensitive to 

Insulin treatment than the S473 phosphorylation site (see Figure 13B, C bottom panel). In 

contrast to 7 DIV cortical neurons, when 21 DIV neurons were treated with EGF, BDNF and 

Insulin, the increase in Akt phosphorylation was generally less pronounced. BDNF, again, led 

to a larger increase in Akt and ERK1/2 phosphorylation than EGF when the samples were 

analyzed by WB (see Figure 14A). Insulin treatment showed no visible effect on Akt 

phosphorylation when analyzed by WB or cIEF (see Figure 14). Interestingly, EGF led to a 

very restricted increase in the 5.31 and 5.42 peaks detected with both, the p(S473) and 

p(T308) antibodies. cIEF analysis revealed the BDNF treatment primarily affected the T308 

phosphorylation site of Akt in mature neurons, and only to a smaller extend the S473 

phosphorylation site (see Figure 14B and C). Thus the comparison of growth factor treatment 
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Figure 13: Analysis of growth factor treatment of 7 DIV primary cortical neurons. (A) Cortical neurons 
were treated with EGF, BDNF or Insulin for 15 minutes and subsequently analyzed by WB using 
phospho-specific Akt antibodies. (B) The same lysates were analyzed by cIEF using the p(S473)Akt 
and (C) the p(T308)Akt antibody. For both phosphorylation sites BDNF had the strongest effect on Akt 
phosphorylation.  

Figure 14: Analysis of growth factor treatment of 21 DIV primary cortical neurons. (A) Cortical neurons 
were treated with EGF, BDNF or Insulin for 15 minutes and subsequently analyzed by WB using 
phospho-specific Akt antibodies. (B) The same lysates were analyzed by cIEF using the p(S473)Akt 
and (C) the p(T308)Akt antibody. The largest increase in Akt phosphorylation was found after 
treatment with EGF.  
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of immature (7 DIV) and mature (21 DIV) neurons showed a different signaling outcome 

depending on the developmental stage of the neurons and the growth factor applied. 

Immature neurons were more susceptible to BDNF stimulation whereas mature neurons 

mainly responded to EGF stimulation. This difference in signaling was primarily found by 

employing cIEF for Akt phosphorylation as readout for upstream PI3K activity. Conventional 

WB showed the up-regulation in Akt phosphorylation upon growth factor stimulation, but 

could not be used to assess the differences in different Akt isoform signaling. Using the 

p(T308)Akt antibody in cIEF also showed three basic peaks which were not detected in 

previously in N1E-115 cells. For further characterization of these peaks please refer to 

section 3.5. 

3.7. Differential regulation of Akt phosphorylation by PTEN and 
growth factors in primary neurons 

We could show a difference in growth factor signaling response of Akt depending on the 

maturation of neurons in vitro (see section 3.6). Generally, the activation of Akt by the 

presence of PIP3 is largely dependent on the balance of PI3K and PTEN. The loss of PTEN 

as a PI3K antagonist leads to an increase in PIP3 availability at the membrane and 

subsequent phosphorylation and activation of Akt. We made use of primary cortical cultures 

from PTENfl/fl mice and the newly established cIEF Akt assay to assess whether loss of PTEN 

results in the same Akt species being activated as seen after growth factor stimulation. 

Cortical PTENfl/fl neurons (at 12 DIV) were left untreated, were infected with a control RFP 

lentivirus or with increasing amounts of a Cre lentivirus and lysed at 21 DIV. With this 

approach we achieved a gradual loss of PTEN proportional to the amount of Cre virus used, 

corresponding to that phosphoAkt (S473 and T308) was found increased upon PTEN loss 

(see Figure 15A). cIEF analysis of PTENfl/fl neuronal lysates with the p(S473)antibody 

showed a large increase in mainly Akt1 identified peaks after PTEN loss through Cre 

recombinase (see Figure 15B). This increase in phospho-specific Akt peaks was also found 

mostly to be linear to the amount of Cre virus used, interestingly, there was no difference in 

S473 phosphorylation after application of 75 µL or 150 µL virus. Quantification of the area 

under the peaks for the p(S473)Akt antibody revealed a up to 6-fold increase in S473 

phosphorylation for the most acidic Akt1 peak (5.06) at the highest virus concentration (see 

Figure 15C). To get a better understanding of the regulation of the PI3K/PTEN/Akt pathway 

we compared cIEF profiles for the two activating Akt phosphorylation sites (S473, T308) after 

growth factor stimulation and upon PTEN loss. Stimulation of 21 DIV cortical neurons with 

EGF, BDNF or Insulin led to a general increase in phosphorylated Akt, although Insulin 

seems to have minimal effect on Akt activation in mature neurons (see Figure 16). 
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Remarkably, as Akt profiles in response to growth factor stimulation are largely identical, loss 

of PTEN induces a strong increase in mostly Akt1 identified peaks. In summary it can be 

said, that more basic phosphorylation forms of Akt (5.42, 5.53) appeared to be more 

sensitive to growth factor treatment and phosphorylation of the more acidic Akt forms (5.06, 

5.14) is upstream regulated by PIP3 and therefore, more sensitive to PTEN loss. This holds 

true for the S473 as well as the T308 phosphorylation. Our results suggest inherent 

differences in the Akt pools (in terms of post translational modification, in particular 

phosphorylation) that are accessible to growth factors as compared to the pools that are 

controlled by availability of PIP3 per se, at least in mature primary neurons.  

Figure 15: Effect of gradual PTEN loss on Akt phosphorylation in primary cortical neurons. (A) Cortical 
neurons obtained from PTENfl/fl mice were infected at 12 DIV with control virus or Cre virus, before cell 
lysis and Western blot analysis at 21 DIV. Increasing concentrations of Cre virus leads to a gradual 
loss of PTEN and a concomitant increase in Akt phosphorylation at S473 and T308. (B) Cell lysates 
were analyzed in parallel by cIEF using p(S473)Akt. The peak profiles demonstrate that PTEN-loss 
increases mostly the most acidic Akt (Akt1) peaks. (C) The area under each peak was quantified for 
p(S473)Akt. At the highest concentration used, Cre-induced PTEN-loss led to a 6x increase in S473 
phosphorylation of Akt1 (pI 5.06).  
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Figure 16: Context-dependent Akt phosphorylation signatures in cortical neurons. 21 DIV cortical 
neurons were stimulated with BDNF, EGF or Insulin for 15 minutes. In parallel, cortical neurons 
obtained from PTENfl/fl mice were infected at 12 DIV with Cre virus and cultured until 21 DIV. All cell 
lysates were analyzed by cIEF with, (A) p(S473)Akt antibody and, (B) p(T308)Akt antibody. Whilst Akt 
peak distributions in response to growth factor treatment are largely identical, PTEN-loss induces a 
strong increase in the most acidic Akt1 phosphorylated peaks. 

3.8. EGF leads to Akt2 phosphorylation in mature cortical 
neurons 

3.8.1. EGF signaling leads to a restricted Akt2 activation in mature neurons  

The phosphorylation profile of Akt detected by cIEF varied depending on the changes in 

upstream signaling. The loss of PTEN led to an increase in phosphorylation of Akt1 

molecules, whereas growth factor treatment primarily affected the more basic peaks 

representing mixed Akt1/Akt2 species. We believe that the shown differential regulation of 

Akt signaling in response to upstream cues might have important implications for 

downstream signaling that have to date been unappreciated. When analyzing mature cortical 

neurons (21 DIV) after growth factor treatment we noticed that, in contrast to 7 DIV neurons, 

suddenly EGF had the largest effect on Akt phosphorylation. The cIEF p(S473)Akt profile 

after EGF treatment showed a very restricted increase in pI 5.31 and, especially, the pI 5.42 

peak. We therefore decided to identify the composition of these peaks further by cIEF 

analysis of lysates using Akt isoform specific antibodies. Unexpectedly, EGF stimulation of 

21 DIV cortical neurons led exclusively to an increase in phosphorylation of the Akt2 isoform, 

as shown by an acidic shift in the peak distribution (see Figure 17A, middle panel). In sharp 

contrast, cIEF profiles of control versus EGF stimulated lysates analyzed with the Akt1- or 
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Akt3-antibodies were indistinguishable between the two groups. These results provide first 

evidence for a function of a specific Akt isoform, Akt2, in conveying EGF mediated responses 

in neurons. In comparison, BDNF also induced Akt phosphorylation but this activation was 

restricted to mainly Akt1 and, possibly, Akt3. 

Akt2, being the ‘metabolic’ Akt isoform, has been implicated to be involved in neuronal 

morphology and survival [Santi and Lee 2010; Diez, Garrido, and Wandosell 2012]. We 

decided to investigate this very restricted induction of Akt2 phosphorylation upon EGF 

treatment. We established in previous experiments that Akt2 specific, EGF induced 

responses occur only in mature neuronal cultures, and not in immature cortical cultures (see 

Figure 13 and 14B, C). We next excluded the possibility that the EGF – Akt2 effect might be 

due to a minor population of astrocytes in our primary cultures. Therefore, we used primary 

astrocyte cultures, treated them with EGF in the same way as we did for the neuronal 

cultures, lysed the cells and analyzed them by WB and cIEF. The starved astrocytes showed 

an increase in p(S473)- and p(T308)Akt after EGF treatment, this was seen by WB as well as 

cIEF (see Figure 18A, B). The astrocyte phosphoAkt profile differs significantly from the 

phosphoAkt profile after EGF treatment of mature cortical neurons (compare to Figure 14). In 

astrocytes, EGF stimulation leads to the appearance of additional acidic peaks (5.01, 5.21) 

when compared to the cIEF profiles of EGF-treated mature neurons. When EGF treated 

astrocytes were probed with an Akt2-specific antibody we did not find the very restricted 

panel observed in neurons, but a broader appearance of different acidic peaks (see Figure 

18C). The glial fibrillary acidic protein (GFAP) was used as an astrocytic marker in WB 

analysis. Normalization of WB densiometry results for GFAP levels to GAPDH levels gave a 

ratio of 1,5 for our starved astrocyte cultures, whereas in untreated mature neuronal cultures 

the ratio was 0,09 (see Figure 18D), meaning in our neuronal cultures are 17x less 

astrocytes than in the total astrocytes cultures. These results suggest a minor astrocyte 

population in our neuronal cultures. Therefore, we conclude that Akt in astrocytes is 

responsive to EGF, but if at all they only mark a minor contribution to the EGF - Akt2 specific 

effect observed in our primary cortical cultures.  
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Figure 17: Analysis of Akt isoforms after growth factor treatment. (A) 21 DIV cortical neurons were 
treated with EGF, lysed and analyzed by cIEF using Akt isoform specific antibodies (Akt1, Akt2, Akt3). 
Only Akt2 showed an increase in phosphorylation in response to EGF treatment as seen by the 
increase in more acidic peaks after the stimulation. (B) 21 DIV cortical neurons were treated with 
BDNF, lysed and analyzed by cIEF using Akt isoform specific antibodies (Akt1, Akt2, Akt3). BDNF 
treatment induced a small increase in Akt1 phosphorylation. 

Figure 18: Akt profiles after EGF treatment of primary astrocytes. Starved astrocytes were treated 
with EGF, leading to an increase in p(S473)- and p(T308)Akt. Lysates were analyzed by (A) WB and 
(B) cIEF. (C) The same lysates were probed in cIEF with the Akt2-specific antibody showing a great 
shift towards more acidic, higher phosphorylated peaks. (D) WB analysis of GFAP in astrocyte and 
21 DIV neuronal cultures.  
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3.8.2. EGF – Akt2 signaling is mediated by the EGFR  

It has been previously shown that during migration of newborn cortical neurons, EGF can 

transactivate the TrkB receptor [Puehringer et al. 2013]. In order to characterize the specific 

receptor type responsible for EGF signaling transduction in our mature neuronal cultures we 

employed pharmacological approaches. We used Gefitinib, the first identified, selective 

inhibitor of the EGFR Tyrosine kinase domain that is approved for clinical use to treat, non-

small cell lung cancer, amongst others. To inhibit the BDNF TrkB receptor, we employed 

GNF5837, a potent inhibitor with selectivity for Trk receptors over a range of other kinases. 

First we assessed the specificity of Gefitinib (EGFRi) in 7 DIV and 21 DIV cultures. WB 

analysis showed that addition of the inhibitor alone did not change the 

activation/phosphorylation state of Akt, neither at S473 nor T308. As previously found, EGF 

did not lead to an upregulation of phosphorylation of Akt in 7 DIV neurons. In contrast, BDNF 

stimulation resulted in increased phosphoAkt, which was independent of EGFR (see Figure 

19A). In mature neurons (21 DIV) EGF led to an increase in phosphoAkt (S473 and T308), 

which could be antagonized by application of Gefitinib to the cells. Similarly, stimulation with 

BDNF resulted in phosphorylation of Akt, but to a lesser extent than seen in 7 DIV neurons. 

Nevertheless, the activation was independent of EGFR (see Figure 19B). Therefore, these 

results let us to conclude that EGF signaling, but not BDNF signaling, in mature neurons 

occurs via the EGFR. 

In the general mechanism for the activation of RTKs, activating ligands or growth factors bind 

to the ectodomains of two receptors and induce the formation of an activated dimerization 

state. The cytoplasmic kinase domains then catalyze the phosphorylation of Tyrosine 

residues that lead to protein kinase activation. One specific EGFR Tyrosine residue that is 

phosphorylated following EGF binding to the receptor is Y1068. We monitored the 

phosphorylation of Y1068, which showed a robust increase following EGF treatment, but not 

in the presence of the EGFRi Gefitinib. To rule out a role of TrkB transactivation after EGF 

treatment we performed the same experiment also for GNF5837, the TrkBi. Again, in 21 DIV 

neurons we saw a strong increase in phosphoAkt after EGF treatment. This effect was 

largely independent of TrkB inhibition, as only a minor decrease of phosphorylated Akt was 

found after EGF treatment in the presence of GNF5837 (see Figure 20). In comparison, the 

stimulation with BDNF in the presence of GNF5837 did not result in an increase in 

phosphoAkt therefore confirming the TrkB receptor as a key receptor in BDNF signaling. 
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Figure 19: Specificity test of Gefitinib (EGFRi) in cortical neurons. (A) Immature (7 DIV) or (B) mature 
(21 DIV) cortical neurons were treated with Gefitinib to inhibit EGFR signaling after EGF or BDNF 
treatment. EGF on led to an increase in phosphoAkt in mature neurons and was prevented by addition 
of Gefitinib. BDNF led to phosphorylation of Akt in immature as well as mature neurons, being 
independent of EGFR inhibition. EGF treatment also induced phosphorylation of EGFR. 

Figure 20: Specificity test of GNF5837 (TrkBi) in cortical neurons. (A) Immature (7 DIV) or (B) mature 
(21 DIV) cortical neurons were treated with GNF5837 to inhibit TrkB signaling after EGF or BDNF 
treatment. EGF on led to an increase in phosphoAkt in mature neurons and was not affected by TrkB 
inhibition. BDNF led to phosphorylation of Akt in immature as well as mature neurons, being 
dependent on TrkB signaling, as its effect on Akt phosphorylation was lost after GNF5837 treatment.  
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To further confirm the role of EGFR in the specific EGF – Akt2 signaling, we used cell lysates 

of Gefitinib treated cortical neurons for cIEF analysis. Probing lysates of EGF stimulated cell 

gave us the same restricted increase in Akt2 phosphorylation as previously seen, here 

shown for the p(S473)Akt, p(T308)Akt and Akt2 antibody (see Figure 21). In the presence of 

Gefitinib (EGFRi) the increase of the phospho-specific Akt peaks at 5.31 and 5.42 was 

abolished. The only phosphoAkt species affected by TrkB inhibition was the peak at 5.53 

(see Figure 21A, right panel). Therefore, we cannot exclude a minor contribution of the TrkB 

receptor to the EGF – Akt2 signaling, but the main receptor involved in this pathway is 

specific to EGFR. Having established the receptor involved in our characterized EGF - Akt2 

signaling axis, we analyzed EGFR expression in vitro and in vivo. We used primary cortical 

neurons from mice, as well as whole brain lysates from Wistar rats. In vitro, we were able to 

detect EGFR expression at mature stages at 16 and 21 DIV (see Figure 22A), which 

correlates with the EGF signaling difference we observed in immature and mature neurons. 

In vivo, the one embryonic stage tested (E19) did not show any detectable EGFR protein 

expression. Immediately after birth (P0/1) protein levels of the receptor were increasing. 

From P7 to P15 WB analysis showed robust expression of a double band specifically 

detected with anti-EGFR of approximately 170 kDa and 180 kDa. (see Figure 22B). A 

maximal expression and disappearance of the lower band was found three weeks after birth 

(P21). EGFR expression levels were high until about 10 weeks of age, and then a slight 

decrease in the expression was observed. In summary, EGFR is strongly expressed in the 

rat brain from late postnatal stages onwards. 

Figure 21: cIEF analysis of EGF and Gefitinib treated mature cortical neurons. 21 DIV cortical 
neurons were treated with EGF with or without Gefitinib (EGFRi) present. The cell lysates were probed 
with (A, left panel) p(S473)Akt, (B) p(T308)Akt and (C) Akt2 antibodies. (A, right panel) To test for a 
role of TrkB signaling, cells were also treated with EGF and GNF5837 (TrkBi), lysed and probed with 
p(S473)Akt. 
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Figure 22: Expression of EGFR in primary cortical neurons and during postnatal rat brain 
development. (A) Primary cortical neurons from mice were cultured from indicated time points, lysed 
and analyzed by WB. Only in later stages (16 and 21 DIV) EGFR expression was detected. (B) Whole 
brain lysates were obtained at indicated time points from Wistar rats. EGFR expression was not 
detectable in the embryonic stage tested (E19) but increased after birth. Initially two bands were 
detected which merge to one band at 21 days of age, were also a maximal plateau in expression was 
reached. Expression decreased slightly in old animals. 

3.8.3. EGF – Akt2 signaling in mature neurons proceeds via the catalytic 
p110α subunit of PI3K 

Class I PI3Ks consist of a catalytic p110 (α, β, γ, δ) subunit, which is associated with different 

regulatory subunits. Dysfunction of the different catalytic subunits has been linked to the 

development of a variety of pathologies [Denley et al. 2008]. To further characterize the 

newly identified EGF – Akt2 signaling axis in mature neurons we made use of specific 

pharmacological inhibitors targeting the catalytic subunit of class I PI3Ks (p110α, β, γ, δ). We 

tested different inhibitors under basal conditions in the absence of any growth factor 

stimulation in neurons to determine optimal working concentrations for our cell systems. All 

inhibitors used in this study function by competing for access of the co-substrate ATP to the 

enzyme and inhibit the kinase activity of the PI3K catalytic subunit.  

To inhibit all subunits, a general PI3K inhibitor (GDC-0941) was used. GDC-0941 shows a 

higher specificity for PI3K and less toxicity than previously used inhibitors in this study, for 

example Wortmannin [Folkes et al. 2008]. Further it is orally bioavailable and is being 

evaluated in clinical trials [Folkes et al. 2008]. A66 is a PI3K-p110α inhibitor, which is highly 

selective for the alpha subunit. It shows a selectivity of greater than 20-fold the PI3K-p110δ 

isoform typically being the closest off-target to the PI3K-p110α activity [Fairhurst et al. 2009]. 

The PI3K-p110β inhibitor that we used, TGX-221, has an IC50 of 5 nM against the purified 

kinase and 1000-fold selectivity over PI3K-p110α [Jackson et al. 2005]. Previously it was 
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published, that p110β is the dominant subunit responsible for PI3K-Akt signaling in 

neurons [Gross and Bassell 2014]. The PI3K-p110γ inhibitor AS252424 has been shown to 

have an IC50 of 35 nM and a 10-fold selectivity for the PI3K-p110γ isoform versus the α, β, or 

δ isoforms in vitro [Condliffe et al. 2005]. The PI3K-p110δ inhibitor IC87114 has an IC50 of 

approximately 500 nM and at a concentration of 5 µM it was found to completely abrogated 

p110δ-induced Akt phosphorylation [Denley et al. 2008]. This inhibitor is 58-fold more 

selective for PI3Kδ when compared to PI3Kγ, and over 100-fold selective compared to PI3Kα 

and PI3Kβ. IC87114 selectively antagonizes PI3Kδ over at least a concentration range of 

0.3–10 μM [Sadhu et al. 2003]. Pharmacologic approaches are an appealing strategy to 

validate the role of the PI3K pathway because they are rapid and easily titratable. The used 

synthetic PI3K inhibitors exhibit a high selectivity towards a specific catalytic subunit and are 

a valuable tool.  

Figure 23: Assessment of PI3K catalytic subunit inhibitors in mature cortical neurons. (A) 
Concentration curve for a general PI3K inhibitor (PI3Ki) and four subunit specific inhibitors 
(p110α,β,γ,δ) tested in 21 DIV cortical neurons and analyzed by WB. (B) Cortical neurons treated with 
0,5 µM general PI3Ki, 1 µM p110α inhibitor (left), 2,7 µM p110β inhibitor, 1 µM p110γ inhibitor and 
1 µM p110δ inhibitor (right) were analyzed by cIEF using the p(S473)Akt and (C) p(T308)Akt antibody. 
 
 

We performed a concentration curve for all five inhibitors in mature neurons (21 DIV). 

Interestingly, p110α seemed to be the major subunit influencing Akt phosphorylation 

downstream of PI3K under basal conditions in mature neurons (see Figure 23). As expected, 

a general inhibition of PI3K led to a reduction of Akt phosphorylation already at small 

concentrations and a complete loss of Akt phosphorylation when applied at higher 

concentrations, which we identified by both WB and cIEF (see Figure 23). Inhibition of p110γ 

and p110δ did not influence PI3K – Akt signaling at least in WB. Similar results were seen for 
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p110β inhibition for lower concentrations tested. When higher concentrations (2,7 µM and 

5,4 µM) were tested a sizeable reduction in Akt phosphorylation was measureable (see 

Figure 23). This effect, however, may be due to the fact that, at these higher concentrations 

the p110β inhibitor can affect other PI3K isoforms [Ni et al. 2012]. 

Figure 24: Inhibition of the PI3K p110 regulatory subunits prior to EGF treatment of mature cortical 
neurons. 21 DIV cortical neurons were treated EGF alone, a general PI3K inhibitor (PI3Ki) or specific 
inhibitors for the different p110 subunits (p110α-δi) prior to EGF treatment. The cell lysates were 
analyzed by (A) WB or (B) cIEF. EGF treatment led to an increase in phosphoAkt which was 
abolished by the addition of a general PI3K inhibitor or inhibition of p110α. 
 

 

After establishing suitable working concentrations for the specific inhibitors to target the 

different catalytic p110 subunits of PI3K, we used them to further characterize the EGF - 

PI3K - Akt2 signaling in neurons. WB blot analysis showed that in EGF stimulated mature 

neurons, upon PI3K general inhibition, the EGF induced increase in phosphoAkt is lost. We 

can therefore conclude that PI3K has a role in Akt activation downstream of EGFR. Treating 

mature neurons with p110 specific-subunit inhibitors prior to EGF treatment resulted in 

decreased phosphorylation of Akt only after general PI3K or p110α blockage. The inhibition 

of p110β, γ, δ did not affect EGF mediated increases in p(S473)Akt (see Figure 24A). This 

result indicates an involvement of the PI3K-p110α subunit in EGF – Akt2 signaling 

independent of the other three catalytic subunits in mature neurons. The peak at pI 5.53, 

which was found increased after EGF treatment in the presence of PI3K-p110β inhibitor (see 

Figure 24B) could indicate that upstream activity of p110β, which deviates from the other 

PI3K-p110 subunits, plays a role on the phosphorylation of Akt. In this context it is of interest 

that PI3K-p110β is the only p110 subunit activated by Rac1 GTPase and not by Ras 

GTPases [Fritsch et al. 2013], suggesting a differential Akt activation by Rac1. 

In summary, we were able to characterize a novel EGF dependent signaling pathway in 

mature cortical neurons involving EGFR, activation of the PI3K p110α subunit, triggering 

specifically Akt2 and not the other Akt isoforms. Furthermore, this signaling was only found in 

mature (21 DIV) but not young (7 DIV) primary cortical neurons.  
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3.9. Time-dependent analysis of EGF stimulation in mature 
cortical neurons 

3.9.1. EGF treatment does not induce translocation of the autophagic 
marker TFEB 

After establishing a new EGF-PI3K/p110α-Akt2 

signaling axis in mature neurons the next step 

involved the analysis of possible downstream 

targets and or/cellular responses. By personal 

communication with Lawrence Rajendran 

(University of Zurich, Switzerland), he suggested   

a role for Akt2 signaling in the process of 

autophagy via the regulation of the transcription 

factor EB (TFEB). TFEB is a master regulator of 

lysosomal biogenesis and positively regulates 

autophagosomal formation [Settembre et al. 

2012]. Phosphorylated TFEB is inactive and 

stays in the cytoplasm, upon activation it 

localizes to the nucleus. Assuming the activation 

of Akt2 by EGF plays a role in autophagy it 

would result in a nuclear translocation of TFEB. 

We used immunocytochemistry to stain for TFEB 

in mature hippocampal neurons. After analysis of 

different time points after EGF stimulation we 

could not detect any localization changes of 

TFEB either to the nucleus or within the 

cytoplasm (see Figure 25). Therefore, we 

conclude that the activation of Akt2 by EGF does 

not play a role in the early steps of autophagy, at 

least the steps involving recruitment of TFEB to 

the nucleus.   

Figure 25: Analysis of TFEB localization 
after EGF treatment. 21 DIV hippocampal 
rat neurons were treated with EGF for up to 
60 minutes. Immunocytochemical staining 
showed no nuclear translocation of TFEB 
(green) during EGF stimulation. 
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3.9.2. Analysis of PI3K-dependent downstream effectors after EGF 
stimulation  

During the course of this study, the group of Emilio Hirsch generated a new p(S474)Akt2 

specific antibody [Braccini et al. 2015], which was made commercially available by Cell 

Signaling Technologies. We made use of this new tool, in order to confirm our results 

described in the previous section (see section 3.8). We performed time course experiments 

to assess the activation of Akt2 by the phosphorylation of its S474 site. 21 DIV primary 

cortical neurons were stimulated with BDNF, as well as acute and overnight treatments with 

EGF. WB analysis showed a general increase in phosphoAkt (panAkt) and phosphoAkt2 

forms with time. Statistical analysis of four independent experiments revealed this increase to 

be significant at the time points 15 and 30 min following growth factor stimulation. We 

detected no change in total Akt, nor in Bax, a proapoptotic member of the Bcl-2 family 

negatively regulated by PI3K signaling, or p53, a major tumor suppressor negatively 

regulated by PI3K signaling, levels. Further we did not detect any changes in the 

phosphorylation levels of the Akt downstream target mTOR, a Serine/Threonine kinase that 

regulates various processes including cell growth, cell proliferation, cell survival, protein 

synthesis, and transcription (see Figure 26A). In densiometry measurements, again of four 

independent experiments, a significant increase in p(S473)Akt was seen after short-term 

EGF or short-term BDNF stimulation (see Figure 26B). In contrast, a significant increase in 

p(S474)Akt2 was only found after short-term EGF treatment (see Figure 26C). This again 

confirms the every specific EGF - Akt2 signaling axis previously identified in this study. WB 

results suggest an increase in pS6, a well know downstream target of Akt involved in the 

regulation of cell size, cell proliferation, and glucose homeostasis, after 15 min BDNF 

treatment and a decrease in pS6 levels after 15 min EGF treatment, but these results were 

not found to be significant and their quantification is therefore not shown here. Hence, we 

can confirm the specificity of EGF signaling on the activation of Akt2 but we could not identify 

a direct effect on two established downstream targets of the PI3K/Akt pathway, namely 

mTOR and ribosomal protein S6. 
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Figure 26: EGF stimulation time course of primary cortical neurons. 21 DIV cortical neurons were 
treated with EGF for 15 min until overnight (~16 h) or for 15 min with BDNF. (A) The lysates were 
analyzed by WB showing a strong increase in phosphoAkt after short-term growth factor treatment. No 
changes for Bax, p53, p(S2448)mTOR and total Akt were observed. (B) Densiometry measurements 
of 4 independent experiments were quantified for p(S473)Akt showing a significant increase after EGF 
and BDNF treatment. (C) But only short-term EGF treatment led to a significant increase in 
p(S474)Akt2.  
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4. Discussion 

4.1. Advantages and limitations of using cIEF for Akt analysis 

The aim of this project was the generation of a robust system to analyze phosphorylation of 

the different Akt isoforms using an antibody-based approach. Therefore, we established an 

assay based on the isoelectric point of proteins, with separation of the proteins according to 

their charge. cIEF provides short separation times, high resolution, and minimal sample 

consumption [O’Neill et al. 2006; Righetti, Sebastiano, and Citterio 2013]. It is frequently 

used in the pharmaceutical industry to check lot-to-lot consistency and control the quality of 

products [Michels et al. 2012]. We established an assay to monitor the Akt phosphorylation 

status in neuronal and brain tissue. All three isoforms were identified in neuroblastoma cells, 

primary cortical neurons and whole brain lysates. Akt1 was found to be the main Akt isoform 

present in all these tissues, although the main Akt1 molecule varied in between samples. 

The largest Akt1 peak in neuroblastoma cells was identified at pI 5.53, in cortical neurons at 

pI 5.42 and in embryonic mouse brain at a pI of 5.61, suggesting variation of PTMs on this 

isoform depending on the cell type (see Figure 5). It has been published that Akt3 constitutes 

~50% of total Akt in the brain [Turner et al. 2015], we could not confirm this result, as Akt3 

was found to be equally expressed as Akt2, both isoforms together composing ~40% of total 

Akt. We were able to show the three Akt isoforms in their non-phosphorylated state (see 

Figure 6) and identify phosphorylation-specific peaks using the p(S473)-, p(T308)-, and 

p(T450)Akt antibodies. The advantage of using phospho-specific antibodies is their 

recognition of a specific phosphorylation site which is conserved in all three Akt isoforms, 

therefore not favoring binding to one isoform or another. The p(T450)Akt antibody, as well as 

the panAkt antibody, detected a peak at 5.21 which was not recognized by the other 

phospho-antibodies. However, this peak together with all other peaks with a pI<5.42 was 

removed by λ-phosphatase treatment, identifying them to be phospho-specific. We assume 

the 5.21 peak to a precursor form for other phosphorylation events and PTMs. The 

phosphatase results in our study showed a new peak at 6.02 representing unphosphorylated 

Akt2, therefore, suggesting that Akt2 occurs mainly with PTMs in the cells and tissues tested 

during this project. In accordance, this peak was also found in starved HCT116 cells, wild 

type as well as after Akt1-/- but not Akt2-/- [H Guo et al. 2014]. All peaks detected with the 

panAkt antibody are in agreement to previously published results in human cancer cell lines, 

although Akt seems to have more modifications in our tested neuronal background because 

more acidic peaks were detected than previously described (5.06, 5.14) [Sabnis et al. 2014; 

H Guo et al. 2014; Iacovides et al. 2013]. Unfortunately, additional commercially available 

antibodies (T34 and Y326) did not work in either WB or cIEF, therefore, prohibiting a more 
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detailed characterization of the phosphorylation containing peaks. As a next step to unravel 

the constitution of the peaks containing posttranslational modified Akt molecule, one would 

have to start investigating also other PTMs than phosphorylation, e.g. ubiquitination or 

sumoylation. Taken together cIEF is not a substitute for conventional WB, but cIEF provides 

more information regarding the activation status of target proteins than WB, in addition to its 

higher sensitivity and better assay reproducibility. For example, cIEF can be used to estimate 

relative levels of phosphorylation of a protein (e.g. Akt). We developed an ‘Akt activation 

index’ for PTEN overexpression experiments in 293T cell line. Overexpression of different 

PTEN plasmids in 293T cells results in small or undetectable decreases in p(S473)Akt and 

p(T308)Akt phosphorylation by WB. Using the p(T450)Akt antibody in cIEF revealed 

consistent reduction of Akt activation to different levels. We calculated a ratio of phospho-

specific Akt peaks to total Akt peaks in cIEF analysis. Using this method in PTEN dosage 

experiments in human 293T cells, we have achieved reliable assessment of small changes in 

Akt activation levels (e.g. a 20-30% reduction), which was not feasible using traditional WB 

techniques. This raises the question of how much of the total Akt pool is double 

phosphorylated, hence maximal activated under given conditions. To our knowledge, this 

question has not been answered yet. cIEF analysis of Akt molecules only provides a relative 

number, therefore, we think this question can only be addressed by a proteomic approach. In 

summary, cIEF provides a valuable additional analytical tool for the analysis of signaling 

pathways. This approach has great potential in the analysis of patient samples as well as in 

evaluation of the efficiency of kinase inhibitors and related drugs in the future. 

4.2. Effect of upstream signaling on Akt activity in vitro 

4.2.1. Insulin stimulation/ PI3K inhibition of neuroblastoma cells 

In order to assess the phosphorylation states of Akt we performed several growth factor 

stimulation, PI3K inhibition or PTEN deletion experiments. In comparison to previous 

approaches utilizing a panAkt antibody [Sabnis et al. 2014; H Guo et al. 2014], we focused 

on working with the phospho-specific S473 and T308 antibodies to determine the correlation 

and the temporal dynamics and patterns of these activation-specific phosphorylation events. 

As another confirmation for our cIEF method, we detected the same phospho-specific peaks, 

independently, in the different neuronal lysates tested (neuroblastoma cells, primary cortical 

neurons, brain tissue). We were able to unambiguously resolve 4-5 major Akt peaks positive 

for the activating phosphorylations at T308 and S473, namely 5.06, 5.14, 5.31, 5.42, 5.53 

(5.53 was detected only by the p(S473)Akt antibody) (see Figure 6, 8, 10-16, 21, 23, 24). 

Interestingly, slight variations were found in P0 rat brain were additional peaks at 4.97 and 
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5.21 were seen (see Figure 11). Also in astrocytes two additional peaks at 5.01 and 5.21 

were detected by the both phospho-specific Akt antibodies (see Figure 18). Again, this 

highlights the variety of PTMs on Akt molecules in different cell types and cellular context. 

Taken the results from the isoform-specific tests and phosphatase treatment of N1E-115 

cells we conclude that the more acidic peaks, with pI ≤5.31, correspond primarily to Akt1, 

whereas the more basic peaks, 5.42 and 5.53, are more heterogeneous in their composition, 

consisting mostly of Akt1 and Akt2 forms. These results are again in agreement with 

previously published results of Akt2 cIEF after Insulin stimulation in HCT-116 cells [H Guo et 

al. 2014]. The heterogeneity of peaks in modifications of Akt molecules (irrespective of 

isoform compositions) was seen in acute profile changes after Insulin treatment. Some peaks 

were poorly resolved or appeared with small shoulder peaks and this was more evident for 

the most acidic S473/T308-phosphorylated Akt forms (pI 5.06, 5.14, 5.31). This highlights the 

fact that the S473/T308-phosphorylated Akt forms apparently are further differentiated with 

respect to additional phosphorylation (and/or other post-translational) modifications. One can 

only surmise that these distinct S473/T308-phosphorylated Akt molecules may differ in their 

engagement into substrate recognition and phosphorylation of the numerous Akt substrates 

in vivo. We probed our samples with the panAkt antibody as a loading control for our assay. 

When comparing the total Akt profile of starved N1E-115 cells with 30 min WM treated N1E-

115 cells, we found striking differences (see Figure 8 and 10). In both cases, Akt was 

deprived of any phosphorylations on its activating phosphorylation sites, as shown by cIEF 

with the S473 and T308 antibody. As it has previously been shown that other PTMs (e.g. 

ubiquitination [W-L Yang et al. 2009], acetylation [Sundaresan et al. 2011], sumoylation [Lin, 

Liu, and Lee 2016] or O-GlcNAcylation [S Wang et al. 2012] can influence the activity of Akt, 

we hypothesize that co-dependences of PTMs may contribute to the control of Akt regulation 

in situations of general limitation of nutrients and reduced PIP3 levels following PI3K 

inhibition. Guo et al., propose that the phosphorylation of the T308 residue is dependent on 

prior phosphorylation of S473 during Insulin stimulation of HCT-116 cells [H Guo et al. 2014]. 

We cannot confirm this finding with our results of Insulin stimulation experiments in N1E-115 

neuroblastoma cells. In fact, we were able to show an uncoupling of these phosphorylation 

events during Insulin stimulation and PI3K inhibition experiments. In lysates of Insulin treated 

cells we found at least one peak (pI 5.53) which was only recognized by the p(S473)- but not 

the p(T308)Akt antibody (see Figure 8). Furthermore, after PI3K inhibition by WM we 

observed an acute but transient net increase of a subset of S473 Akt1 forms (pI 5.14) but not 

in T308 phosphorylation (see Figure 10). For the T308 phosphorylation a mechanism to 

resist dephosphorylation by PP2A has been shown [Chan et al. 2011], a similar scenario is 

conceivable in the regulation of the S473 residue. Another possibility would be that the 

transient increase in the 5.14 peak is independent of Akt phosphorylation, but due to other 
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PTMs. Nevertheless, these data suggest, that at least for some Akt forms, acute loss of PIP3 

results in transient upregulation of phospho-S473 but not phospho-T308.  

4.2.2. Dynamic regulation of Akt phosphorylation by PTEN loss and growth 
factors in primary cortical neurons 

We utilized our assay to monitor the effect of growth factor signaling on Akt phosphorylation 

in immature (7 DIV) and mature (21 DIV) neurons. In immature neurons the largest increase 

in Akt phosphorylation, in WB and cIEF, was observed after BDNF treatment, whilst EGF and 

Insulin treatment only had a minor effect (see Figure 13). These results confirm the important 

role of BDNF signaling during neuronal differentiation where it was found to signal via PI3K-

PDK1-Akt-mTORC1-S6K to function, for example, in axon formation and growth [Zurashvili 

et al. 2013]. In this study Zurashvili et al., also suggest, that Akt3 is the responsible isoform 

for BDNF-mediated neuronal survival. To our surprise, when mature neurons were treated 

with the same growth factors the activation profile for Akt had changed completely. By WB 

analysis, BDNF still led to an increase in Akt phosphorylation but only a minor effect was 

measured using cIEF. Insulin did not induce any additional phosphorylation of Akt as 

detected by WB or cIEF. Instead, EGF had the greatest effect on p(S473)- and p(T308)Akt. 

Probing lysates of EGF treated primary neurons, we found an increase in the 5.31 and 5.42 

peaks with the p(S473)- as well as the p(T308)Akt antibody (see Figure 14). Therefore, we 

conclude that the signaling response to growth factors differs depending on the age of the 

neuron. As suggested for BDNF or NT-4 binding to TrkB leading to different downstream 

signals [Islam, Loo, and Heese 2009], we also hypothesize that BDNF and EGF activation of 

PI3K lead to a different downstream response. Nonetheless, both growth factors seemed to 

activate the more basic phosphorylation-specific peaks. When Akt phosphorylation was 

increased in response to PTEN loss we saw a different cIEF profile. PTEN loss led to a high 

phosphorylation of mainly Akt1 containing peaks (see Figure 15 and 16). Important to know, 

deletion of PTEN is supposed to impact primarily the pool of PIP3 on the plasma membrane 

and only secondarily intracellular pools of PI(3,4)P2 or PI(3,4)P2 pools on the plasma 

membrane [Posor et al. 2013; Kreis et al. 2014]. Respectively, Braccini et al. recently 

published a study suggesting that Akt2 but not Akt1 can be activated on endosomal 

membranes by Insulin by a pathway involving a class II PI3K and the localized production of 

PI(3,4)P2 [Braccini et al. 2015]. This indicates that the lipid composition on the plasma 

membrane, not just the availability of PIP3 per se, has an influence on the activated 

downstream signaling cascade. These results show unequivocally that, although Akt can be 

regulated by both growth factors and PTEN, these two pathways do not result in the 

generation of the same S473/T308 Akt species. Indeed, this is, to the best to our knowledge, 

first molecular evidence that PTEN-deficient neurons demonstrate a distinct molecular 
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signature compared to growth factor-stimulated cells, at least of the level of downstream Akt 

phosphorylation. Akt phosphorylation after PTEN loss has also recently found to be 

necessary for regeneration of retinal ganglion cells (RGC) after optic nerve crush injury. 

Activation of Akt and subsequent inactivation of GSK3β led to enhanced activity of eIF2Bε 

allowing increased protein synthesis, which results in improved regenerative potential [X 

Guo, Snider, and Chen 2016]. Interestingly, this regenerative potential after PTEN loss was 

found to be largely dependent on Akt3 and not Akt1 [Miao et al. 2016]. This might be due to 

the difference in cell types. We tested cortical neurons, whilst the two studies focused on 

regeneration of RGCs axons. In the retina, Akt3 was found to be the most active 

isoform [Miao et al. 2016].  

 

For glial cells it has been shown, that Akt phosphorylation was significantly higher in PTEN-

deficient astrocytes than WT astrocytes. However, the total Akt phosphorylation was not 

predictive for tumorigenesis. Tumorigenesis was delayed by loss of Akt1 and enhanced by 

loss of Akt2 [Endersby et al. 2011]. Over the past years, particularly in the cancer field, the 

importance of upstream PI3K signaling in PTEN-deficient cells has gained attention. In colon 

cancer cells with heterozygous PTEN loss inactivation of p110β but not p110α inhibited 

cancer development [Berenjeno et al. 2012]. Nonetheless p110α can level the effect of PTEN 

loss on tumorigenesis in other tissues, e.g. thyroid cancer, ovarian cancer [Berenjeno et al. 

2012; Schmit et al. 2014]. This underlines the importance of tissue-specific analysis of the 

different Akt isoforms and their signaling cascades. To evaluate the nature of growth factor-

induced PI3K signaling in mature neurons in more detail, we made use of the specific PI3K 

p110 subunit inhibitors. The expected loss of Akt phosphorylation after complete (general) 

PI3K inhibition was largely recapitulated by specific loss of p110α activity, indicating its 

dominant role in PI3K signaling in physiological conditions in mature cortical neurons. p110α 

was also identified as the major subunit involved in PI3K-Akt2 signaling after stimulation with 

EGF. These findings support the crucial role of p110α in receptor Tyrosine kinase signaling. 

In the literature the non-redundant roles of the PI3K subunits have already been described. 

As mentioned above, p110β was found to be the major isoform involved in cancer 

progression in PTEN-deficient cells and p110α to be responsible for cancer progression in 

cells with aberrant RTK signaling [Schwartz et al. 2015]. 
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4.2.3. Specific activation of Akt2 after EGF stimulation in mature cortical 
neurons 

In previous publications the importance of TrkB activation by EGF or BDNF has been shown 

to play a role in neuronal migration, proliferation of neuronal stem cells and vascular 

neuroprotection [Puehringer et al. 2013; Islam, Loo, and Heese 2009; S Guo et al. 2012]. In 

this study, we were able to demonstrate an EGF-specific activation of Akt2 in mature cortical 

neurons. TrkB, in our hands, appears to play only a minor role in this signaling axis, hinting 

towards its suggested role earlier in neuronal differentiation, in late-phase 

neurogenesis [Islam, Loo, and Heese 2009]. The main signaling response was generated 

through EGFR with subsequent activation of the PI3K-p110α subunit. EGFR expression was 

only detected in mature neuronal cultures (16 and 21 DIV). Supporting our results, the 

phosphorylation of Akt after EGF stimulation has been shown to be dependent on 

Presenilin1 in primary cortical neurons. The loss of Presenilin1 led to a decrease in neuronal 

EGFR protein expression [Bruban et al. 2015]. Another study in mature neurons, proposes in 

vitro EGF treatment to enhance NMDAR-mediated calcium influx and synaptic 

plasticity [Tang et al. 2015]. In contrast, EGFR plays a role also earlier during neuronal 

development in branching and pruning in Drosophila CNS. EGFR localization was found to 

be regulating filopodia dynamics, thereby mediating axon branch development [Zschätzsch 

et al. 2014]. Taken together, EGF signaling via its receptor EGFR plays a relevant role during 

brain development and is neuroprotective in adult brain and after brain injury. To date little is 

generally known concerning the precise function of EGF-Akt signaling in mature neurons. In 

medulloblastoma cells, EGF was found to phosphorylate Akt, leading to enhanced 

migration [Dudu et al. 2012]. In esophageal cancer cells, redundant and distinct 

phosphorylation patterns of the three different Akt isoforms have been found after EGF 

stimulation [Okano et al. 2000]. Therefore, more research focusing on the roles of Akt 

isoform-specific functions in neurons has to been done. Speed et al. could show, that Akt2, 

not Akt1, is activated by Insulin and involved in dopamine transporter cell surface 

expression [Speed et al. 2010]. Since we also found a specific activation of Akt2 after EGF 

stimulation, we started to explore the specific signaling cascade further. We could not detect 

significant phosphorylation changes any of the most common Akt substrates (S6, mTOR, 

GSK3β) after acute treatment. In lymphoblasts Akt2 has been shown to play a role in p53 

stabilization via its kinase activity on the E3 ubiquitin ligase MDM2 [Boehme, Kulikov, and 

Blattner 2008]. Therefore, we also investigated p53 as a possible downstream target of EGF-

Akt2 signaling. In timecourse experiments we could not detect any expression changes (see 

Figure 26). Interestingly, in pilot experiments with long-term EGF treatment, stimulating 

cortical neurons in vitro for 7 days, we found an upregulation in Bax and p53 expression, 

both being pro-apoptotic genes (data not shown). The involvement of Akt2 in this response 
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has to be further assessed, e.g. by the use of Akt2 shRNA. An effect of Akt2 on protein 

synthesis has already been shown in the context of its interaction with the elongation factor 2 

(EF2) in cardiac myocytes. This Akt2-EF2 complex depends on the phosphorylation status of 

Akt2, as it falls apart when Akt2 gets activated, allowing EF2 to bind to ribosomes and 

increase protein synthesis [Bottermann et al. 2013]. Therefore, we hypothesize Akt2 as a 

new participant in pro-apoptotic signaling in response to cellular stress caused by prolonged 

growth factor stimulation. The fact that prolonged activation of the PI3K pathway influences 

the cells homeostasis has been reported previously. In 19 DIV neurons an activation of PI3K 

for 2 days has led to a 38% increase in both, inhibitory and excitatory synapses, the effect 

was found to be independent of the developmental state of the culture [Cuesto et al. 2011]. 

Hence, further investigation in the exact role of PI3K – Akt2 after extensive EGFR signaling 

and subsequent pro-apoptotic response has to be done. 

4.3. Analysis of signaling proteins related to neuronal 
development in postnatal rat brain 

Despite the widely accepted importance of the PI3K/Akt pathway during neuronal 

development [Waite and Eickholt 2011], there is currently little knowledge concerning the 

endogenous profile and regulation of Akt phosphorylation during normal brain development. 

For the total protein levels of Akt, GSK3β and ERK1/2 our results are in accordance with 

previous studies performed on mouse cortical and hippocampal development [Beurel et al. 

2012]. Although the inhibitory S9 phosphorylation of GSK3β seems to reach a later maximum 

(P7) than reported (P1), nonetheless, levels of this phosphorylated protein decrease when 

the total abundance increases until its maximum at P21 [Beurel et al. 2012]. Between the 

different Akt isoforms, Akt3 shows a brain specific expression and was found to play a crucial 

role in postnatal brain development [Tschopp et al. 2005]. Although the essential isoform for 

embryonic development and survival is Akt1, both isoforms are required for development, as 

double knock-out Akt1-/-Akt3-/- mice are not viable [Z Yang et al. 2005]. It has to be noted, 

that genes associated with the PI3K signaling pathway were found to be poorly conserved 

between humans and mice, therefore leading to a lack of mouse models where the 

functionality of main effectors of the PI3K cascade is altered [Monaco et al. 2015]. 

Nonetheless in accordance with the published Akt knock-out mice models, we detected Akt1 

protein expression level almost equal throughout the tested time points, whereas Akt3 

declined in older brains. In contrast, Akt2 expression showed a peak at P21 before 

decreasing. This might suggest a specific role of this isoform in the non-neuronal cell 

development at this time point. Postnatal brain development is characterized by dramatic 

changes in the cellular composition of the brain. During the first week, the net number of 
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neurons increase dramatically followed by an increase in non-neuronal cells in postnatal 

weeks two and three [Bandeira, Lent, and Herculano-Houzel 2009]. A spatial and temporal 

shift of Akt activity has also been published for embryonic mouse development where Akt is 

highly phosphorylated during mitosis [Marques and Thorsteinsdóttir 2013]. The changes in 

S473 and total Akt profiles were most evident when comparing the P0 and P7 samples in our 

experiment. This suggests a substantial reprogramming of Akt phosphorylation and 

activation during these crucial developmental stages, indicating also an important role for Akt 

activation during postnatal development. In summary we can conclude, that our analysis of 

structural and signal proteins during postnatal brain is in good agreement with previous 

studies but also shows, that WB analysis does not provide all the information on protein 

expression. So far unappreciated peak shifts in Akt isoforms suggest dynamic modifications 

during the postnatal period we investigated (see Figure 11). 

4.4. Conclusion and outlook 

This thesis provides first steps to decipher PI3K – Akt signaling in a developmental- and 

signal-dependent manner in greater detail. The importance of distinguishing between signal 

input and output became apparent when we compared the outcome of growth factor 

activated PI3K and PTEN loss on Akt activity. We showed that different Akt pools were 

phosphorylated by the different upstream stimuli. A summary of the growth factor responses 

of the different developmental stages of neurons found in this project is shown in Figure 27. 

Diez et al. studied the specific roles of the different isoforms in differentiated neurons, 

thereby already pointing out that although the three isoforms show substantial compensation 

for each other in some processes, disruption of individual isoforms can also cause reduced 

neuron viability [Diez, Garrido, and Wandosell 2012]. Triple, but not single knock-out of the 

Akt isoforms has been identified to play a role in Tau hyperphosphorylation, therefore 

suggesting an involvement in Alzheimer disease [L Wang et al. 2015]. Additionally, non-

redundant functions of Akt isoforms have also been found in astrocytes and there being 

involved in gliomagenesis [Endersby et al. 2011]. In cell lines the subcellular localization of 

the different isoforms has been previously assessed and found to differ enormously. Akt1 

was found to be present in the cytoplasm and nucleus, Akt2 was found to co-localize with the 

mitochondria and Akt3 was mainly localized in the nucleus and at the nuclear membrane 

[Santi and Lee 2010]. All these studies point out the importance of differentiation between the 

different Akt isoforms and not just assuming them to be one protein. With the cIEF assay in 

our lab we were able to establish an important tool for further investigation of Akt signaling 

responses. In the course of this project we could show a specific EGF-EGFR-PI3K/p110α-

Akt2 signaling cascade. It would be of further interest to investigate the downstream 
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functionality of this signaling pathway. Therefore, we are currently working on producing 

Akt2-shRNA in order to confirm its role in the induction of apoptosis after longterm EGF 

treatment. It is also planned to start a mass spec approach to compare interaction partners of 

EGF in the presence and absence of EGF. Akt2, being the ´metabolic´ isoform, has recently 

been shown to influence glutathione biosynthesis and activating mutations of Akt2 leading to 

enhanced tumorigenesis in breast cancer [Lien et al. 2016]. We would like to further exploit 

the metabolic role of Akt2 after EGF treatment. 

Figure 27: Schematic view of Akt isoform activation. In immature primary cortical neurons (7 DIV) 
BDNF led to an increase in phosphorylation of Akt1 and Akt2. Insulin and EGF stimulation only had a 
minor effect. In contrast, in mature neurons (21 DIV) EGF led to activation of specifically Akt2 whereas 
PTEN loss induced phosphorylation of Akt1. Here, BDNF and Insulin showed only a mild effect.  
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