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Abstract

The magnetic behaviour of various materials is due to an indirect interaction of localized
magnetic moments, which is based on itinerant electrons in a conduction band. The
Kondo-lattice model is an elegant approach for a quantum-mechanical description of this
process. It reduces the relevant physics to an intra-atomic exchange interaction of the
localized and the itinerant electrons.

The aim of the present work is a detailed investigation of analytic properties of this
model. Here, the interplay of two distinct types of particles, described by Fermi operators
and quantum-mechanical spin operators respectively, is a major challenge of the consid-
ered model. Previous studies have focused on one of these subsystems only. Using the
projection-operator method, we suggest an efficient way to describe both subsystems on
the same level of approximation. With this method common shortcomings such as the
mapping on the Heisenberg model or the use of classical spin operators can be avoided.

An evaluation of the subsystem of itinerant electrons yields an expression for the self-
energy, which describes linear and quadratic interaction effects exactly. The densities of
states derived with this theory show strong correlation effects. We were able to assess
results obtained with less systematic approaches and to predict new many-particle effects.

The application of the projection-operator method to the subsystem of localized mag-
netic moments results in a detailed analysis of the RPA (random phase approximation).
The dependence of magnon spectra and Curie temperatures on model parameters are
investigated systematically. Previously unknown drawbacks of the RPA are revealed,
which prevent the combination of these results with theories for the itinerant subsystem.
Improvements beyond RPA and alternative approximations are discussed.
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Zusammenfassung

Das magnetische Verhalten zahlreicher Materialien lässt sich auf eine indirekte Wechsel-
wirkung lokalisierter magnetischer Momente, vermittelt durch die Elektronen eines Lei-
tungsbandes, zurückführen. Das Kondo-Gitter-Modell hat sich als elegante Möglichkeit
bewährt, diesen Prozess quantenmechanisch zu beschreiben. Es reduziert die Physik auf
eine intra-atomare Wechselwirkung der Spins von lokalisierten und itineranten Elektro-
nen.

Die vorliegende Arbeit ist den analytischen Eigenschaften dieses Modells gewidmet.
Die besondere Herausforderung des Kondo-Gitter-Modells besteht dabei im Zusammen-
wirken zweier verschiedener Teilchensorten, beschrieben durch Fermi-Operatoren sowie
quantenmechanische Spins. Zahlreiche bisherige Untersuchungen haben sich in der Re-
gel nur auf eine der beiden Teilchensorten konzentriert. Mit der Projektions-Operator-
Methode stellen wir nun eine systematische und effektive Möglichkeit vor, beide Teilsy-
steme in gleicher Qualität zu behandeln. Die in dieser Form erstmalige Anwendung der
Projektions-Operator Methode auf das Kondo-Gitter-Modell kommt ganz ohne eine Ab-
bildung auf das Heisenberg-Modell oder ein Zurückgreifen auf klassische lokalisierte Spins
aus.

Die Auswertung des Teilsystems der itineranten Elektronen führt auf einen Ausdruck
für die Selbstenergie, der lineare und quadratische Effekte in der Wechselwirkung exakt
beschreibt. Die resultierenden Zustandsdichten weisen starke Korrelationseffekte auf. De-
ren Untersuchung dient sowohl der Bestätigung von Ergebnissen weniger systematischer
Zugänge als auch dem Aufzeigen neuer Vielteilchen-Phänomene.

Die Anwendung der Projektions-Operator-Methode auf das System der lokalisierten
Momente führt zwangsläufig zu einer Analyse der häufig verwendeten RPA (random
phase approximation). Zu diesem Zweck werden die Magnonenspektren und die Curie-
Temperaturen systematisch untersucht. Dabei treten bisher unbekannte Schwachpunkte
der RPA zu Tage, die auch die Kombination mit Theorien für das itinerante Teilsystem
verhindern. Verbesserungen und Alternativen zur RPA werden diskutiert.

Schlagwörter:
Kondo-Gitter-Modell, Projektions-Operator-Methode, RPA, Magnonen
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Chapter 1

Motivation

1.1 The inevitable reduction
Most fascinating about physics is its purpose to describe complex processes in simple
terms. It distinguishes a physicist from other scientists that he or she is able to reduce
a given system to its most relevant aspects, rather than taking all details into consider-
ation. The earth, for example, is a system of so many parameters, that it is impossible
to simultaneously grasp everything what happens on it. However, in order to explain the
motion of this planet around the sun, the physicist reduces everything on earth to a single
mass point. The gravitational law and some simple theorems are sufficient to predict the
relevant parameters, e.g., the period of a year.

Such a reduction has two major advantages: It is the prerequisite for the calculability
of complex processes and secondly it implies universality. If the earth is reduced to a
mass point, there is nothing special about it any more. Hence, doing the same with the
moon, one can readily understand how long it takes for the latter to orbit around the earth.
There is no need for new considerations or theorems. We just have to accept that it is the
same basic law which applies to both cases.

It goes without saying, that the degree of simplification has to be related to a physical
question. In order to explain tides on earth, it does not make sense to consider this
planet as a mass point. Similarly, for an understanding of a solar eclipse a problem of
three celestial bodies has to be solved; and for a prediction of its starting time the radii of
these bodies are also relevant.

The problems of gravitational astronomy might be considered relatively simple ones,
due to our knowledge of their straightforward solutions. By contrast, the phenomenon of
magnetism, the spontaneous collective order of magnetic moments in some materials, is
much more exciting for us. Despite the fact, that it has inspired mankind for thousands
of years, there is still no completely satisfactory theory available. This alone, makes
magnetism very attractive for theoretical research. In addition, magnetic properties are
of increasing importance for technology and computer applications. Modern data storage
devices, such as MRAMs, make explicitly use of magnetic effects. The functionality and
performance of these devices could be further enhanced, if more were known about the
processes that lead to magnetic order.

Some steps towards an understanding of the phenomenon of spontaneous magnetiza-
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CHAPTER 1. Motivation

tion have already been taken. A lot of papers and several outstanding books on this topic
have been published. Now it is known, that the effect is necessarily of quantum mechan-
ical origin (Bohr-van Leeuwen theorem [110]). More importantly, there is no doubt that
this phenomenon is a many-particle effect. The high number of contributing particles is
the reason for the complexity of magnetism. For its description, simplifications cannot
be avoided. In fact, in no other area of physics has the reduction to simple models been
performed as consequently as in many-particle physics.

The requirement, that the many-body character must not be destroyed by the approx-
imation, is a major difference to the two-body problem of the earth and the sun. The
fundamentals of quantum statistics allow a subdivision into classes of indistinguishable
particles. Nevertheless, there are a lot of interactions among particles of the same class
and between particles of different classes. This is the point, where simplifications can
be performed. In solid state physics the Coulomb attraction and repulsion is the only
important interaction in many cases. Density functional theory is one way of treating
this interaction, retaining its spatial dependence. In the theory of strongly correlated
electrons, important for an understanding of magnetism, another approach is pursued.

The Hubbard model is a typical example of a Hamiltonian for strongly correlated
electrons. Hubbard [54, 55] claimed that for some materials the repulsion of two electrons
with opposite spin located on the same atom of a regular lattice is stronger than any other
energy of the system. Therefore, a positive energy, called U , is allocated to this process.
No further interaction is considered, which is, of course, a drastic oversimplification. There
is little doubt that the model is too simple to faithfully describe actual solids [156].

Nevertheless, the Hubbard model fulfills two important criteria: On the one hand, it
is believed to exhibit various interesting phenomena including the one we are interested
in: it exhibits spontaneous ferromagnetic order. It is commonly accepted, that principle
mechanisms governing the behaviour of the Hubbard model also play an important role in
a certain class of real materials. In this sense, understanding the physics of the Hubbard
model is a prerequisite for getting an idea of the origin of itinerant ferromagnetism and
for purposefully and meaningfully modify these materials. On the other hand, despite its
simplicity, the Hamiltonian is not exactly solvable. Therefore, generations of theoretical
physicists had their “fun” in developing new approximation schemes for this model. As for
other famous problems (Fermat’s last theorem, Ising model, . . . ) the techniques developed
were of use for many more applications other than the Hubbard model.

1.2 The challenges of the Kondo-lattice model
The Kondo-lattice model (KLM) embodies a similar universality as the Hubbard model.
Again, its main purpose is the understanding of ferromagnetism in a certain class of
materials. However, the focus is on another process. Instead of attributing ferromagnetism
to the Coulomb repulsion directly, a Hund’s rule coupling is considered the most important
interaction.

Hund’s rules determine the electron occupation of the orbitals of an atom. According
to these rules, a certain spin orientation of an electron that enters a partly filled shell is
energetically preferred. This process can be modelled: The complex system of the atom

2



1.2. The challenges of the Kondo-lattice model

is reduced to a single quantum mechanical operator, the localized spin. The interaction
energy of an additional electron is solely determined by the orientation of its spin with
respect to the localized spin of the atom.

Besides the dispersion of the itinerant electrons in the conduction band, this Hund’s
rule coupling is the only physical process considered in the Kondo-lattice model. Math-
ematically, it is described by an intra-atomic exchange interaction. The model does not
include interactions between the localized electrons or Coulomb interaction within the
conduction-electron band. It reduces the multiband scenario to a single s-band. It also
neglects a possible k-dependence of the coupling constant. It does not take into account
superexchange of localized moments or other possible inter-atomic interaction mecha-
nisms. It does not incorporate anisotropy or disorder.

The only prerequisite of the KLM is the existence of these two groups of electrons:
localized electrons in a partly filled shell and itinerant electrons in a conduction band. A
microscopic explanation why this is an appropriate description of transition metals can
be found in early works of Zener [179, 180], Anderson and Hasegawa [3] or Vonsovskĳ
and Izyumov [164]. Despite its oversimplified structure, the Kondo-lattice model has
been used successfully for a quantitative description of the magnetism in classical local
moment metals (Gd, Dy, Tb) as well as in magnetic semiconductors (EuO, EuS, EuTe,
. . . ) [143, 61, 102].

The KLM has already been applied to many other materials. We do not wish to
repeat more detailed overviews given elsewhere [115, 92]. However, the topics that have
attracted substantial attention are briefly mentioned here:

• Already since the end of the 1970s heavy-fermion systems, which are characterized
by large values of the Sommerfeld coefficient and the Pauli susceptibility (Refs. in
[44, 37]), have been discussed intensively in context of the Kondo-lattice model.

• Based on bandstructure calculations for Heusler alloys, de Groot [22] predicted the
existence of half-metallic ferromagnets in 1983. These are characterized by metallic
majority-spin and semiconducting minority-spin electrons (Refs. in [58]). One year
later a shape-memory effect was observed in Heusler alloys [168]. Since these alloys
are ideal local moment systems [75, 179], the Kondo-lattice model is well suited for
studying the magnetism in both cases.

• Towards the end of last century, a lot of effort was expended on describing manganese
perovskites (Refs. in [39]). The interest has arisen due to the discovery of the colossal
magneto-resistance effect (Refs. in [62]) in these materials.

In recent years the KLM experienced a revival due to the observation of high Curie tem-
peratures in semiconductors that have been doped with a few percent of magnetic atoms
[121, 122]. This discovery inspired the idea of using diluted magnetic semiconductors
(DMS) for new spin-based electronic devices [170, 123, 120]. A “diluted” Kondo-lattice
model was used to predict most promising materials for room temperature ferromag-
netism [24]. Many improved theoretical approaches have already been published (Refs.
in [74, 21]). It turned out that for a realistic description of DMS, further effects such as
disorder and spin-orbit coupling are important. Nevertheless, there is no doubt, that the
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CHAPTER 1. Motivation

magnetic order in DMS is due to the indirect interaction of the doped magnetic moments
via itinerant conduction electrons. Therefore, a proper approximation of this interaction
is essential. Many authors use a mean-field theory for the determination of the Curie
temperature. Any improvement of the mean-field description should first of all be applied
to the translational invariant model. Only if such a system is completely understood is it
possible to deal with the additional challenge of dilution and disorder.

Hence, we consider it important to keep the Kondo-lattice model as it is: the simplest
possible structure incorporating a coupling of localized and itinerant electrons. It is not
our intention to introduce further parameters for fitting some experimental data. Similar
to the situation of the Hubbard model, we believe that it is the universality of the exchange
coupling and the abundance of physical phenomena, which make this model so interesting.

The Kondo-lattice model also fulfills the second criterion mentioned in connection
with the Hubbard model: It is sufficiently complex, to evade an exact solution. It is our
impression, that much less is known about its analytical properties than for the Hubbard
model. An overview of known results is presented in Chap. 2. However, a particular
challenge of the Kondo-lattice model can already be emphasized: Since being confronted
with two subsystems of electrons, at least twice the effort has to be invested to obtain
the same quality of approximation as for the Hubbard model. In the literature most
approaches avoid this effort, only focus on one subsystem and treat the second in a very
simple approximation. The aim of our work is to provide a formalism which treats both
subsystems equally well.

The second mathematical difficulty of the KLM is related to the nature of localized
spins. Compared to Fermi operators, these spins are described using a much more difficult
algebra, defined by the commutation relations. Therefore, many theorems and methods,
that work well for the Hubbard model, are not applicable to the Kondo lattice. In partic-
ular this concerns diagrammatic perturbation theory. The summation rules for diagrams
are based on Wick’s theorem which is only defined for Fermions and Bosons. There are
some trials of an extension of this method to spin operators reported in the literature
[60, 43], but none of them has become an accepted formalism.

A common loophole is a classical treatment of localized spins. Based on this assump-
tion, substantial results have been obtained using dynamical mean field theory [39, 45]
or Monte Carlo techniques [72]. However, this might be considered as dealing with a dif-
ferent model. Many investigations have shown, that the quantum-mechanical character
of the spins has indeed a substantial impact on the electronic properties of the materials
concerned [25, 96]. Therefore, an analytical and numerical treatment of the KLM, which
retains the quantum nature of spins, should be aspired to.

Another possibility suggested in the literature [114] is the mapping of the local-moment
subsystem onto an effective Heisenberg model. This implies the danger to observe mag-
netic properties of this model, rather than of the KLM. Furthermore, there are a few
attempts to restrict the Green’s function hierarchy of equations of motion by a decou-
pling scheme. From an analytical point of view, such a kind of approximation always
suffers from a lack of controllability. To overcome these shortcomings is an ambition of
our alternative method.
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1.3 The advantages of the projection-operator method
The projection-operator method (POM), also known as the Mori-formalism, incorporates
all the properties we would like to have for an approximation technique. We wish to
highlight some of the advantages of this method, with the details to be explained in the
various chapters of this thesis.

The most important concept is the projection of the dynamics onto a relevant subspace.
Therefore, as compared to other approximation methods, it takes seriously the philosophy
mentioned at the beginning of reducing the complexity of a system. In this sense, it is a
natural continuation of a simplification that has already been started with the construction
of the model. The subspace considered to be relevant, can be continuously enlarged.
Mathematically, this results in a continued fraction for the one-particle Green’s function.
The approximation is controlled in the sense that the length of the continued fraction, or
similarly the size of the considered subspace, can be fixed. This does not automatically
imply a Taylor expansion in the coupling constant. Nevertheless, we treat the method
such, that the results are correct in second order perturbation theory.

In contrast to Wick’s theorem, the POM is not limited to a certain kind of operator.
It can be applied equally well to spin operators that obey the commutation relations
of angular momentum. This offers the chance, to treat the localized and the itinerant
subsystem of the Kondo-lattice model with the same technique. There is another property
of the POM, that makes its application so attractive: It allows for a variety of different
approaches by modifying the relevant subspace and the way, in which it is enlarged.
When “playing” with these possibilities, one gets a feeling for the analytical properties
of the KLM. A further advantage of the POM is the compact notation of all necessary
transformations. Although, this is first of all an aesthetic aspect, we believe that there is
a relation between the “beauty” and the quality of a theory.

Using the projection operator method we introduce a technique to many-body theory
which until now has mainly been applied to transport theory. There are already a few
applications to the Hubbard [16] and the Heisenberg model [11]. However, it is not yet an
established alternative to widely used decoupling techniques for the hierarchy of equations
of motion of retarded Green’s functions. In this thesis we would like to emphasize the
advantages and limitations of the projection operator method, which shall be applied to
the Kondo-lattice model for the first time.

1.4 The intention of the present work
From the previous remarks it is clear, that the intention of this thesis is twofold: On the
one hand, we are going to evaluate the projection-operator method as a technique to treat
many-body Green’s functions. On the other hand, we would like to provide an insight
into the analytical properties of the KLM.

In order to fulfill our first objective, the philosophy of the projection-operator method
will be thoroughly explained in Chap. 3. For a deeper understanding we consider it
equally important to demonstrate several variations of this technique by calculating some
explicit examples. A couple of exactly solvable limits of the KLM are very appropriate
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CHAPTER 1. Motivation

for this purpose. For example, in Sec. 4.1, the motivation for deriving the result for the
ferromagnetically saturated semiconductor in several different ways is to illustrate how
the projection-operator method can be modified for a better generalization, rather than
to ascertain that no mistake has occurred in the calculations.

The POM can be used in order to study several aspects of the KLM. For this the-
sis we have decided to focus on its weak-coupling behaviour for a ferromagnetic Hund’s
coupling. Our aim is to find an expression for the Green’s function, where the memory
matrix is exact up to second order in the coupling constant. This approach is particu-
larly suited for a comparison with the widely used mean-field approximations, which is
of linear order. Using the POM, we will show that it is indeed possible to treat both
subsystems of the KLM on the same footing. Nevertheless, due to their different physical
properties the subsequent analysis of the obtained expressions depends on the subsystem.
For the subsystem of itinerant conduction electrons, the second-order result (Sec. 4.3) will
be improved such that exactly solvable limiting cases of the KLM are fulfilled (Sec. 4.4).
Following the labelling of a similar procedure for the Hubbard model we call this ap-
proach the modified perturbation theory (MPT). Chapter 5 is devoted to the subsystem
of localized moments. Here, already the second-order result (Sec. 5.1) is too complicated
for a numerical evaluation. Therefore, a further simplification is discussed (Sec. 5.2). The
result, which is known from decoupling techniques as the random phase approximation
(RPA), is evaluated in Sec. 5.3.

For an explanation of the POM a substantial amount of formulae cannot be avoided.
However, for the sake of readability we will try to limit their number such that an inter-
ested reader can still follow the gist of the calculation. Whenever it is required to provide
intermediate steps, we will shift this information to an appendix. The same applies to the
discussion of aspects, which do not belong to the main stream of this thesis. Furthermore,
we have abandoned explanations concerning the basics of many-body theory and Green’s
function techniques. For more information on these issues the interested reader is referred
to standard text books [107, 85, 40].

We will use Chap. 6 to summarize the systematic investigation of the Kondo-lattice
model based on the projection operator method. We will conclude, that the POM is
indeed an interesting and compact formalism to investigate the properties of the KLM
and other many-body problems. Our hope is to convey this impression throughout the
whole thesis and to share with the reader the pleasure of using this method. A greatest
success of this thesis would be to inspire someone else by the work presented here into
continuing the investigations and answering the outstanding questions.
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Chapter 2

Current knowledge of the
Kondo-lattice model

The physical motivation for the Kondo-lattice model (KLM), its assumptions and appli-
cations, have already been introduced in Chap. 1. Now, in order to perform calculations
which employ temperature-dependent statistics, the model has to be implemented using a
Hamiltonian. The subsequent approximate evaluation is going to be guided by mathemat-
ical aspects. Accordingly, the following two questions will dominate this chapter: Under
which conditions does an exact solution of this Hamiltonian exist? For all other cases,
which strategies are already available to obtain approximate solutions? Whatever the
approach, at the end we will always try to draw physical conclusions from these results.

2.1 Many-body Hamiltonian
The desired Hamiltonian has to combine the effect of two different groups of electrons,
itinerant and localized. The physics of s-conduction electrons is most effectively described
in second quantization. The first (Wannier) representation of their kinetic energy

Hs =
∑
i,j

∑
σ

Tijc
†
iσcjσ =

∑
k

εkn̂kσ (2.1)

has a very physical interpretation: an electron with spin σ, which is annihilated via cjσ

at a lattice site Rj, hops with a certain probability Tij to an adjacent site Ri without
changing its spin. In fact, the itinerant electron cannot be allocated to certain lattice
sites, but rather it belongs to different Bloch states of energy εk. This is expressed by
the second (Bloch) representation in (2.1), where n̂kσ denotes the occupation number
operator. The transformation is given by:1

Tij =
1

N

∑
k

εk eik(Ri−Rj), (2.2)

with N being the number of lattice sites.
1For a list of all Fourier transformations see appendix A.
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For localized electrons, on the other hand, the hybridization between neighbouring
atoms is negligible. The combined effect of electrons at a certain lattice site Ri is com-
monly described by quantum-mechanical spin-operators Si. Zener [179, 180] recognized
that a Heisenberg-like interaction between these spins is not able to explain the mag-
netic behaviour of transition metals. Instead Vonsovskĳ and Izyumov [164] considered an
intra-atomic interaction

Hsf = −J

~
∑

i

σi · Si (2.3)

between the spins of the itinerant electrons σi and the localized spins Si. This is the
Hund’s rule coupling mentioned in Chap. 1, which is either called sf - or sd-interaction.
With the conduction electron bandwidth W and the coupling constant J we therefore
have two energy scales2 in the system. Following Zener’s terminology [180, 3] the com-
bined Hamiltonian Hs + Hsf is nowadays labelled double exchange if the limit J � W is
considered. This is a valid assumption for manganites [76, 27, 39].

In the opposite limit J � W Kasuya [66] and Yosida [177] were able to show per-
turbatively that the ground state of Hs + Hsf has again the structure of a Heisenberg
Hamiltonian. This indirect spin-spin coupling is named after Rudermann and Kittel [138]
and the above mentioned physicists the RKKY-mechanism and is often used in an ap-
proximate description of experimental results.

However, for general J a convincing name for this Hamiltonian has still not been
established in the literature. One can formally derive the Kondo model [73] by an exact
transformation [146] of the Single Impurity Anderson Model [2] in the limit of small
hybridization energies or large on-site Coulomb repulsions [154]. This transformation
yields negative exchange interactions J and describes a situation of a single magnetic
impurity in a non-magnetic host. It established Kondo physics as a separate branch in
condensed matter physics [48], a topic closely related to the concept of heavy fermions
[44, 37].

Nevertheless, the periodic extension of this Hamiltonian,

HKLM = Hs + Hsf =
∑
i,j

∑
σ

Tijc
†
iσcjσ −

J

~
∑

i

σi · Si, (2.4)

for evident reasons often called Kondo-lattice model, is usually – in particular if positive
values of J are considered – devoted to a different set of physical problems. The magnetic
behaviour of classical local moment metals (Gd, Dy, Tb) as well as that of magnetic
semiconductors (EuO, EuS, EuTe, . . . ) is believed to be dominated by such an indirect
exchange interaction via conduction electrons [79, 165]. Indeed, the Kondo-lattice model
has successfully been applied to these materials [143, 61, 102].

The physics of the model, most clearly seen in the notation

H =
∑
i,j

∑
σ

Tijc
†
iσcjσ −

J

2

∑
i

∑
σ

(
zσS

z
i n̂iσ + Sσ

i c†i−σciσ

)
, (2.5)

2To be precise, the notation (2.3) implies that only J~ has the dimension of an energy. In our work
this is implicitly meant, whenever we identify J with an energy.
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2.2. Exact statements

with zσ = δσ↑ − δσ↓ and Sσ = Sx + izσS
y, can be considered from two perspectives: On

the one hand, on their way through the lattice conduction electrons experience an Ising-
type potential, caused by the z-component of the localized spins. Additionally, they are
scattered by local moments such that their spin flips. Both processes drastically affect
electrical conductivity and the density of states within the conduction-electron band.
The localized moments, on the other hand, try to minimize their energy in the bath of
electrons. There is a possibility of an indirect communication between them, since the
itinerant electrons are polarized whenever they pass a lattice site and act as carriers of
information. This can lead to magnetically ordered states, magnons, spin waves etc.

A problem of most many-body approaches to the KLM is the consideration of only a
single Green’s function. This automatically implies that the focus is on only one of the
above mentioned perspectives. However, due to the mutual dependence of both subsys-
tems, a combination of results from both perspectives is essential for a complete descrip-
tion of the KLM.

2.2 Exact statements
Despite its simplicity, the Kondo-lattice model cannot be solved exactly. For necessary
approximations the knowledge of exact statements for the Kondo-lattice model is partic-
ularly important [49]. They can, a priori, serve as a starting point for simplifications and
are, a posteriori, essential for an assessment of these approaches. It is clear that only
a constrained model has an exact solution. Therefore, we will discuss some meaningful
constraints on the KLM and provide the principle structure of exact solutions.

Constraints on model parameters

In (2.4) the model parameters are the hopping amplitudes Tij and the coupling constant
J . If the latter is set to zero, the solution is the trivial result of free electrons. Even the
first order (Hartree-Fock) correction in J does not give rise to any correlation effects. As
can be seen from the retarded Green’s function

G
(MF)
kσ (E) =

~
E − εk + 1

2
Jzσ 〈Sz〉+ i0+

, (2.6)

it yields a rigid spin-dependent shift of the free density of states.
The situation is much more interesting, if the hopping Tij of the conduction electrons

is suppressed. Depending on whether the Wannier or the Bloch representation of (2.1) is
considered this limit is called atomic or zero bandwidth limit, respectively. As expected
for a finite system, the excitation spectrum is discrete. The mathematical implication is
a closed system of equations of motion. For the single-electron Green’s function

Gσ(E) =
〈〈

cσ; c†σ
〉〉

E
= ~

4∑
i=1

αiσ

E − Ei + i0+
(2.7)

a short, but non-trivial evaluation yields four energy poles and corresponding spectral

9



CHAPTER 2. Current knowledge of the Kondo-lattice model

weights [112]:

E1 = −1
2
J~S α1σ = 1

2S+1

{
S + 1 + zσ

~ 〈S
z〉 − 1

~ pσ − (S + 1)
〈
n̂−σ

〉}
E2 = +1

2
J~(S + 1) α2σ = 1

2S+1

{
S − zσ

~ 〈S
z〉+ 1

~ pσ − S
〈
n̂−σ

〉}
E3 = −1

2
J~(S + 1) α3σ = 1

2S+1

{
S
〈
n̂−σ

〉
+ 1

~ pσ

}
E4 = +1

2
J~S α4σ = 1

2S+1

{
(S + 1)

〈
n̂−σ

〉
− 1

~ pσ

}
.

(2.8)

The correlation function
〈
n̂−σ

〉
as well as pσ := zσ

〈
Szn̂−σ

〉
−
〈
S−σc†σc−σ

〉
can be calcu-

lated selfconsistently. Only the magnetization 〈Sz〉 remains as an external parameter in
the sense that it cannot be obtained from the involved Green’s functions using a spectral
theorem. However, the assumption of a 〈Sz〉-value different from zero leads to incon-
sistencies for the other correlation functions [49]. This agrees with the Mermin-Wagner
theorem [90], which applies in less than three dimensions (see p. 12).

For a more physical description, the atomic-limit result can be used in form of an alloy
analogy [55] as input for a CPA (coherent-potential approximation). As a consequence,
the δ-peaks in the density of states are replaced by four energy bands. Ferromagnetic
order is allowed [109, 27, 96]. However, such an approach has several shortcomings. For
example, it does not consider repeated spin exchange with the local-moment subsystem.
Furthermore, this approach is not appropriate for the description of antiferromagnetic
order within the localized moment subsystem.

A natural extension of the atomic limit is the analytical calculation of a two-site cluster.
With a non-zero intersite hopping integral, a motion of electrons between different lattice
sites is allowed. The resulting finite energy dispersion is a first step towards bulk material.
Further, two lattice sites can serve as a limit for an antiferromagnet. We were able to
obtain an exact and analytical solution for all Green’s functions related to a two-site
cluster [49, 51]. As the full solution consists of more than 100 energy poles, this result
can already be used to study the formation of bands and investigate the dependence of
spectral weights on system parameters.

Nevertheless, it was also apparent from these calculations that a two site Kondo-lattice
Hamiltonian is at the limit of what can be done analytically. On the one hand, the step
from one site (4 energy poles) to two sites (102 energy poles) was connected with a massive
increase of mathematical effort. On the other hand, the solution obtained shows such a
high level of complexity that an evaluation is only sensible if the cluster is again limited
to some special situations.3 Hence, we do not believe that further constraints on model
parameters will provide any additional insight.

Constraints on expectation values

The two most important expectation values that enter the calculations are the electron
occupation number

〈
n̂↑ + n̂↓

〉
and the magnetization 〈Sz〉. For certain physical situations

both values can be expressed by fixed c-numbers.
For many materials of interest for experimental investigations each of the local-moment

atoms provides a single itinerant electron (
〈
n̂↑ + n̂↓

〉
= 1) leading to a half-filled con-

3For example, the case of a two-site cluster with an empty conduction band (6 energy poles) is
instructive.
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2.2. Exact statements

duction band. Usually, these atoms also form a bipartite lattice.4 For such situations
there exists the exact theorem [150, 158, 159] that the ground state is unique and a spin
singlet.5 The proof is based on the spin-reflection positivity initially proposed for the
Hubbard model [81] and has the essential precondition that the local moment is formed
by just one electron. Hence, the additional limitation S = 1/2 is assumed.

With the class of magnetic semiconductors the KLM describes materials particularly
important with respect to spintronics applications. For these materials the conduction-
electron band is almost empty (

〈
n̂↑ + n̂↓

〉
= 0). If ferromagnetic saturation (〈Sz〉 = ~S)

is assumed at T = 0 K, one can evaluate the eigenenergies of single-electron excitations
[149, 151]. Hence, exact expressions for the one-electron Green’s functions can be provided
[107, 113]. For an excess electron with a spin direction parallel to the local-moment
magnetization we obtain6

Gk↑(ω) =
~

~ω − εk + 1
2
J~S

. (2.9)

The equivalence to the mean-field result (2.6) is due to the fact that spin-flip processes
are not possible in this configuration. If ρ0(E) denotes the free density of states (DOS),
the ↑-electron can propagate according to the DOS ρ↑(E) = ρ0(E + 1

2
J~S) as a quasi-free

particle through the lattice.
The situation is completely different, if the single excess electron in the otherwise

empty conduction band has its spin direction antiparallel to the local-moment magneti-
zation axis. This yields a Green’s function

Gk↓(ω) =
~

~ω − εk − Σ↓(ω)
with Σ↓(ω) =

J

2
~S

(
1 +

J~B(ω)

1− 1
2
J~B(ω)

)
. (2.10)

For the evaluation of the lifetime of the corresponding quasi-particle the imaginary part

IB(E + i0+) = =m B(ω) = −πρ0(E + 1
2
J~S) = −πρ↑(E) (2.11)

of the function
B(ω) =

1

N

∑
q

{
~ω + 1

2
J~S − εq

}−1 (2.12)

is important. There are two possibilities: If the energy of the ↓-electron lies within a
region where the ↑-electrons have a finite density of states, then it will be damped due to
the possibility of spin-flip processes. The imaginary part of the self-energy

=m Σ↓(ω) ∼ ρ↑(E) (2.13)

has a finite value and hence the DOS for the ↓-electrons is non-zero. This part of the
spectrum is called the scattering part. However, for energies outside the ρ↑(E) 6= 0 region

4 A bipartite lattice is a lattice that can be divided into two sublattices such that for each site nearest
neighbours belong to the other sublattice.

5To be precise, this is for J > 0 only true, if the number of sites NA of sublattice A is equal to the
corresponding number NB of sublattice B. Otherwise Stot = |NA −NB |.

6From this point on we will repeatedly use the complex variable ω = E/~ + i0+ in our equations.
This includes a change to frequency representation, which is more common for the projection-operator
formalism.
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CHAPTER 2. Current knowledge of the Kondo-lattice model

the ↓-electrons will have a non-zero DOS, if

=m Gk↓(ω) = δ(~ω − εk −<e Σ↓(ω)) ⇐⇒ ρ↓(E) = ρ0(E −<e Σ↓(ω)) (2.14)

does not vanish. For these energies with =m Σ↓(ω) = 0 the corresponding quasi-particle
has an infinite lifetime. We call this a magnetic polaron, since on its way through the
lattice this conduction electron carries a cloud of magnons, which are virtually emitted
and absorbed, with it.7 We will discuss the exact result in more detail in Sec. 4.1, when
it will be derived explicitly using the projection-operator method.

Constraints on lattice dimensions

The reduction of dimensionality is apparently attractive for an investigation of the KLM
[159, 160], since exact diagonalization and density matrix renormalization group tech-
niques can be applied. Nevertheless, provided no anisotropy is included, the Mermin-
Wagner theorem [90] also applies to the KLM [23]. Therefore, for T 6= 0 K the KLM
shows no spontaneous magnetization in less than three dimensions. This limits the value
of another exact statement on the one-dimensional KLM: Sigrist et al. [152] have proven
the existence of a ferromagnetic ground state (T = 0 K) in the strong-coupling limit for
all conduction electron densities. To our knowledge, the investigations in 1D and 2D have
not lead to further rigorous results. In contrast to the impurity problem, even the Bethe
ansatz is apparently not successful for the 1D lattice.

The opposite limit of infinite dimensionality is even more interesting, since one can
prove rigorously that in this case the self-energy is local [42, 91]. Nevertheless, the locality
of the self-energy is not sufficient to provide its exact expression. In addition, within the
scheme of a dynamical mean-field theory (DMFT) it is necessary to solve the impurity
problem (see p. 20). For an empty conduction band, there seems to be an analytical
solution of this problem [139]. However, the generalization of this approach to arbitrary
band occupations is unlikely. Instead, many authors [39, 45] combine DMFT with the
assumption of classical local spins. These results will be discussed in Sec. 2.3.

The concept of dimensionality becomes meaningless, if an infinite range hopping of the
form Tij = T̂ ∀i 6= j is assumed. This exceptional situation allows for an exact solution
of the ground state energy for arbitrary band occupations [166]. For the applied cluster
expansion of the grand-canonical potential a fermionization of the local spin operators is
necessary. This limits the applicability to S = 1/2. It remains unclear if the main result,
a metal-insulator phase transition at half filling, is an artifact of the unphysical nature of
the hopping.

Constraints on the energy scale

Retarded Green’s functions can be defined in several ways [107, 85]. The version based
on the spectral density function Akσ(E) implies a high-energy expansion of the Green’s

7 The physical situation is comparable to the well-known concept of polarons in semiconductors [36],
where electrons are surrounded by a virtual cloud of phonons.
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function

Gkσ(ω) =

+∞∫
−∞

dE ′ Akσ(E ′)

E − E ′ + i0+
=

1

~ω

∞∑
n=0

+∞∫
−∞

dE ′
(

E ′

~ω

)n

Akσ(E ′) = ~
∞∑

n=0

m
(n)
kσ

(~ω)n+1
.

(2.15)
The spectral moments of Akσ(E) thus defined have the integral representation

m
(n)
kσ =

1

~

+∞∫
−∞

dE EnAkσ(E). (2.16)

What makes this expansion so interesting is the fact, that these moments can be calculated
analytically up to an (in principle arbitrary) order n [107]. This is possible by means of
an equation of motion, leading to the following commutators with the Hamiltonian

m
(n)
kσ = m

(n,x)
kσ =

1

N

∑
i,j

eik(Ri−Rj)
〈[

[. . . [ciσ, H]−, . . . , H]−︸ ︷︷ ︸
(n−x)−times

, [H, . . . , [H, c†jσ]− . . .]−︸ ︷︷ ︸
x−times

]
+

〉
,

(2.17)
where the result is independent of x. In a so-called spectral density approach (SDA)
[108] one essentially truncates (2.15) and reduces the calculation of the Green’s function
to the first four moments. This is certainly a good approximation for the high-energy
region and turned out to be successfull for the Hubbard model [47]. To incorporate the
undoubtedly important low-energy part of the spectrum, Mancini et al. [5, 161] suggested
a modification of the SDA using composite operators.

The fact that the moments (2.17) can be determined analytically belongs to the class
of exact statements on the KLM. The precise expressions of the first moments

m
(0)
kσ = 1 (2.18)

m
(1)
kσ = εk −

J

2
zσ 〈Sz〉 (2.19)

m
(2)
kσ = ε2

k − εkJzσ 〈Sz〉

+
J2

4
~
{
2zσ

〈
Szn̂−σ

〉
− 2

〈
S−σc†σc−σ

〉
+ ~S(S + 1)− zσ 〈Sz〉

}
(2.20)

exemplify their principle structure for the KLM. Via the Dyson-equation

~ωGkσ(ω) = ~ + [εk + Σkσ(ω)] Gkσ(ω), =⇒ Σkσ(ω) =
∞∑

m=0

C
(m)
kσ

(~ω)m
. (2.21)

a high-energy expansion of the Green’s function implies such an expansion for the self-
energy, too. A comparison of coefficients yields the following relationships

1
E

: C
(0)
kσ = m

(1)
kσ − εk

1
E2 : C

(1)
kσ = m

(2)
kσ −

[
m

(1)
kσ

]2
1

E3 : C
(2)
kσ = m

(3)
kσ − 2m

(2)
kσm

(1)
kσ +

[
m

(1)
kσ

]3 (2.22)
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The coefficients C
(m)
kσ of the self-energy will become important for the projection-operator

method.
As mentioned above, one can show rigorously that the moments (2.17) do not depend

on the choice of x. This fact can be exploited when the moment m
(3)
kσ is calculated. As

a consequence the following relationship must hold between several correlation functions
[50]:∑

j

Tij

(〈
Sσ

i c†i−σcjσ

〉
−
〈
Sσ

i c†j−σciσ

〉)
=

J

2

(
~
〈
Sσ

i c†i−σciσ

〉
+ 2zσ

〈
Sσ

i Sz
i c

†
i−σciσ

〉
(2.23)

−2zσ~
〈
Sz

i n̂i−σn̂iσ

〉
+
〈
Sσ

i S−σ
i n̂i−σ

〉
−
〈
S−σ

i Sσ
i n̂iσ

〉)
A detailed proof of this remarkable equality can be found in appendix B. The concept
used for the proof can be generalized to obtain further exact relations. However, it is not
clear, whether these relations have any practical implication.

For relation (2.23) one cannot argue that both sides of the equation have to vanish in-
dependently, even though they depend on different model parameters. This arises because
the correlation functions do implicitly depend on Tij and J , too. However, it can be sim-
plified in the limit 〈Sz〉 → ~S of an assumed ferromagnetic saturation of the local-moment
system and leads to

〈
n̂↓
〉

=
〈
n̂↓n̂↑

〉
. Hence, in average each ↓-electron is sitting on a dou-

bly occupied site.8 A similar effect can be observed in the atomic limit (2.8), where the
lowest energy E3 is bound to a double occupancy of the respective lattice site [96] and has
a spectral weight proportional to the number of ↓-electrons: α3↑(〈Sz〉=~S) = 2S

2S+1

〈
n̂↓
〉
.

Both statements contradict the physical picture that due to Coulomb repulsion double
occupancy should be avoided. This artifact of the KLM can be removed if a sufficiently
large Hubbard term is added to the model Hamiltonian [68, 45].

2.3 Approximative theories
To go beyond a constrained physical situation, the Kondo-lattice model has to be solved
approximately. Several theoretical concepts have already been applied to the KLM. We
do not intend to review all of them, but want to explain the (from our perspective) most
important concepts in some detail. In principle, one can subdivide these concepts into
two classes. There are those theories that obey the quantum commutation relations of
the localized spin operators. In other papers it is assumed that these spins can be treated
classically. We will concentrate on approaches belonging to the first of these classes.

An interpolating self-energy approach
A straightforward idea for an approximative theory is an interpolation between all the
constrained physical situations mentioned in the previous section. The structure of the

8The decoupling
〈
n̂↓n̂↑

〉
→
〈
n̂↓
〉〈

n̂↑
〉

would imply
〈
n̂↓
〉

= 0 for n < 1, but is not an exact transfor-
mation.
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electronic self-energy for the ferromagnetically saturated semiconductor (2.10) is similar
to that of the atomic limit (2.7) for n = 0. This motivates the ansatz [115]:

Σσ(ω) = −J

2
zσ〈Sz〉+ J2

4

aσ
1
N

∑
q

G
(MF)
q−σ (ω)

1− bσ
1
N

∑
q

G
(MF)
q−σ (ω)

. (2.24)

If the fitting parameters are chosen as

aσ = ~S(S + 1)− zσ〈Sz〉 (zσ〈Sz〉 /~ + 1) and bσ =
J

2
, (2.25)

then the self-energy fulfils, in addition to the two limits mentioned above, the first four
spectral moments and the second-order perturbation theory, both for n=0. The ansatz
can even be improved such, that the same limits are fulfilled for n=2, too [117]. For this
purpose a Hubbard interaction is introduced, which triggers the splitting of the Green’s
function into two effective medium propagators. The effective media of the propagators
are related to the empty and completely filled conduction band, respectively.

The quasiparticle density of states (QDOS) resulting from the Green’s function of the
interpolating self-energy approach (ISA) shows a lot of correlation effects. Here we only
want to note, that several subbands are observed for each spin-direction. Depending on
the parameters, their number varies between one and three. The positions are determined
by the zero-bandwidth result, which seems to dominate the physics of this approach.

A moment-conserving decoupling approach
For the many-body concept of Green’s functions the notation of equations of motion
is another straightforward approach. Each equation of motion results in higher-order
Green’s functions and spectral moments (its inhomogeneities). To truncate this hierarchy
a decoupling is necessary. Ideally, it is performed such that for each included correlation
function the compatible Green’s function for an application of the spectral theorem is also
considered in the system of equations. To our knowledge, the most sophisticated decou-
pling procedure, which follows this rule, is given by the moment-conserving decoupling
approach (MCDA) of Nolting et al. [114]. They suggest three different types of treatments
for the Green’s functions emerging in the third order of the hierarchy of equations.

1. Some non-diagonal Green’s functions are expressed by lower-order Green’s functions〈〈
S−σ

i

[
ck−σ, Hsf

]
− ; c†jσ

〉〉
E

i6=k−→ Σkl−σ(E)
〈〈

S−σ
i cl−σ; c†jσ

〉〉
E

, (2.26)

analogous to the definition of the site-dependent self-energy Σklσ via the Dyson
equation 〈〈

[ckσ, Hsf ]− ; c†jσ

〉〉
E

=: Σklσ(E)
〈〈

clσ; c†jσ

〉〉
E

. (2.27)

It also follows from their spectral representations [32] that both Green’s functions
in (2.26) must have the same pole structure.
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2. If the time dependence of localized spin operators is in demand, Hsf is replaced by
an effective Heisenberg model (2.33), followed by a Tyablikov approximation [12]:〈〈[

S−σ
i , Hsf

]
− ck−σ; c†jσ

〉〉
E

i6=k−→
〈〈[

S−σ
i , Hff

]
− ck−σ; c†jσ

〉〉
E

−→ 2~zσ 〈Sz〉
(
Ĵil

〈〈
S−σ

l ck−σ; c†jσ

〉〉
E
− Ĵ0

〈〈
S−σ

i ck−σ; c†jσ

〉〉
E

)
. (2.28)

3. Due to the strong intra-atomic correlations a modified treatment of diagonal Green’s
functions is required. Again, they are expressed by lower-order Green’s functions,
e.g. 〈〈

S−σ
i Sσ

k ckσ; c†jσ

〉〉
E

i=k−→ ασ

〈〈
ciσ; c†jσ

〉〉
E

+ βσ

〈〈
Sz

i ciσ; c†jσ

〉〉
E

. (2.29)

In contrast to the above mentioned treatments, the parameters ασ and βσ are de-
termined such that the first and second spectral moment of the expressions on both
sides of (2.29) are identical.9 This ansatz is exact in certain limiting cases (S = 1/2
or n = 0).

The combination of these approximations yields an implicit equation for the self-energy

Σkσ(ω) = −J

2
zσ 〈Sz〉+ J2

4
Dkσ(ω, J). (2.30)

The second term in (2.30) is a correction to the mean-field result, which is predominantly
determined by spin-exchange processes [116]. The included correlation functions

〈n̂σ〉 , 〈Szn̂σ〉 ,
〈
S−σc†σc−σ

〉
,
〈
S−σSσn̂σ

〉
,
〈
S−σSzc†σc−σ

〉
and

〈
Szn̂−σn̂σ

〉
, (2.31)

which are of “mixed s-f character” [114], can be determined self-consistently from the
involved Green’s functions. Their large number is the major advantage of this method.
Additionally, there is a class of further correlation functions

〈Sz〉 ,
〈
(Sz)2〉 and

〈
(Sz)3〉 , (2.32)

which are exclusively connected to the localized subsystem of the KLM and cannot be
determined self-consistently within the MCDA. Using simple approximations for (2.32),
the MCDA has successfully been applied to several physical aspects and materials [144,
145, 133, 113].

A modified RKKY interaction
For a more serious treatment of the correlation functions (2.32) Nolting et al. suggest the
mapping of the Hsf -Hamiltonian onto an effective Heisenberg model [114, 140, 141]. This
is possible by averaging out the band electron degrees of freedom:

Hsf −→ 〈Hsf〉(c) ≡ Hff = −
∑
ij

ĴijSi · Sj. (2.33)

9For numerical reasons it seems to be more convenient, to define all Green’s functions such that
their first moment vanishes [140, 83]. Anyhow, this does not change the analytical properties of the
approximation.
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The trace in the expectation value is performed such that the operators of the localized
spins are not affected. On the one hand, these operators can be removed from the angular
brackets in (2.33) and treated as pre-factors. On the other hand, their contribution to
the Hilbert space used for the thermodynamical average is considered in the form of
c-numbers.

The restricted Green’s function corresponding to this restricted Hilbert space is given
by the implicit equation

Ĝkσ,k+qσ′(E) = − J

2N~
∑
ik′σ′′

ei(k−k′)·RiG
(0)
k (Si · σ̂)σσ′′Ĝk′σ′′,k+qσ′ +

+ δq,0δσσ′G
(0)
k − J

2N~
∑
ik′σ′′

ei(k′−(k+q))·RiĜkσ,k′σ′′(Si · σ̂)σ′′σ′G
(0)
k+q. (2.34)

Here, the components of σ̂ are the Pauli spin matrices and G
(0)
k (E) is the Green’s function

of a free electron gas. If the restricted Green’s functions on the right hand side of Eq. (2.34)
were also replaced by free Green’s functions10, the averaging procedure would result into
the following (Fourier-transformed) effective exchange integrals:

Ĵ
(RKKY)
k = − J2

2N

∑
q

f−(εq+k)− f−(εq)

εq+k − εq

. (2.35)

This is the expression of the conventional RKKY [66, 177, 138] exchange interaction of
localized spins via spin-polarized conduction electrons. It depends on the square of the
interband exchange J and via µ on the conduction electron density n. Evaluated in real
space the exchange integrals Ĵij show an oscillatory behaviour as a function of the distance
Rij.

In order to incorporate to higher order the spin polarization of conduction electrons,
the restricted Green’s functions on the right of Eq. (2.34) can be replaced by the full
Green’s functions Gkσ(E), as for instance obtained by the MCDA above. Then the
averaging procedure yields a modified RKKY interaction with effective exchange integrals

Ĵ
(MRKKY)
k = −J2

2~

∞∫
−∞

dE f−(E)
1

N

∑
qσ

{
− 1

π
=m

(
G(0)

q (E) Gk+q,σ(E)
)}

. (2.36)

Due to the dependence on Gkσ(E), these exchange integrals include the full self-energy
of the electronic subsystem. Therefore, the dependence on J, n and further correlation
functions is much more sophisticated as in the conventional RKKY. Nevertheless, the
exchange integrals Ĵij still have oscillating values as a function of the distance Rij. [141]

Combination of MCDA and modified RKKY theory
The modified RKKY theory allows the application of standard decoupling techniques
for the Heisenberg model [17] to obtain the expectation values (2.32) of localized spin

10This corresponds to a first order approximation in the iteration scheme of Eq. (2.34).
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CHAPTER 2. Current knowledge of the Kondo-lattice model

Figure 2.1: Curie temperatures obtained by the modified RKKY theory using a self-energy
as obtained by MCDA. a) For several band occupations n the dependence on coupling
strength J is plotted. b) For several coupling strengths J the dependence on the band
occupation n is plotted. Other parameters: S = 7/2, W = 1.0 eV for a simple-cubic
lattice. [142, 141]

operators. Its exchange integrals (2.36) are determined by an electronic self-energy. In
turn, the MCDA needs the expectation values (2.32) as an input for the self-energy (2.30).
Therefore, the combination of these two approaches forms a fully self-consistent theory
for the KLM, which has been analyzed intensively by Santos, Nolting [141, 140] and co-
workers. Out of the wide range of results the obtained Curie temperatures are particularly
interesting. A ferromagnetic order of the localized spin system is certainly due to the
interband coupling J . Nevertheless, the results of the modified RKKY theory in Fig. 2.1a
demonstrate the existence of qualitatively different parameter regimes.

For small values of J the Curie temperature increases quadratically with the coupling.
This behaviour has also been predicted by conventional RKKY, which is particularly
reliable in this parameter range due to its perturbational character. Therefore, it is at
the first sight surprising to observe in Fig. 2.1a, that for band occupations larger than
nc = 0.13 the J2-dependence is replaced by a behaviour with a critical Jc below which
no ferromagnetism occurs [141]. However, this is not in contrast to perturbation theory.
Conventional RKKY predicts that regardless of the coupling, ferromagnetism is limited
to band occupations n < nc. The modified RKKY theory obeys this rule such that for
n > nc ferromagnetism is only possible for coupling strengths J outside the range of
applicability of conventional RKKY.

That the modified RKKY allows a finite Curie temperature for almost all band occu-
pations, can also be observed in Fig. 2.1b. According to these findings, ferromagnetism
is only excluded for a small region around n = 1. Nevertheless, systems with an almost
half-filled conduction band have to experience a very large intra-atomic coupling in order
to show ferromagnetism. This result is consistent with the T = 0 K phase diagram for
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2.3. Approximative theories

the KLM [19, 46].
For increasing coupling strengths the TC lines in Fig. 2.1a run into saturation. The

explanation of this effect is probably related to the electronic subsystem. A large cou-
pling strength yields a separation of the QDOS into two subbands. A further increase of
J mainly increases the distance between these subbands, but does not change the mag-
netic behaviour of the local moment system very much. For J → ∞, where the KLM
is often called double-exchange model, the magnetic behaviour is dominated by the itin-
erant subsystem. Theories therefore predict a scaling of the Curie temperature with the
conduction bandwidth. This trend is confirmed by the combined theory of MCDA and
modified RKKY.

A random-phase approximation
If one is interested in the spin-wave dynamics of the KLM, one could resort to the Heisen-
berg model, as it has been done by the RKKY theory. A more general approach is the
formulation of the equations of motion for the one-magnon Green’s function [167]:

~ω
〈〈

Sσ
−k; S

−σ
k

〉〉
E

= 2~ zσ〈Sz
0〉 − zσ

J~
N

∑
qp

〈〈
Sz

q−kc
†
p+q,−σcp,σ; S−σ

k

〉〉
E

(2.37)

+
J~
2N

∑
qp

{〈〈
Sσ

q−kc
†
p+q,σcp,σ; S−σ

k

〉〉
E
−
〈〈

Sσ
q−kc

†
p+q,−σcp,−σ; S−σ

k

〉〉
E

}
.

A random-phase approximation (RPA), similar to the Tyablikov approximation [12] for
the Heisenberg model, is given by the following decoupling procedure:〈〈

Sz
q−kc

†
p+q,−σcp,σ; S−σ

k

〉〉
E
≈

〈
Sz

q−k

〉 〈〈
c†p+q,−σcp,σ; S−σ

k

〉〉
E

, (2.38)〈〈
Sσ

q−kc
†
p+q,σ̂cp,σ̂; S−σ

k

〉〉
E
≈

〈
c†p+q,σ̂cp,σ̂

〉 〈〈
Sσ

q−k; S
−σ
k

〉〉
E

. (2.39)

The only higher order Green’s function considered in the RPA appears on the right hand
side of (2.38). If the equation of motion of this function is decoupled similarly to (2.38)
and (2.39) it yields:

〈〈
c†p+k,−σcp,σ; S−σ

k

〉〉
E

=
J

2

〈
n̂p,−σ

〉
−
〈
n̂p+k,σ

〉
~ω − Jzσ 〈Sz〉 − (εp − εp+k)

〈〈
Sσ
−k; S

−σ
k

〉〉
E

. (2.40)

This closes the system of equations. We will discuss extensively the expression for the
one-magnon Green’s function and its properties in Sec. 5.3.

Dynamical mean-field theory
Within the last decade dynamical mean-field theory (DMFT) has developed to one of
the most promising approaches for strongly-correlated electron systems (for reviews see
[42, 131]). It is based on the observation that in the limit of infinite spatial dimensions the
self-energy of a lattice model with on-site interactions becomes local [91]. This property is

19



CHAPTER 2. Current knowledge of the Kondo-lattice model

connected to the fact, that the self-energy functional (the dependence of the self-energy on
the respective propagators) for the lattice-model is equivalent to that of a corresponding
impurity model. The observation gives rise to an iteration scheme for the self-energy of
the lattice model [131]:

0. Start with an initial choice for the local self-energy Σσ(ω).

1. Calculate the local one-particle Green’s function:

Gσ(ω) =
1

N

∑
k

~
~ω − εk − Σσ(ω)

=

∞∫
−∞

dx
~ρ0(x)

~ω − x− Σσ(ω)
(2.41)

2. Determine an effective medium by the so-called Weiss propagator

[Gσ(ω)]−1 = [Gσ(ω)]−1 + Σσ(ω), (2.42)

an analogue to the mean-field of Weiß’s theory for the Ising model.

3. Solve the impurity problem defined by the effective medium and the local interaction
at a single site. This yields a local Green’s function

G(imp)
σ (ω) =

~
~ω −∆σ(ω)− Σ

(imp)
σ (ω)

with ∆σ(ω) = ~ω − ~ [Gσ(ω)]−1 .

(2.43)

4. Identify the impurity self-energy with that of the lattice model, Σσ(ω) = Σ
(imp)
σ (ω),

and continue with step 1 until self-consistency is obtained.

The iteration scheme of DMFT cannot be applied directly to spin models such as the
Kondo-lattice model. As explained in more detail by Meyer [92], neither a heuristic deriva-
tion of the DMFT condition in terms of Feynman diagrams nor the strict mathematical
prove based on the cavity method [42] can be transfered to this model. The problem is
that there exist no Wick’s theorem and no Grassmann numbers for spin-operators.

There are two possibilities to circumvent these difficulties. For S = 1/2, the operators
for localized spins can be expressed in terms of auxiliary Fermi operators [88, 96]:

Si =
∑
α,β

f †iασ̂α,βfiβ with
∑

α

f †iαfiα = 1 ∀i, (2.44)

where σ̂α,β represent the Pauli spin matrices. The resulting Hamiltonian is very similar
to that of the periodic Anderson model [48] for which the concepts of DMFT are known
[42]. The impurity problem can be solved by returning to spin operators and performing
a decoupling of the equations of motion similar to (2.26) [96]. The second possibility to
perform a DMFT for the KLM is the limit S →∞. Then the localized spins can be treated
classically and the determination of the impurity Green’s function is essentially reduced
to a two-dimensional integration over all angles for the impurity spin [39, 18]. Replacing
the Hund’s rule coupling by an Ising-type interaction [45] is, in the paramagnetic region,
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2.3. Approximative theories

equivalent to the assumption of classical local spins. Based on this approach, a Monte-
Carlo calculation has been performed, in order to solve the impurity problem [45].

The DMFT results for S = 1/2 and S → ∞ show remarkable differences implying a
strong impact of the quantum-mechanical character of the localized spins on the electronic
properties of the KLM. Although, in particular for manganites, the optical conductivity
is of major interest [18], we will only make a few remarks on the quasiparticle density
of states (QDOS) obtained. First, we consider the classical limit S → ∞ (cf Fig. 5 in
[39]). At T = 0 K the QDOS shows just the mean-field shift of the ↑- and the ↓-band.
Such a situation would give rise to a complete spin-polarization, a property which is
also addressed in appendix E. For finite temperatures, there are two subbands in each
spin-channel, again separated by the mean-field distance. Therefore, the only effect of an
increasing temperature is a re-distribution of spectral weight to energies belonging to the
T = 0 K band of the opposite spin direction.

The situation is completely different for the quantum-mechanical spin S = 1/2 (cf
Figs. 3 and 4 in [96]), where the QDOS shows strong correlation effects already at T = 0 K.
Firstly, there is a broadening of the QDOS with increasing coupling strength. Further-
more, the onset of the splitting of the band can be observed, which yields two subbands in
the ↓- as well as in the ↑-channel for moderate values of J . In particular, the pronounced
correlation effect for ↑-electrons at T = 0 K is a feature not observed in the MCDA.
For ↓-electrons the effects are consistent with the situation of the ferromagnetically sat-
urated semiconductor. At temperatures close to the Curie temperature the QDOS of the
DMFT and the MCDA do coincide for all coupling strengths. Here, one observes a broad
structure with a dip indicating the onset of a band splitting.

Kogan et al. [70] were successful in using the DMFT equations for S → ∞ to derive
an explicit expression for the Curie temperature TC. Plotted as a function of band oc-
cupation (cf Fig. 1 in [70]) the qualitative similarities of the results as compared to the
MCDA-results in Fig. 2.1b are surprising. Also in their calculations, finite Curie tem-
peratures are obtained for small band occupations. An increasing J yields larger Curie
temperatures and the possibility of ferromagnetism for an increasing region of band occu-
pations. Furthermore, Michaelis et al. [97] conclude from their DMFT calculations that,
in contrast to previous observations, already moderate values of the coupling constant J
are sufficient to describe the experimental situation in pseudocubic manganites.

Conclusions
The provided list of approximate approaches to the KLM is by no means exhaustive.
However, it is sufficient to be informed about important trends in this field. All the
mentioned approximations have their shortcomings. Decoupling techniques are often con-
sidered to be uncontrollable and intuitive [83]. The interpolating self-energy approach
has the problem that the local moment magnetization has to come into play only as an
external parameter. Most of the DMFT calculations have to assume classical local spins.
The alternative DMFT approach with a fermionization of spin operators suffers from
numerical inconsistencies in some parameter regions [139].

From our perspective, the combination of the moment-conserving decoupling approach
(MCDA) with the modified RKKY theory provides the most reliable method for a study of
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CHAPTER 2. Current knowledge of the Kondo-lattice model

the KLM. However, one can also note some drawbacks of this method: Although the con-
servation of the first spectral moments reduces the drawbacks of decoupling approaches,
the variety of techniques to treat third-order Green’s functions still evokes the danger of
arbitrariness. A resulting spin-dependence of the correlation function

〈
Sσc†−σcσ

〉
pinpoints

inconsistencies within the MCDA. However, the probably most serious approximation is
given by the mapping of the local-moment subsystem. As a consequence, the resulting
magnetic behaviour is essentially that of a Heisenberg ferromagnet. The method cannot
cover magnetic excitations that are characteristic for the KLM, although they might be
essential for the obtained Curie temperatures.

These considerations lead to the following conclusion: An approximation of the KLM,
that treats the magnetic and the electronic subsystem with the same Hamiltonian and the
same techniques is still missing. We consider such an approximation essential, in order to
satisfy the complex physics included in the Kondo-lattice model. The projection-operator
method, introduced in the next chapter, is an excellent candidate for this purpose.
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Chapter 3

The projection-operator method

The projection-operator method (POM) is characterized by a mixture of favourable fea-
tures. It is a many-body technique that results in an expression for the desired Green’s
function. It is an exact formalism which allows systematic approximations by truncations
at well-defined levels. It has, in contrast to Wick’s theorem, the potential to handle spin
operators with their complicated commutation relations. Last but not least, it has a
certain beauty in the way the dynamic and static entities are treated. We will use this
chapter to substantiate these claims.

3.1 Dynamics within the Liouville space
To explain the projection-operator method one should start with the fundamentals of
quantum statistics [33]. Here, the aim of all efforts is the determination of time-dependent
correlation functions. This requires the calculation of expectation values, which for an
arbitrary observable A are determined by

〈A〉 (t) = Tr(ρ(t)A). (3.1)

Here, it is the statistical operator ρ, that carries the time dependence of the system.
Hilbert states are only needed to calculate the trace. More generally, it turns out that
for quantum statistics a formulation of theories in terms of operators is more convenient
than considerations within the Hilbert space.

Since linear operators A, B, . . . can be added and multiplied by complex scalars, they
may themselves be regarded as elements |A) , |B) , . . . of an abstract vector space. The
space of linear operators acting on a Hilbert space is called Liouville space. The notion
behind the projection-operator method is that only a relatively small set of observables
is relevant for the description of the dynamics of the system. These elements span a
subspace of the Liouville space, also called level of description [132]. The statistical
operator contains a lot of additional information which is not related to the dynamics
of the observables considered. In this sense the additional information is irrelevant for
our calculations. Therefore, a projector is used to filter out only the relevant part of the
information.

A necessary condition for the definition of a projector is the existence of a scalar
product within the Liouville space. There are several possibilities to define it. Mori [99],
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who is one of the pioneers in the formalism using projection-operators, used the definition

(A |B ) :=
1

β

β∫
0

〈
eλHA e−λHB†〉 dλ, (3.2)

where H is the Hamiltonian, β = 1/kBT and the angular brackets denote the average
over the canonical ensemble.1 As will be become apparent below, the definition

(A |B ) :=
〈[

A†; B
]
η

〉
(3.3)

is closely related to the language of retarded Green’s functions. It will be used extensively
within our calculations. Here, η = + or − if we work with fermions or spin operators,
respectively. The angular brackets denote the average over the grand-canonical ensem-
ble. It can easily be shown, that both bilinear forms fulfil the necessary mathematical
conditions for a scalar product.

Once provided with a scalar product an operator P that projects an arbitrary element
onto the level of description spanned by the set {Aν} of elements |Aν) is given by2

P = |Aµ) χ−1
µν (Aν | with χαβ = (Aα |Aβ ) . (3.4)

The representation (3.4) of P is independent of the chosen basis elements |Aν). The matrix
of scalar products of these basis elements is called susceptibility matrix. χ−1

µν denotes an
element of the inverse matrix χ−1. In this context the latter plays the role of a metric.

Such an operator P acts on elements |B) of the Liouville space. Its action results in
new elements

|BP) = P |B) =
{
χ−1

µν (Aν |B )
}
|Aµ) (3.5)

of the Liouville space. To distinguish such an projection operator from operators acting
in Hilbert space (which are the elements of the Liouville space) P is referred to as a
superoperator. We will not discuss the whole spectrum of superoperators that can be
found in the literature. However, at least one further example of a superoperator has to
be mentioned.

It is the Liouvillian L defined as

L |A) := ~−1
∣∣[H, A]−

)
, (3.6)

which is very important for the dynamics of the system. In the Schrödinger representation3

the Liouvillian is directly related to the time derivative

dρ

dt
= −iLρ (3.7)

1 Mori has chosen this scalar product to justify a linearization of the Langevin equation in the stochastic
theory of Brownian motion [99]. An extended discussion of its physical significance can be found in [33].

2 Here, and in the rest of the chapter we use Einstein’s sum convention.
3 In the Heisenberg representation it is related to the time derivative of observables without an explicit

time dependence.
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of the statistical operator ρ. Written within an exponential L affects the transformation
of operators according to the rule4

ecLA = ecH/~A e−cH/~, (3.8)

where c is some number proportional to time. Furthermore, this superoperator can be
used for a particularly compact notation

m
(n)
ij = ~n

(
c†iσ

∣∣∣Ln
∣∣∣c†jσ) , (3.9)

for the spectral moments (2.16) of the one-particle Green’s function. This requires the
scalar product to be of the form (3.3). For above mentioned reasons the Liouvillian will
dominate the subsequent discussions.

3.2 Separation of time scales
The projection-operator method, now used in several branches of physics, has its roots
in (quantum) transport theory. We have already mentioned the pioneering work of Mori
[99, 100]; even earlier Nakajima [105] and Zwanzig [182, 183] have published similar
approaches.5 Zwanzig derived a master equation to study irreversibility. He separated
the ensemble density in a relevant and an irrelevant part by means of a projection, solved
the latter part formally in terms of the former one and substituted the solution back into
the equation for the relevant part [182]. This exact transformation is particularly suitable
for integrating out fast variations in time [183].

The detection and systematic exploitation of a separation of time scales is the basic
practical merit of the projection-operator method [132]. The context of transport theory
is useful for an illustration. Take, e.g., the Brownian motion of a massive particle within
a liquid of small molecules. This process consists of damping on a macroscopic scale
due to the viscosity of the liquid and fast vibrations due to stochastic residual forces.
Both processes are caused by collisions between the particle and the molecules, but they
happen on different time scales. The damping process is for the observable “position of
the particle” much more relevant, than the vibrations, which vanish when averaged over
time. However, only if these two processes are separated, one can neglect the one and
consider the other.

More formally, we study the Heisenberg time dependence of a set {Aν} of relevant
observables. According to (3.8) it is given by

|Aν(t)) = eiLt |Aν) ⇐⇒
∣∣∣Ȧν(t)

)
= eiLt

∣∣∣Ȧν

)
(3.10)

where we assume that |Aν) ≡ |Aν(0)) and L carry no explicit time dependence and
accordingly define

∣∣Ȧν

)
≡ iL |Aν(0)). Even though at t = 0s the relevant observables

4Relation (3.8) can be proven using the Baker-Hausdorff theorem [107].
5 This is also the reason why the POM is referred to as the Mori formalism or the Nakajima-Zwanzig

projection technique.
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span the level of description, there is no reason why
∣∣Ȧν

)
should lie within this Liouville

subspace. Nevertheless, by inserting 1 = P +Q in the form∣∣∣Ȧν(t)
)

= eiLtP
∣∣∣Ȧν

)
+ eiLtQ

∣∣∣Ȧν

)
(3.11)

one can distinguish between those parts within the level of description (mediated by P)
and those which belong to the orthogonal complement (mediated byQ = 1−P). However,
due to the factor eiLt in front of the second term, it is possible that it describes relevant
physics. Therefore, with the help of the identity6

eiLt ≡ i
t∫

0

eiL(t−t′)PL eiQLt′dt′ + eiQLt (3.12)

we replace this factor by an expression which allows for a clearer interpretation.
The resulting expressions, also known as the Mori equations,

∣∣∣Ȧν(t)
)

= iχ−1
µρ Ωρν |Aµ(t))−

t∫
0

dt′χ−1
µρ Mρν(t

′) |Aµ(t− t′)) + fµ(t) (3.13)

form a system of coupled integro-differential equations for the set {Aν} of observables
|Aµ(t)). They are of similar structure as the Langevin equation, obtained for the Brownian
motion of particles discussed above. We will now discuss each of the three contributing
terms, explain their physical meaning and their origins.

The first term, which arises in the transformation

eiLtP
∣∣∣Ȧν

)
(3.4)
= eiLt |Aµ) χ−1

µρ

(
Aρ

∣∣∣Ȧν

)
(3.8)
= |Aµ(t)) iχ−1

µρ (Aρ |L|Aν)︸ ︷︷ ︸
Ωρν

, (3.14)

is particularly simple to understand. It is well known that a differential equation ẋ(t) =
iω · x(t) describes a harmonic oscillation with frequency ω. If we neglect the contribution
of the metric, then Ωρν can be understood as the frequency matrix of a coupled system of
oscillators. Within the picture of Brownian motion this is the set of eigenfrequencies of a
particle system entering the liquid.

The third term, which can be written in the form

fµ(t)
(3.12)
= eiQLtQ

∣∣∣Ȧν

)
(3.8)
= i eiQLtQL |Aν)

Q2=Q
= iQ eiQLQtL |Aν) , (3.15)

has the property that for every time t it belongs to the orthogonal complement of the
level of description, and therefore to the irrelevant Liouville subspace. Hence, it is called
residual force. It is responsible for vibrations in the picture of Brownian motion. One can

6The identity is readily proven if one notices that both sides of the equation fulfil the same differential
equation ẋ(t) = iLx(t) and the same initial condition x(0) = 1.
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readily see that the dynamics of fµ(t) is driven by QLQ rather than by the Liouvillian
L. This results in a completely different time scale of this motion.

For the calculation of the remaining second term of (3.13) one needs to know the value
of the relevant observables for all times t′ with 0 ≤ t′ < t. This term is therefore called
memory term. 7 Its derivation is as follows:

i eiL(t−t′)PL eiQLt′Q
∣∣∣Ȧν

)
(3.4)
= − eiL(t−t′) |Aµ) χ−1

µρ (Aρ| L eiQLt′QL |Aν)

(3.8)
= − |Aµ(t− t′)) χ−1

µρ (Aρ| LQ eiQLQt′L |Aν)︸ ︷︷ ︸
Mρν(t′)

. (3.16)

A comparison of this result with (3.15) shows that the memory matrix M can be expressed
in terms of the residual forces

Mρν(t) = (Aρ| LQ eiQLQtL |Aν) = (fρ(0) |fν(t)) , (3.17)

where the fact has been used that L is Hermitian. Hence, the memory term in (3.13) has
the structure of a damping with a damping constant (which is actually not constant at all)
formed by the same forces that already appeared in the previously discussed term. This
is exactly the process which was described above for the Brownian motion of a particle.

We would like to stress again that the dynamics of |Aµ(t− t′)) in the memory term
(3.16) is determined by the Liouvillian L. This is not the case for the residual forces.
Hence, we have achieved the desired separation of time scales into a relevant and an
irrelevant part.

3.3 Expansion using continued fractions
In the previous section the dynamics of the system is expressed in terms of time-dependent
Liouville states and their time derivatives. The description of strongly correlated elec-
trons, however, is usually based on energy-dependent Green’s functions. Accordingly, the
derivation of the Mori equations has to follow a different line of argumentation [37, 9, 69].

Starting with the definition of a retarded Green’s function in Heisenberg representation
one can immediately find an expression in terms of the Liouvillian

GAB(t) = − i
~
Θ(t)

〈[
A†(0); B(−t)

]
η

〉
(3.8)
= − i

~
Θ(t)

(
A
∣∣ e−iLt

∣∣B) , (3.18)

using a Liouville scalar product of the form (3.3). The analytical behaviour is dominated
by the Heaviside unit step function Θ(t) with its important integral representation

Θ(t) =
i

2π

+∞∫
−∞

dx
e−ixt

x + i0+
. (3.19)

7One speaks of Markovian processes, if the value of observables depends only on their value at a
previous time step. Therefore, the effect of a finite memory is often called non-Markovian in transport
theory.
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Hence, the Green’s function is Fourier transformed to

GAB(E) =

+∞∫
−∞

dtGAB(t) eiEt/~ =

(
A

∣∣∣∣ 1

E/~− L+ i0+

∣∣∣∣B) . (3.20)

This is the typical structure of a resolvent.
Such a structure is convenient for a projection-operator treatment. If |Ai) and |Aj)

belong to the level of description and the abbreviation ω = E/~ + i0+ is used, then the
following set of straightforward8 transformations is possible:

Rij =

(
Ai

∣∣∣∣ 1

ω − L

∣∣∣∣Aj

)
=

(
Ai

∣∣∣∣ 1

ω − LQ
+

1

ω − LQ
LP 1

ω − L

∣∣∣∣Aj

)
(3.21)

=
1

ω
χij +

(
Ai

∣∣∣∣ 1

ω − LQ
L
∣∣∣∣Al

)
χ−1

lmRmj (3.22)

=
1

ω
χij +

1

ω
(Ωil + Mil(ω)) χ−1

lmRmj. (3.23)

This approach shows a lot of similarities to the concept of separated time scales,
discussed in the previous section. First of all, (3.21) is basically a multiplication of the
Liouvillian with 1 = P + Q from the right. This corresponds to the insertion done in
(3.11). Secondly, it is not accidental that in (3.23) the same symbols as above have been
used for

the susceptibility matrix χij = (Ai |Aj ),

the frequency matrix Ωij = (Ai |L|Aj) and

the memory matrix Mij(ω) =
(

Ai

∣∣∣∣∣LQ 1

ω −QLQ
QL

∣∣∣∣∣Aj

)
.

(3.24)

In the first and the second case they are identical to the expressions defined in (3.4) and
(3.14), respectively. For the memory matrix the correspondence to (3.17) is apparent due
to the fact that the dynamics is determined by QLQ. A formal equivalence is obtained
with the help of a one-sided Fourier transform [16]

Mij(ω) = i
∞∫

0

dt eiωtMij(−t). (3.25)

But most importantly, it can be proven that the matrix equation (3.23) is nothing but
an energy representation of the Mori equation, already given in (3.13). To show this,
a Laplace transformation of the dynamical correlation function i (Ai |Aj(t)) has to be
performed, using the integro-differential equation (3.13). The interested reader is referred
to appendix C for further details on this point.

8 The first line is proven with the help of the identity 1
a+b = 1

a −
1
a b 1

a+b , the second line is based on
the definition of P in (3.4) and Q, whereas the third line can be proven with the help of a geometric
series.
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3.3. Expansion using continued fractions

The advantage of the energy representation (3.23) becomes most apparent, if a com-
pact matrix notation

R(ω) =
1

ω1l− [Ω + M] χ−1
χ (3.26)

and the structural similarity between the memory matrix (3.24) and the Green’s function
(3.20) are used. Both functions have the form of a resolvent. This allows the application of
transformations (3.21)-(3.23) to the Green’s function as well as to the memory matrix. A
repeated insertion into (3.26) therefore yields a continued fraction for the Green’s function,
which has the following principle structure

G(ω) =
χ1

ω − Ω1 −
χ2

ω − Ω2 −
χ3

ω − Ω3 + . . .

. (3.27)

Hence, the dynamics of the Green’s function is explicitly given in terms of the static
expectation values included in the susceptibility matrices χi and the frequency matrices
Ωi, respectively. What looks like a fantastic possibility for an exact representation of the
Green’s function, has of course two major drawbacks:

1. For all cases of practical relevance the continued fraction is in infinitely long.

2. Expectation values are, like Green’s functions, unknown quantities.

The first point implies the necessity of a truncation. In practice, this is usually done
by a simplification of the Liouvillian in the memory matrix of a certain level. If, e.g.,
the interaction part of L is skipped, the remaining memory matrix might be solved ex-
actly without the necessity of an additional projection. This automatically truncates the
continued fraction.

It is important and essential for the POM to note that for each level of the continued
fraction the memory matrix is calculated in a different Liouville subspace. The starting
point is the level of description formed by the set {Aj} of Liouville states |Aj). However,
already the first memory matrix is formed by the Liouville states |QLAj), which, by
construction, are part of the orthogonal compliment of the original level of description.
States in the second memory matrix

M̂il(ω) = (QLAi| QLQQ̂
1

ω − Q̂QLQQ̂
Q̂QLQ |QLAl) (3.28)

do again belong to none of the previously used levels of description, since they include
the projector product Q̂Q. Here, Q̂ is defined as

Q̂ = 1− |QLAj)
1

[χ̂−1]jk
(QLAk| with χ̂il = (QLAi |QLAl ) . (3.29)
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CHAPTER 3. The projection-operator method

Hence, with each step a larger and larger subspace of the Liouville space is considered to
be relevant.9 A truncation procedure of the continued fraction therfore provides a final
decision for a separation of the Liouville space into a relevant and an irrelevant part. In
this sense we are dealing with a controlled approximation.

It is worth mentioning, that something similar happens in an equation of motion
approach (EOM) for a retarded Green’s function. There, with each higher order Green’s
function of the form 〈〈LnA; B〉〉E the Liouville subspace considered is enlarged. However,
there are two major differences between the EOM and the POM. Firstly, within EOM one
is forced to find the solution of a complete set of Green’s functions, whereas in POM one
can (but does not have to) concentrate on a single Green’s function only. Secondly, the
EOM of a high order Green’s function always contains a mixture of Green’s functions of
lower and higher order, what makes the set of equations particularly difficult to solve.10

Something like this is explicitely excluded in the POM, since the level of description of a
higher order subspace is always orthogonal to all previous ones.

The second drawback mentioned above is more serious. Apparently, it is an intrinsic
property of Green’s functions to depend on several, a priori unknown, expectation values.
To find appropriate expressions for them is also a major problem of the EOM. One clearly
has to say, that this challenge is not avoided by the POM.

There are interesting suggestions by Becker and Fulde [37] to treat the static aspects
in the same formalism as the dynamic entities. They combine the advantages of the POM
with those of cumulant expectation values. A Liouville product11 in terms of cumulants
is defined as

(A |B )c
0 :=

〈
A†B

〉c
0

with 〈Aα
1 . . . Aν

n〉
c
0 =

∂α

∂λα
1

· · · ∂ν

∂λν
n

ln

〈
Φ0

∣∣∣∣∣
n∏

i=1

eλiAi

∣∣∣∣∣Φ0

〉∣∣∣∣∣
λ1=λn=0

.

(3.30)
Here |Φ0〉 is the ground state of an exactly-soluble system H0 (with corresponding Liou-
villian L0). A deeper investigation [77, 10] of the relations between cumulants and usual
expectation values reveals a correspondence to the linked cluster theorem for Feynman
diagrams, where the expectation values are evaluated by operator contractions. As in
diagrammatic perturbation theories, this tool helps to limit the number of necessary cal-
culations, to avoid normalization denominators and to ensure size consistency. All these
advantages are transferred without the need of Wick’s theorem.

For a compact notation Becker et al. introduced the wave operator

|Ω) = lim
z→0

∣∣∣∣1 +
1

z − (H1 + L0)
H1

)
, (3.31)

which transforms |Φ0〉 into the ground state of a system with an additional perturbation
H1. For the system H0 + H1 they can then provide expressions for static quantities such
as the ground-state energy shift [10] and general expectation values [9],

δE0 = (H1 |Ω) and 〈Aν〉 = (Ω |Aν |Ω)c
0 , (3.32)

9The first hints of this idea can be found in the works of Mori, whereas Zwanzig was apparently not
aware of this advantage of the continued fraction.

10This is a experience of our extensive study of the EOM in context of a two-site Kondo-cluster [49].
11 The suggested product is not a scalar product since it is not positive definite.
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3.4. Application to the Hubbard model

and also for dynamic correlation functions [9],

〈δAν(τ)δAµ〉 =
(
Ω
∣∣Aν e−τ(L0+H1)Aµ

∣∣Ω)c
0

with δA = A− 〈A〉 , (3.33)

at T = 0K within the same approach. Even though a Laplace transformation of (3.33)
allows for an application of the POM, the extension of the cumulant approach to finite
temperatures [71] is from our perspective too difficult for a systematic investigation in
terms of the POM.

For our study of the KLM, having the choice to use either cumulants or the POM, we
have decided to evaluate a straightforward application of the POM and to not make use
of cumulants. It is then most convenient to treat the static expectation values such, that
their choice is consistent with the level of approximation used for the dynamics.

3.4 Application to the Hubbard model
We were not aware of any attempts to apply the POM to the KLM, before we started
our investigations. However, there are some applications of the POM in the context of
the Hubbard model [54, 55]

H =
∑
i,j

∑
σ

(tij − µδij) c†iσcjσ +
U

2

∑
i

∑
σ

n̂iσn̂i−σ (3.34)

=
∑
k

(ε(k)− µ) n̂kσ +
U

N

∑
k1,k2,k3,k4

δk1−k2,k4−k3c
†
k1↑ck2↑c

†
k3↓ck4↓ (3.35)

=⇒ L = L0 + L1. (3.36)

Because of similarities of these two models [124], it is worthwhile to review some of the
strategies applied to the Hubbard model. Since these efforts were quite successful for this
model, we will make use of them for our treatment of the KLM in the following chapters.

Consideration of weak and strong couplings

A highly relevant paper that should be mentioned in this context has been published by
Kishore [69]. He was the first to put equal focus on the weak- and the strong-correlation
regime of the Hubbard model and used the POM for this purpose. His level of description
is formed by the one-dimensional basis |A) =

∣∣c†jσ). Then the frequency matrix is already
sufficient to obtain the Hartree-Fock result.

In the weak-correlation regime Kishore truncates the continued fraction by neglecting
the contribution of L1 in the denominator of the memory matrix. Since L1 ∼ U , those
parts of the self-energy, which are proportional to U3 or higher powers of U are therefore
not taken into account. The intention to be correct in order U2 also assists in the evalu-
ation of static expectation values, which are obtained using the set of eigenstates of H0.
Therefore, Kishore obtains for the memory matrix

Mkσ(ω) =

(
U

N

)2 ∑
k1,k2

n̂k1−σ(1− n̂k2−σ) + (n̂k2−σ − n̂k1−σ)n̂k+k1−k2σ

ω + εk1 − εk2 − εk+k1−k2

. (3.37)
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CHAPTER 3. The projection-operator method

Before studying Kishore’s strategy for the strongly correlated regime, one should men-
tion the precursor work of Fedro and Wilson [30]. In this limit Fedro and Wilson inves-
tigated several levels of approximation for the memory matrix. The first level is analogous
to Kishore’s weak-correlation strategy. If the contribution of L0 is completely neglected
in the memory matrix,

Mkσ(ω) =
U2n−σ(1− n−σ)

ω + µ− U(1− n−σ)
(3.38)

it is identical to the Hubbard-I-solution [54]. The similarity is not accidental, since in the
latter only those higher-order Green’s functions are decoupled which have the hopping
integral tij as a prefactor in the equation of motion. It is possible to factor out tij, and
this single contribution of the hopping corresponds to the frequency matrix in POM. On
the other hand the U -contribution is treated exactly in both approaches.

The second level of approximation in the work of Fedro and Wilson consists of an
equation of motion for the memory matrix, obtained from the time derivative of the time-
dependent memory matrix. This strategy is similar12 to a second level in the continued
fraction as obtained by the POM. It yields a correlation function in the memory matrix
which is proportional to tij. For this correlation function one has to replace the Liouvillian
L again by the interaction part L1 to obtain the expression

Bkσ =
∑
ij

tij

〈
c†i−σcj−σ

〉
−
∑

j

tij

〈(
c†i−σcj−σ + c†j−σci−σ

)
n̂jσ

〉
(3.39)

−
∑
(i−j)

e−ik(Ri−Rj)tij

(〈
δn̂i−σδn̂j−σ

〉
+
〈
c†jσcj−σc

†
i−σciσ

〉
−
〈
c†jσc

†
j−σci−σciσ

〉)
,

which enters the memory matrix as follows:

Mkσ(ω) =
U2n−σ(1− n−σ)

ω + µ− U(1− n−σ)
− U2Bkσ

(ω + µ− U(1− n−σ))2 . (3.40)

The result resembles a Taylor expansion of the self-energy as obtained by Esterling et al.
[29] and the spectral-density approach (SDA) of Nolting et al. [111]. For the latter, an
identical expression for Bkσ is obtained.

In a third level of approximation the same kind of equation of motion is now applied
to the correlation function which lead to Bkσ. This yields another correlation function
of the same order in tij. One therefore has to conclude, that (3.40) does not include all
contributions proportional to tij. Fedro and Wilson claim that this problem is an inherent
difficulty of expanding around the atomic limit. This was pointed out earlier by Bari [7]
and Esterling [28].

Kishore comes to the conclusion that in the atomic limit the two-level structure of
the quasiparticle-spectrum is responsible for these difficulties in the strong-correlation
regime. He therefore suggests as an alternative approach a Hubbard-III-like splitting of
the Green’s function [55],

Gijσ =
∑
α=±

〈〈
n̂α

i−σciσ; c†jσ

〉〉
E

with n̂+
i−σ = n̂i−σ / n̂−i−σ = 1− n̂i−σ. (3.41)

12 The strategy is not equivalent to the POM. Note, for example, that the time derivative of the
memory matrix performed in [30] does not have the structure of a Dyson equation.
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3.4. Application to the Hubbard model

To each of these single-poled partial Green’s functions the projection-operator method is
applied, using the projector

Pα
σ :=

∣∣∣c†jσ) 1

nα
−σ

(
n̂α

i−σciσ

∣∣ . (3.42)

The expression obtained for the memory matrix is particularly convenient for an expan-
sion in terms of εk, since it is already sufficient to neglect the contribution of L0 in the
denominator of the memory matrix to obtain the first order result

Mα
kσ = −n

(−α)
−σ εk −

Bkσ

nα
−σ

. (3.43)

Here, Bkσ is identical with the expression of Fedro and Wilson (3.39). However, in contrast
to their result the memory matrix (3.43) does not show an ω-dependence. The combined
Green’s function is therefore

Gkσ(w) =
n−σ

ω − n−σεk − U + Bkσ

n−σ

+
1− n−σ

ω − (1− n−σ)εk + Bkσ

1−n−σ

. (3.44)

This result has similar features to the SDA of Nolting et al. [111], but it is not identical
to it.

Iteration of the POM

An interesting improvement of Kishore’s weak-coupling results has been suggested by
Bulk and Jelitto [15, 16]. It consists in an iterated partitioning of the Hamiltonian.
The initial partitioning is given in (3.36). Bulk and Jelitto suggest that for the next
and every following order in perturbation the sum of all self-energy contributions of the
preceeding orders should be added to the unperturbed part:

H
(N)
0 = H

(N−1)
0 + V (N−1)(ω)

H
(N)
1 = H −H

(N)
0 (ω)

 V (N−1)(ω) =
∑
kσ

M
(N−1)
kσ (ω)n̂kσ (3.45)

The partitioning of the Hubbard Hamiltonian enters the POM in three different ways.
Firstly, due to the structure of the Hamiltonian, the L0-part of the Liouville states∣∣∣QLc†jσ

)
vanishes. Secondly, in terms of a weak-correlation perturbation theory the effect

of L1 is neglected in the denominator of the memory matrix. Thirdly, expectation values
for all correlation functions are determined in the unperturbed system defined by H0. The
last two effects are most important. To add here a lower order self-energy is similar to a
perturbation around Hartree-Fock in diagrammatic approaches. As a result the following
expression of the memory-matrix is obtained:

Mkσ(ω) =

(
U

N

)2∑
qp

(1− fqσ)(1− fp−σ)fp+q−k,−σ + fqσfp−σ(1− fp+q−k,−σ)

ω − εq − εp + εp+q−k − Un−σ + µ
. (3.46)
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The f ’s abbreviate the Fermi-distribution functions

fqσ = 〈nqσ〉0 =
1

exp [β(εq + Un−σ − µ)] + 1
. (3.47)

The emergence of U is the third effect of the partitioning mentioned above.
Of course, there are structural similarities to the result (3.37) of Kishore. However,

the appearance of U in the denominator renders the result much closer13 to the structure
of the solution (3.38) of the strong-correlation regime, which includes the atomic limit.
A comparison with other methods shows that the iteration of Bulk and Jelitto yields a
more complex structure of the energy dependence of the self-energy. Most importantly,
a splitting of the free Bloch band occurs into two quasiparticle sub-bands approximately
at T0 and T0 + U . This is well-known from the strong-correlation regime. However, there
is no gap. The bands are linked by a small but finite density of states due to damping
effects. Concerning the question of ferromagnetism the description is a clear improvement
of the Stoner results. One not only obtains a critical value Uc, but also an nc above which
ferromagnetism might occur. A comparison with strong-coupling SDA-results [111] yields
the remarkable conclusion that in its range of applicability the second-order perturbation
theory of Bulk and Jelitto is not restricted to parameter constellations with U ≤ W , but
also leads to rather plausible results for larger values of U .

Enlargement of the relevant Liouville subspace

In principle there are two ways to improve results within the POM. 1) Consider further
steps in the continued fraction. 2) Increase the dimensionality of the relevant Liouville
subspace already for the first step of the POM. B. Mehlig, H. Eskes, R. Hayn and
M. Meinders [89] applied this second approach to the Hubbard model. The basis of
their subspace is given by

|A1) =
∣∣∣c†kσ

)
= 1√

N

∑
j eikRj

∣∣∣c†jσ)
|A2) =

∣∣∣Q1Lc†kσ

)
∼ 1√

N

∑
j eikRj

∣∣∣c†jσδn̂j−σ

)
...

|Aν) = |Qν−1 · · · Q1Lν−1A1)

(3.48)

with Qν = 1−|Aν)
1

(Aν |Aν )
(Aν |. A two-pole approximation corresponds to taking νmax = 2

and yields the same set of operators as the Hubbard-I approximation [54]. The 2 × 2
susceptibility and frequency matrix are calculated. The memory matrix, however, is not
considered. The elements of the frequency matrix are closely related to the moments M

(n)
kσ

of the spectral density [111] as defined in (3.9). For instance

(A2| L |A2) =
(
c†kσLQ

∣∣∣L ∣∣∣QLc†kσ

)
with Q = 1−

∣∣∣c†kσ

)(
c†kσ

∣∣∣
=

(
c†kσ

∣∣∣L3c†kσ

)
+ 2

(
c†kσ

∣∣∣Lc†kσ

)(
c†kσ

∣∣∣L2c†kσ

)
+
(
c†kσ

∣∣∣Lc†kσ

)3

= M
(3)
kσ + 2M

(1)
kσ M

(2)
kσ +

(
M

(1)
kσ

)3

. (3.49)

13 It is even identical with the Hubbard-I solution at half filling.
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Hence,

Ωkσ =

 M
(1)
kσ M

(2)
kσ +

(
M

(1)
kσ

)2

M
(2)
kσ +

(
M

(1)
kσ

)2

M
(3)
kσ + 2M

(1)
kσ M

(2)
kσ +

(
M

(1)
kσ

)3

 . (3.50)

It is not surprising that there are similarities to SDA calculations [111]. Mehlig et al.
[89] claim that these results are improved by the inclusion of antiferromagnetic correla-
tions. This is particularly related to the calculation of the correlation functions in Bkσ

given by (3.39) and which are contributing to M
(3)
kσ . They are determined by additional

Green’s functions
(
Bν

∣∣ 1
w−LA1

)
with some given Liouville states |B1) , . . . , |B4), instead

of using simplifying assumptions as in [111]. These Green’s functions are approximated
by projecting the |Bν) onto the subspace spanned by |A1) and |A2). This approximation
corresponds to Roth’s method [134] of treating the two-particle correlation functions. It
allows the self-consistent calculation of all expectation values and gives a closed set of
equations for the single-particle Green’s function.

The results for the single-particle spectral density are compared to numerical spectra
of finite Hubbard rings and of a 4× 4 cluster given by Leung et al. [80]. Global features
of these spectra are reproduced both qualitatively and quantitatively by the two-pole
ansatz. In particular, it succeeds in describing the change of dispersion of the Hubbard
bands upon doping.

Further strategies

Of course, the number of papers mentioned above is not exhaustive. In recent times,
there have been further attempts of a POM approach to the Hubbard model. One could
mention the works of S. Onoda and M. Imada [125], who claim that the continued-fraction
expansion of the Mori formalism is particularly suited for systematically evaluating the
energy hierarchy structure from high to low energies. Also the works of Y. Kakehashi and
P. Fulde [64] are very interesting, since they show an equivalence of their combination of
the POM with a many-body coherent potential approximation (CPA) on the one hand,
and the dynamical mean-field theory (DMFT) on the other. However, since we do not
use their strategies for our investigations into the KLM, we refrain from a more detailed
discussion.
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Chapter 4

The subsystem of itinerant carriers

As already pointed out, the Kondo-lattice model can be approached from two sides. The
itinerant subsystem is studied more successfully in the literature than its local-moment
counterpart. However, even for this subsystem the POM is by construction more sys-
tematic than the approximations provided in Sec. 2.3 and can therefore be used for an
assessment of those results. We will start the investigation with a couple of limiting cases,
for which definite statements can be made. This is probably the best way to develop and
explain approaches, which can subsequently be applied to arbitrary parameter constella-
tions. However, those readers that are merely interested in new results can skip Secs. 4.1
and 4.2. A useful indicator for our purpose is the structure of the density of states, as
obtained from the one-electron retarded Green’s function. Therefore, our evaluations will
focus on this function.

4.1 The ferromagnetically saturated semiconductor
The ferromagnetically saturated semiconductor has already been characterized as a lim-
iting case with constrained expectation values

〈
n̂↑
〉

=
〈
n̂↓
〉

= 0 and 〈Sz〉 = ~S in section
2.2. These simplifications allow for the exact determination of expressions (2.9) and (2.10)
for the one-electron Green’s function. However, a derivation of these results has not yet
been given. We will do this with the help of the POM, since this limit is particularly
appropriate for studying different aspects of this method. This is also the reason, why we
start with approximations and provide more than one exact calculation.1

Preliminaries
To begin with, the relevant Liouville subspace has to be identified. Since our goal is
the one-particle Green’s function, this subspace has to contain single-electron excitations∣∣c†lσ). For a start, we stay with this one-dimensional2 basis. If this choice is combined

1 The presentation given here should allow to follow the principle steps of the calculations. A more
detailed derivation of some of the equations obtained will be provided in appendix D.

2 The classification as a “one-dimensional” basis is based on the Bloch representation
∣∣c†kσ

)
. In real

space it actually consists of N elements.
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with a convenient scalar product as provided in (3.3), the susceptibility matrix χij = δij

and the projectors

Pσ =
N∑

j=1

∣∣∣c†jσ)(c†jσ∣∣∣ and Qσ = 1− Pσ (4.1)

are particularly simple. Our aim is the representation of the Green’s function as a con-
tinued fraction. According to the rules presented in the previous chapter (p. 28), we next
need to know the action of the Liouvillian on the basis elements

L
∣∣∣c†lσ) =

1

~

∣∣∣∣[H, c†lσ

]
−

)
=

1

~
∑

j

Tjl

∣∣∣c†jσ)− J

2~

{
zσS

z
l

∣∣∣c†lσ)+ Sσ
l

∣∣∣c†l−σ

)}
, (4.2)

in order to obtain an expression for the single-electron frequency matrix :

Ωilσ =
1

~
Til −

J

2~
zσ 〈Sz

i 〉 δil =⇒ Ωkσ =
1

~
εk −

J

2
zσS. (4.3)

Evidently, this is already the full mean-field contribution (2.6) to the self-energy – a
general feature of the POM.

The more demanding memory matrix should be evaluated in terms of the geometric
series

Milσ =
∞∑

m=0

1

ωm+1

(
QL c†iσ

∣∣∣ (QLQ)m
∣∣∣QL c†lσ

)
. (4.4)

A necessary condition for the evaluation of this infinite sum is the possibility to express
the effect of (QLQ)m for arbitrary m. This is the actual challenge of the memory matrix.
Even though the idempotence of Q makes some of these operators in (4.4) superfluous3,
a notation in this form has the advantage of a Liouville state∣∣∣QLc†lσ

)
= − J

2~

{
zσ [Sz

l − 〈Sz〉]
∣∣∣c†lσ)+ Sσ

l

∣∣∣c†l−σ

)}
, (4.5)

which scales with the interaction J . Since the same is true for the bra-state
(
QL c†iσ

∣∣ the
memory matrix is at least of order J2. For example, for the first term of (4.4) one obtains
the scalar product (

QLc†iσ

∣∣∣QLc†lσ

)
= 1

2
J2S δσ↓δil. (4.6)

Therefore, the prefactor of J2 vanishes for ↑-electrons and is the positive number 1
2
S~2

for ↓-electrons. The other terms in (4.4) will yield higher order expressions in J or εk,
respectively. The structure is particularly convenient for an expansion of the self-energy.
Similar to the investigations of Kishore [69] for the Hubbard model we can study the
strong- and weak-coupling limit with the same level of approximation.

3We omit the index σ at Qσ due to the fact that Mil↑ vanishes identically and only σ =↓ needs to be
considered.
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4.1. The ferromagnetically saturated semiconductor

Strong-coupling limit
In the strong-coupling limit an expansion of the self-energy in terms of the hopping matrix
Til is of interest. This is obtained if only the contribution of Lsf is considered in the
denominator of the geometric series (4.4). Its effect on the state (4.5) is given by the
commutator

Lsf

∣∣∣QLc†lσ

)
=

J2

4~2

∑
i

∑
σ′

∣∣∣∣[zσ′S
z
i n̂iσ′ + Sσ′

i c†i−σ′ciσ′ , zσδ(S
z
l )c

†
lσ + Sσ

l c†l−σ

]
−

)
, (4.7)

which yields a sum of four non-trivial operator products. Here, the abbreviation δ(A) =
A−〈A〉 has been introduced. However, the result of (4.7) is only an intermediate step. We
are actually interested in the projection onto the orthogonal complement of the original
Liouville subspace. After a couple of transformations provided in appendix D the result
can be expressed in the form

QLsf

∣∣∣QLc†lσ

)
=

J

2
(1 + zσS)

∣∣∣QLc†lσ

)
. (4.8)

The fact that the original Liouville state
∣∣QLc†lσ

)
is reproduced when applying the su-

peroperator (QLsfQ) is a nice mathematical feature. However, it is also essential for the
summation of the entire geometric series, since the expression for the general term of this
series (

QLc†iσ

∣∣∣ (QLsfQ)m
∣∣∣QLc†lσ

)
=

(
QLc†iσ

∣∣∣ (1
2
J
)m

(1 + zσS)m
∣∣∣QLc†lσ

)
(4.9)

can now be provided. For this reason there is, of course, no need to proceed with the
concept of a continued fraction. In combination with the previous result (4.6) for the
scalar product it is now rather simple to obtain the full expression for the memory matrix
directly

M
(1)
il↓ (ω) =

1
2
J2S

ω − 1
2
J(1− S)

δil =⇒ M
(1)
k↓ (ω) =

1
2
J2S

ω − 1
2
J(1− S)

. (4.10)

What does this approximated result mean in terms of Green’s functions? For ↑-
electrons the memory matrix does not contribute to the self-energy and the mean-field
Green’s function is the complete result. For ↓-electrons one has to insert the result into
the representation (3.26)

G
(1)
k↓ (ω) =

1

ω − 1
~ εk − 1

2
JS −M

(1)
k↓ (ω)

=
1

ω1 − ω2

(
ω1 − 1

2
J(1− S)

ω − ω1

−
ω2 − 1

2
J(1− S)

ω − ω2

)
(4.11)

and one obtains a structure with two energy poles

ω1,2 =
1

2~
εk +

1

4
J ± 1

2

√
( 1

~ εk − 1
2
J + JS)2 + λ 2J2S. (4.12)
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CHAPTER 4. The subsystem of itinerant carriers

Here, we have introduced the parameter λ to visualize the corrections of higher orders in
J . Taking λ = 0 yields the mean-field result for the ↓-Green’s function. The energy pole
ω2(λ = 0) = 1

2
J(1−S) has vanishing spectral weight. Switching on λ leads to an increase

of the spectral weight of this pole and simultaneously to a decrease of the spectral weight
of ω1, such that their sum remains 1. The full contribution of Lsf in the memory matrix
corresponds to λ = 1. How the spectral weight is actually distributed between the two
poles depends on the interplay of the energy scales W and J . In the zero-bandwidth limit
(W = 0) we have a ratio of the spectral weights α1 : α2 = 2S : 1.

Weak-coupling limit
In analogy to the strong-coupling limit we treat the weak coupling by neglecting the
interaction Lsf in the denominator of the memory matrix (4.4). It is the kinetic energy
Hs which plays the dominant role in this limit. In the previously discussed limit it was
essential, that the application of (QLsfQ) does not change the relevant Liouville subspace.
The same is not true for (QLsQ), since a sum4 over the index of the Fermi-operator is
introduced:

(QLsQ)1
∣∣∣QL c†lσ

)
= − J

2~
1

~1
Tk1l

∣∣∣zσδ(S
z
l )c

†
k1σ + Sσ

l c†k1−σ

)
(4.13)

(QLsQ)2
∣∣∣QL c†lσ

)
= − J

2~
1

~2
Tk2k1Tk1l

∣∣∣zσδ(S
z
l )c

†
k2σ + Sσ

l c†k2−σ

)
(4.14)

...
(QLsQ)m

∣∣∣QL c†lσ

)
= − J

2~
1

~m
[Tm]kml

∣∣∣zσδ(S
z
l )c

†
kmσ + Sσ

l c†km−σ

)
(4.15)

Here, T is the hopping matrix composed of the elements Tkl. Accordingly, [Tm]kl is an
element of the matrix Tm. Nevertheless, this is a generalization that can still be handled.
The reason is a scalar product with the bra-state that is almost identical to (4.6). The
additional index label only yields a further δik-function, but has no other implications.

The matrix identities are best expressed in the Fourier transformed representation(
QLc†kσ

∣∣∣ (QLsQ)m
∣∣∣QLc†kσ

)
= 1

2
J2S δσ↓

1

N

∑
q

1
~m εm

k−q , (4.16)

which allows for a direction calculation of the geometric series. For the memory matrix
in the weak-coupling limit we obtain:

M
(2)
kσ (ω) = 1

2
J2S δσ↓

1

N

∑
q

~
~ω − εk−q

= 1
2
J2S δσ↓

1

N

∑
q

G(0)
q (ω), (4.17)

where G
(0)
q (ω) denotes the free Green’s function. Reconsidering the assumptions of this

limit, it is clear that the result derived here for the self-energy differs from an exact
4Einstein’s sum convention is used.
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4.1. The ferromagnetically saturated semiconductor

calculation only in terms which are at least of order J3. Hence,

Σ
(2)
kσ(ω) = −J

2
zσ~S +

J2

4
· 2~S

N

∑
q

G(0)
q (ω) δσ↓, (4.18)

is, up to order J2, the exact expression for the self-energy of the ferromagnetically satu-
rated semiconductor. In contrast to the strong-coupling limit it is not possible to separate
the respective Green’s function into two energy poles. Due to the q-summation in M

(2)
kσ

already the spectral density shows a continuum.

All-coupling strategy I: In the spirit of weak and strong couplings
As mentioned in section 2.2 even an exact solution for the Green’s function of the ferro-
magnetically saturated semiconductor is known. Of course, this can also be obtained with
the help of the POM. There are – and this is what makes the work with the projection-
operator method so interesting – at least four different possibilities to derive it. According
to the aim of this section to study different aspects of the POM, we will briefly explain
each of them.

The first strategy is based on the following idea: Since the geometric series (4.4) can
be calculated exactly with (QLsQ) and with (QLsfQ) in the denominator, the same could
be possible for the sum (QLsQ) + (QLsfQ). Unfortunately, one is then confronted with
terms such as

(QLsQ)p(QLsfQ)(QLsQ)q
∣∣∣QLc†lσ

)
. (4.19)

First, (QLsQ)q changes the ket-state at the right to a version with different indices for the
spin- and the Fermi-operators, then the application of (QLsfQ) destroys the repetitive
structure, since a simplification as in (4.8) has equal indices as a precondition and finally
(QLsQ)p yields a highly non-trivial product of operators.

However, one should keep in mind that at the end the scalar product with the bra-
state

(
QLc†iσ

∣∣ needs to be evaluated for the memory matrix. The fact, that during the
calculation of the expectation value a lot of operator combinations vanish, is borne in
mind by introducing the Liouville state

|kn...k1Alj) = − J

2~

(
J

2
zσ

)n ∣∣∣Sz
kn
· Sz

kn−1
· · ·Sz

k2
· Sz

k1
· Sσ

l c†j−σ

)
. (4.20)

It incorporates all the operators which remain essential in the limit considered. For
example one does not make a mistake if one identifies the Liouville state

∣∣QLc†lσ
)

just
with |All). Using this notation all further calculations can be reduced to the following
rules:

(Aii|kn...k1Alj )
(4.6)
= 1

2
J2S δσ↓δilδij

n∏
x=1

1
2
J~ (δikx − S) , (4.21)

(Aii| (QLsfQ)m |kn...k1Alj)
(4.7)
= 1

~m (Aii| j...j︸︷︷︸
m×

kn...k1Alj

)
, (4.22)

(Aii| (QLsQ)m |kn...k1Alj)
(4.15)
= (Aii|kn...k1Alk ) 1

~m [Tm]kj. (4.23)
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CHAPTER 4. The subsystem of itinerant carriers

These are generalizations of corresponding calculations in the previous limits.
Now, the problem of an expression like (4.19) becomes apparent as the δikx-function

in the scalar product (4.21). This term is the reason why the structure for the first terms

(Aii| (QLQ)m |All) = 1
2
J2S δσ↓δil

[
( 1

~ T + 1
2
J1l− 1

2
JS1l)m

]
il

m = 0, 1, 2. (4.24)

of the geometric series (4.4) cannot be generalized to m ≥ 3. Instead, we separate out all
terms without this δ-function and define a modified hopping matrix

U =
[

1
~ T− 1

2
JS1l

]
. (4.25)

Interestingly5, this corresponds to a partitioning of the Hamiltonian into the Hartree-
Fock contribution (HMF ↔ U) and the rest of the interaction (HI = H −HMF ↔ 1

2
Jδikx).

It turns out that this is a very convenient separation for further calculations. One can
immediately accept that the term (QLMFQ)m yields a contribution [Um]il in the memory
matrix. And if we are now confronted with terms such as (QLMFQ)p(QLIQ)1(QLMFQ)q

the result simply becomes 1
2
J [Up]il[U

q]il. Hence, the first terms of the geometric series
with m ≥ 3 have the structure

(Aii| (QLQ)3 |All) = 1
2
J2S δσ↓δil

{
[U3]il +

J

2

(
2[U2]il + [U1]2il

)
+

J2

4
3[U1]il +

J3

8

}
,(4.26)

(Aii| (QLQ)4 |All) = 1
2
J2S δσ↓δil

{
[U4]il +

J

2

(
2[U3]il + 2[U2]il[U

1]il
)

+
J2

4

(
3[U2]il + 3[U1]2il

)
+

J3

8
4[U1]il +

J4

16

}
. (4.27)

With the help of some combinatorial analysis, all these terms can be combined to

Milσ = 1
2
J2S δσ↓δil

∞∑
n=0

[
J

2

]n
(

1

ω

∞∑
m=0

[(
U

ω

)m]
il

)n+1

. (4.28)

The Fourier transformation of the expressions within the parenthesis

1

N

∑
il

e−ik(Ri−Rl)
1

ω

∞∑
m=0

[(
U

ω

)m]
il

δil =
1

N

∑
q

~
~ω − εk−q + 1

2
J~S

=
1

N

∑
q

G
(MF)
q↑ (ω)

(4.29)
leads to the memory matrix

Mkσ = 1
2
J2S δσ↓

1
N

∑
q

G
(MF)
q↑ (ω)

1− 1
2
J 1

N

∑
q

G
(MF)
q↑ (ω)

. (4.30)

In contrast to the calculation in the previous subsections, the resulting expression for
the memory matrix is derived with the full Liouvillian. Hence, it is the exact result of
this limit, which is indeed in agreement with the result (2.10) of an equation-of-motion
approach.

5The fact that the separation of the mean-field result simplifies the calculation of the ferromagnetically
saturated semiconductor gives a hint for perturbational approaches presented below.
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4.1. The ferromagnetically saturated semiconductor

All-coupling strategy II: A perturbational expansion
The previous strategy results in an expression (4.30) for the memory matrix Mkσ that
consists of terms with different powers of J . However, this notation does not match a
Taylor expansion in J . This is due to the fact, that the definition of the modified hopping
matrix (4.25) yields mean-field Green’s functions which by definition contain an explicit
J-dependence. To get a perturbation expansion

Mkσ(ω) =: 1
2
J2S δσ↓

∞∑
m=0

[
1
2
J
]mMm (4.31)

of the memory matrix (and therefore the self-energy) a modified strategy is necessary.
The clue for this problem is to rewrite the memory matrix (4.4) as

Milσ =
∞∑

m=0

(
QLc†iσ

∣∣∣ 1

ω −QLsQ

(
[QLsfQ]

1

ω −QLsQ

)m ∣∣∣QLc†lσ

)
(4.32)

=
∞∑

m=0

∑
n0

· · ·
∑
nm

1

ωn0+1
· · · 1

ωnm+1
· (4.33)

·
(
QLc†iσ

∣∣∣ (QLsQ)n0(QLsfQ)(QLsQ)n1 · · · (QLsfQ)(QLsQ)nm

∣∣∣QLc†lσ

)
= 1

2
J2S δσ↓δil

∞∑
m=0

[
1
2
J
]m∑

n0

· · ·
∑
nm

1

~n0+...+nm
· 1

ωn0+1
· · · 1

ωnm+1
· · · · (4.34)

·[Tn0 ]ik1(δik1 − S)[Tn1 ]k1k2(δik2 − S)[Tn2 ]k2k3 · · · (δikm − S)[Tnm ]kml,

where for the last line again rules (4.21)-(4.23) have been used6.
In order to obtain the expansion (4.31) we define the Fourier transformation of the

n-fold product of the hopping matrix T as

Γn := (−S)n−1 1

N

∑
q

(
~

~ω − εq

)n

= − 1

NS

∑
q

(
−SG(0)

qσ(ω)
)n

. (4.35)

On the right hand side it is formulated in terms of the free Green’s function G
(0)
qσ(ω).

For fixed m in (4.34) the expansion coefficients Mm consist of several combinations of
these Γ’s, depending on whether the contribution δikx or (−S) of the Liouvillian Lsf is
considered. The first coefficients

“Ls” −→ M0 = Γ1,
“LsLsfLs” −→ M1 = Γ2

1 + Γ2,
“LsLsfLsLsfLs” −→ M2 = Γ3

1 + 2Γ1Γ2 + Γ3,
“LsLsfLsLsfLsLsfLs” −→ M3 = Γ4

1 + 3Γ2
1Γ2 + 2Γ1Γ3 + Γ2

2 + Γ4

(4.36)

can readily be derived. The recursive formula

Mm =Mm−1Γ1 +Mm−2Γ2 +Mm−3Γ3 + . . . +M0Γm + Γm+1, (4.37)
6If the Liouvillian were again split into the parts LMF and LI, then (4.33) would directly lead to (4.28)

without the need of combinatorial considerations.
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CHAPTER 4. The subsystem of itinerant carriers

can be obtained. Even though an explicit formula for any arbitrary coefficients Mm

cannot be provided, this result allows the computation of all terms of the J-expansion of
the memory-matrix (4.31) and hence the self-energy of the itinerant electrons.

One can easily check that the second order is identical to the previously derived ex-
pression (4.18). The next (third) order in the expansion of the self-energy is provided by
the coefficient

M1 =

[
1

N

∑
q

G(0)
qσ(ω)

]2

− S

N

∑
q

[
G(0)

qσ(ω)
]2

. (4.38)

However, the second term of (4.38) creates difficulties. Its imaginary part

=m
(

1

N

∑
q

[
1

E − εq + i0+

]2
)

= =m
∫

dx
ρ0(x)

(E − x + i0+)2
=

∫
dx
−20+(E − x)ρ0(x)

[(E − x)2 + (0+)2]2

= −2

∫
dx

0+

(E − x)2 + (0+)2
· (E − x)ρ0(x)

(E − x)2 + (0+)2
= −2

∫
dx δ(E − x) · ρ0(x)

E − x

apparently diverges for all energies E, for which the free DOS ρ0(E) is non-zero. Since
the imaginary part of the self-energy enters e.g. the formula for the density of states,
this divergence is of great physical relevance. It is clear that it will cancel with the
contribution of higher order coefficients, but still one has to conclude that the expansion
of the self-energy in powers of J higher than two might not be desirable.

Nevertheless, this does not render useless the whole strategy provided here. On the
contrary, it is possible to obtain a compact notation for the sum

∑
m

[
1
2
J
]mMm, by using

a formula which is equivalent7 to the recursion relation (4.37):

J

2

(
∞∑

m=0

[
1
2
J
]mMm

)
·

(
∞∑

n=1

[
1
2
J
]n

Γn − 1

)
+

∞∑
n=1

[
1
2
J
]n

Γn = 0. (4.39)

Using the structure (4.35) of Γn the involved geometric series is readily obtained and
(4.39) can be solved for the memory matrix

Mkσ(ω) = JSδσ↓

1−
1

N

∑
q

1

1 + 1
2
JSG

(0)
q (ω)

S − 1 +
1

N

∑
q

1

1 + 1
2
JSG

(0)
q (ω)

. (4.40)

Although not being identical to (4.30), this is again an exact solution for the ferromagnet-
ically saturated semiconductor. In contrast to the first strategy, where the propagators
are mean-field Green’s functions, the self-energy is now expressed in terms of free Green’s
functions. This is obtained at the expense of a more complicated structure of the memory
matrix.

7The equivalence can be shown by a comparison of coefficients.
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All-coupling strategy III: The philosophy of continued fractions
The strategies presented above are uncommon for the POM in the sense that they aim at
a direct solution of the exact geometric series. According to the philosophy of the POM,
the solution is approached by a continued fraction. The limit of the ferromagnetically
saturated semiconductor can also be used to study this strategy.

The general formulae for a representation of the memory matrix in the form

M(ω) =
1

ω1l− [Ω̂ + M̂] χ̂−1
χ̂ (4.41)

have already been provided in Chap. 3.3 (p. 29). The essential difference is the level of
description, now formed by

∣∣QLc†lσ
)
. This has consequences for the higher-level suscepti-

bility and frequency matrix,

χ̂il =
(
QLc†iσ

∣∣∣QLc†lσ

)
(4.6)
= 1

2
J2S δσ↓δil and (4.42)

Ω̂il =
(
QLc†iσ

∣∣∣QLQ ∣∣∣QLc†lσ

)
(4.24)
= 1

2
J2S δσ↓δil

[
1
~ Tii + 1

2
J − 1

2
JS
]
. (4.43)

For the higher-level memory matrix

M̂il(ω) =
(
QLc†iσ

∣∣∣QLQQ̂ 1

ω − Q̂QLQQ̂
Q̂QLQ

∣∣∣QLc†lσ

)
(4.44)

a treatment with the full Liouvillian L in the denominator might be successful. How-
ever, to follow the philosophy of the POM, we truncate the continued fraction by the
replacement L → Ls. This has the advantage that only a certain part of the Liouville
state

Q̂QLQ
∣∣∣QLc†lσ

)
→ 1

~ Tkl (1− δkl) |Alk) =: |Bl) (4.45)

yields a finite contribution to the memory matrix. Its expansion into a geometric series

[
M̂(ω)χ̂−1

]
k

=
1

ω

∞∑
m=0

1

ωm
M̂m =

1

ω

∞∑
m=0

ω

ωm
M̂m−1 − M̂−1 (4.46)

hence consists of coefficients

M̂m = (Bi| (Q̂QLsQQ̂)m |Bj) χ̂−1
jl =

1

~m
Tikm (1−δkmi) Tkmkm−1 · · ·Tk1k0 (1−δk0i) Tk0lδil

(4.47)
determined by the Liouville state

∣∣Bl

)
. The additional element M̂−1 := 1

~ Tiiδil has been
included for mathematical reasons. Similar to (4.37) the multiple sum (4.47) can be
expressed as a recursion relation

M̂m = δil
1
~2 [T

m+2]ii −
m−1∑
x=−1

M̂x
1

~m−s [T
m−x]ii (4.48)
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Again one can prove by comparing coefficients, that this recursion is equivalent to an
explicit formula

δil

∞∑
n=1

1

(~ω)n
[Tn]ii =

1

ω

(
∞∑

m=0

1

ωm
M̂m−1

)(
1 + δil

∞∑
n=1

1

(~ω)n
[Tn]ii

)
. (4.49)

Hence, after Fourier transformation, Eq. (4.46) can be evaluated as

[
M̂(ω)χ̂−1

]
k

= ω ·

ω

N

∑
q

G
(0)
q (ω)− 1

1 +
ω

N

∑
q

G
(0)
q (ω)− 1

− 1

N~
∑
q

εq. (4.50)

Once the higher order memory matrix has been derived, one can enter the result into the
expression for the continued fraction (4.41):

Mkσ(ω) = 1
2
J2S δσ↓

1
N

∑
q

G
(0)
q (ω)

1− 1
2
J(1− S) 1

N

∑
q

G
(0)
q (ω)

(4.51)

One can immediately see that this result is not identical to the exact expression (4.30).
This is not surprising since in (4.47) we have approximated the Liouvillian L by its free
part Ls. Nevertheless, (4.30) and (4.51) have a very similar structure. It is a self-evident
observation, that a replacement L → LMF would yield the exact result. Indeed, when
doing so all calculations remain identical with the only exception that the modified hop-
ping U, as defined in (4.25), has to be used. Then the previous free Green’s functions will
become mean-field Green’s functions. Furthermore, the factor 1

2
JS in the denominator of

(4.51) vanishes due to the fact, that the M−1-contribution in (4.50) has to be extended
by this term.

Hence, a projection-operator method for the ferromagnetically saturated ferromagnet
which approximates the Liouvillian L in the second level of the continued fraction by its
mean-field part LMF yields a result

Mkσ = 1
2
J2S δσ↓

1
N

∑
q

G
(MF)
q↑ (ω)

1− 1
2
J 1

N

∑
q

G
(MF)
q↑ (ω)

, (4.52)

that has already been shown to be exact in (4.30). Why does the approximation not
influence the correctness of the result? Apparently, the neglected contribution LI is not
relevant for the physics in this limit. Or more precisely, we have chosen a Liouville
subspace which describes the whole physical situation in this limit. All processes that
move out of this subspace do not contribute to the one-electron Green’s function.
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All-coupling strategy IV: An extended basis
If, as concluded above, the choice for the relevant subspace is essential to obtain the exact
result, one should consequently start with this subspace from the very beginning. This is
done by considering a space spanned by∣∣∣c†lσ) =: |B1l) and

∣∣∣QLc†lσ

)
→ |All) =: |B2l) (4.53)

and respective projection operators P̄ and Q̄. This choice allows us to use the result of
strategy III to determine the susceptibility and the frequency matrix

χ̄ =

(
1 0
0 1

2
J2S

)
and Ω̄χ̄−1 =

(
1
~ εk + 1

2
JS 1

1
2
J2S 1

~ T0 + 1
2
J(1− S)

)
, (4.54)

already given in its Fourier transformed form. Even for the memory matrix

M̄il(ω) =
(
B1/2 i

∣∣LQ̄ 1

ω − Q̄LQ̄
Q̄L

∣∣B1/2 l

)
, (4.55)

again with an approximated denominator, results obtained previously can be used. This
is because, Q̄ = Q̂Q. Therefore, Q̄L

∣∣B1l

)
= 0 and the only non-vanishing contribution of

the memory matrix is identical to (4.44). Hence, depending on the approximation of the
Liouvillian in (4.55) either the expression (4.50) or the version with modified hopping can
be used in this strategy, too. If L is replaced by Ls we finally obtain the matrix equation(

1 0
0 1

2
J2S

)
=

(
ω − 1

~ εk − 1
2
JS −1

−1
2
J2S

[
1
N

∑
q

G
(0)
q (ω)

]−1 − 1
2
J(1− S)

)(
Gk↓ ∗
∗ ∗

)
.

(4.56)
The asterisks in the Green’s function matrix point out that we are only interested in Gk↓.
The other contributions do not belong to single-particle excitations. By inversion and
matrix multiplication we obtain

Gk↓(ω) =
1

ω − 1
~ εk − 1

2
JS −Mk↓(ω)

, (4.57)

with exactly the same Mk↓(ω) as given in (4.51) or (4.52), respectively.
What has been shown here in the context of the KLM for the ferromagnetically sat-

urated semiconductor can be generalized to a statement for the POM: The quality of
the expression obtained for the Green’s function is uniquely determined by the level of
description (the chosen relevant Liouville subspace). A strategy that starts with a basis
set {Ai} of Liouville states

∣∣Ai

)
and truncates the calculations in the second level of the

continued fraction is equivalent to a strategy that works from the very beginning with a
basis formed by

∣∣Ai

)
and

∣∣QLAi

)
and restricts itself to the first fraction. The advantage of

the latter is the possibility to obtain several Green’s functions at once. The disadvantage
is the higher complexity of calculations. The actual choice for a strategy depends on the
physical problem.
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4.2 The zero-bandwidth limit
The assumption of a vanishing conduction bandwidth is a second valuable limit of the
KLM. It implies that the coupling (the remaining energy scale of the model) can be
considered as comparatively strong – a good starting point for perturbational approaches.
For an investigation of the KLM by means of the POM, it is therefore desirable that the
limit is tractable with this method. That this is indeed the case, will be shown below.

The generic basis of the atomic limit
It is well known [112] that a set of four Green’s functions is sufficient to get a closed
equation-of-motion system for the zero-bandwidth/atomic limit. Therefore, the four basis
elements8

|B1) :=
∣∣c†σ) , |B3) :=

∣∣∣zσS
zc†σ + Sσc†−σ

)
,

|B2) :=
∣∣n̂−σc

†
σ

)
, |B4) :=

∣∣∣zσS
zn̂−σc

†
σ + Sσn̂σc

†
−σ

)
.

(4.58)

related to these Green’s functions describe the whole physics relevant in this context.
Since the action of the Liouvillian in the atomic limit9 (AL),

LAL |B1) = − 1
2~J |B3) , LAL |B3) = −1

2
J~S(S + 1) |B1) + 1

2
J |B3)− J |B4) ,

LAL |B2) = − 1
2~J |B4) , LAL |B4) = −1

2
J~S(S + 1) |B2)− 1

2
J |B4) ,

(4.59)
remains within the subspace spanned by |B1) , . . . , |B4), the choice (4.58) is already the
basis for the complete Liouville space LAL, relevant to this situation.

This has two remarkable consequences: First, the memory matrix vanishes automat-
ically. Secondly, the frequency matrix can be separated into the susceptibility matrix χ,
containing the expectation values, and a further matrix L, composed of the prefactors of
(4.59):

Ω = χ · L with L =


0 0 −1

2
J~S(S+1) 0

0 0 0 −1
2
J~S(S+1)

− 1
2~J 0 1

2
J 0

0 − 1
2~J −J −1

2
J

 (4.60)

Hence, the set of Green’s functions is the result of the following matrix product

G =
[
ω1l− Ω · χ−1

]−1 · χ = χ · [ω1l− L]−1 . (4.61)

There is no need to invert χ. The determinant of [ω1l− L], which composes the denomi-
nator of the Green’s functions, is the product of the four energy poles, which are provided

8Site indices can be omitted, since only one lattice site is relevant in the atomic limit.
9An on-site hopping integral T0 set to zero, but can be included as a constant energy shift in the

result. The approach remains the same, if a local Hubbard interaction is also considered.
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4.2. The zero-bandwidth limit

explicitely in Eq. (2.8). The respective spectral weights are determined mainly by the
susceptibility matrix, which is given as:

χ =


1

〈
n̂−σ

〉
zσ〈Sz〉 pσ〈

n̂−σ

〉 〈
n̂−σ

〉
pσ pσ

zσ〈Sz〉 pσ qσ xσ

pσ pσ xσ xσ

 with


pσ = zσ

〈
Szn̂−σ

〉
−
〈
S−σc†σc−σ

〉
,

qσ = ~2S(S + 1)−zσ~ 〈Sz〉+ 2~pσ,

xσ = ~2S(S + 1)
〈
n̂−σ

〉
+ ~pσ.

(4.62)
A lengthy but straightforward calculation of the matrix entries χ34 and χ44 yields ex-
pressions with several expectation values. Here, the exact relation (2.23) explained in
appendix B is used, to obtain the expression xσ.

One can easily convince oneself that the results for the Green’s functions obtained
with this method are identical to those obtained using the equations of motion [112]. In
addition, the POM provides six further Green’s functions for the atomic limit.

Consequences of an adapted basis
A four-dimensional basis, as suggested above, is probably not appropriate for a general-
ization to arbitrary bandwidths. A finite hopping matrix element yields contributions in
L |Bi) which do not belong to the subspace spanned by the basis; the frequency matrix
cannot be factorized as in (4.60). The inversion of the susceptibility matrix yields long
expressions with a combination of expectation values.

Instead, a two-dimensional basis is chosen such that it reduces to the choice (4.53)
if the constraints of the ferromagnetically saturated semiconductor are applied. Such a
basis could be used for an interpolation between these two limiting cases. Its explicit form
is

|C1) :=
∣∣c†σ) = |B1) , (4.63)

|C2) := {1− |C1) (C1|} LAL |C1) = − J

2~

{
|B3)− zσ 〈Sz〉 |B1)

}
. (4.64)

The Liouville state |C2) is already constructed such that the susceptibility matrix becomes
diagonal. The complete set of contributing matrices is given by

χ =

(
1 0
0 χ22

)
, Ω =

(
− J

2~ zσ〈Sz〉 χ22

χ22 Ω22

)
and M =

(
0 0
0 M22

)
. (4.65)

Based on the calculations using the basis (4.58) one obtains

χ22 =
J2

4~2

{
qσ − 〈Sz〉2

}
and (4.66)

Ω22 = − J3

8~3

{
zσ〈Sz〉3 + ~2S(S + 1)zσ〈Sz〉 − (~ + 2zσ〈Sz〉)qσ + 2~xσ

}
. (4.67)

Of course, the memory matrix is not zero anymore. Even the fact that it has only
one non-vanishing entry is an accidental feature of the KLM in the atomic limit10. To

10All matrix elements are non-zero if in addition a Hubbard interaction is taken into consideration.
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determine

M22 = (C2| LALQ
1

ω −QLALQ
QLAL |C2) with Q = 1− |C1) (C1| −

1

χ22

|C2) (C2| ,

(4.68)
one has to perform a further step of the POM.

Again, the decision for the most appropriate basis is crucial for the calculations. It
is decisive that it belongs to the orthogonal complement of the first two basis elements,
since then[

LAL ∩ span{
∣∣C1

)
,
∣∣C2

)
}
]
∩ span{

∣∣C3

)
,
∣∣C4

)
} = LAL ∩ span{

∣∣C1

)
, . . . ,

∣∣C4

)
}. (4.69)

The right hand side of this equation is an empty set, provided that the basis states are
linearly independent. Consequently, the memory matrix vanishes in this step of the POM.
This truncates the series of continued fractions. Accordingly, we set

|C3) := Q |B4) =
2~
J2
QLAL |C2) (4.70)

|C4) := Q
{
|B2)− α |B4)

}
. (4.71)

The choice of |C3) directly yields M22 as the solution of the resolvent given in (4.68). The
remaining basis state |C4) is (apart from normalization) given in its most general form.
To ensure a diagonal susceptibility matrix also in this Liouville subspace the adjustable
parameter α has to be taken as

α =
pσ(1−

〈
n̂−σ

〉
)
(
qσ − 〈Sz〉2

)
−
(
pσ − zσ 〈Sz〉

〈
n̂−σ

〉)
(xσ − zσ 〈Sz〉 pσ)

(xσ − p2
σ)
(
qσ − 〈Sz〉2

)
− (xσ − zσ 〈Sz〉 pσ)2 . (4.72)

Due to the lengthy expression, the following calculations of the susceptibility and the
frequency are a bit cumbersome. If, on the other hand, α = 0 is chosen, the two matrix
inversions, which are necessary for obtaining the resolvent from the susceptibility and the
frequency matrix,11 yield lengthy expressions, too. It should not be forgotten that finally
the result for M22 has to be inserted into

G11 =
〈〈

cσ; c†σ
〉〉

E
=

1

ω − 1
2
Jzσ 〈Sz〉 −

χ22

ω − Ω22χ
−1
22 −M22χ

−1
22

(4.73)

in order to obtain the desired Green’s function.
These calculations can be performed and indeed give the exact solution for the one-

electron Green’s function in the atomic limit. In comparison to the treatment based on
the four-dimensional basis (4.58) it is more challenging to consider the various expectation
values. On the other hand, a smaller basis is more appropriate for generalizing to arbitrary
bandwidths. Nevertheless, there is no reason to favour the two-dimensional basis in the
following calculations. To obtain (4.73), one can also start with the one-dimensional basis∣∣c†σ) and extend the Liouville subspace in the second step of the POM. The formulae
remain the same, since only the level of description is important.

11A separation of the frequency matrix as suggested in (4.60) cannot be used in this step, since the
application of the Liouvillian on the basis states yields contributions outside this subspace.
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4.3 Weak-coupling approach to the KLM
Based on the experiences with limiting cases, we will now move to situations with arbitrary
parameters. Here, we cannot expect that the POM will provide an exact solution for the
self-energy of the conduction electrons. Instead we can draw on the experience of strong
(p. 39) and weak coupling (p. 40) in the limit of the magnetic polaron in order to perform
approximations. It is of physical interest to study the influence of the sf-interaction J as
compared to the situation of free electrons. Our aim is an expression for the electronic
self-energy, which is correct to first and second order in J .

First order: The frequency matrix
Since we consider deviations from the free electron situation we use the Bloch represen-
tation

H =
∑
k

∑
σ

εkn̂kσ −
J

2N

∑
q,p

∑
σ

(
zσS

z
qc

†
p,σcp−q,σ + Sσ

qc†p,−σcp−q,σ

)
(4.74)

of the Hamiltonian (2.5). To obtain the one-particle Green’s function it is sufficient to
start the POM with an one-dimensional Liouville subspace, formed by the basis state∣∣c†kσ

)
:

Gkσ(ω) =
(
c†kσ

∣∣∣ 1

ω − L

∣∣∣c†kσ

)
=

1

ω − Ωkσ −Mkσ(ω)
=

~
E − εk − Σkσ(E) + i0+

. (4.75)

In the zero bandwidth limit and for a ferromagnetically saturated semiconductor we have
noticed that a two-dimensional basis allows a more compact derivation of exact results.
Nevertheless, such a strategy also implies the calculation of additional Green’s functions,
which at the moment are not needed for our calculations.

The frequency matrix is a generalization of the version obtained in Sec. 4.1:

Ωkσ =
(
c†kσ

∣∣∣L ∣∣∣c†kσ

)
=

1

~
εk −

J

2~
zσ 〈Sz〉 (4.76)

and, as already mentioned before, contains the full mean-field contribution (2.6) to the
self-energy. The energy independence of 1

2
Jzσ 〈Sz〉 yields a rigid shift of the previously free

density of states (DOS), as can be seen in Fig. 4.1. In particular, there is no dependence on
the band-occupation n. If an arbitrary value such as n = 0.8 is chosen, then the part of the
DOS highlighted in Fig. 4.1 will be occupied. It corresponds to a chemical potential of µ =
−0.064 eV and an electron polarization of

〈
n̂↑ − n̂↓

〉
/n = 62%. However, for the chosen

set of parameters a band occupation n < 0.33 implies a completely polarized conduction
band. Alternatively, even for n = 0.8 an exchange coupling J > 1.3 eV yields the same
effect. If this were correct, it would be highly relevant for spintronics applications, where
one of the major issues is the predictability of the electron spin polarization. We will keep
this effect in mind for subsequent discussions.
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Figure 4.1: Density of states of the conduction electrons in mean-field approximation
(solid line) as compared to the free DOS (dashed line). The hatched area displays the
occupied part at T = 0 K. The parameters are: J = 0.6 eV, n = 0.8, 〈Sz〉 = 0.5 and
W = 1.0 eV for a simple-cubic lattice.

Second order: The memory matrix

The memory matrix in (4.75) will now be approximated by

Mkσ(ω) ≈
(
QLc†kσ

∣∣∣ 1

ω −QLMFQ

∣∣∣QLc†kσ

)
=
(
QLsfc

†
kσ

∣∣∣ 1

ω − LMF

∣∣∣QLsfc
†
kσ

)
. (4.77)

The expression on the left hand side includes a truncation of the Liouvillian, as it is
common for the POM. The expression on the right hand side needs further explanation.
First we note, that one does not have to consider the Ls-part in the Liouville state, since
it belongs to the subspace which is projected out by Q. Instead, as for (4.5) one obtains:

∣∣∣QLc†kσ

)
=
∣∣∣QLsfc

†
kσ

)
= − J

2~N

∑
q

{
zσ

(
Sz

q −
〈
Sz

q

〉
δq,0

) ∣∣∣c†q+k,σ

)
+ Sσ

q

∣∣∣c†q+k,−σ

)}
.

(4.78)
The fact, that these states are proportional to J , implies that every term in a geometric-
series representation of the memory matrix is at least of order J2. If a second-order
perturbation theory for the electronic self-energy is desired, it is therefore sufficient to
consider only the J-independent term Ls in the denominator of (4.77). With writing LMF
we convey the idea of an iterated partitioning of the Hamiltonian, as suggested by Bulk
and Jelitto [16] for the Hubbard model, to the KLM. In this sense, we go beyond second
order, although we can always reduce the results to the J2-contribution.

Secondly, it is important to note that
(
c†kσ

∣∣Lm
MFQLsf

∣∣c†kσ

)
= 0, independent of the
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actual value of m. This can easily be verified, using the result

Lm
MF

∣∣∣QLsfc
†
kσ

)
= − J

2~N

∑
q

{
zσ

[1

~
εk+q − zσ

J

2~
〈Sz〉

]m (
Sz

q −
〈
Sz

q

〉
δq,0

) ∣∣∣c†q+k,σ

)
+
[1

~
εk+q − z−σ

J

2~
〈Sz〉

]m
Sσ

q

∣∣∣c†q+k,−σ

)}
. (4.79)

We take the geometric-series representation of the fraction

1

ω −QLMFQ

∣∣∣QLsfc
†
kσ

)
=

∞∑
m=0

(QLMFQ)m

ωm+1

∣∣∣QLsfc
†
kσ

)
=

∞∑
m=0

Lm
MF

ωm+1

∣∣∣QLsfc
†
kσ

)
. (4.80)

Therefore, it is clear that the projectors in the denominator of (4.77) can be omitted.
Furthermore, the repetitive structure of (4.79) is well suited for calculating the complete
sum given in (4.80). The expressions in the squared brackets can again be treated as a
geometric series, resulting in mean-field Green’s functions (2.6).

To complete the derivation of the memory matrix one also needs to know the scalar
product of the Liouville state (4.78) with itself. According to definition (3.3) this includes
two steps. In a first step the anticommutator of operators has to be evaluated. This yields
a set of correlation functions〈[

cq′+k,σS
z
−q′ ; S

z
qc

†
q+k,σ

]
+

〉
=

〈
Sz
−qS

z
q

〉
δq′,q (4.81)〈[

cq′+k,σS
z
−q′ ; S

σ
qc†q+k,−σ

]
+

〉
= −zσ~

〈
Sσ

q−q′ c
†
q+k,−σcq′+k,σ

〉
(4.82)〈[

cq′+k,−σS
−σ
−q′ ; S

σ
qc†q+k,−σ

]
+

〉
=

〈
S−σ
−qSσ

q

〉
δq′,q + 2~zσ

〈
Sz

q−q′ c
†
q+k,−σcq′+k,−σ

〉
(4.83)

that have to be evaluated in a second step. Our goal is to obtain the electronic self-energy
correct to second-order in J . Already the prefactor in (4.78) ensures a J2 contribution.
Hence, any J-dependence in the expectation values (4.81)-(4.83) yields higher order con-
tributions. To avoid these higher orders in J one has to evaluate the expectation values
using the eigenstates of the free-electron system Hs. However, if the mean-field Liouvil-
lian is used in (4.77) also the calculation of the expectation values should be based on
the eigenstates of HMF. In any case, (4.82) will vanish and both terms in (4.83) will be
proportional to δq′,q.

In summary, all these considerations result in the following expression for the memory
matrix:

Mkσ(ω) ≈ J2

4~2

[
−〈Sz〉2 G

(MF)
kσ (ω) +

1

N2

∑
q

〈
Sz
−qS

z
q

〉
G

(MF)
k+q,σ(ω)

+
1

N2

∑
q

{〈
S−σ
−qSσ

q

〉
+ 2~zσ

〈
Sz

0n̂q+k,−σ

〉}
G

(MF)
k+q,−σ(ω)

]
.

(4.84)
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All approximations that have been done so far, concern contributions to the self-energy of
order Jm with m > 2. Eq. (4.84) is therefore the exact result in second order perturbation
theory (SOPT).

Discussion of the SOPT result
Even though the derivation of (4.84) “only” ensures the correctness to second order in J ,
it already exhibits a quite complex structure and illustrates nicely the mutual influence
of the two subsystems of a Kondo lattice. On the one hand, the memory-term of a
conduction electron is apparently strongly influenced by all other electrons. Therefore,
Green’s functions at different wave vectors and for both spin directions contribute. On
the other hand, we have several correlation functions, which uniquely describe the local-
moment system. In contrast to the first-order result, that enters the frequency matrix,
it is not only the net magnetization of the localized spins which is important, but also
the spin-dynamics and the mutual influence of the spins at different lattice sites. Both
aspects are combined in unifying q-summations.

Nevertheless, in this section the focus is on the itinerant subsystem of the KLM. This
implies the necessity to use approximations for the local-moment correlation functions.
To assume their locality is equivalent to a local self-energy of conduction electrons. The
latter approximation is widely accepted in many-body theory [42, 93] and is exact for
infinite dimensions [91, 103]. For the KLM it is particularly justified since it is proven to
be correct in the non-trivial limit of a ferromagnetically saturated semiconductor, as can
be seen in Eq. (4.30). To obtain a local self-energy, one has to average (4.84) over k. As
a consequence the itinerant and the local contributions decouple12 and the q-summation
renders the correlation functions local13.

If we now combine the frequency and the memory matrix to the self-energy, the fol-
lowing weak-coupling expansion can be obtained:

Σσ(E) = −J̃ zσ〈Sz〉+ J̃2γσ(E) + . . . with J̃ =
J

2

and ~γσ(E) = −〈Sz〉2 1

N

∑
k

G
(0)
kσ +

〈
(Sz)2〉 1

N

∑
k

G
(0)
k,σ

+
〈
S−σSσ

〉 1

N

∑
k

G
(0)
k,−σ + 2~zσ 〈Sz〉 1

N

∑
k

〈
n̂k,−σ

〉(0)
G

(0)
k,−σ.

(4.85)

By using free propagators, we have ensured that γσ is a factor in the J-expansion and
does not carry a J-dependence itself. For the same reason a mean-field decoupling of〈
Sz

0n̂q+k,−σ

〉
is allowed.

12E.g.: 1
N3

∑
q

〈
Sz
−qSz

q

〉∑
k

G
(MF)
k+q,σ = 1

N2

∑
q

〈
Sz
−qSz

q

〉
1
N

∑
k

G
(MF)
k,σ =

(
1

N2

∑
q

〈
Sz
−qSz

q

〉)(
1
N

∑
k

G
(MF)
k,σ

)
13E.g.: 1

N2

∑
q

〈
Sz
−qSz

q

〉
= 1

N2

∑
i,j

∑
q

〈
Sz

i Sz
j

〉
eiq(Ri−Rj) = 1

N

∑
i,j

〈
Sz

i Sz
j

〉
δij = 1

N

∑
i

〈
(Sz

i )2
〉

=
〈
(Sz)2

〉
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Figure 4.2: Density of states of the conduction electrons in second-order perturbation
theory (solid line) as compared to the free DOS (dashed line) and the mean-field result
(dash-dotted line). The hatched area displays the occupied part at T = 0 K. The
parameters are: J = 0.6 eV, n = 0.8, S = 〈Sz〉 = 0.5, µ = −0.12 eV and W = 1.0 eV for a
simple-cubic lattice. Resulting polarization: 20 %.

The local-moment correlation functions are trivial if we assume ferromagnetic satura-
tion (which can only exist for T = 0 K). Then

γ↑(E) =
2S~
N

∑
k

〈n̂k〉
(0) G

(0)
k (E) and γ↓(E) =

2S~
N

∑
k

{
1− 〈n̂k〉

(0)
}

G
(0)
k (E) (4.86)

and the second-order self-energy is dominated by the Fermi distribution function.14 As a
consequence, the density of states

ρσ(E) = − 1

π
·

{
ρ0(E −<e Σσ(E)) ·(−π), =m Σσ(E) = 0

=m Σσ(E) ·
∫ ρ0(x)dx

(E−x−<e Σσ)2+(=m Σσ)2
, =m Σσ(E) 6= 0

(4.87)

has a clear minimum at the Fermi energy.15 The depth of this minimum varies. For the
set of parameters chosen in Fig. 4.2 we have a ρσ(µ) > 0 and the QDOS is connected for
both spin directions, though the band width is larger than in the mean-field case. For

14Eq. (4.86) is valid without the assumption of a local self-energy and mean-field decoupled expectation
values.

15 The J2-contribution of <e Σ↑ goes with Pr
∫ µ

−∞
ρ0(x)
E−x dx = Pr

∫∞
E−µ

ρ0(E−y)
y dy. It therefore has its

maximum at E = µ. =m Σ↑ is proportional to the free DOS for E < µ and vanishes for E > µ. The
opposite is true for Σ↓, where the real part has a minimum at E = µ and the imaginary part vanishes
for E < µ.
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Figure 4.3: Possibilities to obtain a 100% polarized conduction band within SOPT. The
figure is structured as in Fig. 4.2. The specific parameters are (a): J = 0.33 eV, n =
0.08, µ = −0.54 eV and (b): J = 1.4 eV, n = 0.72, µ = 0.54 eV. For both cases S =
〈Sz〉 = 1.5 and W = 1.0 eV.

sufficiently large coupling constants J , given by the relation16

E −<e Σ↓
E=µ
= µ− J̃S~− J̃2 2S~2 Pr

We∫
µ

ρ0(x)

µ− x
dx

!
> We, (4.88)

a gap will open in the ↓-QDOS. For ↑-electrons the critical J has a different value. More
importantly, the position of the chemical potential µ within the gap differs. For ↑-electrons
µ forms the upper edge of the lower energy subband, for ↓-electrons it is situated at the
lower edge of the upper subband. As a consequence, the opening of a gap implies that the
conduction electrons close to the Fermi energy are only of ↑-type, similar to the situation
envisaged for half-metallic ferromagnets [22, 126].

We would like to investigate17, whether or not such a 100% electron polarization can
also be obtained for the whole conduction band. When doing so, we continue an analogous
discussion of the mean-field situation and verify the claim of Irkhin and Katsnelson [58]
that this is indeed possible within the KLM. Again, this question is only meaningful
at T = 0 K. Any deviation from a saturated local-moment system can cause spin-flip
processes that immediately imply a depolarization. The answer is: Yes, there are certain
conditions under which the SOPT approach allows for all conduction electrons to be of
the same spin direction. One strategy is to choose a small number of conduction electrons

16Wa and We are the lower and upper edge of the free DOS (see Fig. 4.2).
17Details are given in appendix E.
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4.3. Weak-coupling approach to the KLM

Figure 4.4: Temperature dependence of the QDOS as obtained by SOPT. The expectation
value 〈Sz〉 is taken from a Brillouin function. The hatched area displays the occupied
part at T = 0 K. The parameters are: J = 1.0 eV, n = 1.0, µ = 0.0 eV, S = 0.5, TC =
300 eV and W = 1.0 eV for a simple-cubic lattice. Resulting polarization respectively:
20%, 16%, 12%, 8%, 4% and 0%.

n. As soon as µ ≤ Wa, the condition for a vanishing ↓-QDOS is given by

E −<e Σ↓ = E − J̃S~− J̃2 2S~2 Pr
We∫

Wa

ρ0(x)

E − x
dx

!
< Wa. (4.89)

The integral becomes minimal at E = Wa. Hence, all coupling strengths smaller than the
corresponding critical J are sufficient18 to guarantee a vanishing of the QDOS for minority
↓-electrons in the relevant energy range E < µ. The situation is plotted in Fig. 4.3a.
There is also a strategy that allows for larger numbers of majority electrons. One has to
choose a chemical potential such that the second order contribution to <e Σ↓(E) vanishes
and only the mean-field contribution accomplishes (4.89): We < µ < Wa + J̃S~. This
implies a complete polarization as can be seen in Fig. 4.3b. However, in order to fulfil
this inequality J has to be larger than 2W/S~, what renders perturbation theory in J
to be unreliable. Within our theory all other choices of the chemical potential lead to a
depolarization of the conduction band.

Apart from the T = 0 K statement a study of the temperature dependence of the
QDOS is, of course, of interest. For this purpose it is still necessary to have a separate
theory for the local-moment subsystem. Suggestions will be presented in Secs. 4.5 and

18It fulfils condition (4.89) at E = Wa and therefore ∀E < Wa.
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CHAPTER 4. The subsystem of itinerant carriers

5.3. For the moment, we shall assume that it is given by a Brillouin function [110]:

〈Sz〉 = ~S ·BD

(
3S

S + 1

TC

T

〈Sz〉
~S

)
(4.90)

with BD(x) =
2D + 1

2D
coth

(
(2D + 1)x

2D

)
− 1

2D
coth

( x

2D

)
. (4.91)

For S = 1/2 one benefits from the fact that such a temperature dependence has to be
provided only for the magnetization. For all higher spin quantum numbers S one can use
the RPA formula [114, 17]

〈Sz〉 = ~
(1 + S + ϕ)ϕ2S+1 + (S − ϕ)(1 + ϕ)2S+1

(1 + ϕ)2S+1 − ϕ2S+1
(4.92)

to transform the magnetization 〈Sz〉 to an average magnon number ϕ(S), which in turn
can be used for the calculation of the correlation functions〈

S−S+
〉

= 2~ 〈Sz〉ϕ(S) =⇒
〈
(Sz)2〉 = ~2S(S + 1)− ~ 〈Sz〉 (1 + 2ϕ(S)). (4.93)

An additional temperature dependence via the spectral theorem is included in the
expectation value 〈n̂kσ〉. However, the effects on the QDOS that can be observed in
Fig. 4.4 are mainly due to the change of the magnetization from its ferromagnetic (〈Sz〉 =
~S) to its paramagnetic (〈Sz〉 = 0) value. The deformations of the QDOS with rising
temperature are not surprising. A two-band structure with strong differences for ↑- and
↓-electrons at T = 0 K continuously crosses over to a structure which is identical for both
kinds of spin directions at T = TC . The effects are an increase of the total bandwidth
and less pronounced peaks in the QDOS. For a better visualization the parameters of
Fig. 4.4 are chosen such that for T = 0 K the gap is really open. Nevertheless, the
temperature dependence of 〈Sz〉 as well as that of 〈n̂kσ〉 causes a closing of the gap
already for moderate temperatures19. Furthermore, the particular choice of the chemical
potential nicely demonstrates the particle-hole symmetry of the system. As a consequence
Fig. 4.4 is point-symmetric with respect to the point of origin.

Discussion of the SOPT relative to Hartree-Fock
When writing down the expression for γσ in (4.85) we made sure that it does not carry
any J-dependence. This was due to our desire to only consider exactly contributions to
the self-energy up to second-order20 without any interference from higher orders in J . On
the other hand, for the derivation of the memory matrix (4.84) we used, instead of the
free Liouvillian Ls, a Liouvillian LMF that includes the mean-field contribution to the
self-energy. In the propagator formalism of Feynman diagrams [84] this corresponds to
a perturbation treatment around the Hartree-Fock solution. Since this is a systematic
extension, which does not affect the J2 contribution, one has the impression that such a
treatment improves the result for the self-energy.

19Already a temperature of T = TC/3, where 〈Sz〉 is still close to saturation, results in the closing of
the gap.

20In order to distinguish the approach from other concepts we will name it the “conventional SOPT”.
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4.3. Weak-coupling approach to the KLM

Figure 4.5: Comparison of conventional SOPT (a) and SOPT relative to Hartree-Fock
(b) at T = 0 K for ↑-electrons. In both cases the real (dashed lines) and the imaginary
part (dotted lines) of the self-energy is plotted. It determines the QDOS, which is also
given (solid lines). The parameters are (as in Fig. 4.2): J = 0.6 eV, µ = −0.12 eV, S =
〈Sz〉 = 0.5 and W = 1.0 eV for a simple-cubic lattice. The resulting difference in the
band-occupation is small: n = 0.80 (a) and n = 0.79 (b). The difference is larger for the
polarization: 20% (a) and 29% (b).

Therefore, we would like to know how a SOPT relative to Hartree-Fock alters the
statements for a conventional SOPT given above. In particular for T = 0 K one can
observe analytically as well as numerically, that the incorporation of mean-field terms in
the propagators yields a reduction of the non-linear contributions to the self-energy21.
This is demonstrated in Fig. 4.5, were we have compared both concepts for ↑-electrons.
One can see that the imaginary and the real part of the self-energy are closer to the
mean-field values (=m Σ↑ ≡ 0,<e Σ↑ = −0.15 eV) in the SOPT relative to Hartree-Fock.
Nevertheless, the principle structure is unchanged, e.g., =m Σ↑ is still zero above the Fermi
energy. According to (4.87) the quantitative changes of the self-energy directly influence
the QDOS. The broadening of the band-width observed in conventional SOPT (compare
Fig. 4.2) is now reduced. The same is true for the opening of a gap: Much larger coupling
strengths are necessary, to separate the upper from the lower part of the QDOS.

However, there are also qualitative differences between these two concepts. They are
related to the important question, whether or not the KLM allows for a complete polar-
ization of the conduction band. For conventional SOPT we have shown two possibilities
in Fig. 4.3. The most promising strategy was the choice of sufficiently small values for
the band occupation and the coupling strength. One can show rigorously 22, that the
same does not work for SOPT relative to Hartree-Fock. Even for n → 0 and J → 0 eV

21In perturbation theory usually the nth order contribution diminishes the effect of the previous order
n− 1.

22For an analytical prove see appendix E.
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CHAPTER 4. The subsystem of itinerant carriers

there will always be a depolarization in the conduction band. Hence, the two concepts
illustrated in Fig. 4.5 are not identical even for small J .

There is still the second strategy in Fig. 4.3 to obtain complete polarization. For
SOPT relative to Hartree-Fock this corresponds to a coupling strength J which is large
enough to shift the ↓-QDOS into an energy region above the ↑-QDOS. Then a chemical
potential in the intermediate energy region (We − J̃S~ < µ < Wa + J̃S~) is appropriate
for complete polarization, also for SOPT relative to Hartree-Fock. However, in contrast
to Fig. 4.3 the situation now implies, that the ↑-band is completely filled (n↑ = 1). This
is a very special situation23, which Irkhin and Katsnelson [58], do not have in mind, when
referring to complete polarization. For any n < 1 our investigations indicate, that a
complete polarization of the conduction band of the KLM is not possible.

A study of the temperature dependence of SOPT relative to Hartree-Fock does not
produce new insights. The higher the temperature the smaller is the difference of the
QDOS as compared to conventional SOPT. Finally, for 〈Sz〉 = 0, both concepts are
identical.

4.4 The modified perturbation theory
The result (4.85) is not our final answer to the question of a proper self-energy for the
itinerant electrons in the KLM. The POM should be improved in order to incorporate
more of the known exact features, in particular the limit of a ferromagnetically saturated
semiconductor. Experiences with approximations for similar many-body Hamiltonians
serve as another motivation for a refinement of SOPT. Our method of choice is similar to
the modified perturbation theory [63, 129], which has turned out to be the most promising
analytical approach to the Hubbard model [130]. This part has been published in [50].

Generalization of experiences with a limiting case
The ferromagnetically saturated semiconductor, which contains the magnetic polaron as
a special quasiparticle, is a fundamental limit of the KLM. It is all the more unfortunate,
that SOPT is not correct in this limit. By adjusting the expectation values in (4.84)
accordingly, one instead obtains the k-independent self-energy

Σσ = −J̃ zσS~ + J̃2 2S~
1

N

∑
q

G
(0/MF)
q−σ δσ↓, (4.94)

which has been identified before as the weak-coupling approximation (4.18). The discus-
sion of Sec. 4.1 showed that the next step in the continued fraction expansion of the POM
yields the right memory matrix (4.52) for the exact self-energy

Σσ = −J̃ zσS~ + J̃2

2S~ 1
N

∑
q

G
(MF)
q−σ (ω)

1− J̃ 1
N

∑
q

G
(MF)
q−σ (ω)

δσ↓. (4.95)

23Note again that a condition like J > W/S~ is not compatible with a perturbation theory in J .
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4.4. The modified perturbation theory

The second order result (4.94) appears in (4.95) in the numerator as well as in the de-
nominator.

The modified perturbation theory (MPT) is a straightforward generalization of the
analytical structure of this result to arbitrary band configurations:

Σσ(E) = −J̃ zσ〈Sz〉+ J̃2 aσγσ(E)

1− J̃bσγσ(E)
, (4.96)

where γσ is the SOPT result (4.85). The ansatz has the advantage to retain the benefits
of SOPT (e.g. being exact to order J2), but allows the freedom to choose the parameters
aσ and bσ such that further criteria are fulfilled.

Following this philosophy, the values aσ ≡ 1 and bσ ≡ 1/2S~ would be sufficient to
ensure the correctness of the ferromagnetically saturated semiconductor. However, there
is no reason why a choice that is designed for a certain limit, should be justified for
other parameter regions, too. Indeed, these values produce some physically questionable
features for n > 0. As explained on page 13, a fit to the spectral moments (2.17) of the
Green’s function is a more general approach. In addition to the expansion in powers of
J , it introduces the notion of a high-energy expansion of the self-energy.

In the context of the POM the high-energy expansion of the self-energy is given by
the geometric series representation of the memory matrix

Σkσ(ω) = −J̃ zσ 〈Sz〉+
∞∑

m=0

~
ωm+1

(
QL c†kσ

∣∣∣ (QLQ)m
∣∣∣QL c†kσ

)
. (4.97)

In our approximation (4.77) the Liouvillian in the middle has been replaced by some L̂.
This does not affect the orders ω0 and ω−1 of the energy-expansion. In other words:
SOPT automatically produces the exact expressions for the first three moments of the
Green’s function. To ensure correctness to the same order for the MPT ansatz (4.96) the
parameter aσ has to be chosen as 1. For the next order the equality

C
(2)
kσ ≡

(
QL c†kσ

∣∣∣L ∣∣∣QL c†kσ

)
!
=
(
QL c†kσ

∣∣∣ L̂ ∣∣∣QL c†kσ

)
+

bσ~
J̃

(
QL c†kσ

∣∣∣QL c†kσ

)2

(4.98)

is required. This determines the second parameter:

bσ =
J̃

~

(
QL c†kσ

∣∣∣L − L̂ ∣∣∣QL c†kσ

)
(
QL c†kσ

∣∣∣QL c†kσ

)2 . (4.99)

The explicit expression for bσ therefore depends on the actual choice of L̂, as will be
discussed in more detail below. It is also worth mentioning, that bσ formally carries a
k-dependence, which vanishes identically in our calculations.

If L̂ is the Liouvillian L0 of a conventional SOPT, all terms except the J3 contributions
cancel in the numerator and bσ becomes J-independent. More precisely,

bσ =

[
~2S(S + 1)− zσ~ 〈Sz〉 − 〈Sz〉2

]
(zσ 〈Sz〉+ ~) + 2~(2zσ 〈Sz〉+ ~)pσ − 2~xσ

J̃
[
~2S(S + 1)− zσ~ 〈Sz〉 − 〈Sz〉2 + 2~pσ

]2
(4.100)
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where pσ = zσ

〈
Szn̂−σ

〉
−
〈
S−σc†σc−σ

〉
and xσ are sets of further correlation functions,

which have the property to vanish in the limit n → 0. Combined with the additional
constraint of ferromagnetic saturation 〈Sz〉 = ~S one obtains a b↓ which corresponds to
the result (4.51) of Sec. 4.1. Hence, the magnetic polaron is not exactly included.

If L̂ is the Liouvillian LMF of a SOPT relative to Hartree-Fock, then (4.99) contains
an additional term according to the mean-field contribution Σ̂σ = −J̃zσ 〈Sz〉 in the self-
energy. This yields a correction

∆bσ =
Σ̂σ

[
〈(Sz)2〉 − 〈Sz〉2

]
+ Σ̂−σ

[
〈S−σSσ〉+ 2~zσ 〈Sz〉

〈
n̂−σ

〉 ]
J̃
[
~2S(S + 1)− zσ~ 〈Sz〉 − 〈Sz〉2 + 2~pσ

]2 (4.101)

to the former result (4.100). Considered again in the limit of a ferromagnetically saturated
semiconductor with this correction one obtains indeed the value b↓−∆b↓ = 1/2S~, which
corresponds to the exact result (4.52) in this limit. In this sense, the high-energy expansion
is a more general approach than a fit to the magnetic polaron.

The zero bandwidth limit is the second limit considered in the context of the POM
(see Sec. 4.2). It is immediately apparent24 that the MPT (4.96) is not appropriate for
an exact representation of the atomic-limit self-energy in its most general form (4.73).
Nevertheless, at least its correctness can be checked for the case n→ 0 . It turns out that
L̂ ≡ L0 yields the exact n = 0 self-energy, with the parameter bσ as obtained in (4.100).
That is again an improvement compared to the bare SOPT. On the other hand, at first
glance the correction ∆bσ seems to be wrong. However, one should note [49] that the
atomic limit is only consistent with 〈Sz〉 = 0, where the correction does vanish.

In the discussion so far we have tested the MPT (4.96) in the limit n → 0. One can
repeat the same transformations for the opposite case n → 2. By doing this one will
notice that the same formulae are obtained. The only difference is the change of the sign
of σ and of bσ. This is due to particle-hole symmetry in the system [49]. Therefore, in the
same sense as for n = 0 our MPT ansatz (4.96) fulfils the limit of the magnetic polaron
and the zero-bandwidth limit for n = 2.

In this context it is worth mentioning that our approach seems to be related to the
interpolating self-energy approach (ISA) published by Nolting et al. (p. 14). There, a
structure of the self-energy has been concluded from a systematic study of all known
exact statements on the KLM. The result looks similar to (4.96). However, their analysis
is focused on the low-density limit and ensures the correctness of these statements only
for n = 0 (or n = 2). In contrast, the weak-coupling theory presented in this work
fulfils second-order perturbation theory and the high-energy expansion independent of
the occupation number. The wider range of physical applicability is ensured by a larger
set of contributing correlation functions. Additionally, we can fulfil the same criteria for
n → 0 as given in the ISA. Nevertheless, the two approaches are not identical even for
n = 0, but otherwise arbitrary parameters. The major difference is the fact that in SOPT
the excess electron scatters with ↑- and ↓-electrons, whereas in the ISA electrons of the
same spin-direction do not influence each other.

24This is due to the required four-pole structure of its Green’s function. In contrast to that, the Hubbard
model allows a fit of the parameters aσ and bσ to the atomic limit result [63]. To obtain the structure
of the zero-bandwidth limit also for the KLM one could extend the ansatz (4.96) by an alloy-analogy as
done in [117].
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Review of experiences with other models
Even if the formulae provided are clear, the formulation of a proper MPT strategy in
the case of the KLM is still a complex and cumbersome task. One reason is the above
mentioned ambiguity: the results depend on the choice of L̂ in (4.99). Whenever a
perturbation theory is performed in many-body theory there are principally even three
different ways of treating emerging propagators: the conventional SOPT uses the free
propagators, a SOPT relative to Hartree-Fock (SOPT-HF) replaces these propagators by
the corresponding mean-field expressions and a self-consistent treatment of SOPT replaces
all propagators by (functionals of) the full propagators as obtained in the previous step
of iteration. A priori it is usually not known which version yields the most reliable results
for SOPT. Things do not become easier if a MPT is performed.

Of course, the self-consistent version includes a summation of more diagrams than the
other methods. However, since only a partial class of diagrams is summed, it is unclear
which important diagrams are being missed out or cancelled, double-counted or even
taken wrongly. There are more profound considerations as put forward by Kadanoff and
Baym [8] arguing that the self-consistent approach is a conserving approximation which
automatically satisfies the Luttinger theorem [84] and Fermi-liquid properties. However,
it is uncertain to which degree this applies to a model which is not exclusively composed
of fermions.

For a number of models the question of the most appropriate version has been discussed
intensively in the literature. The Falicov-Kimball model has the advantage of being
exactly soluble in infinite dimensions [14]25. For this model it can be shown that a not
fully self-consistent SOPT treatment does reproduce exact results qualitatively, whereas
the self-consistent SOPT does not [147].

For the periodic Anderson model (PAM) Yamada and Yosida [173, 172, 174] were
among the first to point out the importance of SOPT. They already considered deviations
from a non-magnetic Hartree-Fock solution. Later Schweitzer and Czycholl [147] were
able to numerically compare this approach with a self-consistent SOPT. Even though this
version obeys more of the Luttinger sum rules [84], the self-consistent version (in contrast
to SOPT-HF) failed to show the one-particle peaks near Ef and Ef +U in the f -electron
spectral function. Nevertheless, a definite statement on the quality cannot be given, since
both versions do not fulfil the corresponding limiting cases exactly.

An ansatz similar to (4.96) has been suggested for the single-impurity Anderson model
[87] and exploited by Meyer et al. [93, 94] for the PAM. For the asymmetric impurity
model the MPT yields more reasonable results, in particular with respect to the Friedel
sum rule [35, 78], than the bare SOPT [95]. Here, SOPT-HF has been used as input
for the MPT. However, Meyer et al. reported a resulting ambiguity in the choice of the
chemical potential. Instead of using a single µ for the whole theory, they considered an
additional µ̃ as a parameter to ensure an identical electron concentration for the Hartree-
Fock and the full calculation. They did not use µ̃ to fulfil the Friedel sum rule [63], as
this would limit their considerations to T = 0 K. The ambiguity of choosing the chemical
potential is discussed in more detail in [129].

25An interesting combination of DMFT and POM for the Falicov-Kimball model has been suggested
in [98].
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For the Hubbard model there exist a large number of perturbational approaches. Many
of them are evaluated in [130], where the importance of the spectral moment m

(3)
kσ for the

calculation of magnetic phase boundaries and critical temperatures is emphasized. First
investigations indicated that a self-consistent SOPT has the advantage of reproducing the
quasiparticle subbands of the strong-coupling limit [16]. Nevertheless, the same can be
obtained with a SOPT-HF, if the k-dependence of the self-energy is not neglected [148].
Later Wermbter and Czycholl showed that SOPT-HF does not yield a metal-insulator
transition and does not show a breakdown of the Fermi-liquid behaviour [169]. On the
other hand, a straightforward application of a self-consistent SOPT does not reproduce
the Hubbard bands in the atomic limit [104]. More sophisticated methods such as the
interpolation scheme of Edwards and Hertz [26, 169] (a version relative to HF) or the
iterative perturbation theory (IPT) of Georges and Kotliar [41] (a self-consistent version)
are required to remove these drawbacks.

The IPT is based on the self-consistency cycle of dynamical mean-field theory. The
impurity problem is again the single-impurity Anderson model. It has been solved by
quantum Monte-Carlo and exact diagonalization methods [181, 135, 136] and shows a
good interpolation between the Brinkman-Rice (small coupling strength) and the Hubbard
III (large coupling strength) approach. However, the excellence of the IPT is apparently
limited to half-filling. This limitation has been removed by Kajueter, Kotliar [63] and
Potthoff, Wegner, Nolting [129] with a modified perturbation theory analogous to (4.96).
In a comparison Potthoff et al. [130] come to the conclusion that the MPT is probably
the most convincing analytic approach to the Hubbard model.

According to this literature review and due to the similarities of the Hubbard model
and the KLM [124], the performance of a MPT for the KLM seems to be a natural as well
as promising thing to do. However, the analysis presented above does not immediately
suggest an appropriate version of SOPT to be used for the calculations. In order to clarify
this point further work is required.

Variations of a MPT approach to the KLM
The particular problem of finding a MPT strategy for the KLM is the small number of
clear criteria to judge the quality of different approaches.26 Therefore, in some cases we
are forced to draw on rather vague arguments, such as the physical plausibility and our
experience with other approximations. Finally however, we shall be able to make some
clear statements.

The philosophy of the MPT is as follows: We start with a SOPT expression γkσ that
is taken from the memory matrix (4.77) without further approximations. This enters the
MPT ansatz (4.96) and gives rise to the expressions (4.99) for bσ and (4.101) for ∆bσ,
respectively. Thereafter reasonable assumptions are considered for expectation values .

From the analytical considerations given above it is clear that a SOPT relative to
Hartree-Fock should be preferred compared to one based on a conventional SOPT. This
is because the former correctly incorporates the important limiting case of the ferromag-
netically saturated semiconductor, whereas the latter does only reproduce, in this limit,

26For instance, the Luttinger theorem, often used for the Hubbard model, does not necessarily hold for
non-fermionic systems and finite temperatures.
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the less accurate expression (4.51). Nevertheless there are still several variations possible:

1. For consistency reasons the usage of a SOPT-HF implies that the expectation values
are also evaluated using mean-field Green’s functions. However, learning from the
experiences with the single-impurity Anderson model [129, 95] one can also introduce
an additional parameter µ̃ to ensure that 〈n̂σ〉 is identical to the value obtained using
the full Green’s function.

2. The MPT parameter bσ contains the correlation function pσ, which can be given
as a function of the single electron Green’s function Gkσ(E). This follows from a
modification of the spectral theorem, using the Heisenberg equation of motion [117]:

pσ =
1

J̃

1

N

∑
k

(
− 1

π~

) ∞∫
−∞

dE
=m Gk,−σ(E)

eβ(E−µ) + 1
[E − εk] (4.102)

Also the correlation function xσ can be treated more accurately than is done using
mean-field decoupling. This is possible with the help of the exact relation (2.23).
However, correlation functions such as (4.82) can only be evaluated if a decoupling is
performed. Therefore, an application of (4.102) has the potential for inconsistencies.

3. For a self-consistent treatment all propagators G
(MF)
kσ (E) in the MPT expression of

the self-energy can be replaced by full propagators Gkσ(E). There are two gen-
eral philosophies behind this step. It is, on the one hand, a renormalization of the
self-energy, guided by the intention to include effects of higher order in the cou-
pling strength. On the other hand, within the procedure of the POM an iterated
partitioning of the Hamiltonian [16] has the same effect.

4. Furthermore, one has to clarify in which order these strategies are to be applied. The
actual value of the contribution Σ̂σ in (4.101) depends on the question whether or not
the MPT is based on a SOPT-HF (with a subsequently performed renormalization)
or alternatively it is already based on a self-consistent SOPT. In the former case,
Σ̂σ is the mean-field energy shift −J̃zσ 〈Sz〉, which is not altered afterwards. In the
latter case, the full self-energy has to be inserted to ensure the correct high-energy
expansion.

All these variations have been checked carefully. The last point mentioned above can
even be discussed analytically. For example, when considering the atomic limit (W →
0 eV, n→ 0, 〈Sz〉 → 0) we are confronted with three types of self-energy:

J̃2
S(S + 1) 1

E−T0

1− J̃ 1
E−T0

, J̃2
S(S + 1) 1

E−T0−Σ̂

1− J̃ 1

E−T0−Σ̂

, J̃2
S(S + 1) 1

E−T0−Σ̂

1− (J̃ − Σ̂) 1

E−T0−Σ̂

. (4.103)

The expression on the left corresponds to the exact result, as it is obtained with a MPT
based on SOPT-HF. If in this result propagators are replaced by full Green’s functions, the
expression in the middle is obtained. Since it is not identical to the first one, the atomic
limit is not fulfilled anymore even for n = 0. However, if already the determination of
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Figure 4.6: Comparison of the MPT strategies A-D as explained in the text for moderate
coupling strength. The QDOS displayed is evaluated for temperatures T = 218.4 K, T =
283.8 K and T = TC = 300 K, which correspond to the magnetization given at the top
of the figure. The parameters are: J = 0.6 eV, n = 0.5, S = 1/2 and W = 1.0 eV for a
simple-cubic lattice.

the parameters aσ and bσ is based on a self-consistent SOPT, this results in the self-
energy given on the right hand side. It is easy to show, that the latter is identical to
the expression on the left.27 For this and other reasons, the choice of propagators should
always happen before the parameter bσ is fixed.

Using these considerations the variations above can be combined to for possible ap-
proaches:

A: The MPT is based on SOPT-HF. The mean-field self-energy is used for ∆bσ in the
MPT ansatz. All correlation functions are treated within mean-field approximation.

B: The MPT is based on SOPT-HF. The mean-field self-energy is used for ∆bσ in the
MPT ansatz. The correlation functions are treated within mean-field approxima-
tion. However, the expectation value of the electron density operator is adapted to

27A similar discussion for the ferromagnetically saturated semiconductor is redundant, since the ↓-
Green’s function is uniquely determined by ↑-propagators, which have the iteration-independent self-
energy Σ↑ ≡ −J̃S~.
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the full self-energy.

C: The MPT is based on a self-consistent SOPT. The full self-energy is used for ∆bσ

in the MPT ansatz. All correlation functions are mean-field decoupled, but the
expectation value of the electron density operator is adapted to the full self-energy.

D: The MPT is based on a self-consistent SOPT. The full self-energy is used for ∆bσ

in the MPT ansatz. Only for a few correlation functions a mean-field decoupling
is performed. The expectation value of the electron density operator is adapted to
the full self-energy. The correlation function pσ is determined using (4.102).

All these strategies have a self-energy that is exact to order J2. They also share the
correct behaviour in the limit of the ferromagnetically saturated semiconductor and the
empty atomic limit. All of them fulfil the same moments of the Green’s function. However,
one should note, that strategy D is inconsistent in the sense, that not all correlation
functions are treated on the same footing. This is probably also the reason, why the
numerical evaluation shows a rather pure convergence, in particular for low temperatures.

The strategies are compared in Fig. 4.6 for different temperatures. The positive mes-
sage is that in principle all strategies yield the same qualitative shape of the respective
QDOS. For low temperatures there is a broad band in the ↑-QDOS, the ↓-QDOS consists
of a scattering part and the remainder of the magnetic-polaron band. As temperature
rises the spectral weight is redistributed for both spin directions. In the ↑-QDOS a second
band is formed. This two-band structure still exists in the paramagnetic regime, where
↑- and ↓-QDOS are identical. Note, that J = 0.6 eV already corresponds to moderate
coupling strengths. For lower values of J the differences are even smaller.

Nevertheless, the existence of differences between the strategies cannot be neglected.
Close to saturation the mean-field approaches A and B exhibit energy regions, where only
one kind of spin-direction is allowed for the conduction electrons. However, this does not
imply a complete polarization, rather it indicates that for some electrons spin-flip processes
are prohibited. There seems to be no physical justification for such a restriction, since
all chosen 〈Sz〉-values are sufficiently far from saturation. In contrast, a (asymptotically
small) QDOS exists for in the approaches C and D in the whole energy region where the
QDOS of the opposite spin direction is finite.

Another remarkable difference is the tendency to form a gap between the two subbands
in both spin directions. It is much larger for the self-consistent approaches C and D, in
approach D it is connected with an unexpected sharp increase in the QDOS. For the
mean-field approaches, although yielding sharper structures in the QDOS, the gap for
↓-electrons always seems to close. Instead a strange peak in the unoccupied part of the
QDOS is observed for high temperatures.

For large coupling strength and/or smaller bandwidths these features can be clearly
observed. Even though SOPT is not designed for this limit, the fit to the ferromagnetically
saturated semiconductor, atomic limit and high-energy expansion via MPT should extend
the range of its applicability. This is considered in Fig. 4.7. On the right a coupling
constant J = 1.0 eV has been chosen. For strategies C and D one can see, that this value
of J is sufficient to ensure a clear separation of the two subbands. This is also the kind of
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Figure 4.7: Comparison of the MPT strategies A-D mentioned in the text (rows) in the
strong coupling regime. First column: The band width of the free DOS is reduced such
(W = 0.5 eV), that the situation is close to the zero-bandwidth limit. The other param-
eters are: J = 0.6 eV, T = TC = 300 K, 〈Sz〉 = 0, S = 3/2 and n = 0.4. Second col-
umn: Same as first column, but with a logarithmic scale for the y-axis. Third column:
The coupling strength is chosen large enough to separate the subbands in the QDOS
(J = 1.0 eV). The other parameters are: n = 0.4, T = 283.8 K, TC = 300 K, 〈Sz〉 =
0.2, S = 1/2 and W = 1.0 eV for a simple-cubic lattice.

behaviour, which is expected from other theories such as MCDA. Nevertheless, strategies
A and B tend to close this gap by a broad QDOS which is spread over the whole energy
range.

On the other hand, the bandwidth W has decreased to approximate more closely
the situation of the zero-bandwidth limit. Since for the paramagnetic region the ↑- and
↓-QDOS are identical, only the former is plotted on the left hand side of Fig. 4.7. In-
dependent of the strategy we obtain two peaks in the QDOS which are close to the
correct positions −J̃~S = −0.45 eV and J̃~(S +1) = 0.75 eV. The finite band occupation
(n = 0.4) prohibits an exact solution within the MPT even for W = 0 eV. Anyhow, the
appearance of a small but broad structure between these two bands is hard to explain
physically. It is only observed in the MPT strategies based on SOPT-HF (it is more
clearly seen in the logarithmic plot of the second column). In contrast it vanishes (slowly)
during the iteration process, if a self-consistent SOPT is used as input for the MPT.
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Figure 4.8: Variation of the QDOS with band occupation n for a self-consistent MPT. The
vertical lines indicate the positions of the chemical potential determined self-consistently.
The other parameters are: J = 0.6 eV, S = 1/2, 〈Sz〉 = 0.3, T = 259.1 K, TC = 300 K and
W = 1.0 eV for a simple-cubic lattice.

Based on these considerations we draw the following conclusion: The most promising
weak-coupling approach to the Kondo-lattice model is the MPT C, which is based on a
self-consistent SOPT. This is in contrast to the single-impurity Anderson model, where
a SOPT-HF has been chosen [63, 129, 95]. Instead we conclude that the SOPT result
(4.84) dressed with full propagators Gkσ(E) should be used in the MPT ansatz (4.96).
Only then should the parameters aσ and bσ be determined such that the high-energy
expansion is fulfilled to power E−2. This implies that bσ depends on the full self-energy.
For the correlation functions entering bσ it is necessary that they are all treated on the
same footing. This only permits a mean-field decoupling of higher correlation functions
such as pσ. The band occupation 〈n̂σ〉 is adapted to the full self-energy.

Discussion of the MPT results
We discuss the results again in terms of the quasiparticle densities of states (QDOS).
According to our ansatz the QDOS is correct for n = 0, 〈Sz〉= ~S, however its variation
as these parameters are changed is of particular interest.

Fig. 4.8 shows the variation of the QDOS when changing the band occupation n. The
clear dependence on the filling of the conduction band suggests strong correlation effects,
induced by the coupling J . For n = 0 the structure of the QDOS is closely related to the
ferromagnetically saturated semiconductor. In particular the ↑-spectrum has the shape
of the free DOS and the scattering part of the ↓-spectrum can be seen clearly. Only
the polaron subband shows a deformation, due to finite-lifetime effects. Excited spin-↑
electrons can enter the energy region of the polaron, flip their spin and absorb a magnon
since we are not close to saturation.
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Figure 4.9: Variation of the QDOS with temperature for a self-consistent MPT. The dot-
ted vertical lines indicate the range for the chemical potential determined self-consistently.
The solid vertical lines give the position of the bands in the zero-bandwidth limit. The
other parameters are: J = 0.3 eV, S = 3/2, n = 0.2, TC = 300 K and W = 1.0 eV for a
simple-cubic lattice.

If the chemical potential (and accordingly the band occupation) is increased, the
spectral weight is redistributed between both subbands. For the chosen set of parameters
the changes with n are most noticeable in the ↑-QDOS, where the upper subband steadily
increases in importance at the expense of the lower subband. A sharp jump in the QDOS
close to the pseudo-gap remains a striking feature for all values of n. It is also interesting
to note, that the lower band edge is shifted by some 0.1 eV in the ↑-QDOS, whereas it
remains at almost the same position for the ↓-QDOS. This behaviour is very different
compared to the MPT relative to HF [52]. It is an indication that in the self-consistent
MPT it are mainly the majority-spin electrons that experience strong correlations.

As the band occupation approaches half filling (n = 1), the point-symmetric form of
the QDOS nicely illustrates the particle-hole symmetry of the system. The character of
the upper ↓-subband becomes identical to the lower ↑-subband, since the latter is the
polaron band for n = 2. For the same reason we omit the presentation of plots for n > 1,
they can be obtained from the band occupations 2− n.

The dependence of the QDOS on the magnetization is given in Fig. 4.9. Here, the
spin quantum number is taken as S = 3/2. For the implementation the Callen formulae
(4.93) have been used in addition to the Brillouin function (4.90). The value for the
coupling strength J , on the other hand, is chosen such that the scattering and the polaron
subband are almost separated. The clear minimum becomes more dominant for higher
temperatures. There are only small changes of the position of the bands as a function of
the magnetization. They are fixed at the positions given by the energies E1 and E2 of the
zero-bandwidth-limit (2.8).

Nevertheless, the edge of the lower ↑-subband shifts to lower energies if the temperature

70



4.4. The modified perturbation theory

Figure 4.10: Variation of the QDOS with temperature for a MPT at half-filling. Due to
the band occupation n = 1 the chemical potential is temperature independent (µ = 0 eV).
The hatched area displays the occupied part at T = 0 K. As in Fig. 4.4 the parameters
are: J = 1.0 eV, n = 1.0, µ = 0.0 eV, S = 0.5, TC = 300 eV and W = 1.0 eV for a
simple-cubic lattice.

is lowered from T = TC (〈Sz〉 = 0) to smaller values T → 0 K (maximum 〈Sz〉). For
semiconductors such an effect is known as the red shift of the optical absorption edge.
In metals, since the lower ↓-subband is shifted in the opposite direction, it leads to a
polarization of the conduction electrons of over 60%. For increasing band-occupation the
existence of energy regions well below the Fermi edge occupied entirely by majority-spin
electrons remains a remarkable result. For the parameters chosen in Fig. 4.9 the chemical
potential is always adjusted such that the conduction electrons are not 100% polarized.
This confirms depolarization effects which we observed in the SOPT-HF (see discussion
in appendix E). However, we have also noticed the opposite trend within the MPT. For
large coupling constants the depolarization is suppressed. Then, a completely polarized
conduction band is again possible, similar to the situation in the conventional SOPT.

The situation at the lower edge of the upper subband appears to be not very system-
atic. When lowering temperature a sharp jump emerges for 〈Sz〉 ≈ 0.9 in the ↑-spectrum,
which disappears again close to saturation. A detailed analysis of this effect is difficult,
since the numerical effort to obtain convergence is substantially increased in this energy
region.28

The distribution of the spectral weight in Fig. 4.9 follows the transition from the
ferromagnetically saturated configuration (solid lines), which even for n = 0.2 clearly
displays the features of the exact magnetic polaron solution, to the paramagnetic regime
(dashed lines), for which the QDOS has to be symmetric with respect to the x-axis. Again
the more profound changes are observed for the majority-spin electrons. The increasing

28This is a drawback of choosing a parameter bσ, which explicitly depends on the self-energy.
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spectral weight of the upper ↑-subband can be explained with higher magnon-numbers in
this regime.

In Fig. 4.10 the temperature dependence is again plotted for a larger coupling constant
(J = 1.0 eV) and a half-filled conduction band (n = 1.0). The parameters are chosen such
that a comparison is possible with the SOPT-result in Fig. 4.4. One notices, that the
QDOS has a completely different shape in the whole temperature range. In the MPT one
can clearly see, that the transition from the ferromagnetic to the paramagnetic regime is
connected with a metal-insulator transition.

Another feature, not known from decoupling approaches such as the moment-con-
serving approximation of Nolting et al. [114], is the formation of the lower subband in
the ↑-QDOS as the magnetization 〈Sz〉 approaches saturation.29 It corresponds to the
polaron peak of the KLM with a completely filled conduction band (n=2) and therefore
fulfils the particle-hole symmetry. A more detailed study of the formation of this peak
can be found in Fig. 4.11a. Here, the magnetization is kept at its saturation value and
the band-occupation is changed from the exact semiconductor limit (n=0) to half-filling
(n=1). For the empty band, the magnetic polaron is located at the energy E2 = J̃~(S+1),
known from the atomic limit (2.8). Symmetrically, the peak considered in the ↑-spectrum
is located at the energy E3 = −J̃~(S+1) and is connected with double occupancy. A
consideration of its spectral weight confirms this interpretation. According to the atomic
limit result, α3↑ = 2S

2S+1

〈
n̂↓
〉
. For n = 0 the peak is not visible in Fig. 4.11a, but with

increasing n and
〈
n̂↓
〉

it becomes more and more apparent. In this context it is worth
repeating our exact result for the ferromagnetically saturated KLM (p. 14) that each
minority electron is sitting on a doubly occupied site. As mentioned above,

〈
n̂↓
〉

can
vanish for finite n, if a sufficiently large coupling is chosen.30 Such a situation is plotted
in Fig. 4.11b. Here, we can nicely convince ourselves that for

〈
n̂↓
〉
=0 no second subband

exists in the ↑-QDOS.
Some other methods, such as an interpolating self-energy approach [117], sometimes

obtain three separated bands for a certain spin direction. The explanation is also based
on atomic-limit calculations, where for finite band-occupations always three out of four
subbands have a non-vanishing spectral weight. It needs further modifications of our
method to retain these features. At the present stage the atomic limit of the MPT is only
correct for n = 0 and n = 2. By construction, the existence of more than three bands is
ruled out in our approach. This yields the behaviour illustrated in Fig. 4.12. For band
occupations 0 < n < 2 the two peaks move continously from one exact position to the
other (vertical lines in Fig. 4.12). Accordingly their positions at half filling (n = 1) have
to be E± = ±J̃(2S + 1)/2, as seen in the figure. Also the redistribution of the spectral
weight takes place in a similar way.

4.5 Possibility of ferromagnetic order
The calculations in this chapter are devoted to the subsystem of itinerant carriers. How-
ever, the question of a possible ferromagnetic order is not solely determined by this system.

29A similar feature has been observed in calculations of Meyer et al. [96] using DMFT.
30 Since the coupling of the KLM actually goes with JS, it is also sufficient to increase the value of S.
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Figure 4.11: Behaviour of the QDOS for the ferromagnetically saturated KLM. The chang-
ing parameter is the band occupation n, adjusted by the chemical potential (vertical lines).
For n = 0 the theory is exact. The spin quantum numbers S = 1/2 (a) and S = 3/2 (b)
have been chosen. For both figures: 〈Sz〉 = ~S, J = 0.6 eV, T = 0 K, W = 1.0 eV for a
simple-cubic lattice.

It is decisively influenced by the local moments. In previous considerations we have used
the Brillouin function (4.91) in order to model the temperature dependence of the mag-
netization. However, although the itinerant carriers will act according to the nature of
the specified magnetic order, it is unknown, whether or not the assumed values of the
magnetization are consistent with the KLM. We will use this section for an investigation
of this point using some basic assumptions.

Considerations on the ground state energy
At first, we would like to clarify if the assumption of a saturated local moment system
yields energetically stable results for SOPT and the MPT. For this purpose the ground
state energy belonging to these self-energies is calculated. The free energy at T = 0 K is
identical to the inner energy and is given by the expectation value of the Hamiltonian.
For convenience we write the KLM in a mixture of Bloch and Wannier representations
and obtain

U = 〈H〉 =
∑
k

∑
σ

εk 〈n̂kσ〉 − J̃
∑

i

∑
σ

(
zσ

〈
Sz

i n̂iσ

〉
+
〈
Sσ

i c†i−σciσ

〉︸ ︷︷ ︸
−p−σ

)
. (4.104)

Therefore, the kinetic energy per lattice-site is determined by the averaged Bloch occu-
pation number, which is easily accessible using the spectral theorem:

ukin =
1

N
〈Hs〉 =

1

N

∑
k,σ

εk

(
− 1

π~

) ∞∫
−∞

dE
=m Gk,σ(E)

eβ(E−µ) + 1
. (4.105)
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Figure 4.12: Behaviour of the QDOS close to the atomic limit. For this purpose a small
bandwidth (W = 0.5 eV) and paramagnetic configuration (〈Sz〉 = 0) is chosen. The
vertical lines indicate the exact excitation energies for this limit. The other parameters
are: J = 0.6 eV, S = 3/2, T = 300 K and a simple-cubic lattice.

The potential energy, on the other hand, contains a sum of correlation functions, which
has previously been abbreviated as pσ. Using the modified spectral theorem (4.102), it
can again be obtained from the one-electron Green’s function:

upot =
1

N
〈Hsf〉 =

1

N

∑
k,σ

(
− 1

π~

) ∞∫
−∞

dE
=m Gk,σ(E)

eβ(E−µ) + 1
[E − εk] . (4.106)

Summing (4.105) and (4.106) the kinetic energy contribution of conduction electrons
cancels. Making use of some relations in many-body theory and the fact that at T =
0 K the Fermi distribution reduces to a step function, one finds the following compact
expression for the total inner energy per lattice site [140]:

utot =
1

N
〈H〉 =

∑
σ

µ∫
−∞

dE E ρσ(E). (4.107)

It is a remarkable result that utot is uniquely determined by the quasi-particle density of
states.

In order to make a statement on the possibility of ferromagnetism, one has to compare
the ground state energy (4.107) for an assumed ferromagnetic saturation (〈Sz〉 = ~S)
to the energy of other assumptions for the local-moment subsystem. Here, we use as
a reference system the paramagnetic configuration (〈Sz〉 = 0). Of course, this is not
sufficient for an exhaustive study of the phase diagram, since antiferromagnetism [46] or
phase separation [178] might occur. However, one can at least make a definite statement
for which parameters a ferromagnetic order is instable.

The inner energy belonging to a ferromagnetic and a paramagnetic spin configura-
tion is shown in Fig. 4.13 for a certain set of parameters. On the left hand side we
have plotted ukin and upot separately. The order of magnitude as well as the qualitative
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Figure 4.13: Dependence of the ground state energy on the band occupation. First, the
contribution of the kinetic and potential energy to the inner energy is plotted separately.
Note that the energy scales differ. On the right hand side, the sum of both contributions
is presented. In all cases the ferromagnetic (solid lines) and the paramagnetic (dashed
lines) configuration are compared for the MPT self-energy. The parameters are: T =
0 K, J = 0.4 eV, S = 3/2 and W = 1.0 eV for a simple-cubic lattice.

dependence on the band occupation is similar to the results of the moment-conserving
decoupling approach (MCDA) investigated by Santos [140]. Both energy contributions
show a small dependence on the configuration of the subsystem of localized spins for
small band occupations and stronger deviations towards half-filling. Although it is hardly
visible in Fig. 4.13, the energy belonging to the ferromagnetic configuration is lower than
that of the paramagnetic configuration for n < 0.2. The band occupation for which
the energy lines intersect is not identical for the kinetic (n

(i)
kin ≈ 0.25) and the potential

(n
(i)
pot ≈ 0.30) energy. However, for a decision, which spin configuration is energetically

preferred, one has to compare the total energies utot. This is done on the right hand side
of Fig. 4.13. It turns out, that ferromagnetism is possible for n < n

(i)
tot ≈ 0.28. According

to Santos [140], n
(i)
kin < n

(i)
tot is a typical feature of the weak-coupling regime, whereas in

the double-exchange regime the phase transition is predominantly driven by the kinetic
energy (n(i)

kin = n
(i)
tot).

The message of Fig. 4.13 is not changed, if different parameters are chosen. We
always obtain lower energies of the ferromagnetic configuration for band occupations n
below some critical n

(i)
tot. According to these results, a spontaneous ferromagnetic order

is allowed within the MPT approximation. The fact that ferromagnetism is not possible
close to half-filling (n = 1) is in agreement with the findings of other approximations for
the KLM [178, 19, 46].
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The static magnetic susceptibility
In order to check the consistency of our assumptions for the local-moment subsystem, we
can also make use of universal properties of phase transitions.31 In statistical mechanics
(see textbooks such as [106, 176]) they are classified into first order and continuous phase
transitions. The transition from ferromagnetic to paramagnetic order, relevant in our
investigations, belongs to the latter class, since the magnetization is a continuous function
of temperature. However, the second derivative of the potential, the static susceptibility
χ(T ), diverges at TC. This fact will be exploited in the following.

Since we have a theory for the one-electron Green’s function, the Pauli susceptibility
of the itinerant electrons can be calculated. For this purpose the Hamiltonian (2.4) has
to be extended by a Zeemann interaction with an external magnetic field B, defining the
z-direction:

H = HKLM −
∑

i

µBB (gits
z
i + glocS

z
i ) . (4.108)

Here, µB is the Bohr magneton; git =2 and gloc are the Landé factors of the itinerant (spin
sz

i ) and the local (spin Sz
i ) electrons, respectively. The additional terms are relevant for

all steps of the POM. For brevity we will only show how it enters the results of SOPT.
The effect of B on the itinerant electrons can be taken into consideration by modifying
the energy dispersion to εkσ = εk − zσµBB. In this way, it enters the frequency and the
memory matrix. The effect of B on the local moments can be understood as part of the
mean-field Liouvillian, leading to a modification of the second line in (4.79). In analogy
to (4.85), we obtain for the self-energy

Σσ(E, B) = −J̃ zσ〈Sz〉 + J̃2 1

N

∑
k

〈
(Sz)2〉− 〈Sz〉2

E − εk + zσµBB + J̃ zσ〈Sz〉+ i0+
(4.109)

+ J̃2 1

N

∑
k

〈S−σSσ〉+ 2~ zσ〈Sz〉
〈
n̂k,−σ

〉
E − εk + z−σµBB(1 + gloc) + J̃ z−σ〈Sz〉+ i0+

.

Based on this result, the polarization of the conduction band is given by:

〈sz〉 = − ~
2π

∑
σ

zσ

∞∫
−∞

dE f−(E)=m 1

N

∑
k

1

E − εk + zσµBB − Σσ(E, B) + i0+
. (4.110)

This is the necessary prerequisite for a determination of the static susceptibility of the
itinerant electron subsystem:

χit(T ) =
∂ 〈sz〉
∂B

∣∣∣∣B→ 0

T>TC

. (4.111)

In order to observe a divergence of the susceptibility, the external magnetic field has to
be set to zero. Furthermore, we approach the phase transition from the paramagnetic

31 We have extensively studied this strategy in context of diluted magnetic semiconductors [118, 119].
There, the interpolating self-energy approach (p. 14) and a CPA (coherent potential approximation) have
been used. The remarkable results make an application to the SOPT result promising. However, since
the ansatz does not perfectly fit into the scope of the thesis, we will keep this discussion short.
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side, what implies the vanishing of the magnetization 〈Sz〉. However, since (for S = 1/2)
the principle structure of Eq. (4.110) is of the form 〈sz〉 = g(〈Sz〉 , B), the local-moment
subsystem still enters the expression for

χit(T ) =
∂

∂B
g(〈Sz〉 , B)

∣∣∣∣B→ 0

T>TC

+
∂

∂ 〈Sz〉
g(〈Sz〉 , B)

∣∣∣∣B→ 0

T>TC

· ∂ 〈Sz〉
∂B

∣∣∣∣B→ 0

T>TC︸ ︷︷ ︸
χloc(T )

(4.112)

via the last term, being identical to the susceptibility of the local-moment subsystem.
The essential argument of our approach is the fact that the two response functions

χ
(i)
it , χ

(i)
loc are not independent of each other. Not only do they become critical at the same

temperature, since the corresponding correlation functions 〈sz〉 and 〈Sz〉 are mutually
conditional. The susceptibilities also diverge with the same critical exponent γ as a
function of the reduced temperature (T − TC)/TC. This is due to the fact that both
subsystems belong to the same universality class. Or in other words: It is due to the fact,
that at T =TC all physical quantities of the system scale with the same correlation length
(scaling hypothesis), which in turn is related to the susceptibilities (fluctuation-dissipation
theorem). Hence, there is no doubt that the response functions are proportional in a (very
small) vicinity of the critical point :

χloc(T ) = η · χit(T ) ⇐⇒ ∂ 〈Sz〉
∂B

∣∣∣∣B→ 0

T>TC

= η · ∂ 〈sz〉
∂B

∣∣∣∣B→ 0

T>TC

. (4.113)

By exploiting this proportionality the magnetization can be eliminated from Eq.
(4.111). After some straightforward transformations one obtains for S = 1/2:

χit(T ) =
∂

∂B
g(〈Sz〉 , B)

1− η · ∂
∂〈Sz〉g(〈Sz〉 , B)

= µB

1
π

∫
dE f−(E)=m (G2(E)A(E))

1− J̃ η 1
π

∫
dE f−(E)=m (G2(E)B(E))

,

(4.114)

G2(E) =
1

N

∑
k

1

[E − εk − Σσ(E, 0) + i0+]2
,

A(E) = 1− 1

2
J̃(1 + gloc)

1

N

∑
k

1

[E − εk + i0+]2
,

B(E) = 1 +
3J̃2

4N

∑
k

1

[E − εk + i0+]2
+

J̃

N

∑
k

1

E − εk + i0+
− 2J̃

N

∑
k

〈n̂k〉
E − εk + i0+

.

From the singularities of the paramagnetic susceptibility, that is from the zeros of the
denominator in (4.114), we find the Curie temperature TC as a function of the model
parameters. The derivation of TC is independent of the non-specified value of gloc, since
it only enters the numerator of (4.114). However, the result does depend on the choice of
η.

Apart from the fact that it is a constant with respect to temperature, the theory of
phase transitions does not provide any information on the nature of the proportionality

77



CHAPTER 4. The subsystem of itinerant carriers

constant η. Certainly, the proportionality (4.113) can be traced back to a proportionality
of the expectation values 〈Sz〉 and 〈sz〉. Additionally, we neglect the dependence of η
on the energy scales W , J~ and kBTC. Then the following equivalence of the normal-
ized magnetization of the local-moment subsystem and the polarization of the itinerant
subsystem,

〈Sz〉
S
⇔
〈
n̂↑ − n̂↓

〉
n

, (4.115)

is plausible. It corresponds to η = 2S/n.
Of course, the ansatz (4.115) has to be improved in order to obtain reliable phase

diagrams. In essence, we perform a combination of two theories. The first theory is the
SOPT, which provides the relation 〈sz〉 = g(〈Sz〉 , B) given by Eq. (4.110). The second
theory is the ansatz for η, which enters the exact relation 〈Sz〉 = η 〈sz〉. It would yield
a circular argument if SOPT were also used for the second relation. Instead, η could
be based on, e.g., results of mean-field approaches (see Eq. (5.9)), semiclassical theories
[157] or DMFT [34]. However, we want to check, whether or not the approximations
within SOPT are consistent with the assumption of a ferromagnetic order. Therefore,
an intermixing with other theories should be avoided, and the ansatz for η should be as
simple as possible.

Figure 4.14: Curie temperatures obtained by exploiting the static magnetic susceptibil-
ity using a self-energy as obtained by SOPT. a) For several band occupations n the
dependence on coupling strength J is plotted. b) For several coupling strengths J the
dependence on the band occupation n is plotted. Other parameters: S = 1/2, W = 1.0 eV
for a simple-cubic lattice.

The evaluation of Eq. (4.114) with η = 2S/n yields reasonable results for the param-
agnetic susceptibility. For sufficiently high temperatures and almost all parameter con-
stellations, a Curie-Weiß behaviour can be recognized. The inverse susceptibility has clear
intersections with the zero axis that can be associated with the respective Curie temper-
atures. The results, plotted in Fig. 4.14, demonstrate that ferromagnetism does exist for
a large range of parameters. The principle dependence of TC on the coupling strength J
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4.5. Possibility of ferromagnetic order

and the band occupation n is similar to the results of the modified RKKY theory (Fig. 2.1
on p. 18). In particular, the limitation of ferromagnetism to small band occupations is
confirmed by our theory.

However, three remarkable features of Fig. 4.14 are worth mentioning. Firstly, even
for low band occupations a critical J = Jc(n) is apparently needed to switch on ferromag-
netism. Hence, we do not observe a J2-dependence of the Curie temperature as predicted
by conventional RKKY. Secondly, for the J values presented in Fig. 4.14a a saturation
cannot be observed. In this context, one should have in mind that SOPT is not reliable
for large values of J . Thirdly, one concludes from Fig. 4.14b that for a fixed value of
the coupling strength a reduction of the number of conduction electrons favours the pos-
sibility of ferromagnetism. Arbitrarily small band occupations are sufficient to create a
ferromagnetic order. This is surprising, since a collective order is solely mediated by the
interband exchange. Of course, the Curie temperature is zero at n = 0. It was, however,
numerically not possible to decide whether or not there is a steep but continuous increase
to finite values.

We also want to point out clear similarities to results obtained with a different self-
energy [118]. If the derivation of (4.114) is based on the interpolating self-energy approach
of Nolting et al. (see p. 14f) the qualitative dependence of the Curie temperature on J and
n is identical to that in Fig. 4.14. This allows two kinds of interpretations. Either both
self-energies have the same quality with respect to the properties responsible for ferromag-
netism, or the assumption (4.115) has a dominant influence on the Curie temperatures.
It needs further investigations to clarify this point.

Conclusion
The considerations of this section confirm the possibility of ferromagnetism within the
KLM. The approximations of the POM, yielding to the self-energy of SOPT and of the
MPT, are consistent with a finite value for the magnetization 〈Sz〉. The investigation of
the ground-state properties and the paramagnetic susceptibility predict ferromagnetism
for small band occupations. However, both results are insufficient for a quantitative
analysis of the phase diagram at finite temperatures.
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Chapter 5

The subsystem of local moments

In chapter 4 the projection-operator method has been successfully applied to the sub-
system of conduction-electrons. We have obtained the MPT self-energy. Subsequently,
in Sec. 4.5 we concluded from the response of itinerant electrons that ferromagnetism is
likely to occur in certain regions of the phase diagram. Nevertheless, a ferromagnetic
order is to a large extend an effect of localized moments. Therefore, we will now focus our
considerations on this subsystem. We intend to apply the same methods as in Chap. 4 in
order to obtain a self-consistent theory.

5.1 Application of the projection-operator method
The essential quantity related to the local-moment subsystem is the magnetization 〈Sz〉.
For S = 1/2 all local correlation functions, which are solely related to localized moments,
can be expressed by 〈Sz〉. For larger spin quantum numbers S the Callen formulae (4.93),
though derived for the Heisenberg model, provide a valuable tool for approximations.
However, to focus on the effects of the POM we restrict ourselves to S = 1/2.

The restriction to S = 1/2 allows the determination of the magnetization 〈Sz〉 from the
one-magnon Green’s function. For this purpose one combines the spin-operator relation

zσ~
〈
Sz
〉

= ~2S(S + 1)−
〈
S−σSσ

〉
−
〈
(Sz)2 〉 S=1/2

= ~2S −
〈
S−σSσ

〉
(5.1)

with the spectral theorem for commutator Green’s functions

〈
S−σSσ

〉
=

1

N2

∑
k

(
− 1

~π

) ∞∫
−∞

dE f+(E)=m
〈〈

Sσ
−k; S

−σ
k

〉〉
E

. (5.2)

Here, f+(E) is the Bose-Einstein distribution function, which carries the temperature
dependence via β = [kBT ]−1. For the determination of

〈〈
Sσ
−k; S

−σ
k

〉〉
E

one can now apply
the POM.

First order: The frequency matrix
A natural starting point is a Liouville subspace formed by single magnon excitations

∣∣S−σ
k

)
and a Liouville scalar product (3.3) using commutators. In this basis the susceptibility
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matrix
χkσ =

(
S−σ

k

∣∣S−σ
k

)
= 2~zσ 〈Sz

0〉 = 2N~ zσ〈Sz〉 (5.3)

is proportional to the magnetization 〈Sz〉. As discussed below this unavoidable property
results in problems for the evaluation of a phase transition to a paramagnetic regime.

For an evaluation of the other matrices within the POM the action of the Liouvillian
on the chosen basis state needs to be known. Using the Hamiltonian (4.74) one obtains
an expression

L
∣∣S−σ

k

)
= − J

2N

∑
q,p

{ ∣∣∣S−σ
q+kc

†
p,−σcp−q,−σ

)
−
∣∣S−σ

q+kc
†
p,σcp−q,σ

)
+ 2zσ

∣∣∣Sz
q+kc

†
p,−σcp−q,σ

)}
(5.4)

that contains three additional states. Their component parallel to the level of description
yields the correlation functions of the frequency matrix:

Ωkσ =
(
S−σ

k

∣∣L ∣∣S−σ
k

)
= −J~

N

∑
q,p

〈
zσS

z
q

(
c†p,−σcp−q,−σ − c†p,σcp−q,σ

)
− Sσ

qc†p,−σcp−q,σ

〉
(5.5)

= −J~N
{

zσ

〈
Szn̂−σ

〉
− zσ

〈
Szn̂σ

〉
−
〈
Sσc†−σcσ

〉}
. (5.6)

The last step implies the assumption of a translational invariant spin system. Hence, we
do not consider antiferromagnetism and non-collinear spin configurations.

Combining Eqs. (5.3) and (5.6) one gets a result for the magnon Green’s function

〈〈
Sσ
−k; S

−σ
k

〉〉
E

=
2N~ zσ 〈Sz〉

ω + 1
2
J
{〈

Szn̂−σ

〉
−
〈
Szn̂σ

〉
− zσ

〈
Sσc†−σcσ

〉}
/ 〈Sz〉

, (5.7)

which is supposed to be correct to first order in the coupling constant J . This becomes
more apparent, if one neglects the implicit J-dependence of the correlation functions in
(5.7) by performing a mean-field decoupling. Then the magnon Green’s function becomes

〈〈
Sσ
−k; S

−σ
k

〉〉
E

= 2N~2 zσ 〈Sz〉
E − J zσ

〈
sz
〉

+ i0+
with 〈sz〉 =

~
2

[〈
n̂↑
〉
−
〈
n̂↓
〉]

. (5.8)

One notes, that the excitation energies in the denominator are real and do not depend
on the wave vector k. This allows a straightforward application of the spectral theorem
(5.2). A subsequent exploitation of the spin-operator relation (5.1) yields an implicit
equation for the magnetization 〈Sz〉 that can be transformed1 to

〈Sz〉 = ~S · tanh [βJ 〈sz〉 /2]. (5.9)

This is the well-known mean-field result for the magnetization of a system with Ising
type interactions. It is also obtained for the KLM if spin-flip processes are neglected [57].
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5.1. Application of the projection-operator method

Figure 5.1: a) Temperature dependence of the spontaneous magnetization 〈Sz〉 for various
band occupations. b) Phase transition temperature as a function of the band occupation.
The conduction electron subsystem is solved with the MPT. For the subsystem of localized
moments the mean-field result is used. The parameters are: J = 1.0 eV, S = 1/2 and
W = 1.0 eV for a simple-cubic lattice.

Obviously, the localized magnetic moments experience the polarization of the conduction
band like an effective field.

As a first step towards the desired self-consistent theory one can combine the re-
sult (5.9) with the modified perturbation theory derived in Chap. 4. The magnetization
curves obtained are displayed in Fig. 5.1a. They show the expected functional dependence
on temperature, which is similar to that of a Brillouin function. From the intersection
with the zero temperature axis one can read off the transition temperatures TC. Their
dependence on the band occupation is plotted in Fig. 5.1b. According to this theory
ferromagnetism is possible for all band-occupations for the whole parameter regime. A
maximum value for the Curie temperature is observed for a half-filled conduction band
(n = 1.0).

1

~2S = zσ~ 〈Sz〉
{

1 +
2

exp [. . .]− 1

}
= zσ~ 〈Sz〉

{
exp [. . .] + 1
exp [. . .]− 1

}
= zσ~ 〈Sz〉 coth[. . . /2]
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Second order: The memory matrix
The memory matrix incorporates parts of the orthogonal complement of the Liouville
subspace spanned by

∣∣S−σ
k

)
. The corresponding projection operator is given by

Q = 1−
∣∣S−σ

k

) 1(
S−σ

k

∣∣S−σ
k

) (S−σ
k

∣∣ (5.10)

Out of the various possibilities to evaluate the memory matrix, we choose here the same
procedure, (4.77)-(4.80), as in the case of conduction electrons:

Mkσ(ω) ≈
(
QLS−σ

k

∣∣ 1

ω −QLMFQ
∣∣QLS−σ

k

)
=

∞∑
m=0

1

ωm+1

(
QLS−σ

k

∣∣ (QLMFQ)m
∣∣QLS−σ

k

)
(5.11)

We exploit the fact that already the Liouville state
∣∣QLS−σ

k

)
is proportional to the cou-

pling J . Hence, an approximation of L by its free part Ls in the denominator of the
memory matrix would correspond to neglecting contributions of order J3 or higher orders
in J . This simplification allows the determination of the complete geometric series given
in (5.11). A typical summand is given by

(QLsQ)mQL
∣∣S−σ

k

)
(5.12)

=
J

2~mN

∑
qp

(εp − εp−q)
m

{〈
zσS

z
q

(
c†p,−σcp−q,−σ − c†p,σcp−q,σ

)
− Sσ

qc†p,−σcp−q,σ

〉
zσ〈Sz

0〉
∣∣S−σ

k

)
−
∣∣∣S−σ

q+kc
†
p,−σcp−q,−σ

)
+
∣∣S−σ

q+kc
†
p,σcp−q,σ

)
− 2zσ

∣∣∣Sz
q+kc

†
p,−σcp−q,σ

)}
.

The conventional perturbation theory is generalized to a perturbation around the
Hartree-Fock solution if instead of Ls the Liouvillian LMF is chosen. The latter corre-
sponds to the mean-field Hamiltonian (2.6) of the conduction electrons. In this case, some
of the terms carry the mean-field self-energy in the m-dependent factor.2 This implies
different denominators in the resulting expression for the memory matrix3

Mkσ(ω) =
J2

4N2

∑
qpσ̂

〈
S−σ

q+kS
σ
−q−k

(
n̂p−q,σ̂ − n̂p,σ̂

)〉
+ 2zσ~

〈
Sz

0n̂p−q,σ̂

(
1− n̂p,σ̂

)〉
ω − 1

~ (εp − εp−q)

+
J2

N2

∑
qp

〈
Sz

q+kS
z
−q−k(n̂p−q,σ − n̂p,−σ)

〉
ω − 1

~ (εp − εp−q + Jzσ 〈Sz〉)
− 2zσ~

ω 〈Sz
0〉

[
J

2N

∑
pσ̂

zσ̂

〈
Sz

0n̂p,σ̂

〉]2

+ zσ
J2~
2N2

∑
qp

〈
Sz

0

(
n̂q,−σn̂p,−σ − 2n̂q,−σn̂p,σ + n̂q,σn̂p,σ

)〉
ω

(5.13)

2This affects the second sum in (5.13). If the term Jzσ 〈Sz〉 in the denominator is removed, one returns
to conventional SOPT.

3 Details of the derivation of the memory matrix can be found in appendix F.
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The result (5.13) is the exact J2 contribution to the memory matrix of the magnon
Green’s function. Nevertheless, the displayed correlation functions are already a result of
an approximation. Those expectation values, which vanish if the trace is performed with
Bloch states (the eigenstates of a system with an energy independent self-energy) are not
considered. This is in accordance with the notion of second-order perturbation theory for
the memory matrix.

Despite this simplification Eq. (5.13) incorporates several correlation functions, which
cannot be expressed by single-particle Green’s functions. A mean-field decoupling further
reduces the complexity of the formulae. The question is, to what extent one makes use of
this possibility. If one decouples Ising terms such as〈

Sz
0n̂q,σn̂p,σ

〉
≈ 〈Sz

0〉 ·
〈
n̂q,σ

〉
·
〈
n̂p,σ

〉
, (5.14)

the last two sums in (5.13) cancel each other. If, in addition, the spin and Fermi operators
are decoupled in the remaining correlation functions, the following expression for the
memory matrix is obtained:

Mkσ(ω) =
J2

4N2

∑
qpσ̂

〈
S−σ

q+kS
σ
−q−k

〉 〈n̂p−q,σ̂

〉
−
〈
n̂p,σ̂

〉
ω − 1

~ (εp − εp−q)

+
J2

4N2
2zσ~ 〈Sz

0〉
∑
qpσ̂

〈
n̂p−q,σ̂

〉 (
1−

〈
n̂p,σ̂

〉)
ω − 1

~ (εp − εp−q)

+
J2

N2

∑
qp

〈
Sz

q+kS
z
−q−k

〉 〈
n̂p−q,σ

〉
−
〈
n̂p,−σ

〉
ω − 1

~ (εp − εp−q + Jzσ 〈Sz〉)

(5.15)

The result consists of three sums, which have, on the first glance, a similar structure.
All terms are of second order in the coupling constant J . Hence, they describe different
aspects of an indirect exchange interaction between localized moments. The transfer of
magnetic information is mediated by itinerant conduction electrons. That explains the
appearance of the Bloch dispersion and the band occupation, as well as the factor J2.

In the first and the third line, respectively, the p-summation is of the form of a
Lindhard function [82]. In the first sum it has the classical form as it appears e.g. in the
susceptibility of a non-interacting electron gas [40]. The last p-summation is characterized
by an additional self-energy in the denominator and a different spin-direction of the band-
occupation operators in the numerator. More important for the physical behaviour is
the difference in the p-independent prefactor of both sums. The correlation function〈
S−σ

k Sσ
−k

〉
can be determined via the spectral theorem (5.2) from the one-magnon Green’s

function. However,
〈
Sz

kS
z
−k

〉
cannot be obtained in the same way.

In accordance with the weak-coupling approach mentioned above (5.14) one could
think of a mean-field decoupling of the spin-spin correlation functions by inserting a com-
plete set of eigenstates of the electronic mean-field Hamiltonian (2.6). As a consequence,
the prefactor of the first sum gives zero and this contribution to the memory matrix
vanishes. For the prefactor of the third sum, such a decoupling yields〈

Sz
q+kS

z
−q−k

〉
≈ 〈Sz

0〉 · 〈Sz
0〉 δq+k,0. (5.16)
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This moves the k-dependence to the Lindhard fraction. The resulting expression is iden-
tical to that of a random phase approximation, discussed in Sec. 5.3.

Besides the analytical possibilities one also has to consider the numerical effort for an
evaluation of these formulae. The memory matrix Mkσ(ω) enters the Green’s function

〈〈
Sσ
−k; S

−σ
k

〉〉
E

=
4~2 zσ〈Sz

0〉
2~ω − Ωkσ/zσ〈Sz

0〉 −Mkσ(ω)/zσ〈Sz
0〉

(5.17)

This Green’s function forms the input of the spectral theorem (5.2), which is used to
derive a self-consistency equation for the magnetization. For a single iteration cycle of
〈Sz〉 the most expensive numerical effort is therefore given by

• a procedure to determine the electronic self-energy for given 〈Sz〉
(which in case of the MPT is already connected with a time consuming iteration),

• an energy integration to determine the expectation values
〈
n̂pσ

〉
and

〈
Sα

q+kS
β
−q−k

〉
(which, for a few cases, can be replaced by a Sommerfeld expansion),

• two summations (p, q) over the Brillouin zone
(only one of them can be reduced to the irreducible part of the Brillouin zone),

• an energy integration to obtain
〈
S−σ

k Sσ
−k

〉
(which reduces to a root finding problem, if the magnon self-energy is real) and

• another summation (k) over the Brillouin zone to obtain the local result 〈S−σSσ〉

In particular the threefold summation over the Brillouin zone (this corresponds to 9 convo-
luted integrations!) is beyond the capability of conventional PCs. The situation becomes
even worse due to the fact that some of these integrations include singularities. Already
for these reasons simplifications of the correlation functions in (5.15) are unavoidable.
The effects will be discussed in Sec. 5.3.

Before considering alternative approaches in Sec. 5.2, an additional remark on the
representation (5.17) of the Green’s function is worth making. We have pointed out before,
that (5.13) is the exact second order result for the memory matrix. In this sense, the
suggested procedure is equivalent to the SOPT for conduction band electrons. However,
this does not imply a similar statement for the magnon self-energy. Due to the fact that
the memory matrix has to be divided by the susceptibility matrix, we cannot claim that
it is exact to order J2. The susceptibility matrix in the denominator is proportional to
the magnetization 〈Sz〉, which in turn carries an implicit J dependence. Hence, definite
statements about the correctness in terms of powers of J are not possible for the magnon
self-energy.
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5.2. Alternative POM for the subsystem of local moments

5.2 Alternative POM for the subsystem of local mo-
ments

Although it is compatible with an expansion of the self-energy in powers of J , a mean-field
decoupling of all contributing correlation functions is a crude approximation.

• In the subsystem of itinerant conduction electrons mainly the Ising term 〈Szn̂σ〉 and
the spin-flip term

〈
Sσc†−σcσ

〉
are affected. Other theories, such as the MCDA [114],

predict that even at the Curie temperature these two correlation functions do not
vanish. On the other hand, their sum is apparently important, since it is a major
contribution to the potential energy at zero temperature (see p. 73).

• In the local-moment subsystem the expectation values
〈
S−σ

k Sσ
−k

〉
and

〈
Sz

kS
z
−k

〉
are

included. At least, their local part is definitely larger than zero. The exact limiting
value for T ≥ TC is 2~2S(S +1)/3 for

〈
S−σSσ

〉
and ~2S(S +1)/3 for

〈
(Sz)2

〉
. Since

this is a J-independent result, its neglect is hard to justify.

Hence, an alternative approach, that treats the correlation functions more accurately or
one that reduces the number of involved correlation functions to a minimum, is desirable.

The usage of a two-dimensional basis {|A) , |B)} for the original Liouville subspace
is a possible modification. We have successfully applied this strategy to the limit of
a ferromagnetically saturated semiconductor (p. 47) and to the zero-bandwidth limit
(p. 49). If the calculations are restricted to the evaluation of the frequency matrix, it
yields concise expressions for the Green’s function, which allow a clear interpretation.
Again, we consider |A) ≡

∣∣S−σ
k

)
. Then the two-dimensional frequency matrix corrects the

mean-field contribution (5.5) to the magnon self-energy in the following way:4

Σ
(mag)
kσ (ω) = ~

{
Ωkσ +

(
S−σ

k

∣∣L |B) (B| L
∣∣S−σ

k

)
(B |B )−1

ω − (B| L |B) (B |B )−1

}(
S−σ

k

∣∣S−σ
k

)−1 (5.18)

The quality of this correction depends on the choice of the second basis state |B), for
which we have much more freedom than in the one-dimensional case. In the following we
will discuss some possibilities, but will eventually return to the result (5.15).

A generic choice for a two-dimensional basis
Within the philosophy of the POM the generic choice is |B) ≡ QL

∣∣S−σ
k

)
, hence

|B) =
J

2 〈Sz〉

{〈
Sz(n̂−σ − n̂σ)

〉
− zσ

〈
Sσc†−σcσ

〉} ∣∣S−σ
k

)
(5.19)

− J

2N

∑
qp

{∣∣S−σ
q+k(c

†
p,−σcp−q,−σ − c†p,σcp−q,σ)

)
+ 2zσ

∣∣Sz
q+kc

†
p,−σcp−q,σ

)}
.

This is because it allows a compact notation of the result (5.18) for the self-energy that
would also be obtained in the next step of the continued fraction expansion with an

4Detailed explanations can be found in appendix G.
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initially one-dimensional basis
∣∣S−σ

k

)
. For the latter one had to consider Mkσ(ω) as a

resolvent, apply the POM and neglect the higher order memory matrix

Mkσ(ω) = (B| 1

ω −QLQ
|B) ≈ (B |B )

ω − (B| QLQ |B) (B |B )−1 (5.20)

to obtain (5.18). The concept can be generalized. A larger basis at the beginning corre-
sponds a longer continued fraction. To completely neglect the memory matrix at a certain
point in the series expansion is a remarkable alternative to our approximation (5.11) for
the memory matrix, where we still considered the summation of an infinite series. It can
be used to incorporate higher orders of the coupling constants J . However, one should
note the similarities with the high energy expansion. The entity (B| L |B) is essentially
the third moment of the spectral density belonging to the one-magnon Green’s function.
It needs considerable analytical effort to derive it. The result contains dozens of a priori
unknown correlation functions and thus it renders qualitative discussions difficult. For
these reasons this approach does not fit in the purpose of the present analysis, even though
it is probably worthwhile to be considered in a different context.

A symmetric choice for a two-dimensional basis
We would like to reduce the complexity of the previous suggestion by limiting ourselves
to essential aspects only. For spin exchange systems the primary contribution to the
temperature dependence of magnetic properties is given by collective spin excitations
[137]. In (5.19) the state |B) is a mixture of spin-wave and spin-density / magnetization
operators. If we freeze the latter class of operators, we are essentially left with the
operators S−σ

k and c†p,−σcp−q,σ. With choosing |A) ≡
∣∣S−σ

k

)
we already consider a single-

magnon excitation in the local moment subsystem. Using state |B) we will now describe
the corresponding spin wave excitations in the conduction band. Symmetrically to |A)
we define

|B) ≡
∣∣s−σ

k

)
= ~

∑
i

∣∣∣c†i−σciσ

)
e−ikRi = ~

∑
q

∣∣∣c†q−k,−σcq,σ

)
. (5.21)

As a combination of two Fermi operators, |B) is a bosonic state. Therefore, for the Li-
ouville scalar product we choose the commutator and, after a straightforward calculation,
obtain:

(A |A) = 2~zσ 〈Sz
0〉 = 2N~ zσ〈Sz〉 (5.22)

(B |B ) = N~2
{〈

n̂σ

〉
−
〈
n̂−σ

〉}
= 2N~ zσ〈sz〉 (5.23)(

S−σ
k

∣∣L∣∣B) =
(
B
∣∣L∣∣S−σ

k

)
= −

(
S−σ

k

∣∣L ∣∣S−σ
k

)
= −Ωkσ (5.24)

(B| L |B) = ~
∑
q

(εq−k − εq)(
〈
n̂qσ

〉
−
〈
n̂q−k,−σ

〉
) + Ωkσ (5.25)

Here, Ωkσ is the mean-field expression obtained in (5.6), which is actually k-independent.
It is noteworthy that in the spin channel the four results of the frequency matrix are
(apart from a sign) all identical. This is due to the symmetry of the KLM Hamiltonian
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with respect to the operators S−σ
k and s−σ

k . As a consequence, the correction to the energy
poles of the magnon Green’s function are of the same order of magnitude as the mean-field
result itself. This will be discussed below.

The k-dependence of the frequency matrix is solely carried by its element given in
(5.25). The sum

fσ(k) =
~
N

∑
q

(εq−k − εq)(
〈
n̂qσ

〉
−
〈
n̂q−k,−σ

〉
) (5.26)

essentially describes the response of a free electron system on spin excitations in the
conduction band. The fact that it does not have the usual shape of a Lindhard function,
a textbook-result e.g. for plasmon excitations in a free electron system [107, 32], is already
a hint towards indicating the insufficient quality of the approximation. Nevertheless, it
contains some physical properties that are worth discussing.

If the scalar products (5.23)-(5.25) are inserted into the expression for the magnon
self-energy (5.18), one can evaluate the correction of the Green’s function as compared to
the mean field result. This correction has again the structure of a memory matrix. The
calculations yield the expression

Mkσ(ω) =
Ω2

kσ/N

ω · 2~ zσ〈sz〉 − fσ(k)− Ωkσ/N
, (5.27)

which has to be inserted into the Green’s function (5.17). Hence, the contribution to the
magnon self-energy is essentially proportional to J2. This is not surprising. The term is
multiplied by a factor such as 〈Szsz〉 / 〈Sz〉 · 〈sz〉. Since this is an implicit function of J ,
too, a definite statement on the J-dependence of the magnon self-energy is not possible.

Besides the influence of J , the energy dependence of the memory matrix is most
important. Due to the structure of Mkσ a two-pole structure of the Green’s function is
favourable:5〈〈

Sσ
−k; S

−σ
k

〉〉
E

=
〈Sz〉 / 〈sz〉

ωII(k)− ωI(k)
·
(

Nfσ(k) + Ωkσ − ωI(k) · 2N~ zσ〈sz〉
ω − ωI(k)

−Nfσ(k) + Ωkσ − ωII(k) · 2N~ zσ〈sz〉
ω − ωII(k)

)
(5.28)

In this representation one clearly notes two branches in the magnon dispersion:

ωI, II(k) =
1

2

[
Ωkσ

2N~

(
1

zσ 〈Sz〉
+

1

zσ 〈sz〉

)
+

fσ(k)

2~ zσ〈sz〉

]
± 1

2

√[
Ωkσ

2N~

(
1

zσ 〈Sz〉
+

1

zσ 〈sz〉

)
+

fσ(k)

2~ zσ〈sz〉

]2

− Ωkσ · fσ(k)

N~2 〈Sz〉 〈sz〉
(5.29)

They can be distinguished by their k-dependence. We are particularly interested in the
behaviour at the Γ-point, where fσ(k=0) = 0.

5Details of the derivation can be found in appendix G.
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One can readily see that ωI(k) represents an optical branch of the magnon dispersion,
since

ωI(k=0) =
Ωkσ

2N~

(
1

zσ 〈Sz〉
+

1

zσ 〈sz〉

)
. (5.30)

Apparently, the first part of ωI(k) corresponds to the mean-field result (5.7) of the magnon
Green’s function. The fact, that (5.30) includes another term proportional to 〈sz〉−1 is
already a generalization of this previous result, which accommodates the symmetry of the
two (itinerant and local) spin subsystems. Furthermore, the magnon-excitation energy of
the mean-field calculation did not show any k-dependence in contrast to the result for the
optical branch presented here.

The energy ωII(k) represents an acoustic branch of the magnon dispersion, since it
vanishes at the Γ-point. For its physical properties the spin-wave stiffness constant is
most important. It is determined by the functional dependence of the function fσ(k)
- and therefore the free Bloch dispersion εk - on the wave-vector k. If, for example, a
tight-binding Bloch dispersion with next-neighbour hopping

εk = −W

6
{cos kx + cos ky + cos kz} , W = 1 eV (5.31)

is assumed, one can separate k and q in (5.26). Then, the k-dependence of fσ(k) is given
by

fσ(k) =

(
1− 12

zW
(−εk)

)(
1

N

∑
q

(−εq)
〈
n̂qσ

〉
+

1

N

∑
q

(−εq)
〈
n̂q−σ

〉)
≥ 0, (5.32)

where z is the coordination number. 6 With assumption (5.31) a Taylor expansion of the
energy dispersion of the acoustic branch then yields a spin wave stiffness constant

D ∼ 〈sz〉
〈Sz〉+ 〈sz〉

· 1

N

∑
q

(−εq)
(〈

n̂qσ

〉
+
〈
n̂q−σ

〉)
. (5.33)

This number is always positive.
It is interesting to note, that an extension of the KLM by a superexchange interaction∑

q JqSq ·S−q can change this property. Such an extension solely affects the element

(
S−σ

k

∣∣L ∣∣S−σ
k

)
= Ωkσ +

2~2

N

∑
q

(Jq+k − Jq)
〈
2Sz

qS
z
−q + S+

q S−
−q

〉
=: Ωkσ + hσ(k). (5.34)

of the frequency matrix. Compared to the previous result (5.6) the superexchange yields
an extra term hσ(k). Its sign depends on the question, if an ferromagnetic or antiferro-
magnetic Heisenberg coupling Jq is assumed. Since the stiffness D is proportional to the
sum fσ(k) + hσ(k) in the extended version, it might also become negative. Furthermore,
Perkins and Plakida [127] showed for the extended KLM that self-energy corrections cal-
culated in the self-consistent Born approximation result in a similar renormalization of the

6Note that the same kind of k-dependence dominates the magnon-dispersion of a KLM with J →∞
[38, 124]. This might be a hint, that the results of the POM are not limited to weak coupling only.

90



5.2. Alternative POM for the subsystem of local moments

stiffness of the acoustic spin wave branch. However, quantitative statements are missing,
since no numerical evaluations have been provided in their paper.

The sign of the spin wave stiffness is important for the possibility of a phase transition
from ferromagnetism to paramagnetism. The order parameter 〈Sz〉 is mainly determined
by the spectral theorem (5.2). For the two-pole Green’s function (5.28) with spectral
weights gI(k) and gII(k) the energy integration can be performed analytically and leads
to 〈

S−σSσ
〉

=
1

N~
∑
k

{
gI(k)

eβ~ωI(k) − 1
+

gII(k)

eβ~ωII(k) − 1

}
. (5.35)

Due to the appearance of the Bose distribution function, small excitation energies yield
particularly large contributions. Therefore, the behaviour of the acoustic branch of the
magnon dispersion close to the Γ-point determines the magnetism of the KLM. However,
for a numeric evaluation of the magnon spectra the mean-field result Ωkσ is particularly
important. A new suggestion for a determination of its correlation functions is presented
in the next subsection.

A closed system of correlation functions

The mean-field result Ωkσ, which enters the expression (5.28), is essentially a combination
of the correlation functions

〈
Szn̂σ

〉
and

〈
Sσc†−σcσ

〉
, which are not derivable from the one-

electron Green’s function.7 To avoid a mean-field decoupling of the expectation values, one
has to determine each of these entities independently. This is only possible if additional
Green’s functions are considered.

To be logically consistent, we apply the same idea of a two-dimensional basis to the
fermionic subsystem. Again, we have a certain degree of freedom for the choice of the sec-
ond Liouville state. Using our experience with the limit of a ferromagnetically saturated
semiconductor, we choose, in agreement with (4.53), the basis elements

|A) =
∣∣∣c†k,σ

)
and |B) =

1

~N

∑
q

∣∣∣Sσ
−qc

†
k−q,−σ

)
. (5.36)

As will be shown now, this choice is sufficient to obtain a closed system of correlation
functions. Furthermore, the orthogonality of

∣∣A) and
∣∣B) allows the application of the

results in appendix G. Hence, the following expression for the electronic self-energy has
to be evaluated:

Σ
(el)
kσ (ω) = εk −

J

2
zσ〈Sz〉+ ~

∣∣∣(c†kσ

∣∣L∣∣B)∣∣∣2
ω (B |B )− (B| L |B)

. (5.37)

7The spectral theorem of the form (4.102) does not yield the correct combination of correlation func-
tions.

91



CHAPTER 5. The subsystem of local moments

It contains the three anticommutator scalar products

(B |B ) = =
1

~2

〈
S−σSσ

〉
+

2

~
zσ

〈
Szn̂−σ

〉
, (5.38)(

c†kσ

∣∣L∣∣B) = − J

2~2

〈
S−σSσ

〉
+

J

2~

〈
Sσc†−σcσ

〉
− J

~
zσ

〈
Szn̂−σ

〉
, (5.39)

(B| L |B) =
1

N2

∑
q

εq

〈
S−σ

k−qS
σ
−(k−q)

〉
+ 2zσ

1

N

∑
q

εq

{
1

N

∑
p

〈
Sz

pc†q,−σcq−p,−σ

〉}
+

J

2

{
zσ

〈
SzS−σSσ

〉
+ ~

〈
S−σSσ

〉
− ~

〈
S−σSσn̂−σ

〉
− ~

〈
S−σSσn̂σ

〉
+2~

〈
(Sz)2n̂−σ

〉
− 2zσ~2

〈
Szn̂σn̂−σ

〉}
, (5.40)

which can be obtained after a straightforward calculation.
Eqs. (5.38)-(5.40) contain a large variety of correlation functions. On the other hand,

the extended basis of the Liouville subspace provides a large variety of Green’s functions,
too. The (generalized) spectral theorem

〈
(LsY )X+

〉
=

(
− 1

π~

) ∞∫
−∞

dE · Es

eβE ± 1
=m GXY =:

(
− 1

π~

) ∞∫
−∞

dE f
(s)
∓ (E)=m GXY . (5.41)

can be applied to each of them8. Even though there is no limitation for the number s,
Eq. (5.41) provides the most sensitive information for s = 0. An application to two of the
bosonic Green’s functions related to the local-moment subsystem yields equations for〈

S−σ
k Sσ

−k

〉 P
k−→
〈
S−σSσ

〉
and

∑
q

〈
Sσ
−kc

†
q−k,−σcq,σ

〉 P
k−→
〈
Sσc†−σcσ

〉
. (5.42)

In addition, the application of the spectral theorem (s = 0) to two of the fermionic Green’s
functions based on the basis (5.36) yields equations for〈

n̂k,σ

〉 P
k−→ 〈n̂σ〉 and 1

N2

∑
q,p

〈
Sσ
−qS

−σ
p c†k−q,−σck−p,−σ

〉 P
k−→
〈
SσS−σn̂−σ

〉
. (5.43)

However, these equations are not sufficient to determine all correlation functions in
Eqs. (5.38)-(5.40). To fill the gap, the spectral theorem (5.41) for s = 1 is indeed very
useful. It allows the determination of9

1

N

∑
q

〈
Sz

qc
†
k,−σck−q,−σ

〉 P
k−→
〈
Szn̂−σ

〉
and

〈
Szn̂−σn̂σ

〉
. (5.44)

Note, that the application of the spectral theorem with s = 1 to the itinerant Green’s
function

〈〈
ckσ; c†kσ

〉〉
E

alone, only provides a sum of the Ising and the spin-flip correlation
8Due to the two-pole structure of the Green’s functions with real energy poles EI and EII and

spectral weights gI and gII the energy integration can be performed analytically: 〈(LsY )X+〉 =
1
~

{
gIf

(s)
∓ (EI) + gIIf

(s)
∓ (EII)

}
.

9For
〈
Szn̂−σn̂σ

〉
one actually has to use 1

N2

∑
k,q

{〈〈
S−σ

q ck−q,−σ; c†kσ

〉〉
E
−
〈〈

c†k−σ;S−σ
−qck−q,σ

〉〉
E

}
.
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function. The challenge is the independent determination of both contributions. This is,
for example, possible if the information (5.42) of the local-moment subsystem is also used.
Hence, one sees the necessity to treat the itinerant as well as the local-moment subsystem
beyond the mean-field approximation. More importantly we stress again, that we now
treat both subsystems with the same method and accuracy. This meets our criterion of a
balanced approximation.

An attentive reader will recognize that with 〈Sz〉 and 〈SzS−σSσ〉 two correlation func-
tions are still not determined. If we assume S = 1/2, both can be derived from 〈S−σSσ〉.
It will become clear below, that the system of correlation functions can also be solved for
an arbitrary spin quantum number. However, for the following evaluation of the obtained
formulae we will use this assumption.

Figure 5.2: Self-consistent solution for the correlation functions included in a two-
dimensional relevant Liouville subspace of the itinerant and of the local-moment sub-
system. a) Temperature dependence of the magnetization 〈Sz〉 for various band occu-
pations. b) Magnon dispersion of the optical magnon branch ωI(k) at T = 100K. c)
Magnon dispersion of the acoustic magnon branch ωII(k) at T = 100K. The parameters
are: J = 1.0 eV, S = 1/2 and W = 1.0 eV for a simple-cubic lattice.

The set of equations indicated in (5.42) - (5.44) is too complex to provide explicit
expressions for the correlation functions involved. Instead, the system has to be solved
self-consistently. Fig. 5.2 is a typical result of such a numerical evaluation. Part a)
shows the temperature-dependence of the magnetization. For better comparison the same
parameters are used as in Fig. 5.1. One readily notices great deviations from the mean-field
treatment (5.9). Already for low temperatures we do not observe a wide region of nearly
saturated magnetization, as described by the Brillouin function. In contrast a rather fast
decrease of 〈Sz〉 is observed as a function of temperature for T < 100K. The situation
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is much different in the high-temperature regime. Here, the magnetization approaches
the value 〈Sz〉 = 0 asymptotically. However, a definite phase transition temperature TC
cannot be observed.

There are several aspects for an explanation of this kind of behaviour. A princi-
ple problem can already be observed in the treatment with a one-dimensional Liouville
subspace on page 82. If a mean-field decoupling is avoided, one is confronted with the
expression

〈Sz〉 = ~S · tanh

[
β Ωkσ

4zσ〈Sz
0〉

]
= ~S · tanh

[
βJ
{

2
〈
Szsz

〉
+ ~
〈
Sσc†−σcσ

〉}
/4 〈Sz〉

]
(5.45)

for the magnetization. According to our experience with the POM and the MCDA a self-
consistent determination of the expectation values

〈
Szsz

〉
and

〈
Sσc†−σcσ

〉
always yields

non-zero values. An assumed phase transition to a paramagnetic regime with 〈Sz〉 = 0
therefore implies a divergence in the argument of tanh. Hence, the right hand side of
Eq. (5.45) becomes ±~S, which is a contradiction to the former assumption of 〈Sz〉 on
the left hand side.

This kind of problem persists, if the improved two-dimensional basis is used. Then
the magnon dispersions

ωI, II(k) =
1

2

[
Ωkσ

2N~

(
1

zσ 〈Sz〉
+

1

zσ 〈sz〉

)
+

fσ(k)

2~ zσ〈sz〉

]
± 1

2

√[
Ωkσ

2N~

(
1

zσ 〈Sz〉
+

1

zσ 〈sz〉

)
+

fσ(k)

2~ zσ〈sz〉

]2

− Ωkσ · fσ(k)

N~2 〈Sz〉 〈sz〉
(5.46)

contains again the fraction Ωkσ/ 〈Sz〉. Since the numerator Ωkσ is a positive number in all
our calculations, an assumed paramagnetic configuration yields a divergence of magnon
excitations. However, this does not imply a diverging susceptibility, as it is necessary
for a phase transition. Instead, negative magnon excitations are a prerequisite for an
instability of the ferromagnetic phase at a transition temperature TC.

In Figs. 5.2b and 5.2c the magnon dispersion of the optical and acoustic branch is
plotted, respectively. The former magnons are too high in energy to be important for
our considerations. We have realized before, that the stiffness of the acoustic magnons is
always positive.10 The dispersion remains positive throughout the whole Brillouin zone.
An anomalous softening, as reported by Vogt et al. [163], is not observed within the
approach presented here. Again, the analytical reason for this property is the positive
value of Ωkσ. Since fσ(k) is also positive for all k, the expression in the second line of (5.46)
has always a smaller absolute value than the one in the first line. Hence, ωII(k) > 0 ∀k,
what prevents a phase transition.

Another aspect is important for the evaluation of the presented approach, to close
the system of correlation functions. The suggested methodology for a determination of
the correlation functions (5.42) - (5.44) is not unique. The spectral theorem can also be

10The gapless excitation energy at k=0 is a diverging contribution to the susceptibility. However, in
the case of a positive stiffness constant, this divergence is integrable in spherical coordinates. Hence, the
summation over the three-dimensional Brillouin zone yields a finite value.
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applied to the Green’s functions, which are automatically available due to the choice of our
basis, but not used until now. Each of these applications yields another relation between
the expectation values involved. This can be combined into a large system of equations11.
It turns out, that this system of equations is over-determined. As foreshadowed above,
this fact can be used to fix the values for the corelation functions 〈Sz〉 and 〈SzS−σSσ〉.
However, for S = 1/2, where these entities can be expressed by 〈S−σSσ〉, contradictions
are obtained.12

In this context, a paper of Mancini et al. [86] is worth mentioning. In the bosonic
sector their equation-of-motion approach is comparable to our ansatz, but the proposal
for the fermionic sector corresponds to a Liouville basis formed by

∣∣c†σ) and
∣∣n̂−σc

†
σ

)
. With

this choice the authors were not able to obtain a closed self-consistent scheme. They got
questionable results for the magnon dispersions, too.

In summary, the method of a two-dimensional Liouville subspaces seems to be an
excellent possibility to treat the itinerant and the local-moment subsystem on the same
footing. However, we are confronted with three serious drawbacks: (A) the insufficient
description of the free-electron susceptibility in (5.26), (B) the absence of a critical tem-
perature due to the finite value of Ωkσ and (C) the over-determination of the system of
correlation functions. We believe, that despite the shortcomings it is worth to continue
further investigations in this direction. Within this thesis we will focus on an improvement
of aspect (A) in the following.

A further extension of the symmetric two-dimensional basis

The insufficient k-dependence (5.26) of the frequency matrix is a consequence of the
relevant Liouville subspace. Apparently, the description of the electronic degree of freedom
has to be extended to obtain a Lindhard-type susceptibility. In (5.21) the spin operator
s−σ
k has been used, to incorporate spin-flip processes in the conduction band. Expressed

in terms of Fermi operators, this is identical to a sum of Liouville states. In contrast to
that, we define the basis

|A) =
∣∣S−σ

k

)
and |Bk’) = ~

∣∣∣c†k’−k,−σck’,σ

)
. (5.47)

Due to the omission of the sum the corresponding level of description has N+1 dimensions.
Therefore, it includes many more physical processes than with the previous choice of a
basis.

The price for this advantage is the large number of entities that appear in the Mori
equations. Due to the high dimensionality of the problem the compact matrix notation
(3.26) is less appropriate for the solution than a set of scalar Mori equations, as given in

11An example for an extensive treatment of such systems of equations can be found in [49].
12In particular, this affects the correlation function

〈
Sσc†−σcσ

〉
.

It can be obtained from
∑

k,q

〈〈
Sσ
−k; c†q−k,−σcq,σ

〉〉
E

as well as from
∑

k,q

〈〈
ck,σ;Sσ

−qc†k−q,−σ

〉〉
E

.
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(3.23). Again, we neglect the effect of the memory matrix. Therefore, the equations

ω

(
Ai

∣∣∣∣ 1

ω − L

∣∣∣∣Aj

)
≈ (Ai |Aj ) + (Ai |L|Al) χ−1

lm

(
Am

∣∣∣∣ 1

ω − L

∣∣∣∣Aj

)
(5.48)

= (Ai |Aj ) +

(
LAi

∣∣∣∣P 1

ω − L

∣∣∣∣Aj

)
, (5.49)

have to be considered13. Eq. (5.49) clearly demonstrates the equivalence to the procedure
in decoupling approaches. In the latter, the equations of motion

ω

(
Ai

∣∣∣∣ 1

ω − L

∣∣∣∣Aj

)
= (Ai |Aj ) +

(
LAi

∣∣∣∣ 1

ω − L

∣∣∣∣Aj

)
(5.50)

have to be simplified somehow such, that the higher Green’s functions at the right hand
side are expressed in terms of known Green’s functions on the left. The same is done
in a POM which is restricted to the frequency matrix. However, the vague formulation
“somehow” is now replaced by the clear instruction |LAi)→ P |LAi). The approximation
consists of neglecting the memory matrix. Since the memory matrix involves only terms
which are of order J2 or higher orders in J , the approximation is controlled in the sense
of a perturbation theory.

For the considerations of this section, we have to use the projector

P = |A)
1

(A |A)
(A|+

∑
k’,k”

|Bk”)
1

(Bk” |Bk’ )
(Bk’| . (5.51)

As mentioned above, its action on the time derivative of the basis states (5.47) needs to
be evaluated. Making use of the orthogonality of this basis14 we formally obtain

P |LA) =
(A| L |A)

(A |A)
|A) +

∑
k’

(Bk’| L |A)

(Bk’ |Bk’ )
|Bk’) (5.52)

P |LBk’) =
(A| L |Bk’)

(A |A)
|A) +

∑
k”

(Bk”| L |Bk’)

(Bk’ |Bk’ )
|Bk”) . (5.53)

The results have to be inserted into Eq. (5.49). Still, one is confronted with (N+1)×(N+1)
equations. A detailed analysis shows that the k”-summation in (5.53) in particular renders
the solution of this system difficult.

The relevant matrix element of the frequency matrix is given by

(Bk”| L |Bk’) = ~(εk’−k − εk’)(〈n̂k’σ〉 −
〈
n̂k’−k,−σ

〉
) δk’,k”

+
J~
2N

∑
q

{〈
S−σ

q c†k’+k+q,σck’−k,−σ

〉
+
〈
S−σ

q c†k’,σck’−q,−σ

〉
zσ

〈
Sz

qc†k’,σck’−q,σ

〉
− zσ

〈
Sz

qc†k’+k+q,−σck’−k,−σ

〉}
δk’,k”

+
J~
2N

{
zσ

〈
Sz

k”−k’c
†
k”,σck’,σ

〉
− zσ

〈
Sz

k’−k”c
†
k’−k,−σck”−k,−σ

〉}
. (5.54)

13 For clarity we have used a general basis {|Ai)}i.
14 Note, that (Bk” |Bk’ ) = ~2

〈
n̂k’,σ − n̂k’−k,−σ

〉
δk’,k”.
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Apart from the last line, all terms in (5.54) are multiplied with δk’,k”. Additionally, a
mean-field decoupling of the last two expectation values yields the proportionality to
δk’,k” for these cases, too. As a consequence, the k”-summation in (5.53) vanishes and an
explicit expression is obtained for the mixed Green’s function

(
Bk’

∣∣ 1
ω−L

∣∣A) . In turn, this
result can be inserted into the Mori equation for

(
A
∣∣ 1
ω−L

∣∣A). In this way, the complex set
of equations is reduced to a single equation for the magnon Green’s function, which can be
solved analytically. The identical choice of the basis element

∣∣S−σ
k

)
implies the structure

of this Green’s function to be again of the familiar form (5.17). Now, the correction in
terms of the memory matrix is given by

Mkσ(ω) =
∑

k’

|(Bk’ |L|A)|2

ω (Bk’ |Bk’ )− (Bk’ |L|Bk’)
. (5.55)

Actually, this result is quite similar to expression (5.27) obtained with the symmetric two-
dimensional basis. However, the decisive difference is the position of the k’-summation.
Previously included in the function fσ(k), the summation now affects the denominator
as well as the numerator of the memory matrix. This has a strong effect on the magnon
dispersions.

As mentioned above, a prerequisite for this strategy is the mean-field decoupling of
only two correlation functions. In accordance with other calculations in this thesis one
could go one step further by treating all involved correlation functions in a mean-field
manner. Then the memory matrix (5.55) can be specified:

Mkσ(ω) = J2
∑

k’

〈Sz〉2
〈n̂k’σ〉 −

〈
n̂k’−k,−σ

〉
ω − 1

~ (εk’−k − εk’ + Jzσ〈Sz〉)
. (5.56)

This result has the structure of a Lindhard function, as desired. One can conclude, that
the extension of the level of description to N + 1 dimensions is a promising concept for a
proper incorporation of conduction electrons.

Expression (5.56) is identical to the result of a random phase approximation (RPA) of
the one-magnon Green’s function [167]. The RPA is a standard equation-of-motion ap-
proach for local-moment systems. Within this concept, all emerging Green’s functions are
mean-field decoupled, and only a single higher-order Green’s function is retained.15 Due
to the equivalence of (5.49) and (5.50) discussed above the similarity of our calculations
with the RPA result is not surprising.

From the perspective of the POM the RPA result is based on two kinds of simplifi-
cations: On the one hand, the level of description is limited to the Liouville subspace
spanned by (5.47). Since the memory matrix is neglected, no contribution of the or-
thogonal compliment of this subspace is considered. On the other hand, the mean-field

15A very different result is obtained, if the equations are decoupled at the same stage in Wannier
representation [137]. This is a hint for the arbitrariness of this approach.
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decoupling of the Green’s function is equivalent to a mean-field treatment of all corre-
lation functions. We would like to stress again, that the disappearance of challenging
divergencies such as

Ωkσ/ 〈Sz〉 = JN
{

2
〈
Szsz

〉
+ ~
〈
Sσc†−σcσ

〉}
/ 〈Sz〉 ≈ 2JN 〈sz〉 (5.57)

is due to this mean-field treatment. Perhaps, this treatment is even more adequate for
the KLM than others, which avoid a mean-field decoupling. This would explain the
otherwise surprising success of the RPA. Before discussing generalizations, we should
therefore investigate the properties of the RPA more thoroughly. This will be done in the
next section.

5.3 The random-phase approximation
We formulate our result (5.17)+(5.56) for the one-magnon Green’s function for σ =↑:

〈〈
S+
−k; S

−
k

〉〉
E

=
2N~2 〈Sz〉

E − J 〈sz〉+ 1
2
J2~ 〈Sz〉χ0(k, E) + i0+

,

χ0(k, E) =
1

N

∑
q

〈
n̂q,↓

〉
−
〈
n̂q+k,↑

〉
E − J 〈Sz〉 − (εq − εq+k) + i0+

.

(5.58)

This result is in agreement with earlier investigations of magnon excitations in the KLM.
Already in 1962 an expression similar to (5.58) was obtained by Vonskovsky and Izyumov
[164] for 〈Sz〉 ≡ ~S. Decades later Woolsey and White [171] as well as Babcenco and
Cottam [6] derived (5.58) diagrammatically from a single electron-hole Green’s function
loop. Similarly to Vonskovsky et al. the former work is limited to 〈Sz〉 = ~S, although
they used a more profound diagrammatical perturbation theory developed by Giovannini
et al. [43]. Also Babcenco et al. did not determine 〈Sz〉 self-consistently. A temperature
dependent calculation with equations of motion has, e.g., been provided by Sigrist et al.
[153] and Wang [167].

Furthermore, it is worth mentioning, that the Lindhard function χ0(k, E) is almost
identical to the transverse susceptibility, obtained in a Hartree-Fock approximation of
the Hubbard model [40, 101]. To obtain this Stoner result, one essentially has to replace
J 〈Sz〉 by U 〈sz〉. The Hubbard model differs from the KLM in the position where this
expression appears. In fermionic models it forms the first order contribution, whereas in
the KLM χ0(k, E) is part of the memory matrix.

Despite its familiar structure, a numerical evaluation of the result (5.58) is very rare.
Most of the analytical discussions end with the determination of the spin wave stiffness
[167]. Quantitative approximations are limited to parabolic conduction bands [6, 153],
for which the T = 0 K Lindhard function can be simplified analytically [40]. The absence
of derived magnetization curves in the literature is certainly a consequence of numerical
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5.3. The random-phase approximation

Figure 5.3: Energy poles of the one-magnon Green’s function. The hedged area displays
the region of the Stoner continuum. The acoustic branch is plotted in the whole Brillouin
zone (in the lower part of the figure for an enlarged energy scale), whereas the optical
branch vanishes when it enters the continuum. The parameters are: J = 1.0 eV, n =
0.4, 〈Sz〉 = S = 1/2 and W = 1.0 eV for a simple-cubic lattice.

difficulties [162] related to the integration (5.2)

〈
Sz
〉

= ~S − 1

~2N2

∑
k

(
− 1

π

) ∞∫
−∞

dE f+(E)=m
〈〈

S+
−k; S

−
k

〉〉
E

. (5.59)

The magnetic behaviour is determined by the energy poles of the Green’s function
(5.58), called magnons. They are given by the implicit equation

E(k) = J 〈sz〉 − J2

2
〈Sz〉 <e χ0(k, E(k)). (5.60)

One readily observes, that the magnon spectrum consists of three distinct parts (see
Fig. 5.3). Similarly to the previous Green’s function (5.28), Eq. (5.60) is quadratic in
energy. One of the solution composes an optical magnon branch [EI(k = 0) = J(〈Sz〉 +
〈sz〉)] and the other an acoustic branch [EII(k=0) = 0]. Both have a quadratic dispersion
in the vicinity of the Γ-point. The shape along the high-symmetry directions of the first
Brillouin zone is strongly influenced by the band structure, for which the tight-binding
Bloch dispersion (5.31) has been used.

A qualitatively new feature, not observed in the case of the memory matrix (5.27),
is the appearance of a Stoner continuum. Mathematically, this is the energy region of a
non-vanishing magnon spectral density, due to a finite

=m χ0(k, ES) =
−π

N

∑
q

{〈
n̂q,↓

〉
−
〈
n̂q+k,↑

〉}
δ(ES − J 〈Sz〉+ εq+k − εq). (5.61)
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For a simple cubic lattice this energy interval is given by
[
E

(min)
S , E

(max)
S

]
with

E
(min)
S (k) = J 〈Sz〉 − W

3

{∣∣∣∣sin kx

2

∣∣∣∣+ ∣∣∣∣sin ky

2

∣∣∣∣+ ∣∣∣∣sin kz

2

∣∣∣∣} , (5.62)

E
(max)
S (k) = J 〈Sz〉+ W

3

{∣∣∣∣sin kx

2

∣∣∣∣+ ∣∣∣∣sin ky

2

∣∣∣∣+ ∣∣∣∣sin kz

2

∣∣∣∣} . (5.63)

Physically, the energy region is characterized by those spin wave excitations in the local-
moment part, which can be converted to a particle-hole pair excitation in the conduction
band. In this process the hole and the electron have opposite spin and their wave vectors
differ by q. Since it is connected with the disappearance of the spin wave in the local-
moment part, the Stoner continuum yields a damping of magnon excitations.

The optical magnon branch enters the Stoner continuum tangentially. Within the
continuum (5.60) yields no solution for this branch. In contrast the acoustic magnons can
also be observed within the continuum, both theoretically and experimentally [59, 56].
However, they experience a gradually increasing damping. Details of the intersection of
the acoustic branch with the continuum are discussed more fully below.

Evaluations for T =0 K
To avoid numerical difficulties, several authors treated the result (5.58) in a spin wave ap-
proximation, 〈Sz〉 = ~S. Furukawa [38] considers only the lowest order of a 1/S expansion
in this approximation. In the limit J/W →∞ he obtained a magnon dispersion relation,
identical to a ferromagnetic Heisenberg model with nearest-neighbour spin exchange. A
decrease of J yields a reduction of the stiffness constant D and the band width of the
spin wave dispersion.

Qualitatively similar results have been obtained by Vogt et al. [163]. These authors
focused on the dependence of the magnetic properties on the band occupation n. An
increase of n up to quarter filling extends the band width of the spin wave dispersion.
With a further increase of n the magnon energies decrease again. For very small J Vogt
et al. observed an anomalous softening of the acoustic magnons at the zone boundary
of the Brillouin zone. This behaviour is not reproduced in a Heisenberg model with
nearest-neighbour interaction [56].

The presented results can partly explain the magnetic dynamics of maganites mea-
sured in neutron scattering experiments. Furukawa [38] was successful in fitting the spin
wave data for La0.7Pb0.3MnO3 [128]. A zone boundary softening has been measured in
Pr0.63Sr0.37MnO3 [56] and Ni0.7Sr0.3MnO3 [31]. Although other theoretical [155, 67] and
experimental [20] explanations have been suggested , it could well be associated with the
effects reported by Vogt et al. [163]. Therefore, the claim of Hwang et al. [56] that
their experiments are “inconsistent with double exchange models” has been disproven
successfully.

However, the spin wave approximation has shortcomings in explaining the temperature
dependence of neutron scattering data. First of all, the damping of high-frequency spin
waves [128, 56, 20] is not correctly described with this theory. Secondly, an explanation
of the reduction of the spin wave stiffness [31] and an additional zone boundary softening
[56] with increasing temperature is missing.
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5.3. The random-phase approximation

Despite the limited applicability to finite temperatures (〈Sz〉 = ~S is assumed), Vogt et
al. [163] used the spin wave approximation for the determination of the Curie temperature,
too. According to their approach16, the critical temperature is reached, if the number
of magnons equals the spin quantum number S. To count spin excitation one has to
transform the problem to Bose operators, using the Holstein-Primakoff transformation
[53]. The transformed Green’s function differs from its pendant in terms of spin operators
by a factor 1/2S. Hence,

S
!
=

1

N

∑
k

〈
n̂

(Mag)
k

〉
=

1

N

∑
k

(
− 1

~Nπ

) ∞∫
−∞

dE f+(E)
=m

〈〈
S+
−k; S

−
k

〉〉
E

2S ~2
. (5.64)

If damping effects due to the Stoner pair excitations are neglected, the imaginary part
in the integrand reduces to a δ-function. Furthermore, if kBTC is much higher than
the magnon energies, one can linearize the exponential in the Bose distribution function
f+(E). A combination of these assumptions yields

S ≈ 1

N

∑
k

1

βCE(k)
⇐⇒ kBTC ≈

{
1

NS

∑
k

1

E(k)

}−1

. (5.65)

This TC-formula is formally identical to the result of a spin wave approximation of the
Heisenberg model [110]. Therefore, similarities of the obtained results as compared to
the modified RKKY (see p. 16) are not surprising. In particular the dependence of the
Curie temperature on the band occupation as displayed in Fig. 5.4a is in good qualitative
agreement with Fig. 2.1b. The spin wave approximation also predicts an impossibility of
ferromagnetism around half-filling and a parabolic dependence of the Curie temperature
as a function of band occupation. Since the upper n-limit for a finite TC depends on the
coupling constant, there exists a critical J below which ferromagnetism is not possible.

Evaluations for finite temperatures
The temperature enters the RPA formula via expectation values. Now 〈Sz〉, which was
taken as constant above, is the decisive parameter. It does not only appear explicitely in
Eqs. (5.58). If, as is common in the literature, a mean-field input of the conduction-band
subsystem is used, then 〈Sz〉 is also responsible for the temperature-dependence of 〈n̂kσ〉.
In turn, the T -dependence of 〈Sz〉 is given by the Bose function in (5.59).

A value of 〈Sz〉 smaller than the saturation value ~S has two main consequences for the
magnetization spectra: On the one hand, one can read off the Eq. (5.62) that the lowest
energy of the Stoner continuum is proportional to 〈Sz〉. In the spin wave approximation
of Vogt et al. [163] the parameters S and J were chosen sufficiently high to avoid an
intersection of the acoustic magnon branch with the continuum. A similar strategy is
impossible if one considers temperatures close to TC. On the other hand, we learn from

16We have used another formalism for the derivation of Eq. (5.65) than the one provided in [163]. It
allows a physical understanding of the approximation without adapting formulae from a different model.
For S = 1/2 the situation is even more transparent, since Eq. (5.64) is identical to Eq. (5.59) with
〈Sz〉 = 0.
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Figure 5.4: Curie temperatures obtained for the spin wave approximation of the RPA. a)
TC as a function of the band occupation n for different coupling constants. b) TC as a
function of the coupling constant J for different band occupations. The expectation value
〈n̂kσ〉 is treated in a mean-field approximation. The other parameters are: 〈Sz〉 = S =
7/2, T = 0 K and W = 1.0 eV for a simple-cubic lattice. [163]

Eq. (5.60) that the energies of acoustic magnons have also a strong 〈Sz〉-dependence.
Both effects will be discussed below.

Fig. 5.3 already demonstrates that an intersection of the acoustic magnon branch with
the Stoner continuum cannot be avoided. However, the value of the imaginary part of the
Lindhard function differs a lot in the energy interval given by (5.62) and (5.63). There
are also parameter constellations (ES,k) where it is negligible small. For example, one
can rigorously show that

lim
ES→0

=m χ0(k, ES) = 0, (5.66)

provided that a mean-field electronic self-energy is used. For these parameters there is
effectively no damping. Therefore, the way the magnon dispersion is affected does depend
very much on the constellation of k, E(k) and 〈Sz〉, too.

A possible evolution of the intersection of the acoustic branch with the continuum is
illustrated in Fig. 5.5. For magnetizations close to saturation the Stoner continuum is
still too high in energy to have an effect on the magnon branch in the [x, 0, 0]-direction.
If 〈Sz〉 is decreased below 0.45 an intersection takes place and results in a deformation
of the dispersion line. The lower the value of 〈Sz〉 the more pronounced this deformation
becomes. For 〈Sz〉 = 0.4 the deformation takes on the form of a jump in the functional
dependence E(k). A more detailed investigation of this feature (see magnified part in
Fig. 5.5b shows that Eq. (5.60) has three low energy solutions within the vicinity of
k∗ = (π, 0, 0)/

√
2. However, the damping is too large for an observation of a three-peak

structure experimentally as well as in the spectral density

Ak(E) = − 1

π
=m

〈〈
S+
−k; S

−
k

〉〉
E

. (5.67)

Fig. 5.6 demonstrates that the magnon dispersion for a simple-cubic lattice is not
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5.3. The random-phase approximation

Figure 5.5: Variation of the magnon dispersion with magnetization (temperature). The
excitation energy of the acoustic branch (solid lines) and the lower edge of the Stoner
continuum (dotted lines) are shown. With decreasing magnetization (indicated by arrows)
the acoustic magnons enter the continuum. In part b the deformation of two magnon
dispersions is magnified. The parameters are: J = 0.75 eV, S = 1/2, n = 0.2, T = 30 K
and W = 1.0 eV for a simple-cubic lattice.

Figure 5.6: Effect of the Stoner continuum on the acoustic magnon branch in the high-
symmetry directions [x, 0, 0] and [x, x, x]. The strength of the Stoner damping is indicted
by lines of equal spectral density. The same parameters are chosen as in Fig. 5.5, 〈Sz〉 =
0.4.

isotropic. For the chosen set of parameters the behaviour in the directions [x, x, 0] and
[x, x, x] is similar, but the jump in the dispersion is only observed in the [x, 0, 0] direction.
The distance of the intersection from the Γ-point is also not the same for [x, 0, 0] and
[x, x, x]. Furthermore, Fig. 5.6 sketches the damping effect of the Stoner continuum
by providing lines of equal spectral density. This can well explain the heavy damping
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effects observed in neutron scattering experiments [128, 56, 20]. In particular, the strong
increase of the magnon linewidth with temperature can be understood. For the [x, 0, 0]
direction the obtained broadening is so strong, that one might even have difficulties to
experimentally determine an energy that can be associated with an acoustic magnon
excitation.

Figure 5.7: Spin waves along the high-symmetry directions of the Brillouin zone for
different magnetizations (temperatures). The parameters are: J = 1.0 eV, S = 1/2, n =
0.4 and W = 1.0 eV for a simple-cubic lattice.

In Fig. 5.7 the dispersion of the acoustic magnons is plotted for all high-symmetry
directions in the Brillouin zone. In this figure we do not consider damping effects. In-
stead the parameters chosen allow the discussion of another feature: the appearance of
negative magnon energies. As long as the magnetization is equal to its saturation value,
the dispersion is very similar to published calculations with spin-wave approximations [38]
and neutron scattering data [128]. A determination of the Curie temperature based on
Eq. (5.65) yields a finite value. However, if the magnetization is lowered, as it happens
in a self-consistent calculation for finite temperatures based on Eq. (5.59), the dispersion
becomes negative in some regions of the Brillouin zone. The effect is most pronounced
along the path X → M, but the enlarged inset points out that even for small demagne-
tizations (〈Sz〉 = 0.4) the dispersion crosses the line of zero energy in the vicinity of the
X-point.

Usually negative excitation energies are associated with an instability of the system.
This is certainly correct if they are observed for the ground-state configuration 〈Sz〉 = ~S.
Then, whenever connected with a gain in energy, magnons will be emitted and thereby the
magnetization will be reduced. In principle, the situation is not that clear, if 〈Sz〉 is smaller
than ~S. In this case an emission of magnons does not contradict the assumption for the
magnetization.17 Instead, there will be a balance of magnon emissions and absorptions
in a non-collinearly ordered system. The magnetization 〈Sz〉 is just an average over the
varying behaviour in different regions of the Brillouin zone.

17Note, that a negative magnon energy is a positive excitation in terms of the Green’s function〈〈
S−−k;S+

k

〉〉
E

.
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5.3. The random-phase approximation

Figure 5.8: a) Excitations energies of the acoustic magnon branch at equidistant points
throughout the whole Brillouin zone. The horizontal axis shows the distance of these
points from the Γ-point. Certain high-symmetry directions are indicated. b) For three
points of the [0,x,π] direction (indicated by arrows) the energy-dependence of the spectral
density is plotted. The same parameters as in Fig. 5.5 are chosen, 〈Sz〉 = 0.38.

However, within the RPA negative magnon energies always cause inconsistencies. The
reason can be seen in Fig. 5.8. On the left hand side the excitation energy E(k) is
given for an equidistant grid of k-points throughout the whole (irreducible) Brillouin
zone.18 We have chosen three of these k-points to plot the associated spectral density
(5.67) in Fig. 5.8b. If E(k) is sufficiently high (dash-dotted line), the spectral density
has the expected behaviour. Also for negative E(k) (solid line) there is a clear peak in
the functional dependence of Ak(E). However, this peak has negative spectral weight. In
addition we have plotted the spectral density for a positive, but small E(k) (dashed line).
In this case, most of the spectral weight is positive, however a small negative contribution
can also be observed.

The obtained numerical result can readily be confirmed analytically. According to
Eq. (5.61) an energy ES within the Stoner continuum implies the existence of a wave-
vector q such that ES = J 〈Sz〉 − εq+k + εq. Hence,

ES < 0 ⇐⇒ εq + 1
2
J 〈Sz〉 < εq+k − 1

2
J 〈Sz〉 . (5.68)

If, as in all our current considerations, a mean-field input from the itinerant subsystem is
assumed, then the factor in front of the Kronecker δ in (5.61) has the following form

− π
{〈

n̂q,↓
〉
−
〈
n̂q+k,↑

〉}
= −π

{
f−(εq + 1

2
J 〈Sz〉)− f−(εq+k − 1

2
J 〈Sz〉)

}
. (5.69)

18In contrast to Fig. 5.7 this presentation is not restricted to the high-symmetry directions.
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Since the Fermi distribution function is monotonically decreasing, a combination of (5.68)
and (5.69) yields a negative sign for =m χ0(k, ES). Finally, one concludes from (5.58) and
(5.67) that the sign of Ak(E) is the same as that of =m χ0(k, ES).

There is no doubt, that a negative spectral density is in contrast to rigorous analytical
properties of retarded Green’s functions. This limits the applicability of the RPA. As long
as a mean-field input is used for

〈
n̂q,σ

〉
, negative magnon excitations cannot be considered.

For positive but small E(k) one has to accept the violation of sum rules when integrating
over positive energies only. Since the RPA enjoys a wide range of applications, it is
surprising that this fact has, to best of our knowledge, not been reported in the literature.

It is certainly possible to evaluate the RPA for low temperatures. In particular for
large values of 〈Sz〉 and J a mutual interference of the acoustic magnons and the Stoner
continuum can be avoided. Furthermore, we found, that the problem of negative spectral
densities is very much reduced for small band occupations. Therefore, typical magnetiza-
tion curves for n = 0.1 are provided in Fig. 5.9a. The differences compared to the mean-

Figure 5.9: a) Temperature dependence of the spontaneous magnetization 〈Sz〉 calculated
with the RPA Green’s function. The dotted line has been inserted to realize the convexity
of the magnetization. b) Dependence of the Curie temperature on the band occupation.
An evaluation of the RPA formula for T = TC is compared to the spin wave approxima-
tion at T = 0 K. In both figures the expectation value 〈n̂kσ〉 is treated in a mean-field
approximation. The parameters are: S = 1/2 and W = 1.0 eV for a simple-cubic lattice.

field results displayed in Fig. 5.1 are remarkable. In contrast to the Brillouin function
there is no wide temperature range, where 〈Sz〉-values are close to saturation. Instead, the
magnetization decreases rapidly. Close to the Curie temperature the descent is particu-
larly steep. For stronger coupling another striking trend is the existence of magnetization
curves with convex curvature as a function of temperature. A similar feature has already
been observed in Fig. 5.2. This illustrates the fact that with increasing J the difference
between the levels of description for choices (5.21) and (5.47) becomes less important.
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We have not plotted the magnetization close to the Curie temperature. The rea-
son is the low accuracy in this region. Apart from the appearance of negative spectral
weights, the small magnon energies yield a divergence of the Bose distribution function.
In the vicinity of the Γ-point it is possible to perform an analytical integration to master
this problem. However, low excitation energies in other parts of the Brillouin zone are
numerically much more challenging.19

Despite the fact, that the calculation for low magnetizations is difficult, one can esti-
mate the Curie temperature from Fig. 5.9a. Nevertheless, a more accurate determination
is desirable. One could use the spin-wave formula (5.65). The result for J = 1.0 eV is
plotted in Fig. 5.9b as a dashed line. We have discussed the shortcomings of this formula
above. They are related to the fact that properties at T = 0 K are used to determine a
finite transition temperature. A more accurate TC formula would be based on properties
at T = TC. Indeed, one can exploit the fact (e.g., see Eq. (5.60) and Fig. 5.7), that
the magnon energies E(k) become infinitesimally small when approaching TC. Due to
(5.66), the imaginary part of χ0(k, E) can be neglected in this limit. Hence, for T = TC
Eq. (5.59) reads:

~S =
1

N

∑
k

∞∫
−∞

dE f+(E) 2 〈Sz〉 δ
(
E − J 〈sz〉+ 1

2
J2~ 〈Sz〉 <e χ0(k, E)

)
(5.70)

Since it describes higher order effects in the magnetization 〈Sz〉, the E-dependence of
χ0(k, E) within the δ-function can also be neglected. Finally, the fact that kBTC is much
higher than the magnon energies20, allows a linearization of the exponential in the Bose
distribution function f+(E). In combination one obtains the following expression for TC:

kBTC = J2~2

{
4

NS

∑
k

1

<e χ0(k, 0)−<e χ0(0, 0)

}−1

, (5.71)

where 〈sz〉 has been given in terms of <e χ(0, 0) and all contributions are understood to
be taken for 〈Sz〉 = 0. Since it does not include any further approximation, (5.71) is
apparently the exact expression for the Curie temperature within the RPA. The same
expression has been derived, but not evaluated, by Sigrist et al. [153]. 21 Furthermore, it
is worth mentioning, that a structurally identical result is obtained with the Rudermann-
Kittel-Kasuya-Yosida (RKKY) theory (2.35). The second order perturbation theory for
the ground state energy yields Heisenberg exchange parameters (2.35), which are essen-
tially given by χ(k, 0) [110].

19A lot of effort has been invested in an optimization of numerical algorithms for the manifold integra-
tions. This includes adaptive integrations, Cramers-Kronig relations, Sommerfeld expansions, regula falsi
etc.. However, due to the analytic character of this work, we have decided not to present these details.

20In contrast to the derivation of (5.65) this is now a rigorous result.
21The derivation in [153] is not identical to our formalism and surprisingly their final formula (13)

differs by a factor 2 from our result.
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Figure 5.10: Dispersion of χ0(k, 0) as given in the denominator of Eq. (5.71). The k-
dependence for several band occupations has been plotted on top of each other. The
insets show the same dispersions separately. The same display format as in Fig. 5.8 has
been chosen. The parameters are: J = 1.0 eV, S = 1/2 and W = 1.0 eV for a simple-cubic
lattice.

Although a numerical evaluation of Eq. (5.71) includes one energy integration less
than the calculation of the magnetization 〈Sz〉 based on (5.59), the twofold summation
over the whole Brillouin zone remains challenging. Fig. 5.10 displays the k-dependence of
the Lindhard function for several band occupations. For n = 0.01 the spectrum is almost
isotropic. With increasing n the stiffness constant decreases; for k further away from the
Γ-point the Lindhard function increases and the dispersion becomes less isotropic. The
last point is the reason why for n > 0.12 the value of χ0(k, 0) becomes negative in the
vicinity of the X-point.22 As a consequence the sum (5.71) has diverging contributions.

In Fig. 5.9b the Curie temperature obtained with Eq. (5.71) is plotted as a function
of the band occupation (solid lines). In the region of small n we note a steep increase
of TC. The maximum Curie temperature is obtained at n ≈ 0.03. If the number of
conduction electrons is increased further, a fast reduction of the phase transition tem-
perature is observed. The behaviour shows strong deviations from the n-dependence of
TC as obtained using Eq. (5.65) based on spin wave theory (dashed line in Fig. 5.9b).
This observation seems to be in particular relevant in the current discussion of diluted
magnetic semiconductors, where some authors [175, 13] rely on the TC-formula (5.65).

Furthermore, Fig. 5.9b can be compared to results obtained for the conventional
RKKY theory by Santos et al. [116]. For small band occupations there is an excellent
qualitative agreement. However, for values of n above the maximum TC there are consider-

22Contrary to the discussion on negative spectral densities (p. 106) the negative values reported here
are not in conflict with analytical requirements for the Green’s function.
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able differences. Calculations for the conventional RKKY theory predict a J-independent
critical band occupation nc ≈ 0.13 above which ferromagnetism is not allowed. This re-
sult is not confirmed by our calculations. The discrepancy is certainly due to different
numerical techniques. Santos et al. evaluated the RKKY theory in real space. Heisen-
berg exchange integrals J

(RKKY)
ij for many shells of neighbours were implemented in the

program. However, the number of shells has to be truncated and the question of conver-
gence cannot be answered. Such a truncation is not necessary for a k-summation over
the whole Brillouin zone. Instead the above mentioned divergencies, limit the accuracy
of the integrations. This is also the reason, why results for n > 0.25 are not presented in
Fig. 5.9b.

Nevertheless, at least for n < 0.12 the numerical evaluation of (5.71) does yield reliable
results. An impressive argument in favour of this remark comes from a comparison of
Figs. 5.9a and 5.9b. The figure on the left hand side has been calculated for n = 0.1.
This band occupation has been marked by a dotted line in the figure on the right hand
side. One can readily convince oneself, that the obtained Curie temperatures, based on
Eq. (5.71) are in very good agreement with the estimated values from magnetization
curves based on (5.59). This is true for all J considered. In turn one concludes, that also
the magnetization curves yield a J2-dependence of the Curie temperature.

Combination with results for the itinerant subsystem
Within the language of the POM the RPA formula can be derived based on a one-
dimensional basis for the level of description, a memory matrix where the dynamics is
governed by the mean-field Liouvillian and consequent mean-field decoupling of all corre-
lation functions. The application of exactly the same procedure to the itinerant subsystem
has lead to the expression for the second order perturbation theory (4.85). Hence, we were
successful in developing a formalism, that can treat both subsystems on the same footing.

A further step would be a combination of these two theories into a self-consistent
iteration scheme. The itinerant Green’s function enters the RPA formula via

〈
n̂qσ

〉
. In

all previous calculations of this section, this expectation value has been evaluated by
applying the spectral theorem to a mean-field Green’s function. It is a natural extension
to use the SOPT Green’s function instead. Going one step further, one could even apply
the result of the MPT.

The outcome of this procedure is illustrated in Fig. 5.11. For comparison, the density
of states and the spin wave dispersion obtained using a mean-field self-energy are presented
again in the first row. The magnetization 〈Sz〉 varies from saturation to 〈Sz〉 = 0.1. In
contrast to Fig. 5.7 the set of parameters has been chosen such that the spin excitation
energies remain positive. As a consequence the dispersion lines are smooth throughout
the whole Brillouin zone. The most pronounced effects appear at the Γ-point.

In the second row the results of a self-consistent SOPT are presented for exactly the
same set of parameters. The spin wave dispersions differ a lot from those above. Already
for 〈Sz〉 = 0.5 the modified QDOS, in particular the scattering part for ↓-electrons, has
a strong influence on magnon dispersions. Within a wide region centered around the
Γ-point a harmonic behaviour is observed. The stiffness constant is much larger than for
the mean-field input. This yields rather large magnon excitation energies, which are not
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relevant for the thermodynamics of the system. Between the local minima at the Γ-point,
the M -point and the R-point the dispersion shows sharp peaks. If the magnetization is
lowered, the principle structure of the dispersion remains unchanged. The harmonic region
is reduced and the excitations energies are shifted to lower values in the remaining part
of the Brillouin zone. A qualitatively new and decisive characteristic is the large region
of the Brillouin zone for which we observe negative excitation energies. This feature is
not any more limited to certain parameter configurations. On the contrary, as soon as
the magnetization is sufficiently low, we observe negative magnon energies for all coupling
strengths and band occupations.

The usage of the MPT instead of SOPT (third row in Fig. 5.11) does not yield signif-
icant differences in the spin wave dispersion. For n = 0.1 the latter is determined by the
lower edge of the QDOS. Here, the differences between MPT and SOPT are negligible
as compared to the mean-field QDOS. Only for 〈Sz〉 = 0.5 does the MPT show small
deviations from the SOPT, which result in much lower peaks in the spin wave dispersion.
The MPT also shows large regions of the Brillouin zone with negative magnon energies.

As discussed above, such a behaviour is not consistent with analytical properties of the
RPA. However, for the proof of negative spectral densities relation (5.69) is based on the
condition of a mean-field self-energy. This seems to be a general property of the RPA: It
is designed for a mean-field input from the conduction electron subsystem. The spin wave
dispersion reacts very sensitively to a change of this self-energy. Since the derivation of
the RPA with the POM revealed the necessity of a mean-field decoupling of all correlation
functions, this observation is perhaps not surprising. A more advanced expression for the
self-energy for 〈n̂kσ〉 would imply, that not all correlations functions are treated on the
same footing. In chapter 4 we have already noticed that such an inconsistency yields
unphysical results. In conclusion, it can be stated that an improvement of a decoupling
theory, which only affects a few correlation functions, does also not work for the RPA.
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RPA with mean-field self-energy (4.76):

RPA with self-energy of second order perturbation theory (4.85):

RPA with self-energy of modified perturbation theory (4.96):

Figure 5.11: Comparison of the spin wave dispersion for several electronic self-energies.
The left column shows the densities of states related to the approximation of the itinerant
subsystem. In the right column the corresponding spin excitation energies are displayed.
For both cases 〈Sz〉 has been varied. The parameters are: J = 1.0 eV, n = 0.1, S = 1/2
and W = 1.0 eV for a simple-cubic lattice.
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Chapter 6

Concluding remarks

In the first chapter, we have stated the twofold intention of our research. On the one
hand, we were interested in an assessment of the projection-operator method as a new
approach to the Kondo-lattice model. On the other hand, we wanted to investigate
analytical properties of this model. After explaining the model (Chap. 2) and the method
(Chap. 3), we applied the POM to the subsystem of itinerant carriers (Chap. 4) and the
subsystem of local moments (Chap. 5). Throughout this thesis all considerations were
guided by the intentions mentioned above. Therefore, the conclusions, which are drawn
in this chapter, are also given from these two perspectives. Afterwards, suggestions for
further investigations in this field will be given.

6.1 Assessment of the POM
The projection-operator method (POM) fulfills almost all expectations, which have been
raised at the beginning of this thesis. First of all, we wanted to have a controllable
approximation scheme. This requirement is automatically met by the philosophy of map-
ping the dynamics of the system under investigation onto a relevant Liouville subspace,
called the level of description. It ensures, that all dynamic ingredients of the model are
treated equally. This is an advantage as compared to decoupling techniques such as the
MCDA (p. 15f), which apply different approximations to different types of higher-order
Green’s functions. Furthermore, we have shown (p. 52ff), that a straightforward choice of
subspace basis elements yields an expression for the self-energy, which is exact to second
order in the coupling constant.

Since the focus of the POM is the memory matrix, this method directly addresses the
self-energy rather than the Green’s function itself. The POM shares this property with
diagrammatic perturbation theory, but it is not a feature of decoupling techniques. An
advantage can be seen most clearly in the context of our modified perturbation theory
(p. 60ff). By construction, any approximation of the memory matrix automatically fulfills
the first three moments of the spectral density. This is due to the fact that each coefficient
of the high-energy expansion of the self-energy, provided in (2.22), already contains a sum
of spectral moments. The property is similar to cumulant expansions and the linked
cluster theorem for Feynman diagrams.
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Another advantage of the POM has been demonstrated in the context of the ferro-
magnetically saturated semiconductor (Sec. 4.1): One has a variety of possibilities to
apply the POM. This includes the choice of a level of description, its extension in several
steps and also the determination of expressions within a level of description. For the
exactly soluble limit mentioned above we have first presented a strategy (p. 41f) without
any approximations. Secondly, we were able to provide a Taylor expansion of the exact
self-energy by rearranging sums (p. 41ff). Furthermore, the restriction of the full Liouvil-
lian in the denominator of the memory matrix to its mean-field part has been introduced
(p. 45f). Finally, the concept of a two-dimensional basis of the relevant Liouville subspace
has been explained (p. 47). In particular, the approximations suggested in strategies III
and IV are important for the investigation of arbitrary parameter configurations.

Within this thesis we have mainly presented calculations, that apply the strategy of a
restricted Liouvillian to the full Kondo lattice. The reason for this choice is our interest
in a weak-coupling theory. The neglect of the interaction part of the Liouvillian in its
denominator (p. 52f and p. 84f), guarantees that the memory matrix is exact to second
order in the coupling strength. Since this strategy implies the summation of an infinite
geometric series, it is not the simplest approach. For the subsystem of itinerant electrons
it has the advantage, that a lot of the dynamics of the KLM is included in the self-energy
via (energy-dependent) propagators. This feature lead us to hope that the importance of
correlation functions, involved in the expression for the Green’s function, is reduced.

Of course, instead of summing up an infinite geometric series, one could evaluate many
terms of the infinite continued fraction for the memory matrix. Within the POM this is
an alternative strategy and is, similar to the evaluation of spectral moments (in a spectral
density approach), always possible, at least in principle. As a consequence, many more
correlation functions have to be considered and the dynamics cannot be expressed in
terms of propagators any more. For these reasons, our calculations based on this strategy
were not very promising and did not enter this thesis. Nevertheless, it is worthwhile to
perform further investigations in this direction.

The discussion brings us to a decisive conceptual difficulty of the POM: The suscepti-
bility matrix, the frequency matrix and the memory matrix contain correlation functions.
The POM does not provide an inherent recipe for determining these static quantities. One
has the possibility to increase the basis such that the spectral theorem can be applied
to several Green’s functions. If this is not wanted, the correlation functions have to be
evaluated independently. The POM shares this feature with all other equation-of-motion
approaches for Green’s functions, since it is based on the Mori equations (3.13). We have
mentioned an approach by Becker and Fulde to overcome this shortcoming by treating
static values in the same way as dynamic entities, using Liouville scalar products in terms
of cumulants (p. 30). The application goes beyond the scope of this thesis, but it is rec-
ommended as for further research. For consistency and simplicity, we have mainly used
mean-field expectation values in our considerations. Furthermore, an extended version
based on the spectral theorem (Sec. 5.2) has been evaluated.

Our goal of treating both subsystems of the Kondo-lattice model similarly is connected
to the issue of correlation functions. This is due to the fact that the itinerant subsystem is
strongly influenced by the magnetization of localized electrons 〈Sz〉. In turn, the localized
subsystem depends on the band occupation 〈n̂σ〉. Hence, the one-electron and the one-
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magnon Green’s function need to be evaluated. It is an important advantage of the POM,
that its application is not restricted to one of the subsystems.

Indeed, performing the same kind of restriction of the Liouvillian within the mem-
ory matrix we successfully obtained non-trivial results for the one-electron Green’s func-
tion (Sec. 4.3) as well as for the one-magnon Green’s function (Sec. 5.1). Consequently,
the quality of the memory-matrix with respect to the coupling strength is the same for
both. The interesting physical properties derived from these results will be summarized
in Sec. 6.2.

A shortcoming of the approach is related to the fact that the correlation functions〈
Szn̂σ

〉
and

〈
Sσc†−σcσ

〉
appear separately in the equations. Therefore, the determination

of their sum, accessible from the one-particle Green’s function, is not sufficient. This is
in contrast, e.g., to the interpolating self-energy approach of Nolting et al. (p. 14).

However, a more serious problem is an apparent inconsistency in using at the same
time a decoupling procedure for several correlation functions and an advanced theory for
〈n̂σ〉. We were confronted with this fact in the context of the random-phase approximation
(p. 109f). The decoupling is necessary for managing the emerging expressions. On the
other hand, the correlation function 〈n̂σ〉 is the only possibility for incorporating higher-
order coupling effects of the conduction band into the physics of local moments. The
combination has lead to negative magnon dispersions. We argue, that this feature is an
artifact of the applied theory, rather than being related to physical properties of the KLM.

In Sec. 5.2 we have suggested a modification of the POM, that allows for an advanced
evaluation of correlation functions. By extending the basis of the level of description
to two dimensions, we were able to derive all correlation functions self-consistently from
the respective Green’s functions, using the spectral theorem. This demonstrates that
the POM is capable of treating correlation functions as accurate as standard equation-
of-motion approaches. In fact, we have highlighted the close relationship to decoupling
techniques (p. 96), if the contribution of the two-dimensional memory matrix is neglected.
It is worth mentioning that, even with an enlarged level of description, we have always
treated the itinerant and the local-moment subsystem separately and obtained a combi-
nation of the subsystems via the correlation functions. This is due to the fact that the
most convenient choice for the Liouville scalar product differs in both subsystems, since
the one-particle excitations belong to different (Fermi and Bose) statistics. Nevertheless,
for further investigations it is worthwhile to study an approach that resorts to a single
level of description, despite of these differences.

When applying the POM to the KLM, we obtained the impression that it is a very
compact formalism, as compared to the decoupling techniques for example. Despite all
variety, this limits the diversity of treating certain dynamical functions within the formal-
ism. At the beginning of this section we have mentioned this property as an advantage
in terms of controllability. At the same time, it complicates the adjustment to physical
situations. Therefore, it is much more difficult to obtain the exact solution of the limit of
the ferromagnetically saturated semiconductor within the POM compared to solving the
eigenvalue problem, for example.

To summarize this part, we can state that the POM comes into its own when being
applied to the KLM. It combines advantages of the decoupling techniques and the dia-
grammatic perturbation theory. Therefore, it allows insight into the physics of the KLM,
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which has not been possible before with other methods. However, the major problem
of treating the static quantities within the same theory has not been resolved by this
method. This drastically limits the success of an application of the POM.

6.2 Weak-coupling results for the KLM
Since diluted magnetic semiconductors became a hot topic in solid state physics, the
Kondo-lattice model has been used in hundreds of publications for a theoretical expla-
nation of magnetic phenomena in these materials. However, in most of these works the
physics of the model is either mapped onto the Heisenberg model using a conventional
RKKY theory, or it is treated in a mean-field approximation. Both approaches are weak-
coupling theories. With this thesis we have addressed the same limit, but we go beyond
these theories. The corrections obtained are highly relevant for physical properties of
materials concerned.

For the itinerant subsystem the mean-field result is just the first step of the POM.
Higher order effects are included in the memory matrix (4.84), which has been constructed
such that it is exact to second order in the coupling strength. The analytic structure of
this expression revealed a strong influence of these higher-order contributions. In contrast
to a mean-field theory, the one-electron excitations depend on the current state of all
other electrons. Moreover, the magnon dispersions of the subsystem of localized spins are
relevant for conduction electrons, too.

Accordingly, strong correlation effects have been observed in the quasiparticle density
of states (p. 55). Already for moderate values of the coupling strength, we have noticed
a substantial broadening and a two-peak structure of the QDOS for ↓-electrons. For
non-zero band occupations also ↑-electrons experience correlation effects. With rising
temperature a considerable deformation of the QDOS and a redistribution of spectral
weight have been obtained (p. 57). The results have very little in common with a mean-
field shift of the free density of states. However, there are qualitative similarities to
the MCDA (p. 15ff). This holds even without using a fit to limiting cases such as the
magnetic polaron or the atomic limit. Therefore, we can conclude that the essential
physics predicted by this decoupling approach is confirmed by second-order perturbation
theory (SOPT).

We have also addressed the question of 100% polarized conduction electrons (p. 57f),
which is interesting for spintronics applications. From conventional SOPT one cannot
exclude situations for which all electrons carry the same spin. However, for the more
reliable perturbation theory around the Hartree-Fock solution a complete polarization is
not allowed for sensible values of the coupling strength (p. 143).

We have not only pointed out that the propagators within the SOPT expression should
be refined, we also argued that the structure of the self-energy can be modified in order
to incorporate additional physical properties (p. 60ff). The construction of our modified
perturbation theory (MPT) is strongly influenced by the limit of the ferromagnetically
saturated semiconductor. The atomic limit is included for n = 0 and n = 2. Furthermore,
the high-energy expansion is fulfilled to power E−2. Studying several versions we were
able to make an informed statement, which of all approaches is the most reliable one.
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In particular, we showed that the calculations have to be performed self-consistently.
Furthermore, we mentioned the necessity to treat all correlation functions on the same
footing.

All of the suggested approaches had in common that they are correct up to second order
in the coupling parameter J . Nevertheless, our improvements are of a non-perturbative
nature in the sense that no Taylor series expansion is provided. This is not predominantly
due to technical reasons. A pure perturbation theory can probably not explain disconti-
nuities in the physical properties of the model as J changes sign. Additionally, we have
pointed out (p. 44) that in the limit of a ferromagnetically saturated semiconductor the
J3-contribution to the exact self-energy diverges although the sum over all orders yields
a finite result.

We have discussed (p. 69ff) several features of the QDOS for the MPT. The crossover
from the ferromagnetic to the paramagnetic situation as well as the crossover from an
empty conduction band to half-filling has been considered. The results are consistent and
sound. Most remarkable, as compared to the MCDA, are strong correlation effects for
majority-spin electrons. Even at T = 0 K we observed for some parameter constellations
a two-band structure for ↑-electrons, deviating from a mean-field density of states. This
aspect is particularly relevant for combinations of many-body calculations with ab-initio
results based on a density functional theory.

Furthermore, we have investigated the subsystem of localized magnetic moments of
the KLM without making use of a mapping onto the Heisenberg model. Instead, the
magnetization was determined by the magnon dispersion relations, as obtained from the
one-magnon Green’s function. The POM has been applied for this purpose. The cal-
culations revealed a couple of analytical peculiarities of the KLM, which, to the best of
our knowledge, have not been addressed before. We consider the points mentioned below
to be essential in order to understand the behaviour of this model and the possibility of
ferromagnetic order.

Already the first-order result, the frequency matrix (p. 82), contains the expression
{2
〈
Szsz

〉
+ ~

〈
Sσc†−σcσ

〉
}/ 〈Sz〉, which gives rise to question marks. By definition, the

denominator 〈Sz〉 vanishes at the Curie temperature. By contrast, approximations such
as the MCDA in combination with the modified RKKY theory (p. 17f), predict the
numerator 2

〈
Szsz

〉
+ ~
〈
Sσc†−σcσ

〉
to remain finite within the paramagnetic regime. We

have shown that within a simple mean-field approach the resulting divergence contradicts
the possibility of a phase transition (p. 94). The evaluation of a more advanced approach,
using a closed system of correlation functions (p. 91ff), supported this result.

If the local-moment subsystem of the KLM is considered in the literature, the random-
phase approximation (RPA) is usually employed (p. 19). Due to the Tyablikov decoupling
the sum of correlation functions mentioned above does not cause problems anymore. It
remains an open question, whether or not this procedure is a proper physical answer
to the difficulties mentioned above or if the RPA circumvents these difficulties by using
unjustified assumptions.

The application of the POM does inevitably lead to the RPA formulae, too. This was
the result of two different approaches. The evaluation of a two-dimensional frequency
matrix (p. 95ff) most clearly illustrated the assumptions on which the RPA is based: It
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reduces the relevant dynamics to the excitations
∣∣S−σ

k

)
and

∣∣c†q−k,−σcq,σ

)
, and it mean-

field decouples all static expectation values. However, an approach which also includes the
memory matrix (p. 81) demonstrates more clearly the drastic simplifications inherent in
the RPA. Within this approach the RPA formulae can only be obtained from (5.15), if in
addition the correlation functions

〈
S−σ

q+kS
σ
−q−k

〉
and

〈
Sz

q+kS
z
−q−k

〉
are also decoupled into

products of two expectation values. Furthermore, one k-independent contribution to the
memory matrix has to be neglected. Due to numerical constraints, these simplifications
were also required in our investigations (p. 98ff). It turned out that the computation of
the resulting magnon dispersions remains demanding, if one does not resort to a harmonic
approximation.

The magnetization curves obtained (p. 106) show clear deviations from a Brillouin
function and yield finite transition temperatures. We were able to show that a calculation
of the Curie temperature based on spin waves at T = 0 K is insufficient. Instead, our
TC-formula has a structure similar to the one obtained from conventional RKKY theory.

Within our approach, a temperature-dependent deformation of magnon dispersions
and the influence of the Stoner continuum is incorporated. Both effects reduce the pos-
sibility of a ferromagnetic order. More importantly, they are both related to negative
magnon energies which arise within the RPA. The existence of negative excitation ener-
gies in a spin-wave theory is not surprising. However, we found out that within RPA these
energies also imply a negative spectral density. Such a behaviour contradicts analytical
properties of retarded Green’s functions. Hence, the applicability of the RPA formulae
is questionable, at least for certain parameter constellations. Reliable statements on the
magnetic behaviour can be made for small band occupations, where softening effects are
less important.

Finally, we have investigated the possibility of an extension of the RPA. In the liter-
ature the RPA theory is always discussed using uncorrelated conduction electrons. We
tried to understand the effect of the electronic self-energy on the local-moment subsystem
using the expectation value 〈n̂kσ〉 for a connection of both subsystems. We observed a
dramatic influence of correlations in the conduction band on the magnon dispersion. Us-
ing the self-energy of the SOPT and the MPT instead of a mean-field expression leads to
clear changes of the spin-wave excitation energies. As a matter of fact, negative magnon
energies become a dominant feature for these self-energies. Due to the reason mentioned
above, this excludes a further usage of the results. Even worse, it is our impression
that the inevitable mean-field decoupling, necessary for the derivation of the RPA, is not
consistent with any input which goes beyond a mean-field description. Since the RPA
is probably the most advanced theory for a treatment of the localized subsystem of the
KLM, which does not resort to the Heisenberg model, which uses quantum-mechanical
spins and is still numerically manageable, this is an unwelcomed message for attempts to
combine advanced theories for the itinerant and the local-moment subsystem.
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6.3 Perspectives
The Kondo-lattice model with its two subsystems of electrons is a challenge from a physical
and mathematical point of view. This remains true, even if a very compact and powerful
tool such as the projection-operator method is used. This thesis is aimed at presenting a
complete overview of the potential of this method in the context of the KLM. However, it
is not meant to be an exhaustive study of all many-body effects of the KLM. By contrast,
our research has raised new questions, which have not been addressed before.

We believe that it is worthwhile expend upon some of these questions. From our
perspective, the crux of a deeper understanding of the magnetism in materials as described
by the KLM is a proper combination of the two subsystems of the Kondo-lattice model.
Therefore, an improvement of the RPA theory is essential. A good starting point is our
derivation of the one-magnon Green’s function based on an infinite series for the memory
matrix (5.15). A proper approximation of the two terms, not considered within RPA
should be performed in order to study their influence.

Furthermore, our method of obtaining a closed system of Green’s functions (p. 91) can
definitely be improved by a more systematic handling of the correlation functions and by
taking the memory matrix into consideration. It is desirable to treat the two-dimensional
basis in the same way as it has been done for the one-dimensional basis of the SOPT. This
would resolve the problem of a proper determination of the correlation functions

〈
Szn̂−σ

〉
and

〈
Sσc†−σc

†
σ

〉
, which are essential for the physics of the KLM, since these expressions

contribute to the ground state energy. To extend the list of wishes, the two-dimensional
basis should be treated such that the two important limits of ferromagnetic saturation and
zero bandwidth are automatically included, without using workarounds such as the MPT.
Our study of these limits (p. 47 and p. 49f) was very promising, but a straightforward
implementation turned out to be not successful. Some new ideas for an effective treatment
of the cumbersome equations are required.

We believe that a comprehensive understanding of the Kondo-lattice model implies
an understanding of the magnetism in many materials. Nevertheless, there is no doubt
that the model has to be adapted to certain experimental situations by incorporating a
superexchange interaction or a Hubbard term. For a consideration of the currently highly
topical diluted magnetic semiconductors the dilution and disorder of localized spins has
to be implemented. Interesting suggestions, how this can be done on the basis of the RPA
theory, have been recently put forward by Berciu et al. [65].

Hence, there remains a lot of work to be done for a full understanding of the fascinating
physical and mathematical properties of the Kondo-lattice model. For this reason, we
would like to conclude this discussion with the same wish which we expressed at the
beginning of this work: A greatest success of this thesis would be to inspire someone
else by the work presented here into continuing the investigations and answering the
outstanding questions.
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Appendix A

Basic operator relations

Some of the results of this thesis are based on cumbersome calculations with operators in
second quantization and quantum spin operators. In many cases straightforward trans-
formations between certain steps have not been given. Since the reader might wish to fill
some of the gaps himselves, we provide in this appendix basic operator relations used in
our calculations.

Fourier transformation

The Fourier transformation is provided, since different versions are used in some papers.

Sα
k =

N∑
i=1

Sα
i e−ikRi ,

ckσ =
1√
N

∑
i

ciσ e−ikRi ,

εk =
1

N

∑
(i−j)

Tij e−ik(Ri−Rj),

δq,p =
1

N

∑
i

ei(q−p)Ri ,

Gkσ =
1

N

∑
(i−j)

Gijσ e−ik(Ri−Rj),

Sα
i =

1

N

BZ∑
k

Sα
k eikRi ,

ciσ =
1√
N

∑
k

ckσ eikRi ,

Tij =
1

N

∑
k

εk eik(Ri−Rj),

δi,j =
1

N

∑
k

eik(Ri−Rj),

Gijσ =
1

N

∑
k

Gkσ eik(Ri−Rj).

Due to translational invariance only the distance of two sites is relevant for the double
sums of εk and Gkσ. This is expressed by the notation “(i− j)”.

Fundamental commutation relations

Based on the Fourier transformation one can also transform the commutation relations
to momentum space.

[
., .
]
+

and
[
., .
]
− denote the anticommutator and the commutator,
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CHAPTER A. Basic operator relations

respectively.[
ciσ, c

†
jσ

]
+

= δij ⇐⇒
[
ck1σ, c

†
k2σ

]
+

= δk1,k2[
Sz

i , S
σ
j

]
− = zσ~Sσ δij ⇐⇒

[
Sz

k1
, Sσ

k2

]
− = zσ~Sσ

k1+k2[
Sσ

i , S−σ
j

]
− = 2zσ~Sz δij ⇐⇒

[
Sσ

k1
, S−σ

k2

]
− = 2zσ~Sz

k1+k2

Commutation relations of more than two operators
If more than two operators A, B, C,D are involved, the following rules are helpful. In
particular, the transformation from commutators to anticommutators and vice versa is
often needed.

[A, BC]− = B [A, C]− + [A, B]− C

[A, BC]− = [A, B]+ C −B [A, C]+

[AB, C]− = A [B, C]+ − [A, C]+ B

[A, BC]+ = [A, B]− C + B [A, C]+

[A, BCD]+ = [A, B]+ CD −B [A, C]+ D + BC [A, D]+

[AB, CD]+ = C [A, D]+ B + CA [B, D]− + [A, C]− BD + A [B, C]− D

[AB, CD]− = A [B, C]+ D − AC [B, D]+ + [A, C]+ DB − C [A, D]+ B

[AB, CD]− = A [B, C]− D + AC [B, D]− + [A, C]− DB + C [A, D]− B

= A [B, C]− D + CA [B, D]− + [A, C]− BD + C [A, D]− B

Relation between spin operators
An often used relation, that is particularly helpful for S = 1/2 is given by

SσS−σ = ~2S(S + 1) + zσ~Sz − (Sz)2
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Appendix B

A remarkable equality

The goal of this appendix is the proof of the equality (2.23) on p. 14. Although this
equation contains an unusual combination of correlation functions, it seems to be an
intrinsic property of the KLM. There are several possibilities for a proof, of which we are
going to present two. Both are based on quite fundamental concepts.
Theorem B1: For any arbitrary operator A the expectation value 〈LA〉 vanishes, if L
is the Liouvillian corresponding to the Hamiltonian of the system.
Proof: The theorem is related to the observation that expectation values are static
entities. Another straightforward proof uses the definition of the canonical average

〈AH〉 =
Tr
(

eβHAH
)

Tr ( eβH)
=

Tr
(

eβHHA
)

Tr ( eβH)
= 〈HA〉 =⇒

〈
[A, H]−

〉
= 0 (B.1)

and the cyclic invariance of the trace. �

Based on the Hamiltonian (2.5) of the KLM one can now apply the theorem to several
operators A. For most cases the results are trivial. For A = Sz, e.g., we obtain the
identity

〈
Sσc†−σcσ

〉
=
〈
S−σc†σc−σ

〉
. However, for our purpose we use A = Sσ

i c†i−σciσ. Then
the necessary commutators are:

[A, Hs]− =
∑
jk

∑
σ′

Tjk

[
Sσ

i c†i−σciσ, c
†
jσ′ckσ′

]
−

= Sσ
i

∑
jk

∑
σ′

Tjk

(
c†i−σckσ′δijδσσ′ − c†jσ′ciσδikδ−σσ′

)
=

∑
j

Tij

(
Sσ

i c†i−σcjσ − Sσ
i c†j−σciσ

)
(B.2)

∑
σ′

zσ′
[
A, Sz

j n̂jσ′

]
− =

∑
σ′

zσ′

{
Sσ

i Sz
i

[
c†i−σciσ, n̂iσ′

]
−

+ n̂iσ′c
†
i−σciσ [Sσ

i , Sz
i ]−

}
δij

=

{
zσS

σ
i Sz

i

(
c†i−σciσ + c†i−σciσ

)
−
∑
σ′

zσ′zσ~Sσ
i n̂iσ′c

†
i−σciσ

}
δij

=
(
2zσ Sσ

i Sz
i c

†
i−σciσ + ~Sσ

i c†i−σciσ

)
δij (B.3)
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∑
σ′

[
A, Sσ′

j c†j−σ′cjσ′

]
−

=
[
Sσ

i c†i−σciσ, S
−σ
i c†iσci−σ

]
−

δij

=
(
Sσ

i S−σ
i c†i−σciσc

†
iσci−σ − S−σ

i Sσ
i c†iσci−σc

†
i−σciσ

)
δij

=
(
Sσ

i S−σ
i n̂i−σ(1− n̂iσ)− S−σ

i Sσ
i n̂iσ(1− n̂i−σ)

)
δij

=
([

S−σ
i , Sσ

i

]
− n̂i−σn̂iσ + Sσ

i S−σ
i n̂i−σ − S−σ

i Sσ
i n̂iσ

)
δij

=
(
−2zσ~Sz

i n̂i−σn̂iσ + Sσ
i S−σ

i n̂i−σ − S−σ
i Sσ

i n̂iσ

)
δij (B.4)

=⇒ [A, Hsf ]− = −J

2

(
~Sσ

i c†i−σciσ + 2zσ Sσ
i Sz

i c
†
i−σciσ

−2zσ~Sz
i n̂i−σn̂iσ + Sσ

i S−σ
i n̂i−σ − S−σ

i Sσ
i n̂iσ

)
(B.5)

If theorem B1 is applied to the sum of (B.2) and (B.5), Eq. (2.23) is obtained. �

Theorem B2: For arbitrary Liouville states |A) and |B) the frequency matrix is Hermi-
tian

(A| L |B) = (B| L |A)∗ , (B.6)

if L is the Liouvillian corresponding to the Hamiltonian of the system. A real frequency
matrix is therefore symmetric.
Proof: We implement the definition of the Liouville scalar product to obtain

(A| L |B) =
〈
A+HB

〉
−
〈
A+BH

〉
+
〈
HBA+

〉
−
〈
BHA+

〉
=

〈
B+HA

〉∗ − 〈HB+A
〉∗

+
〈
AB+H

〉∗ − 〈AHB+
〉∗

=
〈
B+HA

〉∗ − 〈B+AH
〉∗

+
〈
HAB+

〉∗ − 〈AHB+
〉∗

= (B| L |A)∗ . �

Theorem B2 is a generalization of B1, since 〈LA〉 = 1
2
(1l| L |A). It is closely related to

the POM, applied in this work. This also motivates the choice of the Liouville states |A)
and |B). For the evaluation of the atomic limit we have used the basis∣∣∣c†lσ) ,

∣∣∣n̂l−σc
†
lσ

)
,
∣∣∣zσS

z
l c

†
lσ + Sσ

l c†l−σ

)
and

∣∣∣zσS
z
l n̂l−σc

†
lσ + Sσ

l n̂lσc
†
l−σ

)
. (B.7)

There are 6 possible combinations of these basis elements. For 3 cases trivial results are
obtained. For the other 3 cases, however (these are the combination of the first and the
last, of the second and the third as well as of the second and the forth) theorem B2
yields equality (2.23). This is a clear indication of the relevance of this property. There
is no need to give detailed calculations here, as similar calculations are performed for the
atomic limit.
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The Laplace transformation

The dynamics of the retarded Green’s function is determined by the Heaviside step func-
tion. Hence, this function vanishes for all times before a certain starting point t0 which,
without a loss in generality, can be set to 0. The Laplace transform has been invented for
such functions and, therefore, is often used in the context of strongly correlated electron
systems. Within this appendix we will explain this transformation and properties which
are necessary to show the equivalence of the Mori equations (3.13) and (3.23).

C.1 A special Fourier transformation
For a function G(t) = Θ(t)f(t) the Fourier transformation can be formulated such that
the effect of the step function is already exploited:

f̃(E) =

∞∫
0

dτ f(τ) e−iEτ/~ ←→ 1

2π~

+∞∫
−∞

dE f̃(E) eiEt/~ =

{
f(t), t ≥ 0
0, t < 0

. (C.1)

To ensure the convergence of these integrals the function f(t) is multiplied by an additional
factor e−δt, with a conveniently chosen parameter δ > 0. For the obtained function
f ∗(t) = f(t) e−δt the transformation formulae are

f̃ ∗(E) =

∞∫
0

dτ f(τ) e−(δ+iE/~)τ = f̃(E − i~δ), (C.2)

f ∗(t) =
1

2π~

+∞∫
−∞

dE f̃ ∗(E) eiEt/~ ⇒ f(t) =
1

2π~

+∞∫
−∞

dE f̃(E − i~δ) e(δ+iE/~)t. (C.3)

It is customary to define the new parameter s := δ + iE/~ and to neglect the factor i~ in
the argument of f̃ to obtain the Laplace transformation:

f̃(s) =

∞∫
0

dτ f(τ) e−sτ ←→ f(t) =
1

2πi~

δ+i∞∫
δ−i∞

ds f̃(s) est. (C.4)
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CHAPTER C. The Laplace transformation

If instead of s the definition ω = E/~ − iδ is used, the transformation is usually called
the one-sided Fourier transformation. In the context of Green’s functions the convergence
parameter δ be chosen infinitesimally small (δ = 0+).

C.2 Application to the Mori equation
There are several books [1, 4] on advantages and properties of Laplace transformations.
Out of this material, only two theorems are necessary for the solution of the Mori integro-
differential equation (3.13). These are

The Differentiation Theorem: The Laplace transform of a derivative f(t) =
dg

dt
is

given by
f̃(s) = sg̃(s)− g(0) (C.5)

The Convolution Theorem: The Laplace transform of a convolution

f(t) =

t∫
0

dτ g(t− τ)h(τ) (C.6)

is given by the product of Laplace transforms f̃(s) = g̃(s)h̃(s).

With the help of these theorems the integro-differential equation (3.13) can be readily
simplified. Fist of all, the dynamical correlation function

Ξγν(t) = i (Aγ |Aν(t)) (C.7)

is introduced. Its equation of motion is given by

d
dt

Ξγν(t) = i Ξγµ(t)χ−1
µρ Ωρν −

t∫
0

dt′ Ξγµ(t− t′)χ−1
µρ Mρν(t

′). (C.8)

Due to the fact, that the residual force fµ(t) belongs to the orthogonal complement of the
level of description, it has no influence on the dynamical correlation function.

Then we perform a Laplace transformation on both sides of (C.8).

s Ξ̃γν(s) = iχγν + i Ξ̃γµ(s)χ−1
µρ Ωρν − Ξ̃γµ(s)χ−1

µρ M̃ρν(s). (C.9)

Here, it has been used that Ξγν(0) = iχγν . The result obtained has a structure which is
similar to the energy representation of the Mori equations given in (3.23). The differences
can be resolved by a proper definition of all contributing functions.
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Appendix D

Details of calculations in Sec. 4.1

In Sec. 4.1 the explanation of the POM for the limit of the ferromagnetically saturated
semiconductor was restricted such that one can follow the gist of the calculations. For
the interested reader the explicit derivation of several formulae will be given here.

Derivation of (4.6)
To derive this formula one can make use of the exact relationship for n = 0:〈[

ciSi, Slc
†
l

]
+

〉
=

〈
SiSl

[
ci, c

†
l

]
+
− [Si, Sl]− c†l ci

〉
n=0→ 〈SiSl〉 δil. (D.1)

Based on the definition (4.78) of the Liouville state
∣∣QLc†lσ

)
one therefore obtains(

QLc†iσ

∣∣∣QLc†lσ

)
=

J2

4~2

{
〈[Sz

i − 〈Sz〉] [Sz
l − 〈Sz〉]〉+

〈
S−σ

i Sσ
l

〉}
δil (D.2)

〈Sz〉=~S
=

J2

4
{0 + S(1− zσ)} δil = 1

2
J2S δσ↓δil. (D.3)

Derivation of (4.8)
We start with expression (4.7) for the action of Lsf on the Liouville state

∣∣QLc†lσ
)
. It can

be simplified with the help of another exact relationship for n = 0, namely[
Sjc

†
jcj, Slc

†
l

]
−

= SjSl

[
c†jcj, c

†
l

]
−

+ [Sj, Sl]− c†l c
†
jcj

n=0→ SjSlc
†
l δjl. (D.4)

We obtain

Lsf

∣∣∣QLc†lσ

)
=

J2

4~2

∑
i

∑
σ′

∣∣∣∣[zσ′S
z
i n̂iσ′ + Sσ′

i c†i−σ′ciσ′ , zσδ(S
z
l )c

†
lσ + Sσ

l c†l−σ

]
−

)
=

J2

4~2

∣∣∣Sz
l δ(S

z
l )c

†
lσ + zσS

σ
l δ(Sz

l )c
†
l−σ + z−σS

z
l S

σ
l c†l−σ + S−σ

l Sσ
l c†lσ

)
(D.5)

With the help of some additional identities for spin operators, namely

δ(S−σ
l Sσ

l ) = −zσ~δ(Sz
l )− (Sz

l )
2 + 〈Sz〉2 (D.6)

and [Sσ
l , Sz

l ]− = Sσ
l Sz

l − Sz
l S

σ
l = −zσ~Sσ

l , (D.7)
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we can now apply the projector Q on the result

QLsf

∣∣∣QLc†lσ

)
=

J2

4~2

∣∣∣Sz
l δ(S

z
l )c

†
lσ + zσS

σ
l δ(Sz

l )c
†
l−σ − zσS

z
l S

σ
l c†l−σ + δ(S−σ

l Sσ
l )c†lσ

)
=

J2

4~2

{[
〈Sz〉2 − Sz

l 〈Sz〉 − zσ~δ(Sz
l )
] ∣∣∣c†lσ)− [zσS

σ
l 〈Sz

l 〉+ ~Sσ
l ]
∣∣∣c†l−σ

)}
= − J2

4~2
(~ + zσ 〈Sz

l 〉)
{

zσδ(S
z
l )
∣∣∣c†lσ)+ Sσ

l

∣∣∣c†l−σ

)}
=

J

2
(1 + zσS)

∣∣∣QLc†lσ

)
(D.8)

This is the expression given in (4.8).

Derivation of (4.16)
Before performing the Fourier transformation, the complete expression of scalar products
are needed in Wannier representation. Similar to the derivation of (4.6) one obtains:(

QLc†iσ

∣∣∣ (−1
2
J
) ∣∣∣zσδ(S

z
l )c

†
kσ + Sσ

l c†k−σ

)
=

J2

4~2

〈
S−σ

i Sσ
l

〉
δik = 1

2
J2S δσ↓δilδik

=⇒
(
QLc†iσ

∣∣∣ (QLsQ)m
∣∣∣QLc†lσ

)
(4.15)
= 1

2
J2S δσ↓[T

m]il δil. (D.9)

The Fourier transformation of the hopping matrix is given by

[Tm]il =
1

Nm

∑
k1,...,km−1

∑
p1,p2,...,pm

εp1
· · · εpm

eip1(Ri−Rkm−1
) · · · eipm(Rk1

−Rl)

=
1

N

∑
p1,p2,...,pm

εp1
· · · εpm

eip1Ri δp1,p2
· · · δpm−1,pm

e−ipmRl

=
1

N

∑
p

εm
p eip(Ri−Rl). (D.10)

Hence,(
QLc†kσ

∣∣∣ (QLsQ)m
∣∣∣QLc†kσ

)
=

1

N

∑
il

e−ik(Ri−Rl)
(
QLc†iσ

∣∣∣ (QLsQ)m
∣∣∣QLc†lσ

)
= 1

2
J2S δσ↓

1

N

∑
il

e−ik(Ri−Rl)[Tm]il δil

= 1
2
J2S δσ↓

1

N3

∑
il

∑
pq

e−i(k−p−q)(Ri−Rl)εm
p

= 1
2
J2S δσ↓

1

N

∑
pq

δp,k−qεm
p

= 1
2
J2S δσ↓

1

N

∑
q

εm
k−q . (D.11)
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Derivation of (4.21)

The product in Eq. (4.21) is obtained when the operators Sz
ki

are commuted to the left
within the expectation value and thereafter ferromagnetic saturation is used:

(Aii|kn...k1Alj ) =
J2

4

(
J

2
zσ

)n (
Sσ

i c†i−σ

∣∣∣Sz
kn

Sz
kn−1
· · ·Sz

k2
Sz

k1
Sσ

l c†j−σ

)
(D.1)
=

J2

4

(
J

2
zσ

)n

δij

〈
S−σ

i Sz
kn

Sz
kn−1
· · ·Sz

k2
Sz

k1
Sσ

l

〉
=

J2

4

(
J

2
zσ

)n

δij (~zσδikn + ~S)
〈
S−σ

i Sz
kn−1
· · ·Sz

k2
Sz

k1
Sσ

l

〉
=

J2

4

(
J

2
zσ

)n

δij

n∏
x=1

(~zσδikx + ~S)
〈
S−σ

i Sσ
l

〉
= 1

2
J2S δσ↓δijδil

n∏
x=1

1
2
J~ (δikx − S) (D.12)

Derivation of (4.28)

We have noticed in Sec. 4.1 that instead of Ls + Lsf the Liouvillian should be treated
as L = LMF + LI. For the contribution (LMF + LI)

m to the memory matrix, one has to
consider all products of LMF and LI which contribute to the term proportional to the
power m. The application of a certain power p ≤ m of LI leads to p different δ-functions
(see Eqs. (4.21) and (4.22)) which are positioned in between the U-matrices such that
matrix-multiplications are prevented. Instead the U-matrices can be grouped in different
ways:

[U0]q0 [U1]q1 [U2]q2 · · · [Ur]qr with m− p = 0 · q0 + 1 · q1 + . . . + r · qr,
p + 1 = q0 + q1 + . . . + qr.

(D.13)

To consider all groupings that only differ in the order of the U-matrices a prefactor

N{q} =
(p + 1) !

q0! · q1! · q2! · · · qr!
, (D.14)

needs to be used. This factor is identical to the binomial coefficient used for the polynomial
theorem

(
1

ω

r∑
m=0

[(
U

ω

)m
]

il

)p+1

=
1

ωq

∑
P

qi=p+1

(
p + 1

q0, q1, . . . , qr

)[(
U

ω

)0
]q0

il

[(
U

ω

)1
]q0

il

· · ·

[(
U

ω

)r
]qr

il

.

(D.15)
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It is valid for any finite r. From these considerations we can conclude for the memory
matrix

Milσ =
1

ω

∞∑
m=0

1

ωm

(
QLc†iσ

∣∣∣ (QLMFQ+QLIQ)m
∣∣∣QLc†lσ

)
(D.16)

(D.13)
= 1

2
J2S δσ↓δil

{
1

ω

∞∑
m=0

[(
U

ω

)m
]

il

+
J

2

1

ω2

(
1 + 2

[(
U

ω

)1
]

il

+ 2

[(
U

ω

)2
]

il

+

[(
U

ω

)1
]2

il

+2

[(
U

ω

)3
]

il

+ 2

[(
U

ω

)2
]

il

[(
U

ω

)1
]

il

+ . . .

)

+
J2

4

1

ω3

(
1 + 3

[(
U

ω

)1
]

il

+ 3

[(
U

ω

)2
]

il

+ 3

[(
U

ω

)1
]2

il

+ . . .

)
+ . . .

}
(D.17)

(D.15)
= 1

2
J2S δσ↓δil


(

1

ω

∞∑
m=0

[(
U

ω

)m
]

il

)
+

J

2

(
1

ω

∞∑
m=0

[(
U

ω

)m
]

il

)2

+
J2

4

(
1

ω

∞∑
m=0

[(
U

ω

)m
]

il

)3

+ . . .

 (D.18)

Derivation of (4.45)
The Liouville state we want to consider is given by

Q̂QLQ
∣∣∣QLc†lσ

)
(4.23)
= Q̂

∣∣∣AlkT̂kl + lAll

)
= T̂kl |Alk)+|lAll)−(T0+

1
2
J~(1−S)) |All) . (D.19)

The term |lAll) can be simplified. It enters the scalar product(
k̂Al̂ĵ |kAlj

)
(4.21)
= 1

2
J2Sδjĵδll̂

(
1
2
J~δl̂k̂ −

1
2
J~S

) (
1
2
J~δlk − 1

2
J~S

)
, (D.20)

formulated here for general indices. However, since Ls will not alter the first two indices
of |lAll), they will remain identical. Hence, a state |aAab) enters the scalar product (D.20)
always such that the δ-function gives 1 and therefore acts like 1

2
J~(1 − S) |Aab). This

results in
Q̂QLQ

∣∣∣QLc†lσ

)
→ Tkl |Alk)− T0 |All) = Tkl (1− δkl) |Alk) . (D.21)
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Appendix E

Depolarization effects in the
conduction band

Irkhin and Katsnelson [58] have claimed that the Kondo-lattice model with J > 0 allows
parameter constellations such that the conduction band is completely polarized. Here, we
will extend the discussion in Sec. 4.3 of this issue in the context of the SOPT.

Essentially, one has to investigate the possibility of a vanishing QDOS for the minority
conduction electrons below the Fermi energy. We have convinced ourselves that the special
form of the self-energy in SOPT implies that =m Σ↓(E) is zero in this energy range. Hence,
out of the two scenarios which, according to (4.87), yield a finite ρ↓(E) only the first one
remains. We are searching for quasi-free, undamped electrons which have an effective
energy Eeff = E −<e Σ↓(E) such that ρ0(Eeff) is non-zero. More precisely, if

Wa < E −<e Σ↓(E) < We (E.1)

is fulfilled for some E = µ − ε with ε > 0 then ↓-electrons are present and yield a
depolarization of the conduction band. For sufficiently small E the second part of the
inequality can always be fulfilled. The crux is the first inequality, on which we will focus
in the following.

E.1 The conventional SOPT
For the conventional SOPT a completely polarized conduction band is possible if

E −<e Σ↓ = E − J̃S~− J̃2 2S~2 Pr
We∫
µ

dx
ρ0(x)

E − x

!
< Wa. (E.2)

One has to distinguish different regimes for the chemical potential µ or equivalently for
the band occupation n. For a finite value of n↑ we have to make sure that µ > Wa− J̃S~.

Regime I1: Wa − J̃S~ < µ ≤ Wa

We set µ = Wa − δ with δ ≥ 0. Then the integrant in (E.2) is always negative, the
principle value is identical to the integral itself and the range of integration can be shifted
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CHAPTER E. Depolarization effects in the conduction band

to obtain:

µ− ε− J̃S~ + J̃2 2S~2

W∫
0

dx
ρ0(Wa + x)

x + δ + ε

!
< µ + δ (E.3)

⇐⇒
W∫

0

dx
ρ0(Wa + x)

x + δ + ε

!
<

1

2J̃~
+

δ + ε

2J̃2~2S
(E.4)

For example, if we assume a rectangular DOS ρ0(E) the inequality becomes

1

W
ln

[
1 +

W

δ + ε

]
!
<

1

2J̃~
+

δ

2J̃2~2S
+

ε

2J̃2~2S
. (E.5)

For fixed δ > 0 the expression on the left has its maximum value at ε = 0. However, for
a sufficiently small Ĵ(δ) one can still fulfill (E.5). For all other values of ε the left hand
side becomes smaller and the right hand side larger. Hence, with the determined Ĵ(δ) the
inequality is fulfilled for all relevant energies.

If ρ0(E) is the DOS of a simple cubic lattice, one can even ensure the inequality
(E.4) for δ = 0, although an analytical calculation is not possible. Numerical evaluation
shows that the maximum of the integral on the left hand side (that is for δ = ε = 0) is
approximately 3.03 eV−1. Hence, J < 0.33 eV fulfills (E.4) for δ = ε = 0 and accordingly,
for all other values of δ and ε.

One therefore has to conclude, that conventional SOPT allows a complete polarization
of the conduction band to occur, if n as well as J are chosen sufficiently small.

Regime II1: Wa < µ < We

The same kind of argument as put forward for regime I1 can be applied for Wa < µ < We.
The only difference is that µ = Wa + δ with 0 < δ < W . Again we perform a shift of the
range of integration such, that the integrant has always the same sign. This yields

W−δ∫
0

dx
ρ0(Wa + δ + x)

x + ε

!
<

1

2J̃~
+

ε− δ

2J̃2~2S
(E.6)

Evaluated for a rectangular DOS one obtains

1

W
ln

[
1 +

W − δ

ε

]
!
<

1

2J̃~
− δ

2J̃2~2S
+

ε

2J̃2~2S
(E.7)

=⇒ W − δ
!
< ε

(
exp

[
W

(
1

2J̃~
− δ

2J̃2~2S
+

ε

2J̃2~2S

)]
− 1

)
. (E.8)

It is immediately evident, that it is not always possible to fulfill this relation. For a fixed
set of parameters W, J, S, δ there will always be an ε small enough to ensure that (E.8) is
invalid.
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E.2. The SOPT relative to Hartree-Fock

An arbitrary free DOS can be approximated by a rectangular one. We only have to
assume that there is an energy region [Wa + δ,Wa + δ + A] with A > 0, where ρ0(E) is
positive everywhere. This is always possible if ρ0(E) is connected and µ < We. Then we
denote the minimum of ρ0(E) in this interval by B > 0 and obtain

A∫
0

dx
B

x + ε
<

W−δ∫
0

dx
ρ0(Wa + δ + x)

x + ε

!
<

1

2J̃~
+

ε− δ

2J̃2~2S
(E.9)

=⇒ A
!
< ε

(
exp

[
1

B

(
1

2J̃~
− δ

2J̃2~2S
+

ε

2J̃2~2S

)]
− 1

)
. (E.10)

Again, there is always an ε to contradict this statement. This defines an energy region
below the Fermi edge with a non-vanishing QDOS for the minority conduction electrons.

Regime III1: We < µ < Wa + J̃S~
This parameter regime only exists if J is sufficiently large. As a consequence the second
order contribution in <e Σ↓ vanishes and condition (E.2) becomes

µ− ε− J̃S~
!
< Wa. (E.11)

Evidently, this relationship is fulfilled for all ε. This implies complete polarization.

Regime IV1: max{We, Wa + J̃S~} < µ

The condition of complete polarization is again given by (E.11). However, it is not fulfilled
anymore for all ε. Depolarization will take place.

E.2 The SOPT relative to Hartree-Fock
The SOPT relative to Hartree-Fock has a slightly different ↓-self-energy. Accordingly, the
condition (E.2) has to be modified:

E −<e Σ↓ = E − J̃S~− J̃2 2S~2 Pr
We∫

µ+J̃S~

dx
ρ0(x)

E − x + J̃S~
!
< Wa. (E.12)

By writing E = µ− ε one recognizes that as far as the J2-contribution is concerned this
modification leads only to a shift of the regime borders for the chemical potential. Due
to the fact, that also

Σ↑(E) = −J̃S~ + J̃2 2S~2 Pr
µ−J̃S~∫
Wa

dx
ρ0(x)

E − x− J̃S~ + i0+
(E.13)

is affected, in some cases there are qualitative changes of the results. That is the reason
why we repeat the discussion of the regimes of µ.
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Regime I2: µ ≤ Wa − J̃S~
This situation is analogous to regime I1 in the discussion of the conventional SOPT char-
acterized by an integration over the full width of the free DOS ρ0(x) in (E.12). It is again
possible to prove, that n↓ = 0 can be enforced by a sufficiently small coupling constant J .
However, at the same time the second order contribution to Σ↑ vanishes and its mean-field
contribution is too small to allow for a finite occupation of the ↑-conduction band. Hence,
in this regime n = 0 and this does not allow for a non-zero polarization.

Regime II2: Wa − J̃S~ < µ < We − J̃S~
Using the definition µ = Wa − J̃S~ + δ with 0 < δ < W , one obtains an inequality

W−δ∫
0

dx
ρ0(Wa + δ + x)

x + ε

!
<

1

J̃~
+

ε− δ

2J̃2~2S
(E.14)

as a condition for complete polarization, which is almost identical to (E.6). In analogy
to the argument presented in II1 one can prove, that an energy region does always exist
below the Fermi edge with a non-vanishing QDOS for minority conduction electrons.

Regime III2: We − J̃S~ < µ < Wa + J̃S~
As for the case III1, this parameter regime requires a large value of J . Again, this has
the consequence that the second order contribution to <e Σ↓ vanishes and the mean-field
contribution is large enough to ensure n↓ = 0. It is worth studying the ↑-electrons, too.
On the one hand the requirement µ < Wa + J̃S~ implies that the J2 contribution to <e Σ↑
is zero. On the other hand the requirement We − J̃S~ < µ implies that the chemical lies
above the mean-field shifted ↑-DOS. As a consequence, we have a completely filled ↑-
conduction band (n↑ = 1). This is a somehow special situation for complete polarization.

Regime IV2: max{We − J̃S~, Wa + J̃S~} < µ

Similar to regime IV1 the mean-field contribution to <e Σ↓ yields a finite n↓ value and
hence a depolarization.

E.3 Conclusion
The POM cannot be used to strictly prove that a complete polarization, as claimed by
Irkhin and Katsnelson, is impossible within the KLM. With I1 and III1 there are two
energy regimes for the chemical potential, for which n↑ > 0 and n↓ = 0. This result is
exact in second order perturbation theory in the coupling constant J .

Out of these two regimes, the former is closest to the corresponding figures in [58].
And it is this regime which does not exist as a region of complete polarization in a SOPT
relative to Hartree-Fock. The remaining regime III2 with 100% polarization is a very
special situation, which Irkhin and Katsnelson [58] did not consider.
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E.3. Conclusion

Since all our investigations lead to the result that a SOPT relative to Hartree-Fock is
more suited for an approximation of the KLM than the conventional SOPT, we therefore
conclude that a complete polarization with n < 1 is very inprobable within the KLM.
However, a more definite statement cannot be provided without additional assumption
on the density of states and the self-energy.
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Appendix F

Details of calculations in Sec. 5.1

In Sec. 5.1 the derivation of the memory matrix of the one-magnon Green’s function is
restricted to a few fundamental steps. Similar to App. D we use this appendix to provide
some further details for the interested reader.

We start with a consideration of contributing Liouville states. If the basis element of
the initial Liouville subspace

∣∣S−σ
k

)
is referred to as

∣∣B1kσ

)
, the additional states in (5.4)

can be abbreviated as follows

L
∣∣S−σ

k

)
= − J

2~N

∑
qp

∑
σ′

∣∣∣zσ′ [S
z
q, S−σ

k ]−c†p,σ′cp−q,σ′ + [Sσ′

q , S−σ
k ]−c†p,−σ′cp−q,σ′

)
(F.1)

=
−J

2N

∑
qp

{ ∣∣∣S−σ
q+kc

†
p,−σcp−q,−σ

)
︸ ︷︷ ︸

|B2kqpσ)

−
∣∣S−σ

q+kc
†
p,σcp−q,σ

)︸ ︷︷ ︸
|B3kqpσ)

+2zσ

∣∣∣Sz
q+kc

†
p,−σcp−q,σ

)
︸ ︷︷ ︸

|B4kqpσ)

}

Due to the structure of the projection operator Q the scalar products

V (23)
qpσ ≡

(B1kσ |B2kqpσ )− (B1kσ |B3kqpσ )

(B1kσ |B1kσ )
=

1

〈Sz
0〉
〈
Sz

q
(
c†p,−σcp−q,−σ − c†p,σcp−q,σ

)〉
(F.2)

and V (4)
qpσ ≡

(B1kσ |B4kqpσ )

(B1kσ |B1kσ )
=

1

2 〈Sz
0〉
〈
Sσ

qc†p,−σcp−q,σ

〉
(F.3)

are needed. Additionally, one needs to know the effect of the truncated Liouvillian on
these states. In order to study renormalization effects, we consider as the unperturbed
Hamiltonian the expression HMF, which incorporates the mean-field self-energy of con-
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duction electrons.

LMF
∣∣B2/3 kqpσ

)
=
∑

p′

∑
σ′

[
1

~
εp′ −

J

2~
zσ′〈Sz〉

] ∣∣∣S−σ
q+k[n̂p′σ′ , c

†
p,∓σcp−q,∓σ]−

)
=

[
1

~
εp ±

J

2~
zσ〈Sz〉

] ∣∣∣S−σ
q+kc

†
p,∓σcp−q,∓σ

)
−
[

1

~
εp−q ±

J

2~
zσ〈Sz〉

] ∣∣∣S−σ
q+kc

†
p,∓σcp−q,∓σ

)
=

1

~
(εp − εp−q)

∣∣B2/3 kqpσ

)
(F.4)

LMF |B4kqpσ) =
∑

p′

∑
σ′

[
1

~
εp′ −

J

2~
zσ′〈Sz〉

] ∣∣∣Sz
q+k[n̂p′σ′ , c

†
p,−σcp−q,σ]−

)
=

[
1

~
εp +

J

2~
zσ〈Sz〉

] ∣∣∣Sz
q+kc

†
p,−σcp−q,σ

)
−
[

1

~
εp−q −

J

2~
zσ〈Sz〉

] ∣∣∣Sz
q+kc

†
p,−σcp−q,σ

)
=

1

~
(εp − εp−q + Jzσ 〈Sz〉) |B4kqpσ) (F.5)

Based on these prerequisite the geometric series can be handled. The following set of
operators has to be evaluated:

QL
∣∣S−σ

k

)
=
−J

2N

∑
qp

{ [
|B2kqpσ)− |B3kqpσ)− V (23)

qpσ |B1kσ)
]

+2zσ

[
|B4kqpσ)− V (4)

qpσ |B1kσ)
] }

LMFQL
∣∣S−σ

k

)
=
−J

2~N

∑
qp

{
(εp − εp−q) [|B2kqpσ −B3kqpσ)]

+2zσ(εp − εp−q + Jzσ 〈Sz〉) |B4kqpσ)
}

QLMFQL
∣∣S−σ

k

)
=
−J

2~N

∑
qp

{
(εp − εp−q)

[
|B2kqpσ −B3kqpσ)− V (23)

qpσ |B1kσ)
]

+2zσ(εp − εp−q + Jzσ 〈Sz〉)
[
|B4kqpσ)− V (4)

qpσ |B1kσ)
] }

(QLMFQ)mQL
∣∣S−σ

k

)
=

−J

2~mN

∑
qp

{
(εp − εp−q)m

[
|B2kqpσ −B3kqpσ)− V (23)

qpσ |B1kσ)
]

+2zσ(εp − εp−q + Jzσ 〈Sz〉)m
[
|B4kqpσ)− V (4)

qpσ |B1kσ)
] }

Hence, the explicit result for the memory matrix for the magnon Green’s function can be
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given:

Mkσ(ω) =
(
S−σ

k

∣∣LQ
1

ω −QL0Q
QL

∣∣S−σ
k

)
=

∞∑
m=0

1

ωm+1

(
S−σ

k

∣∣LQ (QL0Q)m QL
∣∣S−σ

k

)
=

J2

4N2

∑
q′p′qp

{
[
(B2kq′p′σ −B3kq′p′σ|+ 2zσ (B4kq′p′σ|

][
|B2kqpσ −B3kqpσ)− V

(23)
qpσ |B1kσ)

]
ω − 1

~ (εp − εp−q)

+2zσ

[
(B2kq′p′σ −B3kq′p′σ|+ 2zσ (B4kq′p′σ|

][
|B4kqpσ)− V

(4)
qpσ |B1kσ)

]
ω − 1

~ (εp − εp−q + Jzσ 〈Sz〉)

}
(F.6)

The result (F.6) is the exact J2 contribution to the memory matrix of the magnon
Green’s function. However, it still includes a large number of correlation functions, which
are a priori unknown. If these expectation values are evaluated with the full KLM Hamil-
tonian, they carry an additional J dependence. This yields contributions to the memory
matrix, which are of higher order than J2. For our purpose it is sufficient to evaluate
all expectation values with the eigenstates of the free electron Hamiltonian, since this
retains the second order result. As a consequence, the moment and the z-component of
the spin is already conserved for the fermionic degree of freedom. This yields the following
simplifications:

V (23)
qpσ ≈

1

〈Sz
0〉
〈
Sz

q(n̂p,−σ − n̂p,σ)
〉
δq,0, V (4)

qpσ ≈ 0

(B2kq′p′ |B2kqp ) =
〈
[Sσ

−q′−kc
†
p′−q′,−σcp′,−σ, S

−σ
q+kc

†
p,−σcp−q,−σ]−

〉
= 2zσ~

〈
Sz

q−q′c
†
p′−q′,−σcp′,−σc

†
p,−σcp−q,−σ

〉
+
〈
S−σ

q+kS
σ
−q′−kc

†
p′−q′,−σcp−q,−σ

〉
δp,p′ −

〈
S−σ

q+kS
σ
−q′−kc

†
p,−σcp′,−σ

〉
δp′−q′,p−q

≈ 2zσ~
〈
Sz

q−q′c
†
p′−q′,−σcp′,−σc

†
p,−σcp−q,−σ

〉
(δp,p′δq,q′ + δq,0δq′,0) (∗)

+
〈
S−σ

q+kS
σ
−q′−kc

†
p′−q′,−σcp−q,−σ

〉
δp,p′δq,q′ −

〈
S−σ

q+kS
σ
−q′−kc

†
p,−σcp′,−σ

〉
δp,p′δq,q′

= 2zσ~
{〈

Sz
0n̂p,−σ

〉
δq,0 +

〈
Sz

0n̂p−q,−σ

〉
−
〈
Sz

0n̂p,−σn̂p−q,−σ

〉}
δp,p′δq,q′

+2zσ~
〈
Sz

0n̂p′,−σn̂p,−σ

〉
δq,0δq′,0

+
〈
S−σ

q+kS
σ
−q−kn̂p−q,−σ

〉
δp,p′δq,q′ −

〈
S−σ

q+kS
σ
−q−kn̂p,−σ

〉
δp,p′δq,q′

(B2kq′p′ |B3kqp ) =
〈
[Sσ

−q′−kc
†
p′−q′,−σcp′,−σ, S

−σ
q+kc

†
p,σcp−q,σ]−

〉
= 2zσ~

〈
Sz

q−q′c
†
p′−q′,−σcp′,−σc

†
p,σcp−q,σ

〉
≈ 2zσ~

〈
Sz

0n̂p′,−σn̂p,σ

〉
δq,0δq′,0
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(B2kq′p′ |B4kqp ) =
〈
[Sσ

−q′−kc
†
p′−q′,−σcp′,−σ, S

z
q+kc

†
p,−σcp−q,σ]−

〉
= −zσ~

〈
Sσ

q−q′c
†
p′−q′,−σcp′,−σc

†
p,−σcp−q,σ

〉
+
〈
Sz

q+kS
σ
−q′−kc

†
p′−q′,−σcp−q,σ

〉
δp,p′

≈ 0

(B3kq′p′ |B3kqp ) =
〈
[Sσ

−q′−kc
†
p′−q′,σcp′,σ, S

−σ
q+kc

†
p,σcp−q,σ]−

〉
= 2zσ~

{〈
Sz

0n̂p,σ

〉
δq,0 +

〈
Sz

0n̂p−q,σ

〉
−
〈
Sz

0n̂p,σn̂p−q,σ

〉}
δp,p′δq,q′

+2zσ~
〈
Sz

0n̂p′,σn̂p,σ

〉
δq,0δq′,0

+
〈
S−σ

q+kS
σ
−q−kn̂p−q,σ

〉
δp,p′δq,q′ −

〈
S−σ

q+kS
σ
−q−kn̂p,σ

〉
δp,p′δq,q′

(B3kq′p′ |B4kqp ) =
〈
[Sσ

−q′−kc
†
p′−q′,σcp′,σ, S

z
q+kc

†
p,−σcp−q,σ]−

〉
= −zσ~

〈
Sσ

q−q′c
†
p′−q′,σcp′,σc

†
p,−σcp−q,σ

〉
−
〈
S−σ

q+kS
σ
−q′−kc

†
p,−σcp′,σ

〉
δp′−q′,p−q

≈ 0

(B4kq′p′ |B4kqp ) =
〈
[Sz

−q′−kc
†
q′−p′,σc−p′,−σ, S

z
q+kc

†
p,−σcp−q,σ]−

〉
=

〈
Sz

q+kS
z
−q′−kc

†
p′−q′,σcp−q,σ

〉
δp,p′ −

〈
Sz

q+kS
z
−q′−kc

†
p,−σcp′,−σ

〉
δp′−q′,p−q

≈
〈
Sz

q+kS
z
−q−kn̂p−q,σ

〉
δp,p′δq,q′ −

〈
Sz

q+kS
z
−q−kn̂p,−σ

〉
δp,p′δq,q′

The notation in the line marked (∗) is understood in the following sense: When summed
over the quadruple of wavevectors there are two scenarios when the correlation function
does not vanish - either p = p′, q = q′ or q = q′ = 0. It is our convention, that the
intersection of these two conditions is treated as part of the second term. It should not
be counted twice.

Then the memory matrix (F.6) becomes:

Mkσ(ω) ≈ J2

4N2

∑
qp

1

ω − 1
~ (εp − εp−q)

{〈
S−σ

q+kS
σ
−q−kn̂p−q,−σ

〉
−
〈
S−σ

q+kS
σ
−q−kn̂p,−σ

〉
+
〈
S−σ

q+kS
σ
−q−kn̂p−q,σ

〉
−
〈
S−σ

q+kS
σ
−q−kn̂p,σ

〉
+2zσ~

[〈
Sz

0n̂p−q,−σ

〉
+
〈
Sz

0n̂p−q,σ

〉
−
〈
Sz

0n̂p,−σn̂p−q,−σ

〉
−
〈
Sz

0n̂p,σn̂p−q,σ

〉]}
+

J2

4N2

∑
p′p

2zσ~
ω

{〈
Sz

0n̂p′,−σn̂p,−σ

〉
−
〈
Sz

0n̂p′,−σn̂p,σ

〉
−
〈
Sz

0n̂p,−σn̂p′,σ
〉

+
〈
Sz

0n̂p′,σn̂p,σ

〉
− 1

〈Sz
0〉
〈
Sz

0(n̂p,−σ − n̂p,σ)
〉〈

Sz
0(n̂p′,−σ − n̂p′,σ)

〉}

+
J2

N2

∑
qp

〈
Sz

q+kS
z
−q−kn̂p−q,σ

〉
−
〈
Sz

q+kS
z
−q−kn̂p,−σ

〉
ω − 1

~ (εp − εp−q + Jzσ 〈Sz〉)

This is the result (5.13) for the memory matrix, which has been provided in a more
compact notation on page 84.
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Appendix G

The POM with a two-dimensional
basis

The Green’s function

In general, the basic relation of the POM (3.26) is a matrix equation. If the relevant
Liouville subspace is spanned by two basis elements |A) and |B), these matrices are of
dimension 2× 2. Neglecting the contribution of the memory matrix one has to evaluate

(
(A |A) (A |B )
(B |A) (B |B )

)
(G.1)

=

{(
ω 0
0 ω

)
−
(

(A| L |A) (A| L |B)
(B| L |A) (B| L |B)

)
·
(

(A |A) (A |B )
(B |A) (B |B )

)−1
}(

GAA GAB

GBA GBB

)

In the context of the zero-bandwidth limit (Sec. 4.2) we have already elaborated that
a diagonal susceptibility matrix, i.e. (A |B ) = 0 = (B |A), is desirable. This is no addi-
tional loss of generality, due to the applicability of the Gram-Schmidt orthogonalization
procedure. As a consequence, the matrix multiplication in (G.1) simplifies to:

(
(A |A) 0

0 (B |B )

)
=

(
ω − (A| L |A) (A |A)−1 − (A| L |B) (B |B )−1

− (B| L |A) (A |A)−1 ω − (B| L |B) (B |B )−1

)(
GAA GAB

GBA GBB

)
(G.2)

In order to determine the Green’s functions, another matrix inversion is necessary:

(
GAA GAB

GBA GBB

)
=

1

D

(
ω − (B| L |B) (B |B )−1 (A| L |B) (B |B )−1

(B| L |A) (A |A)−1 ω − (A| L |A) (A |A)−1

)(
(A |A) 0

0 (B |B )

)
(G.3)

=
1

D

(
[ω − (B| L |B) (B |B )−1] (A |A) (A| L |B)

(B| L |A) [ω − (A| L |A) (A |A)−1] (B |B )

)
(G.4)
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Here, the determinant D is given by:

D =

(
ω − (A| L |A)

(A |A)

)(
ω − (B| L |B)

(B |B )

)
− (A| L |B) (B| L |A)

(A |A) (B |B )
≡ (ω − ωI) (ω − ωII)

(G.5)

ωI, II =
1

2

{
(A| L |A)

(A |A)
+

(B| L |B)

(B |B )

}
± 1

2
W (G.6)

W =

√{
(A| L |A)

(A |A)
+

(B| L |B)

(B |B )

}2

+ 4
(A |L|B) (B |L|A)− (A |L|A) (B |L|B)

(A |A) (B |B )
(G.7)

An expansion into partial fractions eventually yields:

GAA = −(A |A)

W

(
(B| L |B) (B |B )−1 − ωI

ω − ωI
− (B| L |B) (B |B )−1 − ωII

ω − ωII

)
(G.8)

GAB =
(A| L |B)

W

(
1

ω − ωI
− 1

ω − ωII

)
(G.9)

GBA =
(B| L |A)

W

(
1

ω − ωI
− 1

ω − ωII

)
(G.10)

GBB = −(B |B )

W

(
(A| L |A) (A |A)−1 − ωI

ω − ωI
− (A| L |A) (A |A)−1 − ωII

ω − ωII

)
(G.11)

Therefore, based on the susceptibility and the frequency matrices one has direct access
to the energy poles and spectral weights of the Green’s functions involved. Due to the
neglect of the memory matrix, these entities are real.

The self-energy
We would like to evaluate the improvement of the result (G.8) as compared to the use of
a one-dimensional Liouville subspace, spanned by |A). For this purpose we consider the
diagonal self-energy ΣAA, making use of the relation1

GXY =
gI

ω − ωI
+

gII

ω − ωII
=

gI + gII

ω − 1
~ΣXY

⇔ 1
~ ΣXY =

ω(ωIgI + ωIIgII)− (gI + gII)ωIωII

ω(gI + gII)− (ωIgII + ωIIgI)
(G.12)

One can readily check, that for GAA the sum rule gI+gII = (A |A) is fulfilled. Furthermore,
we need the following relations for the energy poles (G.6)

ωI − ωII = W (G.13)

ω2
I − ω2

II =

{
(A| L |A)

(A |A)
+

(B| L |B)

(B |B )

}
·W (G.14)

ωIωII =
(A| L |A)

(A |A)
· (B| L |B)

(B |B )
− (A| L |B) (B| L |A)

(A |A) (B |B )
(G.15)

1 For electrons the definition of the self-energy is modified such, that it includes the free Bloch energy
εk. Note, that the self-energy has the dimension of an energy in our notation.
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Hence, the expression (G.12) for the self-energy gets for X = Y = A:

1
~ ΣAA =

ω 1
W

(ω2
I − ω2

II)− ω (B|L|B)
(B|B )

− ωIωII

ω − (B|L|B)
(B|B )

(G.16)

=

{
(A| L |A) +

(A| L |B) (B| L |A) (B |B )−1

ω − (B| L |B) (B |B )−1

}
(A |A)−1 (G.17)

Hence, the correction to the frequency matrix of the one-dimensional Liouville subspace
has again the structure of a memory matrix. Apparently, the ΣAA in (G.17) is identical
to the total self-energy, if the Liouville space orthogonal to the subspace spanned by |A)
and |B) is neglected:

1
~ ΣAA

!
=

{
(A| L |A) + (A| LQ

1

ω −QLQ
QL |A)

}
(A |A)−1 ⇐⇒

Q ≡ 1l− |A) 1
(A|A )

(A| !
= |B) 1

(B|B )
(B| ⇐⇒ 1l = |A) 1

(A|A )
(A|+ |B) 1

(B|B )
(B|
(G.18)

Furthermore, the choice

|B) ≡ QL |A) =

{
L − (A| L |A)

(A |A)

}
|A) (G.19)

allows a second analogy: In this case the correction in (G.17) is the memory matrix
MAA as it is obtained in the next step of the POM if the higher order memory matrix is
neglected:

MAA = (A| LQ 1

ω −QLQ
QL |A) = (B| 1

ω −QLQ
|B) (G.20)

=
(B |B )

ω − (B| QLQ |B) (B |B )−1 −MBB (B |B )−1 (G.21)

≈ (B |B )

ω − (B| QLQ |B) (B |B )−1 =
(A| LQ |B) (B |QLA) (B |B )−1

ω − (B| L |B) (B |B )−1 (G.22)

Note, that Q |B) = |B). This analogy is a consequence of the fact, that the result of the
POM only depends on the level of description and not on the way this Liouville subspace
is split within various steps. A similar observation has been mentioned in Sec. 4.1 and
4.2.
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Abbreviations

Abbreviation Explanation

DMFT Dynamical mean-field theory
DMS Diluted magnetic semiconductors
EOM Equation of motion approach
HF Hartree-Fock
IPT Iterative perturbation theory
ISA Interpolating self-energy approach
KLM Kondo-lattice model
MCDA Moment-conserving decoupling approach
MRAM Magnetic random access memory
PAM Periodic Anderson model
POM Projection operator method
QDOS Quasiparticle density of states
MPT Modified perturbation theory
RKKY Rudermann-Kittel-Kasuya-Yosida exchange interaction
RPA Random-phase approximation
SDA Spectral density approach
SOPT Second order perturbation theory
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