
Neurocognitive evidence for cultural recycling of cortical 

maps in numerical cognition 

 

Kumulative Habilitationsschrift 

Zur Erlangung der Lehrbefähigung für das Fach Psychologie 

 

Vorgelegt dem Rat der Mathematisch-Naturwissenschaftlichen Fakultät II der 

Humboldt-Universität zu Berlin 

 

von 

Dr. phil. André Knops 

 

 

Berlin, den 20.03.2014 

 

Prof. Dr. Jan-Hendrik Olbertz 

Präsident der Humboldt-Universität zu Berlin 

Prof. Dr. Elmar Kulke 

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II 

 

Verteidigung der Habilitation am:  

05.01.2015 

 

Gutachter/innen 

1. Prof. Dr. Torsten Schubert 

2. Prof. Dr. Anja Ischebeck 

3. Prof. Dr. Isabell Wartenburger 

  



 

1 
 



Acknowledgments 

I would like to express my sincere gratitude to the following persons who inspired my 

work and helped me improving it in many ways. 

Before all I would like to thank Klaus Willmes for bringing me to the field of numerical 

cognition and his continued and precious support throughout the years. My utmost gratitude 

goes to Stanislas Dehaene who represents a never-ending source of inspiration and 

motivation. I cannot overestimate the advice, encouragement and support I received from Ed 

Hubbard, Bertrand Thirion, Jan Willem Koten, and Hans-Christoph Nürk. I still consider 

myself lucky to have shared some precious time working on common ideas and projects with 

Jan Lonnemann, Guilherme Wood, and Elise Klein. Last but certainly not least, I would like 

to thank Elke van der Meer for providing me with an efficient and friendly work environment 

at the Humboldt Universität. 

My stay in Paris was undoubtedly the most important experience in my life because it 

allowed me meeting Laurianne, the woman I love and with whom I look forward to seeing 

our beloved daughter grow up.  

  

2 
 



  

3 
 



 

1. Table of Contents 

2. Submitted manuscripts ________________________________________ 5 

3. Introduction & Overview ______________________________________ 6 

4. Operational Momentum in symbolic and non-symbolic approximate 

calculation implies common underlying processes _________________ 10 

5. Sharing resources does not come for free – consequences of cultural 

recycling. __________________________________________________ 22 

6. Numerical ordering – the missing link between the approximate  

number system and mental arithmetic? _________________________ 30 

7. Exact versus approximate calculation – a conceptually warranted  

but empirically elusive distinction. _____________________________ 32 

8. Conclusions and outlook ______________________________________ 36 

9. References _________________________________________________ 40 

10. Appendix - Submitted manuscripts _____________________________ 44 

 

 

 

  

4 
 



2. Submitted manuscripts  

 

Sorted alphabetically. 

 

1. Huckauf, A., Knops, A., Nuerk, H.-C., & Willmes, K. (2008). Semantic processing 
of crowded stimuli? Psychological Research, 72(6): 648 – 656. 

2. Klein, E., Nuerk, H.-C., Wood, G., Knops, A. & Willmes, K. (2009). The exact vs. 
approximate distinction in numerical cognition is not exact, but only approximate: 
How different processes work together in multi-digit addition, Brain and Cognition, 
69, 369 – 381. 

3. Knops, A., Dehaene, S., Bertelletti, I., Zorzi, M. (in Druck). Can Approximate 
Mental Calculation Account for Operational Momentum in Addition and 
Subtraction? The Quarterly Journal of Experimental Psychology. 

4. Knops, A., Thirion, B., Hubbard, E.M., Michel, V. & Dehaene, S. (2009). 
Recruitment of an area involved in eye movements during mental arithmetic. 
Science, 324(5934):1583-5.  

5. Knops, A., Viarouge A., & Dehaene, S. (2009). Dynamic representations underlying 
symbolic and non-symbolic calculation: Evidence from the operational momentum 
effect. Attention, Perception & Psychophysics, 71(4), 803-821. 

6. Knops, A. & Willmes, K. (2014). Linking ordinality and cardinality - evidence for a 
network of right parietal and right inferior frontal areas, Neuroimage. [doi: 
http://dx.doi.org/10.1016/j.neuroimage.2013.09.037]  

7. Knops, A., Zitzmann, S. & McCrink, K. (2013). Examining the presence and 
determinants of operational momentum in childhood. Frontiers in Psychology, 
4:325. [doi: 10.3389/fpsyg.2013.00325]  

8. Koten, J.W.*, Lonnemann, J., Willmes, K., & Knops, A.* (2011) Micro and macro 
pattern analyses of fMRI data support both early and late interaction of numerical 
and spatial information. Frontiers in Human Neuroscience. 5:115. 
[doi:10.3389/fnhum.2011.00115] 

9. Lonnemann, J., Krinzinger, H., Knops, A., & Willmes, K. (2008). Spatial 
representations of numbers in children and their connection with calculation abilities. 
Cortex, 44(4), 420-428.  

* equal contributions 

  

5 
 



3. Introduction & Overview 

Recent years have brought forward a plethora of evidence supporting the idea of a core 

system in the human brain that enables us to approximately perceive and process numerical 

information, the approximate number system (ANS). Humans share this system with various 

species, pointing to an early evolutionary offspring and high evolutionary significance. One 

may wonder, though, what particular evolutionary advantage this system provides. Due to the 

ubiquitous nature of numerical information in the environment, being sensitive to the 

numerical ratios offers an enormous advantage that can be crucial for survival. For example, 

the ANS allows for comparing the respective approximate numbers of individuals in two 

groups during a hostile group encounter and choosing appropriate behaviour based on the 

numerical relation between groups (“fight or flight”). Equally importantly, choosing the more 

abundant of two food supplies (e.g. berries on bush) is of obvious evolutionary advantage.  

Although modern post-industrial societies require more sophisticated behaviour and 

decision going beyond mere choices between fight of flight, numerical capabilities still are of 

outstanding importance both to everyday life and professional career prospects. A good 

mastery of numerical and arithmetic skills affects virtually all aspects of life – from grocery 

shopping to risk evaluation of medical interventions. Low mathematical understanding 

“distorts perceptions of risks and benefits of screening, reduces medication compliance, 

impedes access to treatments, impairs risk communication (limiting prevention efforts among 

the most vulnerable), and, based on the scant research conducted on outcomes, appears to 

adversely affect medical outcomes” (Reyna, Nelson, Han, & Dieckmann, 2009). Deficient 

numeracy – an overarching concept including all facets of numerical cognition, from basic 

numerical skills to highly abstract procedural knowledge in the mathematical domain - has 

been associated with elevated health risks, lowered willingness to participate in health 

prevention programs and lowered adherence. Finally, developmental dyscalculia (DD), the 

deficient development of appropriate numeracy in early childhood has been associated with 

increased risk of unemployment, lowered average income, and increased risk of coming into 

conflict with the law (Butterworth, Varma, & Laurillard, 2011). Indeed, it has been estimated 

that low numeracy in the United Kingdom produces annual costs of about £2.4 billion (Gross, 

Hudson, & Price, 2009). Together, this makes it very clear that a comprehensive 

understanding of the cognitive and cortical mechanisms underlying numerical and arithmetic 

processes is of high significance to society.  
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Here, I will argue that abstract mathematical competencies are tightly linked to the 

aforementioned ANS. I will argue that abstract arithmetic competencies are grounded in the 

ANS. Both, the ANS and arithmetic processes rely on overlapping brain circuits (Arsalidou & 

Taylor, 2011). Parietal cortex (PC) appears to be of particular importance. I will demonstrate 

that this notion goes beyond the report of mere overlap between activations in functional 

imaging studies. Instead, the spatial pattern of activation that is elicited by different tasks in 

parietal and prefrontal areas manifests a high degree of ordered similarity and possesses 

predictive value across cognitive domains. Low-level perceptual processes such as saccades 

lead to spatial patterns of activation in posterior superior parietal lobe (PSPL) that are 

predictive of patterns during abstract approximate calculation processes (Knops, Thirion, 

Hubbard, Michel, & Dehaene, 2009). This is interpreted in terms of cultural recycling of 

cortical maps for cognitive purposes that go well beyond the evolutionary scope of a given 

region. The proposal is that human mathematics builds from foundational concepts (space, 

time, and number) by progressively co-opting cortical areas whose prior organization fits with 

the cultural need. I will build upon behavioral and neuroimaging results from experiments 

with adults and children to support this idea and demonstrate its implications.  

How can we identify the involvement of a particular neural system X and its original 

associated process x in a given process y? The following criteria have been formulated with 

respect to the idea of neuronal recycling (Dehaene & Cohen, 2007, p. 385): 

1. “Variability in the cerebral representation of a cultural invention should be limited. 

2. Cultural variability should also be limited. 

3. The speed and ease of cultural acquisition in children should be predictable based on 

the complexity of the cortical remapping required. 

4. Although acculturation often leads to massive cognitive gains, it might be possible to 

identify small losses in perceptual and cognitive abilities due to competition of the 

new cultural ability with the evolutionarily older function in relevant cortical regions.” 

Applying these criteria Dehaene and Cohen identified arithmetic as one candidate domain 

for the concept of cultural recycling. They demonstrated that numbers activate circumscribed 

areas in the horizontal aspect of the intraparietal sulcus (hIPS), irrespective of format, 

modality or cultural background of the participants. Additionally, evolutionary precursors in 

putative homologue areas in the monkey have been described (criteria 1 & 2). Progressive 

change in anatomical structure and functional scope of hIPS has been demonstrated during the 

acquisition of numerosity in children (criterion 3).  
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Here, I will further operationalize the above criteria by defining predictions at the 

behavioral and neural level. If a given area X underlies process x and is ‘recycled’ to also 

serve process y, 

P1. the functional signature of area X should be reflected in processes x and y. That is, 

the behavioral characteristics in terms of cognitive biases and effects in the co-opting 

domain (y) should reflect behavioral characteristics of the processes initially 

associated with area X. The involvement of X in y might lead to particular cognitive 

biases. 

P2. we should be able to identify, at a neural level, similar contributions of area X in both 

processes, x and y. This entails  

a. common, overlapping activity and  

b. similar spatial pattern of activation in both contexts x and y.  

Going beyond previous research this stipulates that cortical circuits exhibit 

sufficiently stable activation patterns across tasks and domains.  

P3. area X should carry information from both processes when triggered at the same 

time. In particular, any interference between x and y should be reflected in region X. 

This notion is a direct consequence from criterion 4. But rather than looking for 

altered or impaired functioning in domain x, I argue that interference between x and 

y may be attributed to the shared recruitment of area X if criteria 1 and 2 are fulfilled. 

The interference should lead to identifiable activation patterns and behavioral 

signatures.  

This thesis is divided into four parts. In part one (Study 1 to 4) I will use the operational 

momentum effect to demonstrate that (a) symbolic and non-symbolic approximate calculation 

partly rely on a common cognitive magnitude system, and that (b) mental arithmetic co-opts 

evolutionarily older cortical systems. In part 2 (Study 5 to 7) I will demonstrate the 

consequences and expenses that follow from the representational overlap, which in turn 

follows from the co-option of relevant brain circuits. I will show that the parietal 

implementation of numerical magnitude information leads to an automatic activation of 

numerical information even under a crowding regime (Study 5).  I will argue that the 

interference between spatial and numerical information can be interpreted as a consequence of 

a representational overlap (Studies 6 & 7). Part three (Study 8) elucidates the grounding of 

mental arithmetic abilities in the ANS and argues for a mediation of the association between 

ANS and symbolic arithmetic via numerical ordering abilities, which in turn rely on neural 

8 
 



circuits in right-hemispheric prefrontal cortex. Finally, part four will address some technical 

issues in the examination of approximate and exact calculation. In particular, I will argue that 

the involvement of approximate calculation in high-level symbolic calculation remains 

elusive due to a number of technical issues with stimulus-inherent numerical features (Study 

9). 

I will conclude this synopsis with a brief outlook how the current results can inform future 

research and help elucidating the functional architecture underlying numerical cognition. 
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4. Operational Momentum in symbolic and non-symbolic approximate 

calculation implies common underlying processes 

 

According to the influential and widely accepted triple-code model (Arsalidou & Taylor, 

2011) numerical information is internally represented by three separate but interacting codes: 

A verbal representation of numbers is activated in linguistically mediated operations like 

number naming, counting and retrieval of arithmetic facts (e.g., addition results < 10; 

multiplication table facts) which are stored in a verbal code in long term memory. The verbal 

code is associated with left perisylvian language areas and left angular gyrus (AG). A visual 

number form representation allows for recognizing Arabic digits and multi-digit numbers. It 

is associated to bilateral fusiform and lingual regions of the ventral visual stream, involved in 

object recognition. Most centrally to the following work, an analog magnitude representation 

is supposed to represent numerical quantity information (Dehaene, Spelke, Pinel, Stanescu, & 

Tsivkin, 1999; Molko et al., 2003; Rickard et al., 2000) in an approximate manner. The 

analog magnitude representation corresponds to the above mentioned approximate number 

system (ANS). The ANS follows Weber’s law: In number estimation tasks increasing 

numerical magnitude leads to increasingly variable estimates. The increase in variability is 

proportional to the mean, resulting in a constant coefficient of variation. ANS acuity can be 

measured via the Weber fraction, that is the ratio at which two sets of objects (e.g. dot clouds) 

can be differentiated with a given accuracy (e.g. 75%). The Weber fraction correlates with 

mathematical performance, both retrospectively and cross-sectionally (Halberda, Ly, Wilmer, 

Naiman, & Germine, 2012). Higher precision (i.e. lower Weber fraction) goes along with 

better curricular mathematical performance. During childhood the ANS precision increases, 

• Study 1 - Knops, A., Viarouge A., & Dehaene, S. (2009). Dynamic representations underlying 

symbolic and non-symbolic calculation: Evidence from the operational momentum effect. 

Attention, Perception & Psychophysics, 71(4), 803-821. 

• Study 2 - Knops, A., Dehaene, S., Bertelletti, I., Zorzi, M. (in press). Can Approximate Mental 

Calculation Account for Operational Momentum in Addition and Subtraction? The Quarterly 

Journal of Experimental Psychology. 

• Study 3 - Knops, A., Zitzmann, S., McCrink, K. (2013). Examining the presence and 

determinants of operational momentum in childhood. Frontiers in Psychology, 4:325. [doi: 

10.3389/fpsyg.2013.00325]  

• Study 4 - Knops, A., Thirion, B., Hubbard, E.M., Michel, V. & Dehaene, S. (2009). Recruitment 

of an area involved in eye movements during mental arithmetic. Science, 324(5934):1583-5. 
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peaking in adulthood (around 30 years), and decreasing again thereafter (Halberda et al., 

2012). Importantly, training the ANS using non-symbolic (i.e. using dot patterns) addition and 

subtraction problems improves symbolic (i.e. using Arabic digits) math proficiency (Park & 

Brannon, 2013). It has been argued that the ANS provides humans with the ‘start-up’ tools for 

the acquisition of more advanced symbolic mathematical skills (Piazza, 2010).  

Two hall-mark effects in numerical cognition have been interpreted as support for a 

spatially organized mental magnitude representation. First, in numerical magnitude 

comparison tasks using both symbolic and non-symbolic numerosities, performance is 

inversely related to numerical distance. The distance effect describes increasing reaction times 

and error rates with decreasing numerical distance of the to-be-compared stimuli. With 

increasing overall numerical magnitude of the stimulus pair, numerical distance must increase 

proportionally to guarantee constant performance. This is referred to as the size effect. Both 

effects can be explained assuming a linear arrangement of numerical magnitude with 

overlapping activation distributions centered on the presented numerosities. With increasing 

numerical magnitude overlap increases, either due to compression of the underlying scale in 

combination with constant width of activation (logarithmic model; Dehaene, 2003) or due to 

increasing variability and linearly spaced underlying scale (linear model; Gallistel & Gelman, 

1992). In particular, the mental representation of numerical information is often hypothesized 

as a mental number line (MNL) with smaller number being located left from larger numbers, 

at least in left-to-right reading cultures. Recent findings of topographic representation of 

numerical magnitude information in parietal cortex provide a neural instantiation of the 

concept of a MNL (Harvey, Klein, Petridou, & Dumoulin, 2013).  

Surprisingly little is known about how humans combine mental magnitudes in the course 

of mental arithmetic. In 2007 McCrink and colleagues (McCrink, Dehaene, & Dehaene-

Lambertz, 2007) investigated if adult participants would be able to solve non-symbolic 

addition and subtraction problems. In their task participants were presented with non-

symbolic addition and subtraction problems using clouds of dots. They showed that for 

additions and subtractions, both the mean number chosen by the participants and the 

variability of these chosen numbers increased with the correct outcome. However, the values 

chosen by the participants were not centered on the correct result, but were influenced by the 

arithmetic operation. In addition problems the estimated outcome was larger than the actual 

outcome, while it was smaller than the actual outcome in subtraction problems. McCrink and 

colleagues (McCrink et al., 2007) argued that this bias showed similarity to a perceptual 
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phenomenon called “representational momentum” (Freyd & Finke, 1984). When they watch a 

moving object suddenly disappear, participants tend to misjudge its final position and report a 

position displaced in the direction of the movement (Halpern & Kelly, 1993; T. L. Hubbard, 

2005; Kerzel, 2003). Analogously, McCrink and colleagues described their finding as an 

“operational momentum” (OM) since the misjudgment was related to the arithmetic operation 

carried out and suggested that subjects were moving “too far” on the number line.  

A crucial theoretical stance following from the idea that the ANS is foundational for 

abstract arithmetic capabilities predicts that symbolic and non-symbolic numerical operations 

should be characterized by comparable behavioral performance patterns. While this has been 

extensively shown in the context of symbolic and non-symbolic magnitude perception and 

comparison (Burr & Ross, 2008; Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003; 

Piazza, Pinel, Le Bihan, & Dehaene, 2007; but see also Roggeman, Verguts, & Fias, 2007) for 

a different view) and in children (Barth, Beckmann, & Spelke, 2008) less evidence exists for 

the arithmetic domain with adults (Barth et al., 2006). Demonstrating that symbolic and non-

symbolic numerical operations are guided by crucial psychophysical characteristics of the 

underlying ANS and exhibit similar cognitive biases puts prediction P1 to a test.  

Study 1 tested this idea in a series of behavioral experiments using non-symbolic and 

symbolic quantities. The paradigm is depicted in Figure 1. Participants were instructed to 

indicate which numerosity was numerically closest to the actual result by clicking on the 

respective image.  
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Figure 1: Graphical illustration of the paradigm. After an initial appearance of the letters “A” or “S”, 

indicating addition and subtraction, respectively, the first and second operand successively appeared in 

the center of the screen. For trials in symbolic notation the sequence of events was identical. Dots were 

replaced by Arabic numbers. Figure 1 corresponds to Figure 1 in Study 1. 

The results of experiment 1 from Study 1 (see Figure 2) can be summarized as follows. 

First, participants were able to solve both symbolic and non-symbolic addition and 

subtraction problems as indicated by the increasing mean response with increasing correct 

response. Second, variability of the responses increased proportionally with the mean chosen 

values, yielding a constant coefficient of variation, as stipulated by Weber’s law. Again, this 

was observed in both notations with an overall higher accuracy in the symbolic notation. Most 

crucially, however, we observed an operational momentum effect in both non-symbolic and 

symbolic problems. Addition led to significantly larger responses than subtraction, even 

though this effect was larger in the non-symbolic notation. Finally, a Space-Operation 

Association of Responses (SOAR) was observed. Participants preferentially selected values 

presented at the upper left position with non-symbolic subtraction and values presented at the 

upper right position with non-symbolic addition. A similar left-ward bias was found in 

symbolic subtraction. 
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Figure 2: Left: Participants’ average responses (chosen values, squares) and average standard 

deviation (circles) of their responses plotted against the correct outcome for both non-symbolic (A) and 

symbolic (B) addition (black) and subtraction (grey). The lower parts of Figure 2A and Figure 2B depict 

the coefficient of variation (CV), i.e. the ratio between standard deviation and mean chosen value. Right: 

The logarithm if the correct outcome plotted against the logarithm of the mean value chosen for non-

symbolic (top) and symbolic (bottom) notation. The grey line indicates a ratio of 1, i.e. perfect 

performance. Figure 2 corresponds to Figure 3 in Study 1. 

These results imply both partially different and shared subprocesses in the course of 

solving symbolic and non-symbolic approximate calculation problems. First, the overall 

higher accuracy in symbolic notation may reflect verbally mediated exact calculation, 

involving recall of verbal representations and retrieval of arithmetic facts from long-term 

memory. More interestingly, the observed similarity of biases (OM & SOAR) implies shared 

subprocesses, in line with prediction P1. In particular, these findings are consistent with the 

idea that mental arithmetic is mediated by attentional shifts along the MNL. According to this 

view, the OM results from attentional shifts to the left for subtraction and to the right for 

addition. These results also demonstrate that symbolic approximate arithmetic is characterized 

by central features of the underlying numerical magnitude representation (see prediction P1). 

Finding a constant CV in both notations strengthens the hypothesis that approximate 

arithmetic, even when the operands are presented as Arabic numerals, relies on magnitude 
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representations and arithmetic procedures that are partially similar to those used for non-

symbolic calculation. In sum, these results may be interpreted as evidence for partly shared 

cognitive systems and procedures in symbolic and non-symbolic approximate calculation and 

provide additional support for the grounding of mental arithmetic in the ANS.  

Study 2 investigates in more detail how mental arithmetic is grounded in the ANS. By 

combining basic psychophysical parameters capturing the core properties of the ANS, we 

sought to predict participants’ performance in simple mental arithmetic tasks and specify how 

the OM relates to the ANS. In detail, we reasoned that the overall underestimation in previous 

studies on the operational momentum (see Figure 1) might be the consequence of an overall 

miscalibration in estimating (i.e. underestimation) the number of items in a visual set. 

According to the logarithmic model of magnitude scale (see above), the OM effect might be 

linked with the overall acuity of the ANS. The idea is that in the course of mental arithmetic 

the cognitive system ‘undoes’ the compression, operating on uncompressed magnitudes. This 

process of uncompression may be subject to a systematic bias which results in a slightly 

compressed magnitude code during calculation. Consequently, higher overall acuity of the 

ANS may lead to less OM due to more efficient and more accurate 

compression/decompression mechanisms. 

The task was similar to the paradigm from Study 1, but operands and response alternatives 

were not always in the same notation. For example, the operands (Op) of a given addition 

problem were presented in non-symbolic notation and the response alternatives (RA) in 

symbolic notation. Except for the purely symbolic combination of operands and response 

alternatives all Op-RA combinations were presented. Based on supplemental experiments we 

additionally computed the Weber fraction and the overall numerical estimation bias 

(miscalibration) for each participant and combined these values in a simple psychophysical 

model to predict performance in the arithmetic tasks.  

The values predicted by the psychophysical model lined up nicely with the chosen values 

(see Figure 3). The majority of predicted values fell close to the diagonal which indicates an 

adequate fit between model predictions and observed data. Hence, the overall miscalibration 

in cross-notational mental calculation tasks can by and large be explained by the individual 

response bias in numerosity estimation in combination with the individual accuracy of the 

ANS. However, the psychophysical model did not capture the operation-specific over- and 

underestimation pattern, i.e. the OM effect that we observed in all notations. We found 

virtually no explanatory value of the proposed model: relative to the correct outcome, 
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contrary to what was observed, the model predicted negative values for subtraction and 

positive values for addition, taking the form of a full cross-over effect for cross-notational 

conditions. Furthermore, inter-individual variance in non-symbolic number processing did not 

correlate with the amount of operational-momentum effect. These results suggest that the 

observed OM bias in approximate mental arithmetic is due to factors outside the ANS and not 

captured in the current model. 

 

Figure 3: Predicted values of the model (x-axis) against the chosen values (y-axis) for all participants 

in different notations and operations. Left column: addition; right column: subtraction; first row: dots – 

dots; second row: dots – digits; third row: digits – dots. Values within the predicted range are shown as 

black crosses and values outside the predicted range are shown as grey asterisks. Each data point 

represents one trial. Note that data points may be superimposed if identical. The light grey diagonal 

indicates perfect correspondence between model prediction and observed performance. Figure 3 

corresponds to Figure 2 in Study 2.  

In particular, the results of Study 2 are not in line with the idea that the OM effect results 

from flawed compression-uncompression mechanisms. This interpretation is further 

corroborated by the results of Study 3 which tested OM in 6-and 7-year-old children and adult 

controls (see Figure 4). In a child-friendly adaptation of the above paradigm children and 

adult controls were presented with non-symbolic addition and subtraction problems. 

Additionally, reading abilities and spatial attention parameters were tested. Reading abilities 

were assessed via the reading time for a standardized text. Two components of spatial 
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attention, orienting benefit and re-orienting costs, were assessed in an adaptation of the 

Posner paradigm.  

 

Figure 4: Left column: Z-standardized mean reaction times for valid, neutral and invalid conditions 

of the attention paradigm. Error bars indicate standard error of the mean. Right column: The reorienting 

effect (difference between neutral and invalid trials) plotted against the operational momentum bias. For 

reorienting better performance is indicated by numerically larger (i.e. less negative) values. A regular 

operational momentum effect corresponds to positive values, an inverse operational momentum effect 

corresponds to negative values. The correlation between reorienting and operational momentum signifies 

that the less children suffer from invalid cueing the more they are prone to exhibit a regular operational 

momentum effect. Figure 4 corresponds to Figure 6 in Study 3. 

In line with previous research children were able to solve the non-symbolic problems, 

albeit with lower accuracy compared to adults. Most importantly, we observed an overall 

reversed OM effect in children, with addition leading to overall smaller responses than 

subtraction. This was in stark contrast to the regular OM effect in adult controls using the 

identical paradigm and is hard to reconcile with the compression approach, which predicts a 

regular OM effect in children. Due to the overall stronger compression of the MNL in 

children, one may even expect a stronger OM in children compared to adults.  

The attentional shift account explains OM as the result of shifts of spatial attention along 

the MNL that lead participants to prefer outcomes in the “direction” of the arithmetic 

operation (Knops et al., 2009). According to this hypothesis we expected (a) a response 

distribution in children similar to the pattern observed in adults and (b) a relationship between 

attentional indices and the strength and/or presence of OM in children. In contrast, children 
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showed a reverse OM bias under a Bayesian approach. The OM bias was positively correlated 

with the reorienting effect (r = .59, p = .017). With decreasing reorientation effect the 

tendency to exhibit a regular OM bias increased across children. Reorientation captures the 

ability to switch attention from invalidly-cued locations to the uncued location at which the 

actual stimulus appears (Carrasco, 2011). Children who are more proficient in this process 

tend to show a more adult-like OM bias. The size of the reorienting effect might be 

interpreted as an index for the integrity of the described attentional systems, and/or the extent 

to which the attentional system is connected to executive control functions in prefrontal 

cortex. Together with a functional attentional selection system - as evidenced by the 

significant benefit from valid cues - this implies a key role for a functional and mature 

attentional system for the OM to arise in the context of non-symbolic calculation tasks. Since 

OM effect did not significantly correlate with orienting, the observed pattern of results is not 

fully compatible with the attentional shift hypothesis. The results of Study 3 nevertheless 

imply a link of the OM to the attentional system. 

Study 4 explicitly tested the hypothesis first put forward by Hubbard and colleagues 

(Hubbard, Piazza, Pinel, & Dehaene, 2005) that mental calculation involves shifts of the locus 

of activation along a MNL which relies on neural circuitry in posterior superior parietal lobule 

(PSPL) shared with those involved in updating spatial information during saccadic eye 

movements. Specifically, we tested prediction P2 stipulating that cultural recycling should 

lead to a stable pattern of activation in a given area in the context of a given cognitive process 

that can be identified in the context of a different process.  

The fMRI study involved a saccade task and a symbolic and non-symbolic calculation 

paradigm. We employed a multivariate classifier to activation data from PSPL to distinguish 

between leftward and rightward saccades. Without further training this classifier then 

successfully differentiated between addition and subtraction trials from the calculation task. 

This generalization was observed with numbers presented either as Arabic symbols or as non-

symbolic sets of dots, which implies shared cognitive processes between both notations. 

Results are depicted in Figure 5. 

18 
 



 

Figure 5: A, classification performance (d-prime) for each participant in the saccades task 

(participants sorted according to d-prime). B, classification performance (d-prime) per participant for 

generalization of the classifier trained on left/right saccades to subtraction/addition trials. C, voxel 

clusters in left and right PSPL region that resulted from the saccade localizer task and served as ROI for 

the classifier, rendered on white matter/grey matter boundary. D, percentages of trials classified as right 

saccades for subtraction (orange), addition (light blue) and left and right saccades (red and blue, 

respectively). Figure 5 corresponds to Figure 2 in Study 4. 

The observed generalization implies that mental arithmetic superimposes on a parietal 

circuitry originally associated with spatial coding. Our results confirm the above hypothesis 

that mental calculation can be likened to a spatial shift along a mental “number line”. In a 

certain sense, when a Western participant calculates 18+5, the activation moves “rightward” 

on the MNL from 18 to 23. This spatial shift recycles neural circuitry in PSPL shared with 

those involved in updating spatial information during saccadic eye movements and therefore 

confirms prediction P2. The idea is that human mathematics builds from foundational 

concepts (space, time, and number) by progressively co-opting cortical areas whose prior 

organization fits with the cultural need. The PSPL area, perhaps because of its capacity for 

vector addition during eye movement computation (Pouget, Deneve, & Duhamel, 2002), 

appears to have a connectivity or internal structure relevant to arithmetic. 
19 

 



Studies 1 through 4 can be summarized as follows. First, symbolic approximate addition 

and subtraction share with non-symbolic addition and subtraction a number of cognitive 

signatures. Performance in both notations follows Weber’s law. This can be interpreted as 

support for the grounding of higher mathematical competencies in the basic numerical core 

system, the ANS. Performance in approximate mental arithmetic problems was significantly 

modulated by the arithmetic operation at hand. Addition led to significantly larger response 

compared to subtraction. This OM effect has been replicated in several experiments with 

different stimuli and paradigms. Finding a shared effect suggests shared cognitive sub-

processes in non-symbolic and symbolic arithmetic. Second, hitherto gathered evidence from 

Study 3 and Study 4 suggests that attentional shifts play a crucial role during mental 

arithmetic and may give rise to the OM effect. Third, Study 4 shows for the first time the 

involvement of low-level visual processes in higher-order cognition on a neural level. The 

cortical activation pattern elicited by saccades (which, in turn, are accompanied by shifts of 

spatial attention) was predictive for the type of arithmetic operation. The most plausible 

explanation for this finding implies that the neural circuits involved in spatial shifts of 

attention contribute to mental arithmetic in a comparable manner. Hence, mental arithmetic 

may have co-opted parietal areas and recycled their original function in the context of new 

cultural needs. 

  

20 
 



 

 

  

21 
 



5. Sharing resources does not come for free – consequences of cultural 

recycling. 

 

Studies 1 to 4 suggest that mental arithmetic co-opts brain circuits that have evolved for 

spatial navigation, spatial perception and acting in space. The functional architecture of these 

brain areas appears to fit with the cultural needs. Formal mathematical reasoning is a 

relatively young cultural achievement. Although ancient traces of numerical information 

transmission date back thousands of years, the human brain only had a few hundred years to 

adapt to modern mathematics using Arabic numbers in a place-value system, including the 

concept of zero. From an evolutionary point of view this is far from enough time for 

developing dedicated cortical circuits. Cultural recycling does not co-opt existing cortical 

circuits by replacing their initial function. Instead, the initial functional scope is enlarged to 

the new culturally defined needs. In chapter 1 I demonstrated that this process can be 

observed using appropriate behavioral and functional imaging paradigms. I demonstrated that 

mental arithmetic ‘inherited’ performance signatures that characterize the ANS, e.g. Weber’s 

law. In chapter 2 I will examine the putative costs of cultural recycling in the context of 

numerical-spatial interaction. In particular, enlarging the functional scope of a given brain 

area may come at the expense of fast and error-free performance because it leads to 

representational overlap and interference.  

Large parts of the human brain are dedicated to the analysis of visual information and the 

guidance of motor behavior. The extraction of spatial and metric characteristics of the objects 

in a visual scene is crucial for successful motor actions. According to the  widely accepted 

theory by Milner & Goodale (Goodale & Milner, 2004) visual perception results from 

integrating the output of two relatively independent processing streams: the ventral stream in 

• Study 5 - Huckauf, A., Knops, A., Nuerk, H.-C., & Willmes, K. (2008). Semantic processing of 

crowded stimuli? Psychological Research, 72(6): 648 – 656. 

• Study 6 - Koten, J.W.*, Lonnemann, J., Willmes, K., & Knops, A.* (2011) Micro and macro 

pattern analyses of fMRI data support both early and late interaction of numerical and spatial 

information. Frontiers in Human Neuroscience. 5:115. [doi:10.3389/fnhum.2011.00115]  

• Study 7 - Lonnemann, J., Krinzinger, H., Knops, A., & Willmes, K. (2008). Spatial 

representations of numbers in children and their connection with calculation abilities. Cortex, 

44(4), 420-428. 

* equal contribution 
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temporal cortex subserves conscious recognition of visual objects (“vision for perception”), 

while the dorsal stream in parietal cortex (PC) is associated with visuomotor processes 

(“vision for action”). Interestingly, patient studies have shown that metric information from 

dorsal stream informs manual movements despite the absence of complete conscious access to 

this information (patient DF). This suggests that lack of complete conscious access does not 

entail temporal decay of numerical information processed in dorsal stream (Kouider & 

Dehaene, 2009). In Study 5 we explicitly tested this assumption in a crowding paradigm. 

Crowding describes the impairment of peripheral target perception by nearby flankers. 

Currently prevailing theories of crowding mainly rely on low-level visual or attentional 

mechanisms to explain the phenomenon. Higher-level processing of semantic information 

should hence not be possible since the visual input itself is impaired and cannot propagate to 

semantic levels (He, Cavanagh, & Intriligator, 1996; Pelli, Palomares, & Majaj, 2004). If, 

however, semantics of a given stimulus is processed in dorsal stream which has been 

demonstrated to affect manual movements in brain damaged patients, we reasoned that 

numerical information too may leave a semantic trace in a crowding regime.  

In Study 5 participants were presented with laterally presented Arabic digits (target, e.g. 

3) flanked by other Arabic digits (flankers, e.g. 4, yielding 434). In two experiments 

participants were asked to either judge the identity of the target (identification) or to decide 

whether the target is numerically smaller or larger than five (magnitude comparison). We 

observed semantic congruity effects in the magnitude comparison task. Performance to targets 

with congruent flankers (e.g. 434, both target (3) and flankers (4) are smaller than 5) was 

better compared to incongruent flankers (e.g. 636, while target (3) is smaller than 5, flankers 

(6) are larger). Moreover, variation of stimulus onset asynchrony (SOA) between target and 

flankers yielded so-called type-B priming effects (see Figure 6), indicative of interference 

from high levels of processing (Di Lollo, Enns, & Rensink, 2000; but see also Francis & 

Herzog, 2004). Hence, Study 5 suggests that in healthy participants, too, numerical 

information from dorsal stream influence performance. This argues against theoretical 

accounts of crowding that assume impaired visual information propagation to and from 

ventral stream areas. Study 5 demonstrates that participants must have had (nonconscious) 

access to target identity information (most likely processed in inferior temporal cortex) which 

has reached and activated number processors (in hIPS). This is in line with earlier findings of 

notation-independent number priming effects (Naccache & Dehaene, 2001) and implies that 

due to the implementation in parietal cortex numerical information does not rely on conscious 

access to inform other cognitive instances in a given task. Hence, numerical information 
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inherit the functional features from ‘hosting‘ cortical circuits, in this case the capability to 

modulate overt behaviour even under a crowding regime. This is also in line with recent 

findings of automatic non-conscious access numerical information (Bahrami et al., 2010).  

 

Figure 6: Mean proportion of correct responses and standard errors for each target in Experiment 2, 

separately for the different SOAs. The decreasing performance with increasing SOA characterizes Type B 

priming. Figure 6 corresponds to Figure 5 in Study 5. 

A number of visual properties such as contrast, color or orientation are automatically 

extracted from the visual scene. Similarly, physical size has been demonstrated to 

automatically interfere with numerical magnitude information. Comparing two Arabic digits 

in terms of physical and numerical size/magnitude takes longer and is more error prone when 

the two dimensions lead to contradictory information, for example 1_9. Although being 

numerically larger than 1 the digit 9 is physically smaller. This size congruity effect is one 

instantiation of numerical-spatial interactions. Recent theoretical frameworks attribute these 

interactions either to representational overlap at the central semantic stage of information 

processing (Schwarz & Heinze, 1998) or to interfering motor responses later in the cascade of 

cognitive events (Cohen Kadosh et al., 2007). 

In Study 6 we used fMRI to investigate the functional and cortical locus of numerical-

spatial interactions using a numerical landmark task. Participants were presented with three 

horizontally arranged two-digit numbers at a time (e.g. 12__25__84). The task was to decide 
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which numerical interval was numerically smaller, the interval between the leftmost and the 

middle number (12_25) or the interval between the middle number and the rightmost number 

(25_84). Orthogonal to the numerical distances/intervals we manipulated the physical 

distances by changing the spatial position of the middle number. In one third of the trials 

physical intervals and numerical intervals were congruent (e.g. 12_25___84), in one third 

intervals were neutral (see first example), and in one third intervals were incongruent (e.g. 

12___25_84). Additionally, a saccade localizer and a calculation localizer were administered 

to identify regions of interest in parietal cortex (AIP, hIPS, and PSPL).  

Standard General Linear Model (GLM) analyses revealed a large overlap in bilateral 

parietal areas between congruent and incongruent trials (see Figure 7A; green). These regions 

also overlapped with saccade-related regions (pink) and calculation-related regions (blue). 

However, merely overlapping activation between two conditions does not necessarily imply 

shared processed. More information can be extracted from the functional brain maps when 

analyzing the spatial pattern of activation across voxels. GLM analysis lacks the capacity to 

integrate the numerous relations between vertices in a given region of interest (ROI) that form 

specific spatial or temporal patterns of activations. Recent approaches to the analysis of 

multivariate brain imaging data emphasize that different tasks, conditions, and even stimuli 

give rise to distinct and recognizable patterns of activations even in situations when the GLM 

approach is not sensitive enough to reveal amplitude differences (O'Toole et al., 2007; Peelen, 

Wiggett, & Downing, 2006). Here, we used across voxel correlations (AVC) to analyze in 

detail the functional patterns associated with a given task or condition. We extracted the beta 

weights from the contrasts in the GLM analysis from 12 ROIs. Those beta weights were then 

correlated across vertices. The resulting across vertex correlation (AVC) matrices reflect the 

micro-organization of the vertices within the 12 ROIs (see Figure 7B) in the course of the four 

cognitive tasks. 
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Figure 7: A, brain activation data of the GLM analysis (p = .005, uncorrected) projected on the 

cortex-based aligned average anatomy of the sample. Mapped contrasts: conjunction of incongruent and 

congruent vs. baseline (greenish); subtraction vs. control (blue); saccades vs. control (pink). B, The 12 

ROIs selected based on activation data shown in A. Figure 7 corresponds to Figure 2 in Study 5. 

Figure 8 exemplifies the difference between amplitude-based GLM analyses and spatial 

pattern-based AVC. Since analyzing spatial patterns of activation (e.g. using AVC) or GLM 

may lead to completely different results using both types of data analysis offers a 

comprehensive analysis approach.  

 
Figure 8: Activation patterns from two different contrasts sampled from two ROIs (red circles) in the 

left hemisphere (middle, top view). Top row depicts shows contrast A, bottom row shows contrast B. On 

the left both contrasts show overlap in left intraparietal cortex. However, the spatial patterns associated 

with contrasts A and B are completely different (r = .05). This indicates that the voxels in this ROI are 

differentially involved in both situations. On the right we see the reverse situation, where the spatial 

pattern between contrasts is high (r = .70) but no significant activation was observed.  
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Extent of the AVC in the 12 ROIs is shown in Figure 9A as color-coded link between 

nodes referring to the activation from congruent, incongruent, arithmetic, and saccades. Blue 

and green colors indicate low correlations, followed by yellow/orange and red for medium 

and high correlations, respectively. In all ROIs congruent and incongruent trials elicited 

highly correlated patterns of activations. Together with the overlapping activation in 

incongruent and congruent trials this supports the notion that both types of trials rely on 

spatially overlapping neural circuits with highly correlated patterns of activity. We subjected 

the AVC matrices to a cluster analysis to reveal the macro-organization of brain activity 

(Figure 9A). The results suggest two large-scale networks – a motor-related network and a 

network devoted to saccades and numerical information. The analysis of the micro and 

macro-organization of the different tasks in the different ROIs suggest a subdivision of the 

areas along the HIPS and a differential involvement of the areas defined here in the resolution 

of the conflict occurring when spatial and numerical information do not converge on the same 

response. 

27 
 



 
Figure 9: A, results of the cluster analysis of the AVC between congruent, incongruent and the two 

localizer tasks (saccades and calculation) in the 12 ROIs. The four corners represent congruent (C), 

incongruent (I), calculation (A) and saccades (S) contrasts. The color of the connecting lines indicates 

height of respective correlation in the ROI (see bottom for scale). B, results of the cluster analysis of the 12 

ROIs collapsed across hemispheres. C, results of the decoding analysis differentiating incongruent from 

congruent trials in the different ROIs. Coefficient d-prime was computed by defining correct classification 

of congruent trials as congruent as true positive and classification of incongruent trials as incongruent as 

true negative. Stars indicate d-prime significantly larger than zero (red line) at p<.05 (corrected for 

multiple comparisons). Error bars represent standard error of the mean. Figure 9 corresponds to Figure 3 

in Study 5. 
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To further investigate the implication of the different clusters (and the ROIs therein) in the 

context of the numerical landmark task we used a support vector machine classifier to 

differentiate congruent from incongruent trials (see Figure 9C). Importantly, in ROIs from 

each of the two large-scale networks the spatial activation patterns allowed for a better-than-

chance distinction between congruent and incongruent trials. Combining prior knowledge 

about the different ROIs’ functional scope with their network-structure allows differentiating 

between central-semantic levels of information processing and response-related levels. 

Finding that ROIs at both levels of information processing carried information that allowed 

disentangling congruent and incongruent trials suggests that the numerical-spatial interference 

arises both at early and late levels of information processing. 

In Study 7 we administered the same paradigm to 8- and 9-year-old children and observed 

a strong distance-congruity effect which was present over the entire temporal range of the 

reaction time distribution (from early to late RT bins). These results demonstrate that the 

comparison of numerical distances was strongly influenced by the spatial arrangement of the 

stimuli. This constitutes further evidence for the involvement of spatial representations in the 

context of numerical tasks, even in third graders. Together with the observed correlations with 

calculation abilities in boys this supports the close link between numerical and spatial 

processes and point to an early ontogenetic onset. 

Together, these results imply that cultural recycling of parietal areas in the course of 

numerical cognition may lead to cognitive costs when information from the numerical and 

spatial domain is contradictory, as stipulated by prediction P3. Study 6 demonstrates that the 

interference arises at central semantic stages of information processing in areas that are 

frequently found in studies investigating mental arithmetic or number processing. 

Interestingly, anterior parietal areas related to hand movements and functionally different 

from the saccades/number cluster also carry congruity conflict information. In combination 

with the findings from saccade-related areas this lends further support to the notion made by 

Hubbard and colleagues (2005) that the numerical-spatial interaction may be due to the 

interaction at the motor programming level. Future studies should further investigate how the 

functional and cortical dynamics during hand- and eye-movements contribute to spatial-

numerical interactions and mental arithmetic.  
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6. Numerical ordering – the missing link between the approximate 

number system and mental arithmetic? 

 

In chapters1 and 2 I have argued for a cultural recycling of cortical circuits in parietal 

cortex for numerical processing. This does not come ‘for free’ but entails specific 

performance characteristics. First, mental arithmetic carries functional signatures from the 

underlying cortical structures. In particular we see that numerical processing and mental 

arithmetic follow Weber’s law. We also found evidence for an influence of attentional shifts 

during mental arithmetic, a core candidate mechanism underlying the operational momentum 

effect in addition and subtraction. Finally, we observed that much like spatial information 

numerical magnitude is processed automatically and interferes with spatial information at 

both central and response-related stages. Together, this is line with the assumption that the 

ANS can be understood as a core capacity that provides us with a start-up tool for acquiring 

mental arithmetic (Piazza, 2010). Put differently, mental arithmetic is grounded in the 

approximate number system. How does this come about? What are the particular mechanisms 

that instantiate this process? A recent proposition emphasizes the role of numerical ordering 

in this context. Lyons and Beilock recently demonstrated that the correlation between core 

ANS parameters (i.e. the Weber fraction) and mental arithmetic performance was statistically 

mediated by numerical ordering abilities in a large sample of highly educated college students 

(Lyons & Beilock, 2011).  

Study 8 investigated the neural correlates of the relation between mental arithmetic and 

numerical ordering. We administered a mental calculation task (additions & subtractions), as 

well as an ordinality judgment task (“Is the sequence 1_5_3 numerically ascending or not?”) 

to participants while measuring their brain activity with an MR system. We augmented 

standard GLM analyses, revealing largely overlapping activity in a fronto-parietal network for 

both tasks, with a correlation-based analysis of the spatial pattern of activation (AVC, see 

chapter 2).  

We defined three criteria for areas that functionally link the processing of order 

information to mental arithmetic: First, the area must be active in both ordering and mental 

arithmetic. Second, the spatial activation pattern elicited by ordering should be similar to the 

spatial pattern elicited by mental arithmetic and this correlation should be consistently found 

Study 8 - Knops, A. & Willmes, K. (2014). Numerical ordering and symbolic arithmetic 

share frontal and parietal circuits in the right hemisphere. Neuroimage, 84, 786 – 795. 
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in the majority of participants (i.e. be significant at the group level). Third, we hypothesized 

that those arithmetic operations, which are more demanding in terms of numerical 

competencies and for which ordering abilities are more important, also exhibit a stronger 

correlation with ordering ability. A right-hemisphere network comprising anterior aspects of 

the intraparietal sulcus as well as Brodmann area 44 (BA 44) was identified that met all 

criteria to be considered a candidate region for establishing the behaviorally observed link 

between the ANS and symbolic calculation abilities.  

 

 

Figure 10: A, right hemispheric regions fulfilling all criteria (1-3) as defined in the introduction 

projected on posterior-superior (left) and lateral-frontal (right) views of the brain. B, projections on 

horizontal plane (z = 49.5) of cytoarchitectonically defined parcellation of the brain in SPM (Anatomy 

toolbox (Eickhoff et al., 2007)) with a zoom on the activated regions (blue box) on the right. Borders of 

labeled areas in right parietal lobe are depicted in green; all FDR-corrected (p < .05) and inclusively 

masked by the contrasts as specified in the text. Figure 10 corresponds to Figure 3 in Study 8. 

We propose that this network operates on a spatial code and can be considered the right 

hemisphere counterpart of the well-known left-hemisphere network engaged in processing of 

order information in language and action processing (Meyer, Obleser, Anwander, & 

Friederici, 2012). For the first time we provide a plausible functional interpretation of right 

hemisphere BA 44 activity that has frequently been reported in mental arithmetic. This may 

be understood as another instantiation of cultural recycling of brain circuits evolved for the 

understanding of ordinal relations in concrete and abstract series of events such as language in 

the left hemisphere and space in the right hemisphere. 
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7. Exact versus approximate calculation – a conceptually warranted but 

empirically elusive distinction. 

 

In the previous chapters I discussed the characteristics of approximate arithmetic and its 

implementation in the human brain. Importantly, I argued that the ANS crucially contributes 

to this process. One key finding is that the influence of the ANS on mental arithmetic is more 

pronounced in the context of approximate operations. Using symbolic notation, for example, 

we observed a smaller operational momentum effect compared to non-symbolic notation. Yet, 

even in the symbolic notation one may distinguish between approximate and exact 

calculation. The question arises, though, how to distinguish between these processes. A 

frequent approach to probe approximate calculation is to present participants with two 

incorrect response alternatives in the context of mental addition problems (Stanescu-Cosson 

et al., 2000). For example, for the problem 1 + 2 = ? participants are presented with the 

alternatives 4 and 8. Even without retrieving the exact result participants are supposed to 

readily reject 8 since the numerical distance to the correct response is large and, more 

importantly, larger than the distance of the second incorrect response alternative. Exact 

calculation, however, is triggered using the correct result and a close but incorrect response 

alternative, for example, 3 and 5 for the above problem. While problem size is expected to 

exert a huge impact on exact calculation, using approximation should be relatively unaffected 

by problem size. Indeed, this is exactly what Stanescu-Cosson and colleagues (Stanescu-

Cosson et al., 2000) observed. However, as becomes obvious from the above examples, the 

exact-approximate distinction is undermined by confounds in the stimulus material. For 

example, target and distractor distance (distance of target and distractor to correct result) is 

smaller in exact problems (0 and 2 for exact versus 1 and 5 in the approximate), potentially 

leading to more difficult distinction between response alternatives due to smaller numerical 

distances. From the above it follows that the approximate condition exclusively contained 

non-identical (NIT) trials with large distractor distance (e.g., ‘‘1 + 2 = 4 or 8”), while the 

exact calculation condition exclusively contained identical (IT) trials with small distractor 

distance (e.g., ‘‘1 + 2 = 3 or 4”). Thus, rather than the distinction between exact and 

approximate calculation an interaction between target identity and distractor distance was 

• Study 9 - Klein, E., Nuerk, H.-C., Wood, G., Knops, A. & Willmes, K. (2009). The exact vs. 

approximate distinction in numerical cognition is not exact, but only approximate: How different 

processes work together in multi-digit addition, Brain and Cognition, 69, 369 – 381. 
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investigated: NIT with large distractor distance (‘‘approximate calculation”) and IT with 

small distractor distance (‘‘exact calculation”, see arrows in Figure 11).  Hence, the exact-

approximate distinction would be confounded with the hallmark effect in numerical cognition, 

the distance effect. Additionally, carry-over effects were confounded in the Stanescu-Cosson 

(Stanescu-Cosson et al., 2000) study with the exact-approximate distinction.  

In Study 9, we sought to disentangle the exact-approximate distinction from the above 

mentioned confounds in target and distractor distance, problem size, and carry-over. 

Participants had to solve two-digit addition problems. Target distance was orthogonally 

manipulated with respect to distractor distance while carry-over and problem size were 

matched across stimulus groups.  

 

Figure 11: Identical (IT) vs. non-identical (NIT) target (target distance = 0 vs. target distance > 0) 

with large and small distractor distances. Error bars indicate standard error of the mean. The conditions 

actually compared in Stanescu-Cosson et al. (2000) are marked by arrows: obviously, RT effects are 

reduced in this comparison. Figure 11 corresponds to Figure 1 in Study 9. 

Our results indicate that previous results may have overgeneralized findings that were due 

to particular stimulus configurations. In particular, we observed an interaction between target 

identity and distractor distance in the absence of a statistically significant difference between 

previous stimulus configurations. Also, the faster responses in the IT trials (previously 

assumed to trigger exact calculation) compared to NIT trials challenged the notion of 

approximation as a fast calculation process. Brain imaging results revealed no evidence either 

for distinct mental codes underlying these tasks or for any specific fMRI activation in NIT or 

IT calculation. Furthermore, the activation in parietal cortex was accounted for by the factor 

distractor distance, even within the NIT condition itself, as well as within the IT condition 
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itself. Hence, problems with identical and problems with non-identical response alternatives 

rely on highly overlapping brain areas, modulated by target distance and distractor distance. 

These activity modulations, though, were previously attributed to the differential involvement 

of parietal cortex in exact versus approximate calculation.  

While these results underline the importance of controlling task-relevant stimulus 

dimensions which may be confounded with the stimulus dimension under investigation it is 

important to note that they do not speak against the distinction between exact and 

approximate mental arithmetic per se. Future research needs to address the issue to what 

extent these theoretically and conceivably different operations do rely on overlapping and/or 

distinct neural circuits. First evidence comes from Study 4. Given that non-symbolic 

calculation relies to a larger amount on approximate numerosity estimates than symbolic 

calculation which may be verbally mediated, Study 4 demonstrates largely overlapping 

activations in parietal cortex in both symbolic and non-symbolic calculations. Furthermore, 

attentional operations in posterior parietal cortex were comparably involved in both notations 

as indexed by successful cross-notational generalization. Since both notations used the same 

arithmetic problems, stimulus set differences can be excluded in the interpretation of 

activation overlap.  
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8. Conclusions and outlook 

In four chapters I argued for a grounding of mental arithmetic in the approximate number 

system (ANS) that can be interpreted as cultural recycling of parietal neural circuits which 

initially evolved for spatial navigation, perception, and action. In part 1 I demonstrated how 

approximate mental arithmetic is influenced by the functional characteristics of the co-opted 

parietal system: In Study 1, mental addition and subtraction in both symbolic and non-

symbolic notation exhibits basic psychophysical characteristics of the ANS. Additionally, a 

common cognitive bias (operational momentum effect) was found in both notations, implying 

partially overlapping sub-processes. As shown in Study 2, the operational momentum effect 

(OM) cannot be accounted for by the inherent features of the ANS. Rather, it seems to be 

linked to the attentional system, as indicated by Studies 3 and 4. The neural correlates of basic 

perceptual processes (i.e. saccades) in posterior parietal cortex (PSPL) were found to be 

predictive of higher-order cognitive processes, namely addition and subtraction. Together, 

this underlines the idea that mathematical capacities are grounded in the basic numerical 

understanding mediated by the ANS. It is also in line with the notion of Hubbard and 

colleagues (2005) who conceived of mental arithmetic as interplay between hIPS and PSPL. 

Part 2 showed how numerical cognition inherits functional characteristics from parietal 

cortex: Study 5 showed that numerical information escapes from temporal decay even under a 

regime of non-conscious processing and can exert response-relevant influence in crowded 

presentation. Studies 6 and 7 demonstrated that co-opting parietal circuits comes at the 

expense of interference between spatial and numerical information. Combining multivariate 

analysis approaches in a new and innovative way revealed a central-semantic and response-

related origin of numerical-spatial interaction. Carrying the map-based analysis approach 

from Study 6 to three-dimensional space, Study 8 argues for a mediating role of a right 

parieto-frontal network comprising anterior parietal areas and the right homologue of Broca’s 

area (BA 44) in linking symbolic arithmetic to the ANS. The identified right-hemispheric 

network may form a contralateral homologue in the spatial domain to the left-hemispheric 

network which is thought to process ordinal aspects in the language domain. In Study 9 I 

described some of the stimulus-related pitfalls in the empirical investigation of the distinction 

between exact and approximate calculation.  

The experimental work and the conceptual framework presented here may contribute to 

future work in several ways. 
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First, the conceptual framework presented in Study 4 may fruitfully be applied to other 

cognitive domains to decipher the contribution of particular neural structures to a given 

cognitive process at hand. For example, it has been reasoned that spatial and verbal working 

memory contribute preferentially to subtraction and multiplication, respectively (Lee & Kang, 

2002). This notion lends itself to testing using the above sketched framework. By applying the 

framework to empirical methods with superior temporal resolution like MEG one may trace 

up to the millisecond at what point in time which cognitive processes manifests itself where in 

the brain (King & Dehaene, 2014). In general, demonstrating how low-level perceptual 

processes contribute to high-level cognition is in reach with the given conceptual framework 

and may bring psychologists one step further in elucidating the neural basis of cognition and 

delineating the cognitive components. Future studies need to investigate in more detail what 

conditions render a given cortical area’s connectivity or internal structure favourable to 

certain cognitive functions. 

Study 5 raises questions concerning the nature and neural fate of non-conscious numerical 

information in a crowding regime. What is the origin of crowding? What determines if a 

given piece of information exerts response-related influence or not? These questions need to 

be addressed. In this respect the numerical domain offers interesting opportunities. It may be 

hypothesized that compared to ventrally processed information for dorsally processed 

information it is easier to influence overt behavior because the dorsal stream is largely 

occupied with action–related processes. It would be highly disadvantageous, for example, if 

every aspect of grasping an object with the hand (distance to object, trajectory of the hand, 

speed of the movement, finger aperture, initiation of closing to grasp, etc.) would require 

conscious processing. The reader may remember how much cognitive control and effort was 

initially required to stir a car. Thus, the results from Study 5, too, could be interpreted as the 

consequence of numbers co-opting parietal cortex. 

The analysis of spatial patterns of activity presented in Studies 6 and 8 goes well beyond 

the mere report of overlapping activation. This is an interesting approach to tackle the 

question what the particular role of given cortical area in a process may be. This is especially 

relevant for domain-general cortex areas such as parietal cortex which is involved in a number 

of processes (working memory, number processing, action planning, eye movement, 

multisensory integration). 
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Study 9 suggests that more work with rigorously controlled stimulus sets is needed to 

empirically disentangle the theoretically motivated concepts of approximate and exact 

calculation. 
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