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Abstract 

BH3-only proteins, a pro-apoptotic subgroup of the Bcl-2 family of proteins, are central 

mediators of apoptosis signals by regulating the intrinsic apoptosis pathway. We have recently 

shown, that apoptosis triggered by the p14ARF tumour suppressor protein is mediated by the 

p53-dependent activation of the BH3-only protein Puma/Bbc3. Nevertheless, expression of 

p14ARF in p53-family deficient cells is capable of inducing both cell cycle arrest and 

apoptosis, but the signalling pathways initiated remain elusive. Here, we report that the BH3-

only protein Bmf (Bcl-2 modifying factor) is involved in cell death in p53-deficient cells 

triggered by p14ARF. Expression of p14ARF leads to the induction of the PERK kinase, 

subsequent phosphorylation of eIF2α and activation of transcription factors ATF4 and CHOP. 

This signalling cascade is usually part of the ‘unfolded protein response’ (UPR), which is 

activated upon ER stress to reduce the amount of misfolded proteins by reduction of global 

protein translation initiation and upregulation of chaperones. Of note, p14ARF does not induce 

ER stress but activates the PERK‒CHOP pathway. ATF4 and CHOP transcription factors 

directly bind to the promotor region of bmf and induce its transcription. These data suggest 

that the PERK‒ eIF2α‒ATF4‒CHOP signalling pathway may play a substantial role in 

mediating p14ARF-triggered apoptosis. This pathway could play the role of a ‘fail-safe’ 

mechanism that allows cells, even after loss of p53, to undergo apoptosis induced by 

upregulation of p14ARF by oncogenes. 
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Zusammenfassung 

BH3-only Proteine, eine pro-apoptotische Untergruppe der Bcl-2 Proteinfamilie, sind zentrale 

Mediatoren von apoptotischen Signalen durch die Regulierung intrinsischer Apoptose-

signalwege. Unsere Arbeitsgruppe hat vor kurzem gezeigt, dass Apoptose, die durch den 

p14ARF Tumorsuppressor induziert wird über die p53-abhängige Aktivierung des BH3-only 

Proteins Puma/Bbc3 vermittelt wird. Interessanterweise induziert p14ARF aber auch in p53 

defizienten Zellen Zellzyklusarrest und Apoptose. Die dahinterliegenden Signalwege sind 

jedoch nicht bekannt. In dieser Arbeit berichten wir, dass das BH3-only Protein Bmf (Bcl-2 

modifying factor) beim p14ARF-induzierten Zelltod in p53 defizienten Zellen eine wichtige 

Rolle spielt. Expression von p14ARF führt zu einer Induktion der PERK Kinase, daran 

anschließender Phosphorylierung von eIF2α sowie Aktivierung der stromabwärts liegenden 

Transkriptionsfaktoren ATF4 und CHOP. Diese Signalkaskade ist normalerweise Teil einer 

zellulären Antwort auf fehl- oder ungefaltete Proteine im Endoplasmatischen Retikulum (ER), 

der sogenannten ‘unfolded protein response’ (UPR), die zum einen durch verminderte 

Translationsinitiation und Hochregulierung von Chaperonen die Menge der fehlgefalteten 

Proteine reduzieren soll. Allerdings induziert p14ARF keinen ER Stress, sondern den PERK‒
CHOP Signalweg. Die Transkriptionsfaktoren ATF4 und CHOP binden direkt in der 

Promotorregion von bmf und sind für dessen transkriptionelle Regulation verantwortlich. 

Unsere Daten zeigen, dass der PERK‒ eIF2α‒ATF4‒CHOP Signalweg eine wesentliche 

Rolle bei der Induktion von Apoptose durch p14ARF spielt. Dieser Weg könnte ein 

Sicherungsmechanismus sein, der es den Zellen auch nach Verlust von p53 erlaubt Apoptose 

einzuleiten, nachdem p14ARF durch Onkogene hochreguliert wurde. 

 

Stichwörter:  

Apoptose, BH3-only, Bcl-2 modifying factor (Bmf), p14ARF, p53, unfolded protein 
response (UPR), Endoplasmatisches Retikulum (ER) 
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1. Introduction 

The concept of a natural instead of a pathological form of cell death was described as early as 

1842 by Carl Vogt in studies about the development of the midwife toad Alytes obstetricans 

(Vogt, 1842), only three years after Schwann and Schleiden’s cell theory in 1839 (Schwann, 

1839). More than a century later, the term apoptosis (from greek από [apo; from] and πτωσις 

[ptosis; falling, a fall]; like leaves or petals falling from a plant) had been coined in order to 

describe morphological processes leading to controlled cellular self-destruction and was first 

introduced in a publication by Kerr, Wyllie and Currie (Kerr et al., 1972). 

Apoptosis, or Type I cell death, can be described as an active and evolutionary defined 

process which plays an important role in the development of multicellular organisms and in 

the regulation and maintenance of the cell homeostasis in tissues upon physiological and 

pathological conditions. One type of apoptosis designated as ‘anoikis’ (from greek άν [an; 

without], οίκ [oik; house], and ις [is; extracted from apoptosis]; the state of being without a 

home) is induced by detachment or inadequate and inappropriate cell-matrix interactions 

(Frisch and Francis, 1994). Apoptosis is the most frequent form of programmed cell death, 

followed by autophagy/autophagocytosis (from greek αυτό [auto; self] and φαγία [phagia; to 

eat), or Type II cell death, where the cell’s own components are catabolic degraded through 

its lysosomal machinery. Autophagy was initially described as a cellular response to 

starvation by Christian de Duve in 1963 (de Duve, 1963). Next to these types of programmed 

cell death, other, non-apoptotic types, e.g. caspase-independent programmed cell death, are 

also of biological significance (Leist and Jäättelä, 2001). 

Programmed cell death mechanisms differ from necrosis (from greek νεκρός [necros; death, 

dead]), or Type III cell death, which is an accidental and unordered cell death where the 

release of cellular contents causes an inflammatory response. In contrast, apoptosis leads to 

shrinkage and fragmentation of the nucleus, condensation of chromatin and blebbing of the 

cell membrane due to breakdown of the cytoskeleton. These constricted particles, so called 

apoptotic bodies, are eventually taken up by phagocytes and the components are recycled. 

Autophagy and apoptotic processes are involved in development, starting in ontogenesis, 

when gastrulation of the early embryo is made possible by programmed death of cells within 

the blastula, later on during digit formation when web cells die off and disappear (Zuzarte-

Luís and Hurlé, 2002) and throughout the life of the organism. In the immune system, 

apoptosis is responsible for negative selection of autoreactive B- and T-cells as well as for 

removing virus-infected cells. In the human body about 100,000 cells are produced every 
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second by mitosis and meiosis and a similar number die by apoptosis (Vaux and Korsmeyer, 

1999). This homeostasis between the regulation of cell cycle and apoptosis is achieved by a 

tight regulation of pro- and anti-apoptotic proteins (Krammer et al., 1994; Daniel, 2000). One 

of the key regulators is the tumour suppressor p53, also termed “guardian of the genome” 

(Lane, 1992). This protein was identified in 1979 and is known to be activated upon different 

types of stress, e.g. DNA damage, oxidative shock and deregulated oncogene expression 

(Finlay et al., 1989; Han et al., 2008). Oncogenic stress activates the INK4b-ARF-INK4a 

locus that gives raise to proteins that on the one hand arrest the cell in the cell cycle and on 

the other hand induce p53. Disruption of cell cycle pathways and programmed cell death 

deregulation participates in the pathogenesis of several diseases. Uninhibited cell proliferation 

leads to cancer or auto-immune diseases, while upregulation of apoptosis leads to 

neurodegenerative diseases such as Creutzfeldt Jakob, Alzheimer’s and Parkinson’s disease 

(Yuan and Yankner, 2000; Rathmell and Thompson, 2002; Daniel in Ganten and Ruckpaul, 

2007). 

 

1.1 Apoptosis pathways 
Apoptosis is executed by a network of genetically encoded components. It can be triggered by 

various stimuli from outside or inside the cell, leading to the activation of the extrinsic or 

death receptor pathway and the intrinsic or mitochondrial pathway. Every cellular organelle or 

subcellular component, e.g. the endoplasmic reticulum (ER) or the nucleolus, can sense 

stressful and pathogenic alterations and initiate local or global responses leading to adaptation 

or, once a critical threshold of damage has been reached, cell death (Ferri and Kroemer, 

2001). The activation of cell death is mediated by cysteine-dependent aspartate-specific 

proteases (caspases). These are synthesised as inactive zymogenes (procaspases) and are 

located in the cytosol and the nucleus. Activation of the so called caspase cascade requires the 

prior cleavage of upstream caspases called initiator caspases, such as caspase-8 and -9, that 

are autocatalytically cleaved and activated through recruitment by adaptor proteins that share 

death-effector domains (DED) or caspase activation and recruitment domains (CARD) with 

these initiator caspases (Nicholson, 1999). Downstream effector (or executioner) 

caspases-3, -6, and -7 will then cleave multiple structural and repair proteins within the cell to 

trigger apoptosis (Slee et al., 2001). 
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Caspases-12 (murine) and -4 (human) have been proposed to function as initiator caspases 

that are activated by the endoplasmic reticulum (ER). The human caspase-12 gene has 

aquired several nonsense mutations, leading to a premature translational stop or a loss-of 

function mutation (Rocher et al., 1997; Fischer et al., 2002). Human caspase-4 is partially 

localised to the ER and is selectively activated in response to ER stress (Hitomi et al., 2004b), 

although events upstream of its activation remain poorly defined (Heath-Engel et al., 2008). 

Nevertheless, compared to the murine system, other factors than caspases seem to play a role 

in the human system linking the ER to induction of apoptosis (Hitomi et al., 2004a).  

 

1.1.1 Death receptor pathway 
The death receptor pathway is mediated by transmembrane receptors, a subfamily of the 

TNF-R family (tumour necrosis factor-receptor), located in the plasma membrane. 

Trimerisation of these death receptors by death ligands, e.g. TNFα or TRAIL (TNF-related 

apoptosis inducing ligand), leads to recrution of adaptor proteins, e.g. FADD (fas associated 

protein with death domain), TRADD (TNF-R type 1-associated death domain protein), RIP 

(receptor interacting protein 1) or RAIDD (RIP-associated ICH-1/Ced3 homologous protein 

with a death domain) via their death domains (DD) and formation of the death-inducing 

signalling complex (DISC) (Banner et al., 1993; Boldin et al., 1995). Here, procaspase-8 

binds via its death effector domain (DED) and is cleaved into its active form that subsequently 

activates downstream effector caspases -3, -6, and -7. Activation of caspase-8 is also achieved 

by a membrane independent, cytosolic complex induced by activation of TNF-R1. This so 

called ‘complex II’ consists of pro-caspase-8, FADD, TRADD and RIP1-kinase and is able to 

induce self-processing of caspase-8 and NF-κB (Micheau and Tschopp, 2003). 

Cytosol localised FLIP (FADD-like interleukin-1β converting enzyme (FLICE) inhibitory 

protein) proteins carry two tandem DEDs which can bind FADD and procaspase-8 thereby 

forming a proteolytically inactive heterodimer, inhibiting activation of caspase-8 (Krueger et 

al., 2001; Golks et al., 2005). 

 

1.1.2 Mitochondrial pathway 
The mitochondria-initiated apoptotic pathway is tightly regulated by Bcl-2 family proteins 

that mediate diverse cellular stress signals, e.g. DNA damage, hypoxia, endoplasmatic 

reticulum (ER) or nutritive stress (Daniel et al., 2003). Pro-apoptotic members Bax (Bcl-2 
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associated X protein) and Bak (Bcl-2 antagonist/killer) are activated by a variety of these 

apoptotic stimuli, leading to oligomerisation and insertion into the mitochondrial outer 

membrane. This leads to a loss of mitochondrial membrane potential (ΔΨm) and release of 

cytochrome c and other apoptotic factors that are normally sequestered in the mitochondrial 

intermembrane space. Cytochrome c and d(ATP) bind to cytosolic apoptotic protease 

activating factor 1 (Apaf-1), also recruiting procaspase-9 which together build the 

mitochondrial apoptosome (Perkins et al., 1998). Here, procaspase-9 is activated and 

functions as initiator caspase upon which the caspase cascade is started. 

The death receptor and the mitochondrial pathway are connected by caspase-8 and the BH3-

 

Figure 1. Extrinsic or death receptor pathway (left) and intrinsic or mitochondrial pathway (right). The 
extrinsic pathway is induced by binding of death ligands and assembly of the death-inducing signalling complex 
(DISC) that leads to cleavage of procaspase-8 to active caspase-8. This initiator caspase then activates effector 
caspases -3, -6, -7 and thereby eventually apoptosis. FLIP inhibits caspase-8 activation at the DISC by forming 
proteolytically inactive heterodimer with procaspase-8. The intrinsic pathway is activated by stress signals that 
are relayed by BH3-only proteins, which inactivate anti-apoptotic Bcl-2 family proteins, thereby releasing Bax 
and Bak. Activation of the mitochondria leads to the release of cytochrome c (depicted in green), (d)ATP 
(depicted in red) and several pro-apoptotic factors. Cytochrome c and d(ATP) bind to cytosolic Apaf-1, also 
recruiting procaspase-9 which together build the mitochondrial apoptosome. Procaspase-9 is cleaved 
autocatalytically and the caspase cascade is activated. Both pathways are connected by the BH3-only protein 
Bid, which is cleaved by caspase-8 into a truncated form (tBid) that can activate the mitochondrial pathway. 
Abbreviations: death domain (DD), death-effector domain (DED), caspase recruitment domain (CARD), 
Caenorhabditis elegans homology domain (Ced-4), repeating sequence at C-terminus (WD-40). 
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only protein Bid (BH3 interacting domain death agonist). Bid is cleaved into its active 

truncated form tBid by caspase-8. tBid then activates the mitochondrial pathway. After 

formation of the apoptosome, active caspase-9 cleaves and activates caspase-3 that 

subsequently, in a feedback amplification loop, activates caspase-8 (Crompton, 2000). In so 

called “type I cells” processed caspase-8 directly activates effector caspases, while in “type II 

cells” caspase-8 first needs to activate the mitochondria via tBid to induce the apoptosome 

which then activates effector caspases through caspase-9 (Scaffidi et al., 1998). 

 

1.1.3 Endoplasmic reticulum pathways 
The endoplasmic reticulum (ER) is the place for synthesis and folding of secreted and 

membranous protein and lipid biosynthesis. It is the major organelle involved in intracellular 

calcium ion (Ca2+) homeostasis and signalling. ER and mitochondria cooperate in cell death 

induction by Ca2+ signalling, which, released from the ER, can trigger cytochrome c release 

from mitochondria (Rong and Distelhorst, 2008). 

Perturbances in ER homeostasis, protein folding and ER calcium concentrations will also 

result in a cytoprotective response called the unfolded protein response (UPR). UPR is 

mediated by three ER transmembrane proteins: protein kinase RNA-dependent-like ER kinase 

(PERK), activation transcription factor 6 (ATF6) and inositol requiring ER-to-nucleus signal 

kinase 1 (IRE1): 

PERK is activated by dimer formation and is then autophosphorylated (Zhou et al., 2006). It 

will phosphorylate the eucaryotic translation initiation factor 2 α (eIF2α), which together with 

eIF2β and eIF2γ is part of the heterotrimer eIF2. Under normal conditions eIF2 mediates 

binding of tRNAmet to the 40 S subunit of the ribosome in a GTP-dependent manner to form 

the 43 S preinitiation complex. Phosphorylation of eIF2α results in sequestration of eIF2B, 

the GDP/GTP exchange factor, thereby inhibiting formation of the 43 S complex and stopping 

global cap-dependent translation. The ‘cap’ is a specifically altered nucleotide, i.e. 

7-methylguanylate (m7G), on the 5’ end of most nuclear mRNAs. Certain mRNAs carrying 

regulatory sequences in their 5’ untranslated regions, e.g. the internal ribosomal entry site 

(IRES), can bypass the eIF2α-dependent translational block (Schröder and Kaufman, 2005). 

Activation transcription factor 4 (ATF4) contains two upstream open reading frames (uORFs) 

in front of the ORF that codes for the protein itself, which facilitate ribosome scanning and 

reinitiation at the next uORF, an inhibitory element, that blocks ATF4 expression under 
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normal conditions. Phosphorylation of eIF2α delays reinitiation and initiates at the ATF4-

coding region (Vattem and Wek, 2004). ATF4 is a transcription factor, which belongs to the 

CREB/ATF family of bZIP (basic leucine zipper domain) proteins (Rutkowski and Kaufman, 

2003). Targets of ATF4 include genes involved in amino-acid metabolism, resistance to 

oxidative stress and the pro-apoptotic transcription factor C/EBP (CCAAT/enhancer-binding 

protein) homologous protein (CHOP) also known as C/EBPζ (Ma et al., 2002). 

C/EBPζ (CHOP) is also a target of ATF6, a second transducer, which is cleaved at the Golgi 

apparatus by site 1 and site 2 (S1/S2) proteases into its active form that moves to the nucleus 

and induces the activation of genes with an ER stress response element (ERSE) in their 

promoter (Schröder and Kaufman, 2005). Other targets of ATF6 include BiP and X box 

binding-protein 1 (XBP1) which is important in IRE1 signalling. 

On activation, transducer number three, IRE1 will remove a 26-nucleotide intron from the 

XBP1 mRNA and the frameshift splice variant (sXBP1) encodes a stable, active transcription 

factor (Yoshida et al., 2001) which targets different ER chaperones and some members of the 

HSP40 family. Via binding to the TNF-receptor-associated factor 2 (TRAF2), the IRE1-

TRAF2 complex can recruit the apoptosis-signal-regulating kinase 1 (ASK1), which is a 

mitogen-activated protein 3-kinase (MAP3K) that has been shown to relay various stress 

signals to the downstream MAPK c-Jun N-terminal kinase (JNK) (Nishitoh et al., 1998). 

 

Figure 2. Unfolded protein response (UPR) pathway. Release of transducer proteins PERK, ATF6 and IRE1 
by BiP upon aggregation of unfolded proteins (depicted in grey) within the ER leads to the activation of 
transcription factors and gene expression of genes for stress response, protein degradation and chaperones. 
Prolonged UPR eventually leads to apoptosis (modified after Szegezdi et al., 2009). 
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Activation of JNK is known to influence the cell death machinery through the regulation of 

Bcl-2 family proteins, e.g. by phosphorylating Bcl-2 its anti-apoptotic activity is suppressed 

while phosphorylating Bim enhances its pro-apoptotic potential (Davis, 2000). 

Under physiological conditions all transducer proteins are bound to BiP (immunoglobulin 

heavy chain binding protein; also known as GRP78, glucose-regulated protein 78 kDa) and 

are released when unfolded proteins accumulate within the ER lumen because of a higher 

affinity of BiP to misfolded proteins. BiP is an abundant protein under all growth conditions, 

but its synthesis is markedly induced under conditions that lead to the accumulation of 

unfolded polypeptides in the ER (Kozutsumi et al., 1988). 

 

Phosphorylation of eIF2α is a critical convergence point of the integrated stress response 

(ISR), which supports eukaryotic cellular adaptation to diverse environmental and 

engogenous stress signals, including ER stress, amino acid deprivation, infection with double-

stranded RNA viruses, osmotic stress, UV light exposure, heme deficiency, and oxidative 

stress (Lu et al., 2001; Deng et al., 2002; Ron, 2002; Zhang et al., 2002). Next to arrest of 

global cap-dependent translation, numerous stress-triggered cytoprotective genes are induced. 

Also, short half life proteins, e.g. cyclin D1, a regulator of G1 to S-phase cell cycle transition 

and an important cofactor for several transcription factors in numerous cell types, as well as 

anti-apoptotic proteins disappear by degradation in the proteasome (Brewer et al., 1999; 

Scheuner et al., 2006), thereby giving the cell time to react to stressful conditions and/or 

enabling it to undergo apoptosis. 

 

Accumulation of small aggregates from unfolded or misfolded proteins are thought to be 

highly toxic, as they impair the ubiquitin proteasome pathway (Bence et al., 2001). 

Malfunctions of the ER stress responses caused by aging, genetic mutations, or environmental 

factors can result in various diseases such as diabetes, inflammation, and neurodegenerative 

disorders including Alzheimer’s and Parkinson’s disease (Yoshida, 2007).  

Patients with multiple myeloma, a haematological cancer that results from the malignant 

transformation of plasma cells, show high expression levels of XBP1. Because plasma-cell 

development and survival depend on an intact UPR, this signalling pathway is also an 

intriguing target for novel treatments of myeloma. 
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1.2 Bcl-2 family of proteins 
One of the first proteins identified to be involved in apoptosis was the second B-cell 

lymphoma gene (bcl-2; described by Vaux et al., 1988). Initially characterised as a proto-

oncogene, overexpression of bcl-2 was found to increase the survival of haematopoietic cells 

by reducing the sensitivity to apoptosis (Tsujimoto and Croce, 1986). Today more than 20 

human proteins of the Bcl-2 family are known, that are able to regulate the permeability of 

intracellular membranes to ions and proteins (Sharpe et al., 2004). 

The Bcl-2 family can be divided into the anti-apoptotic subfamily and the pro-apoptotic 

subfamily, which can be subdivided into the Bax and BH3-only subfamilies (Figure 3). These 

proteins contain highly conserved domains, referred to as BH (Bcl-2 homology) domains 

(BH1-4), which are important for complex formation. In response to death signals, such as 

cytotoxic agents or radiation, the BH3-only proteins antagonises the function of the 

antiapoptotic proteins. The BH3 domains of these proapoptotic molecules form an 

amphipathic α-helical fold when bound to a groove lined by the BH1, BH2, and BH3 domains 

of antiapoptotic proteins, a step thought to be important for apoptosis induction (Czabotar et 

al., 2007). 

 

Figure 3. Bcl-2 family overview. (a) Anti- and pro-apoptotic members of the Bcl-2 family of proteins (excerpt). 
(b) X-ray structure of the interaction between Bim and Mcl-1; Bim BH3 peptide in green and the BH1, BH2, and 
BH3 regions of Mcl-1 in blue, yellow, and red, respectively (left). Bim BH3 complexed with Mcl-1 (middle) and 
Bcl-xL (right) (Czabotar et al., 2007). (c) Target selectivity of different Bcl-2 family proteins (modified from 
Chen et al., 2005). 
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Bcl-2 family proteins can mostly be found at intracellular membranes where they are inserted 

with their carboxy-terminal hydrophobic tail, while BH3-only proteins are primarily localised 

in the cytosol (Krajewski et al., 1993; Tanaka et al., 1993). Multidomain protein Bak can be 

found at both the mitochondrial and ER membranes (Cheng et al., 2003). Nbk, a member of 

the BH3-only subfamily, is inserted into the ER membrane by its transmembrane segment at 

the COOH-terminus and is able to induce mitochondrial cytochrome c release from its 

position at the ER (Germain et al., 2002). Activation of mitochondria by Nbk is mediated 

only by Bax, because Bax homolog Bak is held in check by anti-apoptotic Mcl-1 (Gillissen et 

al., 2003, 2007). 

Although Bax contains a hydrophobic carboxy-terminal tail, inactive Bax is a cytosolic 

monomeric protein that, upon activation, changes its conformation. The internalised 

C-terminal anchor domain is released from the hydrophobic pocket formed by the BH1-3 

domains and the protein then translocates to the mitochondrial outer membrane (Hsu et al., 

1997). The exact mechanism of Bak and Bax activation by BH3-only proteins is still under 

discussion (Danial and Korsmeyer, 2004; Youle and Strasser, 2008). Antiapoptotic proteins of 

the Bcl-2 family (Bcl-2, Bcl-x, Mcl-1, A1, Bcl-w, and Bcl-B) either bind to Bax and Bak and 

prevent oligomerisation, or are inhibited by binding to proapoptotic BH3-only proteins. The 

‘direct activation’ hypothesis claims that a direct interaction between BH3-only proteins and 

Bak or Bax is necessary for their activation (Figure 4a) (Kuwana et al., 2005). Recently, BH3 

 

Figure 4. Models for Bax and Bak oligomerisation. (a) Direct activation model. BH3-only proteins can be 
divided into ‘sensitizers’ or ‘derepressors’ (e.g. Bad) that bind only to pro-survival proteins and ‘activators’ (e.g. 
Bim) that can also directly engage Bax and Bak. ‘Sensitizers/derepressors’ induce apoptosis by displacing 
‘activators’ from pro-survival proteins, which then proceed to trigger Bax/Bak activation. (b) Displacement 
model. Pro-survival proteins inhibit Bax and Bak, perhaps through direct interaction as has been demonstrated 
for Bak. BH3-only proteins induce apoptosis by neutralizing pro-survival molecules and Bax/Bak activation 
occurs spontaneously in the absence of pro-survival activity (modified after van Delft and Huang, 2006). 
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domains of Bmf and Noxa were shown to induce mitochondrial outer membrane 

permeabilisation and apoptosis similar as the direct activators Puma, Bim, and Bid (Du et al., 

2011). The ‘displacement’ model proposes that BH3-only proteins bind to a complex of anti-

apoptotic Bcl-2 and Bak or Bax, thereby replacing and activating Bak and Bax (Figure 4b) 

(Willis et al., 2007). 

 

1.2.1 BH3-only proteins 
BH3-only proteins are important components in the regulation and activation of cell death 

(Daniel et al., 2003). In response to different cell stress stimuli, different BH3-only proteins 

relay apoptosis signals to the mitochondria to induce apoptosis (Shibue and Taniguchi, 2006). 

BH3-only proteins are controlled by transcriptional and post-translational regulation. BH3-

only genes under transcriptional control in mammals include hrk (harakiri), noxa (from latin 

‘damage’), puma (p53-upregulated mediator of apoptosis), bim (Bcl-2 interacting mediator of 

cell death), and nbk/bik (natural born killer / Bcl-2-interacting killer). Noxa, puma, and nbk 

are regulated by the tumour suppressor p53 (Oda et al., 2000; Nakano and Vousden, 2001; 

Mathai et al., 2002). BH3-only proteins regulated by post-translational mechanisms comprise 

of Bad (Bcl-2 antagonist of cell death), which is phosphorylated upon cellular stimulation 

with growth factors, Bid, that is N-myristoylated and cleaved by activated caspase-8, and Bmf 

(Bcl-2 modifying factor) and Bim (Bcl-2 interacting mediator of cell death), which are 

activated by sequestration from cytoskeletal structures inside the cell. 

The amphipathic helix formed by the BH3 domain of BH3-only and Bax-like proteins binds 

to a hydrophobic groove on the surface of the anti-apoptotic Bcl-2 family members (Fesik, 

2000). Although this nine amino acid long BH3 domain is highly conserved, it shows a 

specific target selectivity between pro-apoptotic BH3-only and anti-apoptotic Bcl-2 proteins 

(Figure 3c). 

 

1.2.1.1 Bcl-2 modifying factor (Bmf) 
The human bmf gene is located on chromosome 15q14 and loss of this site has been reported 

in lung and breast cancer (Wick et al., 1996; Schmutte et al., 1999). Bmf is regarded as a 

candidate tumour suppressor (Bouillet et al., 2001; Puthalakath and Strasser, 2002). In this 

line of thought Bmf has been shown to be involved in mammary morphogenesis and to be 

repressed by oncogenic Ras (Schmelzle et al., 2007). Bmf is constitutively expressed in 
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healthy tissues and is sequestered to myosin V motor complexes by association with the 

dynein light chain 2. Disruption of the actin cytoskeleton is thought to trigger release and 

activation of Bmf, initiating anoikis, i.e. apoptotic processes (Puthalakath et al., 2001). 

Monoclonal antibodies specific for mouse Bmf have revealed the presence of multiple 

isoforms in most hematopoietic tissues with the highest levels found in immature T and B 

cells (Labi et al., 2008). Until now, it is unclear how these isoforms arise, but alternative 

splicing of bmf has been reported to regulate its in vivo function. Two additional splice 

variants (bmf II and bmf III) were found to be expressed in normal and malignant human B 

cells (Morales et al., 2004). 

 

1.3 The p14ARF tumour suppressor 
The INK4b-ARF-INK4a locus at chromosome 9p21.3 gives raise to three different proteins. 

Two structurally related proteins, p15INK4b and p16INK4a, function as inhibitors of the cyclin-

dependent kinase 4 (CDK4). The third transcript, p14ARF, includes an alternate first exon 1β 

located about 20 kb upstream of the exon 1α, 2, and 3 of p16INK4a and contains an alternative 

reading frame (ARF), hence its name. Because of the alternative reading frame, p16INK4a and 

p14ARF do not share any amino acid homology and they have different functions within the 

cell (Figure 5). 

The INK4a-ARF locus is second only to p53 in the frequency of its disruption in human 

cancer (Haber, 1997). The tumour suppressor p14ARF is frequently inactivated in a wide 

spectrum of human cancer types, including colorectal, breast and pancreatic adenocarcinomas, 

malignant glioma, melanoma and non-Hodgkin’s lymphoma (Sharpless and DePinho, 1999; 

Burri et al., 2001). Simultaneous inactivation of p53 and p14ARF results in a broader tumour 

spectrum and more aggressive tumours than are observed with either knockout alone (Weber 

et al., 2000). 

Human (p14ARF) and murine (p19ARF) proteins are composed of 132 and 169 amino acids, 

respectively. They share about 50 % sequence homology and are both composed of more than 

20 % arginine residues conferring them highly basic and having hydrophobic properties. 

There are no recognisable structural motifs in ARF proteins and the protein probably needs to 

form complexes with other molecules, both to be folded and for its charge to be neutralised at 

physiological pH (Ozenne et al., 2010). Murine and human ARF contain a single internal 

methionine residue, which are absent in other species. Translational initiation from these 
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AUG codons produce a short form of the protein (smARF), which, when overexpressed, is 

supposed to localise to the mitochondria (Reef et al., 2006). Full-length p14ARF possesses two 

nucleolar localisation signals (NoLS). The first one located in exon 1β plays a key role in the 

antiproliferative function as its deletion inhibits the ability of p14ARF to activate a checkpoint 

response via the Hdm-2 (human double minute 2) ‒p53 pathway (Zhang et al., 1998; Rizos et 

al., 2000; Sherr, 2006). The second one is involved in the ability of p14ARF to promote the 

sumoylation of its binding partners (Xirodimas et al., 2002). 

Ectopic expression of a variety of oncogenes such as Ras, c-myc, E1A and E2F1 upregulates 

p14ARF expression as part of a checkpoint response that limits cell cycle progression in 

response to hyperporoliferative signals (Sharpless, 2005). P14ARF expression is also increased 

after exposure to ionising or ultra violet radiation and genotoxic drugs and contributes to the 

DNA damage response that eliminates damaged cells from the proliferative pool (Sherr, 

2006). It has also been shown that ARF expression is induced by viral infection and acts to 

reduce viral infectivity (García et al., 2006).  

Both mouse and human ARF are relatively stable proteins with estimated half-lifes ranging 

from approximately 1 to 8 hours. ARF turnover is still not completely understood, although 

two residues in exon 1β were found to be essential for p14ARF stability (di Tommaso et al., 

 

Figure 5. Schematics of the INK4b-ARF-INK4a locus. Activation of different pathways by transcribed genes: 
p15 and p16 inhibit the cyclin dependent kinase 4 (CDK4). p14ARF inhibits Hdm-2, thereby stabilising p53, 
leading to downstream transcription of pro-apoptotic proteins like Noxa, Puma, Bax, Apaf-1 and others. 
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2009). Some studies have shown, that ARF degradation depends, partially, on the proteasome 

and that, although it lacks lysine, ARF can undergo N-terminal ubiquitination independent of 

p53 and Hdm-2 (Pollice et al., 2008). ARF is stable when expressed within the nucleolus, but 

turns over more rapidly in the nucleoplasm. In the nucleolus, ARF assumes a stable structure 

thanks to its sequestration by nucleophosmin (NPM1/B23) which prevents its nucleoplasmic 

degradation (den Besten et al., 2005; Colombo et al., 2006). From within the nucleolus ARF 

can attenuate translation by inhibiting RNA polymerase I and thereby ribosomal RNA 

(rRNA) synthesis (Sugimoto et al., 2003). 

To suppress aberrant cell growth in response to oncogene activation, ARF activates the 

transcription factor p53 by neutralising the inhibitory effects of the ubiquitin ligases Hdm-2 

and ARF-BP1/Mule (ARF-binding protein 1 / Mcl-1-ubiquitin ligase E3). Both proteins are 

ubiquitin ligases for p53 and can inhibit its tumour suppressor functions. ARF interacts 

directly with Hdm-2 and blocks Hdm-2-mediated ubiquinilation, nuclear export and 

degradation of p53 by the proteasome (Sherr, 2006). P53 then triggers the expression of cell 

cycle inhibitory and pro-apoptotic genes, e.g. puma to induce apoptosis (Hemmati et al., 

2010). Although the ARF‒p53 axis was proposed initially to constitute the main pathway of 

apoptosis induction, a number of publications clearly indicate, that ARF is able to restrict cell 

proliferation and induce cell death through p53-independent pathways (Lowe and Sherr, 

2003). For example, expression of p19ARF induces a G1 arrest in cells lacking p53 (Carnero et 

al., 2000; Weber et al., 2000). Loss of the cyclin-dependent kinase inhibitor p21, that is 

regulated by p53 (see Figure 5), disrupts this p14ARF induced G1 arrest and increases the 

amount of apoptosis (Hemmati et al., 2005). In double deficient p53/p21 cells, p14ARF 

expression results in a cell cycle arrest in the G2 phase by targeting p34cdc2 kinase, possibly 

representing an additional fail-safe mechanism preventing unrestrained proliferation 

(Normand et al., 2005). 

Our group showed, that p53 independent mitochondrial activation and subsequent induction 

of apoptosis by p14ARF is also independent of pro-apoptotic Bax and dependent of Bak in p53 

deficient cells (Hemmati et al., 2002; Müer et al., 2011 submitted). Loss of Bax in cells can 

be functionally complemented by its homolog Bak, suggesting the induction of different 

pathways and BH3-only proteins (Hemmati et al., 2006). One possible apoptotic pathway is 

targeting of C-terminal binding protein (CtBP) by ARF (Paliwal et al., 2006; Kovi et al., 

2010). 
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Next to apoptosis, ARF plays an important role in induction of other types of cell death, e.g. 

autophagy. Although autophagy is a pro-survival mechanism where starving cells degrade 

their own cellular components through the lysosomal machinery for recycling purposes, 

deregulation of autophagy also plays a critical role in the initiation and progression of 

tumours (Pimkina and Murphy, 2009). Again, autophagy can be induced by ARF independent 

of p53 (Abida and Gu, 2008). 

p16INK4a/p19ARF genes also appear to be coregulated during aging. In rodents, p19ARF seems to 

play a predominant role in senescence entry, since in mouse embryonic fibroblasts (MEFs), 

the loss of the p19ARF/p53, but not of the p16INK4a/pRB axis, leads to spontaneous escape from 

senescence (Gil and Peters, 2006; Kim and Sharpless, 2006). 

 

1.4 The p53 family of proteins 
The p53 family consists of the tumour suppressor p53 (or tumour protein 53, TP53) and its 

two identified homologues, p63 and p73 (Kaghad et al., 1997; Yang et al., 1998). They share 

homology in their transactivation, DNA-binding, and oligomerisation domains with about 

60 % amino acid identity in the DNA-binding domain (Melino et al., 2003). The family 

members are differentially involved in the regulation of cell cycle and DNA-damage-induced 

apoptosis (Bénard et al., 2003). Similar to TP53, the TP73 and TP63 genes each have two 

promoters (P1 and P2), and their transcripts undergo extensive splicing at the NH2- and 

COOH-termini. Splice variants that retain the N-terminal transactivation domain are named 

TA isoforms. TAp73, TAp63 and p53 share a set of target genes such as p21waf1, bax, puma, 

and noxa to induce cell cycle arrest and apoptosis (Harms et al., 2004; Perez and Pietenpol, 

2007). 

In general, the p53 tumour suppressor protein functions as a transcription factor that regulates 

the expression of stress response genes and mediates a variety of anti-proliferative processes. 

It is known to mediate its effect through the activation of genes regulating cell cycle 

checkpoints, DNA damage and repair response, and apoptosis (Stewart and Pietenpol, 2001). 

In contrast, p63 is a putative oncogene and is required for the development and maintenance 

of stratified epithelium (Westfall and Pietenpol, 2004). It can bind to p53 DNA consensus 

sequences and induces apoptosis independent of p53 status when overexpressed in cells by 

triggering signalling via death receptors and the mitochondria (Gressner et al., 2005). 

Endogenous p63 has been shown to be induced by many chemotherapeutic agents and 
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blocking its function might confer chemoresistance (Petitjean et al., 2005). Interestingly, 

p14ARF has been shown to inhibit p63 mediated transactivation of p53 responsive genes 

(Calabrò et al., 2004). 

The high homology shared by p73 and p53 and the observation that p73 maps to chromosome 

1p36.1, a region frequently deleted in several tumours, including neuroblastoma, colorectal 

cancer and breast cancer, initially suggested that p73 is a tumour suppressor. It is involved in 

neurogenesis, neuron survival and the inflammatory response (Irwin and Kaelin, 2001a). 

TP73 is directly activated by E2F and can lead to the activation of pro-apoptotic genes in a 

p53-independent manner (Stiewe and Pützer, 2000). 

Mutant p53 proteins form complexes with other transcription factors, such as p63 or p73, and 

either inactivate them or change their pattern of transcription, altering the properties of the 

cancer cell. Indeed, mutant p53/p73 complexes have been detected in cancer cells (Irwin et 

al., 2003), and an altered chemotherapeutic response could be the result of an inactivation of 

p73 apoptotic functions (Irwin and Kaelin, 2001b). Both p63 and p73 are rarely mutated in 

cancer cells and therefore could be putative targets for novel anti-cancer therapeutics. Still, 

many questions remain about their roles in human tumourigenesis as data suggests that p63 

and p73 have both tumour suppressive and oncogenic properties (Zaika and El-Rifai, 2006). 

 

Figure 6. Overview of the p53 protein family. Structure of the human p53, p63, and p73 genes and their 
multiple splice variants. Coding sequence in white; noncoding sequence in black (modified from Bourdon et al., 
2005). 
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2. Aim of the study 

The p14ARF tumour suppressor plays a central role in the regulation of cell cycle arrest, 

apoptosis, and cellular senescence. Expression of cellular or viral oncogens leads to a rapid 

upregulation of p14ARF at the mRNA and protein level. Upon upregulation, cell cycle arrest 

and/or cell death is mediated via the p14ARF/Hdm-2/p53 pathway. Apoptosis by this pathway 

is mainly executed via p53 mediated upregulation of Puma leading to mitochondrial 

activation (Hemmati et al., 2010). Unfortunately, this pathway is not functional in most 

tumours because of mutations or deletions of p53. However, we previously showed, that 

p14ARF can also induce apoptosis and cell cycle arrest independent of p53 (Hemmati et al., 

2002, 2005), but the mechanism remains elusive. 

 

The aim of this study was to analyse this mechanism by different approaches. First, the p53 

family members p63 and p73 can be activated by p14ARF and contribute to programmed cell 

death induction in the absence of p53 (Yao and Chen, 2010; Slade and Horvat, 2011). 

Therefore, we wanted to analyse if these p53 homologs are able to compensate for loss of p53 

in p14ARF induced apoptosis. Second, cellular organelles other than the mitochondria could be 

utilised to mediate p14ARF induced apoptosis. Next to the extrinsic and intrinsic mitochondrial 

pathway, induction of apoptosis via the endoplasmic reticulum (ER) has been reported. 

Comparative expression analysis of genes involved in the unfolded protein response (UPR), a 

mechanism to relay stress signals from the ER, by use of ER stressing drugs and p14ARF 

should be performed. Third, the BH3-only protein Puma plays an essential role in p14ARF 

induced apoptosis via p53. BH3-only proteins might also be involved in apoptosis induced by 

p14ARF in p53 deficient cells. Induction of BH3-only genes by p14ARF in p53 pro- and 

deficient cell lines and via the ER stress pathway should be addressed. 
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3. Materials and Methods 

3.1 Materials 
3.1.1 Tools 

ABI7300 Applied Biosystems, Darmstadt, Germany 

BD FACScan™ Becton Dickinson, Franklin Lakes, USA 

centrifuge 5415C Eppendorf, Hamburg, Germany 

centrifuge Varifuge 3.0R Heraeus Sepatech, Hanau, Germany 

Curix 60 AGFA, Mortsel, Belgium 

electroporator Gene Pulser II Bio-Rad, München, Germany 

gel apparatus MiniSub Cell Bio-Rad, München, Germany 

gel doc imager Bio-Rad, München, Germany 

incubator Certomat R / Certomat H B. Braun Biotech International, Allentown, USA 

laboratory scales BP210S Satorius, Göttingen, Germany 

PCR cycler GeneAmp PCR System 2400 Applied Biosystems, Norwalk, USA 

pH meter CG825 Schott, Hofheim am Taunus, Germany 

photometer GeneQuant II Pharmacia Biotech, San Francisco, USA 

Power Pac 300 Bio-Rad, München, Germany 

precision scales BP3100S Satorius, Göttingen, Germany 

shaker Duomax 1030 Heidolph, Schwabach, Germany 

Sonopuls GM70 Bandelin, Berlin, Germany 

thermo shaker compact Eppendorf, Hamburg, Germany 

Vortex Genie II Scientific Industries, Bohemia, USA 

 

3.1.2 Chemicals  
acetic acid Merck, Darmstadt, Germany 

agarose Biozym, Hessisch-Oldendorf, Germany 

ampicillin AppliChem, Gatersleben, Germany 

bacto agar BD Biosciences, Heidelberg, Germany 

β-mercaptoethanol Carl Roth, Karlsruhe, Germany 

boric acid Carl Roth, Karlsruhe, Germany 

bromphenol blue Carl Roth, Karlsruhe, Germany 

DMEM Gibco, Karlsruhe, Germany 

DMSO (dimethylsulfoxid) Merck, Darmstadt, Germany 

doxycycline hydrochlorid Sigma, Taufkirchen, Germany 
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EDTA (ethylenediaminetetraacetic acid) Carl Roth, Karlsruhe, Germany 

ethanol J. T. Baker, Griesheim, Germany 

ethidiumbromid Sigma, Taufkirchen, Germany 

FCS (fetal calf serum) Gibco, Karlsruhe, Germany 

gel loading solution Sigma, Taufkirchen, Germany 

glycerol J. T. Baker, Griesheim, Germany 

HCl (hydrochloric acid) Merck, Darmstadt, Germany 

isopropanol Carl Roth, Karlsruhe, Germany 

kanamycin Carl Roth, Karlsruhe, Germany 

McCoy’s 5A Gibco, Karlsruhe, Germany 

methanol Carl Roth, Karlsruhe, Germany 

NaCl (sodium chloride) Carl Roth, Karlsruhe, Germany 

Neomycin (G418) Carl Roth, Karlsruhe, Germany 

PBS (phosphate buffered saline) Gibco, Karlsruhe, Germany 

penicillin/streptomycin Biochrom AG, Berlin, Germany 

phenol-chloroform-isoamylalcohol Carl Roth, Karlsruhe, Germany 

puromycin  Carl Roth, Karlsruhe, Germany 

SDS (sodium dodecyl sulfate) Carl Roth, Karlsruhe, Germany 

thapsigargin A.G. Scientific, San Diego, CA, USA 

tris base Carl Roth, Karlsruhe, Germany 

tris hydrochlorid Carl Roth, Karlsruhe, Germany 

trypsin-EDTA Gibco, Karlsruhe, Germany 

trypton Carl Roth, Karlsruhe, Germany 

tunicamycin A.G. Scientific, San Diego, CA, USA 

yeast extract Carl Roth, Karlsruhe, Germany 

 

3.1.3 Solutions, buffers and media 
Antibiotics (1000x)  50 mg/ml Ampicillin; 30 mg/ml Kanamycin 

LB medium 10 g Bacto-tryptone 

5 g Bacto-yeast extract 

10 g NaCl 

ad 1 l bidest H2O; pH adjusted to 7.2; autoclave 

LB agar LB medium 

15 g/l Bacto agar; autoclave 
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6x DNA loading buffer 0.2% Bromphenol blue 

60% Glycerol 

60 mM EDTA 

10x Orange G DNA loading buffer 20 g Sucrose 

100 mg Orange G 

ad 50 ml H2O 

10x TBE buffer 108 g Tris base 

55 g Boric acid 

40 ml 0.5 M EDTA; pH 8.0 

ad 1 l H2O 

TE buffer 10 mM Tris-HCl 

1 mM EDTA; pH 8.0 

10x annealing buffer 10 mM Tris-HCl; pH 7.6 

100 mM NaCl 

1 mM EDTA 

4x Laemmli buffer 8g SDS 

40 ml Glycerin 

40 ml 0.6 M Tris pH 6.8 

80 mg bromophenol blue 

ad 80 ml bidest H2O 

20 ml β-mercaptoethanol 

SDS-PAGE running buffer 25 mM Tris-HCl pH 8.3 

190 mM Glycin 

0.1% SDS 

Western blotting running buffer 20 mM Tris 

150 mM Glycin 

20% methanol 

0.08% SDS 

 

3.1.4 Kits  
ChIP Kit Diagenode, Liege, Belgium 

Invisorb Plasmid Maxi Kit Invitek, Berlin, Germany 

Invisorb Spin Plasmid Mini Two Invitek, Berlin, Germany 

QIAquick Gel Extraction Qiagen, Hilden, Germany 
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3.1.5 Markers 
rainbow molecular weight marker GE Life Sciences, Fairfield, CT, USA 

1 kb Plus DNA ladder Invitrogen, Karlsruhe, Germany 

100 bp DNA ladder Invitrogen, Karlsruhe, Germany 

 

3.1.6 Antibodies 
β-actin (Ab-1) Mouse mAB (JLA20) Merck, Darmstadt, Germany 

ATF4/CREB-2 (C-20): sc-200 Santa Cruz Biotechnology, Santa Cruz, CA, USA 

Bak NT (TC102) Merck, Darmstadt, Germany 

Bax NT, #06-499 Millipore, Billerica, MA, USA 

BiP/GRP78 #610979 BD Biosciences, Heidelberg, Germany 

CHOP/GADD153 (B-3): sc-7351 Santa Cruz Biotechnology, Santa Cruz, CA, USA 

eIF2α-phospho (Ser51) #9721 Cell Signaling, Frankfurt, Germany 

p14ARF (Clone 14P02) Thermo Scientific, Bonn, Germany 

p53 #554293 BD Biosciences, Heidelberg, Germany 

p53 (PAb421) #OP03 Merck, Darmstadt, Germany 

  

anti goat, #6165-05 Southern Biotech, Birmingham, AL, USA 

anti mouse #1031-05 Southern Biotech, Birmingham, AL, USA 

anti rabbit #4050-05 Southern Biotech, Birmingham, AL, USA 

anti rat #3050-05 Southern Biotech, Birmingham, AL, USA 

  

goat-anti-rabbit IgG (H+L) FITC labeled F(ab)2 Jackson Immuno Research, W. Grove, PA, USA 

goat-anti-mouse IgG (H+L) FITC labeled F(ab)2 Jackson Immuno Research, W. Grove, PA, USA 

 

If not stated otherwise, primary antibodies were used at a dilution of 1:1,000 and the 

secondary antibody at a dilution of 1:10,000. 

 

3.1.7 Enzymes 
restriction endonucleases 

(AfeI, BamHI, BglII, ClaI, EcoRI, EcoRV, 

HindIII, KpnI, NdeI, NheI, NotI, PacI, SacII, 

SpeI, SwaI, XbaI, XhoI) 

NEB, Frankfurt am Main, Germany 
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CrimsonTM Taq DNA polymerase (5 U/µl) NEB, Frankfurt am Main, Germany 

GoTaq® DNA polymerase (5 U/µl) Promega, Mannheim, Germany 

InviTaq polymerase Invitek, Berlin, Germany 

T4 DNA Ligase (100 U/µl) Invitrogen, Karlsruhe , Germany 

 

3.1.8 Oligonucleotides  
Oligonucleotides for genotyping, sequencing, and ChIP assay were synthesised by BioTez 

GmbH (Berlin, Germany) or Tib MolBiol (Berlin, Germany). Primer and probes for RT-PCR 

(TaqMan) analysis were ordered from Tib Molbiol as complete gene expression assay or 

synthesised by BioTez GmbH. 

 

TaqMan primer: 

Name Forward and reverse primer Probe 
p53 5‘- AgT gTg gTg gTg CCC TAT gAg C -3‘ 

5‘- CgC CCA TgC Agg AAC TgT TAC -3‘ 
6FAM-Tgg CTC TgA CTg TAC CAC 
CAT CCA CTA CAA CTA C--TMR 

p14ARF 5‘- CCC TCg TgC TgA TgC TAC TgA ggA -3‘ 
5‘- ggC gCT gCC CAT CAT CAT gAC -3‘ 

6FAM-AgC gTC TAg ggC AgC AgC 
CgC TTC CTA gAA--TMR 

   
ATF4 5‘- CAg TCC CTC CAA CAA CAg CAA -3‘ 

5‘- AAg TCg AAC TCC TTC AAA TCC ATT -3‘ 
6FAM-Agg ATg CCT TCT CCg ggA 
CAg ATT g--TMR 

ATF6 5‘- TCT CTT TgC TgA ACT Cgg TTA TTT C -3‘ 
5‘- AAT TgT TTT CAT ACg TCT CAT TTg CT -3‘ 

6FAM-CAg ACA CTg ATg AgC TgC 
AAT Tgg AA--TMR 

CHOP 5‘- ggA AAT gAA gAg gAA gAA TCA AAA AT -3‘ 
5‘- gTT CTg gCT CCT CCT CAg TCA -3‘ 

6FAM-TTC ACC ACT CTT gAC CCT 
gCT TCT CTg g-TMR 

eIF2α  5‘- gAg gAT CAg AAg gAC TgT ACA Tgg T -3‘ 
5‘- TCT TCC CAg ATT CCC TTg gA -3‘ 

6FAM-ATg gAC CAC CAC ATT TTA 
CAg AAA gCA CAg Tg--TMR 

BiP/GRP78 5‘- gCA ACC AAA gAC gCT ggA A -3‘ 
5‘- TgC CgT Agg CTC gTT gAT g -3‘ 

6FAM-ATT gCT ggC CTA AAT gTT 
ATg Agg A--TMR 

IRE1 5‘- AAg CAg gAC ATC Tgg TAT gTT ATT gA -3‘ 
5‘- CgT ACA Tgg TgA Tgg TgT ATT CTg TT -3‘ 

6FAM-TTg TCA TCg gCC TTT gCA 
gAT AgT CTC Tg--TMR 

PERK 5‘- gCA AAC CAg Agg TAT TTg ggA AT -3‘ 
5‘- ggT CTT ggTCCC ACT ggA AgA -3‘ 

6FAM-ATg ATC ATT CCT TCC CTg 
gAT ggA gCC--TMR 

XBP1u 5‘- CAg TgA Agg AAg AAC CTg TAg AAg ATg AC -3‘ 
5‘- CAg TAg gCA ggA AgA Tgg CTT Tg -3‘ 

6FAM-ATC TCA AAT CTg CTT TCA 
TCC AgC CAC TgC--TMR 

XBP1u+s 5‘- CgC TgA ggA ggA AAC TgA AAA A -3‘ 
5‘- TgT TCC AgC TCA CTC ATT CgA -3‘ 

6FAM-AgC TCA gAC TgC CAg AgA 
TCg AAA gAA--TMR 

   
BAD 5‘- gCA CAg CAA CgC AgA TgC -3‘ 

5‘- AAg TTC CgA TCC CAC CAg gA -3‘ 
6FAM-CCA gCT ggA CgC gAg TCT 
TCC Ag-TMR 

BID 5‘- CCA AgA Agg Tgg CCA gTC A -3‘ 
5‘- TCC TCA CgT Agg TgC gTA ggT -3‘ 

6FAM-ACg CCg TCC TTg CTC CgT 
gAT gT 

BIM 5‘- CCA ggC CTT CAA CCA CTA TCT -3‘ 
5‘- CCA ATA CgC CgC AAC TCT T -3‘ 

6FAM-CTT CAA TgA ggC Agg CTg 
AAC CTg C--TMR 

BMF 5‘- Tgg CAA CAT CAA gCA gAg gT -3‘ 
5‘- CTg CTg gTg TTg CTg CAC A -3‘ 

6FAM-CAg ATT gCC CgA AAg CTT 
CAg Tg--TMR 

BNIP3 5‘- gAg gAA CAC gAg CgT CAT gA -3‘ 
5‘- Agg TgC Tgg Tgg Agg TTg TC -3‘ 

6FAM-CCA TCT CTg CTg CTC TCT 
CAT TTg CTg g-TMR 

HRK 5‘- gCA ggC ggA ACT TgT Agg AA -3‘ 
5‘- TTT CTC CAA ggA CAC Agg gTT T -3‘ 

6FAM-Cgg AgC CgA gAC CCA gCC 
g-TMR 

NBK 5‘- CAC AgC CTg ggT CTg gCT T -3‘ 
5‘- TTA AgT gTg gTg AAA CCg TCC A -3‘ 

6FAM-CAT CCC TgA TgT CCT CAg 
TCT ggT CgTXT--PH 

NOXA 5‘- gCA AgA ACg CTC AAC CgA g -3‘ 
5‘- gCA gAA gAg TTT ggA TAT CAg -3‘ 

6FAM-AAg TCg AgT gTg CTA CTC 
AA TCA--TMR 

PUMA 5‘- AgA CAA gAg gAg CAg CAg Cgg -3‘ 
5‘- ACC TAA TTg ggC TCC ATC TCg g -3‘ 

6FAM-CTC ATC ATg ggA CTC CTg 
CCC TTA CCC--TMR 

SPIKE 5‘- CCT gCA AAg AAT ATg gTC AAg -3‘ 
5‘- CCC gCT gCT CAT ACA T -3‘ 

6FAM-CAg AAA gCC TTg CgA gTT 
TTA AAg--TMR 
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ABL 5‘- Tgg AgA TAA CAC TCT AAg CAT AAC TAA Agg T -3‘ 
5‘- gAT gTA gTT gCT Tgg gAC CCA -3‘ 

6FAM-CCA TTT TTg gTT Tgg gCT 
TCA CAC CAT T--TMR 

 

Primer for ChIP-Assay: 

Name Forward primer Reverse primer 
NS 5‘- Agg CCA gTg ggA Agg CAg gT -3‘ 5‘- CCC TTg gCA ATg ggg TCC TTT CC -3‘ 

RE1 5‘- AgA ATC CgC ACT ggC gAC gg -3‘ 5‘- CTC ggg gCA TCC CgC AAA CA -3‘ 

RE2 5‘- gCA CCC TgC ACC CAC Tgg AC -3‘ 5‘- CCg TCg CCA gTg Cgg ATT CT -3‘ 

RE3 5‘- TgA ggg CAg ACg CCA ggT TT -3‘ 5‘- AAg Cgg AgC gCT CAA gAA gg -3‘ 

RE4 5‘- AgA CAg ggT TTC CCg TgT Tg -3‘ 5‘- CTg gAg AAg gCC TCA ggg Ag -3‘ 

RE5 5‘- TAA gCT CTC CAg CTC AgC AC -3‘ 5‘- TgC CTg TAA TCC CAg CTA CT -3‘ 

 

3.1.9 Vectors and Plasmids 
For cloning and mutagenesis of genes and protein expression, a collection of vectors and 

plasmids available from the previous work in our laboratory has been used. All new 

constructs were analysed and verified by sequencing. 

 

pGEM-T Promega, Madison, WI, USA 

pIRESneo3 Clontech, Cat #6988-1 

pIRESpuro3 Clontech, Cat #631619 

pCMV-p53  Clontech, Cat #6004-1 

pCMV-Sport6_ATF4 (IRATp970B0515D) cDNA ImaGenes, Berlin-Buch, Germany 

pOTB7_DDIT3 (IRAUp969G0819D6) cDNA ImaGenes, Berlin-Buch, Germany 

pcDNA3-p14ARF provided by Philipp Hemmati 

pAd1-∆1∆3+tTA  provided by Bernd Gillissen 

pAd2 TrePro provided by Bernd Gillissen. The insert contains 

a c-Myc epitope tag (EQKLISEEDL). 

mPERK.∆C.9E10.pCDNA.amp provided by David Ron, Skirball Institute of New 

York University’s School of Medicine. The insert 

contains a c-Myc epitope tag (EQKLISEEDL) on 

its C-terminal end. 

pGL3-Basic Promega, Madison, WI, USA 

pRL-TK Promega, Madison, WI, USA 
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pIRESneo3-revMCS+XhoI and pIRESpuro3-revMCS+XhoI 

Oligonucleotides containing restriction sites in a reverse order of pIRESneo3 and one added 

XhoI-site were designed (Fwd: 5’-CgA TAT CTC Cgg ATT CgA ATT Cgg ATC CAC 

Cgg TTA ACA ggC CTT AAg CgC TAg CCT CgA ggC-3’, Rev: 5’-ggC CgC 

CTC gAg gCT AgC gCT TAA ggC CTg TTA ACC ggT ggA TCC gAA TTC 

gAA TCC ggA gAT AT-3’) annealed and ligated into pIRESneo3 and pIRESpuro3 

digested with ClaI and NotI. 

 

pIRESneo3-revMCS+XhoI-mPERKΔC 

Vectors mPERK.∆C.9E10.pCDNA.amp and pIRESneo3-revMCS+XhoI were digested with 

EcoRI and XhoI. The truncated PERK fragment was then ligated into pIRESneo3-

revMCS+XhoI. 

 

pIRESneo3-p53 and pIRESneo3-ΔNp53 

The p53 cDNA was cloned into pIRESneo3 by digesting pCMV-p53 with NdeI and EcoRI 

and ligated into pIRESneo3, thereby replacing part of the human cytomegalovirus major 

immediate early promoter (PCMV IE) of pIRESneo3 by the one from pCMV-p53.  

 
Figure 7. Schematics of pIRESneo3-p53 and pIRESneo3-ΔNp53 vectors. ΔNp53 contains amino acids 302-
393 of full length p53. Abbreviations: transactivation domain (TA), DNA binding domain (DBD) and 
tetramerisation domain (TET). 
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Based on the work of Shaulian et al. we created a dominant negative p53 (ΔNp53) gene, 

lacking the transactivation and DNA binding domains (Shaulian et al., 1992). The PCR 

product was raised by using a forward primer including a NheI site and the startcodon (5’-

TAg CTA gCA Tgg ggA gCA CTA AgC gAg C-3’) and a reverse primer including 

an EcoRI site (5’-ATA gAA TTC TCA gTC TgA gTC Agg CC-3’) on pCMV-p53 as 

template. It was ligated into pGEM-T vector and analysed by sequencing. Correct clones were 

digested with EcoRI and NheI and ligated into the multiple cloning site of pIRESneo3. 
 

pGL3-Basic(modMCS) 

Oligonucleotides containing restriction sites of pGEM-T were designed (Fwd: 5’-CgA TAT 

CTC Cgg ATT CgA ATT Cgg ATC CAC Cgg TTA ACA ggC CTT AAg CgC 

TAg CCT CgA ggC-3’, Rev: 5’-ggC CgC CTC gAg gCT AgC gCT TAA ggC 

CTg TTA ACC ggT ggA TCC gAA TTC gAA TCC ggA gAT AT-3’) annealed and 

ligated into pGL3-Basic digested with KpnI and HindIII. 

 

 

 

 

Figure 8. Schematics of pGL3-Basic(modMCS) and pGL3-BMFprom1361-Luc. Vectors with bmf promotor 
inserts from -1114 to -1, -821 to -1, -427 to -1, and -229 to -1 were cloned accordingly. 
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pGL3-BMFprom1361-Luc 

Vector containing basepairs -1361 to -1 of the bmf promoter. PCR product raised from 

HCT116 wt genomic DNA with primers (Fwd: 5’-TAA gCT CTC CAg CTC AgC AC-

3’, Rev: 5’-AAA ATA CgC CTg CTC ggg gC-3’) was ligated into pGEM-T vector. 

This vector was digested with SacII and SpeI and the insert ligated into pGL3-

Basic(modMCS). 
 

pGL3-BMFprom229/427/821/1114-Luc 

PCR products raised from pGL3-BMFprom1361-Luc with primers (Fwd 229: 5’-AgA ATC 

CgC ACT ggC gAC gg-3’, Fwd 427: 5’-gCA CCC TgC ACC CAC Tgg AC-3’, 

Fwd 821: 5’-TgA ggg CAg ACg CCA ggT TT-3’, Fwd 1114: 5’-AgA CAg ggT 

TTC CCg TgT Tg-3’, and Rev: 5’-AAA ATA CgC CTg CTC ggg gC-3’) were 

ligated into pGEM-T vector. pGEM-T vectors were then tested by sequence analysis, digested 

with SacII and SpeI and inserts ligated into pGL3-Basic(modMCS). 

 

pcDNA3.1(+)-CHOP and pcDNA3.1(+)-ATF4  

pAd2 Vectors containing chop and atf4 genes (see 2.1.10) were digested with BamHI and 

XbaI and ligated into pcDNA3.1(+) vector digested accordingly. 

 

pcDNA3.1(+)-p14ARF 

pcDNA3-p14ARF vector was digested with BamHI and EcoRI and ligated into pcDNA3.1(+) 

vector digested accordingly. 

 

3.1.10 Adenoviruses 
Ad5-CMV-LacZ provided by Bernd Gillissen 

Ad5-CMV-p14ARF provided by Philipp Hemmati 

Ad5-CMV-p14ARF
(Tet) provided by Antje & Anja Richter 

 

Ad5-CMV-ATF4(Tet) and Ad5-CMV-CHOP(Tet) 

Oligonucleotides containing BamHI and XbaI restriction sites were designed (ATF4 Fwd: 

5’-TTC gAA TTC ggA TCC ATg ACC gAA ATg AgC-3’, ATF4 Rev: 5’-gAg 

CTC gAg TCT AgA CTA ggg gAC CCT TTT-3’; CHOP Fwd: 5’-TTC gAA TTC 
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ggA TCC ATg gCA gCT gAg TCA TTg CCT TTC TTC-3’, CHOP Rev: 5’-AgA 

TCT AgA TCA TgC TTg gTg CAg ATT CAC CAT TCg-3’). PCR products raised 

by these primers from pCMV-Sport6_ATF4 (IRATp970B0515D) and pOTB7_DDIT3 

(IRAUp969G0819D6), respectively, were digested with BamHI and XbaI and ligated into 

pAd2 vectors digested accordingly. Shuttle plasmids pAd2 containing ATF4 and CHOP 

inserts were digested with PacI and NotI and recombinated with ClaI digested pAd1-

∆1∆3+tTA vector in E. coli BJ5183 cells. pAd1 containing ATF4 and CHOP inserts were 

transfected in HEK 293 cell lines by calcium phosphate precipitation. After plaque formation, 

supernatant was used to infect HEK 293 cells to amplify viruses. All viruses were banded in 

CsCl gradients, dialysed, and stored in aliquots. 

 

3.1.11 Bacteria 
Escherichia coli DH5α (Genotype: fhuA2, Δ(argF-lacZ)U169, phoA, glnV44, Φ80, 

Δ(lacZ)M15, gyrA96, recA1, relA1, endA1, thi-1, hsdR17), Escherichia coli SCS110 

(Genotype: rpsL, thr, leu, endA, thi-1, lacY, galK, galT, ara, tonA, tsx, dam, dcm, supE44, 

∆(lac-proAB)) and Escherichia coli JM109 (Genotype: endA1, recA1, gyrA96, thi, hsdR17 

(rk
–, mk

+), relA1, supE44, Δ(lac-proAB), [F´ traD36, proAB, laqIqZΔM15]) were used for 

transformations and plasmid amplifications. 

 

Escherichia coli BJ5183 (Genotype: endA, scbBC, recBC, galK, met, thi-1, bioT, hsdR (Str)) 

were used for homologic recombinations. 

 

3.1.12 Cell lines  
All cells were kept in an incubator at 37 °C, 5% CO2 and 95% humidity. 

 

HEK293 is derived from human embryonal kidney cells which were transformed by 

adenovirus 5 (Ad5) (Graham et al., 1977). They constitutively express Ad5 specific E1 

proteins which allow replication and transcription of adenoviral DNA. The cell line is used for 

amplification and titration of human adenoviruses. Cells are grown in DMEM (Dulbecco’s 

Modified Eagle Medium) supplemented with 10 % FCS (heat inactivated for 30 min at 

56 °C), 100 U/ml penicillin and 0.1 μg/ml streptomycin. 
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DU145 was isolated from a human prostate adenocarcinoma metastatic in the brain (Stone et 

al., 1978). Cells are grown in DMEM (Dulbecco’s Modified Eagle Medium) supplemented 

with 10 % FCS (heat inactivated for 30 min at 56 °C), 100 U/ml penicillin and 0.1 μg/ml 

streptomycin. 

 

HCT116 is a human colon carcinoma cell line isolated from a primary cell culture (Brattain et 

al., 1981). Cells are grown in McCoy’s 5A medium supplemented with 10 % FCS (heat 

inactivated for 30 min at 56 °C), 100 U/ml penicillin and 0.1 μg/ml streptomycin. 

 

HCT116 wild type cells and their isogenic knock-out subline HCT116 p53-/- were kindly 

provided by Dr. Bert Vogelstein, Johns Hopkins Cancer Center, Baltimore, MD, USA. 

HCT116 p53-/- cells are resistant to neomycin and hygromycin-B (Bunz et al., 1998). 

 

3.1.13 Software 
BioDraw Ultra v11.0 CambridgeSoft, Cambridge, MA, USA 

BioEdit v7.0.5 Tom Hall, http://www.mbio.ncsu.edu 

BLAST NCBI, Bethesda, MD, USA 

Ensembl http://www.ensembl.org 

GraphPad Prism v4.03  GraphPad Software, La Jolla, CA, USA 

mfold Michael Zuker, http://mfold.rna.albany.edu 

Microsoft Office 2007 Microsoft, Redmond, WA, USA 

Photoshop CS2 Adobe Systems, San Jose, CA, USA 

Transfac http://www.gene-regulation.com 
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3.2 Methods  
3.2.1 Polymerase chain reaction (PCR)  

To amplify DNA or to detect DNA after chromatin immunoprecipitation, polymerase chain 

reaction was performed. The DNA template was amplified in a mastermix containing a final 

concentration of 75 mM Tris-HCl, 20 mM (NH4)2SO4, 0.01 % Tween-20, 1.5 mM MgCl2, 

0.25 mM of each dNTP, 0.25 mM of each primer, and H2O with following program (as an 

example): 

 

 1. initial denaturation 5 min 94 °C  

 2. denaturation 1 min 94 °C steps 2 to 4 

 3. hybridisation 1 min 53 °C were repeated 

 4. elongation 1 min 72 °C 30 times 

 5. final elongation 7 min 72 °C  

 6. storage ∞ 4 °C  

 

Hybridisation temperatures were calculated and set accordingly to every primer pair. 

Denaturation, hybridisation and elongation time was set as 1 min per 1000 bp. 

 

3.2.2 DNA Electrophoresis 
Electrophoretic separation, detection and sizing of DNA was performed by electrophoresis in 

1 % agarose gels which were stained with 0.1 µg/ml ethidiumbromide (EtBr). DNA samples 

were mixed with 6x Loading Dye (GIBCO) or 10x Orange G Loading Dye. The 100 bp or 

1 kb Plus DNA Ladder (Invitrogen) were used as a marker. Gels were run at 110 V for about 

30 min in 1x TBE buffer. 

 

3.2.3 Gel extraction 
Gel extraction was performed according to the manual of the QIAquick Gel Extraction Kit. 

Briefly, gel slices were cut out, incubated with 3x volume QC buffer at 50 °C for 10 minutes. 

1x volume isopropanol was added and solution loaded onto spin column. After a brief 

centrifugation at 2,000 rpm for 2 minutes, columns were washed with 750 µl PE buffer. 
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Additional centrifugation and elution in EB buffer resulted in purified PCR or DNA 

fragments. 

 

3.2.4 Isolation of plasmid DNA 
3 ml LB media supplemented with appropriate selection antibiotics were inoculated with a 

single colony and grown overnight at 37 °C on a shaker. Cells were centrifuged at 3,000 rpm 

for 10 min. Plasmid DNA was isolated using the QIAGEN Plasmid Mini Kit, which is based 

on a modified alkaline lysis procedure, followed by binding of plasmid DNA to an anion-

exchange resin under appropriate low salt and pH conditions, according to the manufacturer’s 

protocol. The DNA pellet was washed two times with 70 % ethanol and dissolved in 30 µl 1x 

TE buffer. 

 

3.2.5 Measurement of DNA concentration 
To measure the DNA concentration after a plasmid preparation or DNA extraction from an 

agarose gel, a GeneQuant II photomoter (Pharmacia Biotech) was used. By measuring the 

extinction at 260 nm (E260) and taking account of the dilution the DNA concentration can be 

calculated. E260 of 1 equates to a concentration of double stranded (ds) DNA of 50 µg/ml. 

 

3.2.6 Enzymatic restriction of DNA  
Type II restriction endonucleases and buffers were used according to protocol (New England 

Biolabs). For analytical restriction a volume of 15 µl was chosen; for a preparative restriction 

between 50 and 200 µl. Incubation for 1 h at a temperature of 37 °C or over night at room 

temperature was performed. 

 

3.2.7 Ligation of DNA fragments  
About 100 to 150 ng of vector as well as 2 to 3 times molar amount of insert was used for 

ligation. The reaction contained T4 ligase. Incubation for 1.5 to 2 h at 25 °C followed by heat 

inactivation of T4 ligase for 20 min at 60 °C. The ligation mix was transformed into E. coli 

cells by heat shock. 
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3.2.8 Mini- and Maxi-Prep of plasmid DNA from bacteria 
For a mini prep, 3 ml LB media with antibiotic resistance was inoculated with E. coli DH5α 

cells expressing specific plasmid and cultured over night at 37 °C followed by centrifugation 

for 5 min at 13.000 rpm, the pellet was resuspended in 150 µl resuspension buffer. After 

adding 150 µl lysis buffer and incubation for 5 minutes at RT, another 150 µl neutralisation 

buffer was added and incubatied for 8 to 10 minutes on ice. Plasmid DNA was precipitated 

with 300 µl phenol/chloroform/isoamylalcohole (25/24/1). After 10 min centrifugation at 

13,000 rpm, the upper phase was transfered to a new tube. DNA extraction was performed 

with 1 ml of ethanol (2x-3x parts of volume) and incubation at -70 °C for 15 min. After final 

centrifugation for 10 min at 13,000 rpm all liquid was removed and the pellet dried at room 

temperature for about 15 min. The dry pellet was resuspended in 30-50 µl H2O. 

 

Isolation of plasmid DNA was performed according to ‘Invisorb Spin Plasmid Maxi Kit’ by 

Invitek. 150 ml of LB media (with antibiotics) inoculated with E. coli cells carrying the 

plasmid were incubated over night at 37 °C in a shaker.  

 

resuspension buffer 50 mM Tris/ HCl; pH 8.0 

10 mM EDTA 

100 µg/ml RNaseA 

lysis buffer 200 mM NaOH 

1 % (w/v) SDS 

neutralisation buffer 3 M sodium acetate; pH 5.5 

 

3.2.9 DNA sequencing 
DNA sequencing was performed by utilising the dideoxynucleotide triphosphates (ddNTPs) 

chain-terminator method (Sanger et al., 1977). DNA fragments with variable lengths which 

were terminated by four differently fluorescent dideoxynucleotides were separated 

electrophoretically. Sequencing was conducted by Invitek (Berlin, Germany) or by Thomas 

Pretzsch (AG Daniel, Virchow-Klinikum). 
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3.2.10 RNA extraction from cells 
Total RNA was isolated according to the NucleoSpin® RNA II kit from Macherey-Nagel 

(Düren, Germany). Briefly cells were lysed in 350 µl buffer RA1 and 3.5 µl β-

mercaptoethanol and lysate was filtrated through a NuceloSpin® Filter (violet ring) at 

11,000 g for 1 min. 350 µl ethanol was added to the flowthrough and RNA was bound to the 

NuceloSpin® Column (blue ring) by centrifugation at 11,000 g for 1 min. To desalt the silica 

membrane 350 µl membrane desalting buffer was added and centrifuged at 11,000 g for 

1 min. Then DNA was digested by 10 µl rDNase in 95 µl reaction buffer at room temperature 

for 15 min. Afterwards the silica membrane was washed and dried with buffers RA2 and RA3 

and RNA was eluted in 40 µl RNase-free H2O. Concentration was measured and RNA was 

stored at -80 °C. 

 

3.2.11 cDNA synthesis from total RNA 
5-10 g total RNA of each sample was mixed with 3 µl random hexamers (50 ng/µl). DEPC-

treated water was added up to the final volume of 12 µl. Each sample was incubated at 70 °C 

for 10 min for primer hybridisation and chilled on ice for at least 1 min. Samples were briefly 

centrifuged and 8 µl of the reaction mix, containing 4 µl 5x first strand buffer (Gibco), 2 µl 

DTT (0.1 M), 1 µl dNTP mix (10 mM), 1 µl RNAse inhibitor (Rnasin 40 U), were added. 

Contents of the tubes were mixed and incubated at 25 °C for 5 min. 1 µl (200 U) of 

Superscript II RT was added before incubating the samples at 42 °C for 50 min. cDNA 

synthesis reaction samples containing random hexamers were first incubated at 25 °C for 

10 min, followed by 50 min at 42 °C. The reaction was inactivated by incubating at 70 °C for 

15 min. 1 µl (2 U) of RNAse H was added to remove RNA followed by incubating the tubes 

at 37 °C for 20 min. The cDNA was stored at -20 °C. The cDNA synthesis was verified by 

amplification of the β-actin gene via PCR with control primers provided by the manufacturer 

(RETROScript, Ambion). 

 

3.2.12 Quantitative real-time PCR (qRT-PCR) 
To detect and quantify (as absolute number of copies or relative amount when normalised to 

DNA input or additional normalising genes), we performed a qRT-PCR. Total cellular RNA 

was reverse transcribed into DNA. By using specific primer and FAM-TAMRA labeled 

probes (see 3.1.8) in a TaqMan® PCR we analysed the expression levels of genes compared to 
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the housekeeping gene abl in cell lines after treatment with drugs or infections with 

adenoviruses. The qPCR was performed in an Eppendorf realplex2 Mastercycler epgradient S 

instrument (Eppendorf, Hamburg, Germany). 5 µl of TaqMan® Gene Expression Master Mix 

(Applied Biosystems, Darmstadt, Germany), 0.25 µl of forward and reverse primer, 0.3 µl of 

the probe, and 0.2 µl H2O was added to 5 µl of the cDNA or 5 µl of the cDNA standard. All 

samples were measured in triplicates. 

 

 1. initial denaturation 7 min 94 °C  

 2.  15 sec 94 °C steps 2 and 3 were 

 3.  30 sec 61 °C  repeated 45 times 

 

Results were normalised to the housekeeping gene abl and analysed by the ΔΔCt method to 

give fold induction as compared with untreated control samples. 

 

3.2.13 Transfection of bacterial cells (heat shock) 
DNA (10 µl for ligation or maximum for recombination) was added to E. coli and incubated 

on ice for 10-15 min before heat shocked at 42 °C for 90 sec. After another incubation on ice 

for 10 min 300 µl LB media was added and incubated at 37 °C for 20 min. Cells were plated 

out on LB agar with plasmid specific antibiotics (ampicillin or kanamycin). 

 

3.2.14 Transfection of eucaryotic cells (electroporation) 
Cells (1x107) were harvested and resuspended in 500 µl culture media without additives. 10 

µg of plasmid was mixed with the cells and put into perforation vial (0.4 mm). Before and 

after electroperforation at 0.250 kV and 950 µF for 10 sec, cells were incubated at 37 °C for 

10 min. Electroporated cells were seeded into a prewarmed T75 flask with full media and 

incubated for 2-3 days before media was replaced by selection media (1 µg/ml puromycin or 

0.75 mg/ml neomycin [G418]). Bulk cultures were prepared for all cell lines. 

 

3.2.15 Protein assay (Bradford) 
A colorimetric protein assay, based on the Bradford method, was used for the measurement of 

protein concentration. This assay is based on a shift in the absorbance maximum when 
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Coomassie Brilliant Blue G-250 dye associates with proteins. The Lambert-Beer’s Law is 

applied for quantification of protein by selecting an appropriate ratio of dye volume to sample 

concentration. At the assay pH, the dye molecules are doubly protonated and are present as 

the red cationic dye form. Binding of the dye to protein stabilizes the blue anionic dye form, 

detected at 595 nm. Dye binding requires a protein containing active basic or aromatic 

residues. 200 µl of Bradford reagent (Bio-Rad) was mixed with 5-7 µl of the sample, 

incubated for 30 min at room temperature and absorbance was determined at 595 nm. A 

calibration curve was established each time a protein assay was performed with bovine serum 

albumin dilutions of known concentrations. Using the standard curve, the concentration of 

each sample was determined according to its absorbance by interpolation (Bradford, 1976). 

 

3.2.16 SDS polyacrylamide gel electrophoresis 
Polyacrylamide gel electrophoresis of SDS-denatured proteins was performed according to 

the description of Laemmli (Laemmli, 1970). Electrophoresis was performed at 120 to 180 V 

in 1x TBE buffer. 

 

3.2.17 Immunodetection of proteins - Western blot analysis 
For detection of proteins using specific antisera, proteins were blotted first onto the 

Immobilon-P membrane (PVDF membrane; Millipore). Right after electrophoresis, gels were 

incubated in transfer buffer (150 mM glycine, 20 mM Tris, 10 % methanol). Electrophoretic 

transfer was performed in a semi-dry transfer apparatus (Gibco-BRL) with transfer buffer. 

Prehybridisation, hybridisation with primary and secondary antisera were carried out in 1x 

PBS containing 1 % v/v Tween 20 and 5 % dry skimmed milk. Specific antisera were used 

usually in a 1:1,000 dilution. Secondary antisera conjugated to horseradish peroxidase were 

used in a 1:10,000 dilution. After the hybridisation with the secondary antisera, the PVDF 

membranes were washed three times with 1x PBS containing 0.1 % v/v Tween 20. For 

visualisation of protein bands, the secondary antibodies were developed with ECL (enhanced 

chemiluminescence) reaction. The developing reagent was set up before the reaction freshly 

from stock solution. After incubation for 1 min in the developing reagent, PVDF membranes 

were exposed to an X-ray film (Kodak) for an appropriate time and developed in a Curix 60 

processor (AGFA). 
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3.2.18 Analysing BAX/BAK N-terminal conformational change by flow cytometry 
Cells were harvested by trypsination and washed once in PBS. About 75 % of cells were 

discarded and the rest centifugated for 5 min at 1,400 rpm. Cells were resuspended in 150 µl 

permeabilisation buffer and incubated on ice for 30 min. After centrifugation for 5 min at 

1,400 rpm cells were washed in 200 µl wash buffer and after additional centrifugation the 

pellet was resuspended in 100 µl saponin buffer and 100 µl primary antibody BaxNT 

(Upstate, Lake Placid, #06-99) to a final concentration of 0.1 µg antibody for 1x105 cells in 

100 µl or BakNT (Oncogene, clone TC102) to a final concentration of 0.1 µg/ml for 1x105 

cells in 50 µl (1:1,000) and incubated for 30-60 min at 4 °C in the dark. Following 

centrifugation and washing once in saponin buffer, the pellet was resuspended in 100 µl 

saponin buffer and 100 µl secondary antibody at a dilution of 1:1,000 (BAX: goat-anti-rabbit 

IgG [H+L] FITC-labelled F[ab]2, Jackson Immuno Research, West Grove, PA, USA; BAK: 

mouse-anti-rabbit) and incubated for 30-60 min at 4 °C in the dark. The pellet was 

resuspended in 100 µl wash buffer after centrifugation and measured by flow cytometry 

(FL-1) on a BD FACScan™ within 60 min. 

 

permeabilisation buffer 0.5 % Paraformaldehyde in 1x PBS 

wash buffer 1 % FCS in 1x PBS 

saponin buffer 1 % FCS and 0.1 % saponin in 1x PBS 

 

3.2.19 Detection of genomic DNA fragmentation with propidium iodide (PI) 
Apoptosis is characterised by the activation of endogenous endonucleases with subsequent 

cleavage of chromatin DNA into internucleosomal fragments of 180 bp and multiples therof. 

Propidium iodide intercalates with DNA and flow cytometry reveals apoptotic nuclei in the 

subdiploid region of the cell cycle histogram, allowing quantification of apoptosis in a given 

sample. 

Cells were harvested by trypsination and spun for 5 min at 1,400 rpm. Pellets were transfered 

into 96-well round bottom plates. Supernatant was discarded and cells resuspended in 200 µl 

of 0.7 % CH2O and incubated on ice or in fridge for 30 min. After another pelleting at 

1,400 rpm for 5 min, pellets were resuspended in 150 µl ice-cold 70 % ethanol and incubated 

on ice for 20 minutes. Cells were pelleted and resuspended in 100 µl RNAse solution (20 µl 

RNAse in 50 ml PBS) and incubated at 37 °C for 30 min followed by centrifugation for 5 min 
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at 1,400 rpm. Pellets were resuspended in 200 µl PI solution (50 µg/ml), transfered to 

Luckham tubes and measured on a BD FACScan™ (FL-3 or FL-2). 

 

3.2.20 AnnexinV-FITC/PI staining 
During apoptosis, phosphatidylserin (PS) is translocated from the inside of the cell membrane 

to the outside. AnnexinV binds PS and by coupling with fluorescein isothiocyanate (FITC), 

cells can be measured on a BD FACScan™. In necrotic cells AnnexinV-FITC can bind to PS 

on the inside of the membrane. Double staining with PI, that can only enter necrotic cells, will 

reveal necrotic and others, distinctive from apoptotic cells. 

 

3.2.21 Measuring breakdown of the mitochondrial membrane potential (ΔΨm) 
JC-1 (Molecular Probes, Leiden, The Netherlands) is a lipophilic, cationic dye that can 

selectively enter into mitochondria and reversibly change color from green to red as the 

membrane potential increases. In healthy cells with high mitochondrial ΔΨm, JC-1 

spontaneously forms complexes known as J-aggregates with intense red fluorescence. On the 

other hand, in apoptotic or unhealthy cells with low ΔΨm, JC-1 remains in the monomeric 

form, which shows only green fluorescence. 

Cells were harvested, transfered into Eppendorf tubes (500 µl) and washed 1-2 times in PBS 

at RT. Tubes were centrifuged for 2 min at 1,300 rpm before supernatant was removed and 

JC-1 in 1x PBS was added to a final concentration of 2.5 µg/ml. After incubation at 37 °C for 

30 min under gentle shaking, cells were centrifuged for 2 min at 1,300 rpm. Supernatant was 

removed and cells were washed twice in ice-cold PBS. The pellet was resuspended in 100 µl 

ice-cold PBS and cells were measured on a BD FACScan™ (FL-2 channel). 

 

3.2.22 Cytochrome c release 
Cells from a T25 flask were harvested by trypsination and washed twice in ice cold 1x PBS 

before the pellet was resuspended in 30 µl of ready made mito buffer. After incubation on ice 

for 3 min, cells were pelleted at 13,000 rpm for 15 min. Supernatant was transfered to a fresh 

tube and used for Western blot analysis. 
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ready made mito buffer 1 ml of mito-fridge buffer 

7.5 µl Digitonin (100 mg/ml in H2O) 

7.5 µl PMSF (10 mM in ethanol) 

mito-fridge buffer (stored at 4 °C) 50 mM Hepes; pH 7.4 

10 mM KCl 

2 mM MgCl2 

1 mM EDTA 

 

3.2.23 Chromatin Immunoprecipitation (ChIP) 
To determine the location of transcription factor binding sites, a chromatin 

immunoprecipitation (ChIP) was performed. Briefly, 1x106 HCT116 cells were infected with 

Ad-p14ARF, Ad-CHOP(Tet), Ad-ATF4(Tet) or treated with tunicamycin or thapsigargin for 48h. 

Proteins were crosslinked to DNA by adding formaldehyde directly to culture medium to a 

final concentration of 1% and incubated for 10 minutes at 37 °C. Medium was aspirated and 

cells were harvested by trypsinisation. After centrifugation for 4 min at 2,000 rpm, the pellet 

was resuspended in 200 µl SDS Lysis buffer and incubated on ice for 10 min. The lysate was 

sonicated in a Sonopuls GM70 (Bandelin) ultrasonic generator 8 times for 20 sec á 50 cycles 

with at least 20 sec breaks on ice between every sonication. DNA was sheared into lengths 

between 200 and 1000 bp. The sonicated cell supernatant was diluted 10 fold in ChIP Dilution 

Buffer with protease inhibitors. About 1 % of the diluted lysate was kept to quantitate the 

amount of DNA for PCR. To reduce nonspecific background, cell supernatant was pre-cleared 

with 80 µl of Salmon Sperm DNA/Protein A Agarose-50 % slurry for 30 minutes at 4 °C with 

agitation. Agarose was pelleted by brief centrifugation and 10 µl antibody was added to the 

supernatant fraction and incubated over night at 4 °C with rotation. As a negative control, no 

antibody was added. To collect antibody/protein complexes, 60 µl of Salmon Sperm 

DNA/Protein A Agarose-50 % slurry was added and incubated for 30 min at 4 °C with 

rotation. After centrifugation at 700 to 1,000 rpm for 1 min at 4 °C, supernatant containing 

unbound, non-specific DNA was removed and the protein A agarose/antibody/protein 

complex was washed once with 1 ml Low Salt Immune Complex Wash Buffer, 1 ml High 

Salt Immune Complex Wash Buffer, 1 ml of LiCl Immune Complex Wash Buffer and washed 

twice with 1 ml of TE Buffer each for 5 min on a rotating platform followed by brief 

centrifugation Freshly prepared 250 µl Elution Buffer was added to the pelleted protein A 
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agarose/antibody/protein complex, vortexed and incubated at room temperature for 15 

minutes with rotation. Agarose was spun down, supernatant transfered to a new tube and 

eluation repeated. 20 µl 5 M NaCl was added to combined eluates (~ 500 µl) and crosslinks 

reversed by heating at 65 °C for 4 h. Eluat was then used for PCR. 

 

SDS Lysis Buffer 1 % SDS 

10 mM EDTA 

50 mM Tris-HCl; pH 8.1 

before use add 1 tablet of ‘complet’ protease 

inhibitors to 100 ml 

ChIP Lysis Buffer 0.01 % SDS 

1.1 % Triton X-100 

1.2 mM EDTA 

16.7 mM Tris-HCl; pH 8.1 

167 mM NaCL 

Low Salt Immune Complex Wash Buffer 0.1 % SDS 

1 % Triton X-100 

2 mM EDTA 

20 mM Tris-HCl; pH 8.1 

150 mM NaCl 

High Salt Immune Complex Wash 

Buffer 

0.1 % SDS 

1 % Triton X-100 

2 mM EDTA 

20 mM Tris-HCl; pH 8.1 

500 mM NaCl 

LiCl Immune Complex Wash Buffer 0.25 M LiCl 

1 % NP-40 

1% deoxycholate 

1 mM EDTA 

10 mM Tris-HCl; pH 8.1 

TE Buffer 10 mM Tris-HCl; pH 8 

1 mM EDTA 
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Elution Buffer 1 % SDS 

0.1 M NaHCO3 

Salmon Sperm DNA/Protein A Agarose 600 µg sonicated Salmon Sperm DNA 

1.5 mg BSA 

4.5 mg recombinant Protein A 

ad 3 ml TE Buffer containing 0.05 % sodium 

azide 

 

3.2.24 Luciferase Assay 
To quantitate the transcriptional activation of promoter regions, different lengths of the BMF 

promoter were cloned in front of a luciferase gene (Figure 8). HCT116 wt and p53 knock out 

cells were transiently cotransfected with 25 ng pTK-RL and 400 ng pcDNA3.1+ containing 

p14ARF, CHOP, and ATF4 as well as 100 ng pGL3-BMFprom427/821/1361-Luc constructs or 

100 ng of empty pGL3(modMCS) and 500 ng of empty pcDNA3.1+ were used as negative 

controls.  

According to the Promega (Madison, WI, USA) Dual-Luciferase Assay protocol, cells were 

lysed in 1x passive lysis buffer and transfered to a Greiner 96 flat bottom white polysterol 

plate. Produced light converted by the chemical energy of luciferin oxidation was measured in 

a Tecan infinity 200 micro plate reader. Here, 30 µl of luciferase assay substrate solved in 

luciferase assay buffer was added to each well and after 2 sec luminescence was measured. 

Afterwards the procedure was repeated with 30 µl of Stop & Glo® Reagent. Luciferase assay 

results were expressed as relative light units (RLU): the average of the Photinus pyralis firefly 

activity (from pGL3modMCS) observed divided by the average of the activity recorded from 

Renilla luciferase vector (pTK-RL). 

 

3.2.25 siRNA 
HCT116 cells were seeded in 6-well plates with 1x106 cells/well. 24 h later siRNA was 

transfected using DharmaFECT 1 (Dharmacon, Thermo Scientific, Lafayette, CO, USA). 

After one additional day, cells were treated with tunicamycin and thapsigargin or transduced 

with 100 MOI Ad-LacZ and Ad-p14ARF. Cells were harvested 48 h post treatment. 
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3.2.26 Statistics 
For statistical analysis, GraphPad Prism 4.03 software was used. Expression values were 

compared using an unpaired t test to assess differences between two paired groups. The 

significance level was chosen as p ≤ 0.05 (*) and p ≤ 0.01 (**). 
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4. Results 

4.1 p53 family independent induction of apoptosis by p14ARF 
To address the role of the p53-family of proteins in p14ARF-induced apoptosis a dominant 

negative p53 protein (ΔNp53) was created, that lacks the first N-terminal 301 amino acids 

which contain the transactivation and DNA binding domains (Shaulian et al., 1992). This 

protein binds to the oligomerisation domains of p53, p63, and p73 thereby inhibiting their 

binding capability to DNA, which, in turn, inhibits their transcriptional activity (Levrero et 

al., 2000; Willis et al., 2004). 

As a model system we used HCT116 (HCT116 WT), a human colon carcinoma cell line, that 

is proficient for p53. The p53 knockout variant of HCT116 cells (HCT116 p53-/-) was kindly 

provided by Dr. Bert Vogelstein (Bunz et al., 1998). HCT116 WT cells were transfected with 

empty pIRESneo3 that was used as a vector control (HCT116 VC) and with pIRESneo3 

carrying ΔNp53 (HCT116 ΔNp53). These cell lines were subjected to Western blot analysis 

to verify successful transfection (Figure 9a). Cells were then treated mock (Co) or transduced 

with adenoviral constructs, either expressing the β-galactosidase gene (LacZ) as a virus 

negative control or p14ARF (ARF). Virus was added at 50 multiplicities of infection (MOI), 

i.e. the amount of virions (in this case 50) added per cell. After 24, 48, and 72 h cells were 

harvested and apoptosis was determined by measuring the extent of fragmentated genomic 

DNA by flow cytometry. 

Cell lines transduced with Ad-p14ARF show similar percentages of hypodiploid cells with no 

statistical differences, reaching about 25 % apoptotic cells at 72 h compared to 7.5 % and less 

apoptotic cells in LacZ or mock treated cells (Figure 9b). A similar extent of apoptosis after 

expression of p14ARF could be detected at all time points (Figure 9c). Mock treated or Ad-

LacZ infected cells showed less than 8 % hypodiploid cells at all time points (data not 

shown). 48 h post treatment, events leading to apoptosis, e.g. conformational change of Bak 

or Bax, loss of mitochondrial membrane potential (ΔΨm), and release of cytochrome c from 

the mitochondrial intermembrane space into the cytosol were measured. Flow cytometry with 

anti-Bak N-terminal (NT) or anti-Bax NT antibodies, which specifically recognise the NT-

exposed conformation of Bax or Bak revealed no statistical differences in cells transduced 

with ARF (Figure 9d, e). Around 20 to 25 % of ARF treated cells showed a conformational 

change. Mock or LacZ treated cell lines showed about 5 to 10 % Bak- and Bax-NT activation. 
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Figure 9. p53-family independent induction of apoptosis by p14ARF in HCT116 cell lines. (a) Western blot 
showing expression status of p53 and ΔNp53 in HCT116 WT, p53-/-, VC, and ΔNp53 cell lines. (b) Hypodiploid, 
i.e. apoptotic cells 72 h after mock, LacZ or ARF treatment. (c) Apoptotic levels in these cell lines after 
adenoviral overexpression of p14ARF. Apoptosis was measured by flow-cytometric analysis of genomic DNA 
fragmentation 24, 48, and 72 h after infection. (d-f) HCT116 cell lines showing Bak- and Bax-activation and loss 
of mitochondrial membrane potential after 48 h. Bars represent mean ± s.d. (n=3). (g) HCT116 cell lines were 
mock treated or transduced with the adenoviral constructs Ad-p14ARF or Ad-LacZ as indicated at a MOI of 50. 
Cells were harvested 24, 48, and 72 h after infection and were studied by Western blot analysis for the 
expression of p14ARF, p21 and release of cytochrome c. Equal loading was confirmed by reprobing with an 
antibody against β-actin. 
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A similar amount of cells also showed ΔΨm (Figure 9f). The lowest value of ΔΨm was 

aproximately 25 % in VC and the highest value of ΔΨm was about 35 % in p53-/- cells. All 

other ΔΨm values varied around 30 %. Breakdown of the mitochondrial membrane potential 

should lead to release of cytochrome c, therefore cell lines were treated and harvested as 

before and were subjected to Western blot analysis for the expression of p14ARF, p21, and 

β-actin. Cytosolic protein extract was analysed for levels of cytochrome c (Figure 9g). 

Release of cytochrome c could be detected in all cell lines treated with p14ARF. Upregulation 

of p21 could only be detected in HCT116 WT and VC cell lines. Loss of p53 or inhibition of 

p53 by ΔNp53 also inhibited p21 induction, verifying the dominant negative effect of the 

ΔNp53 protein. 

Comparing HCT116 ΔNp53 to the other HCT116 cell lines tested, no significant differences 

in levels of apoptosis induction, Bak- and Bax-NT activation, ΔΨm, or release of cytochrome 

c could be detected, indicating that p14ARF-induced apoptosis is independent of the p53 

family. 

 

Similar results were found in the prostate carcinoma cell line DU145 (Figure 10). In this cell 

line Bax is lost and both allels of p53 are mutated. Mutants p53223Leu and p53274Phe differ from 

wild-type p53 in their conformation and transactivation ability (Isaacs et al., 1991). Here, 

wild-type p53 as well as ΔNp53 (both in pIRESneo3) were stably transfected into DU145 

 

Figure 10. p53-family independent induction of apoptosis by p14ARF in DU145 cell lines. (a) Western blot 
showing expression status of p53 and ΔNp53 in DU145 VC, ΔNp53, and p53+ cell lines. Equal loading was 
confirmed by reprobing with an antibody against β-actin. (b) Hypodiploid, i.e. apoptotic cells 72 h after mock, 
LacZ or ARF treatment. (c) Apoptotic levels in these cell lines after adenoviral expression of p14ARF. 
Hypodiploid cell content, i.e. apoptosis, was measured by flow-cytometric analysis of genomic DNA 
fragmentation 24, 48, and 72 h after p14ARF infection. 
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cells and termed DU145 p53+ and DU145 ΔNp53, respectively (Figure 10a). These cell lines 

were treated mock or infected with either 50 MOI of Ad-LacZ as control or Ad-p14ARF. After 

72 h about 30 to 35 % of ARF-infected cells were apoptotic, compared to about 5 to 10 % of 

mock or LacZ treated cells (Figure 10b). No difference between apoptotic cells upon p14ARF 

treatment could be measured after 24, 48, and 72 h (Figure 10c). 

 

These results indicate, that p14ARF can induce apoptosis irrespective of a wildtype or a 

mutated p53 family. 

 

4.2 Involvement of cellular organelles in p14ARF induced apoptosis 
We previously showed that p14ARF induced apoptosis is executed via the mitochondrial death 

pathway. However, several reports show that other organelles might be involved. Therefore 

we specifically addressed the involvement of the endoplasmic reticulum (ER) in p53-

independent apoptosis triggered by p14ARF in DU145 cell lines. In addition to expressing anti-

apoptotic Bcl-2 targeted to either the ER or the mitochondrial membranes by a specific 

carboxy-terminal tail-anchor sequence. As such, Bcl-2 cb5 is a fusion protein retaining the 

cytoplasmic domain of Bcl-2 and the insertion sequence from the endoplasmic reticulum 

specific isoform of cytochrome b5. Bcl-2 ActA carries the mitochondria specific insertion 

sequence from the ActA protein from Listeria (Zhu et al., 1996). Both Bcl-2 proteins and an 

empty vector (VC) as negative control were expressed in DU145 mock or DU145 Bax cells 

and were then assayed for their apoptosis sensitivity following expression of p14ARF (Figure 

11). Time- (a and b, left) and dose-dependent (a and b, right) analysis of all cell lines after 

infection with Ad-p14ARF showed similar levels of apoptosis in Bax proficient versus Bax 

deficient cells dependent on Bcl-2 status. The time-dependent graphs showed about 20 % 

apoptotic VC cells 48 h post infection with 25 MOI Ad-p14ARF. After 96 h about 35-40 % VC 

cells were apoptotic. Expression of Bcl-2 ActA in mock cells inhibited apoptosis with about 

10 % apoptotic cells at all time points. Levels of apoptotic cells in Bcl-2 cb5 expressing cells 

were about 15 % at all measured time points. In Bax reexpressing cells induction of p14ARF 

increased apoptosis from about 8 % in Bcl-2 ActA cell lines at 48 h to about 12 % at 96 h. A 

similar increase from about 14 % to 20 % in Bcl-2 cb5 expressing Bax cells could be 

detected. 
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Figure 11. Organelle specific targeting of Bcl-2 to mitochondria and ER inhibits or attenuates p14ARF-
induced apoptosis, respectively. (a, b) DU145 mock and Bax reexpressing cells expressing Bcl-2 ActA, Bcl-2 
cb5 or an empty vector (VC) were treated mock or infected with Ad-LacZ or Ad-p14ARF. Time- (left) and dose-
dependent (right) graphs. (c) Western blot of analysed cell lines. (d) DU145 Bax cells transfected with Ad-
p14ARF and incubated with the caspase inhibitor Q-VD-OPh. Hypodiploid cell content, i.e. sub-G1 DNA content 
was measured by FACS. Bars represent mean ± s.d. (n=3). 
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The dose-dependent curve showed induction of apoptosis after 96 h in control cells up to 

55 % with 100 MOI of Ad-p14ARF independent of Bax status. Mitochondria-targeted Bcl-2 

inhibited apoptosis. Here, only 15 % of cells showed a hypodiploid DNA content with 

100 MOI p14ARF. Bcl-2 cb5 also inhibited apoptosis to some degree, which is, however 

inferior compared to Bcl-2 ActA expressing cells. About 25 % (in mock) and about 35 % (in 

Bax) of the cells showed apoptosis with 100 MOI Ad-p14ARF. 

 

When we infected cells with 50 MOI Ad-p14ARF and at the same time added the caspase 

inhibitor Quinolyl-Valyl-O-methylaspartyl-(2,6-difluorophenoxy)-methyl ketone (Q-VD-

OPh), levels of apoptosis could be reduced significantly in VC and Bcl-2 cb5 expressing cells 

(Figure 11d). Incubation with QVD in Bcl-2 ActA did not have a significant effect, levels of 

apoptotic cells were reduced from about 16 % to about 13 %, indicating that induction of 

apoptosis by Ad-p14ARF in DU145 cell lines can be attenuated by Bcl-2 targeted to the ER, 

pointing to a mechanism at this cellular organelle relaying signals to induce apoptosis. 

Furthermore, apoptosis upon expression of p14ARF is independent of pro-apoptotic Bax and, 

as expected, can be inhibited by caspase inhibitors.  

 

4.3 Induction of BH3-only proteins by p14ARF 
As shown before (see 4.2), ER- and mitochondria-localised Bcl-2 can inhibit p14ARF-induced 

apoptosis. We previously showed that the BH3-only protein Puma plays a central role in 

mediating p14ARF induced apoptosis. BH3-only proteins are likely targets relaying signals to 

the ER as well as mitochondria. To this end, we analysed the induction of pro-apoptotic BH3-

only genes across the entire family after expression of p14ARF compared to Ad-LacZ infected 

or untreated cells by quantitative RT-PCR (Figure 13). 

Treatment with 50 MOI Ad-p14ARF led to an induction of Bim, Noxa, Puma, and Spike in 

HCT116 WT cells. 72 h after treatment, Bim is induced 4-fold as compared to control or 

LacZ treated cells. Noxa is induced about 2.5-fold after 48 h, while only about 1.5-fold at 24 

and 72 h. Puma is induced 5-fold after 24 and 48 h. Its induction declines to 2.5-fold at 72 h. 

Spike induction decreases over time from about 3.5-fold at 24 h over 2-fold at 48 h to 1.5-fold 

at 72 h. The mRNA expression of all other BH3-only genes are not altered significantly. 

A similar result can be observed in HCT116 VC cells. Again, Bim, Noxa, Puma, and Spike 

are induced. Bim is induced up to 2.5-fold at 72 h. Noxa is induced also 2.5-fold at 48 and 
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72 h. Puma is induced around 3-fold at 24 and 48 h and 1.5-fold after 72 h. Spike is induced 

about 3-fold after 48 h. Other BH3-only genes are not induced significantly. 

In HCT116 p53-/- cells, Bim is induced 3-fold after 48 h. Bmf is induced 3-fold after 48 and 

72 h. Noxa is induced up to 5-fold after 48 h and 3-fold after 72 h. Spike is induced about 

4-fold after 48 h. The other BH3-only genes are not affected significantly. 

In HCT116 ΔNp53 cells Bim is induced up to 2-fold after 48 and 72 h. Bmf is induced up to 

3.5-fold after 48 h and 2-fold after 72 h. Noxa is induced 4-fold after 48 h and 1.5-fold after 

72 h. Spike is induced 4-fold after 48 h and 2-fold after 72 h. 

 

Comparing p53 pro- and deficient cell lines, i.e. knockout lines or cells expressing dominant 

negative p53, we can clearly see upregulation of Puma in p53 proficient cell lines. 

Interestingly, Bmf is upregulated only in p53 deficient or inhibited cell lines. Bim, Noxa, and 

Spike are induced independent of p53 family status. To verify qRT-PCR data in the case of 

Bmf, Westernblot analysis was performed (Figure 12). Indeed, downregulation of Bmf by 

p14ARF can be detected in p53 proficient HCT116 WT cell lines, while in p53 deficient cell 

line Bmf is induced. 

 

In the case of Puma, the p14ARF‒p53 signalling axis was analysed extensively (Hemmati et 

al., 2010). The mechanism behind the induction of Bmf by p14ARF in p53 deficient cell lines 

on the other hand is not known so far. 

 

 

Figure 12. Induction of Bmf in p53 deficient HCT116 cells by Ad-p14ARF. Western blot showing expression 
status of Bmf in HCT116 WT and p53-/- cell lines after 24, 48, and 72 h of forced expression of Ad-p14ARF. 50 
MOI of Ad-LacZ was used as virus control. Equal loading was confirmed by reprobing with an antibody against 
β-actin.  
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4.4 Induction of genes triggering the UPR by ER stress and p14ARF 
Bcl-2 at the ER can inhibit reduced intracellular Ca2+ oscillations, thereby limiting the 

redistribution of Ca2+ from the ER to the mitochondria (Baffy et al., 1993; Magnelli et al., 

1994). Bcl-2 can also interact with ER-bound BH1-3 multidomain proteins Bak and Bax 

which have been shown to modulate unfolded protein response (UPR) signalling (Hetz et al., 

2006). The UPR attempts to increase the folding capacity of the ER through the induction of 

key proteins involved in chaperoning, protein folding, and degradation pathways (Szegezdi et 

al., 2003). If the stress exceeds a certain limit or occurs prolonged, an apoptotic program is 

activated. 

ER stress can be chemically induced by different drugs: Tunicamycin (TUN) blocks N-glycan 

biosynthesis by inhibiting the formation of a lipid-linked oligosaccharide precursor, leading to 

an aggregation of unfolded proteins within the ER (Elbein, 1987). Thapsigargin (THA) raises 

cytosolic Ca2+ levels by inhibiting sarco / endoplasmic reticulum Ca2+ ATPases (SERCA), i.e. 

Ca2+ pumps, which maintain calcium ion homeostasis and signalling (Rogers et al., 1995). 

To analyse the induction of UPR genes, quantitative real-time PCR was performed for the 

chaperone BiP/GRP78, the three sensors PERK, ATF6, IRE1 and their downstream targets 

eIF2α, ATF4, CHOP, and XBP1. Levels of XBP1 can be detected either for unspliced, full 

length XBP1 (XBP1u) or both spliced and unspliced (XBP1u+s) mRNA. HCT116 cell lines 

were mock treated or transduced with 50 MOI Ad-LacZ or Ad-p14ARF and prepared for qRT-

PCR after 24, 48, and 72 h (Figure 14). These results were compared to HCT116 WT cells 

treated with 1 and 5 µg/ml TUN or THA that were harvested after 6, 12, 24, 48, and 72 h 

(Figure 15). 

48 and 72 h post transduction with Ad-p14ARF HCT116 WT, p53-/-, VC, and ΔNp53 cell lines 

displayed a 2-3 fold upregulation of PERK and a slight upregulation of eIF2α. WT, VC, and 

p53 also show an up to 20 fold upregulation of CHOP after 72 h. The levels of BiP, ATF4, 

ATF6, IRE1 and both XBP1 mRNAs were not significantly affected when compared to mock 

treated and LacZ infected cells. 
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Both tunicamycin and thapsigargin induced a strong immediate response at the first time point 

at 6 h that lasted up to 48 h. BiP was readily induced 10 to 15-fold after 6 h and fell to basal 

levels after 48 to 72 h. 

Tunicamycin treated cells showed upregulation of PERK at 6, 48, and 72 h with about 5-fold 

induction. Its downstream target eIF2α showed highest upregulation after 6 h with levels 

around 10-fold induced in cells treated with either 1 or 5 µg/ml. These levels decrease over 

time and end at about 2.5-fold induction after 72 h. Levels of ATF4 are slightly increased at 6 

and 12 h and fall back to basal levels at 24 h and thereafter. CHOP mRNA is induced 75-fold 

after 6 h and decrease over time up to about 12-fold induction at 48 h before reaching basal 

levels at 72 h. There is also a slight induction of ATF6 and IRE1 detectable, with induction 

levels not over 2.5-fold. XBP1u is induced 2.5-fold between 6 and 24 h while XBP1u+s 

reaches 7.5-fold induction at 6 h and decreases to levels around 2-fold from 12 to 48 h before 

reaching basal levels at 72 h. 

Similar to tunicamycin thapsigargin induces PERK upregulation to a much higher extend. 

Here, at 6 h levels of 7.5-fold induction are reached that gradually decrease over time to 2.5-

fold induction after 72 h. Different to tunicamycin, there is no upregulation of eIF2α. Instead, 

thapsigargin induces IRE1 levels starting 3-fold at 6 h up to 7.5-fold at 24 h in cells treated 

with 1 µg/ml of the drug. 

Although we could not detect any stress response, i.e. induction of BiP/GRP78 upon p14ARF 

treatment, UPR downstream targets PERK and CHOP showed a strong induction independent 

of p53 over time. Although upregulation of CHOP could also be achieved by ATF6, we could 

not detect any upregulation of XBP1, another target of this transcription factor, after 

overexpression of p14ARF. Upregulation of XBP1 and its splice form is only visible in ER 

stressed cells after treatment with tunicamycin and thapsigargin. In comparison ER stress 

induced by tunicamycin and thapsigargin leads to an immediate upregulation of BiP/GRP78 

and early upregulation of PERK and its downstream targets eIF2α, ATF4, and CHOP. Also, 

dependent on the drug, ATF6 or IRE are upregulated and the amount of the XBP1 splice form 

increases. 

Different to the induction of ER stress and induction of UPR genes by tunicamycin and 

thapsigargin, p14ARF does not induce ER stress but activates only the PERK-CHOP pathway, 

which will be analysed in more detail in the following.  
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4.5 Inhibition of apoptosis by dominant negative mPERKΔC 
The kinase activity of PERK can be abrogated by expression of a dominant negative isoform. 

This isoform was shown to inhibit phosphorylation of eIF2α following various stresses, 

including hypoxia (Brewer and Diehl, 2000; Koumenis et al., 2002). A plasmid containing 

truncated murine PERK (mPERKΔC) that lacks the protein kinase domain and has a myc-tag 

epitope was kindly provided by Dr. David Ron. 

Murine PERK has an identity of 87.2 % to its human homolog on the protein level. 

Introduction of mPERKΔC in HCT116 WT cells and expressing 50 MOI of p14ARF led to a 

significant decrease of hypodiploid cells compared to HCT116 WT and VC cell lines. 

HCT116 WT and VC cell lines display 5-8 % of hypodiploid cells after mock or LacZ 

treatment and about 30 % hypodiploid cells after p14ARF expression. HCT116 mPERKΔC cell 

lines also show about 5-8 % of hypodiploid cells after mock or LacZ treatment. p14ARF treated 

cells show about 20 % of hypodiploid cells (Figure 16b). 

 

 

Figure 16. Dominant negative murine PERK inhibits p14ARF-induced apoptosis. (a) Western blot showing 
expression status of PERK and mPERKΔC in HCT116 WT, VC, and mPERKΔC cell lines. (b) Hypodiploid, i.e. 
apoptotic cells 72 h after mock, LacZ or ARF treatment. Bars represent mean ± s.d. (n=3). 

 

Inhibition of PERK by mPERKΔC significantly attenuates apoptosis induction by Ad-p14ARF 

in p53 wild-type cell lines. In these cell lines, Puma activation via p53 is likely responsible for 

induction of apoptosis. In p53 deficient HCT116 cell lines Puma cannot be upregulated and 

the effect of inhibiting PERK on the amount of hypodiploid cells should be stronger. 
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4.6 Inhibition of apoptosis by PERK and ATF4 siRNA 
To validate the mPERKΔC results, HCT116 WT and p53-/- cell lines were treated with 

control, PERK, and ATF4 siRNA and transduced with 100 MOI of either Ad-LacZ as virus 

control or Ad-p14ARF. 48 h post infection, cells were analysed by flow cytometry and the 

amount of hypodiploid, i.e. apoptotic cells was measured (Figure 17). 

 

 

Figure 17. Inhibition of apoptosis by PERK and ATF4 siRNA. HCT116 WT and p53 deficient cells were 
incubated with no, unspecific control (ctrl), PERK and ATF4 siRNA before infection with 100 MOI Ad-LacZ 
and Ad-p14ARF. Hypodiploid, i.e. apoptotic cells were measured 48 h post infection by flow-cytometric analysis 
of genomic DNA fragmentation. Bars represent mean ± s.d. (n=3). 

 

Untreated and ctrl siRNA treated HCT116 WT cells display about 27 % of hypodiploid cells 

after expression of p14ARF. Downregulation of PERK by siRNA leads to a significant 

reduction of apoptosis, as only 22% of p14ARF infected cells are apoptotic. Downregulation of 

ATF4 shows no significant difference to ctrl siRNA treated cells. A similar result can be seen 

in HCT116 p53 deficient cell lines. Here, forced expression of p14ARF leads to about 30 % 

hypodiploid cells without and ctrl siRNA. After treatment with PERK siRNA, about 22 % of 

the cells are apoptotic, which is a very significant decrease when compared to ctrl treated 

cells. Also, downregulation of ATF4 by siRNA leads to a significant decrease of apoptotic 

cells. About 25 % of the cells are hypodiploid. 

These data indicate that downregulation of PERK leads to a stronger effect in p53 deficient 

cell lines, where induction of apoptosis is not dependent of Puma. In HCT116 p53-/- cells, 

signal transduction via the PERK-eIF2α-ATF4 pathway seems to be more undisturbed as in 
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WT cells, where downregulation of ATF4 does not show a significant impact on inhibition of 

apoptosis. 

 

4.7 Specific phosphorylation of eIF2α by p14ARF 
The eukaryotic initiation factor 2α is required in the initiation of translation and is 

phosphorylated by PERK. Another cellular kinase called PKR (serine-threonine kinase 

protein kinase R) or DAI (double-stranded RNA-activated inhibitor of translation) is present 

in a latent form in most cells. It is activated by low concentrations of double-stranded RNA, 

generated during viral infections by symmetrical transcription of the virus genome (Maran 

and Mathews, 1988). Upon binding of dsRNA it is activated and phosphorylates eIF2α at 

Ser51 to inhibit viral protein synthesis. Due to approximations in calculating the virus titer of 

Ad-LacZ and Ad-p14ARF significant deviations in MOI could occur between both viruses 

which could mask DAI activation. To rule out artificial adenoviral phosphorylation of eIF2α 

and to equalise the MOIs we used a regulatory adenovirus Ad-p14ARF
(Tet). It contains 

repetitive tet operator sequences (tetO) followed by a human minimal CMV promoter and the 

gene for p14ARF. In the absence of tetracycline (Tet) or a derivative (doxycycline), the 

transactivator protein binds to the tetO sequences and activates ARF protein expression. 

Binding of Tet to the tTA protein inhibits p14ARF protein expression by reducing tTA affinity 

for the tetO sequences (Loew et al., 2010). 

 

Figure 18. Specific phosphorylation of eIF2α and subsequent induction of ATF4 by Ad-p14ARF
(Tet) in 

HCT116 cell lines. Western blot showing the expression status of proteins after transduction with Ad-p14ARF
(Tet) 

under ‘off’ (with doxycyline) and ‘on’ (without doxycycline) conditions after 24, 48, and 72 h. Equal loading 
was confirmed by reprobing with an antibody against β-actin. * unspecific band. 
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HCT116 WT and p53-/- cell lines were mock treated or were transduced with Ad-p14ARF
(Tet) in 

the presence or absence of doxycyclin in the culture media. Cells were harvested 24, 48, and 

72 h post infection and were tested for expression of 14ARF, BiP, phosphorylation of eIF2α, 

and ATF4 by Western blot analysis (Figure 18). 

 

The Western blot shows stable induction of p14ARF
(Tet) only under ‘on’ condition at all time 

points. Levels of BiP/GRP78 do not change when compared to untreated cells or cells under 

‘off’ condition. After 48 and 72 h phosphorylation of eIF2α can be detected. Inhibition of cap-

dependent translation by phosphorylated eIF2α also leads to an induction of downstream 

transcription factor ATF4. An increase in ATF4 levels can be detected after 48 and 72 h of 

p14ARF induction. Activation of ATF4 should also lead to an induction of CHOP. 

 

4.8 Induction of apoptosis by ER stressors, Ad-ATF4(Tet) and Ad-CHOP(Tet) 
To further dissect the PERK‒CHOP pathway, we created additional inducible adenoviruses 

Ad-ATF4(Tet) and Ad-CHOP(Tet). Both proteins are upregulated after ER stress when eIF2α is 

phosphorylated and global cap-dependent translation is inhibited (Ma et al., 2002; Harding et 

al., 2003). 

ATF4 and CHOP were tested for their ability to induce apoptosis in HCT116 WT and p53-/- 

cell lines. Results were compared to cells treated with tunicamycin and thapsigargin (Figure 

19). 

Expression of 25 MOI Ad-ATF4(Tet) and Ad-CHOP(Tet) leads to induction of apoptosis after 

72 h. About 15 % of the cells show a hypodiploid cell content, compared to 2-3 % of 

untreated cells. Cells transduced with an adenovirus under ‘off’ conditions (with doxycyclin 

in the culture media) show slightly increased levels of apoptotic cells compared to control 

cells. Low MOI of Ad-ATF4(Tet) and Ad-CHOP(Tet) have a similar effect after 72 h as 1 µg/ml 

tunicamycin after 48 h. As seen in the Western blot, withdrawal of doxycyclin does allow for 

a strong induction of ATF4 or CHOP. However, at 48 h CHOP can be detected even under 

‘off’ condition, suggesting some leakiness of the tet-system. 
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Figure 19. Induction of apoptosis by ER stress inducing agents tunicamycin and thapsigargin compared to 
Ad-ATF4(Tet) and Ad-CHOP(Tet) in HCT116 cell lines. (a) HCT116 WT and p53-/- cell lines were treated with 1 
and 5 µg/ml tunicamycin and thapsigargin or were incubated with 25 MOI of Ad-ATF4(Tet) and Ad-CHOP(Tet) 
with (‘off’) or without (‘on’ condition) doxycyclin. Western blots showing induction of BiP after treatment with 
tunicamycin and thapsigargin or induction of either ATF4 or CHOP after adenoviral infection. Equal loading was 
confirmed by reprobing with an antibody against β-actin (b) Measurement of hypodiploid cells after 24, 48, and 
72 h by FACS. Bars represent mean ± s.d. of three measurements. 
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4.9 Induction of BH3-only proteins by ER stressors, Ad-ATF4(Tet) and Ad-CHOP(Tet) 
BH3-only proteins play a major role in induction of apoptosis via the mitochondrial pathway. 

It was already known that ER stress triggers apoptosis by activating BH3-only proteins Puma 

(Reimertz et al., 2003), Noxa (Li et al., 2006), and Bim (Puthalakath et al., 2007). We were 

especially interested in upregulation of BH3-only family members that are involved in the 

PERK pathway. Therefore, we treated HCT116 WT cells with 1 and 5 µg/ml thapsigargin or 

tunicamycin, and compared data with cells transduced with 25 MOI Ad-ATF4(Tet) and Ad-

CHOP(Tet). Quantitative RT-PCR for BH3-only genes was performed after 24, 48, and 72 h 

post treatment (Figure 20). 

 

Treatment of HCT116 WT with tunicamycin leads to a dose dependent upregulation of Bmf 

mRNA increasing over time with about 2-fold induction after 24 h up to 4-fold at 72 h. Noxa 

is upregulated 3-fold after 72 h, while Puma is induced about 3.5-fold at all time points. 

Levels of Spike decrease from about 2.5-fold induction at 24 and 48 h to 0.5-fold at 72 h. 

There is no significant upregulation of the other BH3-only genes. Thapsigargin also induces 

the same genes but leads to stronger inductions overall. Bmf is induced up to 2-fold at 48 h 

and reaches up to 4-fold induction at 72 h. Levels of Noxa and Puma start at about 5.5-fold 

after 24 h and decrease to about 2.5-fold induction after 72 h. Spike is induced 3-fold at 48 h. 

Interestingly, 1 µg/ml thapsigargin induces Bim more strongly than 5 µg/ml. Here, levels 

from 2-fold at 24 h up to 3-fold at 72 h are reached. Bid and Nbk levels are downregulated 

after 48 h and decline to around 0.5-fold until 72 h. Adenoviral expression of ATF4 induced 

Bmf mRNA up to 4-fold after 72 h. Levels of Bad, Nbk and Noxa are downregulated. Other 

mRNA levels are not induced significantly. Expression of CHOP only induced Bmf mRNA. 

Levels of Bmf increase to 3-fold at 48 h and up to 4-fold after 72 h. All other tested mRNAs 

were downregulated by Ad-CHOP(Tet). 

 

A strong upregulation of Bmf can be detected in HCT116 WT cells after treatment with 

tunicamycin, thapsigargin, and after adenoviral expression of ATF4 or CHOP. When 

compared to the induction of Bmf by p14ARF (see 4.3), induction could only be detected in 

p53 deficient cell lines. To corroborate the role of p53 in this context, we repeated the 

experiment in HCT116 p53-/- cell lines (Figure 21). 
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Similar to HCT116 WT cells, treatment with 5 µg/ml tunicamycin in HCT116 p53-/- cells 

induced Bmf gradually over time from about 3-fold at 24 h to about 7-fold at 72 h. Induction 

of Noxa ranges between 3 to 6-fold induction at all time points, similar to Puma with 4 to 6-

fold induction. Treatment with thapsigargin led to 4 to 5-fold induction of Bim after 48 and 

72 h. Induction of Bmf increased from 1.5-fold at 24 h for both concentrations to about 6 to 7-

fold at 72 h. Noxa showed a similar induction as Bmf and levels of Puma increased from 

about 5-fold at 24 h to about 15-fold at 72 h independent of the thapsigargin concentration. 

Adenoviral expression of ATF4 led to a strong induction of Bmf to about 15-fold at 72 h and 

a slight increase in Noxa and Puma levels at 48 and 72 h. Expression of CHOP only induced 

 

Figure 21. Quantitative RT-PCR of HCT116 p53-/- cells after treatment with tunicamycin and thapsigargin 
or infection with Ad-ATF4(Tet) and Ad-CHOP(Tet). HCT116 p53-/- cells were incubated with TUN and THA at 
concentrations of 1 and 5 µg/ml as well as infected with adenoviruses expressing ATF4 and CHOP. Real-time 
data of BH3-only mRNA was measured 24, 48 and 72 h post treatment or infection. Untreated cells as control set 
to 1 (white), cells treated with TUN and THA at a concentration of 1 µg/ml (light grey) and cells treated with 
TUN and THA at a concentration of 5 µg/ml (dark grey). Cells infected with Ad-ATF4(Tet) and Ad-CHOP(Tet) 
under ‘off-condition’ (light grey) and ‘on-condition’ (dark grey). Bars represent mean ± s.d. (n=3). 
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Bmf levels from about 5-fold at 48 h to about 10-fold at 72 h. Levels of other BH3-only 

mRNAs were unaffected at all time points investigated. 

 

These data indicate that similar to Bim, Noxa, and Puma, Bmf can be implicated in mediating 

apoptosis triggered by the ER. In particular, this response is most prominent in cells void of 

p53. 

 

4.10 Inhibition of apoptosis by Bmf siRNA in p53 pro- and deficient HCT116 cells 
To analyse the function of Bmf after ER stress we downregulated Bmf by siRNA. Cells were 

seeded and incubated with control and Bmf siRNA for 24 h before treatment with 

tunicamycin and thapsigargin (Figure 22). 

 

Tunicamycin and thapsigargin treated HCT116 WT cells show about 25 and 40 % 

hypodiploid cells, respectively. Addition of Bmf siRNA had no impact. In p53 deficient 

HCT116 cells, treatment with tunicamycin leads to about 35 % of apoptotic cells, while 

treatment with thapsigargin induces apoptosis in about 30 % of the cells. When Bmf is 

downregulated in tunicamycin treated cells, the amount of hyplodiploid cells is significantly 

reduced to about 27 % (p=0.0036). In thapsigargin treated cells, the amount of apoptotic cells 

is reduced slightly to about 28 %. 

 

 

Figure 22. Downregulation of Bmf by siRNA. HCT116 WT and p53-/- cells were incubated with control and 
Bmf siRNA. 24 h later cells were treated with 5 µg/ml tunicamycin and thapsigargin. Bars represent mean ± s.d. 
(n=3). 
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4.11 Bmf translation after phosphorylation of eIF2α 
Activation of the PERK‒CHOP pathway eventually leads to the induction of Bmf. When 

global cap-dependent initiation of translation is inhibited by phosphorylation of eIF2α by 

PERK, translation of Bmf should also be inhibited. To analyse if Bmf circumvents 

translational inhibition, we analysed the promoter regions of different species for conserved 

homologies and structures. A comparison of the 5’ UTR of bmf from human (accession 

NM_001003940), dog (Canis familiaris; XM_843970) and rat (Rattus norvegicus; 

NM_139258) showed 88.2 % and 82 % identity between human and dog, and human and rat, 

respectively. Secondary structures of the RNA predicted by the mFOLD program (Zuker, 

2003) showed nearly identical structures between human and dog 5’ UTR even in regions of 

lower sequence identity (Figure 23), leading us to the assumption, that this structural 

conservation might be part of a mechanism by which translational inhibition can be 

circumvented. 

 

Figure 23. Secondary structure of bmf 5’ UTR of human and dog. Secondary structures of the 5’ UTR of bmf 
were calculated with the mFOLD program. 
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4.12 bmf promoter binding studies and transcriptional activity 
The differential regulation of Bmf in p53 pro- versus deficient cells suggests that p53 acts as 

repressor for bmf. To further analyse this hypothesis, we carried out an additional in silico 

analysis of the bmf promoter region. The sequence of bmf (ENSG00000104081) was taken 

from the ensemble.org website (see Appendix for full sequence). No p53 response elements 

(5'-RRRCWWGYYY-3'; el-Deiry et al., 1992) were found in the promoter region. Instead we 

identified putative binding sites for transcription factors ATF4 (5'-TGACGTMR-3'; Lin and 

Green, 1988) and CHOP (5'- RRRTGCAATMCCC -3'; Ubeda et al., 1996) within the first 

1500 bp of the 5’ upstream bmf promoter region (Figure 24). 

 

To verify binding of ATF4 and CHOP to the identified sites, a chromatin 

immunoprecipitation (ChIP) assay was performed (Figure 25). HCT116 WT and p53 

knockout cells were treated mock or infected with Ad-p14ARF. Additionally, HCT116 WT 

cells were treated with tunicamycin and thapsigargin or infected with Ad-ATF4(Tet) and Ad-

CHOP(Tet). Immunoprecipitation with antibodies against ATF4 and CHOP and subsequent 

PCR for promoter sequences -229 to -12 (region 1; RE1), -427 to -209 (RE2), -821 to -609 

(RE3), -1114 to -938 (RE4), -1361 to -1153 (RE5), as well as an nonspecific region -10773 to 

-10564 (NS) was performed. Untreated cells were used as controls. 

Mock treated HCT116 WT cells show binding of ATF4 to regions RE1, RE2, RE4, and RE5. 

After induction of p14ARF binding could be detected in regions RE2, RE4, and RE5 although 

signals were weaker compared to mock treated cells. In tunicamycin treated cells, regions 

RE2, RE4, and RE5, while in thapsigargin treated cells, regions RE2 and RE4 could be 

detected. Regions RE1, RE2, and RE4 could be amplified after expression of ATF4 and 

CHOP, with stronger signals in ATF4 infected cells. 

In mock treated HCT116 WT cells after precipitation with CHOP antibody, signals could be 

detected in RE1 and RE4. After induction with p14ARF, regions RE1, RE2, RE4, and RE5 

 

Figure 24. bmf promotor region (not to scale). Putative binding sites with corresponding ChIP PCR fragments 
(RE1 to RE5 and nonspecific; NS). BMF mRNA and exons (ENSG00000104081) in bigger boxes, coding region 
in black. All numbers relative to transcription initiation site (TIS; +1). 
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could be amplified. In cells treated with tunicamycin, binding of CHOP could be detected in 

RE2, RE4, and RE5. RE1, RE2, and RE4 in thapsigargin treated cells. Induction of ATF4 led 

to signals in RE2 and RE4; induction of CHOP to signals in RE2, RE4, and RE5. 

In p53 deficient untreated HCT116 cells, regions RE2 and RE4 can be amplified after 

 

Figure 25. Chromatin immunoprecipitation against ATF4 and CHOP in HCT116 WT and p53-/- cell lines. 
Chromatin of cells treated mock, transfected with Ad-p14ARF, Ad-CHOP(Tet), and Ad-ATF4(Tet) under ‘on’ 
condition or treated with tunicamycin and thapsigargin were precipitated with antibodies against ATF4 and 
CHOP and subjected to PCR with primers for identified binding regions (RE1 to RE5) of ATF4 and CHOP. 
Number of cycles as indicated. Input shows PCR before chromatin immunoprecipitation. 
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immunoprecipitation with an antibody against ATF4. After induction of p14ARF, regions RE2, 

RE3, and RE4 could be detected. In p53-/- cells precipitated with an antibody against CHOP, 

regions RE1, RE2 and RE4 can be detected in mock treated cells. Expression of p14ARF leads 

to signals in regions RE1, RE2, RE3, and RE4. 

Overall, signals in p53 deficient cells were stronger when compared to WT cells. Signals in 

RE3 for both ATF4 and CHOP could only be detected in p53 knockout cells. Signals in RE5 

could only be detected in HCT116 WT cells. 

 

Binding of ATF4 and CHOP to distinct or same regions could show co-localisation 

or -binding of these bZIP family transcription factors. Specific signals in the PCR for RE3 for 

ATF4 and CHOP after induction of p14ARF in p53 cell lines might point to this region as 

potential repressor or co-factor binding site in p53 proficient cell lines. 

  

To analyse the transcriptional activity of p14ARF, ATF4, and CHOP as well as drugs 

tunicamycin and thapsigargin cotransfection of different pGL3-constructs with an internal 

control for the luciferase activity plus additional transfection with pcDNA-constructs was 

performed in a luciferase assay (Figure 26). 

 

Figure 26. Luciferase Assay. HCT116 WT and p53-/- cell lines were transfected with pGL3modMCS 
constructs. Cell lines were cotransfected with pGL3-BMF promoter constructs as well as pcDNA or treated with 
3 µg/ml tunicamycin or thapsigargin. Relative light units was calculated as luciferase activity divided by activity 
of cotransfected pRL-TK vector. Numbers represent mean of triplicates. Bars represent mean ± s.d. 
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HCT116 WT and p53-/- cell lines were transfected with pGL3-constructs containing no, 

427 bp (RE1 - RE2), 821 bp (RE1 - RE3), or the first 1361 bp (RE1 - RE5) of the bmf 

promoter. Additionally, pRL-TK as internal luciferase control as well as pcDNA-constructs 

coding for p14ARF, ATF4, and CHOP were cotransfected. Alternatively, 3 µg/ml of 

tunicamycin or thapsigargin was added to transfected cells without pcDNA. 

 

The empty pGL3 vector is not activated by either cotransfection with other pcDNAs or 

tunicamycin and thapsigargin in both cell lines. The ratio and therefore the amount of relative 

light units (RLU) of empty pGL3 to pRL-TK is 1. The first 427 bp of the bmf promoter, 

containting RE1 and RE2, cotransfected with empty pcDNA led to a RLU of 32 in HCT116 

WT cells. Cotransfection with p14ARF slightly reduced RLU, while ATF4 and CHOP doubled 

RLU to 66 and 64, respectively. Incubation with tunicamycin and thapsigargin nearly triples 

RLU to 84 and 92, respectively. Addition of RE3 (821 bp) changes RLU only slightly 

compared to 427 bp. The full length construct (1361 bp; containing regions 1-5) reduces RLU 

in HCT116 WT cell lines to about 11 with empty pcDNA3. Cotransfection with CHOP or 

treatment with tunicamycin and thapsigargin raises RLU to values of 19, 17, and 24, 

respectively. 

 

In p53 deficient HCT116 cells, cotransfection with empty pcDNA3.1(+) leads to a three times 

higher RLU compared to p53 proficient cells with all promoter fragments. Also cotransfection 

with p14ARF in pcDNA leads to an increase of RLU with all promoter constructs compared to 

empty pcDNA. Expression of ATF4 leads to overall highest RLUs with 268 for regions RE1 

and RE2 (427 bp) and 305 for 821 bp. Expression of CHOP alone increases RLU only slightly 

when compared to empty pcDNA constructs. Here, levels of 136 and 150 RLU are reached 

for constructs with 427 and 821 bp, respectively. Drug treatment with tunicamycin and 

thapsigargin also increases RLU. Tunicamycin treated cells display 174 RLU for the 427 bp 

construct and 210 RLU for the 821 bp construct. Thapsigargin treatment leads to 142 and 178 

RLU in 427 and 821 bp constructs, respectively. Relative light units for the 1361 bp construct 

are about 36 for empty pcDNA and are only increased to 51 after ARF expression and 63 after 

ATF4 expression. CHOP expression (46 RLU), tunicamycin (44 RLU), and thapsigargin (39 

RLU) treatment do not show a significant increase. 
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Interestingly, p14ARF expression in HCT116 WT cells reduces transcriptional activity by 

about 15 % independent of the length of the promoter fragment. In HCT116 p53-/- cells, 

p14ARF induces transcriptional activity. Both ChIP- and luciferase assay show the difference 

of binding and transcriptional activity in p53 pro- and deficient cells. Further analysis of RE3, 

a putative ATF4 binding site, should lead to the p53-dependent factors that are responsible for 

the difference in regulation. 
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5. Discussion 

5.1 p14ARF induces p53 family independent apoptosis 
The p14ARF‒Hdm-2‒p53 pathway which induces apoptosis by a Puma-dependent 

mechanism is inactivated in over 50 % of all cancers mainly because of mutated or loss of 

p53. However, we previously showed, that the forced expression of p14ARF in human cancer 

cells can also trigger apoptosis and cell cycle arrest in a p53 independent manner. We set out 

to further explore the underlying signalling pathways, by focusing on the p53 homologs p63 

and p73, as all p53 family members are able to regulate cell cycle and apoptosis after DNA 

damage. Neither p63 nor p73 is targeted by inactivating mutations in human cancers (Moll 

and Slade, 2004) and could be utilised to convey p14ARF-induced cell death. However, it has 

been shown, that p14ARF inhibits p63-mediated transactivation and transrepression through 

direct interaction (Calabrò et al., 2004), leaving p73 as a possible candidate for p14ARF-

induced apoptosis. Both p53 and p73 have been shown to contribute to chemosensitivy of 

tumours (Lunghi et al., 2009) and both together with p14ARF are forming a network that is still 

able to induce apoptosis even when one partner is inactivated (Nicholson et al., 2001). The 

interaction of p53-family proteins and their transcriptional activity has been analysed 

extensively. Mutations in p53 itself influences the regulatory ability of other family members, 

e.g. p53Arg72 can bind and inhibit p73 activity (Irwin et al., 2003). Especially the 

tetramerisation domain of p53 was thought to interact with the tetramerisation domains of p63 

and p73, thereby interfereing with binding of the protein complexes to DNA and subsequent 

inhibiting their transcriptional activity. 

Overexpression of the p53 tetramerisation domain should be able to interfere 

stoichiometrically with all splice variants carrying a homologuous domain. The newly created 

stable cell line expressing this tetramerisation domain (ΔNp53) displays no upregulation of 

p21 after induction of p14ARF, confirming that we successfully disabled p53 family proteins. 

Our data clearly show a similar induction pattern of BH3-only mRNAs by p14ARF in p53 

deficient cells as well as in p53 proficient cells (Figure 13). Therefore, inhibition of p53 

homologs by expression of ΔNp53 does not inhibit p14ARF induced apoptosis. Thus, induction 

of apoptosis must be relayed by other means which are as fast and efficient as the Hdm-2‒
p53 signalling pathway since no difference in the amount of apoptosis could be detected in 

p53 family proficient and deficient cell lines (Figure 9 and Figure 10). 
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5.2 p14ARF-induced apoptosis utilises pathways of the mitochondria and the ER 
Apoptosis upon adenoviral expression of p14ARF is executed via the mitochondria by 

activation of Bax and Bak, breakdown of the mitochondrial membrane potential, cytochrome 

c release (Figure 9), and by activation of caspases (Figure 10). Bcl-2 localised to the 

mitochondria is able to inhibit apoptosis and Bcl-2 family proteins have been shown to 

prevent all mitochondrial changes (Gross et al., 1999; Shimizu and Tsujimoto, 2000). 

We have demonstrated here, that Bcl-2 localised to the ER also attenuates p14ARF-induced 

apoptosis (Figure 10), suggesting a connection of the ARF signalling pathway to this cellular 

organelle. Interestingly, according to literature, apoptosis induced by c-myc or DNA-damage 

through irradiation can also be inhibited by ER-targeted Bcl-2 (Lee et al., 1999; Rudner et al., 

2001). The tumour suppressor p14ARF is induced by both mechanisms (Zindy et al., 1998; Lee 

et al., 2005), thus, our data suggests p14ARF being the common factor connecting these 

signalling pathways to the ER. 

At the ER different mechanisms of inhibition of p14ARF induced proteins by Bcl-2 are 

possible: First, direct inhibition of ER localised pro-apoptotic Bcl-2 family members. 

Inhibition of Bak or BH3-only proteins or inhibition of Bax translocalisation to the 

mitochondria by ER localised Bcl-2 has been shown before (Wei et al., 2001; Zhang and 

Armstrong, 2007). Second, inhibition/interaction with non-Bcl-2 family members involved in 

ER stress, e.g. BiP or the transducers PERK, IRE1, and ATF6. Third, by interaction with the 

inositol 1,4,5-trisphosphate receptor (IP3R) Bcl-2 is able to inhibit Ca2+ release from the ER 

(Rong et al., 2008). The actual mechanism has not been elucidated, yet. 

Based on our data, we cannot distinguish clearly between a parallel or consecutive activation 

of ER and mitochondria. If it is the former, the ER must be targeted first, relaying signals to 

the mitochondria which then leads to the activation of the intrinsic apoptosis pathway. By 

parallel activation of the organelles initial mitochondrial changes could be enhanced by 

signalling from the ER. 

 

5.3 Induction of the PERK‒CHOP pathway by p14ARF 
The most direct way to activate the ER would be by induction of ER stress by changes of Ca2+ 

homeostasis or the accumulation of unfolded proteins as induced by thapsigargin and 

tunicamycin, respectively. This leads to immediate induction of the UPR and its hallmark 

reporter BiP/GRP78 (Figure 14 and Figure 19) as well as all transducer proteins, i.e. PERK, 

ATF6, and IRE1. The ability of tunicamycin to trigger the accumulation of unfolded proteins 
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in the ER leads to the induction of the transducer proteins, while thapsigargin also activates 

pathways activated by changes in Ca2+ concentrations. 

Our quantitative RT-PCR data shows, that expression of p14ARF does not lead to an induction 

of BiP/GRP78, i.e. ER stress, but exclusively upregulation of PERK, thereby only activating 

one specific pathway of the UPR when compared to tunicamycin and thapsigargin, which 

induce also ATF6 and IRE1. After p14ARF expression we also detect upregulation of eIF2α 

and CHOP, which are downstream components of the PERK pathway. However, the 

transcription factor ATF4, which is part of the PERK‒CHOP signalling axis is not 

transcriptionally upregulated. According to literature, ATF4 exhibits a short half-life and low 

translation efficiency under normal conditions. After phosphorylation of eIF2α ATF4 

translation is increased and proteasomal degradation is reduced (Rzymski et al., 2009). Since 

no transcriptional upregulation of atf4 but chop can also be detected by qRT-PCR after 

treatment with tunicamycin and thapsigargin, our data suggests that p14ARF solely activates 

the PERK‒ eIF2α‒ATF4‒CHOP pathway. Such selective activation of single branches of 

the UPR have been reported (Ma et al., 2010) and especially the downstream consequences of 

the PERK pathway, i.e. the ISR are induced by different stress stimuli, e.g. amino acid 

deprivation, infection with double-stranded RNA viruses, heme deficiency, oxidative stress, 

and hypoxia (Brostrom and Brostrom, 1998; Brewer et al., 1999; Williams, 1999; Harding et 

al., 2000; Koumenis et al., 2002; Rutkowski and Kaufman, 2003). Furthermore, the 

PERK-CHOP pathway is induced independent of the p53-family and was reported to lead to 

cell cycle arrest and/or apoptosis (Matsumoto et al., 1996; Maytin et al., 2001; Sauane et al., 

2008). 

Inhibition of PERK by expressing its dominant negative variant significantly abrogates 

p14ARF induced cell death in p53 proficient HCT116 WT cells (Figure 16). This effect is even 

stronger in p53 deficient cells treated with PERK siRNA, where downregulation of ATF4 also 

inhibits apoptosis significantly (Figure 17). In these cells, the effect of downregulation of 

PERK Induction of apoptosis via the PERK pathway is likely to be executed by extended 

expression of downstream transcription factors ATF4 and CHOP (Figure 19) and is then 

achieved by pro-apoptotic Bcl-2 family members, i.e. BH3-only proteins. BH3-only proteins 

are sensors relaying apoptotic signals to mitochondria and their involvement is discussed in 

the next chapter. Interestingly, CHOP is able to inhibit anti-apoptotic Bcl-2 (Matsumoto et al., 

1996). Whether or not downregulation of Bcl-2 is as equally important as upregulation of 

BH3-only proteins has to be analysed in upcoming studies. 
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Induction of PERK signalling pathways by p14ARF might work as fail-safe mechanisms that 

function independent of the p53-family. Interestingly, PERK-mediated activation of the 

glycogen synthetase kinase-3β (GSK-3β) has been shown to phosphorylate p53, leading to its 

degradation via the proteasome (Qu et al., 2004), and may act as a possible regulatory 

mechanism in p53 proficient cells. 

 

5.4 Role of BH3-only proteins in ER-mediated induction of apoptosis 
Induction of ER stress by tunicamycin and thapsigargin leads to upregulation of Bim, Bmf, 

Noxa, and Puma. BH3-only proteins Bim, Noxa, and Puma have already been shown to be 

involved in induction of apoptosis by ER stress (Reimertz et al., 2003; Li et al., 2006; 

Puthalakath et al., 2007). Bim mediates cell death induced by ER stress via translocation to 

reticular membranes (Morishima et al., 2004) and ER stress can selectively activate Puma and 

Noxa at the transcription level (Li et al., 2006). 

Our qRT-PCR data reveals Bmf as a novel candidate involved in mediating ER stress (Figure 

20 and Figure 21). Its transcriptional regulation is discussed in more detail in the next chapter. 

Downregulation of bmf by siRNA leads to a small, but significant, reduction of apoptosis in 

cells treated with tunicamycin and a small reduction in cells treated with thapsigargin (Figure 

22). Both drugs induce ER stress by different mechanisms, which could explain the 

differences in upregulation of BH3-only proteins and subsequent susceptibility to a reduction 

of Bmf. However, inhibition of apoptosis by knockdown of Bmf functions only in p53 

deficient cells. In p53 proficient cells induction of the BH3-only proteins Bim, Noxa, and 

Puma seem to be the main regulators of apoptosis. In p53 proficient cell lines induction of 

Puma by p14ARF is the main pathway for apoptosis (Hemmati et al., 2010). Here, Puma is able 

to inhibit all anti-apoptotic Bcl-2 family members (Chen et al., 2005), thereby releasing and 

activating Bax & Bak to induce apoptosis. Interestingly, expression of p14ARF in p53 deficient 

cell lines leads to induction of Noxa and Bmf. Noxa selectively binds only to anti-apoptotic 

Mcl-1 and A1, while Bmf has a greater affinity to Bcl-2, Bcl-xL, and Bcl-w (Chen et al., 

2005). Therefore, activation of both BH3-only proteins by p14ARF leads to release and 

activation of Bax & Bak and seems to compensate for Puma, which is not induced in p53 

deficient cells. Further dissection and specific activation of the pathways, especially the p53 

independent induction of Noxa by p14ARF, will help to understand underlying mechanisms. 

 



Discussion  71 

 

5.5 Bmf gene regulation 
Induction of bmf by p14ARF can only be observed in p53 deficient cell lines (Figure 12 and 

Figure 13). Loss of p53 increases binding of the transcription factors ATF4 and CHOP to the 

bmf promoter (Figure 25) and enhances overall transcriptional activity (Figure 26) after 

induction of p14ARF. Our promoter analysis of bmf revealed no binding sites of p53, thus a 

direct role of this transcription factor in bmf regulation seems implausible. Nevertheless, p53 

might be involved indirectly by inducing repressors or co-factors that inhibit binding to or 

transcriptional activity of bmf. Our in silico promoter analysis revealed binding sites for 

different transcription factors, next to involved factors ATF4 and CHOP. 

Binding sites for the CtBP-interacting basic Kruppel-like factor (BKLF) were shown to 

inhibit transcription of nbk and ARF reversed CtBP-associated repression (Kovi et al., 2010). 

One binding site of BKLF is also found at position -401 (relative to TIS) of the bmf promoter, 

but the luciferase assay shows no significant induction of transcriptional activity in p53 

proficient cells upon p14ARF expression, supporting our theory that p53-dependent repressors 

have a stronger effect on bmf transcription. 

ATF4 seems to be the main transcription factor of bmf by specifically binding to the region 2 

of the bmf promoter (Figure 25). ATF4 can dimerise with a number of transcription factors, 

including FIAT (factor-inhibiting ATF4-mediated transcription), Nrf2 (nuclear factor 

[erythroid-derived 2]-like 2), NF-IL6, AP-1 (activator protein 1), and Maf (macrophage 

activating factor) family members (Tanaka et al., 1998; Hai and Hartman, 2001; He et al., 

2001). While ATF4 seems to be the important transcription factor, induction of CHOP by 

ATF4 might also regulate bmf transcription, as interaction of CHOP with ATF4 can regulate 

gene induction (Su and Kilberg, 2008). CHOP itself also binds to similar sites in the bmf 

promoter as ATF4 and a CHOP-C/EBP heterodimer has been reported to bind to an unique 

DNA sequence different from classical C/EBP binding sites (Ubeda et al., 1996). Other bZIP 

proteins from the same family, i.e. ATF2 and ATF3, were shown to be involved in the 

regulation of CHOP as well (Averous et al., 2004). These heteromeric complexes between 

ATF and CHOP proteins provide the potential for variable DNA binding specifities, as well as 

inhibitory complexes, allowing for differential regulation in the presence or absence of p53 

(Tsukada et al., 2011). 

Taken together, we propose that Bmf is upregulated via the PERK-ATF4-CHOP signalling 

pathway, by activation of transcription factors ATF4 and CHOP and Bmf induction is 

inhibited indirectly by p53. However, expression of ATF4 and CHOP leads to a moderate 
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amount of apoptosis in p53 deficient cells when compared to expression of p14ARF, suggesting 

that there are other pathways which must be accountable for the difference. In p53 deficient 

cell lines Bmf is the only BH3-only induced by ATF4 and CHOP via the PERK pathway, 

induction of ‘stronger’ BH3-only proteins, i.e. Bim, Noxa, and Puma, by other UPR pathways 

could explain these differences. 

Since phosphorylation of eIF2α by PERK inhibits cap-dependent translation of proteins, 

upregulation of Bmf is only reasonable if translation of this BH3-only protein can also occur 

by a cap-independent mechanism. Our assumption about a conserved element in the 5’ UTR 

of the mRNA was supported by a paper in November 2010. Here, Grespi et al showed that 

bmf contains an IRES element and an upstream CUG site by which translation will start 

(Grespi et al., 2010). Whether or not Noxa or other BH3-only proteins are also translated by 

cap-independent mechanisms has to be analysed in upcoming studies. 

 

5.6 Involvement of the ER as an energy saving mechanism 
Ribosome biogenesis is the major biosynthetic and energy consuming activity of eukaryotic 

cells. It is sensitive to the availability of nutrients and growth factors and is coupled to cell 

cycle progression through regulation of Hdm-2/p53 signalling (Deisenroth and Zhang, 2011). 

Within the nucleolus nucleophosmin (NPM1) is involved in many processes leading to the 

processing and assembly of ribosomes, e.g. shuttling between the nucleus and cytoplasm to 

bind nucleic acids and to transport preribosomal particles (Borer et al., 1989; Yun et al., 

2003). A knockdown of NPM1 inhibits the processing of preribosomal RNA (Itahana et al., 

2003; Grisendi et al., 2005). 

ARFs nucleolar localisation (Rizos et al., 2000)  makes for a possible regulator of this 

mechanism and it was already shown, that p14ARF interacts with NPM1 thereby inhibiting 

biogenesis of ribosomal RNA and retarding processing of 47/45S and 32S precursors. 

Subsequent reduction of ribosome levels lead to overall reduction of translation of proteins. 

By a parallel activation of the PERK-CHOP signalling pathway, p14ARF leads to inhibition of 

cap-dependent translation through phosphorylation of eIF2α, thereby also reducing the 

amount of protein translation. The inhibition of rRNA synthesis and protein translation might 

function as an energy saving mechanism initiated by p14ARF. Additionaly, phosphorylation of 

eIF2α mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy 

induction, i.e. inducing a process that by degradation of a cell’s own components will 
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reallocate nutrients away from unnecessary processes (Kouroku et al., 2007). Interestingly, 

NPM1 mutations associate inversely with the occurrence of CCAAT/enhancer-binding 

protein-α (CEBPA) mutations in patients with acute myeloid leukemia (AML) (Verhaak et al., 

2005). CEBPA can interact with CHOP, which is induced by p14ARF via the PERK pathway. 

ARF might be one of the links/regulators, which keeps the network between these inversely 

correlated mutations in balance to retain its ability to influence the translation of proteins and 

therefor energy levels. 

 

5.7 A cap-independent network regulating apoptosis 
If inhibition of translation is an energy saving mechanism, basic regulation of homeostasis has 

to be maintained even under conditions of reduced protein translation. Interestingly, many 

genes involved in the intrinsic apoptotic pathway possess mRNAs carrying IRES elements or 

reinitiate translation by uORF mechanisms, circumventing regular cap-dependent translation  

and leaving a nearly intact network even under conditions of global inhibition of protein 

translation. Among these proteins, we find Bcl-2, cIAP, and XIAP (Coldwell et al., 2000), 

which keep apoptosis in check. Also, during apoptosis, a reduction of translation initiation 

caused by caspase cleavage of several of the factors required for the cap-dependent scanning 

mechanism can be detected (Spriggs et al., 2005). 

Activation of the PERK‒CHOP pathway by p14ARF leads to induction and translation of 

ATF4 by a cap-independent uORF mechanism. As ATF4 induces CHOP, which is known to 

inhibit anti-apoptotic Bcl-2, the homeostasis between pro- and anti-apoptotic factors is 

changed. Additional upregulation of transcription and IRES-mediated translation of Bmf 

might increase this imbalance and contributing to apoptotic cell death. 

 

5.8 Model of p14ARF induced activation of apoptosis 
Our findings of apoptosis induction by p14ARF are summarised in the following model (Figure 

27). Next to the canonical pathway via stabilisation of p53 by Hdm-2 and induction of Puma 

(left), p14ARF also activates the PERK‒CHOP pathway, leading to induction of Bmf in p53 

deficient cells (right). While Puma is able to inhibit all anti-apoptotic Bcl-2 family members, 

Bmf inhibits Bcl-2, Bcl-xL, and Bcl-w. The p53 independent induction of Noxa, probably via 

a different signalling pathway at the ER might then be responsible for inhibition of anti-

apoptotic Mcl-1 and A1. 
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Figure 27. Model of p14ARF-induced activation of apoptosis. Expression of p14ARF leads to activation of the 
PERK‒CHOP pathway, which is one branch of the so called unfolded protein response (UPR). Phosphorylation 
of eIF2α by PERK-induced p14ARF and subsequent stabilisation of ATF4 and upregulation of CHOP leads to 
downregulation of anti-apoptotic Bcl-2 and induction of pro-apoptotic bmf (right). Additional, p53 independent 
induction of noxa will increase changes in the homeostasis between pro- and anti-apoptotic proteins and 
eventually results in induction of apoptosis by activation of mitochondria via Bak and Bax. In p53 proficient 
cells transcription of bmf is inhibited and activation of mitochondria is regulated by induction of BH3-only 
protein Puma (left). 
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5.9 Outlook 
In this thesis we presented evidence for a novel signalling connection between the tumour 

suppressor p14ARF and the ER. Complex protein networks within and between cellular 

organelles are responsible for maintaining homeostasis with several control mechanisms 

ensuring and enforcing specific conditions. Each organelle can sense stressful and pathogenic 

alterations and initiates local or global responses leading to adaptation or, once a critical 

threshold of damage has been reached, cell death (Ferri and Kroemer, 2001). 

The newly found connection between p14ARF and the induction of the PERK‒ eIF2α‒  

ATF4‒CHOP signalling cascade shows a pathway emanating from the ER that will activate 

and/or amplify events at the mitochondria. The pro-apoptotic Bmf, which is induced by the 

PERK pathway is the sole BH3-only protein known so far that carries an IRES element and 

can circumvent inhibition of cap-dependent translation initiated by the integrated stress 

response (ISR). Bmf might therefore be involved in apoptosis induction by diverse stimuli. 

Further analysis on the impact of p14ARF to execute pathways from other cellular organelles, 

e.g. the Golgi apparatus or lysosomes, will reveal if p14ARF is a general transducer of cell 

death by activating different pathways at the same time. Activation of the PERK‒CHOP 
pathway by p14ARF connects signalling networks that are not only involved in tumorigenesis 

but also in development of diabetic, cardiovascular, and other diseases. Targeted 

activation/deactivation of factors in these networks will open possibilities to treat these 

illnesses. 
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6.  Summary 

In tumour cells, BH3-only proteins are the main regulator of apoptotic cell death and are 

regulated by p53-dependent and -independent signalling. We have shown here, that induction 

of apoptosis by expression of the tumour suppressor p14ARF may function independently of 

the canonical Hdm-2‒p53 pathway. 

In addition, we showed, that p14ARF-induced apoptosis can be inhibited by Bcl-2 localised to 

the ER. Therefore we analysed this cellular organelle to detect the factors relaying apoptotic 

signals. By use of quantitative real-time PCR, we found, that expression of p14ARF leads to 

activation of the PERK branch of the unfolded protein response (UPR), without causing 

characteristical ER stress, i.e. induction of the chaperone BiP/GRP78. Downstream events of 

PERK lead to attenuation of cap-dependent protein translation and upregulation of 

transcription factors ATF4 and CHOP. Adenoviral overexpression of these transcription 

factors and analysis of induction of BH3-only genes revealed, that bmf is induced by these 

proteins. In an in silico promoter analysis of bmf we identified putative binding sites for ATF4 

and CHOP. Additional promoter analysis via ChIP and reporter studies with a luciferase assay 

showed binding and transcriptional activation of the bmf promoter by ATF4 and CHOP, 

further verifying our model. Bmf is the only member of the BH3-only family that is induced 

by these transcription factors. We found, that the conserved structure of the 5’ UTR of the 

Bmf mRNA serves as an IRES element which is used to circumvent the global cap-dependent 

translation activated by the PERK pathway. 

PERK is one of three transducer proteins involved in UPR and is activated by ER stress. Here, 

next to the already in ER-mediated induction of apoptosis implied BH3-only proteins Bim, 

Noxa, and Puma, pro-apoptotic Bmf plays an important role. Further dissection of the other 

UPR branches will reveal by which mechanisms those BH3-only proteins are induced. 

Induction of bmf by p14ARF is also achieved via the PERK/eIF2α/ATF4/CHOP signalling axis 

but is negatively regulated in p53 proficient cells. This pathway could play the role of a ‘fail-

safe’ mechanism that allows cells, even after loss of p53, to undergo apoptosis induced by 

upregulation of p14ARF by oncogenes. 
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7. Appendix 

7.1 Abbreviations 
°C degrees celsius 

A Ampere 

Ad adenovirus 

AIF apoptosis inducing factor  

APAF-1 apoptotic protease activating factor 1 

Ask1  apoptosis-signal-regulating kinase 1 

ATF  activating transcription factor 

ATP adenosine triphosphate 

Bad  Bcl-2 antagonist of cell death 

Bak Bcl-2 antagonist/killer 

Bax Bcl-2 associated X protein 

Bcl-2 B-cell lymphoma-2 

Bcl-B Bcl-2-like 10 

Bcl-w Bcl-2-like 2 

Bcl-xL B-cell lymphoma-extra large 

BH Bcl-2 homology 

Bid BH3-interacting domain death agonist 

bidest double destilled 

Bim Bcl-2 interacting mediator of cell death 

Bmf Bcl-2 modifying factor 

Bok Bcl-2-related ovarian killer 

bp base pairs 

BSA bovine serum albumin 

bZip basic Leucine Zipper 

C/EBP cAMP response element-binding protein 

cAMP cyclic adenosinmonophosphate 

cDNA complementary DNA 

CHOP C/EBP homologous protein 

CMV cytomegalovirus 

Da Dalton 
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DD death domain 

DDIT3 DNA damage inducible transcript 3 

DED death-effector domain 

DIABLO direct IAP-binding protein with low pI 

DISC death-induced signalling complex 

DMEM Dulbecco’s Modified Eagle Medium 

DMSO dimethylsulfoxid 

DNA desoxyribonucleinacid 

DOX doxycyclin 

EDTA ethylendiamintetraaceticacid 

EGTA ethylenglykoltetraaceticacid 

eIF2α α-subunit of eucaryotic translation initiation factor 2 

ER endoplasmic reticulum 

ERSE ER stress response element 

EtBr ethidiumbromid 

F Farad 

FACS fluorescence activated cell sorting 

FADD Fas associated death domain 

FCS fetal calf serum 

g gram 

g  gravity (9,81 m/s2) 

G418  geneticin 

GADD  growth arrest and DNA damage inducible gene 

h  hour 

Hdm-2 human double minute 2 

Hrk  Harakiri 

IAP  inhibitor of apoptosis 

IRE1  inositol-requiring enzyme 1 

IRES  internal ribosomal entry site 

ITR  inverted terminal repeats 

JNK  c-Jun N-terminal kinase 

l  Liter 

m  meter 
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M  molar 

MAPK  mitogen-activated protein kinase 

Mcl-1  myeloid cell leukaemia sequence-1 

MCS  multiple cloning site 

min  minute 

MOI multiplicity of infection 

Nbk/Bik Natural born killer/Bcl-2-interacting killer 

NGF  nerve growth factor 

nt  nucleotide 

OD  optical density 

ORF  open reading frame 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PERK  pancreatic ER kinase-like ER kinase 

pH  potential of hydrogen (potentia Hydrogenii) 

Puma  p53 upregulated modulator of apoptosis 

Q-VD-OPh Quinolyl-Valyl-O-methylaspartyl-(2,6-difluorophenoxy)-methyl ketone 

RNA  ribonucleinacid 

rpm  rounds per minute 

RT  room temperature 

S1/2P  site-1/2 protease 

SDS  sodiumdodecylsulfat 

sec  second 

SMAC  second mitochondria-derived activator of caspase 

SPIKE small protein with inherit killing effects 

tBid  truncated Bid 

TEMED N,N,N',N'-Tetramethylethylendiamin 

TNF  tumour necrosis factor 

TRADD TNF-receptor associated death domain 

TRAF2 TNF-receptor associated factor 2 

TRAIL TNF related apoptosis inducing ligand 

tTA  tetracycline-responsive transcriptional activator 

U  unit 
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UPR  unfolded protein response 

V  Volt 

v/v  volume/volume 

Vol.  volume 

W  Watt 

w/v  weight/volumen 

w/w  weight/weight 

wt  wildtype 
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7.2 Bcl-2 modifying factor (Bmf) promoter region 

 

Figure 28. Promoter region of bmf. (a) Putative binding sites with corresponding ChIP PCR fragments (RE1 to 
RE5 and nonspecific; NS). BMF mRNA and exons (ENSG00000104081) in bigger boxes, coding region in 
black. (b) Promoter sequence from -1500 to +660 respective to transcription start site +1. Primer indicated as 
arrows above and below sequence. Putative CHOP and ATF4 binding sites in green and pink, respectively. Exons 
indicated with grey background. CTG start site and coding region starting in exon 2 in black letters. 
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