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Abstract 
 

A new generation of particle accelerators based on an Energy Recovery Linac (ERL) is a 

promising tool for a number of new applications. These include high brilliance light sources 

in a wide range of photon energies, electron cooling of ion beam and ERL-based electron-

hadron colliders. 

In January 2011 Helmholtz-Zentrum Berlin officially started the realization of the Berlin 

Energy Recovery Linac Project – BERLinPro. The goal of this compact ERL is to develop 

the accelerator physics and technology required to accelerate a high-current (100 mA) low 

emittance beam. The parameters are desired for future large scale facilities based on ERLs, 

e.g ERL-based synchrotron light sources. One of such large scale facilities is in the design 

phase at Helmholtz-Zentrum Berlin. This facility is called Femto-Science Factory (FSF). It is 

a GeV-scale multi-turn ERL-based light source. This light source will operate in the 

diffraction limited regime for X-rays and offer a short length of a light pulse in the 

femtosecond region. The average and peak brightness will be at least an order of magnitude 

higher than achievable from storage rings. In this work an overview of these two projects is 

given. 

One potential weakness of the Energy Recovery Linacs is a regenerative form of BBU – 

transverse beam break up instability. This instability can limit a beam current. In this work 

the threshold current of the BBU instability was calculated for BERLinPro. The comparison 

of two linacs based on different types of superconducting cavities is made. Different methods 

of BBU suppression are investigated (e.g. the influence of solenoid, pseudo-reflector and 

quadruple triplets in the linac structure on the BBU threshold). Analytic solutions of the 

Twiss parameters are used to find the best optic in the linac with and without external 

focusing are presented. 

Large scale ERL facilities can be realized on different schemes of beam acceleration. This 

dissertation compares a direct injection scheme with acceleration in a 6 GeV linac, a two-

stage injection with acceleration in a 6 GeV linac and a multi-turn (3-turn) scheme with a 

two-stage injection and two main 1 GeV linacs. The key points of the comparison were total 

costs and BBU instability. Linac optic solutions are presented. 

 

Keywords: energy recovery linac, synchrotron radiation, light source, beam breakup 

instability (BBU), threshold current, high order mode 
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Zusammenfassung 
 

Neue Generation von Teilchenbeschleunigern, die auf Energierückgewinnung in einem 

linearen Beschleuniger basiert (eng. Energy Recovery Linac – ERL), ist eine 

vielversprechende Neuentwicklung für mehrere Anwendungen. Unter anderem sind das 

hochbrillante Lichtquellen im breiten Wellenlängenbereich, Elektronenkühlung von 

Ionenstrahlen, und ERL-basierte Elektronen-Hadronen Collider.  

Helmholtz Zentrum Berlin für Materialien und Energie baut seit 2011 eine Testanlage 

Energy Recovery Linac Project – BERLinPro. Das Ziel dieses Projektes ist den hohen Strom 

(100 mA) und hohe Brillanz von dem Elektronenstrahl in einem ERL zu demonstrieren. Die 

angestrebten Strahlparameter sind vergleichbar mit den Parametern von e.g. zukünftigen 

ERL-basierten Lichtquellen. Eine von solchen Anlagen ist Femto-Science Factory (FSF), die 

am HZB konzipiert wurde. FSF ist eine Lichtquelle in Röntgenbereich auf Basis von einem 

mehrumläufigen ERL mit zweistüfiger Injektion und Energie von einigen GeV. Die Quelle 

soll Diffraktionslimitiert sein und kurze (in Femtosekundenbereich) Lichtpulse erzeugen. Die 

durchschnittliche und spitzen- Brillanz soll mindesten eine Größenordnung höher liegen als 

die Brillanz der modernen Speicherring-basierten Lichtquellen. Ein Überblick von 

BERLinPro und FSF ist gegeben in diese Dissertation. 

Eine potentielle Schwäche von ERL besteht in Strahlinstabilitäten, insbesondere 

regenerative Beam Break Up (BBU). Die Instabilität kann den erreichbaren 

durchschnittlichen Strom in einem ERL begrenzen. Der Grenzstrom von der BBU für 

BERLinPro ist berechnet in der Dissertation. Vergleich von zwei Linacs mit zwei 

verschiedenen supraleitenden Kavitätendesigns ist vorgestellt. Drei Methoden für 

Strahlstabilisierung (Einfluss von Strahlrotation mit einem Soleniod, Pseudoreflektor, und 

Tripleten von Quadrupolen in dem Linac auf den Grenzstrom) sind untersucht. Analytische 

Lösungen für die Twiss-Parameter wurden gefunden für die beste Linacoptik mit und ohne 

zusätzliche optische Elemente. 

Zukünftige große ERLs können unterschiedliche Beschleunigungsschemen benutzen. 

Diese Dissertation vergleicht drei Schemas: unmittelbare Injektion in einen 6 GeV Linac; 

zweistufige Injektion in einen 6 GeV Linac; und zweistufige Injektion in einen 

mehrumläufigen (drei-umläufigen) Beschleuniger mit geteiltem Hauptlinac in zwei 1 GeV 

Linacs. Der Basis für den Vergleich ist die Vollkostenanalyse sowie erreichbarer Grenzstrom 

von den Instabilitäten. Optik für den Linacs in allen Schemas ist dargelegt. 
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1. Introduction 
During the last half century synchrotron based light sources were rapidly developed and 

well established. One of the main reasons of such quick development is that all the other 

known light sources were coming to the limits in their wavelength. They could not generate 

short wave radiation (in a range of UV to X-Rays) with a competitive spectral flux. 

Originally, synchrotron light was a parasitic effect in ring based accelerators, which caused 

beam degradation and limited the final energy of electron positron colliders. At the beginning 

of 1960 synchrotron radiation was extracted from the bending magnets and studied. Such 

machines were named 1st generation light sources where this parasitic light was used in some 

other scientific fields. 

The first storage ring commissioned as a synchrotron light source was Tantalus, at the 

Synchrotron Radiation Center in the university of Wisconsin–Madison, when first operation 

was in 1968 [1]. Later, two more generations of the light sources were developed for ring 

based machines, with multiple (tens) simultaneously available beamlines for the users. The 

synchrotron light became very useful for the scientific community in the various fields like 

biology, chemistry, material science, medicine etc. Nowadays, ring based light sources are 

reaching the limit of the beam properties of multi pass rings (such as the beam’s emittance 

(size) and current). There are several novel projects like FLASH [2] at DESY or LCLS [3] at 

Stanford, which are Free Electron Lasers (FELs) and commonly known to be the 4th 

generation of the light sources. One other candidate to be a next generation light source is a 

machine with an Energy Recovery Linac (ERL) as a driver. 

In ERL based machines, a beam is injected and accelerated in the main linac, then it can 

be used for some experiments. After the usage, the beam comes back to the linac with an RF 

phase shifted by 180 degrees, where it is decelerated and, therefore transfers the energy back 

to the cavities. Finally the beam can be dumped at a low energy, usually below 10 MeV, to 

save the energy and to reduce a radiation hazard. The simplest scheme is with one linac and 

one recirculation turn. It can be more complicated with multiple linear accelerators and 

recirculation turns. In this work different schemes of ERL based accelerator were studied. 
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Originally the idea of ERL based facilities came from Maury Tigner [4]. He proposed an 

ERL based electron-electron collider (see Fig. 1.1). The scheme consists of two similar guns 

and two similar linear accelerators located coaxially. The beams start simultaneously from 

both sides, accelerate, collide in the middle, decelerate in the opposite linac and, finally they 

are dumped. In the same paper he proposed a scheme with one injector and one linac 

(Fig. 1.2). 

But at that time the superconducting radio frequency (SRF) technology was not 

developed well enough and, therefore, it couldn’t be realized at that time. It required about 

30-40 years of SRF development to achieve the feasible level for ERLs. 

 

 

 
 

Figure 1.1: The first proposed scheme of ERL based e-e collider with two linacs. 

 

 

 
 

Figure 1.2: The first proposed scheme of ERL based e-e collider with one linac. 
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Nowadays, operating ERLs already exist (Fig. 1.3 presents a map with the existing and 

proposed ERLs), like FEL in Novosibirsk [5], which was the first multi-turn ERL based FEL, 

but normal conductive, or FEL at the Japan Atomic Energy Research Institute (JAERI) [6], or 

the most powerful in the world (at the moment) FEL based on SRF ERL at Thomas Jefferson 

National Accelerator Facility [7]. There are also a few existing small scale facilities (with 

energies below 500 MeV), like ALICE at Daresbury [8], or S-DALINAC in Darmstadt [9]. 

Some of the test projects are under construction, like cERL at KEK [10], test ERL at 

Brookhaven National Laboratory [11], test facility at CERN [12], IHEP ERL in Beijing [13], 

Peking University ERL test facility [14], BERLinPro at Helmholtz-Zentrum Berlin (HZB) 

[15], etc. But all these projects and proposals are still relatively small with beam energies of 

hundreds MeVs. There is also a big number of proposed, let us call them, the large scale 

facilities with energy of some GeVs. There are proposed facilities with one turn, like ERL at 

Cornel University [16], or XFEL-O at KEK [17]. Also works are going on the multi-turn 

ERLs, like MARS in Novosibirsk [18] or FSF at HZB [19]. As one can see, there are a lot of 

projects of the ERL based light sources all over the world. 

 
 

Figure 1.3: Existing and proposed facilities with an energy recovery linac for different 
applications. 
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ERLs, as drivers, are attractive not only for synchrotron light sources. They can be used 

for several different applications. For example, ERL can be a very good driver for electron-

hadron colliders. There are several proposed facilities like LHeC at CERN, or eRHIC at BNL 

[20, 21] or MEIC at JLab [22]. Another very attractive application of ERL is Coherent 

Electron Cooling [23]. It seems that ERL can be the only one suitable driver for it according 

to [24]. There are some proposals for internal target experiments, for example, MESA at 

Mainz [25, 26]. 

These projects might be realized with different acceleration and recovery schemes. In this 

work the different schemes for ERL based light source, as part of studies for BERLinPro and 

FSF projects, were compared. 

1.1. BERLinPro 

Helmholz-Zentrum Berlin has a project for the design and construction of the Berlin 

Energy Recovery Linac Project (BERLinPro) [15, 27, 28]. The main goal of the project is to 

demonstrate the potential of superconducting energy recovery linacs for high average current 

and low emittance operation. The schematic layout of the facility is shown in Fig. 1.4. The 

main parameters of BERLinPro are shown in Table 1.1. 

 

 
 

 

Figure 1.4: The basic scheme of 100 MeV BERLinPro. 

 

Originally the facility was planned to be built with a 100 MeV energy and 100 mA 

average current of an electron beam. But later, in order to guarantee the financial viability of 

the project, the beam energy was decreased to 50 MeV. What implied a shortening of the 

superconducting structures from 5 to 3 two-cell cavities in the booster and from 6 to 3 seven-

cell cavities in the main linac. The new machine layout is shown in Fig. 1.5. 
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Table 1.1: The main parameters of BERLinPro 

 

Parameter Value 

Max. beam energy 100/50 MeV 

Average current up to 100 mA 

Max. repetition rate 1.3 GHz 

Emittance < 1 mm mRad 

Bunch length < 2 ps 

Injection energy 7 MeV 

 

A beam is generated in a 1.3 GHz SRF photo injector and, after it passes a three cavity 

booster section and a dog-leg merger, it comes to the main linac with energy of 6 MeV. Then 

it accelerates to 50 MeV, recirculates, decelerates back in the main linac and dumps in a 600-

kW beam dump. In the recirculation arc there is also some available space for future 

experiments which can demonstrate the potential of ERL based machines for a huge number 

of user applications. 

 

 
 

Figure 1.5: The scheme of 50 MeV BERLinPro [15]. 
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In Chapter 2 will be discussed both versions of BERLinPro and mostly the transverse 

Beam Breakup (BBU) instability in them. Since one of the main challenges of BERLinPro is 

to achieve a stable recirculation of the beam without a beam breakup [15]. BBU threshold 

currents for a different main linacs based on three different types of cavities: TESLA-type, 

CEBAF-type and cavities, which will be developed for BERLinPro, will be compared. A few 

methods of BBU instability suppression were applied for BERLinPro. These methods 

include: optimization of the Twiss parameters of a beam in the main linac or, betatron phase 

advances adjustment in the recirculation turn or, insertion of a so-called pseudo-reflector or 

solenoid, which interchange the transverse x and y coordinates of the betatron motion, etc. 

The results are presented below.  

Also, cavities which will be developed for BERLinPro can be used for the future large 

scale ERL based light source, which is currently under development at HZB. 

1.2. FSF 

Our group at Helmholtz Zentrum Berlin is designing a new future multi-turn energy 

recovery linac based light source with a two stage injection and with a maximum energy of 

electron beam about 6 GeV. This future facility is named Femto-Science Factory (FSF) [19]. 

The problem of high brilliance SRF injectors is being intensively investigated as the 

injectors promise to deliver extremely low emittance bunches needed for the future linac-

based light sources. An SRF injector with similar parameters to the BERLinPro injector under 

development at HZB [29, 30] is considered. A beam is created in SRF gun with photo 

cathode (see Fig. 1.6). Then it passes a 100 MeV linac, which is used as a first cascade in the 

acceleration. And then, the beam is accelerated to 6 GeV after passing 3 times through each 

of two 1 GeV main linacs. In the achromatic arcs between the acceleration stages it is 

assumed to have undulators with 1000 periods in each and in the long straight section a long 

undulator with 5000 periods is assumed. After the beam was used it is decelerated back and 

goes to a dump. 
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7 MeV injectorBeam dump

1 GeV Linac

1 GeV Linac

„Long“ undulator

100 MeV
Linac

 
 

Figure 1.6: Principal layout of the multi-turn ERL with a cascade injection. The beam 
acceleration path is shown in green, deceleration path – in red. 

 

The advantages and disadvantages of the two stage injection scheme with a split main 

linac will be discussed later in the next chapters. Now it should be noted, that the preinjection 

linac drastically improves the ratio between the initial and final energies on the first pass 

through the first 1 GeV linac. This improvement helps to make a reasonable focusing of the 

beam along the linac that improves the transverse beam break up instability of the facility. 

The scheme with a split linac allows separation of the beams in the arcs for different passes 

(e.g. the beam on decelerating pass will have different energy compared to what it had on the 

accelerating pass). This means they are transported in different vacuum chambers. In this way 

all beams on all passes are separated and, therefore, users can see only one energy of a beam 

per arc in undulators (if installed in arcs with 1, 2…5 GeV energy). 
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The design was optimised to achieve a proposed wavelength of 1 Å in a diffraction 

limited regime. 

To reach such a wavelength [31], undulators require a period d=2 cm and K=0.8: 

 


Α≈+= 1)
2

1(
2

2

2

Kd
γ

λ ,   (1.1) 

 
for a 6 GeV beam. 

Diffraction limited or spatially coherent regime reached when the transverse bunch size of 

a beam is smaller than σ (see Fig. 1.8) – the transverse “electron size” (size of single electron 

from the point of view of an observer of its light) in an undulator of length L=Npd and when 

the angular distribution of undulator radiation does not depends on the distribution of the 

particles in the beam, i.e. the angular spread is smaller than ψ – the radiation divergence 

angle for a single electron in an undulator. The ψ is given by [32]: 

 
 

Figure 1.7: FSF arcs in a tunnel. 
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Figure 1.8: Source size of the undulator radiation. 

 

 

The transverse electron size is given by: 

 m
dN p µ

π

λ
σ 22

2
≈≈ ,   (1.3) 

 
for an undulator with 1000 periods and d = 2 cm. 

Therefore to work in diffraction limited regime a normalized emittance εn should be 

below: 

 μm1.0
42

≈=≤
π
λγγσψε n .   (1.4) 

 
FSF is a large scale facility which should fulfil the requirements of its high number of 

users. The typical needs of synchrotron radiation users can be divided into four groups: 

a) Maximal average brilliance in diffraction limited regime – requires a low emittance; 

b) Maximal peak brilliance – requires low emittance and short bunch; 

c) Minimal bunch length – requires short bunch; 

d) And the last one is the experiments with high bunch degradation (e.g. ERL with FEL, e-

p collider, internal target experiments, etc.) on which we don’t orient – requires large 

acceptance. 

So, to achieve the record parameters which are above 3rd generation light sources it is 

planned to have two operation modes. The 1st mode will be optimized to provide a high 

brilliance beam. Another option is short bunch mode with a final beam minimal bunch length 

of around 10 fs. 

The main design parameters of FSF are presented in Table 1.2. 
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Table 1.2: Main design parameters of FSF 

 

Parameter High brilliance 
mode 

Short bunch 
mode 

E, GeV 6 6 

<I>, mA 20 5 

Q, pC 15 4 

τ, fs 200-1000 ~10 

<B>, ph/s/mm2/mrad2/0.1% 8·1022 ~4·1021 

Bpeak, ph/s/mm2/mrad2/0.1% 1026 ~1026 

Accelerating gradient, MV/m 17 

Energy gain per linac, GeV 1 

f, GHz 1.3 

 

So for the high brilliance mode it is proposed to have an average beam current I about 20 

mA. The spectral brilliance of undulator radiation is given by [32]: 

 ( ) ( )

ω
ωσσσσπ

ω
ω d

N
B

yyxx

ph

′′

=
24


.   (1.5) 

 
So the maximum average brilliance can be written in a diffraction limited regime as: 
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where the average photon flux is given by: 
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with A(K): 

 2

2

5.01
][)(

K
JJKKA

+
=    (1.8) 

 
and 

 
2

2

2

)1(
2
12

2

)1(
2
1 2424

][ 















+

−







+

=
+− K

KJ
K

KJJJ
kk

,   (1.9) 

 



 19 

where J is the Bessel function and α ~ 1/137 is a fine-structure constant. The estimation in 

(1.6) was done for K = 0.8, N = 1000 and I = 20 mA. Estimated value of an average brilliance 

is higher than for the 3rd generation light sources (see Fig. 1.9). 

Bunch compression is required to achieve high peak brilliance. The compression is subtle 

as not to spoil the emittance. The compression limit is set by the initial longitudinal emittance 

of the beam and by the effects of coherent and incoherent synchrotron radiation. With an 

average current of 20 mA, longitudinal size of 200 fs and peak current of 30 А one can 

likewise estimate the peak brilliance Bp. 
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A comparison between peak brilliance of 3rd generation light sources, Free Electron 

Lasers and FSF is presented in Fig. 1.10. 

 

 
 

Figure 1.9: Average brilliance of synchrotron light sources [33]. 
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Let’s proceed with an optic in the arcs. Arcs are assumed to be similar and each arc 

consists of 6 30°-bending sections and 5 undulators with 1000 periods in between of them 

(Fig. 1.11). The bending section (Fig. 1.12) consists of 4 identical triple-bends with 4 

quadrupoles on sides to match the following element (undulator or spreader). Each bending 

section in the 3-6 GeV arcs was optimized to suppress the emittance growth due to coherent 

and incoherent synchrotron radiations (CSR and ISR). 

  

 

 
 

Figure 1.10: Peak brilliance of synchrotron light sources [33]. 
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One of the main features of the arc design is that each triple bend has an anti-dipole 

magnet in the middle in order to achieve a zero R56 at reasonable strengths of quadrupoles. 

The betatron phase advance Qx of each triple-bend section equals to 3/4 to cancel out the 

influence of CSR to the emittance [34]. The emittance growth due to incoherent synchrotron 

radiation can be written as [e.g. 35]: 

 5
5

3
2 ICr qex γε =∆ ,   (1.11) 

 
where re is the classic radius of an electron, γ is the Lorentz factor of the beam, 

 131084.3
332

55 −⋅==
mc

Cq
  m   (1.12) 

 
is a quantum constant and radiation integral I5 is given by: 

 ∫= dsHI 35 ρ
,    (1.13) 

 
where ρ is the bending radius of dipoles and H is the Courant-Snyder parameter: 

 22 2 ηβηαηγη ′+′+=H ,   (1.14) 
 

 

300 Achromatic ISR and 
CSR optimized sections

Undulators

 
 

Figure 1.11: Arc of FSF. 
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which depends on the dispersion η, its derivative and on the Twiss parameters of the beam. 

Therefore, in order to suppress the emittance growth due to ISR, the Twiss parameters of the 

beam were optimized to minimize the radiation integral I5. 

Another very important part of the accelerator layout is the spreader/recombiner sections. 

The layout of the spreader after the second main 1 GeV linac is identical to the recombiner at 

the entrance to this linac and presented in the Fig. 1.13. The second pair of spreaders and 

recombiners for the first 1 GeV linac is identical, but without the 6 GeV beam line, which 

goes to the long undulator section. All spreader lines are isochronous. 

One of the limiting factor for the spreader design is the contribution to the radiation 

integral I5, which characterizes the transversal emittance growth due to incoherent 

synchrotron radiation. Relatively high value of the horizontal β-function (50-100 m) from the 

linac section limits the bending angle of the separating dipoles (which represents η´). 

Quadrupoles are necessary to minimize the contributions of other dipoles to I5, which in 

combination with isochronous and reasonable β-functions conditions requires a large number 

of them. Also a compact design is advantage for the installation footprint. 

The difficulties (which grow with the number of the beam energies to be separated) 

originate from the conditions on the β-functions (low I5 contradicts with „natural“ β-functions 

out of the linacs) and dispersion (low I5 contradicts with the beam lines separation). To 

reduce the distances required for separation of the beams it was assumed to couple 

coordinates in the vertical plane. For this a magnet like a Lambertson separation septum 

[e.g. 36] for 4, 5, and 6 GeV beam lines (green in Fig. 1.13) is used. The coupling in the 

spreader makes the analysis and optimization of the spreader/recombiner section to be really 

complicated. 

 

 
 

Figure 1.12: 300 bending section of the FSF arc. 
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Figure 1.13: Spreader section after the second 1 GeV linac. 
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2. Mode excitation by electron beam and BBU instability 
In the superconducting cavities the electromagnetic fields might be expressed as sums of 

transverse magnetic (TM) and transverse electric (TE) modes. For TM modes there is a 

longitudinal electric field presented and a magnetic field could be everywhere 

perpendicularly to the longitudinal axis. For TE modes the situation is conversed with an 

existing longitudinal magnetic field and with electrical field transverse to it everywhere. 

When a charge passes through a cavity it excites modes and induces fields which provide a 

retarding force. Some of the modes could be excited quite strong and lead to beam 

instabilities and finally to a beam loss. 

At the beginning of this chapter formulas for the excitations of high order modes (HOMs) 

(as example for monopole and dipole modes) will be derived. When it is not specially linked 

then all the ideas in §2.1 and §2.2 are from [37]. One of these instabilities due to dipole 

modes – Beam Break Up instability will be discussed in the following paragraphs. 

Different types of BBU instabilities will be discussed, such as single bunch BBU caused 

by short-range wakefields and two types of multi-bunch instabilities caused by long-range 

wakefields. As it will be shown later, one of the most problematic instabilities for the energy 

recovery linac based machines is a regenerative form of a transverse BBU. All types of BBU 

have a similar nature – they are caused by interaction of a beam with high order modes, but 

all of them are very different from each other. At the beginning single bunch BBU will be 

discussed, and then it will be continued with multi-bunch instabilities. 

On one hand, some of the modes (eg. quadrupole modes) can lead to beam degradation 

that means the losses of luminosity for colliders or what is more important for us – the losses 

of brightness for synchrotron light sources. On the other hand, the excited modes give 

addition power dissipation in the cavity walls that increases the cryogenic losses. 

At the end of this Chapter the modelling of the BBU instability for BERLinPro and the 

methods of BBU suppression will be discussed. 

2.1. Monopole mode excitation 

Modes of a cavity are independent from each other and form a complete orthogonal 

system and, therefore we can study the effects of the modes excitation individually for each 

mode. The final result will be given by a sum of all modes. Therefore let’s start with 

monopole modes. 
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First of all let’s determine the voltage induced by a point charge, moving on a cavity axis. 

To do that the following facts will be used: first of all is that the energy in the system of a 

cavity and a charge is conserved, and the second that all fields excited by the charge may be 

added as superposition to any fields already existing in the cavity. 

Let’s start with analysis of charges moving on axis. In this case only monopole TM 

modes can be excited because all other modes do not have any longitudinal electric field on 

the axis. Let the voltage, induced by the charge in one mode of the cavity be: 

 tii
qq

neeVV ωα −=~
,   (2.1) 

 
where Vq is the magnitude of the complex quantity 𝑉𝑞�  and therefore is always positive, α is 

the phase between the charge and Vq� and ωn is the eigenfrequency of the mode. 

One can continue with a postulate that the induced voltage also interacts with the charge 

itself. So, the effective voltage acting on the charge can be written as some fraction f of the 

total voltage: 

 qeff VfV ~~ = .    (2.2) 
 

To find the change in the voltage it is assumed that the cavity has no losses and it has 

been already excited to the voltage 𝑉𝑐� : 
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,   (2.3) 

 
where the phase φ is an arbitrary angle at the time of passage and Vc is a positive real 

quantity. 

Therefore, the initial stored energy in the cavity is given by: 
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where Ra is the shunt impedance of the mode and Q0 is the unloaded quality factor. The final 

voltage, after the charge has passed the cavity, is given by the superposition:  
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The energy change in the cavity is: 
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The charge has also changed its energy: 

 )coscos( αϕ qcq fVVqU +=∆ .   (2.7) 
 

And, as it was said earlier, the energy of the whole system – charge-cavity is conserved and, 

therefore, one has: 

 0=∆+∆ qc UU ,   (2.8) 
 

that gives: 
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Now the superposition principle can be used. It requires Vq ~ q and in Eq. 2.9 one can equate 

the terms with the same powers of q: 
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Since the phase φ is arbitrary, Eq. 2.10 can be true if α is 2π times an integer if q < 0, and π 

times an odd integer if q > 0. Therefore one find that: 
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and with Eqs. 2.2 and 2.12: 
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is called a mode loss factor. It should be noted that the shunt impedance depends only on the 

geometry of the cavity and, therefore the loss factor as well. Using 2.4, one can find that: 
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The Eq. 2.12 is given for point charge moving thought the lossless cavity. If it is required 

to include the losses, then the Eq. 2.12 still applies if the charge exits the cavity before the 

fields decayed substantially. The decay time is typically few microseconds or even longer 

(Q>>1) when the transit time of the charges is of the order of nanoseconds. 

2.2. Dipole mode excitation 

In the previous chapter the effect of monopole mode excitation in a cavity was studied. A 

monopole mode was excited by a charge moving on axis. It should be noted, that for all other 

modes the longitudinal electric field vanishes on axis. However, in a real accelerator bunches 

of charges perform some transverse oscillations about the design beam trajectory and 

therefore the other modes can be excited. In this chapter, using the same approach as in the 

previous chapter, excitation of dipole modes was studied. 

Let’s start with a definition of a dipole loss factor kd, which is quite similar to the 

monopole mode loss factor (2.15). A force from a dipole mode on a charge increases linearly 

with a distance from the cavity axis therefore one need to choose a suitable reference 

distance. Let’s define Va as an accelerating voltage on the distance a – the beam pipe radius. 

So, now a loss factor can be defined as: 
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Now again, let a charge q to travel through a previously excited cavity with a stored energy 

of: 

 
d

a
i k

VU
4

2

= .    (2.17) 

 
And after the passage its energy might be written as: 
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The phases φ and α have the same meanings as in the problem for monopole modes. Vq is the 

charge-induced voltage at the beam pipe radius. 
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The energy change of the charge moving at the distance ρ off the cavity axis is given by: 
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It should be noted that in Eq. 2.19 the field linearity in dependence on the offset from axis ρ 

was taken into account. As in the previous chapter, due to the energy conservation, now the 

energy change in the cavity and the energy gained by the charge can be equated. Again the 

superposition principle that (Vq ~ q) can be used, that gives: 

 ka π2= , for integer k and q<0,   (2.20) 
 
 la π= , for odd integer l and q>0.   (2.21) 
 

And one found: 
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where ρ ≤ a. 

Due to the linear field variation with the distance from the axis the quantity Vρ/ρ is 

constant, where Vρ is the voltage at the distance ρ off axis. Therefore, the shunt impedance of 

a dipole mode can be defined as: 
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where Pc is the power, dissipated in the cavity walls. It should be noted that the defined shunt 

impedance is given in ohms (it is important for modeling). Now one can find the dipole loss 

factor: 
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where Q0 is the unloaded quality factor of the mode. 

Dipole modes deflect a beam. And if they are strongly excited it could lead to a beam 

instability and finally to a beam loss. Especially this parasitic effect leads to so called beam 

break up instability in machines with energy recovery. This type of the instability will be 

discussed in the next sections. 
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2.3. Single bunch Beam Break Up 

As it was discussed in the previous paragraphs the excited high order modes can be a 

reason for instabilities in Linear Accelerators. In this paragraph a single bunch BBU caused 

by short-range wakefields (for more details see e.g. [38, 39]) will be discussed. To illustrate 

the effect of this type of instability a two-particle model (shown in Fig. 2.1) for a bunch will 

be used. In this model it is assumed that the bunch consists of two ultrarelativistic 

macroparticles and each of them contains a half of the particles N/2 of the whole bunch. We 

assume the case of a smooth approximation that the head particle performs simple betatron 

oscillations with a frequency ωβ, which is independent of s, and, therefore: 

 )cos(x~ =(s)x hh skβ ,   (2.25) 
 

where kβ=ωβ/c is the betatron wave number. 

If the transverse wakefields are not induced by the head particle, then the tail particle 

would just follow the head. 

When the wakefields are induced, the tail particle sees the deflecting wake field at the 

distance – σz behind and one can write the equation of motion for it, as: 
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where re is the classical radius of an electron, σz is the beam size, γ is the relativistic factor 

corresponding to a beam energy and L is the length of the cavity period, 𝑊⊥~2 𝑐𝑚−2 is the 

transverse wake function taken at the distance 2σz behind the head particle. The solution of 

the Eq. 2.26 is given by: 
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Figure 2.1: Two macroparticles model for single bunch BBU. 
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where the first term describes just the betatron oscillations and the second term is the reaction 

to the wakefield left by the head particle. 

Let’s continue with an introduction of a dimensionless, so called, instability growth 

parameter which is given by the ration of two amplitudes of the tail and the head: 
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where Lacc is the total length of the linac. Usually 1 in the square root in Eq. 2.28 is neglected 

because it is assumed that there is instability with a high growth parameter >> 1. 

Equation (2.28) was derived for the case without acceleration in the linac. As it was noted 

in [38], acceleration can be included by just replacing the factor Lacc/γ for its integral 

counterpart ∫ ds
γ(s)

Lacc
0 = Lacc

γf
ln

γf

γi
 , where γi, (f) is the initial (final) relativistic factor. 

If we use now the parameters of the FSF beam presented in the Tab. 1.2, we get that the 

most unstable is the preinjection linac with a growth parameter τ ~1+2·10^-6, that means that 

the tail is almost following to the head. Therefore, one can conclude that single bunch BBU is 

not a problem for the FSF facility. In the next paragraph another type of BBU instability – 

multi-bunch BBU in machines with energy recovery linac will be discussed. 
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2.4. Multi-bunch Beam Break Up instability 

As it was shown in the previous chapter the single bunch BBU does not strongly 

influences the bunch of the FSF. In this chapter another type of instability will be discussed –

multi-bunch BBU. It also has two forms – a cumulative and the most important for us a 

regenerative form of BBU instability. 

The cumulative BBU occurs when there is no electromagnetic coupling between cavities 

but the dipole mode is excited in each cavity of the linac. The bunch is deflected in the first 

cavities by a dipole mode and excites the later cavities due to the off-axis position of the 

beam in the following cavities. The deflection grows with each cavity. Cumulative BBU is 

important for the facilities with a long linac. 

Another form – so-called regenerative BBU occurs, when there is a strong 

electromagnetic coupling between the accelerating cavities. In this case the deflecting mode 

is like one mode in a multi-cell structure, when it moves synchronous with a beam, the beam 

get unstable. The excitation of the mode from the beam is carried electromagnetically from 

one cell to the next in the linac structure. The bunch is deflected in the first cavities and then 

it excites the later cavities or it excites the same cavity after recirculation so that the deviation 

is carried by the beam. This excitation grows with each bunch and, if the energy transfer to 

the cavity is greater than the ohmic losses of the cavity, then the instability develops. 

This type of BBU instability can limit a beam current in the machines with energy 

recovery when the excitation is transferred by a bunch to the same mode on the recovery pass 

through the linac. Regenerative type of instability will be discussed in the next paragraphs. 

2.4.1. Introduction to Regenerative Beam Break Up instability 

One potential weakness of the ERLs is a regenerative form of transverse BBU instability, 

which may severely limit a beam current. The actuality of this problem was recognized in 

early experiments with the recirculating SRF accelerators at Stanford [40] and Illinois [41], 

where the average threshold current of this instability was about a few microamperes. In the 

works of Rand and Smith in [42] dipole high order modes were identified as a driver of this 

instability. In late 80’s the detailed theoretical model and simulation programs had been 

developed [43, 44]. Nowadays the interest to this problem was renewed. The requirements for 

more detailed theory and simulation programs [45-47] are given by the needs of high current 

(~100 mA) ERLs. 
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Let’s first briefly explain the fundamentals of the BBU instability. If an electron bunch 

passes through an accelerating cavity it interacts with dipole modes (e.g. TM110) in the cavity 

(Fig. 2.2). First, it exchanges energy with the mode; second, it is deflected by the electro-

magnetic field of the mode. After recirculation the deflected bunch interacts with the same 

mode in the cavity again and transfers the energy. If the net energy transfer from the beam to 

the mode is larger than the energy loss due to the mode damping then the beam becomes 

unstable. 

 

 
 

Figure 2.2: Mechanism of BBU instability. On the left side schematically presented a 
layout of an ERL and trajectory kick due to a dipole mode. On the right side the fields 
in the transversal plane in this mode are presented. 

 

Let’s start with a simple model of a single pass machine with one cavity and with one 

dipole mode in it. The length of the cavity is neglected and it is assumed that the mode gives 

a point like kick (so-called thin element approximation). Due to the fact, that the magnetic 

field of the mode is constant, one can assume that the bunch is one particle with the charge q. 

So, at the first pass: 
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where x1 is the coordinate (it is assumed that a beam moves on the axis on the 1-st pass and, 

therefore, there is no energy change) and 𝑥1′  is the kick angle, φ is the phase and p is the 

momentum of the bunch. After the pass through a recirculating ring with a transfer matrix M 

= (m)ij, the bunch will come with an offset. 
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The energy deposited by the bunch in the mode can be written as: 

Ē

E
H
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Ohmic losses in the cavity were discussed earlier (Eq. 2.23) and can be expressed as:  
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The threshold value is reached, when the ohmic losses and the average power deposited by 

individual bunches are equal: 

 02 =−>∆< cb PfU .   (2.33) 
 

The averaging over the phase of the mode φ is done. This is possible due to assumption that 

the beams are moving with the frequency of the main acceleration mode, which is not a 

multiple to the frequency of the dipole mode therefore, the phase of the dipole mode at the 

beam passes is a random value normally distributed at [0; 2π]. The frequency fb at the 

threshold current is given by: 

 qIf thb /= .    (2.34) 
 

And now Eq. 2.33 leads to the final equation for the threshold current: 
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From Eq. 2.35 one can see that the threshold current is proportional to the beams energy. 

It means that the most problematic cavities are where a beam has a lower energy. The 

threshold current is inversely proportional to: 

- the impedance and the quality factor of the mode which should be minimized on a 

cavity design stage; 

- the m12 matrix element, which for the case of a single mode and one cavity can be 

written as �𝛽1𝛽2sin𝜇, where β1,2 – is a Twiss parameter of a beam on the 1st and 2nd 

passes correspondingly, should be minimized to achieve the highest threshold current. 

The betatrone phase advance μ is additional optimization parameter. 

It is required to know the phase of the mode φ, when the HOM frequency is equal to a 

harmonic number of the bunch repetition rate (M/N·fb, with integer M, N). In this resonant 

case the presented model does not provide the right solution. One has to calculate the phase 



 35 

using some other method or some simulation program. It should be noted that the resonance 

cases should be avoided on the design stage by a proper choice of the beam frequency and of 

the cavity parameters. Also, Eq. 2.35 is true only for the case when the term 0)sin(12 <rTm ω . 

This case perfectly agrees with simulation results as it was presented in [48]. Eq. 2.35 gives 

beams stability for the opposite case, when 0)sin(12 >rTm ω , but the simulation results show 

that the beam can be unstable with a high threshold current. This discrepancy caused by the 

assumption that the voltage induced by the beam on the second pass is very small compared 

to the HOM voltage, which fails at high bunch charges. In this case a more complicated 

theory is required. Such a theory was well described by G. Hoffstaetter and I. Bazarov in 

[45]. In the next paragraph the ideas are briefly summarized. 

2.4.2. Regenerative BBU instability theory 

In [45] the more general formulas for the BBU threshold current were derived. In 

principle authors used another approach to the same problem. In this part the main aspects of 

this paper are reviewed. 

A simple model of one cavity and one dipole mode is assumed. If a mode is excited then 

a beam gets a transverse kick and after a recirculation it comes back to the cavity with an 

offset, and transfers the energy to the mode. If the energy of the mode increases, then the 

following bunches will experience the stronger kick that leads to the further energy grow of 

the mode and there is instability. 

To describe this effect let’s start at a point of time t´, when the charge I(t´)dt´ with an 

offset x(t´) passes through the cavity on its deceleration loop and excites the HOM. The 

following particles on acceleration will see the transverse kick, which can be written as: 

 tdtItxttW
c
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where W(τ) is the wake function which describes the transverse force at the time τ after the 

mode was excited. 

An effective change of the transverse voltage of the HOM is given by: 

 )()( tp
e
ctV x∆=∆ .   (2.37) 

 
Now it can be assumed that all bunches are injected on the cavity axis and, therefore, they 

do not excite the mode on the first pass during acceleration. The effective transverse voltage 

determines which kick the bunch sees and which position it will have after the recirculation 



 36 

time Tr. The transfer matrix element T12 = m12/p maps the transverse momentum px(t) to the 

offset: 

 )()( 12 tpTTtx xr =+ .   (2.38) 
 

Using (2.36) an integral equation for the effective voltage of the mode can be written as: 
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To find the solution of this equation one can assume now that the current is a train of 

short bunches like the Diracs’s-delta functions with an intervals tb (see Fig. 2.3), so the 

current on the second deceleration pass is given by: 
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The time tb is proportional with some integer coefficient to an RF circulation time t0, 

which is inverse proportional to the main RF frequency ω0:  
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Now the recirculation time Tr can be written as: 

 brr tnT )( δ−= .   (2.42) 
 

For an ERL δtb is given by: 
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where n is integer. 

 

 
 

Figure 2.3: Picture of time scales in the ERL. 
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Now, using (2.39) one can rewrite the effective voltage of the HOM at the time between 

some bunches t� [ntb+tr, (n+1)tb+tr] as: 

 ∑
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Let’s proceed at the time when the bunch passes through the cavity on the deceleration at 

the time t=ntb+tr: 
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As it was discussed §2.1 and §2.2, the voltage can be written as:  

 tieVtV ω−= 0)( .   (2.46) 
 

where a positive imaginary part of frequency ω indicates instability. Now (2.46) can be used 

in (2.45), that leads to the following equation: 
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The threshold current Ith is the smallest real value of the current I0 which corresponds to 

the real ω. In [45] authors used a Laplace transformation and wrote the dispersion relation as:  
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The sum in the dispersion relation (2.48) can be obtained in the far field approximation 

for the wakes. When the wake function can be written as: 
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The summation can be made as a geometric progression if Im(ω)>(-ωλ/2Qλ) and gives: 

 
,

coscos
)]1[sin()sin(

4

)]([)(

)1(2

0

bb

b
ti

b
ti

ti

n

nti
b

tt
tetee

cQ
R

etnWw

bb
b

b

λ

λ
δω

λ
δω

ωδλ

λ

ω

ωω
δωδωω

δδ

−
−−









=

+=

+

−
−

∞

=

++

∑
(2.50) 

 

where 
λ

λ
λλ

ωωω
Q

i
2

±=± and 
λ

λωωω
Q

i
2

+=+ . Therefore, the equation for the current (2.48) 

becomes: 
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And now, for the case with energy recovery, when δ=1/2: 
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For a positive current I0 the values ω which corresponds to this value in the dispersion 

relation in principle will be a complex numbers. If the current is small then the imaginary 

parts of all of them are negative and the beam motion is stable. But when the current is 

increased then at some point one of them will become real. This point indicates the threshold 

current (see Fig. 2.4). So, the threshold current is the smallest real current I0 for which there 

is a real ω which satisfies the dispersion relation. 

 

 
 

Figure 2.4: Dependence of I0(ω) in the complex plain in arbitrary units. The threshold 
point is indicated. 
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It should be noted that (2.52) can be simplified to (2.35) in the case of a single mode and 

one pass. Linearization and approximation that the HOM decay 1
2

<<btQλ

λω  is negligible in 

comparison to the bunch spacing tb is required. 

In the case of multiple recirculation turns and multiple HOMs in the cavities the solution 

can be found by the same approach as for a single mode and single recirculation case. One 

just has to introduce additional indexes for the numbering of the modes and of the 

recirculation turns. After that it should be carefully summarized and result will be found. 

Here I would like to show the equation for a multi-pass ERL with one cavity and one mode in 

it, which was derived in [47]: 
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where I0- Alfven current, Q is the quality factor of HOM,   = λ/2π, λ is the wavelength 

corresponding to the resonant frequency of the TM110 mode, γm is the relativistic factor at the 

m-th pass through the cavity, βm – is the Twiss parameter, Leff – is the effective length of the 

cavity. This expression shows that it is preferable to have low β-functions at low energies. It 

also indicates the limitation for the number of passes. 

For a modeling people have already developed computing codes, for example, TDBBU 

code developed at JLAB [49], MATBBU [50], the tracking code “bi” [51], GBBU code [52] 

and etc. All of the codes have the same theoretical base. In the modeling GBBU code was 

used. 

2.4.3. Regenerative BBU instability in a cavity with a quadrupole mode 

Instability of a beam in the field of a quadrupole mode of an accelerating cavity differs in 

the mechanism from the BBU in the field of a dipole mode. 

Fig. 2.5 shows schematically the field distribution in a quadrupole mode. XY cross-

section of a pillbox cavity, Ez and 𝐵⊥ field lines, and force on the electron beam are shown. 

The effect of the mode on the beam is, therefore, focusing in y and defocusing in x direction 

similar to a stationary quadrupole field but time dependent. 
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It can be seen from Fig. 2.5 that only in the case of a round on-axis beam energy transfer 

to the mode is zero. Elliptical beam excites the mode. If the instability develops, the beam is 

lost due to an over focusing by the mode. In comparison to the interaction with a dipole 

mode, axially symmetrical beam does not excite a dipole mode and the mode deflects the 

beam. 

Further, this argument will be reconsidered analytically. For simplicity let us consider a 

TM220 mode in a rectangular cavity. The electric field of the mode near the center is given by: 

 )cos(
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Magnetic field is calculated from Maxwell’s equation: 
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which gives: 
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Figure 2.5: Field distribution in a quadrupole mode. XY cross-section of a pillbox cavity 
is schematically shown. Ez and B┴ field lines, and force on the electron beam are shown. 
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For an electron with the coordinates (x1, y1) coming to the cavity at t = 0 one can calculate the 

deflection angles: 
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In linear approximation the electron comes to the cavity after recirculation with addition to 

the coordinates: 
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As it is mentioned above, elliptical beam excites the mode. Therefore, the difference of 

the energies transferred to the mode with and without taking into account additional electron 

offset can be calculated. 
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After averaging over initial phase (it is assumed that there is no resonance between the 

quadrupole mode and the beam, therefore, all values of φ are equiprobable) one can get: 
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Averaging over the particles in the beam gives: 
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     (2.63) 
 

If this energy is larger than the energy lost in the cavity, the beam is unstable. The threshold 

current for the instability is therefore given by: 
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which gives the equation for the threshold current: 
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where Rq=(R/Q)qQq is the HOM impedance in Ohm. 

We compare this result with the threshold current for a dipole mode (see Eq. 2.35) assuming 

round beam with equal horizontal and vertical emittances. Quadrupole modes are important 

for the BBU analysis if: 
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for the estimation we took ε = 5·10-3 mm·mrad, β = 10 m and ω = 2π·3 GHz. 

For the new design of BERLinPro cavities it was reported [e.g. 53, 54] that there can be 

quadrupole modes with a shifted electromagnetic centrum from the cavity axis (see Fig. 2.6). 

In the case of a cavity with a mode, which centrum is shifted for coordinates (x0, y0), the 

electric field of the mode can be written as: 
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And now, using the same approach described above, the equation of the threshold current 

can be derived: 
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When the offset of the mode is greater than the beam size, then such shifted modes can be 

a reason for the instability and modelling of BBU instability is required with such modes. 
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Figure 2.6: Field distribution in a quadrupole mode with a shifted electromagnetic center. 
XY cross-section of a pillbox cavity is schematically shown. Ez and B field lines, and 
force on the electron beam are shown [54]. 
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2.5. Modelling of BBU instability for BERLinPro 

In this part the modelling of BBU instability for BERLinPro is discussed. In the 

modelling GBBU program was used. The results include the modelling for both schemes of 

BERLinPro –with 100 MeV and with 50 MeV maximum beam energy. In the modelling two 

types of the cavities for the main linac were used – the TESLA [55] and the CEBAF type 

geometries [56]. The main goal was to develop some methods to increase the BBU threshold 

current of BERLinPro and to compare the results of the BBU modelling for different cavity 

models. 

In the next chapters first of all the focusing effects of RF fields in the linear accelerators 

will be discussed. Then the influence of different focusing models for the beam break up 

instability will be analyzed. Then it will be continued with a comparison of the 2 different 

types of cavities. Later methods of BBU suppression will be analyzed. 

2.5.1. The focusing effects of radio-frequency fields in linear 
accelerators 

In this paragraph the focusing effects of RF fields in linear accelerators will be discussed. 

Let’s start with an equation of motion (2.69) for an ultra-relativistic (v~c) charged particle in 

the transverse RF fields in a cylindrically symmetric, spatially periodic RF cavity. 

 [ ] 





 ×+= rr

r Bv
c

Ee
dt

dp 1
,   (2.69) 

 
where rE  and ϕB are the components of the field which are solutions of the Maxwell 

equations and for the on-axis field ),( tzEz in the paraxial approximation one has: 
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And now, substituting the fields one can get: 
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After differentiation and changing independent variable to z the equation of radial motion 

gets the form: 
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where 2mc
eEz=′γ . 

Serafini and Rosenzweig [57] used the following approach to describe the focusing in an 

accelerating cavity. The average focusing over one cell is calculated and included in the 

equation of motion. They come to an equation of particle trajectories in the form: 
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where γ~  is the average value over the cell, φ is the phase of the accelerating field with 

respect to the phase of the particle, φ=0 means maximum acceleration. 

The solution of the equation (2.73) is given by the following matrix (2.74), which is 

implemented in Elegant program [58] (RFCA element): 
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where 
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= , )0(1γ  is the final(initial) normalized energy of the particle, L – the 

length of the cavity. 

2.5.2. The focusing in the modelling 

There are three possibilities to choose the focusing model in the GBBU program: 

1. Method “Unity”. The program assumes that the cavity focusing matrix is a unity 

matrix. We can provide our own matrices as separate "matrix" elements; 

2. Method “Simple”. The code assumes uniform acceleration. Although, there is no 

external focusing in this case, the matrix is not equal to unity and depends on the 

cavity and beam parameters, and can be written as: 
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3. And the 3-rd opportunity is to provide the real field distribution in a file. 

To compare the threshold currents for the CEBAF and TESLA type linacs the method 

“Unity” and Elegant program were used to calculate the transport matrices of the linac parts. 

Elegant program calculate the matrix from the beginning of line to any point of the beam line. 

Let us analyse an example of linac which consists of N cavities and has N+1 drifts at the 

beginning, end and between the cavities. The GBBU program calculates the matrices as 

shown in Fig. 2.7. M1 – is the matrix from the beginning of the linac to the middle of the 1st 

cavity and M2 – is the matrix from the middle of the 1st cavity to the middle of the 2nd cavity 

and so on. So the last matrix MN+1 – is the matrix from the middle of the last cavity to the end 

of the linac. 

The matrices on deceleration are also necessary. There are two ways to get them: 

1. To use the Elegant program again, like it was done for acceleration; 

2. To use the matrices which we already have and transform them using the procedure 

described below. 

Consider some optical structure with the transport matrix M. 
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If we want to “transport” the beam back and to found the matrix (M´) of this inverse 

structure, we should inverse the sign of the angle x´: analytically it is equivalent to the 

multiplying the x´ on the reflection matrix J. 
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The next obvious equation helps to find the M´: 

 

 
 

Figure 2.7: Linac and its matrices. 
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So, this method can be used to derive the matrices on the deceleration: 

 NkJJMM kN
decc
k ,..,0,11

11 == −−
−++ .   (2.78) 

 

2.5.3. The TESLA and the CEBAF type 100 MeV linacs 

The TESLA 9 cell cavity, with ~1.038 m length and accelerating gradient E ~16 MeV/m 

was assumed. So, the TESLA type linac requires 6 TESLA cavities to accelerate the beam up 

to 100 MeV (5 MeV beam from the injector). 

As a base for a new HOM-damped design of the cavities suitable for high current 

operation 5-cell CEBAF-type geometry was taken. The parameters of the cavity relevant for 

the BBU modeling were calculated at JLab and provided to HZB [56]. We assume the same 

average accelerating gradient in the cavity (16 MeV/m). The CEBAF type linac requires 11 

cavities to accelerate the beam up to 100 MeV. 

The frequency of the main accelerating mode of the CEBAF cavities is 1.5 GHz. 

Therefore, for the comparison of the two linacs to be “fair”, the CEBAF cavity geometry was 

scaled to make the frequency of the accelerating monopole mode equal to such a frequency of 

the TESLA cavities (from 1.5 to 1.3 GHz). The frequencies of all other modes are scaled 

correspondingly. It should be noted, that the values of R/Q used in the modeling program 

GBBU are defined according to the equation (2.23). In this definition R/Q for dipole modes 

are in Ohm and not in Ohm/m2 as in modeling programs like CST MWS [59] or MAFIA 

[60]. The additional conversion factor 2)/( cnω is frequency dependent. This factor was taken 

into account during the conversion of R/Q for both TESLA and CEBAF type cavities: 
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The strongest modes for the two cavity types are listed in the Tables 2.1, 2.2. Calculated 

parameters of the modes for the CEBAF-type cavities are given. The external Q variation due 

to manufacturing accuracy is reported [55] to be quite large. We take calculated R/Q and (as 

an example) Q’s of one of the TESLA-type cavities measured in HoBiCaT [61]. One can see 

that the difference of (R/Q)Q for the strongest modes is about a factor of 6 higher for TESLA 

cavities. So, the threshold current in CEBAF-type linac is expected to be about this factor 
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higher. The difference in the number of cavities in the linacs is under consideration. This 

difference leads to additional interplay between the cavities. 

 
Table 2.1: The strongest modes in CEBAF- type cavities 

 

f, GHz R/Q, Ohm Q R, Ohm 

Modes perpendicular to FPC 

1.8235 43.10 3460 149125 

1.8631 48.04 10420 500608 

1.8846 8.96 36787 329459 

Modes in FPC direction 

1.8245 43.76 4013 175621 

1.8640 45.15 13868 626122 

1.8853 8.69 50742 440849 

 
Table 2.2: The strongest modes in TESLA - type cavities 

 

f, GHz R/Q, Ohm Q R, Ohm 

Both polarizations have nearly equal parameters 

1.713 86 40000 3440000 

1.739 118 32000 3776000 

1.865 42 21000 882000 

1.873 58 27000 1566000 

2.578 90 19000 1710000 

 

At the start, it was taken into account 22 strongest modes (11 of each polarization) in each 

of 11 CEBAF-type cavities and 11 strongest modes (5 of each polarization plus one whose 

pair is weak) in each of 6 TESLA-type cavities. Analysis of the results showed that the 

threshold current is defined by several strongest modes. 

Threshold current depends on the length of the recirculation loop (through sin(ωTr) in the 

Eq. 2.35). The recirculation time of the beam is a half integer of the period of the 

fundamental mode (1.3 GHz). The length of the loop was taken to be 226.5·λ for CEBAF 
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type and 216.5·λ for TESLA-type linac. This length is additional optimization parameter 

which changes the interaction of different modes. 

First of all the modelling results compared for different focusing models in GBBU 

program, which were discussed in the previous paragraph. For 100 MeV BERLinPro based 

on 6 TESLA type cavities different models of the cavities were provided to GBBU program: 

a) Real fields measured in a cavity provided from file; 

b) Method “unity”, model of a cavity given by Serafini and Rozenzweig (SRS model) 

and calculated in Elegant; 

c) Method “simple”, the code assumes uniform acceleration. Although, there is no 

external focusing in this case, the matrix is not equal to unity and depends on the 

initial beam energy and on the field gradient in the cavity; 

d) Method “unity”, model of the cavity calculated in Elegant for the case when the 

focusing effects are switched off. 

Recirculator optics was assumed to be flexible. First the revolution matrix (from the end 

of the linac after acceleration to the beginning of the linac before the deceleration) is set to 

have equal betatron phase advances in x and y planes and scanned over the phase advance. 

The optics was assumed to be symmetrical with the β-function at the beginning of the 

recirculation turn (β0) and at the end (β1) equal to 30 m and α-function α0=α1=0. The 

frequency spread of the dipole modes due to fabrication accuracy is of the order of 1-10 MHz 

[55, 62]. HOM has a width of the resonance curve: 

 
Q
ff ~∆ .    (2.78) 

 
For a typical quality factor Q ~ 104 the width of the mode is about Δf ~ 2·105

 Hz. If the 

mode frequencies overlap, threshold current can decrease drastically, therefore the 

overlapping should be generally avoided. In the results presented in Figs. 2.8-9 this is done 

artificially by a fixed distance (1 MHz step) between the modes in different cavities. 

The results of the modelling for different cavity models presented in Fig. 2.8. 
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As one can see from Fig. 2.8 the results when the fields were provided in a file and for 

SRS model are in a good agreement, but slightly different. That means that SRS model is 

quite close to the reality. On the other hand, another pair of methods – “unity” and “simple” 

gives the same results, as it was expected. The results differ in the minimums of the threshold 

currents by the factor of about 1.5 when the maximums are comparable. 

With the second experiment the TESLA and the CEBAF types of cavities were compared. 

The results of the modeling are presented in Fig. 2.9. Method “unity” was used in GBBU 

program. Transport matrices of the linac structure were calculated by Elegant program and 

focusing effects in cavities were included in this modeling for both cavity types. Recirculator 

optics again was assumed to be flexible and symmetrical with the β-function at the beginning 

(β0) and at the end (β1) equal to 30 m and α-function α0=α1=0 for both types of cavities. 

In accordance with the analytical prediction, the threshold current for CEBAF-type linac 

is factor 2÷10 higher, than for the TESLA-type linac. 

  

 
 

Figure 2.8: Threshold current for 100 MeV BERLinPro based on TESLA type cavities, 
comparison of the different cavity models. 
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In the Fig. 2.9 one can see that for the linac, based on CEBAF-type cavities, for all 

betatron phases the threshold currents varies from about 0.2 to 1.9 A and higher than 0.1 A 

required for the BERLinPro. When for the TESLA type linac most of the phases give the 

results below requirement with the lowest current about 30 mA. But there are exist phases 

when the threshold current is higher than 100 mA. 

Optimization of the length of the recirculation loop and modeling with the random 

distribution of the HOM frequencies will be discussed in the next chapters. 

2.5.4. Frequencies overlapping 

In this paragraph more attention is paid to frequencies overlapping. If the frequency 

differences between two modes in some cavities are smaller than the width of the mode Δf 

(2.78), then the HOMs of these cavities start to interact with each other and the threshold 

current decreases. As an example, the TESLA type linac in 100 MeV BERLinPro was used. 

Let’s assume: 

 ii dfff += ,    (2.79) 
 

 
 

Figure 2.9: Comparison of the threshold currents for TESLA and CEBAF type linacs for 
100 MeV BERLinPro. Method “unity” was used in GBBU program and matrices of the 
cavities were provided from Elegant assuming Serafini-Rosenzweig model. 
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where fi is the frequency of a HOM in the ith cavity, addition to the frequency due to 

fabrication accuracy dfi has Gaussian distribution – Φ0,σ
2 and i = 1..6 – is the number of the 

cavity, σ = 1-10 MHz. 

Let’s find a probability P, when any pair of frequencies overlap in the interval: 

 fff mn ∆<− .   (2.80) 
 

This probability P is the same for the value 

 fdfdfx mn ∆<−= ,   (2.81) 
 

because f is a constant. 

The value x has Gaussian distribution Φ0,2σ
2 due to the fact that if two independent values 

X1 ϵ Φμ1,σ1
2 and X2 ϵ Φμ2,σ2

2 then X1+ X2 ϵ  Φμ1+ μ2,σ1
2

+ σ2
2 (see e.g. [63]). 

And now the probability P0 for fixed n,m may be found as: 
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Now let’s find a probability that at least one pair overlap. Here the Bernoulli’s scheme is 

used: 
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where n= 2

6C – the number of pairs  

Let’s calculate the probability P for TESLA cavity for the mode with the highest Q 

(R/Q = 86 Ohm, Q = 40000, f = 1.7·109 Hz, Δf = 42 kHz) and the lowest (R/Q = 82 Ohm, 

Q = 5400, f = 2.58·109, Δf = 477 kHz). For the first mode the probability equals 0.224 and for 

the second 0.956, for σ = 1 MHz. 

To study the effect of overlapping, BERLinPro based on the TESLA cavities was 

modelled with randomly distributed frequencies of the HOMs. The maximum threshold 

current from Fig. 2.9 was chosen Ith = 0.566 A. For the betatrone phase which corresponds to 

this current value, the series of simulations were carried out using randomly generated 

additions to the HOMs frequencies assuming Gaussian distribution with σ = 1 and 10 MHz. 
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To generate the additions with a Gaussian distribution a Box-Muller transform [64] was 

used. With this method a random number with a Gaussian normal distribution (zero 

expectation (µ = 0), unit variance (σ = 1)) can be generated by generating a pair of 

independent random numbers (let us call them U1 and U2), which are uniformly distributed in 

the interval (0, 1]. The variable 

 )2cos(ln2 21 UUZ π−=    (2.85) 
 

is an independent random variable with a normal distribution of standard deviation 1. And the 
value 

 ZX σµ +=     (2.86) 
 

has a normal distribution with an expectation µ and variance σ. 

In Fig. 2.10 the results of the modelling are presented. 

As you can see, for σ = 1 MHz all values of the threshold currents are below the initial 

value of 0.566 A (when the frequencies were ordered with a step of 1 MHz). The average 

value is about 0.18 A that is higher than 0.1 A required for BERLinPro. For σ = 10 MHz the 

 

 
 

Figure 2.10: Results of BBU modeling for TESLA type linac with a frequency spread of 
the modes between different cavities of σ = 1 and 10 MHz. 
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average threshold current is about 0.42 A and there are exist values higher than 0.566 A. This 

means that overlapping of the frequencies of the modes is important for BBU. 

Let analyse the worst case from the Fig. 2.10 for σ = 1 MHz. In this case the threshold 

current is 0.075 A. It should be noted, that only one or a small number of strongest modes 

defines the threshold current. By deleting the modes from the cavity parameters in the 

modelling it was found that in our case it is the only one defining mode. This is the mode 

with f0 = 1.739 GHz and Q = 32000 (see Table 2.2). Deviations of the frequencies of this 

mode for different cavities are presented in Table 2.3. 

 

Table 2.3: The strongest modes in TESLA - type cavities 

 

Cavity 1 2 3 4 5 6 

df, kHz -815 -475 -649 472 -577 -827 

 

The width of the mode f0/Q is about 54 kHz. For the first and sixth cavities frequency 

difference is 12 kHz that is below the width of the mode. 

First of all to see if the problem is there, let’s change this difference to be more than f0/Q, 

for example exchange only df6 to -900 kHz. After this exchange, the modelling shows the 

threshold current of 0.135 that is almost double of the value which was before. So we can 

conclude now that the problem was in the 1st and 6th cavities. 

On the other hand, let’s assume that it is possible somehow to recombine the cavities 

inside the linac. The idea is that the most problematic for BBU stability are the cavities where 

a beam has the lowest energies (first and last) and less problematic are the cavities in the 

middle. In our case, there is a problem in the 1st and 6th cavities. Let’s put them into the 

middle of the linac in the way (2-3-1-6-4-5). The modelling gives a new threshold current of 

0.14 A. That is a double value from the original. 

In reality it seems to be impossible to change the order of the cavities in the linac without 

changing the parameters of the cavities. Therefore, one has to think about the problem of 

overlapping in advance. It can be good to know the exact parameters of the HOMs in the 

cavities before building the facility. But it seems to be impossible because they can be 

changed during the process of assembling the cryomodule. 
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2.5.5. Initial Twiss parameters for a linac with external focusing 

In this paragraph the way how to find the best initial Twiss parameters of a beam for a 

facility which consist of two parts with a focusing in between of them is under discussion. A 

good example of such facility is 100 MeV BERLinPro (or preinjection linac for a high scale 

facility). In our case, for the focusing in between of the cryomodules, a triplet of quadrupoles 

is assumed. The role of this triplet is to change the sign of the Twiss parameter α of the beam. 

Let us find the initial injection Twiss parameters which will give the same threshold currents 

defined by Eq. 2.53 for the entrance and for the middle of the linac. A model of a linac with 

one dipole HOM is assumed. This one mode was located at different positions in the linac. 

Matrix M = mij is the transfer matrix of the 1st cryomodule and can be found using the model 

of the cavity described in §2.5.1, Eq. 2.74 or the matrix elements can be taken directly from 

Elegant. Also it is assumed that there are symmetrical β-functions on acceleration and 

deceleration in the linac. 

Therefore the beta function can be transferred through the 1st cryomodule as (see 

e.g. [65]): 
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As it was already said the role of the triplet is to change the sign of alpha, therefore it can 

be assumed that at the entrance to the second cryomodule the beam will have β1 and –α1. The 

triplet should be calculated to achieve it. So the beta function at the end of the linac can be 

found as: 
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where t11 and t12 are the transport elements of the second cryomodule. 

The minimum of the β2 is reached, when 
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that gives 
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Now let’s proceed (using Eq. 2.53) with an equation which gives the same threshold currents 

for the middle and the beginning (end) of the linac: 
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Using Eqs. 2.90 and 2.91 the initial beta-function can be found as: 
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And now from Eq. 2.87 one can get: 
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The minimization over α0 gives: 
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The corresponding beta-functions at the entrance, in the middle and at the end of the linac are 

therefore: 
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And, using (2.92) in (2.90) the required initial parameter alpha can be found as: 
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Using Elegant program one can calculate the matrix elements of the cryomodules: m11= -

0.259, m12= 1.082 m. and t12= 2.712 m. And finally the initial parameters are: α0 = -0.44 and 

β0= 1.84 m. It should be noted that the initial parameters we found are at the entrance to the 

cavity but not to the cryomodule (where it is about 1 m of a free drift for the separation of 

cold and warm parts (see [15, §2.5.2.3]), therefore it should be transferred back. The final 

optic is presented in Fig. 2.11. 
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It should be noted that in GBBU program the HOMs are assumed to be in the middles of the 

cavities. In the model it was not taken into account. But it will be done in the next chapter for 

the facilities without additional focusing in the linac. 

The value of the threshold current can be estimated combining Eqs. 2.35 and 2.53: 
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for the estimations we used the mode with (R/Q)d·Q=6·105 Ω, ω=2π·2·109 Hz and optic 

presented in Fig. 2.11. The threshold currents for the middle of the first, second and third 

cavity, reaches the values of 1.36, 1.74 and 1.18 A correspondingly. As we said before our 

goal was to have the same values of the threshold currents for all cavities in the linac. But in 

our model we assumed the same values for the first and the last cavity of the cryomodule in 

fact we got it comparable but the value in the middle of the cryomodule is higher, one can see 

this already from Fig. 2.11. 

 

 

 

Figure 2.11: Optics of a 100 MeV BERLinPro linac, optimized for BBU. 
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Now let’s proceed with a modeling of the instability. As it was already said the optics for 

deceleration is given from right to left in Fig. 2.11. So the transfer matrix of the recirculation 

turn can be written in a common form as (see e.g. [65]): 
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As one can see from Eq. 2.100 there is still available one more parameter to vary – it is 

the betatrone phase μ. So, we set the revolution matrix to have a different betatron phase 

advances in x and y planes and scanned over the phase advances (30x30). The results of this 

modeling are presented in Fig. 2.12. The maximum threshold value is about 930 mA and the 

minimum is 170 mA. 

 

 
 

Figure 2.12: The results of 2D phase scan. 
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One more way to increase the threshold current is to change the length of the recirculation 

pass. The phases corresponding to the maximum value of the current from Fig. 2.12 were 

chosen and the length of the recirculation pass was varied. Originally the length of 188.5λ 

was taken. The results of the modeling are presented in Fig. 2.13. The threshold current 

varies from 650 to 930 mA. Occasionally, the length, which was taken at the beginning, gives 

the highest current. Also one can see that the threshold current varies from maximum to 

minimum when the length changes roughly around ±λ. 

So change of the pass length can vary the threshold current for about 300 mA. But 

unfortunately this method seems impractical, since the mode parameters are not known 

exactly before the assembling of the linac. And building of a turn with a variable pass length 

for at least ±20 cm is complicates the facility layout and increases its costs. 

One of the methods to suppress BBU is to mix the x and y planes of motion. To do this a 

pseudo-reflector (rotator) or 900-solenoid can be used in the long drift between two arcs of 

the main ring [48]. To calculate the influence of these elements on BBU the matrix of the 

recirculation optics was divided in two parts and put the matrix Msol for solenoid or Mpr for 

pseudo-reflector. 

To divide the effects of focusing and rotation of the solenoid let’s transform [31, p.59]: 

 frotfsol MMMM = ,   (2.101) 
 

where Mf contains the focusing of the solenoid and Mrot – matrix of 900- the rotation. 

 

 
 

Figure 2.13: Dependence of the threshold current to the length of the recirculation pass. 

 

0

0.2

0.4

0.6

0.8

1

180.5 185.5 190.5 195.5 200.5

Ith
, A

 

Lenght of the recirculation pass, λ  



 60 

 



















−
−

=

0010
0001
1000
0100

rotM .   (2.102) 

 
When the role of pseudo-reflector is to exchange x and y coordinates: 
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Figure 2.14 shows the results of BBU modeling for BERLinPro based on TESLA 

cavities. Pseudo-reflector, solenoid or unity matrix is used. The same betatron phase 

advances for the x and y coordinates of the beam were used, that is in principle a diagonal 

scan at the Fig. 2.12 for the unity matrix. 

 

 
 

Figure 2.14: The results of BBU modeling for 100 MeV BERLinPro based on TESLA 
cavities with rotator and solenoid. Unity shows the results when there is no coupling between 
x and y motions. 
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As you can see solenoid is more effective for BBU suppression but to rotate a 100 MeV 

beam for 900 it requires quite strong field: 

 mTBBL sol ⋅= 1~
2

2)( πρ ,   (2.104) 

 
where (Bρ) is the momentum of central trajectory. 

2.5.6. Initial Twiss parameters for a linac without external focusing 

In this part the design of optics for machines which have no additional focusing in the 

linac (or this focusing is known) and have one recirculation turn. An example of such 

machine is BERLinPro without addition focusing in it (50 or 100 MeV). Here the optic on 

deceleration pass is assumed to be symmetrical to the optic on acceleration pass, what 

automatically gives the same threshold currents for cavities located symmetrically to the 

middle of the linac. So, let us find optic solution which gives the highest threshold current. 

Since there is no additional focusing in the linac except for RF, the elements mij of the 

transfer matrix of the linac are known. Elegant was used to find them. The β-function at the 

end of the linac is given by (2.87) and can be minimized over α0: 
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With this solution one can find that the square root in the denominator of Eq. (2.53) does 

not depends on the initial Twiss parameters, but only on the m12 matrix element and initial 

energy: 
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Now we still have one free parameter to vary. To achieve the highest threshold in the 

middle of the linac let us minimize the beta-function there, which can be found by 

introducing tij as the matrix elements of the first half of the linac: 
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And, after the minimization one can get: 
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It should be noted that in GBBU program we use for the modeling, HOMs are assumed to 

be in the middle of the cavities, therefore one should take the elements of the transfer matrix 

in the following way: m12 is the element from the middle of the first to the middle of the third 

cavity and t12 is the matrix element from the middle of the first to the middle of the second 

cavity. 

For 50 MeV BERLinPro based on 7-cell cavities (final design) one can find the matrix 

elements using Elegant program: t11 = 0.578, t12 = 0.866, m11 = 0.286, m12 = 1.315, what 

gives β0 = 2.23 m and α0 = 0.48 for the middle of the 1st cavity. Now one can easily find the 

Twiss parameters of the beam at the beginning of the cavity: *
0β = 2.36 m and *

0α = -0.42. 

Optic corresponding to this solution is presented in Fig. 2.15: 

 

 
 

Figure 2.15: Optimum optic solution for 50 MeV BERLinPro. 
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The threshold current can be found using Eq. 2.99. For a mode with Rd=6·105Ω, 

ω=2π·2·109 Hz one can find that the threshold current is about 0.9 A for the first/third and 

about 1.8 A for the middle of the linac. The Eq. 2.99 gives the smallest value of the threshold 

current because in this equation the betatron phase advance was chosen to have the largest 

elements of the transfer matrix of the recirculation turn sin(μ) = 1 and sin(ωT) = 1. 

Therefore, to compare this estimation results with simulations one have to find the 

minimum threshold current by varying the betatron phases and the length of the recirculation 

pass. First of all one mode (with the same parameters we used for the estimation) was set in 

the first and in the second cavities independently. Then it was scanned over the phase 

advances two times and the smallest values of the threshold currents were found for both 

cavities. After that one can choose the transfer matrices corresponding to these values and 

vary the length of the recirculation pass. So finally it was found Ith1 = 0.806 A and Ith2 = 2.14 

A for the 1st (3rd) and 2nd cavities correspondingly. This is in a good agreement with 

estimations. 

For the standard optic of BERLinPro (Fig. 2.16), the beam has Twiss parameters at the 

end of the 3rd cavity: βx = 3.01 m and αx = -2.267, βy = 0.689 m and αy = 0.011. 

 
Figure 2.16: Standard optic design of the 50 MeV BERLinPro linac. The middle of the 1st 
cavity is at 3.15 m. 
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So after the same procedure which was described above (but now the same mode was 

used for x and y polarisations simultaneously, because of not symmetric optic), one can find 

Ith1 = 0.559 A and Ith2 = 0.497 A. What 30% less for the 1st cavity and about 75% less for the 

middle cavity than in the theoretical case. And in total the threshold current changed for 

about 40% and instability now develops in the second cavity. So in the theoretical solution 

one can have the worst cavity in the middle which can have factor 2.5 higher (R/Q)Q of the 

HOM. 
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3. Injection schemes 
In this chapter different acceleration schemes for an Energy Recovery Linac based light 

source are discussed. It is assumed that all schemes have the same injector and dump as 

BERLinPro. The first scheme (direct injection scheme) consists of one main linac with direct 

injection at 7 MeV. The second scheme differs from the first one that it has a preinjection 

linac. This makes lower the high-to-low energy ratio in the main linac. This improves 

transverse optic in the linac and therefore, the BBU instability. Another advantage of having 

a preinjection linac is that the preinjection arcs can be used for longitudinal bunch 

compression [66] (additional compression stage) on acceleration, to reduce the energy spread 

during deceleration by decompression, and to compensate for the average energy loss of the 

beam due to radiation. The third scheme which is proposed for the FSF has the same 

preinjector but it is a multi-turn scheme with 6 passes on acceleration/deceleration and with a 

split main linac. The split main linac allows having different arcs for each beam energy on 

acceleration and deceleration. 

3.1. Direct injection scheme 

In this part the simplest layout of an ERL based LS is under discussion. In this scheme the 

beam after an injector section goes directly to the main linac (see Fig. 3.1), where it is 

accelerated up to 6 GeV of energy and then it is used for the experiments. After the 

recirculation turn the beam is decelerated back in the main linac and dumped. 

 
 

Figure 3.1: Layout of direct injection scheme. 
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The linac is planned to be based on the BERLinPro 7-cell cavities. To reach 6 GeV in the 

linac 464 cavities were taken with an accelerating gradient G about 16.02 MeV/m and 

distributed over 58 cryomodules. The cryomodule is schematically presented in Fig. 3.2, 

where λ=0.2306 m is the wavelength of the accelerating mode. 

 

 
 

Figure 3.2: The scheme of FSF cryomodule. 

 

Triplets of quadrupoles are planned to be in between the cryomodules in the linac. The 

full length of the linac is then about 800 m. The strengths of the quadrupoles were optimized 

in such a way that the BBU instability will develop similarly (with the same threshold 

current) for all the cavities in the linac. In this case the highest threshold current can be 

achieved. As one can see from Eq. 2.53 the threshold current is higher when the coefficient 

β1β2/γ1γ2 is minimized. Here β1,2 – the beta function, γ1,2 – the Lorentz factor on the 

acceleration and deceleration passes correspondingly. It should be noted, that as in §2.5.5 this 

equation will be used to find the best optic solution. It is assumed that optimization procedure 

described below gives the best results for the most sets of the cavities. However, there could 

be some unique set of the HOMs parameters when there will exist a better optic solution. The 

effect of frequencies overlapping, which was discussed in §2.5.4, is not taken into account. 

The most dangerous for the BBU stability are the cavities where the beam has the lowest 

energies. These cavities are located at the beginning when a beam passes them on 

acceleration and at the end of the linac on deceleration stage. Therefore, the initial Twiss 

parameters before the linac were optimized to minimize the beta functions in the first 

cryomodule. In this cryomodule the energy is changed from 7 to 110 MeV. And an RF 

focusing still affects the beam in the first cavities. 

To estimate the optimum values of the initial Twiss parameters Serafini-Rosenzweig 

model of the cavity (Eq. 2.74) was used. It was assumed that the cryomodule is one long 

cavity with an effective gradient given by: 
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where Lcav is the length of the cavity and Lcryo the length of the crymodule. 

The beta function can be transferred through the 1st cryomodule as: 
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And finally one can find that: 
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We also want to keep constant the value of β/γ: 
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The solution is given by: 
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Modelling in Elegant program shows similar results but our model is not ideal, because it 

was assumed one long cavity instead of 8 short with drifts in between. Therefore, the initial 

Twiss parameters of the beam were adjusted to get the smaller value of the β1. The difference 

in optic given by the theoretic results from (3.6) and after an optimization with Elegant is 

presented in Fig. 3.3. The black curve (βx) shows dependence of the beta-function for the 

theoretical and the blue one (βy) for the initial parameters optimized by elegant. 
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Figure 3.3: Beta-functions in the first cryomodule. 

 

Later on the higher energies the RF focusing can be neglected. Therefore, one can use the 

model of cavity as a free drift but with acceleration. In Fig. 3.4 the dependence of (m12/L) is 

shown for different cavities. On the x axis the number of the cavity is shown and on the y 

axis one can see how the matrix element, which is responsible for RF focusing, differs from 

the length of the cavity L. The results show that they quite fast reach each other and for the 

last cavity of the first cryomodule this coefficient is about 0.95. 

 

 
Figure 3.4: Difference of M12 matrix element from length of the cavity for different 
cavities. 
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So our goal is to keep constant the values of β/γ, the preferable theoretically for the BBU 

stability optics should look then like it is shown in Fig. 3.5. The red line shows the values 

with a constant β/γ ~ 0.1 m, and the values below this line will give a higher threshold 

current. Therefore, the values below this line are acceptable for us and we can use that fact 

that the beta function changes as a “parabola” in a free drift with acceleration. 

 

 
 

Figure 3.5: Theoretical optics solution for the direct injection scheme 

 

In the linac the optic is assumed to have mirror symmetry at the middle. Optic for 

deceleration is then shown from right to left in Fig. 3.6. 
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Figure 3.6: Optics design of the main 6 GeV linac for the direct injection scheme. 

 

Optics of the beginning of the linac (zoomed from Fig. 3.6) is presented in Fig. 3.7. From 

this figure one can see the strong focusing in the first cryomodule. 

 

 
 

Figure 3.7: Beginning of the main 6 GeV linac for the direct injection scheme. 
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It should be noted that only 5 triplets were used. These triplets are located between first 

and second, between 8th and 9th cryomodules and in the middle of the linac. As it was said 

above, optics has mirror symmetry, therefore, there are two more triplets at the second half of 

the linac. The length of the linac is then about 750 m.  

The main disadvantage of this scheme is the high ratio between the injection energy Ein=7 

MeV and the final energy Efin=6 GeV: 
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This complicates the transverse focusing in the main linac, because the triplets which 

focus a beam at the beginning of the linac will not affect the beam at the same position on the 

deceleration stage. For a given optics in Fig. 3.6 one can estimate the value of the threshold 

current using (2.35): 𝐼𝑡ℎ = 10−6

4𝜋
𝐸
𝛽

~400 𝑚𝐴 for the middle point of the linac. For the 

estimations we took a mode with (R/Q)d·Q=6·105 Ω, ω=2π·2·109 Hz. 

3.2. Two stage injection scheme 

In this part an improved scheme of the ERL based light source is discussed. The layout of 

this scheme is presented in Fig. 3.8. 

 

 
 

Figure 3.8: Two stage injection scheme. 

 

The main improvement is that now a beam after an injector goes to a short linac 

(preinjector), where it is accelerated up to 250 MeV, then it passes the first arc and comes to 
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the main linac where it is accelerated up to 6 GeV. After that it might be used as a light 

source. After the beam was used it goes back on the deceleration phase. Our goal again will 

be to find the optimum optic solution for the beam break up stability in the both linacs. But 

first let us discuss the instability in the preinjection linac. 

3.2.1. Preinjector 

For the preinjection linac it is suggested to use two cryomodules with a triplet of 

quadrupole magnets in between, like it was discussed in §2.5.5. To find the optimum initial 

Twiss conditions one can use the solution given by Eqs. (2.95) and (2.98). The role of the 

triplet is to change the sign of the Twiss parameter α of the beam. So it has to be optimized in 

a proper way. Using Elegant program one can find the matrix elements of the cryomodules: 

m11= -0.835, m12= 1.62 m. and t12= 7.261 m. And finally the initial Twiss parameters are: 

α0 = -1.421 and β0= 2.757 m. As it was mentioned above, the role of the triplet of quadrupole 

magnets is to change the sign of the alpha-function. It should be noted, that the initial 

parameters we found are at the entrance to the cavity but not to the cryomodule (where it is 

about 1 m of a free drift Fig. 3.2), therefore they should be transformed back for this distance. 

The final optic is presented in Fig. 3.9. 

 

 
 

Figure 3.9: Optics design of the preinjection linac. 
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The estimated value of the threshold current for a mode with (R/Q)d·Q=6·105 Ω, 

ω=2π·2·109 Hz located in the first and the last cavities is 1.64 A, when the value in the 

middle of cryomodule is higher – about 2.5 A. In the next part we discuss the optics in the 

main linac. 

3.2.2. Main linac 

The main difference for the optic design between layouts with direct injection and with a 

preinjector is that in the scheme with two stage injection the initial energy in the main linac is 

250 MeV instead of 7 in the scheme with a direct injection. Therefore, it strongly improves 

the optics. The quadrupole magnets which focus the beam on the low energies (>250 MeV) 

will also focus the beam on the high energies (<6 GeV). And on such high energies as we 

already discussed the cavity is like a free drift with acceleration, so RF focusing can be 

neglected. Therefore, the optic was calculated in the following way: for the first half of the 

linac the triplets between the cryomodules were adjusted in such a way that the beam will go 

like in a free drift with initial/final beta-functions about the length of the cryomodule 

(Fig. 3.10). The role of the triplets is to change the sign of the alpha-function, so it should be 

calculated for this purpose. The second part assumed to be symmetrical to have the same 

optics on the deceleration, which is given from right to left in Fig. 3.10. In this optics design 

there are different thresholds for different cavities in the linac. For the first and last cavity 

estimations give the threshold current about 4 A and 35 A for the cavity in the middle of the 

linac for the mode with (R/Q)d·Q=6·105 Ω, ω=2π·2·109 Hz. 
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Figure 3.10: Optics design of the main 6 GeV linac for two stage injection scheme. 

 

3.3. FSF 

In this part different acceleration patterns for FSF and linac optic designs for them are 

discussed. The main questions discussed here is: “which energy gains should be the in the 

linacs and what is the best optic solution for them for better BBU stability?” 

3.3.1. The 1st proposed scheme 

The very first proposed scheme of FSF is presented in Fig. 1.6. In this scheme a beam 

accelerated in the preinjection linac up to 100 MeV and there are 1 GeV energy gains in both 

main linacs on the each pass. 

The linac is planned to be based on the BERLinPro 7-cell cavities. To reach 1 GeV in the 

linac we took 72 cavities and distributed them over 9 cryomodules. The cryomodule is 

schematically presented in Fig. 3.2. 

Triplets of quadrupoles are planned to be in between the cryomodules in the linac. The 

full length of the linac is then about 140 m. Optics for all three passes through the first 1 GeV 

linac is presented in Fig. 3.11. It will be discussed below that BBU instability will develop in 
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the 1st linac. Therefore, the strengths of the quadrupoles were optimized to have the minimum 

of the beta functions on the 1st pass through the 1st linac. 

 

 
 

Figure 3.11: Optics design of the first 1 GeV linac. 3 passes with 1, 3 and 5 GeV beam 
energy after the pass from left to right correspondingly. 

 

Also the optics was designed for the second 1 GeV Linac and it is presented in Fig. 3.12. 

 

 
 

Figure 3.12: Optics design of the second 1 GeV linac. 3 passes with 2, 4 and 6 GeV beam 
energy after the pass from left to right correspondingly. 

 

In both linacs the optic is assumed to have mirror symmetry at the middle of the 5-th 

cryomodule. Optic for deceleration is shown from right to left in Figs. 3.11-12. 

Optics in the preinjector is the same as for 100 MeV BERLinPro (Fig. 2.11). 

For optic, presented in Figs. 3.11-12, the threshold current can be estimated using 

Eq. 2.97 and the typical parameters of the mode we used before: (R/Q)d·Q=6·105 Ω, 

ω=2π·2·109 Hz. The instability will develop in the first/last cavities in the first linac 1 GeV 

linac with a threshold current of about 0.88 A. The estimated value of the threshold current 

for the second linac is higher – about 3.73 A. And in the preinjector this value is about 1.26 

A. As you can see, the value of the threshold current in the second 1 GeV linac is about 4 



 76 

times higher. Let’s change the energy gains in the main linacs to decrease this difference. 

This should increase the threshold current of the facility. 

3.3.2. Different acceleration pattern 

In this paragraph an improvement of the first proposed scheme of FSF is under 

discussion. The first scheme had 100 MeV preinjection and then two 1 GeV linacs (Fig. 1.6). 

The new improved scheme is presented in Fig. 3.13. 

 

7 MeV injectorBeam dump

1 GeV Linac

1334 MeV Linac

„Long“ undulator

250 MeV
Linac

666 MeV Linac

 
 

Figure 3.13: The improved acceleration scheme of FSF. 

 

The main motivation of this improvement is BBU instability. The new scheme gives 

roughly 1.7 times better threshold current for the 1st cavity in the 1st linac, where the 

instability develops in the first scheme. The energy gain in the preinjector was also increased 

up to 250 MeV, so now it is like described in §3.2.1. 

The easiest way to see the reason of rebalancing of the energies in the two main linacs is 

to analyse Eq. 2.53, especially the square root in the denominator. Let’s find a balance 

between the energy gains in two main linacs to have equal threshold currents for them. To do 

that, a model with linacs, when a focusing from a triplets is neglected for the second and the 

third passes, will be analysed. In this model with the injection energy of about 250 MeV the 

transverse focusing inside the cavities can be neglected. So, it is assumed that the beta 

functions of a beam at the exit and at the entrance to the linac are about the length of the linac 

for the second and the third passes and for the end of the linacs at the first pass. But it is about 

the length of the one cryomodule at the entrance to the 1st linac at the first pass. 
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Let’s introduce G as a gradient of the cavities in MeV/m, L= 2000 [MeV] /G is a length 

of the cavity structure, required to accelerate to the final energy of 2 GeV, x is the length of 

the first linac and, therefore, L-x is the length of the 2-nd. Now one can find energies γ1(2),n for 

each pass and as we assumed before β1,1(6) = β2,1(6) ~ 12.57 m and β1,n = x or β2,n = L-x for the 

first and the second linac respectively and for n=2..5. 

Let’s proceed with the following equation: 
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when the threshold currents have the same values for the 1st and last cavities in both linacs. 

This equation can be solved numerically and gives the result that x ~ L/3 with injection 

energy – γ1,1 = 480. With this result one can get the energy gains in the first and second main 

linacs to be 666 and 1334 MeV correspondingly.  

Let’s continue with a modeling of the linac optics in Elegant program. Optics for all three 

passes through the first 666 MeV linac is presented in Fig. 3.14. 

 

 

 

Figure 3.14: Optics design of the first 666 MeV linac. 3 passes with 250, 2250 and 4250 
MeV beam injection energy from left to right correspondingly. 

 

Also the optics was calculated for the second 1334 MeV linac and it is presented in 

Fig. 3.15. 
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Figure 3.15: Optics design of the second 1334 MeV linac. 3 passes with 916, 2916 and 
4916 MeV beam injection energy from left to right correspondingly. 

 

To estimate the values of the threshold currents the same approach as usual can be used 

(Eq. 2.99 and a mode with (R/Q)d·Q=6·105 Ω, ω=2π·2·109 Hz). And for the first linac the 

threshold current is improved and it is about 1.46 A, when for the second it is 3.58 A and 

slightly decreased. So, the value of threshold current for the 1st main linac was improved. It 

was also slightly decreased for the 2nd linac and for the preinjection linac its value about 

1.64 A. But this scheme has a more complicated spreader, because the energies of the beam 

in the spreader are: …4250, 4916, 6250, which closer than in the first scheme: 4250 and 

5250… Therefore, this scheme seems impractical for us. In the next paragraph let’s go back 

for the scheme with the same energy gains in the main linacs, but with thoughts to connect 

energies of a beam on different passes to fix the spreader design. 

3.3.3. Scalable scheme with preinjector and 3 passes 

In this part an upgrade of the acceleration scheme of the FSF is presented. In this scheme 

the acceleration in the preinjector and in two main linacs is assumed to be scalable. The final 

energy of a beam Efin = (E0+ Epreinj)(1+2Nk) = 6 GeV, where E0 = 10 MeV is the energy after 

booster, Epreinj is the energy gain in the preinjector, N is the number of passes during 

acceleration and constant k = 4. Therefore, one has Epreinj = 230 MeV and Elinac = 960 MeV. 

So the main scheme of FSF is now looks like it is presented in Fig. 3.16. 
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10 MeV injectorBeam dump

960 MeV Linac

„Long“ undulator

230 MeV
Linac

960 MeV Linac

 
 

Figure 3.16: Layout of scalable scheme of FSF. 

 

This change for the scalable facility was made because of the spreader design. A design 

of the spreader for 6 arcs is complicated and if the energy is changed due to unforeseen 

circumstances (e.g. one of the linacs could not achieve the design energy) we could 

simultaneously change the field gradients of cavities in a proportional way everywhere to use 

the same spreader. 

Optics in the preinjection linac was optimized to achieve the same threshold currents in 

all cavities of the linac (Fig. 3.17) as it is described in a part about preinjector for the two 

stage injection scheme (§3.2.1). Only one difference that now it is a 230 MeV linac. 

 
Figure 3.17: Optics in the preinjection linac of scalable FSF. 
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The strengths of the quadrupoles were optimized to have the minimum of the beta 

functions on the 1st pass. Optic for the 3 passes through the first and the second main linacs is 

presented in Figs.3.18-19. In both linacs, the optic is assumed to have mirror symmetry at the 

middle of the 5-th cryomodule. 

 

 
 

Figure 3.18: Optics design of the first 0.96 GeV linac of scalable scheme of FSF. 3 passes 
on acceleration are presented from left to right. 

 

The threshold currents for the optics presented in Figs. 8, 9 can be estimated as usual, 

using Eq. 2.99 and for a mode which we always used ((R/Q)d·Q=6·105 Ω, ω=2π·2·109 Hz ) 

one could get for the beginning of the first linac Ith = 0.73 A and for the second Ith = 2.34 A, 

when for the preinjector it is about 1.58 A. That means the instability develops in the first 

main linac. 

 

 

 
 

Figure 3.19: Optics design of the second 0.96 GeV linac of scalable scheme of FSF. 3 
passes on acceleration are presented from left to right. 
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3.3.4. Summary of the results for the different schemes of FSF 

In this paragraph the results of the estimations of the threshold currents from the 3 

previous paragraphs are summarized. 

 

Table 3.1: Threshold currents for different schemes of FSF 

 

 

It should be noted that the values in Table 3.1 are just the estimations of the threshold 

currents. These estimations were made assuming that there is only one mode in a linac. In 

principle this is the comparison of the square roots in the denominator of Eq. 2.53 for the 

different cavities and different injection schemes. Such problems as coupling and overlapping 

of the different modes are not taken into account. These problems will decrease the threshold 

current and, therefore, should be taken into account later. 

  

Linac scheme Ith, A 

Preinjector 1st Linac 2nd Linac 

0.100 + 2x1GeV 1.26 0.88 3.73 

250 + 666 + 1334MeV 1.64 1.46 3.58 

Scalable scheme 230+2x960 MeV 1.58 0.73 2.34 
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4. Costs analysis 
In this chapter the project construction costs for the direct injection scheme and for the 

scheme proposed for FSF are discussed. The analysis will include several parts of accelerator 

construction such as costs for infrastructure (costs of a land, buildings construction, 

accelerators tunnel), SRF (cryogenic plant, cryomodules, RF generators), warm machine 

(magnets, undulators, vacuum system, diagnostics, control systems, power supplies) and 

users (stations, beamline scientists). For the cost estimations a unit cost for each sub element 

of accelerator structure were assumed, and then the cost for two different designs were 

evaluated. In Table 4.1 the used unit costs are presented. 

 

Table 4.1: Unit costs of different accelerator parts 

 

Component Unit cost 

Land 0.16 k€/m2 

Tunnel 10 k€/m 

Cryomodule 5 M€/m2 

RF generators 1.5 M€ for injector (200kW), 

0.4 M€ for linacs (each of 10 kW) 

Magnets 10 k€ 

Undulators Short – 1 M€, 

Long – 5 M€ 

Vacuum system, diagnostics, 

control systems 

10 k€/m 

Power supplies ~ cost of magnets 

Staff/Beamline scientists 50/100 k€/year 

Users stations 200 M€ 

 

In the next chapters the costs of different parts of a facility for different schemes are 

separately compared. For comparison to be fair, it was assumed to have the same amount, as 

in FSF, of beamlines and insertion devices for direct injection scheme. So, its turn was made 

to be 3 times longer, but there are no available beamlines at lower than 6 GeV energies. 
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4.1. Infrastructure/tunnel 

Let’s the cost analysis with an estimation of the size of the area required to build the 

facility, excavation of the tunnel and construction of required buildings. 

 

10
50

 m

750 m

 
 

Figure 4.1: Land area, required to build a 6 GeV light source based on the direct injection 
scheme with one pass on acceleration. 

 

In Fig. 4.1 with a grey colour marked the area required to build a 6 GeV light source with 

direct injection scheme and single turn. Size of this area and perimeter can be easily found 

and equal to about 1.65 km2 and 4.8 km. It should be noted that we exclude the area outside 

of the arcs and make the facility with a “football stadium” like shape. The excluded area is 

about 0.24 km2. 

For the scheme of FSF (presented in Fig. 1.6) with 3 passes on acceleration and with a 

preinjection linac the area outside of the arcs can be neglected and the size of the land is 

estimated as just for a bar: 350x550 m2. And the length of the tunnel is about 1.5 km. 

For the construction of the buildings the costs assumed to be the same and about 50 M€ 

for the users buildings and about 10 M€ for the technical buildings. 

Now one can use the unit costs from Table 4.1. The prices compared in Table 4.2. 
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Table 4.2: Costs of the infrastructure/tunnel for different schemes of 6 GeV light source 

 

Component Direct injection scheme 

cost, M€ 

3 turn FSF 

cost, M€ 

Land 265 31 

Tunnel 48 15 

Buildings 60 60 

Total 373 106 

 

As you can see from the table, the cost of the infrastructure/tunnel for the direct injection 

scheme is by the factor of about 3.5 higher than for the scheme with 3 turns on acceleration 

and with a split main linac. Nevertheless, the land cost for the direct injection scheme can be 

reduced, by excluding some area from the middle part of the facility. 

 

4.2. Warm machine 

There we would like to analyze the warm part of a 6 GeV light source based on two 

different schemes – the scheme with direct injection, one turn and the scheme of FSF with 3 

turns and a split linac. In a warm part of the facility included: 

a) All types of required magnets; 

b) Undulators; 

c) Power supplies; 

d) Vacuum system; 

e) Beam diagnostics and control systems. 

Now let’s count the number of magnets required for different schemes. We start with the 

scheme of FSF. 

So the preinjector has the same amount of magnets as BERLinPro about 100. Each arc 

consist of 6 300 - bends with 46 magnets in each bend. So it has 12 arcs x 6 bends x 46 

magnets what equals to 3312 magnets required to turn and transfer the beam through the FSF 

arcs. It requires 240 magnets for the spreaders/recombiners and 600 for the focusing in the 

undulators. Plus there are additional 50 more focusing triplet quadrupoles in the linacs. In 

total there are 4300 magnets needed for the realisation of the scheme proposed for FSF. 
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The direct injection scheme requires 3 times less magnets for the arcs and only 15 

quadrupole magnets for the focusing in the linac. It has no spreaders and recombiners and no 

preinjector as well. The number of undulators assumed to be the same as for the scheme of 

FSF, therefore it needs the same number of magnets. So in total there are 1719 magnets 

required for the direct injection scheme. 

The price for the power supplies for the magnets is about of the price of the magnets but 

can be reduced if the magnets are connected is series. 

The total number of short undulators with 1000 periods for both schemes is 60 and there 

is additional long undulator in each scheme. 

The price for the vacuum system, plus the beam diagnostics, plus control systems is 

proportional to the perimeter of the facility. Which for the direct injection scheme is about the 

length of the required tunnel ~ 4800 m. For the scheme of FSF it’s a sum of 2 x 150m linacs, 

4 spreaders and recombiners x 25 m plus arcs, what is about 7500 m of the transfer lines 

required for FSF. So one can use the unit costs from Table 4.1 and summarize the prices in 

Table 4.3. 

 

Table 4.3: Costs of the warm machine part for different schemes of 6 GeV light source 

 

Component Direct injection scheme 

cost, M€ 

3 turn FSF 

cost, M€ 

Magnets 17.2 43 

Undulators 65 65 

Vacuum system + 

diagnostics/control systems 

48 75 

Power supplies 17.2 43 

Total 147.4 226 

 

The total cost for the warm part of the facility for the direct injection scheme is about 1.5 

times cheaper than for the scheme of FSF. The main difference is coming from the number of 

magnets required for beam transportation through the facility and the power supplies for 

them. 
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4.3. SRF 

In this part we would like to estimate the SRF costs for two schemes. In the SRF costs we 

include: 

a) Cryogenic plant; 

b) Cryomodules; 

c) RF generators. 

The cryogenic plant is assumed to be the same for both schemes and there we assume 

only its cost to be about 20 M€. 

It requires 20 cryomodules for the scheme of FSF and 56 for the direct injection scheme. 

The RF generators for the injector require 20mA x 10 MeV = 200 kW of power, assumed 

to be the same for both schemes. And 10 kW generator per cavity will be used in the linacs. 

What requires about 4.48 MW of generators power for the direct injection scheme and about 

1.6 MW for the scheme of FSF. The SRF costs for both schemes summarized in Table 4.4. 

 

Table 4.4: Costs of the SRF part for different schemes of 6 GeV light source 

 

Component Direct injection scheme 

cost, M€ 

3 turn FSF 

cost, M€ 

Cryogenic plant 20 20 

Cryomodules 280 100 

RF generators 180.7 65.5 

Total 480.7 185.5 

 

As you can see from the Table 4.4 the SRF part of the direct injection scheme is about 2.6 

times (or about 300 M€) more expensive than the scheme of FSF. 

4.4. Total cost 

Here the results of comparison of two different schemes of 6 GeV light source are 

summarized. The results are presented in Table 4.5. 
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Table 4.5: Total costs of different parts for two schemes of 6 GeV light source 

 

Component Direct injection scheme 

cost, M€ 

3 turn FSF 

cost, M€ 

Infrastructure/tunnel 375 110 

SRF 485 190 

Warm machine 150 230 

User stations 200 200 

People for 10 years and 

beamline scientists 

100 100 

Total 1310 830 

 

So a 6 GeV light source based on the direct injection scheme cost about 1.6 times (or 

about 480 M€) more than the scheme of FSF with 3 turns on acceleration and a split linac. 
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5. Conclusion 
In this work an introduction to energy recovery based light sources was presented. Two 

ERLs are under development at Helmholtz Zentrum Berlin. One with 6 GeV beam energy is 

in the design phase, it is a multi-turn ERL based light source (Femto-Science Factory). The 

second with 50 MeV beam energy (BERLinPro) funded since January 2011, is a test facility 

to demonstrate the feasibility of high current ERL operation using CW SRF linac technology. 

One of the critical issues of ERL based machines is Beam Break Up instability. This 

instability was investigated during this work. The threshold currents of the instability were 

compared for the 100 MeV BERLinPro based on two different types of cavities: 9-cell 

TESLA and 5-cell CEBAF. The comparison of the results shows that the threshold currents 

for two different types of the cavities approximately differ as the ratio of the impedances of 

the strongest dipole modes of these cavities. 

Methods of suppression of BBU instability were discussed and applied for BERLinPro. 

These methods include: 

1. Adjusting the betatron phase advances of the recirculation turn. It seems to be a 

suitable method for small scale facilities (with low number of cavities). In the case 

when the number of cavities increases this method becomes less effective, because the 

optimum value of the phase cannot be achieved for all the cavities; 

2. Variation of the time of the recirculation pass. For example, the 100 MeV BERLinPro 

based on TESLA-type cavities, a variation of the pass length of two wavelengths of 

the main acceleration mode can change the threshold current by about 30% 

(Fig. 2.13). This method seems hard to be used in practice because it is required to 

know the parameters of the HOMs before assembling the facility. Alternatively, one 

can construct a turn with a variable path length of at least two wavelengths. 

3. Usage of an element which couples the x and y planes of beams motion. This can be a 

pseudo-reflector or solenoid. Such an element can vary the threshold current by about 

30-50% (Fig. 2.14). 

The philosophies of linac optic design to achieve the maximum threshold currents of the 

instability were discussed. Optic of the linac for different layouts was calculated using these 

ideas. For example, the 50 MeV BERLinPro, in comparison with a standard optic, for the 

optic, optimized for BBU, the threshold current is higher by 30% and 75% for the first and 

middle cavities correspondingly (see §2.5.6). 
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Three different schemes of the ERL based light source were compared. These schemes 

are: 

1. Direct injection scheme; 

2. Two-stage injection scheme; 

3. A scheme with two stage injection, a split linac and with 3 acceleration turns. 

The main comparison criterions of the schemes were the threshold currents of the BBU 

instability and the construction costs. The results of the threshold currents for different 

schemes are summarized in Table 5.1. 

 
Table 5.1: Estimations of the threshold currents 

 

Scheme Ith, A 

Direct injection 0.4 

Two stage injection 1.64 

Scalable FSF 0.73 

 

As one can see from the Table 5.1 the highest threshold current is achieved for the 

scheme with two stage injection and one turn. In this scheme the instability develops in the 

preinjecton linac. For the scheme of FSF the threshold current is about factor 2 lower and the 

instability develops in the first main linac due to the multiple turns in it. But in the FSF 

scheme the main linac is 3 times shorter which makes it more cost effective by about 500 M€ 

and the area required for it is smaller. The total cost of a multi-turn scheme of FSF is about 

830 M€ this includes construction of the facility, user stations and staff for 10 years. 
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6. Appendix. Elegant files 
There summarized the inputs for Elegant. To simplify the process of copying from one 

program to another, all the values were copied with accuracy given by program (a lot of 

digits after comma). 

6.1. for §3.3.1 

 

Initial energies for .ele file: 

1-st pass  1-st Linac 

p_central =200, 

2-nd pass  1-st Linac 

p_central = 4113.32, 

3-rd pass  1-st Linac 

p_central =8026.64, 

1-st pass  2-nd Linac 

p_central =2156.66, 

2-nd pass  2-nd Linac 

p_central = 6069.976, 

3-rd pass  2-nd Linac 

p_central =  9983.296, 

.lte file: 

LbCa: drif, L=0.3459 

w1: watch, filename= "%s-%ld.w1" 

cav7cellAcc: rfca, L=0.807133541, VOLT=13.9e6, PHASE=90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

cav7cellDec: rfca, L=0.807133541, VOLT=13.9e6, PHASE=-90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

L1m : drif, L = 1.037743124  

L02m: drif, L = 0.230609583 

LbC2.5l: drif, L= 0.576523958 

LbQ: drif, L=0.752285   
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RTWI2_3: TWISS,BETAX=50.31521006416193,BETAY=41.44177326977371,& 

 ALPHAX=0.8025508134866888,ALPHAY=-0.1677964656769029 

"RTWI2_2": TWISS,BETAX=47.55973273161754,BETAY=23.64270319730079,& 

 ALPHAX=0.4699610398358916,ALPHAY=0.1517001384110356 

"RTWI2_1": TWISS,BETAX=1.17E+01,BETAY=1.17E+01,& 

 ALPHAX=7.57E-01,ALPHAY=7.57E-01 

"RTWI1_1": TWISS,BETAX=1.17E+01,BETAY=1.17E+01,& 

 ALPHAX=7.57E-01,ALPHAY=7.57E-01 

"RTWI1_2": TWISS,BETAX=68.71814074437405,BETAY=64.70852220398153,& 

 ALPHAX=0.4452506268238382,ALPHAY=0.2251795836592895 

"RTWI1_3": TWISS,BETAX=102.6510979747729,BETAY=108.7066590264029,& 

 ALPHAX=0.3744069167384435,ALPHAY=0.4493636664948003 

!cryomodule 

cryo_4_1gev: Line=(L1m,7*(cav7cellAcc,LbC2.5l),cav7cellAcc,L1m,w1) 

!!!!!!!!!!!!triplets 1st 1 GeV Linac 

"TQ12_1N": KQUAD,L=0.15,BORE=0.035,B=0.05103126537734493 

"TQ12_2N": KQUAD,L=0.15,BORE=0.035,B=-0.0957177090363464 

"TQ23_1N": KQUAD,L=0.15,BORE=0.035,B=-0.07463940957710209 

"TQ23_2N": KQUAD,L=0.15,BORE=0.035,B=0.1407306779283681 

"TQ34_1N": KQUAD,L=0.15,BORE=0.035,B=-0.1012667811259562 

"TQ34_2N": KQUAD,L=0.15,BORE=0.035,B=0.1907000296943905 

"TQ45_1N": KQUAD,L=0.15,BORE=0.035,B=0.1273410061696678 

"TQ45_2N": KQUAD,L=0.15,BORE=0.035,B=-0.2397624421754908 

TrCr12n: LINE = (1*(LbQ,tq12_1n,LbQ,tq12_2n,LbQ,tq12_1n,LbQ)) 

TrCr23n: LINE = (1*(LbQ,tq23_1n,LbQ,tq23_2n,LbQ,tq23_1n,LbQ)) 

TrCr34n: LINE = (1*(LbQ,tq34_1n,LbQ,tq34_2n,LbQ,tq34_1n,LbQ)) 

TrCr45n: LINE = (1*(LbQ,tq45_1n,LbQ,tq45_2n,LbQ,tq45_1n,LbQ)) 

!!!!!!!!!!!!triplets 2nd 1 GeV Linac 

"TQ12_1N2": KQUAD,L=0.15,BORE=0.035,B=-0.2876097238096304 

"TQ12_2N2": KQUAD,L=0.15,BORE=0.035,B=0.5405106235505173 

"TQ23_1N2": KQUAD,L=0.15,BORE=0.035,B=0.2952399743989904 

"TQ23_2N2": KQUAD,L=0.15,BORE=0.035,B=-0.5584210683332118 

"TQ34_1N2": KQUAD,L=0.15,BORE=0.035,B=-0.3206870667015269 

"TQ34_2N2": KQUAD,L=0.15,BORE=0.035,B=0.6068173527581688 
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"TQ45_1N2": KQUAD,L=0.15,BORE=0.035,B=0.345238690152169 

"TQ45_2N2": KQUAD,L=0.15,BORE=0.035,B=-0.6530381643371113 

TrCr12n2: LINE = (1*(LbQ,tq12_1n2,LbQ,tq12_2n2,LbQ,tq12_1n2,LbQ)) 

TrCr23n2: LINE = (1*(LbQ,tq23_1n2,LbQ,tq23_2n2,LbQ,tq23_1n2,LbQ)) 

TrCr34n2: LINE = (1*(LbQ,tq34_1n2,LbQ,tq34_2n2,LbQ,tq34_1n2,LbQ)) 

TrCr45n2: LINE = (1*(LbQ,tq45_1n2,LbQ,tq45_2n2,LbQ,tq45_1n2,LbQ)) 

 

Linac1Gev: 

Line=(w1,cryo_4_1gev,TrCr12n,cryo_4_1gev,TrCr23n,cryo_4_1gev,TrCr34n,cryo_4_1gev,

TrCr45n,cryo_4_1gev,TrCr45n,cryo_4_1gev,TrCr34n,cryo_4_1gev,TrCr23n,cryo_4_1gev,Tr

Cr12n,cryo_4_1gev) 

Linac1Gev2nd: 

Line=(w1,cryo_4_1gev,TrCr12n2,cryo_4_1gev,TrCr23n2,cryo_4_1gev,TrCr34n2,cryo_4_1g

ev,TrCr45n2,cryo_4_1gev,TrCr45n2,cryo_4_1gev,TrCr34n2,cryo_4_1gev,TrCr23n2,cryo_4

_1gev,TrCr12n2,cryo_4_1gev) 

!RECIRCnew: 

LINE=(rtwi1_1,w1,cryo_4_1gev,TrCr12n,cryo_4_1gev,TrCr23n,cryo_4_1gev,TrCr34n,cryo

_4_1gev,TrCr45n,cryo_4_1gev,TrCr45n,cryo_4_1gev,TrCr34n,cryo_4_1gev,TrCr23n,cryo_

4_1gev,TrCr12n,cryo_4_1gev) 

RECIRCnew: 

LINE=(rtwi2_3,w1,cryo_4_1gev,TrCr12n2,cryo_4_1gev,TrCr23n2,cryo_4_1gev,TrCr34n2,c

ryo_4_1gev,TrCr45n2,cryo_4_1gev,TrCr45n2,cryo_4_1gev,TrCr34n2,cryo_4_1gev,TrCr23n

2,cryo_4_1gev,TrCr12n2,cryo_4_1gev) 

6.2. for §3.3.2 

 

Initial energies for .ele file 

!!!!!!250+0.5mev 

!!! 1st pass  

!!!! 1st linac 

! p_central = 4.801432e+002, 

!!!! 2nd linac 

! p_central = 1.784582e+003, 

!!!!!2nd pass 
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!!! 1-st linac 

! p_central = 4.393456e+003, 

!!! 2-nd Linac 

! p_central = 5.697893e+003, 

!!!3rd pass 

!!! 1-st Linac  

 p_central = 8.306768e+003, 

!!! 2nd Linac 

! p_central = 9.611205e+003, 

!preinjector 

 p_central = 19.569, 

.lte file: 

LbCa: drif, L=0.3459 

w1: watch, filename= "%s-%ld.w1" 

cav7cellAcc: rfca, L=0.807133541, VOLT=13.9e6, PHASE=90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

cav7cellDec: rfca, L=0.807133541, VOLT=13.9e6, PHASE=-90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

cav7cellAccpreinj: rfca, L=0.807133541, VOLT=14.9e6, PHASE=90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

cav7cellDecpreinj: rfca, L=0.807133541, VOLT=14.9e6, PHASE=-90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

L1m : drif, L = 1.037743124  

L02m: drif, L = 0.230609583 

LbC2.5l: drif, L= 0.576523958 

LbQ: drif, L=0.752285 

"RTWI2_3": TWISS,BETAX=39.062899434972,BETAY=78.67293977081414,& 

 ALPHAX=0.1248919114427072,ALPHAY=0.08404964921807287 

"RTWI2_2": TWISS,BETAX=45.2706123117699,BETAY=19.28654492405109,& 

 ALPHAX=1.126190453628662,ALPHAY=-0.08862225381944949 
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"RTWI2_1": 

TWISS,BETAX=12.53938228097638,BETAY=12.53938228097638,ALPHAX=0.99359338

16894664,& 

 ALPHAY=0.9935933816894664 

"RTWI1_1": 

TWISS,BETAX=12.33057750489,BETAY=12.33057750489,ALPHAX=0.94329549639047

05,& 

 ALPHAY=0.9432954963904705 

"RTWI1_2": TWISS,BETAX=66.93511831651682,BETAY=55.76240671410563,& 

 ALPHAX=0.1122112037437773,ALPHAY=0.3803515829423828 

"RTWI1_3": TWISS,BETAX=85.73947184174607,BETAY=77.71992979757982,& 

 ALPHAX=0.6906267352767432,ALPHAY=0.6947999074102813 

RTWIpreinj: TWISS,BETAX=0.9870793398598936,ALPHAX=-0.2845486622653862,& 

 BETAY=0.9870167259276019,ALPHAY=-0.2845212208591367 

 

cryo_4_1gev: Line=(L1m,7*(cav7cellAcc,LbC2.5l),cav7cellAcc,L1m,w1) 

cryo_preinj: Line=(L1m,7*(cav7cellAccpreinj,LbC2.5l),cav7cellAccpreinj,L1m,w1) 

!!!triplet, preinjector 

"TQpreinj_1N": KQUAD,L=0.15,BORE=0.035,B=0.02928778007419976 

"TQpreinj_2N": KQUAD,L=0.15,BORE=0.035,B=-0.0553079711852654 

TrCrpreinjn: LINE = (1*(LbQ,tqpreinj_1n,LbQ,tqpreinj_2n,LbQ,tqpreinj_1n,LbQ)) 

 

!!!!!!!!!1st linac 

"TQ12_1N": KQUAD,L=0.15,BORE=0.035,B=0.089428106784173 

"TQ12_2N": KQUAD,L=0.15,BORE=0.035,B=-0.1663099894242368 

"TQ23_1N": KQUAD,L=0.15,BORE=0.035,B=-0.1137101568541555 

"TQ23_2N": KQUAD,L=0.15,BORE=0.035,B=0.2131929860515743 

"TQ34_1N": KQUAD,L=0.15,BORE=0.035,B=0.05350521216790047 

"TQ34_2N": KQUAD,L=0.15,BORE=0.035,B=-0.1899687815255773 

"TQ34_3N": KQUAD,L=0.15,BORE=0.035,B=0.1415947149548661 

 

TrCr12n: LINE = (1*(LbQ,tq12_1n,LbQ,tq12_2n,LbQ,tq12_1n,LbQ)) 

TrCr23n: LINE = (1*(LbQ,tq23_1n,LbQ,tq23_2n,LbQ,tq23_1n,LbQ)) 

TrCr34n: LINE = (1*(LbQ,tq34_1n,LbQ,tq34_2n,LbQ,tq34_3n,LbQ)) 
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!!!!!!!!!!!!2nd linac 

"TQ12_1N2": KQUAD,L=0.15,BORE=0.035,B=-0.2614736347667703 

"TQ12_2N2": KQUAD,L=0.15,BORE=0.035,B=0.4858989488151449 

"TQ23_1N2": KQUAD,L=0.15,BORE=0.035,B=0.2871774743989846 

"TQ23_2N2": KQUAD,L=0.15,BORE=0.035,B=-0.5347856516665404 

"TQ34_1N2": KQUAD,L=0.15,BORE=0.035,B=-0.3143583652583663 

"TQ34_2N2": KQUAD,L=0.15,BORE=0.035,B=0.5839039006096893 

"TQ45_1N2": KQUAD,L=0.15,BORE=0.035,B=0.3387974021577785 

"TQ45_2N2": KQUAD,L=0.15,BORE=0.035,B=-0.632006856480879 

"TQ56_1N2": KQUAD,L=0.15,BORE=0.035,B=-0.3623043628175857 

"TQ56_2N2": KQUAD,L=0.15,BORE=0.035,B=0.6758742570601005 

"TQ67_1N2": KQUAD,L=0.15,BORE=0.035,B=-0.421742747118782 

"TQ67_2N2": KQUAD,L=0.15,BORE=0.035,B=0.65273922567697 

"TQ67_3N2": KQUAD,L=0.15,BORE=0.035,B=-0.2818707777396136 

TrCr12n2: LINE = (1*(LbQ,tq12_1n2,LbQ,tq12_2n2,LbQ,tq12_1n2,LbQ)) 

TrCr23n2: LINE = (1*(LbQ,tq23_1n2,LbQ,tq23_2n2,LbQ,tq23_1n2,LbQ)) 

TrCr34n2: LINE = (1*(LbQ,tq34_1n2,LbQ,tq34_2n2,LbQ,tq34_1n2,LbQ)) 

TrCr45n2: LINE = (1*(LbQ,tq45_1n2,LbQ,tq45_2n2,LbQ,tq45_1n2,LbQ)) 

TrCr56n2: LINE = (1*(LbQ,tq56_1n2,LbQ,tq56_2n2,LbQ,tq56_1n2,LbQ)) 

TrCr67n2: LINE = (1*(LbQ,tq67_1n2,LbQ,tq67_2n2,LbQ,tq67_3n2,LbQ)) 

!Linacpreinj: Line=(RTWIpreinj,w1,cryo_preinj,TrCrpreinjn,cryo_preinj) 

!RECIRCnew: LINE=(Linacpreinj) 

RECIRCnew: 

LINE=(rtwi1_3,w1,cryo_4_1gev,TrCr12n,cryo_4_1gev,TrCr23n,cryo_4_1gev,TrCr34n,cryo

_4_1gev,TrCr23n,cryo_4_1gev,TrCr12n,cryo_4_1gev) 

!RECIRCnew: 

LINE=(rtwi2_1,w1,cryo_4_1gev,TrCr12n2,cryo_4_1gev,TrCr23n2,cryo_4_1gev,TrCr34n2,c

ryo_4_1gev,TrCr45n2,cryo_4_1gev,TrCr56n2,cryo_4_1gev,TrCr67n2,cryo_4_1gev,TrCr56n

2,cryo_4_1gev,TrCr45n2,cryo_4_1gev,TrCr34n2,cryo_4_1gev,TrCr23n2,cryo_4_1gev,TrCr

12n2,cryo_4_1gev) 
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6.3. for §3.3.3 

 

Initial energies for .ele file 

!!!!!!230+960mev 

!!! 1st pass  

!!!! 1st linac 

! p_central = 4.692700e+002, 

!!!! 2nd linac 

! p_central =  2.346160e+003, 

!!!!!2nd pass 

!!! 1-st linac 

! p_central = 4.223049e+003,  

!!! 2-nd Linac 

! p_central = 6.099936e+003, 

!!!3rd pass 

!!! 1-st Linac  

! p_central = 7.976824e+003, 

!!! 2nd Linac 

! p_central = 9.853712e+003, 

!preinjector 

 p_central = 19.569, 

 

.lte file 

LbCa: drif, L=0.3459 

w1: watch, filename= "%s-%ld.w1" 

cav7cellAcc: rfca, L=0.807133541, VOLT=13.33333333e6, PHASE=90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS"                            

cav7cellDec: rfca, L=0.807133541, VOLT=13.33333333e6, PHASE=-90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS"              

cav7cellAcc230MeV: rfca, L=0.807133541, VOLT=14.375e6, PHASE=90, FREQ=1.3e9, 

CHANGE_P0=1, & 
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            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS"                            

cav7cellDec230MeV: rfca, L=0.807133541, VOLT=14.375e6, PHASE=-90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS"  

L1m : drif, L = 1.037743124  

L02m: drif, L = 0.230609583 

LbC2.5l: drif, L= 0.576523958 

LbQ: drif, L=0.752285   

"RTWI2_3": TWISS,BETAX=40.55751056124187,ALPHAX=0.2863301610686658,& 

 BETAY=35.43609946424201,ALPHAY=0.03280936912136122 

"RTWI2_2": TWISS,BETAX=30.49206255220344,ALPHAX=0.8431763699662878,& 

 BETAY=24.14863766763482,ALPHAY=0.04018115252579833 

"RTWI2_1": 

TWISS,BETAX=12.53938228097638,BETAY=12.53938228097638,ALPHAX=0.99359338

16894664,& 

 ALPHAY=0.9935933816894664 

"RTWI1_1": 

TWISS,BETAX=12.33057750489,BETAY=12.33057750489,ALPHAX=0.94329549639047

05,& 

 ALPHAY=0.9432954963904705 

RTWI230MEV: TWISS,BETAX=1.091733507761062,ALPHAX=-0.3231848354868172,& 

 BETAY=1.091733507761062,ALPHAY=-0.3231848354868172 

RTWIafter200MEV: TWISS,BETAX=6.045791e+000,BETAY= 6.045791e+000,& 

ALPHAX=-6.754319e-001,ALPHAY=-6.754319e-001 

cryo_4_1gev: Line=(L1m,7*(cav7cellAcc,LbC2.5l),cav7cellAcc,L1m) 

cryo_230_MeV: Line=(L1m,7*(cav7cellAcc230MeV,LbC2.5l),cav7cellAcc230MeV,L1m) 

cryo_4_1gevdec: Line=(L1m,7*(cav7cellDec,LbC2.5l),cav7cellDec,L1m) 

cryo_230_MeVdec: 

Line=(L1m,7*(cav7cellDec230MeV,LbC2.5l),cav7cellDec230MeV,L1m) 

!!! preinjector, triplet 

"TQ230MEV_1NN": KQUAD,L=0.15,BORE=0.035,B=0.02678693223571664 

"TQ230MEV_2NN": KQUAD,L=0.15,BORE=0.035,B=-0.05075521155205445 
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TrCr230mevnn: LINE = 

(1*(LbQ,tq230mev_1nn,LbQ,tq230mev_2nn,LbQ,tq230mev_1nn,LbQ)) 

!!!!!!!!!triplets first linac 

"TQ12_1N": KQUAD,L=0.15,BORE=0.035,B=0.08728498875574105 

"TQ12_2N": KQUAD,L=0.15,BORE=0.035,B=-0.1622941386689107 

"TQ23_1N": KQUAD,L=0.15,BORE=0.035,B=-0.1107520012229698 

"TQ23_2N": KQUAD,L=0.15,BORE=0.035,B=0.2074420800891823 

"TQ34_1N": KQUAD,L=0.15,BORE=0.035,B=-0.1347149654818188 

"TQ34_2N": KQUAD,L=0.15,BORE=0.035,B=0.2529515956030026 

"TQ45_1N": KQUAD,L=0.15,BORE=0.035,B=0.1551762585414628 

"TQ45_2N": KQUAD,L=0.15,BORE=0.035,B=-0.2905894577622814 

!!!!!!!! 

TrCr12n: LINE = (1*(LbQ,tq12_1n,LbQ,tq12_2n,LbQ,tq12_1n,LbQ)) 

TrCr23n: LINE = (1*(LbQ,tq23_1n,LbQ,tq23_2n,LbQ,tq23_1n,LbQ)) 

TrCr34n: LINE = (1*(LbQ,tq34_1n,LbQ,tq34_2n,LbQ,tq34_1n,LbQ)) 

TrCr45n: LINE = (1*(LbQ,tq45_1n,LbQ,tq45_2n,LbQ,tq45_1n,LbQ)) 

!!!!!!!!!!!!2nd 1 GeV Linac 

"TQ12_1N2": KQUAD,L=0.15,BORE=0.035,B=-0.3263145756056179 

"TQ12_2N2": KQUAD,L=0.15,BORE=0.035,B=0.6072974084892324 

"TQ23_1N2": KQUAD,L=0.15,BORE=0.035,B=0.3415935690899017 

"TQ23_2N2": KQUAD,L=0.15,BORE=0.035,B=-0.6407908451652209 

"TQ34_1N2": KQUAD,L=0.15,BORE=0.035,B=-0.3605390978091807 

"TQ34_2N2": KQUAD,L=0.15,BORE=0.035,B=0.6843628782583894 

"TQ45_1N2": KQUAD,L=0.15,BORE=0.035,B=0.3183704903204688 

"TQ45_2N2": KQUAD,L=0.15,BORE=0.035,B=-0.6302305737410014 

!!!!!!!!!!!!!!! 

TrCr12n2: LINE = (1*(LbQ,tq12_1n2,LbQ,tq12_2n2,LbQ,tq12_1n2,LbQ)) 

TrCr23n2: LINE = (1*(LbQ,tq23_1n2,LbQ,tq23_2n2,LbQ,tq23_1n2,LbQ)) 

TrCr34n2: LINE = (1*(LbQ,tq34_1n2,LbQ,tq34_2n2,LbQ,tq34_1n2,LbQ)) 

TrCr45n2: LINE = (1*(LbQ,tq45_1n2,LbQ,tq45_2n2,LbQ,tq45_1n2,LbQ)) 

Linac230MeV: Line=(RTWI230mev,w1,cryo_230_mev,TrCr230mevnn,cryo_230_mev) 

Linac230MeVdec: Line=(cryo_230_mevdec,TrCr230mevnn,cryo_230_mevdec) 

!RECIRCnew: 

LINE=(rtwi1_3,w1,cryo_4_1gev,TrCr12n,cryo_4_1gev,TrCr23n,cryo_4_1gev,TrCr34n,cryo
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_4_1gev,TrCr45n,cryo_4_1gev,TrCr45n,cryo_4_1gev,TrCr34n,cryo_4_1gev,TrCr23n,cryo_

4_1gev,TrCr12n,cryo_4_1gev,w1) 

!RECIRCnew: 

LINE=(rtwi2_3,w1,cryo_4_1gev,TrCr12n2,cryo_4_1gev,TrCr23n2,cryo_4_1gev,TrCr34n2,c

ryo_4_1gev,TrCr45n2,cryo_4_1gev,TrCr45n2,cryo_4_1gev,TrCr34n2,cryo_4_1gev,TrCr23n

2,cryo_4_1gev,TrCr12n2,cryo_4_1gev,w1) 

6.4. for BERLinPro 

 

!p_central=15, 

 

!!!!! berlin pro 

 CAV1: 

RFCA,L=0.8077,VOLT=15341000,PHASE=90,FREQ=1300000000,CHANGE_P0=1,& 

 END1_FOCUS=1,END2_FOCUS=1,BODY_FOCUS_MODEL="SRS" 

 CAV1/2: RFCA,L="0.8077 2 /",VOLT="15341000 2 

/",PHASE=90,FREQ=1300000000,CHANGE_P0=1,& 

 END1_FOCUS=1,END2_FOCUS=1,BODY_FOCUS_MODEL="SRS" 

rtwitestmid: twiss,betax = 2.225163431, alphax = 0.484281969, betay = 2.225163431, alphay 

=  0.484281969 

RTWITESTMID0: TWISS,BETAX=2.357120458542974,ALPHAX=-0.4226331466336725, 

BETAY=2.357120l458542974,ALPHAY=-0.4226331466336725 

L_CAV: DRIFT,L=0.4615 

RECIRC50MeV: 

LINE=(rtwitestmid0,cav1/2,w1,cav1/2,w1,L_CAV,CAV1/2,w1,cav1/2,L_CAV,CAV1/2,w1,

cav1/2,w1) 

cavTESLA: rfca, L=1.037743124, VOLT=1.6e7, PHASE=90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

Lacryo: drif, L=0.691828749 

LbCr: drif, L=3.45914 

LbQ: drif, L=0.752285 

"TQ100MEV_1NN": KQUAD,L=0.15,BORE=0.035,B=0.02324777063085312 

"TQ100MEV_2NN": KQUAD,L=0.15,BORE=0.035,B=-0.03917631448536403 
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TrCr100mevnn:LINE= 

(1*(LbQ,tq100mev_1nn,LbQ,tq100mev_2nn,LbQ,tq100mev_1nn,LbQ)) 

 

rtwitestmid: twiss,betax = 1.841, alphax = -0.44, betay = 1.841, alphay =  -0.44 

RECIRC100MeV: 

LINE=(rtwitestmid0,Lacryo,cavTESLA,LbCa,cavTESLA,LbCa,cavTESLA,Lacryo,TrCr100

mevnn,Lacryo,cavTESLA,LbCa,cavTESLA,LbCa,cavTESLA,w1) 

6.5. for two stage injection scheme 

 

Initial energies for .ele file 

!initial energy for preinjector 

p_central = 19.569, 

!for main linac 

 p_central = 480, 

.lte file 

!!!! 

LbCa: drif, L=0.3459 

w1: watch, filename= "%s-%ld.w1" 

cav7cellAcc: rfca, L=0.807133541, VOLT=12.931e6, PHASE=90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

cav7cellDec: rfca, L=0.807133541, VOLT=13.9e6, PHASE=-90, FREQ=1.3e9, 

CHANGE_P0=1, & 

            END1_FOCUS=1, END2_FOCUS=1, BODY_FOCUS_MODEL="SRS" 

L1m : drif, L = 1.037743124  

L02m: drif, L = 0.230609583 

LbC2.5l: drif, L= 0.576523958 

LbQ: drif, L=0.752285 

"RTWI1_1": TWISS,BETAX=12.5,ALPHAX=0.922560617440601,& 

 BETAY=12.5,ALPHAY=0.922560617440601 

cryo_4_1gev: Line=(L1m,7*(cav7cellAcc,LbC2.5l),cav7cellAcc,L1m) 
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!!!! Triplets 

"TQ12_1N": KQUAD,L=0.15,BORE=0.035,B=       0.0850174319220445    

"TQ12_2N": KQUAD,L=0.15,BORE=0.035,B=       -0.159925623403322    

"TQ12_3N": KQUAD,L=0.15,BORE=0.035,B=       0.0859866615134687    

"TQ23_1N": KQUAD,L=0.15,BORE=0.035,B=       -0.105597977022281    

"TQ23_2N": KQUAD,L=0.15,BORE=0.035,B=       0.200370019713899     

"TQ23_3N": KQUAD,L=0.15,BORE=0.035,B=       -0.107735585072339    

"TQ34_1N": KQUAD,L=0.15,BORE=0.035,B=       -0.128954001680251    

"TQ34_2N": KQUAD,L=0.15,BORE=0.035,B=       0.24227870666847      

"TQ45_1N": KQUAD,L=0.15,BORE=0.035,B=       0.15293787560544      

"TQ45_2N": KQUAD,L=0.15,BORE=0.035,B=       -0.287382687062942    

"TQ56_1N": KQUAD,L=0.15,BORE=0.035,B=       0.177084879544713     

"TQ56_2N": KQUAD,L=0.15,BORE=0.035,B=       -0.332691179073278    

"TQ67_1N": KQUAD,L=0.15,BORE=0.035,B=       0.201032306334129     

"TQ67_2N": KQUAD,L=0.15,BORE=0.035,B=       -0.37774369897825     

"TQ78_1N": KQUAD,L=0.15,BORE=0.035,B=       -0.225211266457728    

"TQ78_2N": KQUAD,L=0.15,BORE=0.035,B=       0.423094510231011     

"TQ89_1N": KQUAD,L=0.15,BORE=0.035,B=       -0.249121911208668    

"TQ89_2N": KQUAD,L=0.15,BORE=0.035,B=       0.468096089542393     

"TQ910_1N": KQUAD,L=0.15,BORE=0.035,B=      -0.273295907914379    

"TQ910_2N": KQUAD,L=0.15,BORE=0.035,B=      0.513427785513868     

"TQ1011_1N": KQUAD,L=0.15,BORE=0.035,B=     0.297173132630133     

"TQ1011_2N": KQUAD,L=0.15,BORE=0.035,B=     -0.558383640978021    

"TQ1112_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.321404623018398    

"TQ1112_2N": KQUAD,L=0.15,BORE=0.035,B=     0.603800792473566     

"TQ1213_1N": KQUAD,L=0.15,BORE=0.035,B=     0.345300796981443     

"TQ1213_2N": KQUAD,L=0.15,BORE=0.035,B=     -0.648798365619162    

"TQ1314_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.36956120480922     

"TQ1314_2N": KQUAD,L=0.15,BORE=0.035,B=     0.694253287909629     

"TQ1415_1N": KQUAD,L=0.15,BORE=0.035,B=     0.39339012303195      

"TQ1415_2N": KQUAD,L=0.15,BORE=0.035,B=     -0.739149627107297    

"TQ1516_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.41766797284088     

"TQ1516_2N": KQUAD,L=0.15,BORE=0.035,B=     0.784623169317841     

"TQ1617_1N": KQUAD,L=0.15,BORE=0.035,B=     0.441512474869972     
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"TQ1617_2N": KQUAD,L=0.15,BORE=0.035,B=     -0.829555800833351    

"TQ1718_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.465840853389526    

"TQ1718_2N": KQUAD,L=0.15,BORE=0.035,B=     0.875103188409603     

"TQ1819_1N": KQUAD,L=0.15,BORE=0.035,B=     0.489646069440325     

"TQ1819_2N": KQUAD,L=0.15,BORE=0.035,B=     -0.91998085940768     

"TQ1920_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.514011692649169    

"TQ1920_2N": KQUAD,L=0.15,BORE=0.035,B=     0.965579764592388     

"TQ2021_1N": KQUAD,L=0.15,BORE=0.035,B=     0.537822402557419     

"TQ2021_2N": KQUAD,L=0.15,BORE=0.035,B=     -1.01047656920617     

"TQ2122_1N": KQUAD,L=0.15,BORE=0.035,B=     0.562194442511363     

"TQ2122_2N": KQUAD,L=0.15,BORE=0.035,B=     -1.05607588437628     

"TQ2223_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.585901298867217    

"TQ2223_2N": KQUAD,L=0.15,BORE=0.035,B=     1.10081052110663      

"TQ2324_1N": KQUAD,L=0.15,BORE=0.035,B=     0.610263243843481     

"TQ2324_2N": KQUAD,L=0.15,BORE=0.035,B=     -1.14638189246896     

"TQ2425_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.633962358008034    

"TQ2425_2N": KQUAD,L=0.15,BORE=0.035,B=     1.19111321539437      

"TQ2526_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.658345293339037    

"TQ2526_2N": KQUAD,L=0.15,BORE=0.035,B=     1.2367095303599       

"TQ2627_1N": KQUAD,L=0.15,BORE=0.035,B=     0.681988421822958     

"TQ2627_2N": KQUAD,L=0.15,BORE=0.035,B=     -1.28135877138116     

"TQ2728_1N": KQUAD,L=0.15,BORE=0.035,B=     -0.706385901300609    

"TQ2728_2N": KQUAD,L=0.15,BORE=0.035,B=     1.3269678573053       

"TQ_1N": KQUAD,L=0.15,BORE=0.035,B=0.6603390500805135 

"TQ_2N": KQUAD,L=0.15,BORE=0.035,B=-1.224755613734276 

 

TrCr12n: LINE = (1*(LbQ,tq12_1n,LbQ,tq12_2n,LbQ,tq12_3n,LbQ)) 

TrCr23n: LINE = (1*(LbQ,tq23_1n,LbQ,tq23_2n,LbQ,tq23_3n,LbQ)) 

TrCr12s: LINE = (1*(LbQ,tq12_3n,LbQ,tq12_2n,LbQ,tq12_1n,LbQ)) 

TrCr23s: LINE = (1*(LbQ,tq23_3n,LbQ,tq23_2n,LbQ,tq23_1n,LbQ)) 

TrCr34n: LINE = (1*(LbQ,tq34_1n,LbQ,tq34_2n,LbQ,tq34_1n,LbQ)) 

TrCr45n: LINE = (1*(LbQ,tq45_1n,LbQ,tq45_2n,LbQ,tq45_1n,LbQ)) 

TrCr56n: LINE = (1*(LbQ,tq56_1n,LbQ,tq56_2n,LbQ,tq56_1n,LbQ)) 

TrCr67n: LINE = (1*(LbQ,tq67_1n,LbQ,tq67_2n,LbQ,tq67_1n,LbQ)) 



 104 

TrCr78n: LINE = (1*(LbQ,tq78_1n,LbQ,tq78_2n,LbQ,tq78_1n,LbQ)) 

TrCr89n: LINE = (1*(LbQ,tq89_1n,LbQ,tq89_2n,LbQ,tq89_1n,LbQ)) 

TrCr910n: LINE = (1*(LbQ,tq910_1n,LbQ,tq910_2n,LbQ,tq910_1n,LbQ)) 

TrCr1011n: LINE = (1*(LbQ,tq1011_1n,LbQ,tq1011_2n,LbQ,tq1011_1n,LbQ)) 

TrCr1112n: LINE = (1*(LbQ,tq1112_1n,LbQ,tq1112_2n,LbQ,tq1112_1n,LbQ)) 

TrCr1213n: LINE = (1*(LbQ,tq1213_1n,LbQ,tq1213_2n,LbQ,tq1213_1n,LbQ)) 

TrCr1314n: LINE = (1*(LbQ,tq1314_1n,LbQ,tq1314_2n,LbQ,tq1314_1n,LbQ)) 

TrCr1415n: LINE = (1*(LbQ,tq1415_1n,LbQ,tq1415_2n,LbQ,tq1415_1n,LbQ)) 

TrCr1516n: LINE = (1*(LbQ,tq1516_1n,LbQ,tq1516_2n,LbQ,tq1516_1n,LbQ)) 

TrCr1617n: LINE = (1*(LbQ,tq1617_1n,LbQ,tq1617_2n,LbQ,tq1617_1n,LbQ)) 

TrCr1718n: LINE = (1*(LbQ,tq1718_1n,LbQ,tq1718_2n,LbQ,tq1718_1n,LbQ)) 

TrCr1819n: LINE = (1*(LbQ,tq1819_1n,LbQ,tq1819_2n,LbQ,tq1819_1n,LbQ)) 

TrCr1920n: LINE = (1*(LbQ,tq1920_1n,LbQ,tq1920_2n,LbQ,tq1920_1n,LbQ)) 

TrCr2021n: LINE = (1*(LbQ,tq2021_1n,LbQ,tq2021_2n,LbQ,tq2021_1n,LbQ)) 

TrCr2122n: LINE = (1*(LbQ,tq2122_1n,LbQ,tq2122_2n,LbQ,tq2122_1n,LbQ)) 

TrCr2223n: LINE = (1*(LbQ,tq2223_1n,LbQ,tq2223_2n,LbQ,tq2223_1n,LbQ)) 

TrCr2324n: LINE = (1*(LbQ,tq2324_1n,LbQ,tq2324_2n,LbQ,tq2324_1n,LbQ)) 

TrCr2425n: LINE = (1*(LbQ,tq2425_1n,LbQ,tq2425_2n,LbQ,tq2425_1n,LbQ)) 

TrCr2526n: LINE = (1*(LbQ,tq2526_1n,LbQ,tq2526_2n,LbQ,tq2526_1n,LbQ)) 

TrCr2627n: LINE = (1*(LbQ,tq2627_1n,LbQ,tq2627_2n,LbQ,tq2627_1n,LbQ)) 

TrCr2728n: LINE = (1*(LbQ,tq2728_1n,LbQ,tq2728_2n,LbQ,tq2728_1n,LbQ)) 

TrCrCn: LINE = (1*(LbQ,tq_1n,LbQ,tq_2n,LbQ,tq_1n,LbQ)) 

RECIRCnew29: 

LINE=(rtwi1_1,w1,cryo_4_1gev,TrCr12n,cryo_4_1gev,TrCr23n,cryo_4_1gev,TrCr34n,cryo

_4_1gev,TrCr45n,cryo_4_1gev,TrCr56n,cryo_4_1gev,TrCr67n,cryo_4_1gev,TrCr78n,cryo_

4_1gev,TrCr89n,cryo_4_1gev,TrCr910n,cryo_4_1gev,TrCr1011n,cryo_4_1gev,TrCr1112n,c

ryo_4_1gev,TrCr1213n,cryo_4_1gev,TrCr1314n,cryo_4_1gev,TrCr1415n,cryo_4_1gev,TrCr

1516n,cryo_4_1gev,TrCr1617n,cryo_4_1gev,TrCr1718n,cryo_4_1gev,TrCr1819n,cryo_4_1g

ev,TrCr1920n,cryo_4_1gev,TrCr2021n,cryo_4_1gev,TrCr2122n,cryo_4_1gev,TrCr2223n,cr

yo_4_1gev,TrCr2324n,cryo_4_1gev,TrCr2425n,cryo_4_1gev,TrCr2526n,cryo_4_1gev,TrCr

2627n,cryo_4_1gev,TrCr2728n,cryo_4_1gev,TrCrCn,cryo_4_1gev,TrCr2728n,cryo_4_1gev,

TrCr2627n,cryo_4_1gev,TrCr2526n,cryo_4_1gev,TrCr2425n,cryo_4_1gev,TrCr2324n,cryo_

4_1gev,TrCr2223n,cryo_4_1gev,TrCr2122n,cryo_4_1gev,TrCr2021n,cryo_4_1gev,TrCr192

0n,cryo_4_1gev,TrCr1819n,cryo_4_1gev,TrCr1718n,cryo_4_1gev,TrCr1617n,cryo_4_1gev,
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TrCr1516n,cryo_4_1gev,TrCr1415n,cryo_4_1gev,TrCr1314n,cryo_4_1gev,TrCr1213n,cryo_

4_1gev,TrCr1112n,cryo_4_1gev,TrCr1011n,cryo_4_1gev,TrCr910n,cryo_4_1gev,TrCr89n,c

ryo_4_1gev,TrCr78n,cryo_4_1gev,TrCr67n,cryo_4_1gev,TrCr56n,cryo_4_1gev,TrCr45n,cry

o_4_1gev,TrCr34n,cryo_4_1gev,TrCr23s,cryo_4_1gev,TrCr12s,cryo_4_1gev,w1) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!preinjector for 2 stage scheme 

CAVpi: 

RFCA,L=0.8077,VOLT=14706175,PHASE=90,FREQ=1300000000,CHANGE_P0=1,& 

 END1_FOCUS=1,END2_FOCUS=1,BODY_FOCUS_MODEL="SRS" 

RTWIPI0: TWISS,BETAX=1.036055784612445,ALPHAX=-0.3044354381189601,& 

 BETAY=1.036055784612445,ALPHAY=-0.3044354381189601 

rtwipi: twiss,betax = 2.8036764209, alphax = -1.3988962787 , betay = 2.8036764209, alphay 

=  -1.3988962787 

TQ1PI: KQUAD,L=0.15,BORE=0.035,B=0.027268127221368 

TQ2PI: KQUAD,L=0.15,BORE=0.035,B=-0.05168204896609516 

TrCrpi: LINE = (1*(LbQ,tq1pi,LbQ,tq2pi,LbQ,tq1pi,LbQ)) 

cryo_pi: Line=(L1m,7*(cavpi,LbC2.5l),cavpi,L1m,w1) 

Linac245MeV: Line=(7*(cavpi,LbC2.5l),cavpi,7*(cavpi,LbC2.5l),cavpi) 

!RECIRCnew: 

LINE=(rtwipi0,L1m,7*(cavpi,LbC2.5l),cavpi,L1m,TrCrpi,L1m,7*(cavpi,LbC2.5l),cavpi,L1

m) 
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