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Kurzzusammenfassung

Diese Arbeit befasst sich mit Differential-algebraischen Gleichungen (DAEs). DAEs spie-
len eine wichtige Rolle in der Modellierung, der Simulation und der Optimierung von
Netzwerken und gekoppelten Problemen in vielen Anwendungsgebieten. In dieser Arbeit
sind die gekoppelten Probleme aus der elektrischen Schaltungssimulation die zentrale An-
wendung. Es werden in Bezug auf die Modellierung und die numerische Simulation von
DAEs bereits bestehende Ergebnisse diskutiert und erweitert. Des Weiteren wird die glo-
bale eindeutige Lösbarkeit und die Sensitivität der Lösungen mit Hinsicht auf Störungen
der DAEs untersucht.
Häufig wird die Modellierung von multiphysikalischen Anwendungen durch die Kopplung
mehrerer einzelner DAE Systeme realisiert. Diese Herangehensweise kann hochdimensio-
nale DAEs erzeugen, welche aufgrund von Instabilitäten nicht von klassischen numerischen
Methoden, wie den BDF-Methoden, simuliert werden können. Angesichts dieser Heraus-
forderungen werden drei Ziele formuliert: Erstens wird ein globales Lösungs-theorem for-
muliert und bewiesen, welches auf gekoppelte Systeme angewandt werden kann, um deren
Kopplungsansatz mathematisch zu rechtfertigen. Zweitens werden numerische Methoden
vorgestellt, welche unter wesentlich schwächeren Strukturannahmen stabil sind und sich
daher für die Simulation von gekoppelten Systemen eignen. Drittens wird eine Strate-
gie präsentiert, die es ermöglicht, explizite Methoden auf gekoppelte Systeme aus der
Schaltungssimulation anzuwenden.
Eines der wichtigsten Werkzeuge, um diese Ziele zu erreichen sind die Indexkonzepte für
DAEs. Zwei der bekanntesten Indexkonzepte sind der Tractability Index und der Stran-
geness Index. Beide können als Entkopplungsverfahren verstanden werden. Hier wird
ein neues Indexkonzept vorgestellt, welches im Folgenden als der Dissection Index be-
zeichnet wird. Die Definition eines neuen Indexkonzepts wirft unweigerlich die Frage auf:
Warum braucht man ein weiteres Indexkonzept? Um die oben gestellten Ziele zu errei-
chen, braucht man ein Entkopplungsverfahren, welches die folgenden drei Eigenschaften
erfüllt: Die Komplexität des Entkopplungsverfahrens sollte nicht die Komplexität der
DAE überschreiten. Das Entkopplungsverfahren sollte Eigenschaften wie Symmetrie, Mo-
notonie und positive Definitheit erhalten. Das Entkopplungsverfahren sollte durch einen
Schritt-für-Schritt Ansatz mit unabhängigen Schritten realisiert werden. Sowohl das Kon-
zept des Tractability Index als auch das des Strangeness Index liefert kein solches Ent-
kopplungsverfahren. Der Dissection Index hingegen kann ein solches erzeugen, wie in
dieser Arbeit zu sehen sein wird. Alle theoretischen Ergebnisse dieser Arbeit werden auf
gekoppelte Probleme aus der Schaltungssimulation angewandt.





Abstract

This thesis addresses differential-algebraic equations (DAEs). They play an important
role in the modeling, simulation and optimization of networks and coupled problems in
various applications. The main application in this thesis are coupled problems in electric
circuit simulation.
We discuss and extend existing results regarding the modeling and numerical simulation
of DAEs. Furthermore, we investigate the global unique solvability and the sensitivity of
solutions with respect to perturbations of DAEs.
Nowadays the modeling of multi-physical applications is often realized by coupling sys-
tems of DAEs together with the help of additional coupling terms. This approach may
yield high dimensional DAEs which cannot be simulated, due to instabilities, by standard
numerical methods. Regarding these challenges we formulate three objectives: First we
provide a global solvability theorem which can be applied to coupled systems to mathe-
matically justify their coupling approach. Second we introduce numerical methods which
are stable without needing any structural assumptions. Third we provide a way to apply
explicit methods to coupled systems to be able to handle the size of the coupled systems
by parallelizing the algorithms.
One of the most important tools to achieve these objectives are the index concepts for
differential-algebraic equations. Two of the most popular index concepts are the Tractabil-
ity Index and the Strangeness Index. They both provide a decoupling procedure. Here we
introduce a new index concept which we will call the Dissection Index. The definition of
a new index concept inevitably invokes the following question: Why do we need another
index concept?
To achieve the objectives stated above, we need a decoupling procedure which fulfills the
following three properties: The complexity of the decoupling procedure has to reflect the
complexity of the DAE, i.e. the decoupling procedure should be state-independent if pos-
sible. The decoupling procedure should preserve properties like symmetry, monotonicity
and positive definiteness. The decoupling procedure should be realized by a step-by-step
approach with independent stages.
Both the Tractability Index concept and the Strangeness Index concept do not provide
such a decoupling procedure. Whereas the Dissection Index does, as we will see in this
thesis.
The theoretical results in this thesis will be applied to coupled problems in the electric
circuit simulation.
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1 Introduction

This thesis addresses differential-algebraic equations (DAEs). They play an important
role in the modeling, simulation and optimization of networks and coupled problems in
various applications, e.g. integrated circuit design, hydraulic engineering, mechanical en-
gineering and medicine. Often, the model equations lead to a partial differential-algebraic
equation system (PDAE) meaning a mix of ordinary differential equations, partial dif-
ferential equations and algebraic constraints. We focus our investigations on general
differential-algebraic equations resulting from a spatial discretization of such PDAEs. We
discuss and extend existing results regarding the modeling and numerical simulation of
DAEs. Furthermore, we investigate the global unique solvability and the sensitivity of
solutions with respect to perturbations of DAEs.

Nowadays the modeling of multi-physical applications is often realized by coupling systems
of DAEs together with the help of additional coupling terms. This approach may yield
high dimensional DAEs which cannot be simulated, due to instabilities, by standard
numerical methods. In particular we will

1. provide a global solvability theorem which can be applied to coupled systems to
mathematically justify their coupling approach.

2. provide numerical methods which are stable under almost no structural assumptions.

3. provide a way to apply explicit methods to coupled systems to be able to handle
the size of the coupled systems by parallelizing the algorithms.

One of the most important tools to achieve these objectives are the index concepts for
differential-algebraic equations. There are already many different index concepts avail-
able. The Differentiation Index is probably the best known index, since its concept is rel-
atively demonstrative. It was introduced by Petzold and Campbell, see [Cam87, BCP96].
The Perturbation Index measures the degree of the influence of the derivatives of per-
turbation to the solution of a DAE. It was initially defined in [HLR89]. Two of the
most popular index concepts are the Tractability Index [GM86, Mär02, LMT13] and the
Strangeness Index [KM06]. They both provide a decoupling procedure. All of these index
concepts have their own advantages and disadvantages. Here we introduce a new index
concept which we will call the Dissection Index. The definition of a new index concept
inevitably invokes the following question: Why do we need another index concept?

1



To achieve the objectives stated above, we need a decoupling procedure which fulfills the
following properties:

1. The complexity of the decoupling procedure has to reflect the complexity of the
DAE, i.e. the decoupling procedure should be state-independent if possible.

2. The decoupling procedure should preserve properties like symmetry, monotonicity
and positive definiteness.

3. The decoupling procedure should be realized by a step-by-step analysis with inde-
pendent stages.

Both the Tractability Index concept and the Strangeness Index concept do not provide
such a decoupling procedure. Whereas the Dissection Index does, as we will see in this
thesis.
The Dissection Index can be interpreted as a mix of the Tractability Index and the
Strangeness Index. The index arises as we use the linearization concept of the Tractability
Index and the decoupling procedure of the Strangeness Index. The Strangeness Index uses
basis functions for its decoupling procedure while the Tractability Index uses projectors
for this purpose. The advantage of projector functions is that they need less assumptions
regarding the domain to be differentiable. Nevertheless, we favor basis functions since
they preserve the original size of the equations while splitting them.

This thesis is structured as follows. After presenting well-known results and facts of
differential-algebraic equations, we introduce the concepts of the Strangeness Index and
the Tractability Index. Before we define our new index concept, we present and model
the application classes which will be discussed in this thesis. These classes are electrical
circuits including semiconductor devices, memristors and electromagnetic devices and
mechanical multibody systems.

After introducing our new index concept and proving that it is well defined, we will analyze
the sensitivity to perturbations of differential-algebraic equations. In contrast to ordinary
differential equations, which can be interpreted as integral problems, differential-algebraic
equations may contain differentiation problems. The appearance of these differentiation
problems leads to an ill-posed problem, in the sense of Hadamard, if we consider per-
turbed input data, see [LRS86]. Even very small perturbations can have arbitrarily large
derivatives and therefore small perturbations may have a huge influence on the solution
of a differential-algebraic equation. Hence it is necessary to analyze the sensitivity to
perturbations of DAEs.

In case of the perturbation analysis and also for the convergence theory it is necessary to
assume that the unperturbed DAE has a global unique solution. Furthermore, we need to
prove the global unique solvability of our considered coupled systems to mathematically

2



1 Introduction

justify their coupling approach. We will provide sufficient criteria for the global unique
solvability of differential-algebraic equations with an arbitrary index. To do so we need
insight of the structure of the differential-algebraic equation to apply the established
solvability theories of ordinary differential equations and algebraic equations. To obtain
this needed insight we make use of the Dissection Index concept.

The remaining two chapters deal with challenges of the applicability, the stability and
the convergence of numerical methods. It is known that standard ODE methods like the
implicit Euler methods, the BDF methods or the Radau IIA methods may loose their
convergence if applied to DAEs, cf. [GP83, LMT13]. These standard ODE methods have
a basic flaw: They do not reflect the product rule properly. This is not a problem as long
as these methods are applied to ODEs. When we consider a DAE it may happen that the
kernels, which describe the inner structure of a DAE, are not constant. If these kernels
are also involved in a differentiation problem then hidden differentiations of products of
functions might occur which leads to the instability of these standard ODE methods. We
will introduce a class of methods which reflects the product rule properly and thereby
overcomes these instability problems. In particular this will make the reformulation of
the DAE superfluous.

In the last chapter we investigate half-explicit methods applied to DAEs. Since it is no
longer possible to accelerate CPUs like it has been in the past, parallelizing algorithms
becomes more and more important. Because they can be paralellized very efficiently,
explicit methods are being focused on even more so nowadays. Hence explicit methods
are focus even more nowadays because they can be paralellized very efficiently. Half-
explicit methods for DAEs are often defined for semi-explicit DAEs and therefore they
are rarely used in circuit simulation in contrast to mechanical applications. We introduce
a new class of half-explicit multistep methods and prove their convergence.

The main application in this thesis will be the electric circuit simulation. Electrical
circuits are of great importance for industrial research and therefore a mathematical un-
derstanding is needed. There already exist many works about DAE related questions
regarding circuits, in particular about index analysis [Tis99, RT11] and local uniqueness
and solvability [HM04, Bau12]. Besides standard elements like inductors, resistors, capac-
itors and source elements, electrical circuits can also contain more complex elements like
semiconductor devices, memristors and electromagnetic devices. For instance, semicon-
ductor devices and electromagnetic devices are described by a set of partial differential
equations, hence they involve new questions and challenges to the analysis of electri-
cal circuits. Previous research about semiconductor devices can be found in [SBST14,
Gaj93, Gaj94, Tis03, ABG04, ST05, Sot06, Bod07, BST10], these devices are widely used
in circuits because of their application as transistors. In [Chu11, Ria11, RT11, Bau12]
memristors are investigated while we find previous research about electromagnetic devices
in [HM76, KMST93, Wei77, Bau12, BBS11, Sch11].

3



In this thesis we will

1. apply our perturbation analysis to the circuit applications.

2. prove the global unique solvability of the coupled circuit model.

3. provide a topological decoupling into a semi-explicit DAE for the circuit applica-
tions which has low computational costs and preserves the symmetry and positive
definiteness of the circuit model.

4. apply our class of half-explicit methods to circuit applications.

4



2 An Introduction to
Differential-Algebraic Equations

This chapter presents well-known results and facts for Differential-Algebraic Equations
(DAEs) and lays the foundations for the following chapters.
The first part of the chapter is a general introduction to differential-algebraic equations.
It presents challenges and problems of this field with the help of small examples. This
includes classical problems like the appearance of differentiation problems or the drift-off
phenomenon.
Furthermore the concepts of the Differentiation Index [Cam87, BCP96], the Strangeness
Index [KM06] and the Tractability Index [GM86, Mär02, LMT13] are introduced and
discussed. These three concepts are well established analysis tools for DAEs. Their
respective advantages and disadvantages will be pointed out.

2.1 Explicit ODEs vs. DAEs

Differential-algebraic equations as well as explicit Ordinary Differential Equations(ODEs)
can be understood as implicit ODEs. The following definitions follow the understanding
of the relations between explicit ODEs, DAEs and implicit ODEs of [LMT13].

Definition 2.1. (Implicit ODE)
Let I Ă R and Dx,Dx1 Ă R

n be open subsets. We consider the following equation

F px1ptq, xptq, tq “ 0 (2.1)

with a continuous function F P CpDx1 ˆDx ˆ I,Rnq. Furthermore let F have continuous
partial derivatives B

Bx1F px1, x, tq and B
BxF px1, x, tq. We call (2.1) an implicit ODE. If

B
Bx1F px1, x, tq is non-singular for all triples px1, x, tq P Dx1 ˆDx ˆI, we call (2.1) a regular
implicit ODE.

In particular explicit ODEs are regular implicit ODEs.

Definition 2.2. (Explicit ODE)
Let I Ă R and D Ă R

n be open subsets with t0 P I and let f P CpD ˆ I,Rnq be
continuous. We call

x1ptq “ fpxptq, tq, xpt0q “ x0 (2.2)
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an explicit ODE with an initial condition. Let I‹ :“ rt0, T s Ă I. We call x‹ P C1pI‹,Rnq
a solution of (2.2) on I‹ if the initial conditions are fulfilled, i.e. x‹pt0q “ x0, and

x1
‹ptq “ fpx‹ptq, tq @t P I‹.

In contrast to explicit ODEs, DAEs are implicit ODEs, which are not regular.

Definition 2.3. (DAE in standard form)

Let I Ă R and Dx,Dx1 Ă R
n be open with t0 P I. Let F P CpDx1 ˆ Dx ˆ I,Rnq be

continuous such that the partial derivatives B
Bx1F px1, x, tq and B

BxF px1, x, tq are continuous
with B

Bx1F px1, x, tq being singular for all triples px1, x, tq P Dx1 ˆ Dx ˆ I. We call

F px1ptq, xptq, tq “ 0, xpt0q “ x0 (2.3)

a DAE in standard form with initial conditions.We call x‹ P C1pI‹,Rnq a solution of (2.3)
on I‹ :“ rt0, T s Ă I if the initial conditions are fulfilled, i.e. x‹pt0q “ x0, and

F px1
‹ptq, x‹ptq, tq “ 0 @t P I‹.

We also introduce the following subclass of DAEs.

Definition 2.4. (Semi-explicit DAE)

Let I Ă R and Dx Ă R
nx and Dy Ă R

ny be open subsets. We consider the following set
of equations

x1 “ fpx, y, tq (2.4a)

0 “ gpx, y, tq (2.4b)

with f P CpDx ˆ Dy ˆ I,Rnxq and g P CpDx ˆ Dy ˆ I,Rnyq. Further, let the partial
derivatives of f and g, with respect to x and y, be continuous. We call (2.4) a semi-
explicit DAE.

In the case of a semi-explicit DAE only the derivatives of x appear in the equations.
Therefore we call x the dynamical variables, while we call y the algebraic variables.
Analogously we call the equations (2.4a) the dynamical equations and (2.4b) the algebraic
equations of the semi-explicit DAE (2.4). Hence (2.4) is a special case of a DAE in the
sense that it is an implicit ODE which is not regular.

In the following we present differences between explicit ODEs and DAEs with the help of
a sequence of small examples.
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2 An Introduction to Differential-Algebraic Equations

Solvability for Arbitrary Initial Values

There are well-known solvability results for explicit ODEs which provide criteria for the
solvability with respect to an arbitrary initial value x0 at a time point t0. Peano’s theorem
states that there is a T ą t0 such that there is at least one solution for every initial
condition of the ODE on rt0, T s if f is continuous, cf. [Aul04]. We say the ODE is locally
solvable, since the solution interval rt0, T s can be arbitrarily small. If the function f
is locally Lipschitz continuous in x, this local solution becomes unique by the Picard-
Lindelöf theorem, cf. [Aul04]. If f is even globally Lipschitz continuous in x, then for
every initial condition and for every time interval rt0, T s with T ą t0 there is a unique
solution of the ODE on the whole time interval rt0, T s, cf. [GJ09].
It is not possible to formulate such results for arbitrary initial conditions in the DAE case.
We consider the following DAE as a counter example.

Example 2.5. Let I :“ rt0, T s Ă R be a compact time interval and let t P I. Assume
f : I Ñ R to be continuous.

x1 “ y (2.5a)

y “ fptq (2.5b)

This DAE consists of one differential equation (2.5a) and one algebraic equation (2.5b).
In contrast to the solvability of explicit ODEs for arbitrary initial conditions, see Peano’s
theorem and the Picard-Lindelöf theorem, the DAE (2.5) is only solvable for initial values
satisfying ypt0q “ fpt0q.

Differentiation Problem

We can write an explicit ODE (2.2) in integral notation

xptq “ x0 `
ż t

t0

fpxpsq, sqds

such that we deal with an integration problem. Hence, it is possible to notate an explicit
ODE (2.2) without derivatives. This is no longer the case for DAEs, in general. If we
change the algebraic equation in Example 2.5 by setting x equal to f instead of y, we get
a very similar looking DAE, which has a totally different solution structure.

Example 2.6. Let I :“ rt0, T s Ă R be a compact time interval and let t P I. Let
f : I Ñ R be continuously differentiable.

x1 “ y

x “ fptq

7



This time the dynamical variable x is fixed algebraically. In fact all solution components
are algebraically fixed, since xptq “ fptq and yptq “ x1ptq “ f 1ptq. We cannot choose any
initial value freely. Additionally, y depends on the derivative of the right hand side fptq.
So we are dealing with a differentiation problem instead of an integration problem. As
an obvious analytic consequence, the right hand side fptq must be sufficiently smooth, as
already mentioned in the example.
It is possible to create a differentiation problem of second order if we add one more
differentiation to the equations of Example 2.6.

Example 2.7. Let I :“ rt0, T s Ă R be a compact time interval and let t P I. Let
f : I Ñ R be twice continuously differentiable.

x1
2 “ y

x1
1 “ x2

x1 “ fptq

This set of equations is solved by x1 “ fptq, x2 “ f 1ptq and y “ f 2ptq. Hence, the solution
of y is the second derivative of f .
The appearance of differentiation problems within DAEs motivates a classification for
DAEs which counts the order of the involved differentiation problem. This kind of clas-
sification is called the index of a DAE. There are several different index concepts, put
simply they are all intended for counting the order of the involved differentiation prob-
lem. These index concepts are the most important tools of DAE analysis. We give an
introduction of some of the most popular index concepts in the Sections 2.2, 2.3 and 2.4.

Numerical Approximation of the Difference Quotient

The differentiation problems in DAEs induce smoothness assumptions regarding the right
hand side f . Additionally, there are numerical problems created by the differentiation
problems. If we discretize Example 2.6 by the implicit Euler method and a time step size
h, we obtain

xn ´ xn´1

h
“ yn

xn “ fptnq,
with xn and yn being the numerical approximations of xptnq and yptnq, respectively. It
follows directly that yn is given by the difference quotient of fptq at tn,

yn “ fptnq ´ fptn ´ hq
h

.

8



2 An Introduction to Differential-Algebraic Equations

The difference quotient of a differentiable function fptq at a time point tn converges to
its derivative at the same time point f 1ptnq, i.e.

lim
hÑ0

fptnq ´ fptn ´ hq
h

“ f 1ptnq.

But this convergence may fail if the difference quotient is computed on a machine with
finite precision arithmetic. Numerically calculated values are only as accurate as the
rounding accuracy of the used computer system. We call the rounding error δ. The
rounding error can be seen as a random number in r´10´16, 10´16s if one uses the double
precision floating-point format. This phenomenon is called the loss of significance.
To visualize this problem let fptq “ sinptq and let δn be the rounding error of sinptnq.
Then we actually calculate

yn “ sinptnq ` δn ´ sinptn´1q ´ δn´1

h

“ sinptnq ´ sinptn´1q
h

` δn ´ δn´1

h

Therefore the numerical solution yn will not converge against cosptnq for h Ñ 0, since
the rounding error δn´1 does not converge against δn. In Figure 2.1 we see the numerical
error en :“ |yn ´ cosptnq| at tn “ 1 for different time step sizes h.

Figure 2.1: Numerical error of the difference quotient.

This basic flaw of the difference quotient is one of the main problems in the numerical
treatment of DAEs. This fact is well-known since differentiation is an ill-posed problem,
in the sense of Hadamard, if it is connected with perturbed input data, see [LRS86].
Hence, small time step sizes no longer yield small errors, in general. This problem can
get even worse if we consider Example 2.7. Applying the implicit Euler method again we

9



achieve

yn “ fptnq ´ 2fptn´1q ` fptn´2q
h2

,

with a constant time step size h. This confronts us with a harder version of the problem
of Example 2.6, since the rounding error will be multiplied by 1

h2 .

Figure 2.2: Numerical error of the difference quotient of the second derivative.

We choose again fptq “ sinptq and tn “ 1. Figure 2.2 describes the relation between the
time step size and the accuracy of yn reflecting the second derivative of f . As soon as
the step size h drops below 10´8 it may happen that fptnq ´ 2fptn´1q ` fptn´2q becomes
smaller than 10´16 which then will be presented by a subnormal number. This explains
the behavior of the error for time step sizes smaller than 10´8. Summarizing, this means
that a high order of the differentiation problem may lead to difficulties during the solving
of the DAE.

Mixed Variables

In all the previous examples it is obvious which of the variables have to be differentiable
and which are directly algebraically fixed. This does not have to be the case in general
and also not in most applications. We consider the following example.

Example 2.8. Let be I :“ r´1, 1s and t P I.

pz0 ´ z1q1 “ z0 ` z1 (2.6a)

z0 ` z1 “ 4|t|. (2.6b)

10



2 An Introduction to Differential-Algebraic Equations

The general solution of this problem is given by z0ptq “ p2`tq|t|`c and z1ptq “ p2´tq|t|´c
for some c P R. The initial value of either z0 or z1 can be chosen, but not both at the same
time. So which of the solution components is algebraically fixed? They are both not fixed
but the combination pz0`z1qptq is fixed, as we can see in the second equation (2.6b). This
example shows also an important smoothness property of DAEs. In the examples 2.6 and
2.7 it was shown that the right hand side can underlie smoothness requirements. Now we
see that smoothness properties of the variables are not trivial either. In Example 2.8 non
of the solution components for themselves are even differentiable once. But there appears
a derivative of a combination of the variables in the equations and this combination
pz0 ´ z1qptq “ 2t|t| ` 2c is in fact continuously differentiable. Motivated by the class of
semi-explicit DAEs (2.4) we call the parts of the variables, whose derivatives appear in
the equations, dynamic. The remaining parts of the variables are called algebraic. Notice
that these parts must not necessarily be a set of notated variables, but they can also be
combinations of the variables.
As an application example for mixed variables consider the mathematical pendulum, cf.
[Ste06]. This is one of the most basic DAE examples in mechanical applications.

Example 2.9. Let I :“ r0, 2 ¨ 10´6s be the time interval.

p1
1 “ v1

p1
2 “ v2

mv1
1 “ ´2p1λ

mv1
2 “ ´2p2λ ´ mg

0 “ p21 ` p22 ´ L2

with m ą 0 being the mass of the object, g being the gravity of earth and L being the
length of the pendulum.

pp1ptq, p2ptqq

p0, 0q

m

L
g

Figure 2.3: Mechanical example: mathematical pendulum

11



This DAE is interesting, in a mathematical point of view, because of its last equation.
Obviously it is the only algebraic equation, since m ą 0. Now the question is: Which
parts of p1 and p2 are algebraically fixed? In fact the fixed combination of p1 and p2
depends on the current states of p1 and p2 themselves. Analyzing DAEs theoretically
becomes much harder, if such state depending combinations show up.

Consistent Initial Values

The next two examples show what may happen during a simulation if the initial values
are chosen randomly.

Example 2.10. Let I :“ r0, 1s and let t P I.

x1
2 “ y

x1
1 “ ey ´ 1

x1 “ ´1

The exact solution of this example is given by x1ptq “ ´1, x2ptq “ x0
2 P R, yptq “ 0. We

assume that we do not know the exact solution but we have to choose initial values. We
observe what happens if we choose x0

1 “ 0, x0
2 “ 0, y0 “ 0 and discretize the example by

the implicit Euler scheme. First we get the discretized system for the first time step

x2,1 ´ x2,0

h
“ y1

x1,1 ´ x1,0

h
“ ey1 ´ 1

x1,1 “ ´1.

We obtain, after reorganizing the equations,

x2,1 “ hy1 (2.7a)

y1 “ lnp1 ´ 1

h
q (2.7b)

x1,1 “ ´1 (2.7c)

if we then insert the chosen initial values. Since the time step size h is larger than zero
it has to be larger than one because equation (2.7b) is not solvable for 0 ă h ď 1. But if
we have to choose h ą 1 we cannot solve the example since the solution interval is given
by I :“ r0, 1s.
When at least one solution passes through an initial value, we call the initial value consis-
tent, cf. [LMT13]. The initial values in Example 2.10 are inconsistent, since no solution
passes through a point with x1 being zero. As in Example 2.8, the selection of the initial

12



2 An Introduction to Differential-Algebraic Equations

values becomes a non trivial topic in practice. Dealing with an explicit ODE we can just
choose initial values for all solution components, but when we deal with DAEs this is no
longer the case. It can be very difficult to find any initial value due to the size of the
DAEs which appear in practice.
Not only the size of a system can be a problem when we want to calculate consistent
initial values. It can also be unclear which are the conditions we have to fulfill to obtain
consistent initial values. In Example 2.5 the only condition is the algebraic equation
(2.5b). If we choose initial values which fulfill this algebraic equation, we already get
consistent initial values for this example. Conditions arising from algebraic equations
are called obvious constraints. In Example 2.6 it is not enough to fulfill the obvious
constraints. Here the first equation imposes an additional condition on the initial values,
because of the differentiation problem. Conditions arising from dynamical equations are
called hidden constraints.
In the previous example the implicit Euler failed to calculate any numerical solution of
the DAE due to the choice of the initial values. In the next example inconsistent initial
values are chosen again but this time the implicit Euler provides a numerical solution.

Example 2.11. Let I :“ r0, 1s and let t P I.
x1
2 “ y

x1
1 “ y

x1 “ 1

The exact solution of this example is given by x1ptq “ 1, x2ptq “ x0
2 P R, yptq “ 0. We

observe again what happens if we choose x0
1 “ 0, x0

2 “ c P R, y0 “ 0 and discretize the
example with the implicit Euler scheme. With the first Euler step we obtain

x2,1 “ c ` hy1

y1 “ 1

h
x1,1 “ 1.

While for a general n ě 1 we get

x2,n ´ x2,n´1

h
“ yn

x1,n ´ x1,n´1

h
“ yn

x1,n “ 1

which leads to

x2,n “ x2,n´1 “ c ` 1

13



yn “ 0

x1,n “ 1

for n ě 2. In this case the Euler indeed calculates a numerical solution but this solution
does not converge against the exact solution in the x2 component regarding the initial
value. The inconsistent choice of the initial values altered the trajectory of the x2 com-
ponent independently of h. Therefore Example 2.11 is even more vicious than Example
2.10 because this time the problem is not obvious.

Explicit Methods

Another challenge in the field of DAE numerics is the usage of explicit methods, cf.
[ASW93, BH93, Arn98, Mur97, Ost93]. Even in Example 2.5 an explicit method cannot
be used without extra efforts. Using the explicit Euler scheme we obtain

xn ´ xn´1

h
“ yn´1

yn´1 “ fptn´1q.
Since yn does not appear in these equations, obviously it is not possible to solve these
equations with respect to xn and yn. Of course, in this case we could just discretize the
differential equation explicitly while we treat the algebraic one implicitly, i.e. we evaluate
it in tn, and obtain

xn ´ xn´1

h
“ yn´1

yn “ fptnq.
But this approach does not work for Example 2.6. Even if we evaluate the algebraic
equation in tn, the variable yn still does not appear in the equations.

xn ´ xn´1

h
“ yn´1

xn “ fptnq.

Variable Time Step Size

Not only explicit methods are more difficult to use, also non constant time step size
becomes harder to apply, cf. [LMT13]. If we consider Example 2.7 we are dealing with a
second order differentiation problem. The problem is that even analytically the difference
quotient for the second derivative converges only for a constant time step size regardless of
the rounding error. So if there is at least a second order differentiation problem involved

14



2 An Introduction to Differential-Algebraic Equations

in a DAE the usage of numerical solvers with a variable time step size is not trivial. We
apply the implicit Euler method on the equation of Example 2.7

x1
2 “ y

x1
1 “ x2

x1 “ fptq
and obtain the time discretized version

x2,n ´ x2,n´1

hn

“ yn

x1,n ´ x1,n´1

hn

“ x2,n

x1,n “ fptnq.
After reorganization we achieve an explicit description for the numerical solution

x1,n “ fptnq
x2,n “ fptnq ´ fptn´1q

hn

yn “
fptnq´fptn´1q

hn
´ fptn´1q´fptn´2q

hn´1

hn

.

We define h “ maxphn´1, hnq, then there is a c ą 0 such that we can write

yn “ hn ` hn´1

2hn

f 2ptnq ` Ophq

with the help of a Taylor series as long as hn

hn´1
ď c and hn´1

hn
ď c. That directly tells us

that the difference

yptnq ´ yn “ hn ´ hn´1

2hn

f 2ptnq ` Ophq

will converge against zero for any function f P C2pR,Rq if and only if hn “ hn´1.

Convergence Problems for Classical ODE Methods

Next we consider an example from [GP83] in standard formulation.

Example 2.12. Let I :“ r0, 3s and let t P I.
x1
1 ` ηtx1

2 “ ´p1 ` ηqx2

x1 ` ηtx2 “ e´t

15



The main difference to the previous example is the time dependency of the coefficients.
This example is of huge numerical significance because the implicit Euler fails to solve it
if we choose η ă ´1

2
. This holds even if we use a constant step size and choose consistent

initial values.

Figure 2.4: Numerical and exact solutions of the η-DAE with η “ ´0.55 using the implicit Euler.

Hence we can no longer rely on classical methods like the implicit Euler in general. An
other alarming behavior of the η-DAE is, that for η ě ´1

2
the example is very easy to

solve with the implicit Euler. This shows that the numerical complexity may depend on
parameters like η.

Asymptotic Instability

The next example is an electric circuit, which is called the Miller Integrator, cf. [MG05,
Pul12]. The corresponding equations are given by:

Example 2.13. Let I :“ r0, 2 ¨ 10´6s and let t P I.

Gpe1 ´ e2q ` j1v “ 0

pC1 ` C2qe1
2 ´ C2e

1
3 ´ Gpe1 ´ e2q “ 0

C2pe3 ´ e2q1 ` j2v “ 0

e1 “ uinptq
e3 ´ 2e2 “ 0,

16
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where the ei are the electrical potentials at the nodes and the jiv are the currents over the
voltage source and the operational amplifier. Further uinptq is the voltage of the voltage
source which we set to uinptq “ sinp2π106tq.

uinptq

j1v

G

C1

C2

´

`

j2v

e1 e2 e3

We transform and factorize the equations of Example 2.13 to determine the order of the
differentiation problem in the example.

j1v “ Gpe2 ´ uinptqq (2.8a)

e1 “ uinptq (2.8b)

e3 ´ 2e2 “ 0 (2.8c)

´C1

G
pe3 ´ 2e2q1 ` C2 ´ C1

GC2

j2v ` e2 “ uinptq (2.8d)

C2pe3 ´ 2e2q1 ` C2e
1
2 ` j2v “ 0, (2.8e)

Equation (2.8d) yields a description of j2v depending on the first derivative of e3 ´ 2e2

j2v “ GC2

C2 ´ C1

puinptq ´ e2 ` C1

G
pe3 ´ 2e2q1q

if C2 ‰ C1. But for C2 “ C1 we obtain

e2 “ uinptq ` C1

G
pe3 ´ 2e2q1

C2pe3 ´ 2e2q1 ` C2e
1
2 ` j2v “ 0,

which yields

j2v “ ´C2pe3 ´ 2e2q1 ´ C2pu1
inptq ` C1

G
pe3 ´ 2e2q2q.
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Therefore this problem contains a second order differentiation problem for C2 “ C1.
But for every other case, i.e. C2 ‰ C1, it contains a first order differentiation problem.
We choose G “ 1

1kΩ
and C1 “ 0.01μF , then only for C2 “ 0.01μF there is an order two

differentiation problem within these equations. If we change C2 slightly to C2 “ 0.0105μF ,
there is an order one differentiation problem in the equations. We see that the lower
order differentiation problem gives us much more trouble if we solve this circuit for the
two different sets of parameters, see Figure 2.5.
While the second order differentiation problem gives us a stable solution, even for rela-
tively large time step sizes, the first order differentiation problem always drifts off regard-
less of how small we choose the time step size.

Figure 2.5: Numerical stability issues of the the Miller Integrator

To understand this behavior we examine the equations, which describe the potential e2
for the different parameter sets. For C2 “ C1 it holds

e2 “ uinptq
while we obtain

e1
2 “ G

C2 ´ C1

e2 ´ G

C2 ´ C1

uinptq (2.9)

for C2 ‰ C1. The solutions of the homogeneous version of (2.9) are

e2,hptq “ ce
G

C2´C1
t

18



2 An Introduction to Differential-Algebraic Equations

with c depending on the initial condition. For C2 slightly larger than C1 the function
e2,hptq grows extremely fast. This instability in the homogeneous solutions is the reason
for the drift off in Example 2.13.

The same problem can occur if we switch an algebraic equation with its derivative. We
consider the following equation

eλtx “ epλ´1qt (2.10)

Its solution is given by

xptq “ e´t

and if we solve this numerically with λ “ ´15 in I “ r0, 2s we obtain a numerical solution
which is similar to the exact solution.

If we want to express the same problem with a dynamical equation instead of an algebraic
one, we differentiate (2.10) and obtain:

λeλtx ` eλtx1 “ pλ ´ 1qepλ´1qt (2.11)

or even more simple x1 “ ´λx ` pλ ´ 1qe´t. This ODE is solved by xptq “ e´t ` ce´λt

depending on the initial value x0 at t0 “ 0.

Figure 2.6: Solution trajectories of the dynamical equation

If we choose x0 “ 1, then the ODE (2.11) is solved by x‹ptq “ e´t just like the algebraic
equation. For λ “ ´15 and I “ r0, 2s we obtain an unstable solution again.
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Figure 2.7: Stability behavior of the algebraic and the dynamical equation.

The reasons for this drift off phenomenon are again the unstable solution trajectories of
the ODE (2.11). If we solve (2.11) by the implicit Euler or any other numerical method,
we make a small error in every time step. In this particular case this small error is the
reason why the numerical solution leaves the stable solution trajectory. Once on this
unstable solution trajectory, the numerical solution grows unbounded.
As already mentioned, the differentiation problems involved in the DAEs motivate a clas-
sification. In the following we introduce three of the most popular classification concepts:
The Differentiation Index, the Strangeness Index and the Tractability Index.

2.2 Differentiation Index

In this section we introduce the Differentiation Index for nonlinear DAEs in standard form.
The Differentiation Index is probably the best known index, since its concept is relatively
demonstrative. It was introduced by Petzold and Campbell, see [Cam87, BCP96]. To
define the Differentiation Index we need the DAE (2.3) itself but also its derivatives. For
a compact notation we define the inflated system.

Definition 2.14. (Inflated system - [KM06], p.153)
Considering the DAE (2.3) we gather the original equation and its derivatives up to order
ν P N0 into an inflated system

Fνpxpν`1qptq, ..., x1ptq, xptq, tq “ 0, (2.12)

where Fν has the form

Fνpxν`1, ..., x1, x, tq “
»
—–

F px1, x, tq
B

Bx1F px1, x, tqx2 ` B
BxF px1, x, tqx1 ` B

BtF px1, x, tq
...

fi
ffifl

20



2 An Introduction to Differential-Algebraic Equations

and define the Jacobians

Gpx1, x, tq “ B
Bx1

F px1, x, tq

Bpx1, x, tq “ B
BxF px1, x, tq

Gνpxν`1, ..., x1, x, tq “ B
Bpx1, . . . , xν`1qFνpxpν`1q, ..., x1, x, tq

Bνpxν`1, ..., x1, x, tq “ B
BxFνpxν`1, ..., x1, x, tq.

Over the years the definition of the Differentiation Index has been slightly modified to
adjust from the linear to the nonlinear case [Cam87, CG95b, CG95a] and to deal with
slightly different smoothness assumptions. We concentrate only on the nonlinear case and
define the Differentiation Index with the help of the inflated system.

Definition 2.15. (Differentiation Index)
The DAE (2.3) has Differentiation Index μ, if and only if F P CμpDx1 ˆ Dx ˆ I,Rnq and
μ is the minimal number such that an explicit ODE x1 “ fpx, tq can be extracted from
Fμpxpμ`1q, ..., x1, x, tq “ 0 by algebraic manipulations only with f being continuous.

In a way the Differentiation Index measures the difference of a DAE to an explicit ODE
by counting the number of differentiations needed for the transformation to an explicit
ODE. Previously we talked about differentiation problems within a DAE. One could
also say that the Differentiation Index tries to count the order of these differentiation
problems. Lets take a look at a small example to get to know the inflated system and the
Differentiation Index.

Example 2.16.
For t P r0, 10s consider the DAE

px0 ` x1q1 “ x1

x0 ` x1 “ sinptq.
If we differentiate the system two times we get the inflated system

px0 ` x1q1 “ x1

x0 ` x1 “ sinptq
px0 ` x1q2 “ x1

1

px0 ` x1q1 “ cosptq
px0 ` x1q3 “ x2

1

px0 ` x1q2 “ ´sinptq.
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With these equations we achieve by algebraic manipulations

x1
0 “ x1 ` sinptq

x1
1 “ ´sinptq.

and therefore the DAE has at most Differentiation Index index 2. To guarantee that the
index is not smaller than 2, we would have to check that it is not possible to create an
explicit ODE with just one or none differentiation.

The major advantage of the Differentiation Index is its simple and demonstrative concept.
In return the Differentiation Index concept has two major drawbacks.
First it is hard to determine whether or not the used number of differentiations is the
minimal one to obtain an explicit ODE. Although it may be easy to calculate an upper
bound of the Differentiation Index, to assure that the used number of differentiations is
the minimal one we would have to check all smaller cases. This may become difficult and
time-consuming.
And secondly the Differentiation Index needs more smoothness than necessary as we see
in the next example.

Example 2.17.
For t P r´1, 1s consider the DAE

x1
0 ´ x1 “ 0

x0 ` x2 “ sinptq ` |t|
x2 “ |t|.

The Differentiation Index is at least one, since the derivatives of x1 and x2 do not appear
in the equations. So we need to differentiate the equations at least once, which is not
possible since |t| is only continuous.

2.3 Strangeness Index

In this section we introduce the concept of the Strangeness Index for nonlinear DAEs
in standard formulation. The Strangeness Index was first established by Kunkel and
Mehrmann, see [KM06]. The Strangeness Index can be considered as a generalization of
the Differentiation Index. It also uses the inflated system to analyze the structure of a
DAE. The following definition of the Strangeness Index seems to be more technical than
the definition of the Differentiation Index, but if we look closely they are strongly related.
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Definition 2.18. (Strangeness Index - [KM06], Hypothesis 4.2.)
Given a DAE as in (2.3) with F being a μ-times continuously differentiable function, the
smallest value of μ such that the following requirements are met, is called the Strangeness
Index of the DAE (2.3). There are integers a and d such that the set

Lμ “ tpxμ`1, . . . , x1, x, tq P R
pμ`2qn`1|Fμpxμ`1, . . . , x1, x, tq “ 0u

associated with F is non-empty and such that for every pxμ`1
0 , . . . , x1

0, x0, t0q P Lμ, there
exists a neighborhood in which the following properties hold:

1. We have rkGμpxμ`1, . . . , x1, x, tq “ pμ ` 1qn ´ a on Lμ, such that there exists
a smooth matrix function W of size pμ ` 1qn ˆ a with pointwise maximal rank,
satisfying WJGμ “ 0 on Lμ.

2. We have rkWJpxμ`1, . . . , x1, x, tqBμpxμ`1, . . . , x1, x, tq “ a, such that there exists a
smooth matrix function Q of size nˆd with d “ n´a and pointwise maximal rank,
satisfying WJBμQ “ 0 on Lμ.

3. We have rkGpx1, x, tqQpxμ`1, . . . , x1, x, tq “ d, such that there exists a smooth
matrix function V of size nˆd and pointwise maximal rank, satisfying rkV JGQ “ d
on Lμ.

One important application of the Strangeness Index is the field of multibody-systems or
mechanical systems. Because of the physical knowledge it is often known in advance that
only a part of the equations will be used in the inflated system. And these parts are
indeed as smooth as we need them to be. So for big application fields we could say that
the high smoothness requirements, i.e. F being μ-times continuously differentiable, are
only a technical problem, but a problem nevertheless.
The Strangeness Index does not aim for a transformation into an explicit ODE. It is
rather based on an approach to provide an implicit ODE for a part of the variables and a
set of algebraic equations for the rest of the variables. Therefore the Strangeness Index of
a DAE can be expected to be one lower than the Differentiation Index, if they are both
well defined. We want to make use of the concept of the Strangeness Index later and so
we need to amplify it a little more. For this purpose we consider a linear DAE in standard
form with constant coefficients and Strangeness Index μ. Such a DAE can be described
by

F px1ptq, xptq, tq “ Gx1ptq ` Bxptq ´ qptq
with matrices G, B and a time depending function q. The inflated system of such a linear
DAE inherits its linear form and can be written as

Gμ

`
x1ptq, ..., xpμ`1qptq˘J ` Bμxptq “ `

qptq, ..., qpμqptq˘J
:“ qμptq.
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Multiplying the transposed matrix function WJ of the first point of the definition of the
Strangeness Index from the left provides an algebraic equation

WJBμxptq “ WJqμptq. (2.13)

Since WJBμ has a kernel of the dimension d, which is described by the matrix function Q,
the equation (2.13) does not take care of all parts of the solution function x. Especially
the x parts that lie in the image of Q are not governed by (2.13). But in the third part of
the definition we get the last matrix function V such that the derivatives of the missing
parts of x can be found in

V JGx1ptq ` V JBxptq “ V Jqptq,
since rkV JGQ “ d.

Consider again Example 2.16 with t P r0, 10s and
px0 ` x1q1 “ x1

x0 ` x1 “ sinptq.
Example 2.16 has Differentiation Index 2 hence we expect it to have Strangeness Index
1. For ν “ 0 the Jacobians of the inflated system are given by

G0 “
ˆ
1 1
0 0

˙
, B0 “

ˆ
0 ´1
1 1

˙
.

This leads to the matrix functions

W “
ˆ
0
1

˙
, V “

ˆ
1
0

˙
and WJB0 “ `

1 1
˘

and therefore we get

Q “
ˆ

1
´1

˙
and V JG0Q “ `

0
˘
.

With rkV JG0Q “ 0 ‰ 1 “ n ´ rkWJB1 the DAE does not have Strangeness Index 0.
For ν “ 1 the Jacobians of the inflated system are given by

G1 “

¨
˚̋̊1 1 0 0
0 0 0 0
0 ´1 1 1
1 1 0 0

˛
‹‹‚, B1 “

¨
˚̋̊0 ´1
1 1
0 0
0 0

˛
‹‹‚.
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This leads to a matrix function

W “

¨
˚̋̊0 1
1 0
0 0
0 ´1

˛
‹‹‚ and WJB “

ˆ
1 1
0 ´1

˙

With WJB non-singular it follows directly that the DAE has Strangeness Index 1. The
Strangeness Index of Example 2.16 turns out as expected.
Again we need to prove that there is no smaller integer which fulfills the index conditions.
Furthermore the Strangeness Index requires that F is μ-times continuously differentiable.
Example 2.17 provides a problem again, because we cannot differentiate the equations.
If we try to calculate the matrix functions of the Strangeness Index for the equations

x1
0 ´ x1 “ 0

x0 ` x2 “ sinptq ` |t|
x2 “ |t|,

we obviously start with WJ “
ˆ
0 1 0
0 0 1

˙T

, which leaves us with the last two equations

of Example 2.17

x0 ` x2 “ sinptq ` |t|
x2 “ |t|.

We can choose QJ “ `
0 1 0

˘T
. By depicting Example 2.17 in standard form we get

B “
¨
˝1 0 0
0 0 0
0 0 0

˛
‚ and BQ “

¨
˝0
0
0

˛
‚

and therefore rkQ ą rkBQ. The third condition of the Strangeness Index is breached.
So Example 2.17 does not have Strangeness Index 1 and can not be differentiated. Hence
there is no uniform Strangeness Index on the whole time interval r´1, 1s.
The systematic decomposition of a DAE by the Strangeness Index is only implied here by
the properties in Definition 2.18. Later on we will take a closer look at it on the basis of
linear DAEs. The idea of the Strangeness Index is extremely powerful but its definition
via the inflated system makes it hard to tap its full potential.

2.4 Tractability Index

Next we introduce the concept of the Tractability Index. It has been mainly developed
by März, cf. [GM86, Mär02, LMT13]. The main features of the Tractability Index are its
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minimal smoothness requirements and its step by step decoupling strategy for DAEs. First
the Tractability Index concept was formulated for DAEs in standard form, cf. [GM86].
But now it uses a more general class of DAEs.

Definition 2.19. (DAEs with nonlinear derivative term, [LMT13])
Let I Ă R and D Ă R

n be open subsets. Let f P CpRm ˆ D ˆ I,Rnq be continuous such
that the partial derivatives B

Byfpy, x, tq and B
Bxfpy, x, tq are also continuous with B

Byfpy, x, tq
being singular for all triples py, x, tq P R

m ˆ D ˆ I. We call

fpd1pxptq, tq, xptq, tq “ 0, xpt0q “ x0 (2.14)

with d P C1pD ˆ I,Rmq a DAE with nonlinear derivative term. Let I‹ :“ rt0, T s Ă I.
We call x‹ P CpI‹,Dq with dpx‹p.q, .q P C1pI‹,Rmq a solution of (2.14) on I‹ if the initial
conditions are fulfilled, i.e. x‹pt0q “ x0, and

fpd1px‹ptq, tq, x‹ptq, tq “ 0 @t P I‹.

To avoid unnecessary gaps and overlaps between im B
Bxd and ker B

Byf the nonlinear deriva-
tive term needs to be chosen reasonably.

Definition 2.20. (Properly stated derivative term)
The DAE (2.14) has a properly stated derivative term on DˆI, if im B

Bxd and ker B
Byf are

C1-subspaces in R
m, and the transversality condition

ker
B

Byfpy, x, tq ‘ im
B

Bxdpx, tq “ R
m, @py, x, tq P R

m ˆ D ˆ I, (2.15)

holds.

The concept of the Tractability Index does not use the inflated system, which is also called
derivative array. The independence of the Tractability Index of the derivative array is
discussed in [Mär98]. Hence we need another strategy to handle nonlinear DAEs (2.14).
This is done by composing the linear Taylor polynomial of the DAE in the x-argument
around a reference function x˚. Before we define the linearization of a nonlinear DAE we
need to define a suitable set of reference functions.

Definition 2.21. (Reference function set)
Let G Ď DˆI be open and let ν P N. We denote by Cν˚pGq the set of all Cmaxp2,νq functions
with a graph in G. That means, that x˚ P Cν˚pGq if and only if x˚ P Cmaxp2,νqpI˚,Rmq
with px˚ptq, tq P G for all t P I˚ Ă I.
The ν has to be sufficiently large since we do not know in advance which part of the
reference functions belongs to a differentiation problem. Next we define the linearization
of a nonlinear DAE associated to a reference function.
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2 An Introduction to Differential-Algebraic Equations

Definition 2.22. (Linearization)
Consider a nonlinear DAE (2.14) and an integer ν P N. Let x˚ P Cν˚pGq be a reference
function with G Ď D ˆ I. We call the linear DAE

A˚ptqpD˚ptqxptqq1 ` B˚ptqxptq “ q˚ptq, t P I˚, (2.16)

with the coefficients

D˚ptq :“ dxpx˚ptq, tq,
A˚ptq :“ B

Byfpd1px˚ptq, tq, x˚ptq, tq,

B˚ptq :“ B
Bxfpd1px˚ptq, tq, x˚ptq, tq,

q˚ptq :“ ´fpd1px˚ptq, tq, x˚ptq, tq, t P I˚

the linearization of the nonlinear DAE (2.14) along the reference function x˚ with a right
hand side q˚ptq. Here B

By and B
Bx denote the partial derivatives with respect to the first

and second argument of f .

Since the Tractability Index shall be independent of the choice of the reference function
we can not simply pick one special reference function for the linearization. We need a
more general approach and define the following matrix functions.

Definition 2.23. (Placeholder matrix functions)
Consider a nonlinear DAE (2.14) and define the continuous matrix functions A, D and
B by

Dpx, tq :“ B
Bxdpx, tq (2.17a)

Apx1, x, tq :“ B
ByfpDpx, tqx1 ` dtpx, tq, x, tq, (2.17b)

Bpx1, x, tq :“ B
BxfpDpx, tqx1 ` dtpx, tq, x, tq, (2.17c)

for x1 P R
n, x P D, t P I. Here B

By and B
Bx again denote the partial derivatives with respect

to the first and second argument of f .

Similar to the properly stated derivative term we need these matrix functions to match
with each other in the following sense.

Definition 2.24. (Regular matrix pencil)
Let be A,B P R

nˆn. The ordered matrix pair tA,Bu and the matrix pencil λA ` B
respectively are called non-singular or regular if there is a constant λ P R so that
det

`
λA ` B

˘ ı 0. Otherwise they are called singular.
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We say a linear DAE (2.16) has a regular matrix pencil if tA˚ptqD˚ptq, B˚ptqu is a regular
matrix pencil for all t P I˚ and a nonlinear DAE (2.14) has a regular matrix pencil if
tApx1, x, tqDpx, tq, Bpx1, x, tqu is a regular matrix pencil for all x1 P R

m, x P D, t P I.
Now we can sum up some basic assumptions for our DAEs.

Assumption 2.25. (Basic assumptions)

1. The DAE (2.14) has a properly stated derivative term.

2. If ker B
Byfpy, x, tq depends on y, then d is supposed to be in C2pD ˆ I,Rmq.

3. The DAE has a regular matrix pencil.

With these assumptions the proper formulation of the derivative term passes down to the
placeholder matrix functions.

Lemma 2.26. (Placeholder matrix functions are proper formulated)
Consider a DAE (2.14) under the Assumptions 2.25, then the decomposition

kerApx1, x, tq ‘ imDpx, tq “ R
n, @px1, x, tq P R

m ˆ D ˆ I, (2.18)

is true, and the subspaces kerA and imD are C1-subspaces in R
n. Therefore all lineariza-

tions of (2.14) have a properly stated derivative term.

The proof can be found in [LMT13, pp. 210–212].
As a last preparation define Q0 as the projector function onto kerDpx, tq on D ˆ I and
set P0 :“ I ´ Q0. We call P0 and Q0 admissible if and only if they are continuous. The
projector valued function R defined by

imRpx1, x, tq “ imDpx, tq,
kerRpx1, x, tq “ kerApx1, x, tq,

for x1 P R
m, x P D, t P I, is named border projector of the DAE. Furthermore we define

the generalized inverse Dpx1, x, tq´ P pRn,Rmq by the means of the four conditions

Dpx, tqDpx1, x, tq´Dpx, tq “ Dpx, tq (2.19a)

Dpx1, x, tq´Dpx, tqDpx1, x, tq´ “ Dpx1, x, tq´ (2.19b)

Dpx, tqDpx1, x, tq´ “ Rpx1, x, tq (2.19c)

Dpx1, x, tq´Dpx, tq “ P0px, tq. (2.19d)

With these preparations we can define a chain of projectors, which will allow us to define
the Tractability Index.
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2 An Introduction to Differential-Algebraic Equations

Definition 2.27. (Projector chain - Tractability Index)
Let the DAE (2.14) satisfy the basic assumptions 2.25. Let G Ă D ˆ I be open and
connected. Let the projector function Q0 onto kerD be continuous on G, P0 “ I ´ Q0.
Let D´ be the generalized inverse of D defined by (2.19). For the given level ν P N,
we call the sequence G0, ..., Gν an admissible matrix function sequence associated to the
DAE on the set G, if it is built by the rule

G0 :“ AD,B0 :“ B,N0 :“ kerG0

Gi :“ Gi´1 ` Bi´1Qi´1

Bi :“ Bi´1Pi´1 ´ GiD
´pDΠiD

´q1DΠi´1

Ni :“ kerGi

Set
"

N i :“ pN0 ` ... ` Ni´1q X Ni and choose Xi such that
"

N i ‘ Xi :“ N0 ` ... ` Ni´1.
Then Qi is a projector with im Qi :“ Ni and Xi Ă kerQi and Pi is the complementary
projector again, i.e. Pi :“ I ´ Qi. At last set Πi :“ Πi´1Pi.

Additionally we assume that,

1. the matrix function Gi has constant rank ri on R
i¨m ˆ G, i “ 0, ..., ν,

2. the intersection
"

N i has constant dimension ui :“ dim
"

N i,

3. the product function Πi is continuous and DΠiD
´ is continuously differentiable on

R
i¨m ˆ G for i “ 0, ..., ν.

With the help of the rank values ri we can define the Tractability Index.

Definition 2.28. (Tractability Index)
Let the DAE (2.14) satisfy the basic assumptions (2.25) and let G Ď D ˆ I be an open
connected set. Then the DAE (2.14) is said to be

1. regular with Tractability Index-μ on G, if on G an admissible matrix function se-
quence exists such that rμ´1 ă rμ “ m,

2. regular on G, if it is regular on G with any index.

The constants 0 ď r0 ď ... ď rμ´1 ă rμ are named characteristic values of the regular
DAE. The open connected subset G is called a regularity region or regularity domain.

Consider again Example 2.17:

x1
0 ´ x1 “ 0

x0 ` x2 “ sinptq ` |t|
x2 “ |t|,
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With

A “ D “
¨
˝1 0 0
0 0 0
0 0 0

˛
‚ and B “

¨
˝0 ´1 0
1 0 1
0 0 1

˛
‚

we can write Example 2.17 as a DAE with a properly stated derivative term

ApDxq1 ` Bx “ qptq
with qptq :“ p0, sinptq`|t|, |t|qT . To determine the Tractability Index we have to calculate
the matrix chain starting with

G0 “
¨
˝1 0 0
0 0 0
0 0 0

˛
‚ and B0 “

¨
˝0 ´1 0
1 0 1
0 0 1

˛
‚.

Next we choose the projectors

Q0 “
¨
˝0 0 0
0 1 0
0 0 1

˛
‚ and P0 “

¨
˝1 0 0
0 0 0
0 0 0

˛
‚

with im Q0 “ N0 “ span
´`

0 1 0
˘J

,
`
0 0 1

˘J¯
. Following the construction rules, we

obtain

G1 “
¨
˝1 ´1 0
0 0 1
0 0 1

˛
‚ and B1 “

¨
˝0 0 0
1 0 0
0 0 0

˛
‚.

Now we have to choose the next pair of projectors, but this time we need to pay attention

to the admissibility conditions. We get N1 “ span
´`

1 1 0
˘J¯

and therefore we may

choose

Q1 “
¨
˝1 0 0
1 0 0
0 0 0

˛
‚.

Q1 is an admissible choice, since N0 “ ker Q1. Finally we obtain a non-singular matrix

G2 “
¨
˝1 ´1 0
1 0 1
0 0 1

˛
‚.

The Tractability Index of Example 2.17 is 2. In contrast to the Differentiation Index and
the Strangeness Index, the Tractability Index is well defined for Example 2.17.
Hence, the Tractability Index needs less smoothness assumptions than the Differentiation
Index and the Strangeness Index. But the projector chain of the Tractability Index tends
to become complex.
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2 An Introduction to Differential-Algebraic Equations

2.5 Summary and Outlook

In this chapter we presented some of the challenges of DAEs. Especially we pointed out
that there are problems which do only occur if we are dealing with DAEs and not with
explicit ODEs.
We introduced some of the most popular index concepts as tools to analyze these DAE
related effects. The analysis of DAEs becomes most difficult if the projectors or the matrix
functions of the respective index concept are state dependent. For example the matrix
chain of the Tractability Index is state dependent for electrical circuits, cf. [ET00]. But
at the same time there are topological results indicating that such complicated projectors
are not necessary, see [Tis99]. We close this chapter with the following question:
Can we create an index concept based on the established concepts which provides a state
independent decoupling if possible?
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3 Fields of Application

After introducing parts of the known theory of Differential-Algebraic Equations, two
major application fields will be discussed in this chapter.
The first field of application is the investigation of electrical circuits. Electrical circuits are
of great importance for industrial research and therefore a mathematical understanding is
needed. There are already many works about DAE related questions regarding circuits,
in particular about index analysis [Tis99, RT11] and local uniqueness and solvability
[HM04, Bau12]. Besides standard elements like inductors, resistors, capacitors and source
elements, electrical circuits can also contain more complex elements like semiconductor
devices, memristors and electromagnetic devices. For instance semiconductor devices
and electromagnetic devices are described by a set of partial differential equations, hence
they involve new questions and challenges to the analysis of electrical circuits. Previous
research about semiconductor devices can be found in [SBST14, Gaj93, Gaj94], these
devices are widely used in circuits because of their application as transistors. In [Chu11,
Ria11, RT11, Bau12] memristors are investigated while we find previous research about
electromagnetic devices in [HM76, KMST93, Wei77, Bau12, BBS11, Sch11].
The field of electrical circuits simulation can be embedded in a more general network
approach, cf. [JT14]. This general network approach also includes other kinds of flow
networks like water, gas and blood flow networks. In Chapter 5 we will present global
existence and uniqueness results and in Chapter 7 we will provide a topological decoupling
for DAEs arising from electrical circuits. Similar results for gas or water networks can be
found in [GJH`14, JP13].
The second application field is that of mechanical multibody systems. The mechanical
systems are divided into several model levels such that the models become more complex
as the level of the model increases. On the highest level dynamical force elements, friction,
spatial motion, contact laws and force laws as well as holonomic and nonholonomic con-
straints are considered. Such systems are investigated in [Ste06, ESF98, Hau89, Sim95].

3.1 Circuit Applications

We start introducing an electric circuit by understanding it as a directed graph G :“
pN,Eq, with the nodes N and the arbitrarily orientated edges E. The quantities of an
electric circuit are the currents j and voltages u over the edges and the electric potentials
e at the nodes.
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Node:

e

Edge:

u

j

In order to obtain a well defined model in terms of uniqueness we need to choose one
node as a reference node, cf. [DK84]. The potential of this reference node will be fixed,
in general it can be chosen to be zero. We call this reference node the mass node. When
we refer to an arbitrary node in the following we do not include the mass node. The
network topology for elements with two contacts is retained by the incidence matrix
A P t´1, 0, 1up|N |´1qˆ|E|. The matrix A describes the relation between all edges and all
nodes except the mass node. The incidence matrix is defined by:

pAqij :“

$’&
’%
1 , if the edge j leaves node i,

´1 , if the edge j enters node i,

0 , else.

To model the circuit with the help of the incidence matrix we use the Kirchhoff’s laws,
which deal with the conservation of charge and energy in electrical circuits. The two
Kirchhoff’s laws read:

• Kirchhoff’s voltage law: At every instant of time the algebraic sum of voltages along
each loop of the network is equal to zero.

• Kirchhoff’s current law: At every instant of time the algebraic sum of currents
entering or leaving one node of the network is equal to zero.

Let a connected electric network be given and j, u be the vectors of all edge currents and
voltages and let e be the vector of all the node potentials. Then Kirchhoff’s laws imply

Aj “ 0 (3.1)

and

AT e “ u, (3.2)

cf. [DK84]. It is useful to substitute node potentials for the edge voltages. This is due to
the fact that the network graph usually contains more edges than nodes, hence we will
obtain a smaller system size.
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3.1.1 Basic Elements

The Kirchhoff’s laws provide two model equations for an electrical circuit, hence we lack
one last equation since we are dealing with the three electric quantities j, u and e. The last
equation is provided by the different branch elements. The branch elements are described
by a relation between their currents and their voltages. This holds for all branch elements
with the exception of source elements, they give a direct description of their voltages or
their currents. There is a number of basic branch elements which present these relation in
an explicit way. We divide all these basic branch elements into four classes. We already
mentioned one of these classes: the source elements. There are two basic source elements,
the voltage and the current sources. Their electric symbols are:

uV jI

The quantities of independent sources are described by a time dependent function. Let
nV P N and nI P N be the numbers of the voltage and current sources, respectively. Let
I Ă R be a compact time interval, then there are two characteristic functions vs : I Ñ R

nV

and is : I Ñ R
nI such that

uV “ vsptq and jI “ isptq,
with uV P R

nV the voltages over the voltage sources and jI P RnI the currents along the
current sources. If source elements are not independent they are called controlled sources.
In that case their characteristic functions can depend on other quantities of the circuit,
i.e. the voltages and current of the controlled sources can be described as:

uVc “ vspu, j, tq and jIc “ ispu, j, tq.
The electric symbols of controlled sources are:

uVc jIc

The next class of branch elements are the capacitors. Capacitors store energy in their
electric field. Let nC P N be the number of the capacitors then we call qC : RnC ˆI Ñ R

nC

the characteristic function of the capacitors. The function qC describes the electric charges
of the capacitors. With the characteristic function qC we can formulate a relation between
the currents jC and the derivative of the voltages uC of the capacitors. Further we present
the electric symbol of a capacitor:
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jC “ d
dt
qCpuC , tq

uC

jC

with jC , uC P R
nC the currents and voltages of the capacitors. We call all branch ele-

ments which provide a relation between their currents and the derivative of their voltages
capacitor-like elements. Another class of basic branch elements are the resistors. Re-
sistors limit the flow of their current by generating voltage drops. Let nR P N be the
number of the resistors, then we call gR : RnR ˆ I Ñ R

nR the characteristic function
of the resistors. The function gR describes the conductance of the resistors. With the
characteristic function gR we can formulate a relation between the currents jR and the
voltages uR of the resistors. Further we present the electric symbol of a resistor:

jR “ gRpuR, tq
uR

jR

with jR, uR P R
nR the currents and voltages of the resistors. We call all branch elements

which provide a relation between their currents and their voltages resistor-like elements.

The last of the four basic branch elements are the inductors. Inductors store energy
in their magnetic field. Let nL P N be the number of the inductors then we call φL :
R

nL ˆ I Ñ R
nL the characteristic function of the inductors. The function φL describes

the magnetic flux of the inductors. With the characteristic function φL we can formulate
a relation between the derivative of the currents jL and the voltages uL of the inductors.
Further we present the electric symbol of an inductor:

d
dt
φLpjL, tq “ uL

uL

jL

with jL, uL P R
nL the currents and voltages of the inductors. We call all branch ele-

ments which provide a relation between the derivative of their currents and their voltages
inductor-like elements. In the next sections of this chapter we present other kinds of
branch elements and classify them as capacitor-like, resistor-like or inductor-like elements.

As an example for a more complex electric element we present the operational amplifier
without feedback, which was already used in Example 2.13. An operational amplifier can
be described with the help of one resistor element and one controlled voltage source. The
purpose of an operational amplifier is to control the potential at a node such that it is
equivalent to the potential at another node multiplied by a factor a.
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´

`

e1
e2 – uVc “ auR1 " G uR

e1 e2

The conductance G of the resistor has to be very small. In the ideal case it would be zero
such that no current flows through the resistor, then we are able to measure the potential
e1 at the first node as the voltage drop over the resistor. With this voltage we control the
voltage source such that the potential e2 equals ae1.

3.1.2 Semiconductor Device Model

In this section we develop a model for semiconductor devices. Many parts of the results
of this section were developed together with Sascha Baumanns, Monica Selva Soto and
Caren Tischendorf, cf. [SBST14]. In circuit simulation programs semiconductor devices
are often described by compact models depending on hundreds of parameters, most of
them without a direct physical interpretation. With the rapid development of chip tech-
nology these models became more and more complex, in particular the calibration of the
parameters of these models became complicated. In order to overcome this difficulty sev-
eral coupled models, i.e. models that consist of coupled differential-algebraic and partial
differential equations, have been proposed for the simulation of electrical circuits over the
last years, see e.g. [GS00, ABGT03]. Here we concentrate on the model originally pro-
posed in [ABGT03] and studied further in [Tis03, ABG04, ST05, Sot06, Bod07, BST10].
It couples the DAE describing the behavior of the basic circuit elements and the circuit’s
topology to partial differential equations modeling the semiconductor devices in it. While
in [ABGT03, Tis03, ABG04, Bod07] the properties of this model, as Partial Differential-
Algebraic Equation (PDAE), are studied, in [ST05, Sot06, BST10] the DAEs that result
after spatial discretization of the PDEs in the system are taken into account. In [GS00] the
model considered here and other coupled models for the simulation of electrical circuits
are described and some simulation results are presented.

In contrast to [ST05, Sot06, BST10], here we consider the DAEs that result if higher di-
mensional Drift-Diffusion (DD) equations are used for modeling the semiconductor devices
in the system. With the help of auxiliary functions, originally introduced by Gajewski
[Gaj93], we present a description for the current at the semiconductor contacts in such
a way that current conservation is given for the continuous as well as for the discretized
model. Considering the capacitive and conductive behavior of semiconductor devices,
we also change the way the currents at the semiconductor contacts enter the Kirchhoff’s
current law (KCL) equations for the circuit.
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Keeping in mind that this semiconductor device model will be coupled to an electric circuit
model, voltages and currents of the circuit model are used as input and output variables
in the semiconductor model. The new features regarding the modeling are the inclusion of
different materials for the semiconductor device and the modeling of the current coupling
equation.
The geometrical model of a semiconductor device consists of two subsets ΩS,ΩO Ă R

d with
d “ 1, 2, 3. We call ΩS the semiconductor part and ΩO the oxide part. The semiconductor
part as well as the oxide part are assumed to be open, nonempty and bounded. The
semiconductor part and the oxide part are disjoint but adjacent to each other, i.e.

ΩO X ΩS “ H but ΓI :“ Ω̄O X Ω̄S ‰ H
Let ΩS and ΩO have Lipschitz boundaries ΓS and ΓO. Split these boundaries into

ΓS “ ΓD,S 9YΓN,S 9YΓI and ΓO “ ΓD,O 9YΓN,O 9YΓI

with the interface boundary ΓI . Here 9Y denotes the disjoint union. We call ΓD,S,ΓD,O ‰
H the Dirichlet boundaries and ΓN,S and ΓN,O the Neumann boundaries of the semicon-
ductor and the oxide part, respectively. Suppose the semiconductor device to have nSC

pairwise disjoint metal contacts ΓCi
Ă R

d such that ΓD,S Y ΓD,O “ Y1ďiďnSC
ΓCi

with

ΓCi
X ΓD,S “ H or ΓCi

X ΓD,O “ H, @1 ď i ď nSC .

Each contact of the semiconductor device is joined to a node of the circuit. Let the device

ΩO

ΩS

ΓI

T1

T2

T3

T3

C1

C2

C3

C4

ΓN,S1 ΓN,S2

ΓN,S3ΓN,S4

ΓN,O1
ΓN,O2j1

j2

j3

Figure 3.1: Coupling a semiconductor device (ΩS Y ΩO)

be connected to nT ` 1 nodes, then we define nT ` 1 terminals Ti as the union of the
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contacts which are connected to the i-th node. We assume that terminals belong either
to the Dirichlet boundary of the semiconductor part or to the Dirichlet boundary of the
oxide part. Furthermore let the pnT ` 1q-th terminal belong to the Dirichlet boundary
of the semiconductor part. In the equations that follow t P rt0, T s and x P Ω are the
independent variables, t represents the time while x represents the space. Let us denote
by I “ rt0, T s the considered time interval.
Let npx, tq be the electron density, ppx, tq the hole density and ϕSpx, tq the electrostatic
potential on the semiconductor part with n, p, ϕS : ΩS ˆ I Ñ R. Further let C : ΩS Ñ R

be the doping profile of the semiconductor while R : R2 Ñ R describes the balance of
generation and recombination of electrons and holes.
With these variables and functions we can formulate the drift-diffusion equations, which
describe the dynamical behavior of the electrons and the holes in the semiconductor part,
i.e. x P ΩS, cf. [Moc83, Sel84, Mar86].

´ B
Btn ` 1

q
∇ ¨ Jnpn, ϕS, xq “ Rpn, pq on ΩS ˆ I, (3.3a)

B
Btp ` 1

q
∇ ¨ Jppp, ϕS, xq “ ´Rpn, pq on ΩS ˆ I, (3.3b)

∇ ¨ p´εS∇ϕSq “ qpp ´ n ` Cpxqq on ΩS ˆ I. (3.3c)

where q is the elementary charge, εS ą 0 is the semiconductor dielectric constant. Notice
that the doping profile C does not depend on t while n, p and ϕS depend on x and t but
their arguments are being dropped for a clearer view. The functions

Jnpn, ϕS, xq :“ qμnpxqpUT∇n ´ n∇ϕSq,
Jppp, ϕS, xq :“ ´qμppxqpUT∇p ` p∇ϕSq

describe the current densities

jnpx, tq :“ Jnpnpx, tq, ϕSpx, tq, xq and jppx, tq :“ Jppppx, tq, ϕSpx, tq, xq
caused by electrons and holes for x P ΩS and t P I. Furthermore, μn and μp form
the mobilities of electrons and holes, we assume them to be non-negative and bounded
functions of x while UT is a constant which represents the thermal voltage.
Let nΓD

, pΓD
: ΓD,S Ñ R be the boundary conditions of the electrons and the holes at

the Dirichlet boundary of the semiconductor and let ϕbi : ΓD,S Ñ R be the built-in
potential of the semiconductor at the boundary ΓD,S. Notice that nΓD

, pΓD
and ϕbi are

time independent. Further let uS : I Ñ R
nT be the set of voltages which are applied

between the first nT terminals and the last terminal. The last terminal serves as a
reference terminal. We can use the voltages instead of the potential at the contact nodes
since the model is invariant under global potential variations, see [Tis03]. Therefore define
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the boundary function ϕu,S : ΓD,S ˆ I Ñ R with

ϕu,Spx, tq “
#
uS,iptq , if x P Ti for 1 ď i ď nT ,

0 , else.

and ui being the i-th component of u. Using these functions, we can formulate the
boundary conditions for the semiconductor part:

npx, tq “ nΓD
pxq @x P ΓD,S, @t P I, (3.4a)

ppx, tq “ pΓD
pxq @x P ΓD,S, @t P I, (3.4b)

ϕSpx, tq “ ϕbipxq ` ϕu,Spx, tq @x P ΓD,S, @t P I, (3.4c)

∇npx, tq ¨ νSpxq “ 0 @x P ΓN,S, @t P I, (3.4d)

∇ppx, tq ¨ νSpxq “ 0 @x P ΓN,S, @t P I, (3.4e)

∇ϕSpx, tq ¨ νSpxq “ 0 @x P ΓN,S, @t P I, (3.4f)

Jnpnpx, tq, ϕSpx, tq, xq ¨ νSpxq “ 0 @x P ΓI , @t P I, (3.4g)

Jppppx, tq, ϕSpx, tq, xq ¨ νSpxq “ 0 @x P ΓI , @t P I. (3.4h)

Here, νSpxq denotes the outer unit normal vector at x with respect to ΩS. The equa-
tions (3.4a)-(3.4c) describe conditions at the Dirichlet boundary and in particular the
connection to the circuit nodes. The conditions (3.4d)-(3.4f) implicate that the electrons,
the holes and the electrostatic potential can neither leave nor enter the semiconductor
at the Neumann boundary. Equation (3.4g) and (3.4h) state that no particle current
can enter the oxide part from the semiconductor part, this means that the oxide part
is a perfect isolator. The only variable on such an isolator is the electrostatic potential
ϕO : ΩO ˆ I Ñ R, which can be described by

∇ ¨ p´εO∇ϕOq “ 0 (3.5)

with εO ą 0 being the oxide dielectric constant. We define the function ϕu,O : ΓD,O ˆI Ñ
R by

ϕu,Opx, tq “
#
uiptq , if x P Ti for 1 ď i ď nT ,

0 , else.

which assigns the voltages u to the contacts of the oxide part. Let Φms : ΓD,O Ñ R be
the metal-semiconductor work function difference. Then the boundary conditions of the
Dirichlet and Neumann boundaries of the oxide part are given by

ϕOpx, tq “ ´Φmspxq ` ϕu,Opx, tq @x P ΓD,O, @t P I (3.6a)

∇ϕOpx, tq ¨ νOpxq “ 0 @x P ΓN,O, @t P I (3.6b)
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with νOpxq being the outer unit normal vector at x with respect to ΩO. To complete
the set of boundary conditions for the whole semiconductor-oxide problem we still lack
conditions for the potential at the interface boundary. These boundary conditions will
connect the semiconductor part with the oxide part since the electrostatic potential exists
in both parts. First we set the Dirichlet conditions such that the electrostatic potential
of the semiconductor part and the oxide part match each other at the interface boundary

ϕSpx, tq “ ϕOpx, tq on ΓI ˆ I. (3.7)

Condition (3.7) guarantees the continuity of the potential at the interface boundary. Fur-
thermore the sum of the gradients of the potential weighted with the dielectric constants
of each region is supposed to be zero at the interface boundary.

εS∇ϕSpx, tq ¨ νSpxq ` εO∇ϕOpx, tq ¨ νOpxq “ 0 @x P ΓI , @t P I. (3.8)

This boundary condition provides the continuity of the electric field. Now we have a full
set of equations which describe the semiconductor model depending on the voltages of
the circuit. Next we need to couple the quantities of the semiconductor device back to
the circuit. Introducing the semiconductor current and oxide current functions

JSpn, p, ϕS, xq :“ Jnpn, ϕS, xq ` Jppp, ϕS, xq ` Btp´εS∇ϕSq, JOpϕOq :“ Btp´εO∇ϕOq
we can formulate the current coupling equation

jk :“
ż
TkXΓD,S

JSpn, p, ϕS, xq ¨ νSds `
ż
TkXΓD,O

JOpϕOq ¨ νOds

which describes the current jk of the circuit at the terminal Tk. We will now show the
conservation of energy for this choice of the current coupling equation:

Lemma 3.1. (Conservation of energy)
Supposing n, p, ϕS and ϕO fulfill (3.3)-(3.8), we find the sum of the terminal currents to
be zero:

nT `1ÿ
k“1

jk “ 0. (3.9)

Proof .
To verify this statement notice that the divergence of the semiconductor current and the
oxide current is zero:

∇ ¨ JSpn, p, ϕS, xq “ ∇ ¨ pJnpn, ϕS, xq ` Jppp, ϕS, xqq ` Bt∇ ¨ p´εS∇ϕSq (3.3)“ 0 (3.10a)

∇ ¨ JOpϕOq “ Bt∇ ¨ p´εO∇ϕOq (3.5)“ 0. (3.10b)
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The normal component of the semiconductor and oxid currents is also zero at the Neu-
mann boundaries, while the sum of both is zero at the interface boundary.

JSpn, p, ϕS, xq ¨ νS (3.4d),(3.4e),(3.4f)“ 0 on ΓN,S ˆ I (3.11a)

JOpϕOq ¨ νO (3.6b)“ 0 on ΓN,O ˆ I (3.11b)

JSpn, p, ϕS, xq ¨ νS ` JOpϕOq ¨ νO (3.4g),(3.4h),(3.8)“ 0 on ΓI ˆ I. (3.11c)

With these properties and the divergence theorem follows the desired statement

nT `1ÿ
k“1

jk “
nT `1ÿ
k“1

ż
TkXΓD,S

JSpn, p, ϕS, xq ¨ νSds `
nT `1ÿ
k“1

ż
TkXΓD,O

JOpϕOq ¨ νOds

“
ż
ΓD,S

JSpn, p, ϕS, xq ¨ νSds `
ż
ΓD,O

JOpϕOq ¨ νOds
(3.11)“

ż
ΓS

JSpn, p, ϕS, xq ¨ νSds `
ż
ΓO

JOpϕOq ¨ νOds

“
ż
ΩS

∇ ¨ JSpn, p, ϕS, xqdx `
ż
ΩO

∇ ¨ JOpϕOqdx (3.10)“ 0.

By Lemma 3.1 we can express the current at the last terminal by

jnT `1 “ ´
nTÿ
k“1

jk.

This enables us to describe the semiconductor device by nT branches corresponding to
the first nT currents. In Figure 3.2 we see a semiconductor device with four terminals on
the left, which is alternatively described by three branches S1, S2 and S3 on the right.
To structurally classify the semiconductor device as a capacitors-like element we need to
provide direct relations between the first nT currents and the derivative of the voltages
at the device. Each of the relations can then be ascribed to one of the branches. As a
first step define a set of auxiliary problems as an extension to the auxiliary functions in
[Gaj93]: For each 1 ď i ď nT , let w

i
S P C2pΩSq X C1pΩ̄Sq and wi

O P C2pΩOq X C1pΩ̄Oq be
solutions of

∇ ¨ p´εS∇wi
Sq “ 0 ∇ ¨ p´εO∇wi

Oq “ 0

wi
Spxq|ΓD,S

“
#
1 , if x P Ti,

0 , else.
wi

Opxq|ΓD,O
“

#
1 , if x P Ti,

0 , else.

∇wi
S ¨ νS|ΓN,S

“ 0 ∇wi
O ¨ νO|ΓN,O

“ 0

(3.12)
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SC device
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RV1V2

S
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Figure 3.2: Semiconductor device model with four terminals described by three branches S1, S2 and S3.

with the same interface boundary conditions as the original problem

wi
S “ wi

O and εS∇wi
S ¨ νS ` εO∇wi

O ¨ νO “ 0 on ΓI . (3.13)

The weak solvability of the auxiliary problem is shown in [Str14]. With the help of these
auxiliary functions we define a Gramian matrix W P RnT ˆnT by

pW qij :“
ż
ΩS

εS∇wi
S ¨ ∇wj

Sdx `
ż
ΩO

εO∇wi
O ¨ ∇wj

Odx 1 ď i, j ď nT .

We denote the k-th row of W with Wk.

Lemma 3.2.
The matrix W is symmetric and positive definite.

Proof .
We define the spaces

H1
S,TnT `1

:“ tv P H1pΩSq| v|TnT `1 “ 0u, H1
O,I :“ tv P H1pΩOq| v|ΓI

“ 0u
and

H1
SO,TnT `1

:“ tv “ pvS, vOq P H1
S,TnT `1

ˆ H1pΩOq| vS|ΓI
“ vO|ΓI

u (3.14)
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and the bilinear form a : H1
SO,TnT `1

ˆ H1
SO,TnT `1

Ñ R by

apv, wq :“
ż
ΩS

εS∇vS ¨ ∇wSdx `
ż
ΩO

εO∇vO ¨ ∇wOdx.

The Spaces H1pΩSq and H1pΩOq are the well known Sobolev Spaces, see [Ada75]. Then
a is a scalar product. In particular we have to show that it holds apv, vq “ 0 ñ v “ 0,
the other properties are trivial.

apv, vq “ 0

ñ
ż
ΩS

εS∇vS ¨ ∇vSdx `
ż
ΩO

εO∇vO ¨ ∇vOdx “ 0

ñ
ż
ΩS

εS∇vS ¨ ∇vSdx “ 0 and

ż
ΩO

εO∇vO ¨ ∇vOdx “ 0,

since ∇vS ¨ ∇vS ě 0 and ∇vO ¨ ∇vO ě 0. By vS P H1
S,TnT `1

and
ş
ΩS

εS∇vS ¨ ∇vSdx “ 0 it

follows that vS “ 0 and therefore vO P H1
O,I . This yields together withż

ΩO

εO∇vO ¨ ∇vOdx “ 0

that vO “ 0. Hence a is a scalar product and therefore W is symmetric and positive
definite, since W is the Gramian matrix of a scalar product.

Collect the currents at the terminals with jS :“ `
jS1 , . . . , jSnT

˘T
and jSk

:“ ´jk for
1 ď k ď nT . Furthermore we denote

wSpxq :“ `
w1

Spxq , . . . , wnT
S pxq˘T

and wOpxq :“ `
w1

Opxq , . . . , wnT
O pxq˘T

, (3.15)

for all x P ΩS and x P ΩO, respectively. Similar to the first set of auxiliary problems
choose ϕΓS

: ΩS Ñ R and ϕΓO
: ΩO Ñ R such that

∇ ¨ p´εS∇ϕΓS
q “ 0 ∇ ¨ p´εO∇ϕΓO

q “ 0
ϕΓS |ΓD,S

“ ϕbi ϕΓO|ΓD,O
“ ´Φms

∇ϕΓS
¨ ν|ΓN,S

“ 0 ∇ϕΓO
¨ ν|ΓN,O

“ 0
(3.16)

with the same interface boundary conditions again:

ϕΓS
“ ϕΓO

, εS∇ϕΓS
¨ νS ` εO∇ϕΓO

¨ νO “ 0 on ΓI . (3.17)

With these preparations we are able to derive a relation between the semiconductor
current jS and the derivative of the voltages uS of the circuit applied to the semiconductor.
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Lemma 3.3.
The semiconductor currents collected in jS can be expressed as

jSptq “ d

dt
pWuSptqq

´
ż
ΩS

ˆ B
BxwSpxq

˙
pJnpnpx, tq, ϕSpx, tq, xq ` Jppppx, tq, ϕSpx, tq, xqq dx

Proof .
We need to use the divergence theorem, see [For96], again to obtain the desired relation.
Notice that the Dirichlet boundary conditions of the auxiliary functions wk

S and wk
O at

the Dirichlet boundary and at the interface boundary are crucial for the next steps.

jSk
“ ´ jk

“ ´
ż
TkXΓD,S

JSpn, p, ϕS, xq ¨ νSds ´
ż
TkXΓD,O

JOpϕOq ¨ νOds

“ ´
ż
ΓD,S

wk
SJSpn, p, ϕS, xq ¨ νSds ´

ż
ΓD,O

wk
OJOpϕOq ¨ νOds

(3.13),(3.11)“ ´
ż
ΓS

wk
SJSpn, p, ϕS, xq ¨ νSds ´

ż
ΓO

wk
OJOpϕOq ¨ νOds

“ ´
ż
ΩS

∇ ¨ `
wk

SJSpn, p, ϕS, xq˘
dx ´

ż
ΩO

∇ ¨ `
wk

OJOpϕOq˘
dx

“ ´
ż
ΩS

wk
S∇ ¨ JSpn, p, ϕS, xq ` JSpn, p, ϕS, xq ¨ ∇wk

Sdx

´
ż
ΩO

wk
O∇ ¨ JOpϕOq ` JOpϕOq ¨ ∇wk

Odx

(3.10)“ ´
ż
ΩS

JSpn, p, ϕS, xq ¨ ∇wk
Sdx ´

ż
ΩO

JOpϕOq ¨ ∇wk
Odx

“ B
Bt

„ż
ΩS

εS∇ϕS ¨ ∇wk
Sdx `

ż
ΩO

εO∇ϕO ¨ ∇wk
Odx

j

´
ż
ΩS

∇wk
S ¨ pJnpn, ϕS, xq ` Jppp, ϕS, xqqdx

We split ϕS “ ϕ̄S ` ϕΓS
` wS ¨ usptq and ϕO “ ϕ̄O ` ϕΓO

` wO ¨ usptq such that we obtain
homogenized functions at the Dirichlet boundaries, i.e.

ϕ̄S|ΓD,S
“ 0, ϕ̄O|ΓD,O

“ 0. (3.18)

Notice that ϕ̄S and ϕ̄O still fulfill the boundary conditions at the interface boundary since
ϕΓS

, ϕΓO
, wS and wO do. Furthermore notice that ϕΓS

and ϕΓO
are independent of t hence

B
Bt

„ż
ΩS

εS∇ϕΓS
¨ ∇wk

Sdx `
ż
ΩO

εO∇ϕΓO
¨ ∇wk

Odx

j
“ 0.
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Also due to the choice of the auxiliary functions it holds:

ż
ΩS

εS∇ϕ̄S ¨ ∇wk
Sdx `

ż
ΩO

εO∇ϕ̄O ¨ ∇wk
Odx

“
ż
ΩS

εS∇ ¨ `∇wk
Sϕ̄S

˘
dx `

ż
ΩO

εO∇ ¨ `∇wk
Oϕ̄O

˘
dx

“
ż
ΓS

εS∇wk
S ¨ νSϕ̄Sds `

ż
ΓO

εO∇wk
O ¨ νOϕ̄Ods

(3.18)“
ż
ΓI

εS∇wk
S ¨ νSϕ̄Sds `

ż
ΓI

εO∇wk
O ¨ νOϕ̄Ods

“ϕ̄S

ˆż
ΓI

εS∇wk
S ¨ νS ` εO∇wk

O ¨ νOds
˙

(3.13)“ 0.

And with all these properties we obtain:

B
Bt

„ż
ΩS

εS∇ϕS ¨ ∇wk
Sdx `

ż
ΩO

εO∇ϕO ¨ ∇wk
Odx

j

“ B
Bt

„ż
ΩS

εSp∇wS ¨ usq ¨ ∇wk
Sdx `

ż
ΩO

εO∇pwO ¨ usq ¨ ∇wk
Odx

j

“
„ż

ΩS

εS∇wS ¨ ∇wk
Sdx `

ż
ΩO

εO∇wO ¨ ∇wk
Odx

j
¨ B

Btus

“ Wk ¨ B
Btus

which allows us to write each of the currents in the following form

jSk
“ B

Bt
„ż

ΩS

εS∇ϕS ¨ ∇wk
Sdx `

ż
ΩO

εO∇ϕO ¨ ∇wk
Odx

j

´
ż
ΩS

∇wk
S ¨ pJnpn, ϕS, xq ` Jppp, ϕS, xqdx

“Wk ¨ B
Btus ´

ż
ΩS

∇wk
S ¨ pJnpn, ϕS, xq ` Jppp, ϕS, xqqdx.

Put together, we achieve the desired relation of the currents and the voltages

jS “ d

dt
pWusq ´

ż
ΩS

ˆ B
BxwS

˙
pJnpn, ϕS, xq ` Jppp, ϕS, xqqdx.

46



3 Fields of Application

At this point we are able to write the complete Partial Differential-Algebraic Equation
(PDAE) which describes the semiconductor model. This PDAE includes the current
coupling term, the semiconductor equations and the oxide equation:

d

dt
pWusq ´

ż
ΩS

ˆ B
BxwS

˙
pJnpn, ϕS, xq ` Jppp, ϕS, xqqdx “ jS

´ B
Btn ` 1

q
∇ ¨ Jnpn, ϕS, xq “ Rpn, pq

B
Btp ` 1

q
∇ ¨ Jppp, ϕS, xq “ ´Rpn, pq
∇ ¨ p´εS∇ϕSq “ qpp ´ n ` Cpxqq
∇ ¨ p´εO∇ϕOq “ 0

(3.19)

with the boundary and coupling conditions (3.4), (3.6), (3.7) and (3.8) and the auxiliary
problems for ϕΓS

, ϕΓO
, wS and wO. Notice that us and jS depend on t only; w, μn, μp,

C, ϕΓS
, ϕΓO

, wS, wO depend on x only whereas ϕS, ϕO, n, p depend on both, x and t.

In order to numerically solve a coupled system, consisting of a semiconductor device
and an electric circuit, we need to discretize the coupled system in space and solve the
resulting DAE using appropriate numerical methods. Discretization in space can be done
independently of the electric circuit, since it only concerns the semiconductor device.

Weak Formulation

First, we derive a weak formulation of the PDAE (3.19) which we will call an Abstract
Differential-Algebraic Equation (ADAE). Consider the two real Banach spaces

H1
S :“ tv P H1pΩSq| v|ΓD,S

“ 0u and H1
O :“ tw P H1pΩOq| w|ΓD,O

“ 0u

with the restricted norms }v}H1
S
:“ }v}H1pΩSq and }w}H1

O
:“ }w}H1pΩOq for all v P H1

S and

all w P H1
O, respectively.

Based on these Banach spaces define the product space

H1
SO :“ tv “ pvS, vOq P H1

S ˆ H1
O| vS|ΓI

“ vO|ΓI
u (3.20)

with the scalar product xv, uyH1
SO

:“ ş
ΩS

εSuS ¨ vSdx ` ş
ΩO

εOuO ¨ vOdx for all v, u P H1
SO.

Notice that ∇ is now the weak derivative. We want to choose H1
SO as the solution space

for the electrostatic potential. Hence, we need that H1
SO is a Banach space.

Lemma 3.4.

The space H1
SO defined in (3.20) is a Banach space.
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Proof .

First we show that H1
SO is a normed vector space. Let v and w be elements in H1

SO hence
v, w P H1

S ˆ H1
O. Since H1

S and H1
O are Banach spaces, the product space H1

S ˆ H1
O is a

Banach space. Therefore v ` λw P H1
S ˆH1

O for every λ P R. Since the extra condition of
H1

SO is linear it holds that v ` λw P H1
SO for every λ P R. The norm of H1

S ˆ H1
O is also

a norm of H1
SO since H1

SO is a subset of H1
S ˆ H1

O.

Next, we show the completeness ofH1
SO. Consider pvnqnPN P H1

SO to be a Cauchy sequence.
It implies vn also to be a Cauchy sequence in H1

S ˆ H1
O. Since this space is a Banach

space, pvnqnPN has a limit v in H1
S ˆ H1

O. The domains have Lipschitz boundaries and
therefore the trace operator is continuous, see [Eva10]. Together with the linearity of the
extra condition of H1

SO it follows that v P H1
SO. Hence, the Cauchy sequence converges

with a limit in H1
SO.

We already chose homogenization functions for ϕ, now we choose the ones for n and p.
Therefore let be nD, pD P C2pΩSq X C0pΩ̄Sq with

nD “ nΓD
and pD “ pΓD

on ΓD,S.

Finally, we consider

H1
S :“ tv P H1pΩSq| v|ΓD,S

“ 0u

which will serve as a solution space for the electrons n and the holes p. Let the homoge-
nized electrons and holes be n̄, p̄ P H1

S and let the homogenized electrostatic potential be
ϕ̄ “ pϕ̄S, ϕ̄Oq P H1

SO. Then we obtain the following relations:

npx, tq “ n̄px, tq ` nDpxq @x P ΩS @t P I,
ppx, tq “ p̄px, tq ` pDpxq @x P ΩS @t P I,

ϕSpx, tq “ ϕ̄Spx, tq ` ϕΓS
pxq ` wSpxq ¨ usptq @x P ΩS @t P I,

ϕOpx, tq “ ϕ̄Opx, tq ` ϕΓO
pxq ` wOpxq ¨ usptq @x P ΩO @t P I.

Let ϑ “ pϑS, ϑOq P H1
SO be an arbitrary test function for the electrostatic potential ϕ while

the electron and hole densities n and p share the same arbitrary test function θ P H1
S. In

general, n and p could have their individual test functions. Further define the functional

�pϑSq :“
ż
ΩS

qppDpxq ´ nDpxq ` CpxqqϑSpxqdx (3.21)
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and obtain the homogenized weak formulation of the PDAE, also called the ADAEż
ΩS

θpxq B
Bt n̄px, tqdx `

ż
ΩS

1

q
J̄npn̄px, tq, ϕ̄Spx, tq, x, usptqq ¨ ∇θpxqdx

`
ż
ΩS

R̄pn̄px, tq, p̄px, tq, xqθpxqdx “ 0,ż
ΩS

θpxq B
Bt p̄px, tqdx ´

ż
ΩS

1

q
J̄ppp̄px, tq, ϕ̄Spx, tq, x, usptqq ¨ ∇θpxqdx

`
ż
ΩS

R̄pn̄px, tq, p̄px, tq, xqθpxqdx “ 0,ż
ΩS

εS∇ϕ̄Spx, tq ¨ ∇ϑSpxqdx `
ż
ΩO

εO∇ϕ̄Opx, tq ¨ ∇ϑOpxqdx

´
ż
ΩS

qpp̄px, tq ´ n̄px, tqqϑSpxqdx “ �pϑSq

(3.22)

for all t P I with

J̄npn̄, ϕ̄S, x, usq :“ Jnpn̄ ` nDpxq, ϕ̄S ` ϕΓS
pxq ` wSpxq ¨ us, xq

J̄ppp̄, ϕ̄S, x, usq :“ Jppp̄ ` pDpxq, ϕ̄S ` ϕΓS
pxq ` wSpxq ¨ us, xq

R̄pn̄, p̄, xq :“ Rpn̄ ` nDpxq, p̄ ` pDpxqq.
(3.23)

Finite Element Discretization

In the following we derive a semi-discretized version of the semiconductor device model
via a finite element discretization. An extensive review on methods for the discretization
of the drift-diffusion equations is given in [MSW99]. We consider here an ordinary finite
element method approach [Moc83, Mar86]. After discretization the semiconductor device
model can be described as a DAE, which is added to the other circuit elements in Section
3.1.5. To achieve the Galerkin equations of the finite element discretization we define the
two discrete solution spaces

H1
S,h :“ spantθ1, . . . , θMu Ă H1

S

H1
SO,h :“ spantpϑS,1, ϑO,1q, . . . , pϑS,N , ϑO,Nqu Ă H1

SO

with θi P H1
S and pϑS,i, ϑO,iq P H1

SO being pairwise linear independent vectors. We denote
their bases as well as the associated Galerkin coefficients by

Θpxq “ `
θ1pxq, ..., θMpxq˘T

Nptq “ `
n̄h,1ptq, ..., n̄h,Mptq˘T

ΦSpxq “ `
ϑS,1pxq, ..., ϑS,Npxq˘T

P ptq “ `
p̄h,1ptq, ..., p̄h,Mptq˘T

ΦOpxq “ `
ϑO,1pxq, ..., ϑO,Npxq˘T

Ψptq “ `
ϕ̄h,1ptq, ..., ϕ̄h,Nptq˘T

.
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By the Galerkin approach we obtain

n̄hpx, tq “
Mÿ
i“1

n̄h,iptqθipxq “ Θpxq ¨ Nptq,

p̄hpx, tq “
Mÿ
i“1

p̄h,iptqθipxq “ Θpxq ¨ P ptq,

ϕ̄hpx, tq “
˜

Nÿ
i“1

ϕ̄h,iptqϑS,ipxq,
Nÿ
i“1

ϕ̄h,iptqϑO,ipxq
¸

“ pΦSpxq ¨ Ψptq,ΦOpxq ¨ Ψptqq.

Inserting this into the ADAE formulation (3.22) we get the Galerkin equations

ż
ΩS

θiΘdx
B
BtNptq `

ż
ΩS

1

q
J̄npn̄h, ϕ̄h,S, x, usptqq ¨ ∇θidx `

ż
ΩS

R̄pn̄h, p̄h, xqθidx “ 0ż
ΩS

θiΘdx
B
BtP ptq ´

ż
ΩS

1

q
J̄ppp̄h, ϕ̄h,S, x, usptqq ¨ ∇θidx `

ż
ΩS

R̄pn̄h, p̄h, xqθidx “ 0ˆż
ΩS

εS∇ΦS ¨ ∇ϑS,jdx `
ż
ΩO

εO∇ΦO ¨ ∇ϑO,jdx

˙
Ψptq

´
ż
ΩS

qΘϑS,jdxpP ptq ´ Nptqq “ �pϑS,jq

for all t P I, i “ 1, ...,M and j “ 1, ..., N . The Galerkin coefficients are only inserted into
the linear parts for cleared depiction. Solely the arguments of the variables that depend
on t only are shown to underline their independence of x. The semiconductor current
equation of Lemma 3.3 reads

d

dt
pWusptqq ´ jSptq

“
ż
ΩS

ˆ B
BxwSpxq

˙ `
J̄npn̄hpx, tq, ϕ̄h,Spx, tq, x, usptqq ` J̄ppn̄hpx, tq, ϕ̄h,Spx, tq, x, usptqq˘

dx.

Denote the coefficients in front of the time derivatives and the electrostatic potential by

pZqij “
ż
ΩS

θipxqθjpxqdx, (3.24a)

pT qij “
ż
ΩS

εS∇ϑS,ipxq ¨ ∇ϑS,jpxqdx `
ż
ΩO

εO∇ϑO,ipxq ¨ ∇ϑO,jpxqdx, (3.24b)

pHqij “
ż
ΩS

qθjpxqϑS,ipxqdx. (3.24c)
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Notice that Z and T are symmetric and positive definite, since they are Gramian matrices
of scalar products. This can be proven analogously to Lemma 3.2. Then we obtain

d

dt
pWusptqq ´

ż
ΩS

ˆ B
BxwSpxq

˙
pJ̄npn̄hpx, tq, ϕ̄h,Spx, tq, x, usptqq

`J̄ppp̄hpx, tq, ϕ̄h,Spx, tq, x, usptqqqdx “ jSptq,
Z

d

dt
Nptq `

ż
ΩS

B
BxΘpxq1

q
J̄npn̄hpx, tq, ϕ̄h,Spx, tq, x, usptqqdx

`
ż
ΩS

Θpxq ¨ R̄pn̄hpx, tq, p̄hpx, tq, xqdx “ 0,

Z
d

dt
P ptq ´

ż
ΩS

B
BxΘpxq1

q
J̄ppp̄hpx, tq, ϕ̄h,Spx, tq, x, usptqqdx

`
ż
ΩS

Θpxq ¨ R̄pn̄hpx, tq, p̄hpx, tq, xqdx “ 0,

TΨptq ´ HpP ptq ´ Nptqq “ �pΦSq.
Choosing an approximation of the integrals

ḡSpus, N, P,Ψq « ´
ż
ΩS

ˆ B
BxwSpxq

˙
pJ̄npn̄hpx, tq, ϕ̄h,Spx, ¨q, x, usp¨qq

` J̄ppp̄hpx, ¨q, ϕ̄h,Spx, ¨q, x, usp¨qqqdx,
h̄npus, N, P,Ψq «

ż
ΩS

B
BxΘpxq1

q
J̄npn̄hpx, ¨q, ϕ̄h,Spx, ¨q, x, usp¨qqdx

`
ż
ΩS

Θpxq ¨ R̄pn̄hpx, ¨q, p̄hpx, ¨q, xq,

h̄ppus, N, P,Ψq « ´
ż
ΩS

B
BxΘpxq1

q
J̄ppp̄hpx, ¨q, ϕ̄h,Spx, ¨q, x, usp¨qqdx

`
ż
ΩS

Θpxq ¨ R̄pn̄hpx, ¨q, p̄hpx, ¨q, xqdx,
hΨpN,P q «HpP p¨q ´ Np¨qq ` �pΦSq

(3.25)

we obtain the discrete system

d

dt
pWusptqq ` ḡSpusptq, Nptq, P ptq,Ψptqq “ jSptq,

Z
d

dt
Nptq ` h̄npusptq, Nptq, P ptq,Ψptqq “ 0,

Z
d

dt
P ptq ` h̄ppusptq, Nptq, P ptq,Ψptqq “ 0,
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TΨptq ´ hΨpNptq, P ptqq “ 0

with W , Z and T being symmetric and positive definite.
Finally, we need to provide a possibility to calculate ϕΓS

, ϕΓO
and wS, wO since they are

solutions of PDEs themselves. First we derive the Galerkin equations for wk
S and wk

O

from the PDEs (3.12). Let wk
ΓD,S

P C2pΩSq X C1pΩ̄Sq and wk
ΓD,O

P C2pΩOq X C1pΩ̄Oq
be functions which fulfill the boundary conditions of the auxiliary problems (3.12) with
respect to wk

S and wk
O, respectively. For the homogenized functions

w̄k
S :“ wk

S ´ wk
ΓD,S

, w̄k
O :“ wk

O ´ wk
ΓD,O

we get the systemż
ΩS

εS∇w̄k
S ¨ ∇ϑSdx `

ż
ΩO

εO∇w̄k
O ¨ ∇ϑOdx “ �kwpϑS, ϑOq

with the functional �kwpϑS, ϑOq :“ ş
ΩS

∇ ¨ pεS∇wk
ΓD,S

qϑSdx ` ş
ΩO

∇ ¨ pεO∇wk
ΓD,O

qϑOdx to
be solved. We denote their associated Galerkin solutions by

w̄k
hpxq “

˜
Nÿ
i“1

w̄k
h,iϑS,ipxq,

Nÿ
i“1

w̄k
h,iϑO,ipxq

¸
“ pΦSpxq ¨ ωk,ΦOpxq ¨ ωkq.

with

ωk :“ pw̄k
h,1, ..., w̄

k
h,NqT .

The associated Galerkin equations are then given byż
ΩS

εS∇ΦS ¨ ∇ϑS,idx ¨ ωk `
ż
ΩO

εO∇ΦO ¨ ∇ϑO,idx ¨ ωk “ �kwpϑS,i, ϑO,iq @i “ 1, ..., N

which means that

Tωk “ �kwpΦS,ΦOq (3.26)

has to be solved for the Galerkin coefficients ωk for k “ 1, ..., nT . Analogously, we compute
Galerkin approximations of the auxillary functions ϕΓS

and ϕΓO
that are solutions of the

PDEs (3.16), (3.17).
Let ϕΓD,S

P C2pΩSq X C1pΩ̄Sq and ϕΓD,O
P C2pΩOq X C1pΩ̄Oq be functions which fulfill

the boundary conditions of the auxiliary problems (3.16), (3.17). For the homogenized
functions

ϕ̄ΓS
:“ ϕΓS

´ ϕΓD,S
, ϕ̄ΓO

:“ ϕΓO
´ ϕΓD,O
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we get the systemż
ΩS

εS∇ϕ̄ΓS
¨ ∇ϑSdx `

ż
ΩO

εO∇ϕ̄ΓO
¨ ∇ϑOdx “ �ϕΓ

pϑS, ϑOq

with the functional �ϕΓ
pϑS, ϑOq :“ ş

ΩS
∇ ¨ pεS∇ϕΓD,S

qϑSdx ` ş
ΩO

∇ ¨ pεO∇ϕΓD,O
qϑOdx to

be solved. We denote their associated Galerkin solutions by

ϕ̄Γ,hpxq “
˜

Nÿ
i“1

ϕ̄Γ,h,iϑS,ipxq,
Nÿ
i“1

ϕ̄Γ,h,iϑO,ipxq
¸

“ pΦSpxq ¨ ϕΓ,ΦOpxq ¨ ϕΓq

with

ϕΓ :“ pϕ̄Γ,h,1, ..., ϕ̄Γ,h,NqT .
The associated Galerkin equations are then given byż

ΩS

εS∇ΦS ¨ ∇ϑS,idx ¨ ϕΓ `
ż
ΩO

εO∇ΦO ¨ ∇ϑO,idx ¨ ϕΓ “ �ϕΓ
pϑS,i, ϑO,iq @i “ 1, ..., N

which means that

TϕΓ “ �ϕΓ
pΦS,ΦOq (3.27)

has to be solved for the Galerkin coefficients ϕΓ.
Finally, we obtain the discretized system described by a DAE by substituting wSpxq that
appear in (3.25) by ΦSpxq ¨ω `wΓD,S

pxq and by substituting ϕΓS
pxq that appear in (3.25)

via the functionals J̄n and J̄p defined in (3.23) by ΦSpxq ¨ ϕΓ ` ϕΓD,S
pxq:

d

dt
pCSusptqq ` gSpusptq, Nptq, P ptq,Ψptqq “ jSptq,

Z
d

dt
Nptq ` hnpusptq, Nptq, P ptq,Ψptqq “ 0,

Z
d

dt
P ptq ` hppusptq, Nptq, P ptq,Ψptqq “ 0,

TΨptq ´ hΨpNptq, P ptqq “ 0.

Here, gS, hn and hp represent the functions ḡS, h̄n and h̄p where the auxiliary functions
wSpxq and ϕΓS

are replaced by ΦSpxq¨ω`wΓD,S
pxq and ΦSpxq¨ϕΓ`ϕΓD,S

pxq, respectively.
The matrix CS is the approximation of W given by the replacement of wSpxq and wOpxq
by ΦSpxq ¨ ω ` wΓD,S

pxq and ΦOpxq ¨ ω ` wΓD,O
pxq in the definition of W , see page 43.

Later on we will need the following assumption for analytic purposes:
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Assumption 3.5. The finite element method as well as the methods for the approxima-
tions of the involved integrals are such that gS, hn, hp and hΨ are continuously differen-
tiable functions of their arguments.

For a more compact notation define

ζptq :“
ˆ
Nptq
P ptq

˙
, Mζ :“

ˆ
Z 0
0 Z

˙
, hζpus, ζ,Ψq :“

ˆ
hnpus, N, P,Ψq
hppus, N, P,Ψq

˙

and rewrite the discretized system into

d

dt
pCSusptqq ` gSpusptq, ζ,Ψq “ jSptq,

Mζ
d

dt
ζ ` hζpusptq, ζ,Ψq “ 0,

TΨ ` hΨpζq “ 0,

(3.28)

which brings us to the end of the modeling of the semiconductor device.

3.1.3 Memristor Model

Next, we add memristor elements to our system. Memristors limit the flow of their current
by generating voltage drops which are affected by the history of the current. Let nM P N

be the number of the memristors then we call φM : RnM ˆ I Ñ R
nM the characteristic

function of the memristors. The function φM describes magnetic flux of the resistors.
With the characteristic function φM we can formulate a relation between the charges
qM and the voltages uM of the memristors. Further we present the electric symbol of a
memristor.

d
dt
φMpqM , tq “ uM

uM

jM

with jM , uM P RnR being the currents and voltages of the memristors. Assume that φM is
continuously differentiable with the Jacobian MpqM , tq :“ B

ByφMpy, tq being non-singular.

By the relation between the charge and the current jM “ d
dt
qM we obtain the expression

jM “ MpqM , tq´1

ˆ
uM ´ B

BtφMpqM , tq
˙

“: gMpuM , qM , tq (3.29)

for jM in terms of the voltage uM and the charges of the memristors qM . Hence the
memristor is a resistor-like element with memory.
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3 Fields of Application

As an example for a memristor we present the HP memristor [SSSW08]. Therefore define
the dopant mobility μV “ 10´13m2

V s
, the total device length d “ 10´8m and the limits of

the memristor resistance Roff “ 36 ¨ 103Ω and Ron “ 1 ¨ 102Ω to write the functions

φMpqq “ Roff pq ´ μVRon

2d2
q2q

and
gMpu, qq “ Mpqq´1u

with the Jacobian

Mpq, tq “ Mpqq “ Roff p1 ´ μVRon

d2
qq.

3.1.4 Electromagnetic Device Model

This section introduces the electromagnetic device model. In contrast to the semicon-
ductor device model we will use an already discretized model from the literature. In par-
ticular we are interested in models discretized by the Finite Integration Technique(FIT).
The FIT discretization is an established tool to discretize electromagnetic devices which
was developed and formulated by Thomas Weiland [Wei77, TW96, Yee66, CW01]. This
discretization method yields properties which allow a structural classification of the elec-
tromagnetic device model as one of the lumped elements, analogous to the semiconductor
case. Such a discretized electromagnetic model is developed in [Bau12]. The model in
[Bau12] arises from the full Maxwell Equations spatially discretized with the FIT.
We call the discretized electric field E P R

3n and the discretized magnetic flux density
B P R

3n with n depending on the refinement of the FIT discretization. Further we call
A P R

3n and φ P R
n the discretized vector and scalar potential while Mε,Mσ,Mν P R

3nˆ3n

represent the three material properties for the permittivity, the conductivity and the
reluctivity. The reluctivity of the device is set to be constant in contrast to [Bau12] to
simplify the structural classification of the electromagnetic device model. Of course we
exclude some materials by this simplification.
The discretized versions of the differential operators are notated with G P R

3nˆn in the
case of the gradient, S̃ P R

nˆ3n in the case of the divergence and C P R
3nˆ3n in the

case of the rotation operator. Last we define the excitation matrix Λ P R
3nˆnΓ which

represents the boundary operator, meaning each column of Λ is the sum of the outer
normal vectors at each point of the discretization grid belonging to the related contact
area with nΓ the number of contact areas. Furthermore the transposed excitation matrix
ΛJ P R

nΓˆ3n represents the integral over the contact areas. The discretized operators and
matrices of the FIT discretization fulfill a set of important properties, see [Wei77, TW96,
Yee66, Bau12, Sch11]. In particular the discretized material relations Mε and Mν are
positive definite diagonal matrices while Mσ is a positive semi-definite diagonal matrix.
Furthermore CΛ has full column rank and the equality ∇ ˆ ∇ “ 0 is inherited by the
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discretized operators CG “ 0, see [Bau12] Lemma 3.25 and Lemma 3.28. In [Bau12] the
discretized model is written in the FIT potential formulation:

jE ´ ΛJCJMνCA “ 0,

ϑS̃MεG
d

dt
φ ` S̃Mν̄A “ 0,

Mε
d

dt
Gφ ` Mε

d

dt
π ` MσGφ ` CJMνCA ` Mσπ ´ Mε

d

dt
ΛuE ´ MσΛuE “ 0,

d

dt
A ´ π “ 0,

(3.30)

with the discrete artificial material matrix Mν̄ and ϑ “ 0 if we choose the Coulomb
gauge or ϑ “ 1 if we choose the Lorenz gauge. Here jE are the currents and uE are
the potentials at the contact areas. While the contact areas are connected to a circuit
via electric wires the rest of the boundary of the electromagnetic device is grounded. In
[Bau12] it was shown that the sum of the incoming and outgoing total currents over all
boundary parts equals zero. Therefore the currents at the non-conductive boundary parts
can be expressed as the negative sum of the currents at the contact areas.

EM deviceR2

I

R1

–
E
1 E 2

E
3E 4

R2

I

R1

Figure 3.3: Representation of a electromagnetic device with four contact areas by bipolar circuit elements.

This behavior enables us to describe the electromagnetic device by nΓ bipolar elements.
In Figure 3.3 we see an electromagnetic device with four contact areas on the left which
is alternatively represented by four branches E1, E2, E3 and E4. These four branches
correspond to the four currents at the contact areas.
For our purposes it is convenient to switch the discretized electromagnetic device model
back to the field formulation, i.e. a formulation in the electric field and the magnetic
density. Therefore consider the discretized electric field and the discretized magnetic
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density in terms of the vector and scalar potential:

E :“ ´Gφ ` ΛuE ´ d

dt
A

B :“ CA

Together the equations of the electromagnetic device can be written as

jE “ ΛJCJMνB (3.31a)

Mε
d

dt
E ` MσE “ CJMνB (3.31b)

d

dt
A “ ´Gφ ` ΛuE ´ E (3.31c)

B “ CA (3.31d)

0 “ ϑS̃MεG
d

dt
φ ` S̃Mν̄A. (3.31e)

And after applying the discretized rotation operator C to Equation (3.31c) and dropping
the equations (3.31d) and (3.31e) we obtain the system in the FIT field formulation:

jE “ ΛJCJMνB (3.32a)

Mε
d

dt
E ` MσE “ CJMνB (3.32b)

d

dt
B “ ´CE ` CΛuE. (3.32c)

FIT was also applied to a formulation in E and B in [Yee66, Wei77]. As in the semicon-
ductor case we like to structurally classify the electromagnetic device as one of the lumped
elements. Therefore we remodel the current coupling equation (3.31a) by differentiating
it to work out a relation between d

dt
jE and uE:

d

dt
jE “ ΛJCJMν

d

dt
B

Insert the discretized Maxwell-Faraday law (3.32c) into the derived current coupling equa-
tion and get

d

dt
jE “ ΛJCJMν

d

dt
B

ô d

dt
jE “ ΛJCJMνpCΛuE ´ CEq

ô d

dt
jE “ ΛJCJMνCΛuE ´ ΛJCJMνCE.

We remember that CΛ has full column rank and Mν is positive definite. Therefore
ΛJCJMνCΛ is also positive definite.
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Remark. The matrix ΛJCJMνCΛ is a diagonal matrix, if the spatial discretization is
fine enough, i.e. there are at least three finite volumes between all contact areas.

We define LE :“ pΛJCJMνCΛq´1 and χE :“ LEΛ
JCJMνC and write

d

dt
jE “ L´1

E uE ´ ΛJCJMνCE

ô d

dt
pLEjEq “ uE ´ LEΛ

JCJMνCE

ô d

dt
pLEjEq ´ uE ` χEE “ 0

Hence we end up with the following set of equations

d

dt
pLEjEq ´ uE ` χEE “ 0

Mε
d

dt
E ` MσE ´ CJMνB “ 0

d

dt
B ` CE ´ CΛuE “ 0,

and we notice that the current coupling term has the structure of an inductor. The matrix
LE can be interpreted as the inductance of the EM device and for LE holds:

Lemma 3.6.
The matrix LE is symmetric and positive definite.

Proof .
The matrix Mν is a positive definite diagonal matrix and CΛ has full column rank.

Due to its inductor-like structure we anticipate that parts of the potentials of the nodes
connected to an electromagnetic device might be involved in a differentiation problem,
since the topological index conditions of a circuit state that a cutset of inductors and
current sources leads to an differentiation problem of order one, see [Tis99]. To avoid a
coupling by components involved in a differentiation problem change the coupling term
by multiplying Maxwell-Faraday’s law (3.32c) by CJMν

d

dt
pLEjEq ´ uE ` χEE “ 0

Mε
d

dt
E ` MσE ´ CJMνB “ 0

d

dt
pCJMνBq ` CJMνCE ´ CJMνCΛuE “ 0

58



3 Fields of Application

and define the auxiliary current density

J :“ CJMνB ´ χT
EjE.

Furthermore we define the curl-curl matrix

MCC :“ CJMνC ´ χT
EΛ

JCJMνCΛχE “ CJMνC ´ χT
EL

´1
E χE

for a more compact notation and obtain the FIT inductor-like formulation with a coupling
from the circuit to the electromagnetic device via the currents at the contact areas:

d

dt
pLEjEq ´ uE ` χEE “ 0,

Mε
d

dt
E ` MσE ´ J ´ χT

EjE “ 0,

d

dt
J ` MCCE “ 0.

(3.33)

With this formulation we complete the modeling of the electromagnetic device.

3.1.5 Modified Nodal Analysis

In this section we join all the elements of the previous sections together into a network
framework. Therefore we use the Modified Nodal Analysis(MNA). The classical MNA
deals with capacitors, resistors, inductors, voltage and current sources as electric elements,
see [CL75, CDK87, DK84]. The equations of the MNA arises as we rearrange the incidence
Matrix to

A “ `
AC AR AL AV AI

˘
,

with AC , AR, AL, AV and AI the incidence matrices of the capacitors, resistors, inductors,
voltage sources and current sources. We also split the current with respect to these
elements and obtain with Kirchhoff’s first law (3.1)

ACjC ` ARjR ` ALjL ` AV jV ` AIiI “ 0.

Next we insert the characteristic functions of the capacitors, resistors and current sources,
add the inductor and voltage source equations and also replace the voltages by the electric
node potentials with Kirchhoff’s second law (3.2) for each element. Then the well known
MNA can be formulated based on Kirchhoff’s current law, Kirchhoff’s voltage law and
the physical element relations, see [Tis99].

AC
d

dt
QCpAJ

Ce, tq ` ARgRpAJ
Re, tq ` ALjL ` AV jV ` AIisptq “ 0,
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d

dt
φLpjL, tq ´ AJ

Le “ 0,

AJ
V e ´ vsptq “ 0.

As a basic physical assumption the branch elements should not produce any energy on
their own. This can be mathematically covered by the next assumption.

Assumption 3.7. (Passive Elements)

We assume the characteristic functions qCpu, tq, gRpu, tq and φLpj, tq to be continuously
differentiable with the Jacobians

Cpu, tq :“ B
BuqCpu, tq, Gpu, tq :“ B

BugRpu, tq and Lpj, tq :“ B
Bj φLpj, tq

being positive definite.

Furthermore we assume that the circuit is connected and not shorted.

Assumption 3.8.

Let AV have full column rank and let
`
AC AR AL AV

˘
have full row rank.

To extend the MNA to semiconductor devices, memristors and electromagnetic devices
sort the network edges like before in such a way that the incidence matrix A forms a block
matrix with blocks describing the different types of network elements, that is,

A “ `
AC AS AR AM AL AE AV AI

˘
.

For a more compact notation it is convenient to group the capacitor-like elements, the
resistor-like elements and the inductor-like elements together by defining

AC :“ `
AC AS

˘
, qCpAJ

C e, tq :“
ˆ
qCpAJ

Ce, tq
CSA

J
Se

˙
, gCpAJ

C e, ζ,Ψq :“
ˆ

0
gSpAJ

Se, ζ,Ψq
˙

and

AR :“ `
AR AM

˘
, gRpAJ

Re, qM , tq :“
ˆ

gRpAJ
Re, tq

gMpAT
Me, qM , tq

˙

and

AL :“ `
AL AE

˘
, jL :“

ˆ
jL
jE

˙
, φLpjL, tq :“

ˆ
φLpjL, tq
LEjE

˙
, χL :“

ˆ
0
χE

˙
.
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As before we use the two Kirchhoff laws (3.1) and (3.2). Additionally we use (3.28), (3.29)
and (3.33) to obtain:

AC

ˆ
d

dt
qCpAJ

C e, tq ` gCpAJ
C e, ζ,Ψq

˙
` ARgRpAJ

Re, qM , tq ` ALjL ` AV jV ` AIisptq “ 0,

d

dt
φLpjL, tq ´ AJ

Le ` χLE “ 0,

AJ
V e ´ vsptq “ 0,

Mζ
d

dt
ζ ` hζpAJ

Se, ζ,Ψq “ 0,

TΨptq ´ hΨpζq “ 0,

d

dt
φMpqM , tq ´ AT

Me “ 0,

Mε
d

dt
E ` MσE ´ J ´ χT

LjL “ 0,

d

dt
J ` MCCE “ 0

(3.34)

with t P I and I a compact time interval. We call (3.34) the extended MNA.

The matrices CS and LE are positive definite for the models of the semiconductor and
electromagnetic devices investigated in the last sections, see Lemma 3.2 and Lemma 3.6.
Therefore Assumption 3.7 must only be extended to:

Assumption 3.9.

We assume the characteristic functions qCpu, tq, gRpu, tq, φMpq, tq and φLpj, tq to be con-
tinuously differentiable with the Jacobians

Cpu, tq :“ B
BuqCpu, tq, Gpu, tq :“ B

BugRpu, tq

Mpq, tq :“ B
BqφMpq, tq and Lpj, tq :“ B

Bj φLpj, tq

being positive definite.

Analogously Assumption 3.8 now reads:

Assumption 3.10.

Let AV have full column rank and let
`
AC AR AL AV

˘
have full row rank.

Thereby we finish the circuit modeling sections.
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3.2 Mechanical Applications

In this section we present the mechanical applications, in particular multibody applica-
tions. In [Sim95, ESF98, Ste06] a classification of several forms of the equations of motion
is given. In this section we will shortly recall the modeling levels 0 and 1 [Sim95].
The modeling level 0 is based on the standard formulation of equations of motion. For
modeling level 0 consider the position variables pptq P R

np , the velocity variables vptq P R
nv

and the Lagrange multipliers λptq P R
nλ . Here for the dimensions of the positions and the

velocities it holds np “ nv. Then the equations of motion of modeling level 0 are given
by

p1 “ v (3.35a)

Mppqv1 “ fpp, v, tq ´ GJppqλ (3.35b)

0 “ gppq (3.35c)

with the initial values

ppt0q “ p0, vpt0q “ v0, λpt0q “ λ0,

on the domain I “ rt0, T s. The np equations (3.35a) are called kinematic equations of
motion. Furthermore, the equations of motion are affected by the so called holonomic
constraints (3.35c). Holonomic constraints never influence the velocities. From the con-
straints gppq “ 0 one obtains the constraint matrix Gppq “ B

Bpgppq which column-wise

contains the inaccessible directions of motion. The nv equations (3.35b) are called dy-
namical equations of motion. They can be derived from the equilibrium of forces and
momenta and include the mass matrix Mppq, the vector fpp, v, tq of the applied and gy-
roscopic forces, the constraint matrix Gppq of the holonomic constraints, the associated
constraint forces GT ppqλ, and the Lagrange multipliers λ. The mass matrix Mppq is pos-
itive semi-definite, since the kinetic energy is a positive semi-definite quadratic form, and
it includes the inertia properties of the multibody system.

In the modeling level 1 case we deal with spatial multibody systems with dynamical
force elements which are influenced by friction effects. The influence of the friction is
modeled as an applied force such that f additionally depends on the Lagrange multipliers
λ. The dynamical force elements, like multibody systems with additional control devices,
hydraulic or electromagnetic components, are modeled by new variables r, which specify
the state of such dynamical force elements by an ordinary differential equation

r1 “ bpp, v, r, tq,
c.f. [ESF98]. In the case of spatial multibody systems, which are discussed in [ESF98],
it is possible that np ă nv and therefore we need a transformation matrix Zppq P R

npˆnv ,
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3 Fields of Application

which relates the position variables to the velocities. The transformation matrix Zppq
is not the identity Inp if there are rotations in three dimensional space. In the two
dimensional case we have Zppq “ Inp , i.e. p1 “ v. Note that the transformation matrix
Zppq mainly depends on the choice of the velocity vector. Different choices for the velocity
vector are presented in [Ami92, Hau89, RR88, Whi59]. Summing up, the equations of
motion of modeling level 1 have the form

p1 “ Zppqv, (3.36a)

Mpp, tqv1 “ fpp, v, r, λ, tq ´ ZJppqGJpp, tqλ, (3.36b)

r1 “ bpp, v, r, λ, tq, (3.36c)

0 “ gpp, tq (3.36d)

with the initial values

ppt0q “ p0, vpt0q “ v0, rpt0q “ r0, λpt0q “ λ0.

We have the initial value problem for the equations of motion of modeling level 1 on the
domain I “ rt0, T s. Note in addition, that in contrast to [Sim95] for reasons of symmetry,
the dynamical equations of motion are multiplied by the transformation matrix Zppq,
implicitly contained in Mpp, tq and fpp, v, r, tq.
We close this section by a set of additional assumptions, which bound the index of me-
chanical applications by 3, see Section 4.5.

Assumption 3.11.
The mass matrix Mpp, tq and the block matrixˆ

Mpp, tq ZppqJGpp, tqJ ´ B
Bλfpp, v, r, λ, tq

Gpp, tqZppq 0

˙

are non-singular. This yields that Gpp, tqZppq has full row rank and that the Schur-
complement

Gpp, tqZppqM´1pp, tqGλpp, v, r, λ, tq
is non-singular with Gλpp, v, r, λ, tq :“ ZppqJGpp, tqJ ´ B

Bλfpp, v, r, λ, tq.

3.3 Summary and Outlook

We introduced two application fields for DAEs in this chapter. The main focus regarding
the applications in this work will be the analysis of electrical circuits. The classical
modified nodal analysis deals with capacitors, resistors, inductors, voltage and current
sources as network elements. We extended the list of elements by semiconductor devices,
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memristors and electromagnetic devices. In particular we were able to structurally identify
the new elements with the basic ones.
This identification will be used in Chapter 5 to prove global existence and uniqueness
results for circuits including the semi-discretized semiconductor devices, the memristors
and the semi-discretized electromagnetic devices. Furthermore a topological decoupling
for DAEs arising from electrical circuits will be derived in Chapter 7. The most important
properties of the topological decoupling will be its cheap calculation and the applicability
of half-explicit methods to the decoupled DAE.
To obtain the existence results and the topological decoupling we introduce a new in-
dex concept in Chapter 4. The presented mechanical applications will be analyzed with
this index concept such that we can described the influence of perturbation onto these
applications.
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4 The Concept of the Dissection Index

Both the Tractability Index and the Strangeness Index are important tools for the analysis
of DAEs. The Tractability Index and the Strangeness Index are decoupling procedures
which analyze the structure of a DAE. The Strangeness Index concept includes over- and
under determined systems and it is well suited for the analysis of DAEs in Hessenberg-
form, cf. [KM06]. The main assets of the Tractability Index are its low smoothness
assumptions and its step-by-step approach, cf. [LMT13].
Here we introduce a new index concept, which can be interpreted as a mix of the Tractabil-
ity Index and the Strangeness Index. The index arises as we use the linearization concept
of the Tractability Index and the decoupling procedure of the Strangeness Index.
But before we introduce this mixed index concept we need a good reason to do so, since
the definition of an index concept entails much technical work. We already mentioned in
Section 2.3 that the Strangeness Index requires too much differentiability and that its cal-
culation may be laboriously since it has no step-by-step approach. While the Tractability
Index does not share these weaknesses the projector chain of the Tractability Index tends
to become unnecessarily complex, which we demonstrate in the following examples:

Example 4.1.
Let I :“ rt0, T s Ă R be a compact time interval and let t P I. Let f : I Ñ R be
continuously differentiable.

p1 ` t2qx1 “ y (4.1a)

x “ fptq (4.1b)

The solution of Example 4.1 can be explicitly given by:

xptq “ fptq
yptq “ p1 ` t2qf 1ptq.

Here x is algebraically defined by equation (4.1b) and y is defined by the differentiation
problem in equation (4.1a). An index concept should reflect the simple structure of
Example 4.1 by using only constant projectors or basis functions to analyze it. Especially
for a decoupling procedure simple projectors or basis functions are essential.
In contrast to our wish for constant operators both the matrix chain of the Tractability
Index and the basis functions of the Strangeness Index are time dependent. First we

65



consider the matrix chain of the Tractability Index and start by denoting

G0 “
ˆ
1 ` t2 0
0 0

˙
and B0 “

ˆ
0 ´1
1 0

˙
.

This yields the first two projectors

Q0 “
ˆ
0 0
c 1

˙
and P0 “

ˆ
1 0

´c 0

˙

with an arbitrary continuous function c. We obtain

G1 “ G0 ` B0Q0 “
ˆ
1 ` t2 ´ c ´1

0 0

˙
, B1 “

ˆ
c 0
1 0

˙
and Q1 “

ˆ
1 0

1 ` t2 ´ c 0

˙
,

which yields the non-singular matrix

G2 “ G1 ` B1Q1 “
ˆ
1 ` t2 ´1
1 0

˙
.

Hence Example 4.1 is of Tractability Index 2, but there is no admissible matrix chain
with only constant projectors since for every continuous function c at least one of the
projectors Q0 or Q1 is time dependent.
The Strangeness Index also cannot go without time dependent basis functions. It is
sufficient to consider the Jacobian G1 of the inflated system, which is given by

G1 “

¨
˚̋̊1 ` t2 0 0 0

0 0 0 0
2t ´1 1 ` t2 0
1 0 0 0

˛
‹‹‚.

The image of this Jacobian is time dependent, hence the matrix W is also time dependent.
Aside from practical reasons like the efficient implementation of a decoupling procedure,
these time dependencies may even invoke extra smoothness conditions. This is in partic-
ular hurtful for the tractability concept, since one of its greatest strengths are its minimal
smoothness conditions. Indeed the Tractability Index does not need any differentiabil-
ity of the right hand side for its definition, but it does need the differentiability of the
DΠiD

´ terms. While the differentiability of the right hand side may be necessary for
the solvability of the DAE in case of a differentiation problem, the differentiability of the
DΠiD

´ terms may be completely needless.
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4 The Concept of the Dissection Index

We demonstrate this problem with an example from the circuit simulation.

Example 4.2.
We consider the electric circuit in Figure 4.1 with two inductors, which both have an
inductance of L1 “ L2 “ 1, an independent current source with a continuously differ-
entiable function is and a controlled voltage source defined by vspe1q “ e1 ´ ape1q with
a P C1pR,Rq, B

Be1ape1q ą 1. We consider the time interval I “ r0, 1s. The node potential
e1 and the currents j1 and j2 through the inductors are the solution of the equations:

j1
1 ` e1 “ 0 (4.2a)

j1
2 ` ape1q “ 0 (4.2b)

j1 ` j2 ` isptq “ 0. (4.2c)

e1

e2

vspe1q

isptq

L1 j1

L2

j2

Figure 4.1: Electric circuit including a controlled voltage source.

By multiplying the matrices
`
1 1

˘
and

`
1 ´1

˘
to the left of the first two equations we

obtain:

pj1 ´ j2q1 ` e1 ´ ape1q “ 0 (4.3)

e1 ` ape1q “ ´pj1 ` j2q1 (4.4)

j1 ` j2 ` isptq “ 0, (4.5)

which yields the necessity of the differentiability of is, which was already assumed above.
By inserting (4.5) in (4.4) and denotingˆ

j1
j2

˙
“

ˆ
1
2´1
2

˙
j̄ `

ˆ
1
2
1
2

˙
j̃
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we get j̄ :“ j1 ´ j2 and j̃ “ isptq, hence we obtain a system in j̄ and e1:

j̄1 ` e1 ´ ape1q “ 0

e1 ` ape1q “ i1
sptq.

The function fpe1q :“ e1`ape1q is strongly monotone due to B
Be1 pe1`ape1qq “ 1`a1pe1q ą 2

and therefore bijective and there is an inverse function Ψ such that

j̄ “
ż t

0

apΨpi1
spsqqq ´ Ψpi1

spsqqds ` j̄p0q
e1 “ Ψpi1

sptqq.
In particular we notice that it is not necessary that a is two times differentiable for (4.2)
to be solvable. In contrast we need a to be two times differentiable for the Tractability
Index to be well defined. Define

A “
¨
˝1 0
0 1
0 0

˛
‚, D “

ˆ
1 0 0
0 1 0

˙
and B “

¨
˝0 0 1
0 0 a1pe1q
1 1 0

˛
‚

and thereby obtain

G0 “
¨
˝1 0 0
0 1 0
0 0 0

˛
‚ and N0 “ spanp

¨
˝0
0
1

˛
‚q.

This yields the first two projectors

Q0 “
¨
˝ 0 0 0

0 0 0
c1 c2 1

˛
‚ and P0 “

¨
˝ 1 0 0

0 1 0
´c1 ´c2 0

˛
‚

depending on two continuous functions c1 and c2. With the help of Q0 we obtain

G1 “
¨
˝ 1 ` c1 c2 1
c1a

1pe1q 1 ` c2a
1pe1q a1pe1q

0 0 0

˛
‚ and N1 “ spanp

¨
˝ 1

a1pe1q
´1 ´ c1 ´ c2a

1pe1q

˛
‚q.

Then N1 and N0 yield the projectors

Q1 “
¨
˝ 1 ´ a1pe1qc3 c3 0

a1pe1qp1 ´ a1pe1qc3q a1pe1qc3 0
p´1 ´ c1 ´ c2a

1pe1qqp1 ´ a1pe1qc3q p´1 ´ c1 ´ c2a
1pe1qqc3 0

˛
‚
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4 The Concept of the Dissection Index

and

P1 “
¨
˝ a1pe1qc3 ´c3 0

a1pe1qpa1pe1qc3 ´ 1q 1 ´ a1pe1qc3 0
p´1 ´ c1 ´ c2a

1pe1qqpa1pe1qc3 ´ 1q p1 ` c1 ` c2a
1pe1qqc3 1

˛
‚

with a continuous function c3. In order to continue the matrix chain we need to calculate
the derivative of DΠ1D

´ “ DP1D
´ with the generalized inverse D´ of D. In this case

D´ is given by:

D´ “
¨
˝ 1 0

0 1
´c1 ´c2

˛
‚.

Hence we can calculate

DP1D
´ “

ˆ
a1pe1qc3 ´c3

a1pe1qpa1pe1qc3 ´ 1q 1 ´ a1pe1qc3
˙
.

The Tractability Index requires DP1D
´ to be continuously differentiable, hence it is only

defined, if the functions c3, a
1pe1qc3, pa1pe1qq2c3 ´ a1pe1q and 1 ´ a1pe1qc3 are continuously

differentiable. In general the function c3 could depend on all state variables and the
time, but for the differentiability of DP1D

´ it is sufficient to consider a function c3
which depends on e1. We split R “ R0

Ť
RC with R0 :“ te1 P R| c3pe1q “ 0u and

RC :“ te1 P R| c3pe1q ‰ 0u. The set RC is open, since c3 is continuous. Hence c3 and
a1pe1qc3 being continuously differentiable yields that a1pe1q is continuously differentiable on
RC . Let x̄ P R0, then we obtain the existence of the following limit by pa1pe1qq2c3 ´ a1pe1q
being continuously differentiable:

lim
hÑ0

pa1px̄ ` hqq2c3px̄ ` hq ´ a1px̄ ` hq ´ ppa1px̄qq2c3px̄q ´ a1px̄qq
h

“ lim
hÑ0

ppa1px̄ ` hqq2c3px̄ ` hq
h

´ a1px̄ ` hq ´ a1px̄q
h

q

“ lim
hÑ0

ppa1px̄ ` hqq2pc3px̄q ` c1
3pξqhq

h
´ a1px̄ ` hq ´ a1px̄q

h
q

“ lim
hÑ0

ppa1px̄ ` hqq2c1
3pξq ´ a1px̄ ` hq ´ a1px̄q

h
q

with ξ P px̄, x̄ ` hq. With a1 being continuous this yields the existence of

lim
hÑ0

a1px̄ ` hq ´ a1px̄q
h

,

hence a1 is differentiable at all points x̄ P R0. Therefore the Tractability Index is only
defined for (4.2), if a is two times differentiable.
The same behavior can also be observed for circuits without controlled elements.
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Example 4.3.
We consider the electric circuit in Figure 4.2 with two capacitors, two resistors, one
inductor and one current source. Let the conductance of both resistors be G1 “ G2 “ 1
and also the inductance of the inductor and the capacitance of the second capacitor be
L “ C2 “ 1. Let is be an arbitrary continuously differentiable function and define the
characteristic curve of the first capacitor and the function qC by:

qC1pxq :“

$’&
’%
x, x ă 1

0.5x2 ` 0.5, 1 ď x ă 2

2x ´ 1.5, 2 ď x

and qCpxq “
ˆ
qC1px1q

x2

˙
.

Then the equations of the MNA are given by:

AC
d

dt
qCpAT

Ceq ` ARA
T
Re ` ALjL ` AIisptq “ 0

d

dt
jL ´ AT

Le “ 0

with

AC “

¨
˚̋̊ 0 0

1 1
´1 ´1
0 0

˛
‹‹‚, AR “

¨
˚̋̊ 1 0

´1 0
0 1
0 ´1

˛
‹‹‚, AL “

¨
˚̋̊´1

0
0
0

˛
‹‹‚, AI “

¨
˚̋̊0
0
0
1

˛
‹‹‚.

e1

e2 e3

e4

G1 G2

isptqL
jL

C2

C1

Figure 4.2: Electric circuit without controlled elements.
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4 The Concept of the Dissection Index

The Jacobian of qC1 is given by

C1pxq :“

$’&
’%
1, x ă 1

x, 1 ď x ă 2

2, 2 ď x.

Furthermore we denote the matrices

A “

¨
˚̊̊
˚̋

0 0 0
1 1 0

´1 ´1 0
0 0 0
0 0 1

˛
‹‹‹‹‚, D “

¨
˝0 C1pe2 ´ e3q ´C1pe2 ´ e3q 0 0
0 1 ´1 0 0
0 0 0 0 1

˛
‚

and

B “

¨
˚̊̊
˚̋

1 ´1 0 0 ´1
´1 1 0 0 0
0 0 1 ´1 0
0 0 ´1 1 0
1 0 0 0 0

˛
‹‹‹‹‚.

Therefore we get the first G of the matrix chain

G0 “

¨
˚̊̊
˚̋
0 0 0 0 0
0 C ´C 0 0
0 ´C C 0 0
0 0 0 0 0
0 0 0 0 1

˛
‹‹‹‹‚ and N0 “ spanp

¨
˚̊̊
˚̋
1
0
0
0
0

˛
‹‹‹‹‚,

¨
˚̊̊
˚̋
0
1
1
0
0

˛
‹‹‹‹‚,

¨
˚̊̊
˚̋
0
0
0
1
0

˛
‹‹‹‹‚q

with C :“ C1pe2 ´ e3q ` 1. We choose Q0 and obtain G1 and N1 as follows

Q0 “

¨
˚̊̊
˚̋
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0

˛
‹‹‹‹‚, G1 “

¨
˚̊̊
˚̋

1 ´1 0 0 0
´1 1 ` C ´C 0 0
0 1 ´ C C ´1 0
0 ´1 0 1 0
1 0 0 0 1

˛
‹‹‹‹‚ and N1 “ spanp

¨
˚̊̊
˚̋

´1
´1
´1
´1
1

˛
‹‹‹‹‚q.

This yields the projectors

Q1 “

¨
˚̊̊
˚̋
0 ´c1 c1 0 ´1
0 ´c1 c1 0 ´1
0 ´c1 c1 0 ´1
0 ´c1 c1 0 ´1
0 c1 ´c1 0 1

˛
‹‹‹‹‚ and P1 “

¨
˚̊̊
˚̋
1 c1 ´c1 0 1
0 1 ` c1 ´c1 0 1
0 c1 1 ` c1 0 1
0 c1 ´c1 1 1
0 ´c1 c1 0 0

˛
‹‹‹‹‚
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with a continuous function c1. With the help of the borderline projector

R “
¨
˚̋ C1pe2´e3q

C1pe2´e3q`1
C1pe2´e3q

C1pe2´e3q`1
0

1
C1pe2´e3q`1

1
C1pe2´e3q`1

0

0 0 1

˛
‹‚

and

DP1 “ D ´ DQ1 “ D `
¨
˝0 0 0 0 0
0 0 0 0 0
0 ´c1 c1 0 ´1

˛
‚

we obtain

DP1D
´ “ DD´ `

¨
˝0 0 0
0 0 0
˚ ˚ ˚

˛
‚“ R `

¨
˝0 0 0
0 0 0
˚ ˚ ˚

˛
‚“

¨
˚̋ C1pe2´e3q

C1pe2´e3q`1
C1pe2´e3q

C1pe2´e3q`1
0

1
C1pe2´e3q`1

1
C1pe2´e3q`1

0

˚ ˚ ˚

˛
‹‚

with arbitrary entries ˚. Due to

1

C1pxq ` 1
:“

$’&
’%

1
2
, x ă 1
1

x`1
, 1 ď x ă 2

1
3
, 2 ď x

DP1D
´ is not differentiable. It does not mean that we cannot find projectors Q0, P0,

Q1 and P1 such that DP1D
´ is differentiable. It may be possible to choose a different

Q0, such that the new N1 enables us to choose a Q1, which leads to a differentiable term
DP1D

´. However, this observation leads us to our last desired property of an index
concept: It should be possible to describe the projectors or basis functions of a stage of
the matrix chain without additional constraints from the other stages. This dependency
in the tractability concept becomes a burden especially if the index of the DAE becomes
larger than 2. In this case of admissible projectors, the kernel N1 invokes a condition on
the choice of Q2 but at the same time depends on the choice of Q0. This weakens the
step-by-step concept of the Tractability Index.

4.1 Dissection Index

In the following we will introduce an index concept, which improves the following prop-
erties of the Tractability Index concept and the Strangeness Index concept:

(i) The non-linearity of the projectors and matrices.
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4 The Concept of the Dissection Index

(ii) The differentiability assumptions regarding the involved functions.

(iii) The independence between the stages of the step-by-step analysis.

While we will base our mixed index concept on a splitting strategy using basis func-
tions, the Tractability Index uses projectors for this purpose. The advantage of projector
functions is that they need less assumptions regarding the domain to be differentiable.
Nevertheless we favor basis functions since they preserve the original size of the equations
while splitting them.

The formulation of the Strangeness Index concept with the help of projector can be found
in [Lam07].

Before we can define this mixed index concept we have to set some preparations regard-
ing the basis functions. We start with the definition of the complementary kernel, the
transposed kernel and the transposed complementary kernel.

Definition 4.4. (Complementary Functions)

Let V be a vector space and W be a subspace of V . Let U be a subspace of V such that
U ‘ W “ V . We say U is a direct difference between V and W and write U “ V a W .
Notice that U is not unique.

Let D Ă R
n be open and connected, let I Ă R be a compact interval and let M P

CpD ˆ I,Rmˆnq be a matrix function. We call Rn a kerMpx, tq a complementary kernel,
kerMT px, tq the transposed kernel and R

m a kerMT px, tq a transposed complementary
kernel for all px, tq P D ˆ I.

Thereby a canonical splitting of Rn and R
m is induced by the matrix function M . With

the next definition we fix this splitting into matrix valued functions.

Definition 4.5. (Basis functions)

Let I Ă R be a compact interval and D Ă R
n be open and connected. Let M P CpD ˆ

I,Rmˆnq be a matrix function. Assume there are integers ny P N and mw P N such that

ny “ dimpkerMpx, tqq and mw “ dimpkerMT px, tqq, @px, tq P D ˆ I

and define nx “ n ´ ny and mv “ m ´ mw. Choose four matrix functions

P : D ˆ I Ñ R
nˆnx , Q : D ˆ I Ñ R

nˆny ,
V : D ˆ I Ñ R

mˆmv , W : D ˆ I Ñ R
mˆmw

such that the set of the columns of the matrix functions form basises of a complemen-
tary kernel, the kernel, a complementary transposed kernel and the transposed kernel,
respectively. We call P , Q, V and W the associated basis functions of M .
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The idea of using basis functions for a decoupling of a DAE goes back to Kunkel and
Mehrmann, cf. [KM06].
For the associated basis functions of a matrix function M it holds

imP px, tq “ R
n a kerMpx, tq, imQpx, tq “ kerMpx, tq,

imV px, tq “ R
m a kerMT px, tq, imW px, tq “ kerMT px, tq

point wise. Additionally it holds nx ` ny “ n, mv ` mw “ m and nx “ mv “ rkM .

Remark 4.6.
Let I Ă R be a compact interval and D Ă R

n be open and connected. Let M P CpD ˆ
I,Rmˆnq be a matrix function. Let P and V be basis functions of a complementary kernel
and a transposed complementary kernel. Then the matrix pV JMP qpx, tq is non-singular
for all px, tq P D ˆ I. The matrix pV JMP qpx, tq is quadratic due to nx “ mv “ rkM .
Let z ‰ 0 then it follows P px, tqz ‰ 0 since P has full column rank. By imP px, tq “
R

n akerMpx, tq and P px, tqz ‰ 0 it follows that Mpx, tqpP px, tqzq ‰ 0 which finally leads
to pV JMP qpx, tqz “ V Jpx, tqpMpx, tqP px, tqzq ‰ 0 by imV px, tq “ R

m a kerMT px, tq.
We notice that the integers ny, nx, nw and nv may be zero. In this case the associated
matrix would have zero columns, hence the matrix has no entries. Now we are able
to understand these four sub-spaces as matrix valued functions, but up until now these
definitions are only point wise. The next Lemma will provide us with criteria which lead
to continuous or even differentiable basis functions.

Lemma 4.7. (Global differentiable basis functions, Lemma 2.1.10. in [Ste06])
Let I Ă R be a compact interval and D Ă R

n be C l-diffeomorphic to a parallelepiped
in R

n. Let be M P C lpD ˆ I,Rmˆnq. Furthermore, suppose there is an r P N such
that dimpimMpz, tqq “ r for all pz, tq P D ˆ I. Then there exists a matrix function
Q P C lpD ˆ I,Rn,n´rq, with imQpz, tq “ kerMpz, tq for all pz, tq P D ˆ I.

So the differentiability of the matrix Mpx, tq passes down to the associated basis functions
as long as we operate on domains described in Lemma 4.7.
In order to prepare the mentioned splitting strategy involving basis functions choose a
fixed but arbitrary point px˚, t˚q P DˆI and consider the basis functions P˚ :“ P px˚, t˚q
and Q˚ :“ Qpx˚, t˚q at this point. Combine the basis function P˚ of a complementary
kernel and the basis function Q˚ of the kernel into one matrix T :“ `

P˚ Q˚
˘
. Notice that

this matrix is quadratic and non-singular since nx ` ny “ n and together the set of the
columns of P˚ and Q˚ form a basis of Rn. Hence T is suited as a coordinate transformation
matrix and we can split any z P R

n uniquely into an x P R
nx and a y P R

ny by

z “ `
P˚ Q˚

˘ ˆ
x
y

˙
“ P˚x ` Q˚y
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4 The Concept of the Dissection Index

We take the analogous considerations for a complementary transposed kernel and the
transposed kernel. These considerations lead to two basis functions V˚ :“ V px˚, t˚q and

W˚ :“ W px˚, t˚q and the non-singularity of F :“ `
V˚ W˚

˘J
. With these basis functions

we can formulate a factorization of an equation

f “ 0 ô
ˆ
V J̊
W J̊

˙
f “ 0 ô

ˆ
V J̊f
W J̊f

˙
“ 0

with f P R
m. With this splitting we obtain two properties for nonlinear functions.

Lemma 4.8. (Basis functions)
Let I Ă R be a compact interval, let D Ă R

n be open and convex and let f, g P C1pD ˆ
I,Rnq. Assume the existence of basis functions P ptq and Qptq of a complementary kernel
of B

Bzfpz, tq and the kernel of B
Bzfpz, tq being independent of z. Further let exist a basis

function W ptq of the transposed kernel of B
Bzgpz, tqQptq being also independent of z. Then

for each pz, tq P D ˆ I there is a unique x P R
nx such that

fpz, tq “ fpP ptqx, tq and WJptqgpz, tq “ WJptqgpP ptqx, tq.
Proof .
Let z and t be fixed. Then there is a unique x P R

nx and a unique y P R
ny such that

z “ P ptqx ` Qptqy. Applying the mean value theorem to f we get

fpz, tq ´ fpP ptqx, tq “
ż 1

0

fzpP ptqx ` sQptqy, tqdspz ´ P ptqxq

“
ż 1

0

fzpP ptqx ` sQptqy, tqQptqlooooooooooooooomooooooooooooooon
“0

ds y “ 0,

since imQptq “ ker fzpz, tq for all pz, tq P D ˆ I. Analogously we obtain

WJptqgpz, tq ´ WJptqgpP ptqx, tq
“WJptqpgpz, tq ´ gpP ptqx, tqq
“WJptq

ż 1

0

gzpP ptqx ` sQptqy, tqdspz ´ P ptqxq

“
ż 1

0

WJptqgzpP ptqx ` sQptqy, tqQptqloooooooooooooooooooomoooooooooooooooooooon
“0

ds y “ 0.

For a better understanding of the matrix chain we demonstrate it for the case of a linear
DAE with constant coefficients. But first we need the following lemma as a preparation:
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Lemma 4.9. (The differentiable variable part)
Let I Ă R be a compact interval and D Ă R

n be open and connected. Let d P
C1pD ˆ I,Rmq and let P pz, tq, Qpz, tq, V pz, tq and W pz, tq be the associated basis func-
tions of B

Bzdpz, tq. Further let P and Q be independent of z, i.e. P pz, tq “ P ptq and
Qpz, tq “ Qptq, and let them be continuously differentiable. We define x and y by

z “ `
P ptq Qptq˘ `

x y
˘J

. Then it holds

xptq P C1pI,Rnq.
Proof .
Due to the differentiability of d and Lemma 4.8 we get

d1pzptq, tq
“d1pP ptqxptq, tq
“lim

hÑ0

dpP ptqxptq, tq ´ dpP pt ´ hqxpt ´ hq, t ´ hq
h

“lim
hÑ0

dpP ptqxptq, tq ´ dpP ptqxpt ´ hq, tq
h

` lim
hÑ0

dpP ptqxpt ´ hq, tq ´ dpP ptqxpt ´ hq, t ´ hq
h

` lim
hÑ0

dpP ptqxpt ´ hq, t ´ hq ´ dpP pt ´ hqxpt ´ hq, t ´ hq
h

“lim
hÑ0

dpP ptqxptq, tq ´ dpP ptqxpt ´ hq, tq
h

` dzpP ptqx, tqP 1ptqx ` dtpP ptqx, tq.
Apply the Mean Value Theorem and obtain

d1pzptq, tq ´ dzpP ptqx, tqP 1ptqx ´ dtpP ptqx, tq
“lim

hÑ0

dpP ptqxptq, tq ´ dpP ptqxpt ´ hq, tq
h

“lim
hÑ0

ż 1

0

dzpsP ptqxptq ` p1 ´ sqP ptqxpt ´ hq, tqds P ptqxptq ´ xpt ´ hq
h

“dzpP ptqxptq, tqP ptqlim
hÑ0

xptq ´ xpt ´ hq
h

.

It holds that dpzptq, tq “ dpP ptqxptq, tq by Lemma 4.8 hence V does not depend on yptq.
Therefore we get

lim
hÑ0

xptq ´ xpt ´ hq
h

“Mpxptq, tqpd1pP ptqxptq, tq ´ dzpP ptqxptq, tqP 1ptqxptq ´ dtpP ptqxptq, tqq
with Mpxptq, tq :“ pV pxptq, tqdzpP ptqxptq, tqP ptqq´1V pxptq, tq.
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4 The Concept of the Dissection Index

Let I Ă R be a compact interval. For px, tq P R
n ˆ I observe the following equation

ApDxq1 ` Bx “ rptq
with A P R

nˆm, D P R
mˆn, B P R

nˆn, Dx P C1pRn,Rmq and r : I Ñ R
n sufficiently

smooth. Assume that the DAE fulfills the basic Properties 2.25. Let P , Q, V and W be
associated basis functions of AD.
With Dxptq P C1pI,Rmq and Lemma 4.9 it follows that x0ptq P C1pI,Rnq. Begin the
decomposition of the linear DAE by inserting this variable splitting.

ApDxq1 ` Bx “ rptq
ôADPx1

0 ` BPx0 ` BQy0 “ rptq
Next split the equations by multiplying V J and WJ from the left.

ADPx1
0 ` BPx0 ` BQy0 “ rptq

ô
"

V JADPx1
0 ` V JBPx0 ` V JBQy0 “ V Jrptq

WJADPx1
0 ` WJBPx0 ` WJBQy0 “ WJrptq

ô
"

V JADPx1
0 ` V JBPx0 ` V JBQy0 “ V Jrptq

WJBPx0 ` WJBQy0 “ WJrptq.
Then the first step of the matrix chain provides

G1 :“ V JADP, Bv
x1

:“ V JBP, Bv
y1

:“ V JBQ
Bw

x1
:“ WJBP, Bw

y1
:“ WJBQ.

Inserting this notation in the equations we get

G1x
1
0 ` Bv

x1
x0 ` Bv

y1
y0 “ V Jrptq (4.6a)

Bw
x1
x0 ` Bw

y1
y0 “ WJrptq. (4.6b)

If Bw
y1

“ WJBQ would be a quadratic non-singular matrix then Equation (4.6b) would
give us an explicit expression for the whole variable y0 by

ỹ1 :“ y0 “ pBw
y1

q´1pWJrptq ´ Bw
x1
x0q. (4.7)

If we then insert this into Equation (4.6a) and multiply this equation with the inverse of
G1 which is non-singular by the definition of P and Q we would obtain an explicit ODE
for the whole variable x0 “: x1 as we can see as follows:

G1x
1
1 ` Bv

x1
x1 ` Bv

y1
ỹ1 “ V Jrptq

ñ G1x
1
1 ` Bv

x1
x1 ` Bv

y1
pBw

y1
q´1pWJrptq ´ Bw

x1
x1q “ V Jrptq
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ñ G1x
1
1 ` pBv

x1
´ Bv

y1
pBw

y1
q´1Bw

x1
qx1 “ pV J ´ Bv

y1
pBw

y1
q´1WJqrptq.

Together with Equation (4.7) we obtain the decoupled equations:

x1
1 “ ´G´1pBv

x1
´ Bv

y1
pBw

y1
q´1Bw

x1
qx1 ` G´1pV J ´ Bv

y1
pBw

y1
q´1WJqrptq

ỹ1 “ pBw
y1

q´1pWJrptq ´ Bw
x1
x1q.

If Bw
y1

is singular then we need the next sequence of basis functions. Therefore let
Py1 , Qy1 , Vy1 ,Wy1 be the four associated basis functions of Bw

y1
and let Px1 , Qx1 be the

associated basis functions of WJ
y1
Bw

x1
with respect to the kernel and a complementary

kernel. Furthermore let Vx1 ,Wx1 be the associated basis functions of G1Qx1 with respect
to a transposed complementary kernel and the transposed kernel.
We denote y0 “ Py1 ỹ1 ` Qy1y1 an x0 “ Px1x̃1 ` Qx1x1. With these two variable splittings
and an equation splitting by a multiplication with V J

y1
and WJ

y1
continue the splitting of

the linear DAE.

G1x
1
0 ` Bv

x1
x0 ` Bv

y1
y0 “ V Jrptq

Bw
x1
x0 ` Bw

y1
y0 “ WJrptq

ô
"

G1x
1
0 ` Bv

x1
x0 ` Bv

y1
y0 “ V Jrptq

Bw
x1
x0 ` Bw

y1
Py1 ỹ1 “ WJrptq

ô
$&
%

G1x
1
0 ` Bv

x1
x0 ` Bv

y1
y0 “ V Jrptq

V J
y1
Bw

x1
x0 ` V J

y1
Bw

y1
Py1 ỹ1 “ V J

y1
WJrptq

WJ
y1
Bw

x1
x0 “ WJ

y1
WJrptq

ô
$&
%

G1x
1
0 ` Bv

x1
x0 ` Bv

y1
y0 “ V Jrptq

V J
y1
Bw

x1
x0 ` V J

y1
Bw

y1
Py1 ỹ1 “ V J

y1
WJrptq

WJ
y1
Bw

x1
Px1x̃1 “ WJ

y1
WJrptq.

We assume the non-singularity of WJ
y1
Bw

x1
Px1 , since otherwise the system would be un-

derdetermined. Furthermore V J
y1
Bw

y1
Py1 is also non-singular due to the definition of V J

y1

and Py1 . Therefore the two algebraic equations provide us with explicit expressions for
ỹ1 and x̃1 by:

x̃1 “ pWJ
y1
Bw

x1
Px1q´1WJ

y1
WJrptq “: rx1ptq

ỹ1 “ pV J
y1
Bw

y1
Py1q´1pV J

y1
WJrptq ´ V J

y1
Bw

x1
x0q

“ pV J
y1
Bw

y1
Py1q´1pV J

y1
WJrptq ´ V J

y1
Bw

x1
Px1x̃1 ´ V J

y1
Bw

x1
Qx1x1q

“ pV J
y1
Bw

y1
Py1q´1pV J

y1
WJrptq ´ V J

y1
Bw

x1
Px1rx1ptqq ´ pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1x1

“: ry1ptq ´ pV J
y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1x1.

Now, split the x0 and y0 in the dynamic part of the equations

G1x
1
0 ` Bv

x1
x0 ` Bv

y1
y0 “ V Jrptq

G1Qx1x
1
1 ` G1Px1 x̃

1
1 ` Bv

x1
Qx1x1 ` Bv

x1
Px1x̃1 ` Bv

y1
Qy1y1 ` Bv

y1
Py1 ỹ1 “ V Jrptq.
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4 The Concept of the Dissection Index

We insert the expression for x̃1 and obtain

G1Qx1x
1
1 ` Bv

x1
Qx1x1 ` Bv

y1
Qy1y1 ` Bv

y1
Py1 ỹ1 “ r˚

1 ptq
with r1̊ ptq :“ V Jrptq ´ G1Px1r

1
x1

ptq ´ Bv
x1
Px1rx1ptq. And finally insert the expression for

ỹ1 into the equation and get

G1Qx1x
1
1 ` pBv

x1
Qx1 ´ Bv

y1
Py1pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1qx1 ` Bv

y1
Qy1y1 “ r1ptq

with r1ptq :“ r1̊ ptq´ry1ptq. Include the last pair of basis functions of the current sequence
Vx1 and Wx1 by multiplying V J

x1
and WJ

x1
from the left side to split the equation with

respect to G1Qx1x
1
2

G1Qx1x
1
1 ` pBv

x1
Qx1 ´ Bv

y1
Py1pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1qx1 ` Bv

y1
Qy1y1 “ r1ptq

ô
"

G2x
1
1 ` Bv

x2
x1 ` Bv

y2
y1 “ V J

x1
r1ptq,

Bw
x2
x1 ` Bw

y2
y1 “ WJ

x1
r1ptq.

with the same notation of the matrix chain

G2 :“V J
x1
G1Qx1 ,

Bv
x2

:“V J
x1
Bv

x1
Qx1 ´ V J

x1
Bv

y1
Py1pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1 ,

Bw
x2

:“WJ
x1
Bv

x1
Qx1 ´ WJ

x1
Bv

y1
Py1pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1 ,

Bv
y2

:“V J
x1
Bv

y1
Qy1 ,

Bw
y2

:“WJ
x1
Bv

y1
Qy1 .

If Bw
y2
would be quadratic and non-singular we would notate ỹ2 :“ y1 and x2 :“ x1 and the

process would end. Otherwise repeat this process until Bw
yi
is quadratic and non-singular

if possible.
While the Strangeness Index operates on DAEs in standard form the Tractability Index
deals with DAEs with a properly stated derivative term, in recent works. The mixed
index concept will be defined on a DAE class which includes both DAEs in standard form
and properly stated DAEs.

Definition 4.10. (Semi-properly stated derivative term)
The DAE (2.14) has a semi-properly stated derivative term on DˆI, if im B

Bxd and ker B
Byf

are C-subspaces in R
m, and the condition

im
B

Byfpy, x, tq “ im
B

Byfpy, x, tq B
Bxdpx, tq, @py, x, tq P R

m ˆ D ˆ I, (4.8)

holds.
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For a DAE in standard form we have dpx, tq “ x hence we obtain B
Bxdpx, tq “ I and

therefore (4.8) holds. For a proper formulated DAE the identity (4.8) follows directly
from the definition of the properly stated derivative term.
In the following we will mainly work with DAEs with a semi-properly stated derivative
term. Therefore we define:

Definition 4.11. (DAEs with nonlinear semi-properly stated derivative term)
Let I Ă R and D Ă R

n be open subsets. Let f P CpRm ˆ D ˆ I,Rnq be continuous such
that the partial derivatives B

Byfpy, x, tq and B
Bxfpy, x, tq are also continuous with B

Byfpy, x, tq
being singular for all triples py, x, tq P R

m ˆ D ˆ I. Furthermore let d P C1pD ˆ I,Rmq
and let d and f be semi-properly formulated. We call

fpd1pxptq, tq, xptq, tq “ 0, xpt0q “ x0 (4.9)

a DAE with a nonlinear semi-properly derivative term.

Now we are starting to formulate the mixed index concept. Consider a DAE (2.14) with
a semi-properly stated derivative term and define the matrix functions

Dpx, tq :“ B
Bxdpx, tq

Apx1, x, tq :“ B
ByfpDpx, tqx1 ` dtpx, tq, x, tq,

Bpx1, x, tq :“ B
BxfpDpx, tqx1 ` dtpx, tq, x, tq.

with x1 P R
n, x P D and t P I. Again B

By and B
Bx denote the partial derivatives with

respect to the first and second argument of f .
With the help of the basis functions we construct a matrix chain emulating the chain of
the Tractability Index.

Definition 4.12. (Matrix chain)
Let P px1, x, tq, Qpx1, x, tq, V px1, x, tq and W px1, x, tq be associated basis functions of
Apx1, x, tqDpx, tq. The variable x1 is a auxiliary variable that can be seen as a place
holder for the derivative. This auxiliary variable is called jet variable, see [LMT13].
Hence the derivatives of P and Q depend on the second derivative of x and we need to
introduce new jet variables xi P R

n as placeholders for the i-th derivative, respectively.
Let i, k P N and define Xk :“ pxk, ..., x1, xq, further consider a sufficiently smooth function
gpX i´1, tq then we define a jet-derivative operator p.q1 as

g1pX i, tq :“ pgpX i´1, tqq1 :“ B
BtgpX i´1, tq `

i´1ÿ
j“0

B
Bxj

gpX i´1, tqxj`1.
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4 The Concept of the Dissection Index

Let P and Q be sufficiently smooth and define

G1pX1, tq :“V JpX1, tqApX1, tqDpx, tqP pX1, tq,
Bv

x1
pX2, tq :“V JpX1, tqBpX1, tqP pX1, tq ` V JpX1, tqApX1, tqpDpx, tqP pX1, tqq1,

Bv
y1

pX2, tq :“V JpX1, tqBpX1, tqQpX1, tq ` V JpX1, tqApX1, tqpDpx, tqQpX1, tqq1,
Bw

x1
pX1, tq :“WJpX1, tqBpX1, tqP pX1, tq,

Bw
y1

pX1, tq :“WJpX1, tqBpX1, tqQpX1, tq
as the next sequence of matrices. Let

• Py1 , Qy1 , Vy1 ,Wy1 be the four associated basis functions of Bw
y1

pX1, tq.
• Px1 , Qx1 be the basis functions of pWJ

y1
Bw

x1
qpX1, tqq with respect to the kernel and a

complementary kernel, respectively.

• Vx1 ,Wx1 be the basis functions of pG1Qx1qpX1, tq with respect to a complementary
transposed kernel and the transposed kernel, respectively.

The complementary kernel, the transposed kernel and the complementary transposed
kernel are defined in Definition 4.4. We keep formulating the sequence as long as possible
for i ě 2 up to an integer μ P N.
For the next sequence of matrices it is necessary to include the jet-derivative of Qxi´1

as
the jet-derivatives of DP and DQ were included in the first step. In the following we
assume that the occurring derivatives of the basis functions exists.
Then we construct

Gi “ V J
xi´1

Gi´1Qxi´1
Bv

xi
“ V J

xi´1
Bxi´1

Bv
yi

“ V J
xi´1

Byi´1

Bw
xi

“ WJ
xi´1

Bxi´1
Bw

yi
“ WJ

xi´1
Byi´1

with

Byi´1
:“Bv

yi´1
Qyi´1

Bxi´1
:“Bv

xi´1
Qxi´1

` Gi´1Q
1
xi´1

´ Bv
yi´1

Pyi´1
pV J

yi´1
Bw

yi´1
Pyi´1

q´1V J
yi´1

Bw
xi´1

Qxi´1
.

Therefore Gi, B
v
yi

and Bw
yi

depend on pX i´1, tq while Bv
xi

and Bw
xi

depend on pX i, tq due
to Q1

xi´1
, except for Bv

y2
and Bw

y2
which may depend on pX2, tq. Let

• Pyi , Qyi , Vyi ,Wyi be the four associated basis functions of Bw
yi

pX i´1, tq.
• Pxi

, Qxi
be the basis functions of pWJ

yi
Bw

xi
qpX i, tq with respect to the kernel and a

complementary kernel, respectively.

• Vxi
,Wxi

be the basis functions of pGiQxi
qpX i, tq with respect to a complementary

transposed kernel and the transposed kernel, respectively.
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We will use the term basis chain as a synonym for the term matrix chain.

The whole idea of a matrix chain belongs to the Tractability Index but at the same time
we can already see that the decoupling strategy mimics the strategy of the Strangeness
Index for linear DAEs, when compared with [KM06] on pages 56-80.
For a more consistent notation we integrate the first four basis functions to match the
notation of the other ones by

Qx0 :“ P, Qy0 :“ Q, Vx0 :“ V, Wx0 :“ W.

The splitting of the variables induced by the basis chain can be illustrated by the following
diagram:

x

x0 x1 xμ´2 xμ´1

x̃1 x̃2 x̃μ´1

xμ

y0 y1 yμ´2 yμ´1

ỹ1 ỹ2 ỹμ´1 ỹμ

P “ Qx0
Qx1

Px1

. . .

Px2

Qxμ´1

Pxμ´1

Qxμ

Q “ Qy0 Qy1

Py1

. . .

Py2

Qyμ´1

Pyμ´1 Pyμ

We notice that P is notated with Qx0 even though P is a basis of a complementary kernel.
But in the splitting sense bases denoted with a P indicate parts of the variables which
are set algebraically. The variables are recursively defined by:

x “ Px0 ` Qy0, xi´1 “ Pxi
x̃i ` Qxi

xi, yi´1 “ Pyi ỹi ` Qyiyi. (4.10)

In the case of a proper formulated DAE P px1, x, tq and Qpx1, x, tq would not depend on
x1 since the kernel and a complementary kernel of Apx1, x, tqDpx, tq would only depend
on the subspaces of Dpx, tq. Additionally, the matrices Bv

x1
pX2, tq and Bv

y1
pX2, tq do

not depend on x2 since P pX1, tq and QpX1, tq do not depend on x1 and consequently
pDP q1pX2, tq and pDQq1pX2, tq do not depend on x2. Furthermore a proper formulated
derivative term yields the identity Dpx, tqQpx, tq “ 0 hence we obtain

Bv
y1

pX1, tq “ V JpX1, tqBpX1, tqQpx, tq.
With the help of the matrix chain we define the Dissection Index.
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4 The Concept of the Dissection Index

Definition 4.13. (Dissection Index)
Let the DAE (4.9) have a semi-properly stated derivative term, let f and d be sufficiently
smooth, let G Ă D ˆ I be open and connected and let μ P N. We assume all basis
functions to exist and have constant rank on R

i¨n ˆ G for i “ 0, ..., μ. We define the
characteristic values ri of the DAE as r0 :“ rkAD and ri :“ ri´1 ` rkBw

yi
for i “ 1, . . . , μ.

Then the DAE (4.9) is said to be

1. regular with Dissection Index 0 on G, if r0 “ n,

2. regular with Dissection Index μ on G, if rμ´1 ă rμ “ n,

3. regular on G, if it is regular on G with any Dissection Index.

This definition of the Dissection Index seems very similar to the definition of the Tractabil-
ity Index in [LMT13], except for the crucial fact that the characteristic values are calcu-
lated differently. One could say that we lifted the basic decoupling idea of the Strangeness
Index for linear DAEs up to nonlinear DAEs by using the tools of the Tractability Index.
In the following we assume that a DAE has a constant Dissection Index on its whole
definition region. This is a crucial assumption for the rest of the thesis.
Notice that the matrix chain ends with Bw

y2
in the index 2 case, hence the calculation of Bv

x1

is not needed. This yields that neither pDpx, tqP pX1, tqq1 nor pDpx, tqQpX1, tqq1 is needed
in the proper formulated index 2 case. Furthermore we amplify that it is advantageous to
define an alternative ending of the matrix chain. Before defining the alternative matrix
ending, we are going to prove some basic property of the matrix chain.

Lemma 4.14.
Let the DAE (4.9) have a finite Dissection Index μ. Then the matrices Gi, W

J
xi
GiPxi

,
V J
yi
Bw

yi
Pyi and Bw

yμ are non-singular for i “ 1, . . . , μ.

Proof .
The columns of the basis function P are a basis of a complementary kernel of V JAD,
since they are a basis of a complementary kernel of V JAD and V is a basis function of
a transposed complementary kernel of AD. Hence, V JADP has a trivial kernel and due
to rkP “ rkV the matrix G1 “ V JADP is quadratic and therefore non-singular. As
an induction hypothesis it now holds that Gi´1 is non-singular. Then Gi´1Qxi´1

has full
column rank and therefore Gi “ V J

xi´1
Gi´1Qxi´1

is quadratic and non-singular, since Vxi´1

is a basis function of a transposed complementary kernel of Gi´1Qxi´1
.

Now we know that Gi is non-singular. Furthermore we know that
`
Vxi

Wxi

˘
and`

Pxi
Qxi

˘
are non-singular. Together this yields the non-singularity of

`
Vxi

Wxi

˘J
Gi

`
Pxi

Qxi

˘ “
ˆ
V J
xi
GiPxi

V J
xi
GiQxi

WJ
xi
GiPxi

0

˙
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and thereby the non-singularity of WJ
xi
GiPxi

.
The non-singularity of V J

yi
Bw

yi
Pyi follows directly by Remark 4.6.

We have rkQyμ´1 “ rkWyμ´1 “ rkPxμ´1 “ rkWxμ´1 , hence Bw
yμ “ WJ

xμ´1
Bv

yμ´1
Qyμ´1 is

quadratic. We deal with a DAE with a Dissection Index μ. This yields

n “ rkAD `
μÿ

i“1

rkBw
yi

which leads to

rkBw
yμ “ n ´ rkAD ´

μ´1ÿ
i“1

rkBw
yi

“ rkQy0 ´
μ´1ÿ
i“1

rkBw
yi

“ rkQy0 ´ rkBw
y1

´
μ´1ÿ
i“2

rkBw
yi

“ rkQy0 ´ rkPy1 ´
μ´1ÿ
i“2

rkBw
yi

“ rkQy1 ´
μ´1ÿ
i“2

rkBw
yi

...

“ rkQyμ´1 .

Hence, the matrix Bw
yμ has full rank. This yields in particular that we can choose Vyi “

Pyi “ I.

Now we introduce the alternative basis chain ending by the following lemma.

Lemma 4.15.
Let the DAE (4.9) have a semi-properly stated derivative term, let f and d be sufficiently
smooth and let G Ă D ˆ I be open and connected. Then the following two statements
are equivalent to each other:

• The DAE has Dissection Index μ.

• The DAE has a Dissection Index larger than μ ´ 1. Let Wẙ and Vẙ be the ba-
sis functions of the transposed kernel and a complementary transposed kernel of
Bv

yμ´1
Qyμ´1 , respectively. Then pWẙ qJGμ´1Qxμ´1 is non-singular.

Proof .
Let the DAE have Dissection Index μ. Then

`
Gμ´1Qxμ´1 Bv

yμ´1
Qyμ´1

˘
is non-singular

due toˆ
V J
xμ´1

WJ
xμ´1

˙ `
Gμ´1Qxμ´1 Bv

yμ´1
Qyμ´1

˘ “
ˆ
V J
xμ´1

Gμ´1Qxμ´1 V J
xμ´1

Bv
yμ´1

Qyμ´1

0 WJ
xμ´1

Bv
yμ´1

Qyμ´1

˙
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4 The Concept of the Dissection Index

being non-singular. But therebyˆ pVẙ qJ

pWẙ qJ

˙ `
Gμ´1Qxμ´1 Bv

yμ´1
Qyμ´1

˘ “
ˆ pVẙ qJGμ´1Qxμ´1 pVẙ qJBv

yμ´1
Qyμ´1

pWẙ qJGμ´1Qxμ´1 0

˙

is non-singular, hence pWẙ qJGμ´1Qxμ´1 is non-singular. The other direction of the proof
can be shown analogously.

The alternative chain ending in Lemma 4.15 is helpful since it may happen that Wẙ is
easier to calculate than Wxμ´1 . If we further denote Bx0 :“ BP and By0 :“ BQ we can
formulate the following lemma.

Lemma 4.16.
Let a DAE (4.9) have a finite Dissection Index μ P N then it holds:

WJ
yi
Bw

xi
Pxi

is non-singular for i “ 1, ..., μ.

Proof .
With the definition of V and W we obtain

n “ rkV ` rkW “ rkAD ` rkWx0

while the definition of the Dissection Index provides

n “ r0 `
μÿ

i“1

rkBw
yi

“ rkAD `
μÿ

i“1

rkBw
yi

and therefore we achieve

rkWx0 “
μÿ

i“1

rkBw
yi
.

With the definition of Pxi
and Pyi we obtain

rkPxi
` rkPyi “ rkWJ

yi
Bw

xi
` rkBw

yi
“ rk

`
Bw

xi
Bw

yi

˘
“ rk pWJ

xi´1

`
Bxi´1

Byi´1

˘q ď rkWJ
xi´1

“ rkWxi´1

(4.11)

on R
i¨m ˆ G for i “ 1, ..., μ, since the columns of Wyi are a basis of kerBw

yi
. Furthermore

we get

rkWxi
“ dimpkerQJ

xi
GJ

i q “ dimpkerQJ
xi

q “ dim pimPxi
q “ rkPxi

and

rkBw
yi

“ dimpimBw
yi

q “ dim pimPyiq “ rkPyi (4.12)
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for i “ 1, ..., μ. Together we obtain

rkPxi
` rkBw

yi
“ rkPxi

` rkPyi ď rkWxi´1
“ rkPxi´1

for i “ 2, ..., μ (4.13)

We assume that at least one of the inequalities in (4.13) is strict which would lead to

rkWx0

(4.11)“ rkPx1 ` rkPy1

(4.12)“ rkPx1 ` rkBw
y1

(4.13)ą rkPxμ `
μÿ

i“1

rkBw
yi

ě
μÿ

i“1

rkBw
yi
.

But this would be a contradiction to rkWx0 “ řμ
i“1 rkB

w
yi
and therefore it holds

rkPxi
` rkPyi “ rkWxi´1

.

Due to Bw
yi

“ WJ
xi´1

Byi´1
and Vyi and Wyi being basis functions with respect to the

transposed complementary kernel and the transposed kernel of Bw
yi
we obtain

rkPxi
“ rkWxi´1

´ rkPyi “ rkWxi´1
´ rkVyi “ rkWyi

and by rkPxi
“ rkWJ

yi
Bw

xi
it follows that WJ

yi
Bw

xi
Pxi

is non-singular for all i “ 1, ..., μ.

Before we can use the Dissection Index there are two fundamental properties which must
hold to enable us to call the Dissection Index well defined. First of all the value of the
index is not allowed to depend on the choice of the basis functions. Before we proof this
statement we formulate two technical lemmata.

Lemma 4.17.
Let G Ă R

k be C l-diffeomorphic to a parallelepiped in R
k and let be M P C lpG,Rmˆnq.

Furthermore, suppose that dimpimMpzqq “ r for all z P G. By Lemma 4.7 there exists
a matrix valued function Q P C lpG,Rnˆpn´rqq with imQpzq “ kerMpzq for all z P G. Let
Q̄ P C lpG,Rnˆpn´rqq be another matrix valued function with im Q̄pzq “ kerMpzq for all
z P G. Then there exists a transformation function T P C lpG,Rpn´rqˆpn´rqq such that
Q̄pzq “ QpzqT pzq and T pzq being non-singular for all z P G.
Proof .
The matrix Qpzq has full column rank, hence we can choose

T pzq :“ pQJpzqQpzqq´1QJpzqQ̄pzq
with T pzq P C lpG,Rpn´rqˆpn´rqq since the inverse matrix A´1 of a matrix A is as smooth
as the matrix A itself. We assume that T pzq is singular for a z P G, hence there would be
a x P R

n´r with x ‰ 0 and qJpzqQ̄pzqx “ 0. The matrix Q̄pzq has full column rank, thus
Q̄pzqx ‰ 0 and Q̄pzqx P kerMpzq. Therefore Q̄pzqx is a nonzero element of the kernel of
Mpzq which is perpendicular to a basis of the kernel of Mpzq. This is a contradiction and
therefore the assumption is wrong.
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Lemma 4.18.
Let G Ă R

k be C l-diffeomorphic to a parallelepiped in R
k and let be M P C lpG,Rmˆnq.

Furthermore, suppose that dimpimMpzqq “ r for all z P G. By Lemma 4.7 there
exists a matrix valued function Q P C lpG,Rnˆpn´rqq with imQpzq “ kerMpzq for all
z P G. Let P P C lpG,Rnˆrq and P̄ P C lpG,Rnˆrq be two matrix valued functions
with im P̄ pzq ‘ kerMpzq “ im P̄ pzq ‘ kerMpzq “ R

n for all z P G. Then there ex-
ist two transformation functions T P C lpG,Rrˆrq and Mq P C lpG,Rpn´rqˆrq such that
P̄ pzq “ P pzqT pzq ` QpzqMqpzq with T pzq being non-singular for all z P G.
Proof .
The matrix

`
P pzq Qpzq˘

is non-singular, hence we can chooseˆ
T pzq
Mqpzq

˙
:“ `

P pzq Qpzq˘´1
P̄ pzq.

Assume that there is a z P G such that T pzq does not have full row rank. Then there would
be a x P im P̄ pzq with x P imQpzq which is a contradiction to im P̄ pzq ‘ kerMpzq “ R

n,
P̄ P C lpG,Rnˆrq and dimpimMpzqq “ r. Hence T pzq is quadratic and T pzq has full row
rank.

With the help of these lemmata we are able to prove:

Theorem 4.19. (Rank independence)
Consider a DAE (4.9) with a semiproperly stated derivative term and let G Ă D ˆ I be
open and connected. Let, for a given μ P N, a basis functions sequence, associated to the
DAE, exist. Then the characteristic values r0, ..., rμ and the Dissection Index itself are
independent of the special choice of the involved basis functions.

Proof . To prove Theorem 4.19 we have to show that the ranks of AD and Bw
yi

are
independent of the choice of the basis functions for all 1 ď i ď μ. Obviously rkAD does
not depend on the basis functions.
We define two different basis chains

P,Q, V,W, Pxi
, Qxi

, Pyi , Qyi , Vxi
,Wxi

, Vyi ,Wyi

and

P̄ , Q̄, V̄ , W̄ , P̄xi
, Q̄xi

, P̄yi , Q̄yi , V̄xi
, W̄xi

, V̄yi , W̄yi

and show in the following that rkBw
yi
is equal for both basis chains for all 1 ď i ď μ.

We know that Q and Q̄ and W and W̄ are basis functions for the same subspace, re-
spectively. So there are two non-singular matrices TQ and TW which serve as coordinate
transformations such that

Q̄ “ QTQ and W̄ “ WTW .
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By Lemma 4.18 there are transformation matrices TP , TV , MQ and MW with TP and TV

being non-singular such that

P̄ “ PTP ` QMQ and V̄ “ V TV ` WMW .

We are able to choose a continuously differentiable transformation matrix TQ since Q and
Q̄ are continuously differentiable, see Lemma 4.17.
For i ě 0 we show with the help of an induction that there are suitable coordinate
transformations TVxi`1

, TWxi`1
, TQxi`1

, TQyi`1
,MWxi`1

andMQxi`1
and matricesXQxi`1

such
that

Ḡi`1 “TJ
Vxi

Gi`1TQxi

B̄v
xi`1

“TJ
Vxi

Bv
xi`1

TQxi
` MJ

Wxi
Bw

xi`1
TQxi

` TJ
Vxi

Gi`1T
1
Qxi

` TJ
Vxi

Bv
yi`1

XQxi
` MJ

Wxi
Bw

yi`1
XQxi

B̄v
yi`1

“TJ
Vxi

Bv
yi`1

TQyi
` MJ

Wxi
Bw

yi`1
TQyi

B̄w
xi`1

“TJ
Wxi

Bw
xi`1

TQxi
` TJ

Wxi
Bw

yi`1
XQxi

B̄w
yi`1

“TJ
Wxi

Bw
yi`1

TQyi

and

Q̄yi`1
“ T´1

Qyi
Qyi`1

TQyi`1
, P̄yi`1

“ T´1
Qyi

pPyi`1
TPyi`1

` Qyi`1
MQyi`1

q,
W̄yi`1

“ T´1
Wxi

Wyi`1
TWyi`1

, V̄yi`1
“ T´1

Wxi
pVyi`1

TVyi`1
` Wyi`1

MWyi`1
q

Q̄xi`1
“ T´1

Qxi
Qxi`1

TQxi`1
, P̄xi`1

“ T´1
Qxi

pPxi`1
TPxi`1

` Qxi`1
MQxi`1

q
W̄xi`1

“ T´1
Vxi

Wxi`1
TWxi`1

, V̄xi`1
“ T´1

Vxi
pVxi`1

TVxi`1
` Wxi`1

MWxi`1
q

holds with MWx0
“ MW , MQx0

“ MQ, XQx0
“ MQ, TVx0

“ TV , TQx0
“ TP , TWx0

“ TW

and TQy0
“ TQ.

Induction start pi “ 0q
With these coordinate transformation matrices we can write

Ḡ1 “ V̄ JADP̄ “ pTJ
V V

J ` MJ
WWJqADpPTP ` QMQq “ TJ

V V
JADPTP

“ TJ
V G1TP ,

B̄w
y1

“ W̄JBQ̄ “ TJ
WWJBQTQ

“ TJ
WBw

y1
TQ,

B̄w
x1

“ W̄JBP̄ “ TJ
WWJBpPTP ` QMQq

“ TJ
WBw

x1
TP ` TJ

WBw
y1
MQ,

B̄v
y1

“ V̄ JApDQ̄q1 ` V̄ JBQ̄

88



4 The Concept of the Dissection Index

“ pTJ
V V

J ` MJ
WWJqApDQTQq1 ` pTJ

V V
J ` MJ

WWJqBQTQ

“ TJ
V V

JApDQTQq1 ` TJ
V V

JBQTQ ` MJ
WWJBQTQ

“ TJ
V V

JADQT 1
Q ` TJ

V V
JApDQq1TQ ` TJ

V V
JBQTQ ` MJ

WWJBQTQ

“ TJ
V V

JApDQq1TQ ` TJ
V V

JBQTQ ` MJ
WWJBQTQ

“ TJ
V B

v
y1
TQ ` MJ

WBw
y1
TQ

and

B̄v
x1

“V̄ JApDP̄ q1 ` V̄ JBP̄

“pTJ
V V

J ` MJ
WWJqApDpPTP ` QMQqq1 ` pTJ

V V
J ` MJ

WWJqBpPTP ` QMQq
“TJ

V V
JApDpPTP ` QMQqq1 ` pTJ

V V
J ` MJ

WWJqBpPTP ` QMQq
“TJ

V V
JApDPTP q1 ` TJ

V V
JApDQMQq1 ` MJ

WBw
x1
TP ` MJ

WBw
y1
MQ

` TJ
V V

JBPTP ` TJ
V V

JBQMQ

“TJ
V V

JADPT 1
P ` TJ

V V
JADQM 1

Q ` MJ
WBw

x1
TP ` MJ

WBw
y1
MQ

` TJ
V pV JBP ` V JApDP q1qTP ` TJ

V pV JBQ ` V JApDQq1qMQ

“TJ
V B

v
x1
TP ` TJ

V G1T
1
P ` TJ

V B
v
y1
MQ ` MJ

WBw
x1
TP ` MJ

WBw
y1
MQ

So Q̄‹
y1

:“ T´1
Q Qy1 is a possible choice as a basis function of the next sequence of the

basis chain. Hence we can find a suitable coordinate transformation TQy1
such that

Q̄y1 “ T´1
Q Qy1TQy1

. This procedure yields suitable coordinate transformations such that:

Q̄y1 “ T´1
Q Qy1TQy1

, W̄y1 “ T´1
W Wy1TWy1

,
P̄y1 “ T´1

Q pPy1TPy1
` Qy1MQy1

q, V̄y1 “ T´1
W pVy1TVy1

` Wy1MWy1
q.

We also find suitable coordinate transformations such that:

Q̄x1 “ T´1
P Qx1TQx1

, P̄x1 “ T´1
P pPx1TPx1

` Qx1MQx1
q

due to

W̄J
y1
B̄w

x1
“ TJ

Wy1
WJ

y1
pTJ

W q´1pTJ
WBw

x1
TP ` TJ

WBw
y1
MQq “ TJ

Wy1
WJ

y1
Bw

x1
TP

and

W̄x1 “ T´1
V Wx1TWx1

, V̄x1 “ T´1
V pVx1TVx1

` Wx1MWx1
q

due to

Ḡ1Q̄x1 “ TJ
V G1TPT

´1
P Qx1TQx1

“ TJ
V G1Qx1TQx1

.
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Induction step p1, ..., i Ñ i ` 1q
We directly get the following relations:

Ḡi`1 “ V̄ J
xi
ḠiQ̄xi

“ ppTJ
Vxi

V J
xi

` MJ
Wxi

WJ
xi

qT´T
Vxi´1

qpT T
Vxi´1

GiTQxi´1
qpT´1

Qxi´1
Qxi

TQxi
q

“ TJ
Vxi

V J
xi
GiQxi

TQxi

“ TJ
Vxi

Gi`1TQxi
,

B̄v
yi`1

“ V̄ J
xi
B̄v

yi
Q̄yi

“ ppTJ
Vxi

V J
xi

` MJ
Wxi

WJ
xi

qT´T
Vxi´1

qpTJ
Vxi´1

Bv
yi
TQyi´1

` MJ
Wxi´1

Bw
yi
TQyi´1

qpT´1
Qyi´1

QyiTQyi
q

“ pTJ
Vxi

V J
xi

` MJ
Wxi

WJ
xi

qBv
yi
QyiTQyi

“ TJ
Vxi

V J
xi
Bv

yi
QyiTQyi

` MJ
Wxi

WJ
xi
Bv

yi
QyiTQyi

“ TJ
Vxi

Bv
yi`1

TQyi
` MJ

Wxi
Bw

yi`1
TQyi

,

B̄w
yi`1

“ W̄J
xi
B̄v

yi
Q̄yi

“ pTJ
Wxi

WJ
xi
T´T
Vxi´1

qpTJ
Vxi´1

Bv
yi
TQyi´1

` MJ
Wxi´1

Bw
yi
TQyi´1

qpT´1
Qyi´1

QyiTQyi
q

“ TJ
Wxi

Bw
yi`1

TQyi
.

To prove the induction step statements regarding B̄v
xi`1

and B̄w
xi`1

we need several prepa-
ration steps. First we obtain

B̄v
yi
P̄yipV̄ J

yi
B̄w

yi
P̄yiq´1V̄ J

yi
B̄w

xi
Q̄xi

“TJ
Vxi´1

Bv
yi
PyiTPyi

pTJ
Vyi

V J
yi
Bw

yi
PyiTPyi

q´1TJ
Vyi

V J
yi
Bw

xi
Qxi

TQxi

` TJ
Vxi´1

Bv
yi
QyiMQyi

pTJ
Vyi

V J
yi
Bw

yi
PyiTPyi

q´1TJ
Vyi

V J
yi
Bw

xi
Qxi

TQxi

` MJ
Wxi´1

Bw
yi
PyiTPyi

pTJ
Vyi

V J
yi
Bw

yi
PyiTPyi

q´1TJ
Vyi

V J
yi
Bw

xi
Qxi

TQxi

` TJ
Vxi´1

Bv
yi
PyiTPyi

pTJ
Vyi

V J
yi
Bw

yi
PyiTPyi

q´1TJ
Vyi

V J
yi
Bw

yi
XQxi´1

Q̄xi

` TJ
Vxi´1

Bv
yi
QyiMQyi

pTJ
Vyi

V J
yi
Bw

yi
PyiTPyi

q´1TJ
Vyi

V J
yi
Bw

yi
XQxi´1

Q̄xi

` MJ
Wxi´1

Bw
yi
PyiTPyi

pTJ
Vyi

V J
yi
Bw

yi
PyiTPyi

q´1TJ
Vyi

V J
yi
Bw

yi
XQxi´1

Q̄xi

by the inductive arguments

B̄v
yi
P̄yi

“pTJ
Vxi´1

Bv
yi
TQyi´1

` MJ
Wxi´1

Bw
yi
TQyi´1

qpT´1
Qyi´1

pPyiTPyi
` QyiMQyi

qq
“TJ

Vxi´1
Bv

yi
PyiTPyi

` TJ
Vxi´1

Bv
yi
QyiMQyi

` MJ
Wxi´1

Bw
yi
PyiTPyi
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4 The Concept of the Dissection Index

and

V̄ J
yi
B̄w

xi
Q̄xi

“pTJ
Vyi

V J
yi

` MJ
Wyi

WJ
yi

qpBw
xi
TQxi´1

` Bw
yi
XQxi´1

qQ̄xi

“pTJ
Vyi

V J
yi
Bw

xi
TQxi´1

` TJ
Vyi

V J
yi
Bw

yi
XQxi´1

` MJ
Wyi

WJ
yi
Bw

xi
TQxi´1

qQ̄xi

“TJ
Vyi

V J
yi
Bw

xi
Qxi

TQxi
` TJ

Vyi
V J
yi
Bw

yi
XQxi´1

Q̄xi
.

Furthermore we are able to explicitly formulate the Moore-Penrose inverses

pV J
yi

q` “ Bw
yi
PyipV J

yi
Bw

yi
Pyiq´1

and

P`
yi

“ pV J
yi
Bw

yi
Pyiq´1V J

yi
Bw

yi
,

which enables us to write

B̄v
yi
P̄yipV̄ J

yi
B̄w

yi
P̄yiq´1V̄ J

yi
B̄w

xi
Q̄xi

“TJ
Vxi´1

Bv
yi
PyipV J

yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
Qxi

TQxi

` TJ
Vxi´1

Bv
yi
QyiMQyi

pV J
yi
Bw

yi
PyiTPyi

q´1V J
yi
Bw

xi
Qxi

TQxi

` MJ
Wxi´1

ppV J
yi

q`V J
yi
Bw

xi
Qxi

qTQxi

` TJ
Vxi´1

pBv
yi
PyiP

`
yi

qXQxi´1
Q̄xi

` TJ
Vxi´1

Bv
yi
QyiMQyi

pV J
yi
Bw

yi
PyiTPyi

q´1V J
yi
Bw

yi
XQxi´1

Q̄xi

` MJ
Wxi´1

pBw
yi
PyiP

`
yi

qXQxi´1
Q̄xi

.

Using Bw
yi
PyiPỳi

“ Bw
yi
, pV J

yi
q`V J

yi
Bw

xi
Qxi

“ Bw
xi
Qxi

and PyiPỳi
“ I ´ QyiQỳi

we obtain

B̄v
yi
P̄yipV̄ J

yi
B̄w

yi
P̄yiq´1V̄ J

yi
B̄w

xi
Q̄xi

“TJ
Vxi´1

Bv
yi
PyipV J

yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
Qxi

TQxi

` TJ
Vxi´1

Bv
yi
QyipMQyi

pV J
yi
Bw

yi
PyiTPyi

q´1V J
yi

pBw
xi
Qxi

TQxi
` Bw

yi
XQxi´1

Q̄xi
q ´ Q`

yi
XQxi´1

Q̄xi
q

` TJ
Vxi´1

Bv
yi
XQxi´1

Q̄xi
` MJ

Wxi´1
Bw

xi
Qxi

TQxi
` MJ

Wxi´1
Bw

yi
XQxi´1

Q̄xi

“TJ
Vxi´1

Bv
yi
PyipV J

yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
Qxi

TQxi

´ TJ
Vxi´1

Bv
yi
QyiXQxi

` TJ
Vxi´1

Bv
yi
XQxi´1

Q̄xi
` MJ

Wxi´1
Bw

xi
Qxi

TQxi
` MJ

Wxi´1
Bw

yi
XQxi´1

Q̄xi

with XQxi
:“ ´pMQyi

pV J
yi
Bw

yi
PyiTPyi

q´1V J
yi

pBw
xi
Qxi

TQxi
` Bw

yi
XQxi´1

Q̄xi
q ´ Qỳi

XQxi´1
Q̄xi

q.
Further we see that

B̄v
xi
Q̄xi
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“pTJ
Vxi´1

Bv
xi
TQxi´1

` TJ
Vxi´1

GiT
1
Qxi´1

` TJ
Vxi´1

Bv
yi
XQxi´1

` MJ
Wxi´1

Bw
xi
TQxi´1

` MJ
Wxi´1

Bw
yi
XQxi´1

qQ̄xi

“TJ
Vxi´1

Bv
xi
Qxi

TQxi
` TJ

Vxi´1
GiT

1
Qxi´1

T´1
Qxi´1

Qxi
TQxi

` TJ
Vxi´1

Bv
yi
MQxi´1

Q̄xi
` MJ

Wxi´1
Bw

xi
Qxi

TQxi
` MJ

Wxi´1
Bw

yi
XQxi´1

Q̄xi

and

ḠiQ̄
1
x1

“TJ
Vxi´1

GiTQxi´1
pT´1

Qxi´1
Qxi

TQxi
q1

“TJ
Vxi´1

GiTQxi´1
ppT´1

Qxi´1
q1Qxi

TQxi
` T´1

Qxi´1
Q1

xi
TQxi

` T´1
Qxi´1

Qxi
T 1
Qxi

q
“TJ

Vxi´1
GiQ

1
xi
TQxi

` TJ
Vxi´1

GiQxi
T 1
Qxi

` TJ
Vxi´1

GiTQxi´1
pT´1

Qxi´1
q1Qxi

TQxi

hold, which yields together with

TJ
Vxi´1

GiT
1
Qxi´1

T´1
Qxi´1

Qxi
TQxi

` TJ
Vxi´1

GiTQxi´1
pT´1

Qxi´1
q1Qxi

TQxi

“TJ
Vxi´1

GipTQxi´1
T´1
Qxi´1

q1Qxi
TQxi

“ TJ
Vxi´1

GipIq1Qxi
TQxi

“ 0

the induction step statement for B̄xi`1
:

B̄xi
“ḠiQ̄

1
xi

` B̄v
xi
Q̄xi

´ B̄v
yi
P̄yipV̄ J

yi
B̄w

yi
P̄yiq´1V̄ J

yi
B̄w

xi
Q̄xi

“TJ
Vxi´1

GiQ
1
xi
TQxi

` TJ
Vxi´1

Bv
xi
Qxi

TQxi
´ TJ

Vxi´1
Bv

yi
PyipV J

yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
Qxi

TQxi

` TJ
Vxi´1

GiQxi
T 1
Qxi

` TJ
Vxi´1

Bv
yi
QyiXQxi

“TJ
Vxi´1

pGiQ
1
xi

` Bv
xi
Qxi

´ Bv
yi
PyipV J

yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
Qxi

qTQxi

` TJ
Vxi´1

GiQxi
T 1
Qxi

` TJ
Vxi´1

Bv
yi
QyiXQxi

“TJ
Vxi´1

Bxi
TQxi

` TJ
Vxi´1

GiQxi
T 1
Qxi

` TJ
Vxi´1

Bv
yi
QyiXQxi

.

Immediately we gain

B̄v
xi`1

“ V̄ J
xi
B̄xi

“ppTJ
Vxi

V J
xi

` MJ
Wxi

WJ
xi

qT´T
Vxi´1

qpTJ
Vxi´1

Bxi
TQxi

` TJ
Vxi´1

GiQxi
T 1
Qxi

` TJ
Vxi´1

Bv
yi
QyiXQxi

q
“pTJ

Vxi
V J
xi

` MJ
Wxi

WJ
xi

qpBxi
TQxi

` GiQxi
T 1
Qxi

` Bv
yi
QyiXQxi

q
“TJ

Vxi
Bv

xi`1
TQxi

` TJ
Vxi

Gi`1T
1
Qxi

` TJ
Vxi

Bv
yi`1

XQxi
` MJ

Wxi
Bw

xi`1
TQxi

` MJ
Wxi

Bw
yi
XQxi

and

B̄w
xi`1

“W̄J
xi
B̄xi
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4 The Concept of the Dissection Index

“pTJ
Wxi

WJ
xi
T´T
Vxi´1

qpTJ
Vxi´1

Bxi
TQxi

` TJ
Vxi´1

GiQxi
T 1
Qxi

` TJ
Vxi´1

Bv
yi
QyiXQxi

q
“TJ

Wxi
Bw

xi`1
TQxi

` TJ
Wxi

Bw
yi`1

XQxi
.

Now we turn towards the induction statements regarding the basis functions. By the
identity

B̄w
yi`1

“ TJ
Wxi

Bw
yi`1

TQyi

we find suitable coordinate transformations such that:

Q̄yi`1
“ T´1

Qyi
Qyi`1

TQyi`1
, W̄yi`1

“ T´1
Wxi

Wyi`1
TWyi`1

,

P̄yi`1
“ T´1

Qyi
pPyi`1

TPyi`1
` Qyi`1

MQyi`1
q, V̄yi`1

“ T´1
Wxi

pVyi`1
TVyi`1

` Wyi`1
MWyi`1

q.

Analogously the identity

W̄J
yi`1

B̄w
xi`1

“ TJ
Wyi`1

WJ
yi`1

Bw
xi`1

TQxi
,

yields suitable coordinate transformations such that:

Q̄xi`1
“ T´1

Qxi
Qxi`1

TQxi`1
, P̄xi`1

“ T´1
Qxi

pPxi`1
TPxi`1

` Qxi`1
MQxi`1

q.

At last we find coordinate transformations such that:

W̄xi`1
“ T´1

Vxi
Wxi`1

TWxi`1
, V̄xi`1

“ T´1
Vxi

pVxi`1
TVxi`1

` Wxi`1
MWxi`1

q

due to

Ḡi`1Q̄xi`1
“ TJ

Vxi
Gi`1TQxi

pT´1
Qxi

Qxi`1
TQxi`1

q “ TJ
Vxi

Gi`1Qxi
TQxi`1

and the Lemmata 4.17 and 4.18. Hence the induction step is complete. Thus we
achieve rk B̄w

yi
“ rk pTJ

Wxi´1
Bw

yi
TQyi´1

q “ rkBw
yi
, since the transformation matrices are

non-singular.

The second fundamental property is that the Dissection Index of a nonlinear DAE (4.9)
has to relate to the Dissection Index of the associated linearized DAEs (2.16). The next
theorem provides such a relation. But again we first formulate a technical lemma.

Lemma 4.20. (Reference function)

Let G Ă R
n be open and convex. Let pXν , txq, pY ν , tyq P R

ν¨n with px, txq, py, tyq P G ˆ I
then there is a reference function γptq such that γptxq “ x and γptyq “ y and for all i ď ν
it holds that γpiqptxq “ xi and γpiqptyq “ yi.
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Proof .
First define a sequence of auxiliary functions and begin with

h´pt; t1, t2q “ ´2
t ´ t1
t2 ´ t1

` 1 ñ
#
h´ptq ě 1, t ď t1

h´ptq ď ´1, t ě t2

h`pt; t1, t2q “ 2
t ´ t1
t2 ´ t1

´ 1 ñ
#
h`ptq ě 1, t ě t1

h`ptq ď ´1, t ď t2

with t1, t2 P I and t1 ă t2. Next define

gptq “
#
e´ 1

t2 , t ą 0

0, t ď 0

With the help of g define

kptq “ gp1 ` tq
gp1 ` tq ` gp1 ´ tq ñ

$’&
’%
kptq “ 0, t ď ´1

0 ď kptq ď 1, ´1 ď t ď 1

kptq “ 1, t ě 1

with k P C8pRq. Let εx, εy ą 0 and set

Φxptq “ kph´pt; tx ` εx, tx ` 2εxqq ñ
#
Φxptq “ 0, t ě tx ` 2εx

Φxptq “ 1, t ď tx ` εx.

Φxyptq “ kph`pt; tx ` 2εx, ty ´ 2εyqq ñ
#
Φxyptq “ 0, t ď tx ` 2εx

Φxyptq “ 1, t ě ty ´ 2εy.

Φyptq “ kph`pt; ty ´ 2εy, ty ´ εyqq ñ
#
Φyptq “ 0, t ď ty ´ 2εy

Φyptq “ 1, t ě ty ´ εy.

And as the last auxiliary functions define the polynoms

pxptq “
νÿ

i“1

1

i!
xipt ´ txqi and pyptq “

νÿ
i“1

1

i!
yipt ´ tyqi.

It is easy to see that p
piq
x pt0q “ xi and p

piq
y pt0q “ yi for all 1 ď i ď ν. Now define the curve

γ : rtx, tys Ñ R
n

γptq “ x ` Φxptqpxptq ` Φxyptqpy ´ xq ` Φyptqpyptq

“

$’&
’%
x ` Φxptqpxptq, tx ď t ă tx ` 2εx

Φxyptqy ` p1 ´ Φxyptqqx, tx ` 2εx ď t ă ty ´ 2εy

y ` Φyptqpyptq, ty ´ 2εy ď t ď ty
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4 The Concept of the Dissection Index

There are rx, ry ą 0 such that Brxpxq Ă G and Brypyq Ă G, since G is open. Let be

Px :“ max
tPI ||

νÿ
i“1

1

i!
xipt ´ txqi´1|| and PY :“ max

tPI ||
νÿ

i“1

1

i!
yipt ´ tyqi´1||

and choose

εx “ rx
4maxtPx, 1u and εy “ ry

4maxtPy, 1u .

Now we can show that γptq P G for all t P G. Therefore let t P rtx, tx ` 2εxs hence
γptq “ x ` Φxptqpxptq and

||γptq ´ x|| “ ||pxptq|| ¨ ||Φxptq|| ď ||pxptq||
“ ||

νÿ
i“1

1

i!
xipt ´ txqi´1|| ¨ |t ´ tx|

ď max
tPI ||

νÿ
i“1

1

i!
xipt ´ txqi´1|| ¨ 2εx ă 1

2
rx

Let t P rtx ` 2εy, ty ´ 2εys hence γptq “ Φxyptqy ` p1´Φxyptqqx and since G is convex and
Φxyptq P r0, 1s for all t P I it follows that γptq P G.
Let t P rty ´ 2εy, tys hence γptq “ y ` Φyptqpyptq and

||γptq ´ y|| “ ||pyptq|| ¨ ||Φyptq|| ď ||pyptq||
“ ||

νÿ
i“1

1

i!
yipt ´ tyqi´1|| ¨ |t ´ ty|

ď max
tPI ||

νÿ
i“1

1

i!
yipt ´ tyqi´1|| ¨ 2εy ă 1

2
ry

At last we need that γ is sufficiently smooth but it even holds γ P C8pIq since px and py
are polynoms and Φx,Φy,Φxy P C8pIq.
Thereby it follows:

Corollary 4.21. (Reference function)
Let G Ă R

n be open and connected. Let pXν , txq, pY ν , tyq P R
ν¨n with px, txq, py, tyq P GˆI

then there is a reference function γptq such that γptxq “ x and γptyq “ y and for all i ď ν
it holds that γpiqptxq “ xi and γpiqptyq “ yi.

With the help of this lemma and the corollary we prove:
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Theorem 4.22. (Linearization)
Let the DAE (4.9) satisfy the basic Assumptions (2.25) and let G Ă Df ˆ If be open and
connected. Let f and d be sufficiently smooth on G. Then the two following statements
hold:

1. Let the DAE (4.9) be regular with Dissection Index μ and with characteristic val-
ues r0, . . . , rμ. Then all linearizations (2.16) along reference functions x˚ P Cμ˚ pGq
are regular linear DAEs with uniform index μ and uniform characteristic values
r0, . . . , rμ.

2. Let all linearizations (2.16) along reference functions x˚ P Cμ˚ pGq be regular linear
DAEs. Then they have a uniform Dissection Index μ and uniform characteristic val-
ues r0, . . . , rμ and the nonlinear DAE (4.9) is regular on G with these characteristics
and index μ.

Proof .
We proof Theorem 4.22 with the help of Corollary 4.21. Let x‹ P Cμ˚ pGq be an arbitrary
reference function. Then there is the associated linear DAE

A˚ptqpD˚ptqxptqq1 ` B˚ptqxptq “ q˚ptq, t P I˚, (4.14)

with the coefficients

D˚ptq :“ dxpx˚ptq, tq,
A˚ptq :“ fypd1px˚ptq, tq, x˚ptq, tq,
B˚ptq :“ fxpd1px˚ptq, tq, x˚ptq, tq,
q˚ptq :“ ´fpd1px˚ptq, tq, x˚ptq, tq, t P I˚.

Therefore the placeholder matrices are given by

D˚ptq :“ dxpx˚ptq, tq
A˚ptq :“ fypDpx˚ptq, tqx1

˚ptq ` dtpx˚ptq, tq, x˚ptq, tq,
B˚ptq :“ fxpDpx˚ptq, tqx1

˚ptq ` dtpx˚ptq, tq, x˚ptq, tq.
It holds that

D˚ptq “ Dpx˚ptq, tq
A˚ptq “ Apx1

˚ptq, x˚ptq, tq,
B˚ptq “ Bpx1

˚ptq, x˚ptq, tq
with A, D and B being the placeholder matrices of the nonlinear problem. Therefore the
first matrix of the chain of the linear DAE

G0,˚ptq :“ A˚ptqD˚ptq “ Apx1
˚ptq, x˚ptq, tqDpx˚ptq, tq “ G0px1

˚ptq, x˚ptq, tq
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4 The Concept of the Dissection Index

is just the G0 matrix of the nonlinear problem along the reference function. Hence the
first sequence of basis functions P˚ptq, Q˚ptq, V˚ptq and W˚ptq associated to G0,˚ptq are
equal to the first sequence of basis functions of the nonlinear DAE along the reference
function. With an induction we get for all 1 ď i ď μ

Gi`1,˚ptq, Bv
xi`1,˚ptq, Bw

xi`1,˚ptq, Bv
yi`1,˚ptq and Bw

yi`1,˚ptq
as well as the associated basis functions of the linear DAE are equal to the matrix chain
of the nonlinear DAE along the reference function. For i “ 1 we get

G1,˚ptq :“V J
˚ ptqG0,˚ptqP˚ptq

“V Jpx1
˚ptq, x˚ptq, tqG0px1

˚ptq, x˚ptq, tqP px˚ptq, tq
“G1px1

˚ptq, x˚ptq, tq,
Bv

x1,˚ptq :“V J
˚ ptqA˚ptqD˚ptqP 1

˚ptq ` V J
˚ ptqB˚ptqP˚ptq

“V Jpx1
˚ptq, x˚ptq, tqApx1

˚ptq, x˚ptq, tqDpx˚ptq, tqP 1px1
˚ptq, x˚ptq, tq

` V Jpx1
˚ptq, x˚ptq, tqBpx1

˚ptq, x˚ptq, tqP px˚ptq, tq
“Bv

x1
px1

˚ptq, x˚ptq, tq
and analogous we get Bv

y1,˚ptq “ Bv
y1

px1̊ ptq, x˚ptq, tq, Bw
x1,˚ptq “ Bw

x1
px1̊ ptq, x˚ptq, tq and

Bw
y1,˚ptq “ Bw

y1
px1̊ ptq, x˚ptq, tq. Hence the second sequence of basis function of the linear

DAE is the second sequence of basis function of the nonlinear DAE along the reference
function since these basis functions only depend on Bw

y1,˚ptq, Bw
x1,˚ptq and G1,˚ptq. If the

statement now holds for i ă μ then we obtain

Gi`1,˚ptq :“V J
xi,˚ptqGi,˚ptqQxi,˚ptq

“V J
xi

pX i
˚ptq, tqGipX i´1

˚ ptq, tqQxi
pX i

˚ptq, tq
“Gi`1pX i

˚ptq, tq,
Bv

xi`1,˚ptq :“V J
xi,˚ptqGi,˚ptqQ1

xi,˚ptq ` V J
xi,˚ptqBv

xi,˚ptqQxi,˚ptq
´ V J

xi,˚ptqBv
yi,˚ptqPyi,˚ptqpV J

yi,˚ptqBw
yi,˚ptqPyi,˚ptqq´1V J

yi,˚ptqBw
xi,˚ptqQxi,˚ptq

“pV J
xi
GiQ

1
xi

qpX i`1
˚ ptq, tq ` pV J

xi
Bv

xi
Qxi

qpX i
˚ptq, tq

´ pV J
xi
Bv

yi
PyiqpX i

˚ptq, tqpV J
yi
Bw

yi
Pyiq´1pX i´1

˚ ptq, tqpV J
yi
Bw

xi
Qxi

qpX i
˚ptq, tq

“Bv
xi`1

pX i`1
˚ ptq, tq

with X i˚ptq :“ pxpiq
˚ ptq, ..., x1̊ ptq, x˚ptqq. Again we analogously get

Bv
yi`1,˚ptq “ Bv

yi`1
pX i

˚ptq, tq,
Bw

xi`1,˚ptq “ Bw
xi`1

pX i`1
˚ ptq, tq,

Bw
yi`1,˚ptq “ Bw

yi`1
pX i

˚ptq, tq.
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Hence the associated basis functions are again equal to those of the nonlinear DAE along
the reference function since they only depend on Bw

yi`1,˚ptq, Bw
xi`1,˚ptq and Gi`1,˚ptq. Thus

the chain of the linear DAE is the chain of the nonlinear DAE along the reference function
and therefore the index and the characteristic values of the linear DAE have to be equal
to those of the nonlinear DAE. This concludes the proof of (i).

We split the proof of (ii) into two parts. First we prove that all linearizations have a
uniform index and characteristic values. Therefore let γ1ptq and γ2ptq be two arbitrary
reference functions of the nonlinear DAE. Lemma 4.20 allows us to choose a third reference
function γptq such that for all i ď ν it holds

γpiqpt0q “ γ
piq
1 pt0q and γpiqpT q “ γ

piq
2 pT q.

Hence the linearizations along γ1ptq and γptq must have the same index and characteristics
at t0, since their matrix chains coincide at this point. Therefore these linearizations have
the same index and characteristic values at every point, since these values are assumed
to be constant. For the same reason the linearizations along γ2ptq and γptq have the same
index and characteristic values, which yields that the linearizations along γ1ptq and γ2ptq
have the same index and characteristic values.
Next, we show that the uniform index and characteristic values of the linearizations are
also the index and characteristic values of the nonlinear DAE. Construct the chain of
the non-linear DAE to the level of the index of linearizations. Assume there is a point
pXμ, tq at which the index or the characteristic values of the nonlinear DAE do not equal
the index or the characteristics of linearizations. Due to Lemma 4.20 we can construct a
reference function γ3ptq with

γ
piq
3 ptq “ xi.

With the same argumentation as in (i) we get that the matrix chain of the linearization
and the matrix chain of the nonlinear DAE equal at that point and therefore their char-
acteristic values and their index equal at this point as well. Hence this assumption can
never hold and the theorem is proven.

Before we relate the Dissection Index to the other index concepts we remember the Ex-
amples 4.1-4.3. In contrast to the Tractability Index and the Strangeness Index the Dis-
section Index only needs a constant basis function to analyze these examples. Starting
with Example 4.1 we write again

AD “
ˆ
1 ` t2 0
0 0

˙
and B0 “

ˆ
0 ´1
1 0

˙
.

Therefore we can choose

P “ V “
ˆ
1
0

˙
and Q “ W “

ˆ
0
1

˙
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4 The Concept of the Dissection Index

and gain

G1 “ `
1 ` t2

˘
, Bv

y1
“ `´1

˘
, Bw

x1
“ `

1
˘
and Bw

y1
“ `

0
˘
.

Due to the matrix Bw
y1

we can choose

Py1 “ Vy1 “ ` ˘ P R
1ˆ0 and Qy1 “ Wy1 “ `

1
˘
.

This yields

WJ
y1
Bw

x1
“ `

1
˘

and Qx1 “ ` ˘ P R
1ˆ0.

After calculating G1Qx1 “ ` ˘ P R
1ˆ0 we can choose Wx1 “ `

1
˘
which leads to Bw

y2
“ `

1
˘

hence the DAE is Dissection Index 2.
In the case of Example 4.2 we denote again

AD “
¨
˝1 0 0
0 1 0
0 0 0

˛
‚ and B0 “

¨
˝0 0 1
0 0 a1pe1q
1 1 0

˛
‚.

Therefore we can choose

P “ V “
¨
˝1 0
0 1
0 0

˛
‚ and Q “ W “

¨
˝0
0
1

˛
‚

and gain

G1 “
ˆ
1 0
0 1

˙
, Bv

y1
“

ˆ
1

a1pe1q
˙
, Bw

x1
“ `

1 1
˘
and Bw

y1
“ `

0
˘
.

Due to the matrix Bw
y1

we can choose

Py1 “ Vy1 “ ` ˘ P R
1ˆ0 and Qy1 “ Wy1 “ `

1
˘
.

This yields

WJ
y1
Bw

x1
“ `

1 1
˘

and Qx1 “
ˆ

1
2´1
2

˙
, Px1 “

ˆ
1
2
1
2

˙
.

After calculating G1Qx1 “ `
1
2

´1
2

˘J
we can choose Wx1 “ `

1 1
˘J

and Vx1 “ `
1 ´1

˘J

which leads to Bw
y2

“ `
1 ` a1pe1q

˘
hence the DAE is also Dissection Index 2. When we in-

troduced Example 4.2, we decoupled its equations without putting thoughts into a general
decoupling procedure or an index concept. We notice that the Dissection Index allows us
to choose the same transformation operators we used in this canonical decoupling.
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Last we calculate the basis function of the matrix chain of Example 4.3 and again start
by denoting again

AD “

¨
˚̊̊
˚̋
0 0 0 0 0
0 C ´C 0 0
0 ´C C 0 0
0 0 0 0 0
0 0 0 0 1

˛
‹‹‹‹‚ and B0 “

¨
˚̊̊
˚̋

1 ´1 0 0 ´1
´1 1 0 0 0
0 0 1 ´1 0
0 0 ´1 1 0
1 0 0 0 0

˛
‹‹‹‹‚.

Therefore we can choose

P “ V “

¨
˚̊̊
˚̋

0 0
1 0

´1 0
0 0
0 1

˛
‹‹‹‹‚ and Q “ W “

¨
˚̊̊
˚̋
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0

˛
‹‹‹‹‚

and gain

G1 “
ˆ
4C 0
0 1

˙
, Bv

y1
“

ˆ´1 0 1
1 0 0

˙
, Bw

x1
“

¨
˝´1 ´1

0 0
1 0

˛
‚, Bw

y1
“

¨
˝ 1 ´1 0

´1 2 ´1
0 ´1 1

˛
‚.

Due to the matrix Bw
y1

we can choose

Qy1 “ Wy1 “
¨
˝1
1
1

˛
‚.

This yields

WJ
y1
Bw

x1
“ `

0 ´1
˘

and Qx1 “
ˆ
1
0

˙
.

After calculating G1Qx1 “ `
4C 0

˘J
we can choose Wx1 “ `

0 1
˘J

which leads to Bw
y2

“`
1
˘
hence the DAE is also Dissection Index 2.

The mixed index concept reflects the simple structure of the three examples by using only
constant basis functions as desired.

4.2 Relations between Index Concepts

In the following we want to describe the relations of the Dissection Index to the other
index concepts. We start to describe these relations on linear time dependent DAEs.
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4 The Concept of the Dissection Index

Definition 4.23. (Linear time dependent DAE)
Let I Ă R and Dx,Dx1 Ă R

n be open subsets. Consider the following equation

AptqpDptqxq1 ` Bptqx “ qptq (4.15)

with D P C1pI,Rmˆnq, A P CpI,Rnˆmq and B P CpI,Rnˆnq. We call (4.15) a linear time
dependent DAE.

Afterwards we use Theorem 4.22 to lift the results up to nonlinear DAEs. In [LMT13]
the relation between the Tractability Index and the Strangeness Index is described for
linear time dependent DAEs. We follow their strategy to show that the characteristic
values and the index belonging to the Tractability Index concept coincide with those of
the Dissection Index concept. Therefore define the S-canonical form:

Definition 4.24. (S-canonical form)
The structured DAE with continuous coefficientsˆ

Im´l K
0 N

˙
x1 `

ˆ
W 0
0 Il

˙
x “ qptq

with 0 ď l ď m, is said to be in S-canonical form, if K “ `
0 K1 . . . Kκ

˘
and

N “

¨
˚̊̊
˝
0 N1,2 . . . N1,κ

. . .
...

. . . Nκ´1,κ

0

˛
‹‹‹‚

is a strictly upper bloc triangular with full row rank entries Ni,i`1 with i “ 1, . . . , κ ´ 1.
Furthermore denote the number of rows in the i-th block row by li.

Now we can prove the following theorem.

Theorem 4.25.
We consider a linear time dependent DAE (4.15). Let the DAE have a finite Dissec-
tion Index μ and a finite Tractability Index μT . Then the values of the index and the
characteristic values of both concepts coincide, i.e. μ “ μT and ri “ rTi for all i “ 1, . . . , μ.

Proof .
We assume AptqDptq to be singular, otherwise there is nothing to show. Hence, the
Dissection Index is at least 1. Analogous to the constant case we transform (4.15) into

G1x
1
0 ` Bv

x1
x0 ` Bv

y1
y0 “ qv1 (4.16a)

Bw
x1
x0 ` Bw

y1
y0 “ qw1 (4.16b)
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with qv1ptq “ V Jptqqptq and qw1 ptq “ WJptqqptq.
By Theorem 2.79. on page 162 in [LMT13] it is sufficient to show that the DAE can be
transformed into a DAE in S-canonical form with lμ´i “ n ´ rμi . First, we show by an
induction that the DAE (4.15) is equivalent to

Gkx
1
k´1 ` Mv

k X̃
1
k´1 ` Bv

xk
xk´1 ` Bv

yk
yk´1 “ qvk

WJ
xk´1

Gk´1Pxk´1
x̃1
k´1 ` Mw

k X̃
1
k´2 ` Bw

xk
xk´1 ` Bw

yk
yk´1 “ qwk

and

x̃i “ qx̃i
´ pWJ

yi
Bw

xi
Pxi

q´1WJ
yi
WJ

xi´1
Gi´1Pxi´1

x̃1
i´1 ` Mxi

X̃ 1
i´2

ỹi “ qỹi ´ pV J
yi
Bw

yi
Pyiq´1V J

yi
WJ

xi´1
Gi´1Pxi´1

x̃1
i´1 ` MyiX̃

1
i´2

´ pV J
yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
pQxi

xi ` Pxi
x̃iq

with suitable matrices Mxi
, Myi and Mv

k , functions qx̃i
, qỹi , q

v
k and X̃ 1

i :“ px̃1
i, . . . , x̃

1
0qJ,

X̃ 1́
1 “ p q, x̃1

0 “ p q, G0 “ p q and i “ 1, . . . , k ´ 1 for all 2 ď k ď μ. Here the variables
are recursively defined as in Equation (4.10).

Induction start: k “ 2
In order to obtain the descriptions for x̃1 and ỹ1 we insert the transformation

x0 “ Px1x̃1 ` Qx1x1, y0 “ Py1 ỹ1 ` Qy1y1. (4.17)

into Equation (4.16b) and we multiply the same equation by V J
y1

and WJ
y1

from the left.

V J
y1
Bw

x1
pPx1x̃1 ` Qx1x1q ` V J

y1
Bw

y1
Py1 ỹ1 “ V J

y1
qw1

WJ
y1
Bw

x1
Px1x̃1 “ WJ

y1
qw1

We obtain

x̃1 “ qx̃1

ỹ1 “ qỹ1 ´ pV J
y1
Bw

y1
Py1q´1V J

y1
Bw

x1
pQx1x1 ` Px1x̃1q

with

qx̃1 “ pWJ
y1
Bw

x1
Px1q´1WJ

y1
qw1

qỹ1 “ pV J
y1
Bw

y1
Py1q´1V J

y1
qw1

and Mx1 “ 0 and My1 “ 0. We conclude the induction start by transforming and
factorizing Equation (4.16a). First we insert the splitting of x0 and y0 and make use of
the descriptions for x̃1 and ỹ1:

G1x
1
0 ` Bv

x1
x0 ` Bv

y1
y0 “ qv1
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4 The Concept of the Dissection Index

ô G1pPx1x̃1 ` Qx1x1q1 ` Bv
x1

pPx1x̃1 ` Qx1x1q ` Bv
y1

pPy1 ỹ1 ` Qy1y1q “ qv1

ô G1Qx1x
1
1 ` G1Px1x̃

1
1 ` pBv

x1
Qx1 ` G1Q

1
x1

qx1 ` Bv
y1
Py1 ỹ1 ` Bv

y1
Qy1y1

“ qv1 ´ G1P
1
x1
x̃1 ´ Bv

x1
Px1x̃1

ô G1Qx1x
1
1 ` G1Px1x̃

1
1 ` pBv

x1
Qx1 ` G1Q

1
x1

´ Bv
y1
Py1pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1qx1

` Bv
y1
Qy1y1 “ q2

ô G1Qx1x
1
1 ` G1Px1x̃

1
1 ` Bx1x1 ` By1y1 “ q2

with q2 :“ qv1 ´ G1P
1
x1
qx̃1 ´ Bv

x1
Px1qx̃1 ´ Bv

y1
Py1pqỹ1 ´ pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Px1qx̃1q. Then

we factorize the equation by V J
x1

and WJ
x1

and obtain:

G1Qx1x
1
1 ` G1Px1x̃

1
1 ` Bx1x1 ` By1y1 “ q2

ô
#
V J
x1
G1Qx1x

1
1 ` V J

x1
G1Px1x̃

1
1 ` V J

x1
Bx1x1 ` V J

x1
By1y1 “ V J

x1
q2

WJ
x1
G1Px1x̃

1
1 ` WJ

x1
Bx1x1 ` WJ

x1
By1y1 “ WJ

x1
q2

ô
#
G2x

1
1 ` Mv

2 x̃
1
1 ` Bv

x2
x1 ` Bv

y2
y1 “ qv2

WJ
x1
G1Px1x̃

1
1 ` Bw

x2
x1 ` Bw

y2
y1 “ qw2

with qv2 “ V J
x1
q2, q

w
2 “ WJ

x1
q2, M

v
2 :“ V J

x1
G1Px1 and Mw

2 :“ 0.

Induction step: k Ñ k ` 1
The induction step proceeds analogously to the induction start. By the induction hy-
pothesis we begin with the equations

Gkx
1
k´1 ` Mv

k X̃
1
k´1 ` Bv

xk
xk´1 ` Bv

yk
yk´1 “ qvk (4.18a)

WJ
xk´1

Gk´1Pxk´1
x̃1
k´1 ` Mw

k X̃
1
k´2 ` Bw

xk
xk´1 ` Bw

yk
yk´1 “ qwk . (4.18b)

Again we insert the transformation

xk´1 “ Pxk
x̃k ` Qxk

xk, yk´1 “ Pyk ỹk ` Qykyk (4.19)

into Equation (4.18b) and factorize the same equation by V J
yk

and WJ
yk
.

V J
yk

pWJ
xk´1

Gk´1Pxk´1
x̃1
k´1 ` Mw

k X̃
1
k´2 ` Bw

xk
pPxk

x̃k ` Qxk
xkq ` Bw

yk
Pyk ỹkq “ V J

yk
qwk

WJ
yk
WJ

xk´1
Gk´1Pxk´1

x̃1
k´1 ` WJ

yk
Mw

k X̃
1
k´2 ` WJ

yk
Bw

xk
Pxk

x̃k “ WJ
yk
qwk

By the Lemmata 4.14 and 4.16 we obtain

x̃k “ qx̃k
´ pWJ

yk
Bw

xk
Pxk

q´1WJ
yk
WJ

xk´1
Gk´1Pxk´1

x̃1
k´1 ` Mxk

X̃ 1
k´2 (4.20a)

ỹk “ qỹk ´ pV J
yk
Bw

yk
Pykq´1V J

yk
WJ

xk´1
Gk´1Pxk´1

x̃1
k´1 ` MykX̃

1
k´2 (4.20b)

´ pV J
yk
Bw

yk
Pykq´1V J

yk
Bw

xk
pQxk

xk ` Pxk
x̃kq (4.20c)
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with

qx̃k
ptq “ pWJ

yk
Bw

xk
Pxk

q´1WJ
yk
qwk

qỹkptq “ pV J
yk
Bw

yk
Pykq´1V J

yk
qwk

and Mxk
“ pWJ

yk
Bw

xk
Pxk

q´1WJ
yk
Mw

k and Myk “ pV J
yk
Bw

yk
Pykq´1V J

yk
Mw

k . We conclude the
induction step by transforming and factorizing Equation (4.18a). Therefore we rewrite
the descriptions of x̃k and ỹk in a more compact form.

x̃k “ qx̃k
´ pWJ

yk
Bw

xk
Pxk

q´1WJ
yk
WJ

xk´1
Gk´1Pxk´1

x̃1
k´1 ` Mxk

X̃ 1
k´2

“ qx̃k
` M̄xk

X̃ 1
k´1

ỹk “ qỹk ´ pV J
yk
Bw

yk
Pykq´1V J

yk
WJ

xk´1
Gk´1Pxk´1

x̃1
k´1 ` MykX̃

1
k´2

´ pV J
yk
Bw

yk
Pykq´1V J

yk
Bw

xk
pQxk

xk ` Pxk
x̃kq

“ qỹk ` M̄ykX̃
1
k´1 ´ pV J

yk
Bw

yk
Pykq´1V J

yk
Bw

xk
pQxk

xk ` Pxk
pqx̃k

` M̄xk
X̃ 1

k´1qq
“ q̄ỹk ` M̄xykX̃

1
k´1 ´ pV J

yk
Bw

yk
Pykq´1V J

yk
Bw

xk
Qxk

xk

with

q̄ỹk “ qỹk ´ pV J
yk
Bw

yk
Pykq´1V J

yk
Bw

xk
Pxk

qx̃k
,

M̄xk
“ `´pWJ

yk
Bw

xk
Pxk

q´1WJ
yk
WJ

xk´1
Gk´1Pxk´1

Mxk

˘
,

M̄yk “ `´pV J
yk
Bw

yk
Pykq´1V J

yk
WJ

xk´1
Gk´1Pxk´1

Myk

˘
,

M̄xyk “ M̄yk ´ pV J
yk
Bw

yk
Pykq´1V J

yk
Bw

xk
M̄xk

.

Now we insert the splitting of xk´1 and yk´1 and make use of the compact descriptions of
x̃k and ỹk:

Gkx
1
k´1 ` Mv

k X̃
1
k´1 ` Bv

xk
xk´1 ` Bv

yk
yk´1 “ qvk

ô GkpPxk
x̃k ` Qxk

xkq1 ` Mv
k X̃

1
k´1 ` Bv

xk
pPxk

x̃k ` Qxk
xkq ` Bv

yk
pPyk ỹk ` Qykykq “ qvk

ô GkQxk
x1
k ` GkPxk

x̃1
k ` M̄v

k X̃
1
k´1

` pGkQ
1
xk

` Bv
xk
Qxk

´ Bv
yk
QykpV J

yk
Bw

yk
Pykq´1V J

yk
Bw

xk
Qxk

qxk ` Bv
yk
Qykyk “ qk`1

ô GkQxk
x1
k ` GkPxk

x̃1
k ` M̄v

k X̃
1
k´1 ` Bxk

xk ` Bykyk “ qk`1

with qk`1 :“ qvk ´ pGkP
1
xk

` Bv
xk
Pxk

qqx̃k
´ Bv

yk
Pyk q̄ỹk and M̄v

k :“ Mv
k ` M̄xk

` M̄xyk .
Then we factorize the equation by V J

xk
and WJ

xk
and obtain:

GkQxk
x1
k ` GkPxk

x̃1
k ` M̄v

k X̃
1
k´1 ` Bxk

xk ` Bykyk “ qk`1

ô
#
V J
xk
GkQxk

x1
k ` V J

xk
GkPxk

x̃1
k ` V J

xk
M̄v

k X̃
1
k´1 ` V J

xk
Bxk

xk ` V J
xk
Bykyk “ V J

xk
qk`1

WJ
xk
GkPxk

x̃1
k ` WJ

xk
M̄v

k X̃
1
k´1 ` WJ

xk
Bxk

xk ` WJ
xk
Bykyk “ WJ

xk
qk`1
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4 The Concept of the Dissection Index

ô
#
Gk`1x

1
k ` Mv

k`1X̃
1
k ` Bv

xk`1
xk ` Bv

yk
yk “ qvk`1

WJ
xk
GkPxk

x̃1
k ` Mw

k`1X̃
1
k´1 ` Bw

xk`1
xk ` Bw

yk
yk “ qwk`1

with qvk`1 “ V J
xk
qk`1, q

w
k`1 “ WJ

xk
qk`1, M

v
k`1 :“ V J

xk
M̄v

k and Mw
k`1 :“ WJ

xk
M̄v

k .
Hence the induction is concluded.

Then for k “ μ we obtain

Gμx
1
μ´1 ` Mv

μX̃
1
μ´1 ` Bv

xμ
xμ´1 ` Bv

yμyμ´1 “ qvμ

WJ
xμ´1

Gμ´1Pxμ´1x̃
1
μ´1 ` Mw

μ X̃
1
μ´2 ` Bw

xμ
xμ´1 ` Bw

yμyμ´1 “ qwμ ,

which yields regarding Lemma 4.14

x1
μ ` MμX̃

1
μ´1 ` Bμxμ “ qμ

ỹμ “ qỹμ ´ pBw
yμq´1WJ

xμ´1
Gμ´1Pxμ´1x̃

1
μ´1 ` MyμX̃

1
μ´2 ´ pBw

yμq´1Bw
xμ
xμ

with ỹμ :“ yμ´1, xμ :“ xμ´1,

Mμ :“ G´1
μ Mv

μ ` G´1
μ Bv

yμ

`´pBw
yμq´1WJ

xμ´1
Gμ´1Pxμ´1 Myμ

˘
,

Bμ :“ G´1
μ Bv

xμ
´ G´1

μ Bv
yμpBw

yμq´1Bw
xμ
,

qμ :“ G´1
μ qvμ ´ G´1

μ Bv
yμqỹμ

and

Myμ :“ ´pBw
yμq´1Mw

μ and qỹμ :“ pBw
yμq´1qwμ .

We introduce the transformation

ȳi :“ ỹi ` pV J
yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
pQxi

xi ` Pxi
x̃iq

and obtain the system regarding (4.20a) and (4.20c)

x1
μ ` MμX̃

1
μ´1 ` Bμxμ “ qμptq (4.21a)

pWJ
yi
Bw

xi
Pxi

q´1WJ
yi
WJ

xi´1
Gi´1Pxi´1

x̃1
i´1 ´ Mxi

X̃ 1
i´2 ` x̃i “ qx̃i

ptq, for 1 ď i ď μ ´ 1

(4.21b)

pV J
yi
Bw

yi
Pyiq´1V J

yi
WJ

xi´1
Gi´1Pxi´1

x̃1
i´1 ´ MyiX̃

1
i´2 ` ȳi “ qỹiptq, for 1 ď i ď μ. (4.21c)

Define

z0 :“ xμ, z1 :“ ȳμ, zi :“
ˆ
x̃μ`1´i

ȳμ`1´i

˙
, for 2 ď i ď μ.
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After transforming the variables of (4.21) into z, the system (4.21) is in S-canonical form
with:

Nμ´i,μ`1´i :“
ˆpWJ

yi`1
Bw

xi`1
Pxi`1

q´1 0

0 pV J
yi`1

Bw
yi`1

Pyi`1
q´1

˙ ˆ
WJ

yi`1

V J
yi`1

˙ `
WJ

xi
GiPxi

0
˘
.

Then Nμ´i,μ`1´i has full row rank sinceˆ
WJ

yi`1

V J
yi`1

˙
, WJ

xi
GiPxi

, V J
yi`1

Bw
yi`1

Pyi`1
and WJ

yi`1
Bw

xi`1
Pxi`1

are non-singular by the Lemmata 4.14 and 4.16. With the help of Equation (4.14) it holds

rkNμ´i,μ`1´i :“ rk

ˆpWJ
yi`1

Bw
xi`1

Pxi`1
q´1 0

0 pV J
yi`1

Bw
yi`1

Pyi`1
q´1

˙ ˆ
WJ

yi`1

V J
yi`1

˙ `
WJ

xi
GiPxi

0
˘

“ rk
`
WJ

xi
GiPxi

0
˘

“ rkPxi
“ rkPxμ `

μÿ
j“i`1

rkBw
yj

“
μÿ

j“i`1

rkBw
yj

“ n ´ p
iÿ

j“1

rkBw
yj

` rkADq “ n ´ rμi .

This yields lμ´i “ n ´ rμi .

Using Theorem 4.25 and Theorem 2.80 in [LMT13] we describe the relation between the
Strangeness Index and the Dissection Index for the linear case. Relations between the
already established concepts are described in [Meh12].

Theorem 4.26. (Index relations: linear DAEs)
Consider a linear time dependent DAE (4.15) in standard form. Let the DAE have a
finite Dissection Index μ and a finite Strangeness Index μS. Then it holds: μ “ μS ` 1.

Proof .
Let P ptq be an orthonormal basis of pkerAptqqK which yields in particular PJptqQptq “ 0.
Then P ptqPJptq is a projector with Aptq “ AptqP ptqPJptq. Furthermore consider the
systems

Aptqx1 ` Bptqx “ qptq (4.22)

and

AptqpDptqxq1 ` pBptq ´ AptqD1ptqqx “ qptq (4.23)
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4 The Concept of the Dissection Index

with Dptq “ P ptqPJptq.
The Strangeness Index of (4.22) plus one coincides with the Tractability Index of the
proper formulated DAE (4.23), cf. Theorem 2.80. on page 162 in [LMT13]. On the other
hand the Tractability Index of (4.23) equals the Dissection Index of (4.23) by Theorem
4.25. At last the Dissection Index of (4.23) and (4.22) coincide since the matrices AD,
G1, B

v
x1
, Bv

y1
, Bw

x1
and Bw

y1
coincide for both systems

We conclude this section by using Theorem 4.22 and 4.25 to describe the relation between
the Tractability Index and the Dissection Index for the nonlinear case.

Theorem 4.27. (Index relations: nonlinear DAEs)
Consider a nonlinear DAE (4.9) which fulfills Assumption 2.25 and has sufficiently smooth
functions f and d. Let the DAE have a finite Dissection Index μ and a finite Tractability
Index μT . Then the values of the index and the characteristic values of both concepts
coincide.

Proof .
The linearizations of (4.9) have the Dissection Index and the same Tractability Index,
and vice versa, by Theorem 4.22 and Theorem 3.33 in [LMT13]. By Theorem 4.25 the
values of the index and the characteristic values of the linearizations of both concepts
coincide.

4.3 Dissection Index for Circuit Applications

In Section 4.1 the simplicity of the Dissection Index is demonstrated for some example
circuits. In this section we generalize this observation to the electric circuits, introduced
in Chapter 3, without controlled elements. Therefore we write the equations of the MNA

ACp d
dt
qCpAJ

C e, tq ` gCpAJ
C e, ζ,Ψqq ` ARgRpAJ

Re, qM , tq ` ALjL ` AV jV ` AIisptq “ 0

d

dt
φLpjL, tq ´ AJ

Le ` χLE “ 0,

AJ
V e ´ vsptq “ 0

Mζ
d

dt
ζ ` hζpζ,Ψ, AJ

Seq “ 0

TΨptq ´ hΨpζq “ 0

d

dt
φMpqM , tq ´ AT

Me “ 0

Mε
d

dt
E ` MσE ´ J ´ χT

LjL “ 0,

d

dt
J ` MCCE “ 0

(4.24)
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into the form of a nonlinear DAE (2.14). The Equation (4.24) is the MNA for circuits
with the capacitors, inductors, resistors and independent sources of Section 3.1.1, the
semiconductor devices of Section 3.1.2, the memristors of Section 3.1.3 and the electro-
magnetic devices of Section 3.1.4. Furthermore we assume the assumptions 3.9 and 3.10
of Section 3.1.5 to be fulfilled.
We denote

dpx, tq :“

¨
˚̊̊
˚̊̊
˝

qCpAJ
C e, tq

φLpjL, tq
ζ

φMpqM , tq
E
J

˛
‹‹‹‹‹‹‚

and

fpy, x, tq :“

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

ACy1 ` ACgCpAJ
C e, ζ,Ψq ` ARgRpAJ

Re, qM , tq ` ALjL ` AV jV ` AIisptq
y2 ´ AJ

Le ` χLE
AJ

V e ´ vsptq
Mζy3 ` hζpζ,Ψ, AJ

Seq
TΨptq ´ hϕpζq

y4 ´ AT
Me

Mεy5 ` MσE ´ J ´ χT
LjL

y6 ` MCCE

˛
‹‹‹‹‹‹‹‹‹‹‚

with the variables x “ `
e jL jV ζ Ψ qM E J

˘J
. Now we can construct the matrix

chain of the Dissection Index. We start by defining

A :“

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

AC 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 Mζ 0 0 0
0 0 0 0 0 0
0 0 0 I 0 0
0 0 0 0 Mε 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‹‹‹‹‚
,

Dpx, tq :“

¨
˚̊̊
˚̊̊
˝

CpAJ
C e, tqAJ

C 0 0 0 0 0 0 0
0 LpjL, tq 0 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 0 MpqM , tq 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I

˛
‹‹‹‹‹‹‚
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with

Cpu, tq :“ B
BuqCpu, tq, Lpj, tq :“ B

Bj φLpj, tq and Mpq, tq :“ B
BqφMpq, tq

and

Bpx, tq :“

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

ACGCAJ
C ` ARGRAJ

R AL AV ACGC,ζ ACGC,Ψ ARGR,qM 0 0
´AJ

L 0 0 0 0 0 χL 0
´AJ

V 0 0 0 0 0 0 0
0 0 0 Hζ Hζ,Ψ Hζ,eA

J
S 0 0

0 0 0 Hϕ T 0 0 0
´AT

M 0 0 0 0 0 0 0
0 ´χT

L 0 0 0 0 Mσ ´I
0 0 0 0 0 0 MCC 0

˛
‹‹‹‹‹‹‹‹‹‹‚

with

GC :“ B1gCpAJ
C e, ζ,Ψq, Hϕ :“ B1hϕpζq,

GR :“ B1gRpAJ
Re, qM , tq, Hζ :“ B1hζpζ,Ψ, AJ

Seq,
GC,ζ :“ B2gCpAJ

C e, ζ,Ψq, Hζ,Ψ :“ B2hζpζ,Ψ, AJ
Seq,

GC,Ψ :“ B3gCpAJ
C e, ζ,Ψq, Hζ,e :“ B3hζpζ,Ψ, AJ

Seq,
GR,qM :“ B2gRpAJ

Re, qM , tq.
We hereby obtain

G0px, tq :“ ADpx, tq “

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

ACCpAJ
Ce, tqAJ

C 0 0 0 0 0 0 0
0 LpjL, tq 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 Mζ 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 MpqM , tq 0 0
0 0 0 0 0 0 Mε 0
0 0 0 0 0 0 0 I

˛
‹‹‹‹‹‹‹‹‹‹‚
.

To continue the chain we need basis functions which are related to the incidence matrices.
Let PC and QC be the basis functions associated to the complementary kernel and the
kernel of AJ

C . We then call

AC̄X :“ QJ
CAX , X P tV,R,L, Iu

the C-reduced incidence matrix of the voltage sources, resistors and memristors, inductors
and electromagnetic devices or current sources, respectively. Further denote the full set
of associated basis functions of AJ̄

CV by PV , QV , VV and WV . Analogously we call

AC̄V̄ X :“ QJ
VQ

J
CAX , X P tR,L, Iu
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the CV -reduced incidence matrix of the resistors and memristors, inductors and electro-
magnetic devices or current sources, respectively. At last we obtain the basis functions
PR and QR associated to the co-kernel and the kernel of AJ̄

CV̄R and denote by

AC̄V̄ R̄X :“ QJ
RQ

J
VQ

J
CAX , X P tL, Iu

the CVR-reduced incidence matrix of the inductors and electromagnetic devices or cur-
rent sources, respectively. Furthermore define the basis functions PLI and QLI of the
complementary kernel and the kernel of AC̄V̄ R̄L and the basis functions PCV and QCV of
the complementary kernel and the kernel of WJ

V A
T
V PC. Now we construct the matrix

chain of the coupled problem. We start with

P “ V :“

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

PC 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‹‹‹‹‚
, Q “ W :“

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

QC 0 0
0 0 0
0 I 0
0 0 0
0 0 I
0 0 0
0 0 0
0 0 0

˛
‹‹‹‹‹‹‹‹‹‹‚

and therefore we get

G1px, tq “ V JGpx, tqP “

¨
˚̊̊
˚̊̊
˝

PJ
C ACCpAJ

Ce, tqAJ
CPC 0 0 0 0 0

0 LpjL, tq 0 0 0 0
0 0 Mζ 0 0 0
0 0 0 MpqM , tq 0 0
0 0 0 0 Mε 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‚

and

Bv
y1

px, tq “ V JBpx, tqQ “

¨
˚̊̊
˚̊̊
˝

PJ
C ARGRAJ̄

CR PJ
C AV PJ

C ACGC,Ψ
´AJ̄

CL 0 0
0 0 Hζ,Ψ

´AJ̄
CM 0 0
0 0 0
0 0 0

˛
‹‹‹‹‹‹‚
,

Bw
x1

px, tq “ WJBpx, tqP “
¨
˝AC̄RGRAJ

RPC AC̄L 0 AC̄RGR,qM 0 0
´AJ

V PC 0 0 0 0 0
0 0 Hϕ 0 0 0

˛
‚,

Bw
y1

px, tq “ WJBpx, tqQ “
¨
˝AC̄RGRAJ̄

CR AC̄V 0
´AJ̄

CV 0 0
0 0 T

˛
‚
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4 The Concept of the Dissection Index

and obtain the basis functions

Qy1 “ Wy1 :“
¨
˝QVQR 0

0 WV

0 0

˛
‚

associated to Bw
y1
. We compute

WJ
y1
Bw

x1
“ ´pBv

y1
Qy1qT “

ˆ
0 AC̄V̄ R̄L 0 0 0 0

´WJ
V A

J
V PC 0 0 0 0 0

˙
,

to obtain the basis functions

Qx1 “ W ˚
y :“

¨
˚̊̊
˚̊̊
˝

QCV 0 0 0 0 0
0 QLI 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‚
.

We stop the calculation of the matrix chain with

pW ˚
y qJG1px, tqQx1

“

¨
˚̊̊
˚̊̊
˝

QJ
CV P

J
C ACCpAJ

C e, tqAJ
CPCQCV 0 0 0 0 0

0 QT
LILpjL, tqQLI 0 0 0 0

0 0 Mζ 0 0 0
0 0 0 MpqM , tq 0 0
0 0 0 0 Mε 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‚
.

With the help of these three matrices we can prove the following topological index theorem
for electrical circuits.

Theorem 4.28.
Under the assumptions 3.9 and 3.10 the MNA (3.34) has at most Dissection Index 2. In
particular it has index

(i) 0, if and only if there is a spanning tree in the circuit consisting only of capacitors
and there are neither voltage sources nor semiconductors in the circuit.

(ii) 1, or lower if and only if there are no loops consisting of capacitors and voltage
sources with at least one voltage source and no cutsets consisting of inductors or
electromagnetic devices and current sources.
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Proof. As long as pWẙ qJG1px, tqQx1 is non-singular the index is 2 at most due to Lemma
4.15. We know that CpAJ

C e, tq, LpjL, tq, Mζ , MpqM , tq and Mε are positive definite and
that AJ

CPC, QCV and QLI have full column rank, hence the index is at most 2.

The topological index-1 conditions stated in (ii) are equivalent to the conditions that AC̄V
has full column rank and that

`
AC AR AV

˘
has full row rank which is then equivalent

to AC̄V̄R having full row rank since QJ
C and QJ

V have full row rank. And

Bw
y1

px, tq “
¨
˝AC̄RGRAJ̄

CR AC̄V 0
´AJ̄

CV 0 0
0 0 T

˛
‚

is non-singular if and only if AC̄V has full column rank and AC̄V̄R has full row rank since
GR positive definite. Therefore (ii) holds.

Next observe G0 under the assumption that there are neither voltage sources nor semi-
conductors

G0px, tq “

¨
˚̊̊
˚̋
ACCpAJ

Ce, tqAJ
C 0 0 0 0

0 LpjL, tq 0 0 0
0 0 MpqM , tq 0 0
0 0 0 Mε 0
0 0 0 0 I

˛
‹‹‹‹‚.

The index 0 condition also states that there is a spanning tree in the circuit consisting only
of capacitors and therefore AJ

C has full column rank. By CpAJ
Ce, tq, LpjL, tq, MpqM , tq

and Mε being positive definite again, G0 is non-singular.

The topological index result, with respect to the Tractability Index for circuits without
semiconductor devices, memristors and electromagnetic devices, can be found in [Tis99].
In comparison to [Bau12] this result is consistent with the index result regarding the
Lorenz gauge. The index result itself is new because we used another index concept, but
again we noticed that we only used constant basis functions. In [Est00] a constant pro-
jector chain for circuits without semiconductor devices, memristors and electromagnetic
devices can be found. But in our case the Dissection Index concept directly provides us
with the constant topological basis functions.

It is well known that the Tractability Index of a circuit is no longer restricted by 2,
if controlled elements are added, cf. [ET00]. A representative example is the Miller
integrator 2.13, cf. [MG05, Pul12]. Example 2.13 has no inherent dynamic in the index 3
case. For demonstrative reasons we add one more resistor and one more capacitor to the
example and obtain the following circuit.
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4 The Concept of the Dissection Index

uinptq

j1v

G1

C1G2

C3 C2

´ `

j2v

e4 e3 e2 e1

If the first two capacitor capacities are non-linear, the characteristic values of the associ-
ated DAE could depend on the solution variables. Let the first two capacitors have the
same constant capacity C1 “ C2 “ C since we restrict ourselves to DAEs with constant
characteristic values in this thesis. The other elements are allowed to be non-linear.

The corresponding equations are given by:

Example 4.29. Let I :“ r0, 2 ¨ 10´6s and let t P I.

´pCpe2 ´ e1qq1 ´ j2v “ 0

pCe2q1 ` pCpe2 ´ e1qq1 ´ g1pe3 ´ e2, tq “ 0

´q1
C3

pe4 ´ e3, tq ` g1pe3 ´ e2, tq ´ j1v “ 0

q1
C3

pe4 ´ e3, tq ´ g2p´e4, tq “ 0

e3 ´ uinptq “ 0

e1 ´ 2e2 “ 0

In the following we show that there is a constant basis chain for Example 4.29. So even
for controlled sources the Dissection Index concept may provide constant basis functions.
Hence the Dissection Index may provide constant basis functions for electric circuits even
if they contain controlled circuits. To do so, we define x “ `

e1 e2 e3 e4 j1v j2v
˘
,

C3 :“ B
BvqC3pe4 ´ e3, tq, G1 :“ B

Bvg1pe3 ´ e2, tq, G2 :“ B
Bvg2p´e4, tq, the matrices and

functions

A :“

¨
˚̊̊
˚̋
0 ´1 0
1 1 0
0 0 ´1
0 0 1
0 0 0

˛
‹‹‹‹‚, Dpx, tq :“

¨
˝ 0 C 0 0 0 0

´C C 0 0 0 0
0 0 ´C3 C3 0 0

˛
‚
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and

bpx, tq :“

¨
˚̊̊
˚̊̊
˝

´j2v
´g1pe3 ´ e2, tq

g1pe3 ´ e2, tq ´ j1v
´g2p´e4, tq
e3 ´ uinptq
e1 ´ 2e2

˛
‹‹‹‹‹‹‚
.

Then we begin the matrix chain by

AD :“

¨
˚̊̊
˚̊̊
˝

C ´C 0 0 0 0
´C 2C 0 0 0 0
0 0 C3 ´C3 0 0
0 0 ´C3 C3 0 0
0 0 0 0 0 0
0 0 0 0 0 0

˛
‹‹‹‹‹‹‚
, Bpx, tq :“

¨
˚̊̊
˚̊̊
˝

0 0 0 0 0 ´1
0 G1 ´G1 0 0 0
0 ´G1 G1 0 ´1 0
0 0 0 G2 0 0
0 0 1 0 0 0
1 ´2 0 0 0 0

˛
‹‹‹‹‹‹‚
,

which allows us to choose

P “ V “

¨
˚̊̊
˚̊̊
˝

1 0 0
0 1 0
0 0 1
0 0 ´1
0 0 0
0 0 0

˛
‹‹‹‹‹‹‚

and Q “ W “

¨
˚̊̊
˚̊̊
˝

0 0 0
0 0 0
1 0 0
1 0 0
0 1 0
0 0 1

˛
‹‹‹‹‹‹‚
.

Hence we obtain

G1 “
¨
˝ C ´C 0

´C 2C 0
0 0 4C3

˛
‚,Bv

x1
“

¨
˝0 0 0
0 G1 ´G1

0 ´G1 G1 ` G2

˛
‚, Bv

y1
“

¨
˝ 0 ´1 0

´G1 0 0
G1 ´ G2 0 ´1

˛
‚,

Bw
x1

“
¨
˝0 ´G1 G1 ´ G2

0 0 1
1 ´2 0

˛
‚ and Bw

y1
“

¨
˝G1 ` G2 0 ´1

1 0 0
0 0 0

˛
‚.

Due to the matrix Bw
y1

we can choose

Py1 “
¨
˝1 0
0 0
0 1

˛
‚, Qy1 “

¨
˝0
1
0

˛
‚, Vy1 “

¨
˝1 0
0 1
0 0

˛
‚, Wy1 “

¨
˝0
0
1

˛
‚

Now we can calculate

WJ
y1
Bw

x1
“ `

1 ´2 0
˘
, Qx1 “

¨
˝2 0
1 0
0 1

˛
‚, Px1 “

¨
˝ 1

´2
0

˛
‚.
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4 The Concept of the Dissection Index

This yields

G1Qx1 “
¨
˝C 0

0 0
0 4C3

˛
‚, Wx1 “

¨
˝0
1
0

˛
‚, Vx1 “

¨
˝1 0
0 0
0 1

˛
‚.

We then obtain

Bx1 “ Bv
x1
Qx1 ´ Bv

y1
Py1pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1 “

¨
˝ 0 0

G1 0
´2G1 0

˛
‚

and thereby

G2 “
ˆ
C 0
0 4C3

˙
, Bv

x2
“

ˆ
0 0

´2G1 0

˙
, Bv

y2
“

ˆ´1
0

˙
,

Bw
x2

“ `
G1 0

˘
and Bw

y2
“ `

0
˘
.

Due to the singularity of Bw
y2

we choose

Py2 “ Vy2 “ ` ˘
, Qy2 “ Wy2 “ `

1
˘
,

which allows us to compute

WJ
y2
Bw

x2
“ `

G1 0
˘
, Qx2 “

ˆ
0
1

˙
, Px2 “

ˆ
1
0

˙
.

This yields

G2Qx2 “
ˆ

0
4C3

˙
, Wx3 “

ˆ
1
0

˙
and Bw

y3
“ `´1

˘
hence the DAE has Dissection Index 3. Of course it will not be possible to find a constant
decoupling for all circuits including controlled sources, but Example 4.29 motivates to
investigate under which conditions such a constant decoupling is possible.

4.4 Perturbation Analysis: Nonlinear DAEs

In particular the right hand side of a DAE is perturbed by the rounding error during the
numerical simulation. Therefore we consider the following perturbed system.

Definition 4.30. (Perturbed DAE)
Consider a DAE (4.9) and a function δ P CpI,Rnq. We call

fpd1pxptq, tq, xptq, tq “ δptq (4.25)

the perturbed DAE with the perturbation δ.
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The solution of a DAE (4.9) and the solution of its perturbed system (4.25) is not only
influenced by the perturbation δ but also by its derivatives, in general. To measure the
degree of the influence of these derivatives the Perturbation Index was defined in [HLR89].
Hence the Perturbation Index is tightly linked to numerical simulation. We saw influence
the first derivative of the perturbation in Figure 2.1 when we discretized Example 2.6
with the implicit Euler.

Definition 4.31. (Perturbation Index)
A DAE (4.9) has Perturbation Index μP along a solution x‹ P C1

dpI‹,Dq on a compact
interval I‹ “ rt0, T s Ă I, if μP is the smallest number, such that for all perturbations
δ P Cμ´1pI‹,Rnq with ||δ||8, ..., ||δpμP ´1q||8 being sufficiently small the perturbed system
has a solution xδ P C1

dpI‹,Dq and all solutions of the perturbed system fulfill

||x‹ptq ´ xδptq|| ď cp||x‹pt0q ´ xδpt0q|| `
ż t

t0

||δpsq||ds `
μP ´1ÿ
i“0

max
0ďt̃ďt

||δpiqpt̃q||q (4.26)

if ||x‹pt0q ´ xδpt0q|| is sufficiently small.

The major drawback of the Perturbation Index is that it does not provide any systematical
way how to determine it by itself. The Tractability Index [LMT13] and the Strangeness
Index [KM06] for example provide a well structured way how to determine themselves,
see Section 2.4 and Section 2.3. To transfer this advantage to the Perturbation Index the
Tractability and the Strangeness Index need to be related to the Perturbation Index. In
the case of linear DAEs with time depending coefficients these three index concepts are
already related directly to each other [LMT13, KM06]. For general nonlinear DAEs it is
proven that the Tractability Index and the Perturbation Index coincide in the index one
case [LMT13]. The main objective of this section is to provide a way of determining the
Perturbation Index for general nonlinear higher index DAEs. To achieve this goal we use
the Dissection Index.
The following lemma is crucial for the decoupling. It can be interpreted as an extension
of the Implicit Function Theorem. In contrast to the Implicit Function Theorem, which
provides an inverse function to an algebraic equation around a point, Lemma 4.32 provides
an inverse function to an algebraic equation around the graph of a function. A similar
result can be found in [OR70].

Lemma 4.32.
Let I Ă R and G Ă R

n ˆ R
m ˆ I be open subsets and let g P CνpG,Rmq for ν P N. Let

be I‹ :“ rt0, T s Ă I and let px‹ptq, y‹ptqq be a continuous solution on I‹ of the algebraic
equation

gpx, y, tq “ 0 (4.27)
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4 The Concept of the Dissection Index

with px‹ptq, y‹ptq, tq P G for all t P I‹. Furthermore let the Jacobian B
Bygpx, y, tq be non-

singular along px‹ptq, y‹ptq, tq for all t P I‹.
Then there is an open subset Ḡ Ă R

n ˆ I with px‹ptq, tq P Ḡ for all t P I‹ such that there
is a unique function Φ P CνpḠ,Rmq with px,Φpx, tq, tq P G for all px, tq P Ḡ and

gpx,Φpx, tq, tq “ 0, @px, tq P Ḡ.
Proof .
With the Implicit Function Theorem we get for every t̄ P I‹ three constants rt̄x, r

t̄
y, r

t̄
t ą 0

such that there is exactly one function

Ψt̄ P CνpBrt̄x
px‹pt̄qq ˆ Brt̄t

pt̄q, Brt̄y
py‹pt̄qqq

with

gpx,Ψt̄px, tq, tq “ 0, @px, tq P Brt̄x
px‹pt̄qq ˆ Brt̄t

pt̄q
With I‹ being compact and x‹ and y‹ being continuous, both x‹ and y‹ have compact
graphs. Therefore we can choose a finite number of time points t1, ¨ ¨ ¨ , tk such that the
associated neighborhoods B

r
ti
x

px‹ptiqq, B
r
ti
y

py‹ptiqq, B
r
ti
t

ptiq cover the sets of tx‹ptq|t P I‹u
and ty‹ptq|t P I‹u and the time interval I‹, respectively. Define the combined solution
function point wise by

Ψ :
kď

i“1

pB
r
ti
x

px‹ptiqq ˆ B
r
ti
t

ptiqq Ñ
kď

i“1

B
r
ti
y

py‹ptiqq

px, tq ÞÑ Ψtjpx, tq
with j minimal such that px, tq P B

r
tj
x

px‹ptjqq ˆ B
r
tj
t

ptjq.
Then Ψ uniquely solves the algebraic equation (4.27) point wise since all Ψtj solve the
algebraic equation (4.27) point wise uniquely. Further we have to show that Ψ is continu-
ously differentiable ν-times. Therefore consider an arbitrary px, tq P B

r
tj
x

px‹ptjqqˆB
r
tj
t

ptjq
with j minimal, then there is an open neighborhood H Ă B

r
tj
x

px‹ptjqq ˆ B
r
tj
t

ptjq around

px, tq since B
r
tj
x

px‹ptjqq ˆ B
r
tj
t

ptjq is open. We get that Ψ|H as well as Ψtj |H solve the

algebraic equation (4.27) point wise unique on H hence Ψ|H ” Ψtj |H . Therefore we find
a neighborhood around every point such that Ψ is identical to a ν-times continuously
differentiable function hence Ψ is ν-times continuously differentiable itself.
Next define dxptq :“ distpx‹ptq, δpŤk

i“1 Br
ti
x

px‹ptiqqqq as the distance of the set tx‹ptq|t P
I‹u to the boundary of the domain δpŤk

i“1 Br
ti
x

px‹ptiqqqq. It holds that dxptq ą 0 for

all t P I‹ since
Ťk

i“1 Br
ti
x

px‹ptiqq is open and covers tx‹ptq|t P I‹u. Furthermore the
distance function dist and the solution x‹ are continuous and I‹ is compact hence there
is a minimum mx :“ min

tPI‹
dxptq ą 0.
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Set rx “ 1
2
mx and define Ḡ :“ tpx, tq| ||x ´ x‹ptq|| ă rxu then it holds that

px‹ptq, tq P Ḡ Ă
kď

i“1

pB
r
ti
x

px‹ptiqq ˆ B
r
ti
t

ptiqq, @t P I‹.

With Φ :“ Ψ|G obtain the desired solution function.

Besides the Lemmata 4.16 and 4.32 we need an assumption regarding the basis functions:

Assumption 4.33. (Time dependent basis chain)
Consider a DAE (4.9) with a finite Dissection Index. Assume that all basis functions
except VxμTS´1 and WxμTS´1 depend only on the time t and let VxμTS´1 and WxμTS´1 only
depend on the time t and the dynamical variables x0.

Assumption 4.33 seems to be very strict when we think of the projector of the Tractability
Index or the basis functions of the Strangeness Index. In contrast to these index concepts
the basis functions of the Dissection Index fulfill Assumption 4.33 for a large application
class, see Section 4.3. Additionally we need the parts of the functions of the DAE to be
sufficiently smooth.

Assumption 4.34. (Differentiability)
Consider a DAE (4.9) with a finite Dissection Index μTS. Let the DAE fulfill Assumption
4.33. For 1 ď i ď μTS ´ 1 assume that the matrix valued functions:

Bw
yi

px1, x, tq, WJ
yi

ptqBw
xi

px1, x, tq and Gipx1, x, tqQxi
ptq

are pμTS `2´iq times continuously differentiable. Furthermore assume f to be sufficiently
differentiable such that:

V J
xi´2

ptqfpd1px, tq, x, tq
is also pμTS ` 2 ´ iq times continuously differentiable and let G be CμTS`2-diffeomorphic
to a parallelepiped.

Furthermore we introduce some notations regarding the perturbation. Let δptq be a
perturbation and δpiqptq be its i-th derivative. Then we gather the perturbation and the

derivatives up to order j into a vector Δpjqptq “ `
δ δp1qptq . . . δpjqptq˘J

. And by B
Bδpiq

we denote the partial derivative with respect to the i-th derivative of the perturbation
δptq.
With the help of these assumptions we are able to prove the following theorem.

Theorem 4.35. (Decoupling around a solution)
Consider a DAE (4.9), let I‹ :“ rt0, T s Ă I be compact and connected and let x0 P G be
the initial value of the IVP

fpd1px, tq, x, tq “ 0, @t P I‹
xpt0q “ x0.
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4 The Concept of the Dissection Index

(i) Let the DAE have a finite Dissection Index μ.

(ii) Let the DAE fulfill the Assumptions 4.33 and 4.34.

(iii) Let the IVP have a global unique solution x‹ on I‹.

Consider the perturbed DAE

fpd1px, tq, x, tq “ δptq, @t P I‹
xpt0q “ x0 ` δ0

and define the transformation matrix

T “ `
Qxμ Qx0Px1 . . . Qxμ´2Pxμ´1 Qy0Py1 . . . Qyμ´1Pyμ

˘
such that the the variable x is split into:

x “ Qxμxμ `
μ´1ÿ
i“1

Qxi´1
Pxi

x̃i `
μÿ

i“1

Qyi´1
Pyi ỹi

“ T
`
xμ x̃1 . . . x̃μ´1 ỹ1 . . . ỹμ

˘T
.

Then for 1 ď i ď μ and 1 ď j ď μ ´ 1 there are neighborhoods Gỹi and Gx̃j
such that the

solution parts ỹi and x̃j can be described by a pμ`1´ iq times differentiable function Ψỹi

and by a pμ ` 2 ´ jq times differentiable function Ψx̃j
, i.e.

ỹi “ Ψỹipxi, t,Δ
pi´1qptqq

x̃j “ Ψx̃j
pt,Δpj´1qptqq

with

B
Bxi

Ψỹipxi, t,Δ
pi´1qptqq “ ´pV J

yi´1
Bw

yi´1
Pyi´1

q´1V J
yi´1

Bw
xi´1

Qxi´1

and B
Bδpj´1qΨx̃j

pt,Δpj´1qptqq having full row rank. Furthermore there is a function fxμ such
that for the solution part xμ holds:

d

dt
xμ “ fxμpxμ, t,Δ

pμ´1qptqq

Proof .
Keep in mind that all basis functions except Vxμ´1 and Wxμ´1 depend only on the time
t. We will drop the time argument of the basis functions for a more compact notation.
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Assume that the functions Ψx̃i
and Ψỹi exist, then we recursively define functions fi

starting with

f0px1
0, x0, y0, t, δptqq

“fpdxpx̂, tqpPx1
0 ` P 1x0 ` Q1y0q ` dtpx̂, tq, x̂, tq ´ δptq

with x̂ “ Px0 ` Qy0. For all 1 ď i ď μ define

fipx1
i, xi, yi, t,Δ

piqptqq “ V J
xi´1

fi´1px̂1
i, x̂i, ŷi, t,Δ

pi´1qptqq
with

x̂1
i “ Qxi

x1
i ` Q1

xi
xi ` P 1

xi
Ψx̃i

pt,Δpi´1qptqq ` Pxi
Ψ1

x̃i
pt,Δpiqptqq,

x̂i “ Qxi
xi ` Pxi

Ψx̃i
pt,Δpi´1qptqq,

ŷi “ Qyiyi ` PyiΨỹipxi, t,Δ
pi´1qptqq.

The basis functions as well as the functions Ψx̃i
and Ψỹi are sufficiently smooth due to

Assumption 4.34. For the Jacobians of f0 with respect to x1
0, x0 and y0 hold:

B
Bx1

0

f0 “ ADP,

B
Bx0

f0 “ BP ` ApDP q1,

B
By0f0 “ BQ ` ApDQq1.

We prove the statement for i ď μ´2 and that for the Jacobians of fi hold for 1 ď i ď μ´1:

B
Bx1

i

fi “ GiQxi
,

B
Bxi

fi “ Bxi`1
,

B
Byifi “ Byi`1

by a mathematical induction:
Base case: (i “ 1)
We factorize the perturbed DAE with V J

x0
, V J

y1
WJ

x0
and WJ

y1
WJ

x0
:

fpd1px, tq, x, tq “ δptq

ô
¨
˝ V J

x0

V J
y1
WJ

x0

WJ
y1
WJ

x0

˛
‚pfpd1px, tq, x, tq ´ δptqq “ 0

The DAE has a proper leading term hence imAD “ imA and for this reason it holds

WJ
x0
G “ WJAD “ 0 ô WJA “ 0,
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4 The Concept of the Dissection Index

which means that WJ
x0

pfpd1px, tq, x, tq is independent from its first component and we
write WJ

x0
fpd1px, tq, x, tq “: WJ

x0
fpx, tq. This leads to:

V J
y1
WJ

x0
fpx, tq ´ V J

y1
WJ

x0
δptq “ 0, (4.28a)

WJ
y1
WJ

x0
fpx, tq ´ WJ

y1
WJ

x0
δptq “ 0. (4.28b)

We split x “ Px0 ` Qy0 “ Qx0x0 ` Qy0y0 and notice that Qy0y0 vanishes in (4.28b) due
to the definition of WJ

y1
and Lemma 4.8:

V J
y1
WJ

x0
fpQx0x0 ` Qy0y0, tq ´ V J

y1
WJ

x0
δptq “ 0, (4.29a)

WJ
y1
WJ

x0
fpQx0x0, tq ´ WJ

y1
WJ

x0
δptq “ 0. (4.29b)

As the next step we split x0 “ Px1x̃1 ` Qx1x1 and y0 “ Py1 ỹ1 ` Qy1y1 and see that Qy1y1
vanishes in (4.29a) and Qx1x1 vanishes in (4.29b) due to the definitions of Qx1 and Qy1

and Lemma 4.8 again:

V J
y1
WJ

x0
fpQx0Px1x̃1 ` Qx0Qx1x1 ` Qy0Py1 ỹ1, tq ´ V J

y1
WJ

x0
δptq “ 0 (4.30a)

WJ
y1
WJ

x0
fpQx0Px1x̃1, tq ´ WJ

y1
WJ

x0
δptq “ 0 (4.30b)

The Jacobian B
Bx̃1

WJ
y1
WJ

x0
fpQx0Px1x̃1, tq “ WJ

y1
WJ

x0
BQx0Px1 “ WJ

y1
Bw

y1
Px1 is non-singular

due to Lemma 4.16. We transform the exact solution x‹ with the coordinate transforma-
tion matrix T and notate the component related to x̃1 with x̃‹,1. Then by Lemma 4.32
there is an open neighborhood Gx1 around pI‹, 0q such that there is a solution function
for (4.30b) which describes x̃1 on Gx1 :

x̃1 “ Ψx̃1pt, δq
with B

BδΨx̃1pt, δq having full row rank since B
BδW

J
y1
WJ

x0
δptq “ WJ

y1
WJ

x0
has full row rank.

By Lemma 4.7 and Assumption 4.34 the function Ψx̃1 is pμ ` 1q times continuously
differentiable. Insert this expression into (4.30a) and obtain

V J
y1
WJ

x0
fpQx0Px1Ψx̃1pt, δptqq ` Qx0Qx1x1 ` Qy0Py1 ỹ1, tq ´ V J

y1
WJ

x0
δptq “ 0 (4.31)

with the Jacobian with respect to ỹ1

B
Bỹ1V

J
y1
WJ

x0
fpQx0Px1Ψx̃1pt, δptqq ` Qx0Qx1x1 ` Qy0Py1 ỹ1, tq

“V J
y1
WJ

x0
BQy0Py1 “ V J

y1
Bw

y1
Py1

being non-singular. Again by Lemma 4.32 there is an open neighborhood Gy1 around
tpx‹,1ptq, t, 0q|t P I‹u such there is a solution function for (4.31) which describes ỹ1 on Gy1 :

ỹ1 “ Ψỹ1px1, t, δq
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with

B
Bx1

Ψỹ1px1, t, δq “ ´pV J
y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1

which follows exactly as in the proof of the Implicit Function Theorem, c.f. [Zei86]. By
Lemma 4.7 and Assumption 4.34 the function Ψỹ1 is pμ ` 1q times continuously differen-
tiable. Consider

f1px1
1, x1, y1, t,Δ

p1qptqq “ V J
x0
f0px̂1

1, x̂1, ŷ1, t, δptqq
with

x̂1
1 “ Qx1x

1
1 ` Q1

x1
x1 ` P 1

x1
Ψx̃1pt, δptqq ` Px1Ψ

1
x̃1

pt,Δp1qptqq,
x̂1 “ Qx1x1 ` Px1Ψx̃1pt, δptqq,
ŷ1 “ Qy1y1 ` Py1Ψỹ1px1, t, δptqq.

For the Jacobians of f1 with respect to x1
1, x1 and y1 it holds that:

B
Bx1

1

f1 “ V J
x0

p B
Bx1

0

f0qQx1 “ V J
x0
ADQx0Qx1 “ G1Qx1 ,

B
Bx1

f1 “ V J
x0

pp B
Bx0

f0qQx1 ` p B
Bx1

0

f0qQ1
x1

` p B
By0f0qPy1p B

Bx1

Ψỹ1qq

“ pV J
x0

B
Bx0

f0qQx1 ` pV J
x0

B
Bx1

0

f0qQ1
x1

` pV J
x0

B
By0f0qPy1p B

Bx1

Ψỹ1q
“ Bv

x1
Qx1 ` G1Q

1
x1

´ Bv
y1
Py1pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1 “ Bx2 ,

B
By1f1 “ pV J

x0

B
By0f0qQy1 “ Bv

y1
Qy1 “ By2 .

We complete the base case by notating

fpd1px, tq, x, tq “ δptq

ô
¨
˝f1px1

1, x1, y1, t,Δ
p1qptqq “ 0

ỹ1 ´ Ψỹ1px1, t, δptqq “ 0
x̃1 ´ Ψx̃1pt, δptqq “ 0

˛
‚.

Induction step: (i ´ 1 ÞÑ i ď μ ´ 1)
By the induction hypothesis we get

fi´1px1
i´1, xi´1, yi´1, t,Δ

pi´1qptqq “ 0
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4 The Concept of the Dissection Index

ô
¨
˝ V J

xi´1

V J
yi
WJ

xi´1

WJ
yi
WJ

xi´1

˛
‚fi´1px1

i´1, xi´1, yi´1, t,Δ
pi´1qptqq “ 0

with B
Bδpi´1qW

J
xi´1

fi´1px1
i´1, xi´1, yi´1, t,Δ

pi´1qptqq “ WJ
xi´1

Gi´1Pxi´1

B
Bδpi´2qΨỹi´1

having full

row rank and B
Bx1

i´1
WJ

xi´1
fi´1px1

i´1, xi´1, yi´1, t,Δ
pi´1qptqq “ WJ

xi´1
Gi´1Qxi´1

being zero due

to the construction of WJ
xi´1

. Hence we write

WJ
xi´1

fi´1px1
i´1, xi´1, yi´1, t,Δ

pi´1qptqq “ WJ
xi´1

fi´1pxi´1, yi´1, t,Δ
pi´1qptqq

by Lemma (4.8) and obtain

V J
yi
WJ

xi´1
fi´1pxi´1, yi´1, t,Δ

pi´1qptqq “ 0,

WJ
yi
WJ

xi´1
fi´1pxi´1, t,Δ

pi´1qptqq “ 0.

Split yi´1 “ Pyi ỹi ` Qyiyi and xi´1 “ Pxi
x̃i ` Qxi

xi and obtain with the help of Lemma
(4.8)

V J
yi
WJ

xi´1
fi´1pPxi

x̃i ` Qxi
xi, Pyi ỹi, t,Δ

pi´1qptqq “ 0, (4.32a)

WJ
yi
WJ

xi´1
fi´1pPxi

x̃i, t,Δ
pi´1qptqq “ 0. (4.32b)

Equation (4.32b) yields an explicit expression

x̃i “ Ψx̃i
pt,Δpi´1qptqq

on a suitable open neighborhood Gx̃i
by Lemma 4.32 with Ψx̃i

being pμ ` 1 ´ iq times
continuously differentiable by Lemma 4.7 and Assumption 4.34. Insert this expression
into (4.32a) and obtain

V J
yi
WJ

xi´1
fi´1pPxi

Ψx̃i
pt,Δpi´1qptqq ` Qxi

xi, Pyi ỹi, t,Δ
pi´1qptqq “ 0,

which analogously yields an explicit expression

ỹi “ Ψỹipxi, t,Δ
pi´1qptqq P Cμ´i

on a suitable open neighborhood Gỹi by Lemma 4.32 with Ψỹi being pμ ` 1 ´ iq times
continuously differentiable by Lemma 4.7 and Assumption 4.34. Together we achieve

fi´1px1
i´1, xi´1, yi´1, t,Δ

pi´1qptqq “ 0

ô
¨
˝ fipx1

i, xi, yi, t,Δ
piqptqq “ 0

ỹi ´ Ψỹipxi, t,Δ
pi´1qptqq “ 0

x̃i ´ Ψx̃i
pt,Δpi´1qptqq “ 0

˛
‚
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with

fipx1
i, xi, yi, t,Δ

piqptqq “ V J
xi´1

fi´1px̂1
i, x̂i, ŷi, t,Δ

pi´1qptqq
and

x̂1
i “ Qxi

x1
i ` Q1

xi
xi ` P 1

xi
Ψx̃i

pt,Δpi´1qptqq ` Pxi
Ψ1

x̃i
pt,Δpiqptqq,

x̂i “ Qxi
xi ` Pxi

Ψx̃i
pt,Δpi´1qptqq,

ŷi “ Qyiyi ` PyiΨỹipxi, t,Δ
pi´1qptqq.

Such that for the Jacobians of fi hold:

B
Bx1

i

fi “ V J
xi´1

B
Bx1

i´1

fi´1Qxi
“ V J

xi´1
Gi´1Qxi´1

Qxi
“ GiQxi

,

B
Bxi

fi “ V J
xi´1

pp B
Bxi´1

fi´1qQxi
` p B

Bx1
i´1

fi´1qQ1
xi

` p B
Byi´1

fi´1qPyip B
Bxi

Ψỹiqq

“ pV J
xi´1

B
Bxi´1

fi´1qQxi
` pV J

xi´1

B
Bx1

i´1

fi´1qQ1
xi

` pV J
xi´1

B
Byi´1

fi´1qPyip B
Bxi

Ψỹiq
“ Bv

xi
Qxi

` GiQ
1
xi

´ Bv
yi
PyipV J

yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
Qxi

“ Bxi`1
,

B
By1fi “ pV J

xi´1

B
Byi´1

fi´1qQyi “ Bv
yi
Qyi “ Bv

yi`1
.

The induction step is complete. Analogous to the former step, obtain by the usage of
Lemma 4.32

fμ´1px1
μ´1, xμ´1, yμ´1, t,Δ

pμ´1qptqq
ô

ˆ
Vxμ´1pxμ´1, tqfμ´1px1

μ´1, xμ´1, yμ´1, t,Δ
pμ´1qptqq “ 0

Wxμ´1pxμ´1, tqfμ´1px1
μ´1, xμ´1, yμ´1, t,Δ

pμ´1qptqq “ 0

˙

ô
ˆ
Vxμ´1pxμ´1, tqfμ´1px1

μ´1, xμ´1, yμ´1, t,Δ
pμ´1qptqq “ 0

Wxμ´1pxμ´1, tqfμ´1pxμ´1, yμ´1, t,Δ
pμ´1qptqq “ 0

˙

ô
ˆ
x1
μ “ fμpxμ, t,Δ

pμ´1qptqq
ỹμ “ Ψỹμpxμ, t,Δ

pμ´1qptqq
˙

with B
Bδpμ´1qΨỹμpxμ, t,Δ

pμ´1qptqq having full row rank.

In Theorem 4.35 we obtain an inherent ODE after the decoupling. To achieve perturbation
results for the DAE (4.9) we need to analyze the explicit ODE case. The next lemma
covers the perturbation analysis for explicit ODEs. In the lemma we consider nonlinear
perturbation to handle the nonlinear perturbations which may appear in the inherent
ODE even if only the right hand side of the DAE gets perturbed.
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4 The Concept of the Dissection Index

Lemma 4.36. (Perturbed ODEs)
Let I Ă R and G Ă R

n ˆ I ˆ R
m be open subsets and let f P C1pG,Rnq. Let I‹ :“

rt0, T s Ă I and let x‹ptq be a continuous differentiable solution on I‹ of the unperturbed
IVP

x1ptq “ fpx, t, 0q, @t P I‹
xpt0q “ x0.

(4.33)

with px‹ptq, t, 0q P G for all t P I‹. Let δ P CpI‹,Rnq be a perturbation such that
px‹ptq, t, δptqq P G for all t P I‹. Let δ0 be the initial perturbation then the perturbed IVP

x1ptq “ fpx, t, δptqq, @t P I‹
xpt0q “ x0 ` δ0

(4.34)

has a unique solution xδ P C1pI‹,Rnq and it holds

||x‹ptq ´ xδptq||8 ď cp||δ0||8 `
ż t

t0

||δpsq||8dsq, (4.35)

if δ0 and δptq are sufficiently small.

Proof .
We find an rx ą 0 with

B̄rxpx‹, I‹, 0q :“ tpx, t, δq P R
n ˆ I ˆ R

m | ||x ´ x‹ptq|| ` ||δptq|| ď rxu Ă G.

Let px0 ` δ0, t0, 0q P B̄rxpx‹, I‹, 0q, i.e. ||δ0|| ď rx. Define the restricted function

f̃px, t, δq :“ fpx, t, δq|B̄rx px‹,I‹,0q

thus the norms of the Jacobians of f̃ , with respect to x and δ, are bounded since
B̄rxpx‹, I‹, 0q is compact and f̃ is continuously differentiable.

||f̃x||8 ď max
px,t,δqPB̄rx px‹,I‹,0q

||fxpx, t, δq||8 “: cx

||f̃δ||8 ď max
px,t,δqPB̄rx px‹,I‹,0q

||fδpx, t, δq||8 “: cδ

Notice that x‹ is also a solution of

x1ptq “ f̃px, t, 0q, @t P I‹
xpt0q “ x0
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since x‹ solves (4.33) and px‹ptq, t, 0q P B̄rxpx‹, I‹, 0q for all t P I‹. Assume that xδ is a
solution of the perturbed restricted IVP

x1ptq “ f̃px, t, δptqq, @t P I‹
xpt0q “ x0 ` δ0.

(4.36)

We can subtract these terms from each other and achieve

pxδptq ´ x‹ptqq1 “f̃pxδptq, t, δptqq ´ f̃px‹ptq, t, 0q
“f̃pxδptq, t, δptqq ´ f̃px‹ptq, t, δptqq ` f̃px‹ptq, t, δptqq ´ f̃px‹ptq, t, 0q
“

ż 1

0

f̃xpsxδptq ` p1 ´ sqx‹ptq, t, δptqqdspxδptq ´ x‹ptqq

`
ż 1

0

f̃δpx‹ptq, t, sδptqqdsδptq.

Notice that psxδptq ` p1 ´ sqx‹ptq, t, δptqq P B̄rxpx‹, I‹, 0q for all
pxδptq, t, δptqq, px‹ptq, t, δptqq P B̄rxpx‹, I‹, 0q. By an integration with respect to the time
we obtain

xδptq ´ x‹ptq “ δ0 `
ż t

t0

ż 1

0

f̃xpsxδpτq ` p1 ´ sqx‹pτq, τ, δpτqqdspxδpτq ´ x‹pτqqdτ

`
ż t

t0

ż 1

0

f̃δpx‹pτq, τ, sδpτqqdsδpτqdτ.

Finally we are able to bound the norm of xδptq´x‹ptq with the help of Gronwall’s Lemma:

||xδptq ´ x‹ptq||8

ď||δ0||8 `
ż t

t0

ż 1

0

||f̃δpx‹pτq, τ, sδpτqq||8ds||δpτq||8dτ

`
ż t

t0

ż 1

0

||f̃xpsxδpτq ` p1 ´ sqx‹pτq, τ, δpτqq||8ds||xδpτq ´ x‹pτq||8dτ

ď||δ0||8 ` cδ

ż t

t0

||δpτq||8dτ ` cx

ż t

t0

||xδpτq ´ x‹pτq||8dτ

ďp||δ0||8 ` cδ

ż t

t0

||δpτq||8dτqecxpT´t0q.

Let ||δ0||8 ă 1
4
e´cxpT´t0qrx and maxτPI‹ ||δpτq||8 ă maxp 1

4cδpT´t0qe
´cxpT´t0qrx, 14rxq be ful-

filled, then ||xδptq ´ x‹ptq||8 ď 1
2
rx and therefore pxδptq, t, 0q P B̄rxpx‹, I‹, 0q for all t P I‹.

So solutions of (4.36) are bounded in B̄ 3
4
rx

px‹, I‹, 0q by an a-priori estimate and are there-

fore also solutions of (4.34). Now we find a solution interval which includes I‹ such that
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4 The Concept of the Dissection Index

(4.34) has a unique continuously differentiable solution on I‹, since fpx, t, δq is contin-
uous differentiable hence it is local Lipschitz continuous and the solutions of (4.34) are
bounded. The inequality (4.35) holds with c :“ maxp1, cδqecxpT´t0q.

According to our objective to show the equivalence of the Perturbation Index and the
Dissection Index it is not sufficient to show that there exists an estimation like (4.26). It
also has to be shown that there is no stricter estimation, i.e. the Dissection Index μTS

has to be the minimal μ such that an estimation (4.26) exists.

Lemma 4.37. Let I Ă R and G Ă R
n ˆ I ˆR

μ¨n be open subsets and let g P CμpG,Rnq.
Let I‹ :“ rt0, T s Ă I and let x‹ptq be a continuous solution on I‹ of the unperturbed
algebraic equation

gpx, t, 0q “ 0 (4.37)

with px‹ptq, t, 0q P G for all t P I‹.
Let δ be a pμ ´ 1q-times differentiable perturbation and define
Δpμ´1qptq :“ `

δptq, . . . , δpμ´1qptq˘
with px‹ptq, t,Δpμ´1qptqq P G for all t P I‹. Let xδ be

a continuous solution on I‹ of the perturbed algebraic equation

gpx, t,Δpμ´1qptqq “ 0 (4.38)

for all t P I‹. Furthermore let the Jacobian B
Bδpμq gpx, t,Δpμ´1qptqq has full row rank along

px‹ptq, t, 0q for all t P I‹.
Then there is no ν P N with ν ă μ such that

||x‹ptq ´ xδptq|| ď cp||x‹pt0q ´ xδpt0q|| `
ż t

t0

||δpsq||ds `
ν´1ÿ
i“0

max
0ďt̃ďt

||δpiqpt̃q||q, (4.39)

for all perturbations δ with ||δ||8, ..., ||δpμ´1q||8 and ||x‹pt0q ´ xδpt0q|| sufficiently small.

Proof .
We define t 1

4
:“ 1

4
pT ´ t0q ` t0 and t 3

4
:“ 3

4
pT ´ t0q ` t0 and let

hptq “ 4
t ´ t0
T ´ t0

´ 2 ñ
#
hptq ě ´1, t ď t 1

4

hptq ď 1, t ě t 3
4
.

Next define

gptq “
#
e´ 1

t2 , t ą 0

0, t ď 0
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With the help of g we define

kptq “ gp1 ` tq
gp1 ` tq ` gp1 ´ tq ñ

$’&
’%
kptq “ 0, t ď ´1

0 ď kptq ď 1, ´1 ď t ď 1

kptq “ 1, t ě 1

and define afterwards

aptq “ kphptqq ñ

$’&
’%
aptq “ 0, t ď t 1

4

0 ď aptq ď 1, t 1
4

ă t ă t 3
4

aptq “ 1, t ě t 3
4

with a P C8pR,Rq since aptq is a combination of C8 functions. With I‹ being compact
we get that there is a constant ca ą 0 with

max
tPI‹

|apiqptq| ď ca, @i ď μ ´ 1.

We define

δ̄ : I‹ Ñ R

t ÞÑ ηεμ´1 sinpε´1tqaptq

with η, ε ą 0 and show that

1. δ̄piqpt0q “ 0 for all i ď μ ´ 1,

2. Dcη ą 0 : max
tPI‹

|δ̄piqptq| ď cηη for all i ď μ ´ 1,

3. Dcε ą 0 : max
tPI‹

|δ̄piqptq| ď cεε for all i ď μ ´ 2,

4. @n P N : ε “ T
2nπ

ñ |δ̄pμ´1qpT q| “ η if μ is odd.

@n P N : ε “ T
1
2
π`2nπ

ñ |δ̄pμ´1qpT q| “ η if μ is even.

First notice that δ̄ P C8pI‹,Rq as a combination of C8 functions and that

δ̄pnqptq “ ηεμ´1´np
nÿ

k“0

ˆ
n

k

˙
εkapkqptqsinpn´kqpε´1tqq

holds by a mathematical induction with sinpnq the n-th derivative of the sinus function.
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4 The Concept of the Dissection Index

1. For t ď t 1
4
holds

δ̄ptq “ εμ´1 sinpε´1tqaptq “ 0

since aptq “ 0 for all t ď t 1
4
hence there is a neighborhood around t0 in which δ̄ptq

vanishes completely and therefore holds δ̄piqpt0q “ 0 for all i ď μ ´ 1.

2. I‹ is a compact interval, δ̄ P C8pI‹,Rq and η is a constant factor.

3. I‹ is a compact interval, δ̄ P C8pI‹,Rq and ε is a constant factor in δ̄piqptq for
i ă μ ´ 1 and |sinpiqpε´1tq| ď 1.

4. At last it holds:

|δ̄pμ´1qpT q| “ η|p
μ´1ÿ
k“0

ˆ
μ ´ 1

k

˙
εkapkqpT qsinpμ´1´kqpε´1T qq|

“ η|papT qsinpμ´1qpε´1T q `
μ´1ÿ
k“1

ˆ
μ ´ 1

k

˙
εkapkqpT qsinpμ´1´kqpε´1T qq|

“ η|sinpμ´1qpε´1T q|

“ η

#
|sinpμ´1qp2nπq|, if μ ´ 1 is odd

|sinpμ´1qp1
2
π ` 2nπq|, if μ ´ 1 is even

“ η

Let Pδpx, t,Δptqq be a complementary kernel basis function of B
Bδpμq gpx, t,Δptqq. Then

we define δ‹ptq “ Pδpx‹pT q, T, 0q
¨
˚̋1
...
1

˛
‹‚δ̄ptq, this yields x‹pt0q “ xδpt0q and with Equa-

tion (4.38) and the Implicit Function Theorem that there is a neighborhood around
px‹pT q, T, 0q such that there is a function Ψ with¨

˚̋1
...
1

˛
‹‚δ̄pμ´1qptq “ Ψpxδptq, t,Δpμ´2q

‹ ptqq

and with Equation (4.37) we obtain

Ψpx‹ptq, t, 0q “ 0.

If we assume that there is a ν ă μ such that there is an estimate (4.39) then it holds

|δ̄pμ´1qptq|
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“||Ψpxδptq, t,Δpμ´2q
‹ ptqq ´ Ψpx‹ptq, t, 0q||8

“||Ψpxδptq, t,Δpμ´2q
‹ ptqq ´ Ψpx‹ptq, t,Δpμ´1q

‹ ptqq
` Ψpx‹ptq, t,Δpμ´2q

‹ ptqq ´ Ψpx‹ptq, t, 0q||8

“||
ż 1

0

Ψxpsxδptq ` p1 ´ sqx‹ptq, t,Δpμ´2q
‹ ptqqdspxδptq ´ x‹ptqq

`
ż 1

0

Ψ
Δ

pμ´2q‹
px‹ptq, t, sΔpμ´2q

‹ ptqqdsΔpμ´2q
‹ ptq||8.

and we find constants cx, cδ, c ą 0 such that

|δ̄pμ´1qptq| ďcx||xδptq ´ x‹ptq||8 ` cδ||Δpμ´2qptq||8 (4.40a)

ďcp||x‹pt0q ´ xδpt0q||8 ` ||Δpμ´2qptq||8q (4.40b)

“c||Δpμ´2qptq||8 (4.40c)

ďccεε. (4.40d)

But this would yield

η “ |δ̄pμ´1qpT q| ďccε
T

2nπ

for all n P N and therefore it would hold that 0 ă η “ 0. By this contradiction there can
not be a ν ă μ such that there is an estimate (4.39).

We present the main theorem of this section which will be proven with the help of Theorem
4.35, Lemma 4.36 and Lemma 4.37.

Theorem 4.38. (Relation between the Dissection Index and the Perturbation Index)
Consider a DAE (4.9), let I‹ :“ rt0, T s Ă I be compact and connected and let x0 P G be
the initial value of the IVP

fpd1px, tq, x, tq “ 0, @t P I‹
xpt0q “ x0.

(i) Let the DAE have a finite Dissection Index μ.

(ii) Let the DAE fulfill the Assumptions 4.33 and 4.34.

(iii) Let the IVP have a global solution x‹ on I‹.

Then for all perturbations δ, with ||δ||8, ..., ||δpμ´1q||8 being sufficiently small, it holds
that:

(i) Each perturbed system has a unique global solution.
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4 The Concept of the Dissection Index

(ii) The Perturbation Index exists.

(iii) The Perturbation Index μP is equal to the Dissection Index μ.

Proof .
We remember the splitting

x “ Qxμxμ `
μ´1ÿ
i“1

Qxi´1
Pxi

x̃i `
μÿ

i“1

Qyi´1
Pyi ỹi.

By the Decoupling Theorem 4.35 there is a neighborhood around the exact solution such
that we obtain:

fpd1px, tq, x, tq “ δptq

ô

¨
˚̋̊ d

dt
xμ “ fxμpxμ, t,Δ

pμ´1qptqq
ỹμ “ Ψỹμpxμ, t,Δ

pμ´1qptqq
ỹi “ Ψỹipxi, t,Δ

pi´1qptqq
x̃i “ Ψx̃i

pt,Δpi´1qptqq

˛
‹‹‚

with B
Bδpμ´1qΨx̃μpt,Δpμ´1qptqq having full row rank and fxμ , Ψỹi , Ψx̃i

and Ψỹμ being contin-
uously differentiable for 1 ď i ď μ ´ 1.
By Lemma 4.36 there is a unique global solution xδ,μ of the perturbed inherent ODE with
an estimate:

||x‹,μptq ´ xδ,μptq||8 ď cp||δ0||8 `
ż t

t0

||Δpμ´1qptq||8dsq

ď cp||δ0||8 `
μ´1ÿ
i“0

max
t̃Prt0,ts

||δpiqpt̃q||8dsq

The unique global solution of the perturbed solution components x̃i follows immediately
from the decoupling since we can express x̃i by functions that only depend on the time
and the derivatives of the perturbation. Additionally, by the Mean Value Theorem and
Δpi´1qptq being sufficiently small there is a constant c such that:

||x̃‹,iptq ´ x̃δ,iptq||8 “ ||Ψx̃i
pt, 0q ´ Ψx̃i

pt,Δpi´1qptqq||8
ď c||Δpi´1qptq||8

ď c
i´1ÿ
j“0

max
t̃Prt0,ts

||δpjqpt̃q||8ds

The unique existence of xδ,μ and x̃δ,i for all 1 ď i ď μ ´ 1 yield the unique existence of
ỹδ,i for all 1 ď i ď μ plus the estimate

||ỹ‹,iptq ´ ỹδ,iptq||8
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“||Ψỹipx‹,iptq, t, 0q ´ Ψỹipxδ,iptq, t,Δpi´1qptqq||8

ďcp||x‹,μptq ´ xδ,μptq||8 `
μ´1ÿ
j“i

||x̃‹,jptq ´ x̃δ,jptq||8 ` ||Δpi´1qptq||8q

ďc̃p||δ0||8 `
μ´1ÿ
i“0

max
t̃Prt0,ts

||δpiqpt̃q||8dsqq

We showed the unique global solvability for the perturbed problem. By the estimations
we already showed the existence of Perturbation Index and additionally we showed that
the Dissection Index is an upper bound of the Perturbation Index. By Lemma 4.37 the
equation

ỹμ “ Ψỹμpxμ, t,Δ
pμ´1qptqq

yields that there is no ν ă μ such that there is a constant c with:

||ỹ‹,μptq ´ ỹδ,μptq||8 ď cp||δ0||8 `
ν´1ÿ
i“0

max
t̃Prt0,ts

||δpiqpt̃q||8dsqq

This shows that the Dissection Index is also a lower bound of the Perturbation Index
hence they coincide.

4.5 Dissection Index for DAEs in Hessenberg Form

To analyze the mechanical applications of Section 3.2 we introduce DAEs in Hessenberg
form:

Definition 4.39. (Differential-Algebraic Equation in Hessenberg form; [KM06], p. 172)
Let I Ă R, Dnxi Ă R

nxi be open subsets. Consider the following equation

x1
1 “ f1px1, x2, tq

...

x1
μ´1 “ fμ´1px1, . . . , xμ´1, xμ, tq
0 “ f0px1, tq

(4.41)

with fi P C1pDnx1 ˆ . . . ˆ Dnxi`1 ˆ I,Dnxi q. We call (4.41) a DAE in Hessenberg form
with μ stages, if

B
Bx1

f0
B

Bx2

f1 . . .
B

Bxμ´1

fμ´2
B

Bxμ

fμ´1 (4.42)

is non-singular.
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4 The Concept of the Dissection Index

In [LMT13] it is shown that the Tractability Index always coincides with the number
of the Hessenberg stages. In the following we provide this result also for the Dissection
Index. Before we formulate such a theorem we split (4.42) with the help of orthonormal
basis functions. Equation (4.42) yields that

B
Bx1

f0

has full row rank. Furthermore choose orthonormal basis functions PH1px1, tq of
pker B

Bx1
f0qK and QH1 of ker B

Bx1
f0. Then it holds

B
Bx1

f0
B

Bx2

f1 . . .
B

Bxμ

fμ´1
B

Byfμ

“ B
Bx1

f0PH1P
J
H1

B
Bx2

f1 . . .
B

Bxμ

fμ´1
B

Byfμ

“p B
Bx1

f0PH1qpPJ
H1

B
Bx2

f1 . . .
B

Bxμ

fμ´1
B

Byfμq

with

B
Bx1

f0PH1 and PJ
H1

B
Bx2

f1 . . .
B

Bxμ

fμ´1
B

Byfμ

being non-singular. We successively define PHi`1
pxi, . . . , x1, tq as orthonormal basis func-

tions of pkerPJ
Hi

B
Bxi`1

fiqK and QHi`1
pxi, . . . , x1, tq as orthonormal basis functions of

kerPJ
Hi

B
Bxi`1

fi for 1 ď i ď μ ´ 1. By an induction

PJ
Hi

B
Bxi`1

fi

has full row rank and

PJ
Hi`1

B
Bxi`2

fi`1 . . .
B

Bxμ´1

fμ´2
B

Bxμ

fμ´1

is non-singular. This particularly yields in the last step that

PJ
Hμ

B
Bxμ

fμ´1

is non-singular.

Theorem 4.40.
Any DAE in Hessenberg form (4.41) with μ stages and sufficiently smooth functions fi
has Dissection Index μ.
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Proof . We prove

Gi “
¨
˚̋I 0 0

0
. . . 0

0 0 I

˛
‹‚,

Bv
xi

“

¨
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˝

˚ . . . ˚ 0 . . . 0
...

...
...

...
...

... 0
...

...
... B

Bxi`1
fi

...
...

...
. . . 0

...
... ˚ B

Bxμ´1
fμ´2

˚ . . . ˚ . . . . . . ˚

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚
, Bv

yi
“

¨
˚̊̊
˝

0
...
0

B
Byfμ´1

˛
‹‹‹‚

and

Bw
xi

“ `
b1xi

. . . bi´1
xi

PJ
Hi´1

B
Bxi

fi´1 0 . . . 0
˘
, Bw

yi
“ `

0
˘

for i ă μ by an induction.
Base case: (i “ 1)
We gain

AD “

¨
˚̊̊
˝
I

. . .

I
0

˛
‹‹‹‚, B “

¨
˚̊̊
˚̊̊
˝

˚ B
Bx2

f1 0 . . . 0
...

. . .
...

... B
Bxμ´1

fμ´2 0

˚ . . . . . . ˚ B
Byfμ´1

B
Bx1

f0 0 . . . 0 0

˛
‹‹‹‹‹‹‚

with

A :“

¨
˚̊̊
˝
I 0 0

0
. . . 0

0 0 I
0 0 0

˛
‹‹‹‚, D :“

¨
˚̋I 0 0 0

0
. . . 0 0

0 0 I 0

˛
‹‚.

This allows us to choose

P “ V “

¨
˚̊̊
˝
I 0 0

0
. . . 0

0 0 I
0 0 0

˛
‹‹‹‚ and Q “ W “

¨
˚̊̊
˝
0
...
0
I

˛
‹‹‹‚.
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4 The Concept of the Dissection Index

These basis functions yield

G1 “ V JADP “
¨
˚̋I 0 0

0
. . . 0

0 0 I

˛
‹‚

and

Bv
x1

“ V JBP “

¨
˚̊̊
˚̋

˚ B
Bx2

f1 0 . . .
...

. . .
... B

Bxμ´1
fμ´2

˚ . . . . . . ˚

˛
‹‹‹‹‚, Bv

y1
“ V JBQ “

¨
˚̊̊
˝

0
...
0

B
Byfμ´1

˛
‹‹‹‚

Bw
x1

“ WJBP “ ` B
Bx1

f0 0 . . . 0
˘
, Bw

y1
“ WJBQ “ `

0
˘
.

Induction step: (1 ď i ÞÑ i ` 1 ď μ ´ 1)
We get

Bv
xi

“

¨
˚̊̊
˚̊̊
˚̊̊
˚̊̊
˝

˚ . . . ˚ 0 . . . 0
...

...
...

...
...

... 0
...

...
... B

Bxi`1
fi

...
...

...
. . . 0

...
... ˚ B

Bxμ´1
fμ´2

˚ . . . ˚ . . . . . . ˚

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚
, Bv

yi
“

¨
˚̊̊
˝

0
...
0

B
Byfμ´1

˛
‹‹‹‚,

Bw
xi

“ `
b1xi

. . . bi´1
xi

PJ
Hi´1

B
Bxi

fi´1 0 . . . 0
˘
, Bw

yi
“ `

0
˘

by the induction statement. Bw
yi

“ `
0
˘
yields

Qyi “ Wyi “ `
I

˘
, Pyi “ Vyi “ `˘

.

Hence we get WJ
yi
Bw

xi
“ Bw

xi
, which allows us to choose

Qxi
“

¨
˚̊̊
˚̊̊
˚̊̊
˝

I
. . .

I
´pPJ

Hi´1

B
Bxi

fi´1q`b1xi
. . . ´pPJ

Hi´1

B
Bxi

fi´1q`bi´1
xi

QHi

I
. . .

I

˛
‹‹‹‹‹‹‹‹‹‚
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and Pxi
“

´
0

... 0 PJ
Hi

0
... 0

¯J
. We obtain GiQxi

“ Qxi
and therefore we can choose

Vxi
“

¨
˚̊̊
˚̊̊
˚̊̊
˝

I
. . .

I
QHi

I
. . .

I

˛
‹‹‹‹‹‹‹‹‹‚
, Wxi

“

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

pPJ
Hi´1

B
Bxi

fi´1P
J
Hi

q´1b1xi

...
pPJ

Hi´1

B
Bxi

fi´1P
J
Hi

q´1bi´1
xi

PHi

0
...
0

˛
‹‹‹‹‹‹‹‹‹‹‚
,

which leads to

Gi`1 “ V J
xi
GiQxi

“ V J
xi
Qxi

“
¨
˚̋I 0 0

0
. . . 0

0 0 I

˛
‹‚.

We close the induction step by

Bv
xi`1

“ V J
xi
Bv

xi
Qxi

` Q1
xi

Bv
yi`1

“ V J
xi
Bv

yi
Qyi

Bw
xi`1

“ WJ
xi
Bv

xi
Qxi

` Q1
xi

Bw
yi`1

“ WJ
xi
Bv

yi
Qyi .

We can choose Qyμ´1 “ I and

Wxμ´1 “

¨
˚̊̊
˝

pPJ
Hi´1

B
Bxi

fi´1P
J
Hi

q´1b1xi

...
pPJ

Hi´1

B
Bxi

fi´1P
J
Hi

q´1bi´1
xi

PHμ

˛
‹‹‹‚

which leads to Bw
yi

“ `
PJ
Hμ

B
Byfμ

˘
. Hence the DAE has Dissection Index μ.

The multibody systems of model level 1 from Section 3.2

p1 “ Zppqv, (4.43a)

Mpp, tqv1 “ fpp, v, r, λ, tq ´ ZJppqGJpp, tqλ, (4.43b)

r1 “ bpp, v, r, λ, tq, (4.43c)

0 “ gpp, tq (4.43d)

are in Hessenberg form, under Assumption 3.11, if we multiply Equation (4.43b) by
M´1pp, tq. In the following we calculate the Dissection Index for (3.36). Therefore we
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4 The Concept of the Dissection Index

define x “ `
p v r λ

˘
and write

Bpx, tq :“

¨
˚̋̊ ˚ ´Zppq 0 0

˚ ˚ ˚ M´1pp, tqGλpp, v, r, λ, tq
˚ ˚ ˚ 0

Gpp, tq 0 0 0

˛
‹‹‚

with Gλpp, v, r, λ, tq :“ ZppqJGpp, tqJ ´ B
Bλfpp, v, r, λ, tq. Furthermore we obtain

AD :“

¨
˚̋̊I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

˛
‹‹‚

with

A :“

¨
˚̋̊I 0 0
0 I 0
0 0 I
0 0 0

˛
‹‹‚, D :“

¨
˝I 0 0 0
0 I 0 0
0 0 I 0

˛
‚,

which allows us to choose

P “ V “

¨
˚̋̊1 0 0
0 1 0
0 0 1
0 0 0

˛
‹‹‚ and Q “ W “

¨
˚̋̊0
0
0
1

˛
‹‹‚.

These basis functions yield

G1 “
¨
˝I 0 0
0 I 0
0 0 I

˛
‚, Bv

x1
“

¨
˝˚ ´Zppq 0

˚ ˚ ˚
˚ ˚ ˚

˛
‚,

Bv
y1

“
¨
˝ 0
M´1pp, tqGλpp, v, r, λ, tq

0

˛
‚,

Bw
x1

“ `
Gpp, tq 0 0

˘
and Bw

y1
“ `

0
˘
.

Due to the matrix Bw
y1

we can choose

Qy1 “ Wy1 “ `
I

˘
This yields

WJ
y1
Bw

x1
“ `

Gpp, tq 0 0
˘
, Qx1 “

¨
˝QG 0 0

0 I 0
0 0 I

˛
‚.
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Hence we obtain

G1Qx1 “
¨
˝QG 0 0

0 I 0
0 0 I

˛
‚, Wx1 “

¨
˝GJpp, tq

0
0

˛
‚, Vx1 “

¨
˝QG 0 0

0 I 0
0 0 I

˛
‚.

In the next step we get

G2 “
¨
˝I 0 0
0 I 0
0 0 I

˛
‚, Bv

y2
“

¨
˝ 0
M´1pp, tqGλpp, v, r, λ, tq

0

˛
‚,

Bw
x2

“ `
b1 ´Gpp, tqZppq 0

˘
,

Bw
y2

“ `
0
˘
.

Due to the matrix Bw
y2

we can choose

Py2 “ Vy1 “ ` ˘
, Qy1 “ Wy1 “ `

I
˘

Again this yields

WJ
y2
Bw

x2
“ `

b1 ´Gpp, tqZppq 0
˘
, Qx2 “

¨
˝ I 0 0

pGZq`b1 QGZ 0
0 0 I

˛
‚.

Such that we achieve

G2Qx2 “ Qx2 , Wx2 “
¨
˝´ppGZq`b1qJZJppqGJpp, tq

ZJppqGJpp, tq
0

˛
‚,

which finally yields Bw
y2

“ `
ZppqGpp, tqM´1pp, tqGλpp, v, r, λ, tq˘

. Hence the DAE has
Dissection Index 3, which equals the number of the Hessenberg stages.

4.6 Perturbation Analysis: Hessenberg DAEs

In Section 4.5 the mechanical applications of Section 3.2 are presented as DAEs in Hes-
senberg form. Additionally the basis chain of the Dissection Index of DAEs in Hessenberg
form is calculated in 4.5, yielding that the number of Hessenberg stages coincides with
the Dissection Index. In this section we extend Theorem 4.38 by DAEs in Hessenberg
form. Therefore we formulate the following theorem:
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4 The Concept of the Dissection Index

Theorem 4.41. (Perturbation Index of DAEs in Hessenberg form)
Consider a DAE (4.41), let I‹ :“ rt0, T s Ă I be compact and connected and let x0 P G be
the initial value of the IVP

x1
1 “ f1px1, x2, tq

...

x1
μ´1 “ fμ´1px1, . . . , xμ´1, xμ, tq
0 “ f0px1, tq

• Let fi be μ ´ i times continuously differentiable.

• Let the IVP have a global solution x‹ on I‹ with x‹pt0q “ x0.

Further for all perturbation δ with ||δ||8, ..., ||δpμ´1q||8 sufficiently small it holds that:

(i) Each perturbed system has a unique global solution.

(ii) The Perturbation Index exists.

(iii) The Perturbation Index μP is equal to μ.

Proof .
Consider the perturbed system:

x1
1 “ f1px1, x2, tq ` δ1ptq (4.44a)

x1
2 “ f2px1, x2, x3, tq ` δ2ptq (4.44b)

...

x1
μ´1 “ fμ´1px1, . . . , xμ´1, xμ, tq ` δμ´1ptq (4.44c)

0 “ f0px1, tq ` δ0ptq (4.44d)

We differentiate Equation (4.44d) and obtain

0 “ B
Bx1

f0px1, tqx1
1 ` B

Btf0px1, tq ` δ1
0ptq.

This yields together with (4.44a)

0 “ B
Bx1

f0px1, tqf1px2, x1, tq ` B
Bx1

f0px1, tqδ1ptq ` B
Btf0px1, tq ` δ1

0ptq. (4.45)

We define

F1px1, x2, t,Δ
p0qptqq “ B

Bx1

f0px1, tqf1px1, x2, tq ` B
Bx1

f0px1, tqδ1ptq ` B
Btf0px1, tq
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with

Δp0qptq :“ `
δptq˘

and
B

Bx2

F1 “ B
Bx1

f0
B

Bx2

f1.

The global solution x‹ with x‹pt0q “ x0 is still a solution of (4.44) if we exchange (4.44d)
with (4.45) and vice versa, cf. Lemma 3.5.10 in [Ste06]. This procedure can be repeated
by differentiating (4.44d) a second time and inserting (4.44a) and (4.44b), such that we
obtain a function

F2px1, x2, x3, t,Δ
p1qptqq

with

Δp1qptq :“ `
δptq δp1qptq˘

and
B

Bx3

F1 “ B
Bx1

f0
B

Bx2

f1
B

Bx3

f2

and the equation

0 “ F2px1, x2, x3, t,Δ
p1qptqq ` δ

p2q
0 ptq.

We repeat this step μ ´ 2 times and obtain a system

x1
1 “ f1px1, x2, tq ` δ1ptq (4.46a)

...

x1
μ´1 “ fμ´1px1, . . . , xμ´1, xμ, tq ` δμ´1ptq (4.46b)

0 “ Fμ´1px1, . . . , xμ´1, xμ, t,Δ
pμ´2qptqq ` δ

pμ´1q
0 ptq (4.46c)

with B
Bxμ

Fμ´1 “ B
Bx1

f0
B

Bx2
f1 . . .

B
Bxμ´1

fμ´2
B

Bxμ
fμ´1. By Lemma 3.5.10 in [Ste06] it is sufficient

to (i)-(iii) for (4.46). There is a function Ψ0 such that

xμ “ Ψμpx1, . . . , xμ´1, t,Δ
pμ´1qptqq (4.47)

with

B
Bδpμ´1qΨμ “

´ B
Bδpμ´1q

0

Ψμ 0 . . . 0
¯

having full row rank by Lemma 4.35. We define

f̃μ´1px1, . . . , xμ´1, t,Δ
pμ´1qptqq :“ fμ´1px1, . . . , xμ´1,Ψμpx1, . . . , xμ´1, t,Δ

pμ´1qptqq, tq
and obtain

x1
μ´1 “ f̃μ´1px1, . . . , xμ´1, t,Δ

pμ´1qptqq ` δμ´1ptq (4.48a)
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4 The Concept of the Dissection Index

x1
μ´2 “ fμ´2pxμ´1, . . . , x1, tq ` δμ´2ptq (4.48b)

...

x1
1 “ f1px2, x1, tq ` δ1ptq (4.48c)

0 “ Fμ´1px1, . . . , xμ´1, xμ, t,Δ
pμ´2qptqq ` δ

pμ´1q
0 ptq. (4.48d)

We apply Lemma 4.36 to the Equations (4.48a)-(4.48c), which yield together with Equa-
tion (4.47) the unique global solution of the perturbed system, the existence of the Per-
turbation Index and an upper bound μP ď μ. At last we apply Lemma 4.37 to Equation
(4.46c) and obtain the lower bound μP ě μ.

4.7 Summary and Outlook

In this chapter we introduced the concept of the Dissection Index. The Dissection Index
combines the strengths of the Strangeness Index concepts and Tractability Index concepts
to improve the following issues:

(i) The non-linearity of the projectors and matrices.

(ii) The differentiability assumptions regarding the involved functions.

(iii) The independence between the stages of the step-by-step analysis.

We defined the Dissection Index on semi-proper formulated DAEs, a class of DAEs which
includes proper formulated DAEs as well as DAEs in standard form. The main result of
this chapter is that the Dissection Index coincides with the Perturbation Index for non-
linear semi-proper formulated DAEs with an arbitrarily high Dissection Index if the basis
function chain of the Dissection Index is state independent. A similar result for nonlinear
proper formulated DAEs with Tractability Index 1 can be found in [LMT13]. The assump-
tions of this theorem hold in particular for electric circuit including the semiconductor
devices, the memristors and the electromagnetic devices from Chapter 3.
For Hessenberg systems and thereby for a class of mechanical applications we also proofed
a connection between the Dissection Index and the Perturbation Index. In the following
chapters we will no longer consider Hessenberg systems nor mechanical applications. The
Strangeness Index concept is well suited for DAEs in Hessenberg form. We will focus on
electric circuits as an application.
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5 Solvability and Uniqueness

At the end of Chapter 4 results about the sensitivity of the solution of a DAE, with regard
to perturbations, are presented. Chapter 6 deals with the convergence of numerically
calculated solutions against the exact solution of a DAE. In both cases we assume that the
considered DAE has a unique solution on a fixed time interval. Under which circumstances
this global solution assumption is fulfilled, will be discussed in this chapter.
Most of the solvability results for nonlinear DAEs are local. Local solvability results deal
with the existence and uniqueness of solutions in a neighborhood of a given initial value, cf.
[KM06, LMT13]. These results are usually obtained by a combination of a transformation
of the DAE and the Implicit Function Theorem. The few global solvability results, which
can be found in the literature, require strong smoothness assumptions and uniform bounds
of certain inverse matrices, see [GM86, RK04, CC07, Rei91]. In particular, the uniform
bounds of the inverse matrices are difficult to check for applications. Additionally these
results deal only with index 1 DAEs.
This chapter is split into five sections. We start by introducing the concept of strong
monotonicity. With the help of this concept we present global solvability results for
nonlinear algebraic equations. Afterwards we provide criteria for the global solvability
for a class of implicit ODEs. Combining the global solvability results for the algebraic
equations and those for the implicit ODEs by the decoupling procedure of the Dissection
Index, we obtain the global solvability for semi-linear DAEs with an arbitrary index. The
chapter is concluded by applying this result to the electric circuit applications of Chapter
3.

Strong Monotonicity

We start this section by collecting more or less well-known definitions and tools for solving
nonlinear algebraic equations and explicit ordinary differential equations.
In R

n the Euclidean scalar product and its induced norm is denoted by

〈x, y〉 :“ xJy, }x} :“ ?
xJx x, y P R

n.

A linear function A : Rn Ñ R
m can be measured by its natural operator norm which we

denote by

}A}˚ :“ sup
xPRn,x‰0

}Ax}
}x} “ sup

xPRn,}x}“1

}Ax} .
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A criterion for the global solvability of an explicit ODE (2.2) is the Lipschitz continuity
of the function f , cf. [GJ09]. We define the Lipschitz continuity for a function with two
arguments:

Definition 5.1 (Lipschitz continuity).
Let a function f : Rn ˆ R

m Ñ R
k, n,m, k P N, be given. Then f is Lipschitz continuous

with respect to the first argument x if there is a constant Lf ą 0 such that

}fpx2, yq ´ fpx1, yq} ď Lf }x2 ´ x1} , @x1, x2 P R
n, y P R

m.

Notice that Lf is independent from the arguments x and y of the function f . We use the
Lipschitz continuity to show the solvability of the differential parts of the DAE. For the
algebraic parts we will use the strong monotonicity as a solvability criterion:

Definition 5.2 (Monotonicity).
Let a function f : Rn ˆ R

m Ñ R
m be given. Then f is monotone with respect to the

second argument y if

〈fpx, y2q ´ fpx, y1q, y2 ´ y1〉 ě 0, @x P R
n, y1, y2 P R

m.

We call f strict monotone with respect to the second argument y if

〈fpx, y2q ´ fpx, y1q, y2 ´ y1〉 ą 0, @x P R
n, y1 ‰ y2 P R

m.

At last f is strongly monotone with respect to the second argument y if there is a scalar
μf ą 0 such that

〈fpx, y2q ´ fpx, y1q, y2 ´ y1〉 ě μf }y2 ´ y1}2 , @x P R
n, y1, y2 P R

m.

Again notice that μf is independent from the arguments of f . Strong monotonicity can be
interpreted as the counterpart of Lipschitz continuity since Lipschitz continuity bounds
the rate of change from above while strong monotonicity bounds it from below. The
following corollary illustrates this relation.

Corollary 5.3.
Let a function f : Rn ˆ R

m Ñ R
m be given. If f is strongly monotone with respect to y,

then there is a μf ą 0 such that

}fpx, y2q ´ fpx, y1q} ě μf }y2 ´ y1} , @x P R
n, y1, y2 P R

m.

Proof . For all px, y1q, px, y2q P R
n ˆ R

m there is a μf ą 0 such that it holds

μf }y2 ´ y1}2 ď 〈fpx, y2q ´ fpx, y1q, y2 ´ y1〉 ď }fpx, y2q ´ fpx, y1q} }y2 ´ y1}
by the Cauchy-Schwarz inequality.
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5 Solvability and Uniqueness

If f is continuously differentiable with respect to x then f is Lipschitz continuous with
respect to x if and only if there is an L ą 0 such that }fxpx, yq}˚ ď L for all px, yq P
R

n ˆ R
m. A similar result holds for a strong monotone function.

Lemma 5.4.
Let the continuous function f : RnˆR

m Ñ R
m be continuously differentiable with respect

to y and let fypx, yq be the Jacobian of f with respect to y at the point px, yq. Then it
holds:

(i) f is strongly monotone with respect to y if and only if the map z ÞÑ fypx, yqz is
strongly monotone with respect to z, i.e. there is a μ ą 0 such that

〈z, fypx, yqz〉 ě μ }z}2 , @px, yq P R
n ˆ R

m @z P R
m.

(ii) In the case of (i) fypx, yq is bounded from below by μ, i.e.

}fypx, yq}˚ ě μ, @px, yq P R
n ˆ R

m.

The proof can be found in [OR70, p. 142]. In the following section we use the strong
monotonicity to describe the solution of a parameter depending algebraic equation.

5.1 Algebraic equations

We start this subsection by stretching the differences between monotonicity, strict mono-
tonicity and strong monotonicity. Therefore we discuss necessity and sufficiency of these
monotonicity concepts for the solvability of the equation

fpxq “ y (5.1)

with f : R
n Ñ R

n being continuous. The following solvability theorem for strongly
monotone functions can be found in [OR70, Theorem 6.4.4].

Theorem 5.5.
Let f : Rn Ñ R

n be continuous and strongly monotone. Then the equation

fpxq “ y

has a unique solution x P R
n for each y P R

n.
Furthermore the inverse function f´1 : Rn Ñ R

n is Lipschitz continuous.

Hence strong monotonicity is sufficient for the solvability of Equation (5.1). Let fpxq “ x3,
then f is monotone but neither strict monotone nor strongly monotone. Equation (5.1)
is globally unique solvable for this particular f , since f´1 “ 3

?
x is the inverse function
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of f . Hence strong monotonicity is not necessary for the solvability of Equation (5.1),
but strong monotonicity, in contrast to monotonicity and strict monotonicity, provides
the Lipschitz continuity of the inverse function f´1. The Theorem 5.5 is a special case
of the Browder-Minty Theorem, see [Zei90]. The Browder-Minty Theorem only needs
monotonicity, amongst other assumptions, to provide the solvability of (5.1) in its general
case. But without the strong monotonicity the Lipschitz continuity of the inverse function
f´1 is not guaranteed as we can see for fpxq “ x3. At last we consider the exponential
function fpxq “ ex. The exponential function is strictly monotone but not strongly
monotone and Equation (5.1) is not globally unique solvable for this particular f . Hence
strict monotonicity is also not sufficient for the solvability of (5.1).
We extend Theorem 5.5 to parameter depending nonlinear equations.

Lemma 5.6. ([JMT13])
Let I Ď R be an interval, k ě 0 and f : Rn ˆ R

m ˆ I Ñ R
m be a k-times continuously

differentiable function. The k “ 0 case means that f is assumed to be continuous. Then
for all px, tq P R

n ˆ I the equation

fpx, y, tq “ 0 (5.2)

has a unique solution y P R
m if f is strongly monotone with respect to y and Lipschitz

continuous with respect to x. The solution depends on px, tq and we write y “ ψpx, tq
with the k-times continuously differentiable function ψ : Rn ˆ I Ñ R

m which is Lipschitz
continuous with respect to x.

Proof . The unique solvability is derived from Theorem 5.5 for all but fixed px, tq with the
solution yx,t. By setting ψpx, tq :“ yx,t we obtain the solution function ψ. The continuity
of ψ, as well as the Lipschitz continuity with respect to x, have to be checked.
We start with the continuity. Let pxn, tnq P R

n ˆ I be a sequence with

pxn, tnq Ñ px, tq P R
n ˆ I as n Ñ 8

and hence

fpxn, ψpxn, tnq, tnq “ 0 “ fpx, ψpx, tq, tq.
We obtain with the strong monotonicity (scalar μf ą 0)

}ψpx, tq ´ ψpxn, tnq}
ď 1

μf

}fpxn, ψpx, tq, tnq ´ fpxn, ψpxn, tnq, tnq}

“ 1

μf

}fpxn, ψpx, tq, tnq ´ fpx, ψpx, tq, tq} Ñ 0 as n Ñ 8
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5 Solvability and Uniqueness

because f is continuous. So ψ is continuous. Next we verify the Lipschitz continuity. Let
x1, x2 P R

n, t P I and hence

fpx1, ψpx1, tq, tq “ 0 “ fpx2, ψpx2, tq, tq.
Similar as before it follows by the strong monotonicity of f that

}ψpx2, tq ´ ψpx1, tq} ď 1

μf

}fpx2, ψpx2, tq, tq ´ fpx2, ψpx1, tq, tq}

“ 1

μf

}fpx1, ψpx1, tq, tq ´ fpx2, ψpx1, tq, tq}

ď Lf

μf

}x2 ´ x1} .

The last line was obtained by using the Lipschitz continuity of f (Lf ą 0).
Lemma 5.6 can be seen as the global version of the Implicit Function Theorem. The
k-times continuously differentiability follows as in the proof of the Implicit Function The-
orem, which can be found in [Zei86](p. 153, Theorem 4.B (d)).

A function ψ, as in Lemma 5.6, will be called a solution function. This means generally
that there is a unique function ψ satisfying

y “ ψpx, tq ô fpx, y, tq “ 0.

The following lemma is a preparation for the solvability Theorem 5.20 regarding the
circuit applications:

Lemma 5.7.
Let I Ď R be an interval and f : Rn ˆ R

m ˆ I Ñ R
m be a continuously differentiable

function. Then for all px, tq P R
n ˆ I the equation

fpx, y, tq “ 0 (5.3)

has a unique solution y P R
m if

B
Byfpx, y, tq “

¨
˝L2px, y, tq L3px, y, tq C2

L1px, y, tq Mpx, y, tq 0
C1 0 0

˛
‚

with Lipx, y, tq being bounded for all px, y, tq P R
n ˆ R

m ˆ I, Mpx, y, tq being strongly
monotone, Ci being constant and non-singular and B

Bxfpx, y, tq being bounded for all
px, y, tq P R

n ˆ R
m ˆ I. The solution depends on px, tq and we write y “ ψpx, tq with the

continuous function ψ : Rn ˆ I Ñ R
m which is Lipschitz continuous with respect to x.
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Proof . We split y “ `
y1 y2 y3

˘J
. Then there are functions f 1, f 2 and f 3 by Lemma

4.8 such that we can write

fpx, y, tq “
¨
˝f 3py1, y2, x, tq ` C2y3

f 2py1, y2, x, tq
C1y1 ` f 1px, tq

˛
‚.

With the help of Lemma 5.6 we obtain a function Ψ2py1, x, tq, which is Lipschitz continuous
in y1 and x, with y2 “ Ψ2py1, x, tq. Hence, we obtain

y “ Ψpx, tq :“
¨
˝´C´1

2 f 3p´C´1
1 f 1px, tq,Ψ2p´C´1

1 f 1px, tq, x, tq, x, tq
Ψ2p´C´1

1 f 1px, tq, x, tq
´C´1

1 f 1px, tq

˛
‚

with Ψ being Lipschitz continuous in x as a composition of Lipschitz continuous functions.

5.2 Implicit ODEs

In this subsection we provide criteria for the global unique solvability of an implicit ODE
of the following form:

d

dt
mpx, tq “ fpx, tq (5.4)

with f P CpRnˆI,Rnq, m P C1pRnˆI,Rnq and I Ď R being a compact interval. Implicit
ODE of this kind may occur after the decoupling of the dissection concept.

Theorem 5.8. (Global Solvability,[JMT13])
Consider an implicit ODE (5.4) with f being continuous, m being continuously differen-
tiable and I being a time interval. If

(i) m is strongly monotone with respect to x,

(ii) f is Lipschitz continuous with respect to x

then (5.4) has a unique solution x‹ P C1pI,Rnq for every initial value x‹pt0q “ x0 P R
nx .

Proof .
First we prove the existence of a solution and afterwards we will show its uniqueness. We
show an a priori estimate for any solution x : J Ñ R

nx to (5.4) on an arbitrary subinterval
J :“ rt0, TJ s Ď I. If x solves (5.4) we can integrate over rt0, ts Ď J and obtain

mpxptq, tq “ mpx0, t0q `
ż t

t0

fpxpsq, sqds
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5 Solvability and Uniqueness

with xpt0q “ x0. Using the strong monotonicity of m we get

μ
››xptq ´ x0

››
ď ››mpxptq, tq ´ mpx0, tq››
ď ››mpx0, t0q ´ mpx0, tq›› `

ż t

t0

}fpxpsq, sq} ds

ď ››mpx0, t0q ´ mpx0, tq›› `
ż t

t0

››fpx0, sq›› ds `
ż t

t0

››fpxpsq, sq ´ fpx0, sq›› ds
ďpT ´ t0q max

τf ,τmPrt0,T s
p››mtpx0, τmq›› ` ››fpx0, τf q››q ` Lf

ż t

t0

››xpsq ´ x0
›› ds

with Lf ą 0. The last line is a consequence of the mean value theorem and the Lipschitz
continuity of f . We conclude that there are constants c1, c2 ą 0, independent of t, such
that ››xptq ´ x0

›› ď c1 ` c2

ż t

t0

››xpsq ´ x0
›› ds.

Applying the Gronwall Lemma gives us the desired a priori estimate››xptq ´ x0
›› ď c1e

c2pT´t0q “: C

with C ą 0 being independent of t. It is

d

dt
mpx, tq “ mxpx, tqx1 ` mtpx, tq

for x being continuously differentiable. Using Lemma 5.4 and the fact that m is strongly
monotone the map z ÞÑ mxpx, tqz is continuous and strongly monotone with respect to
z, hence mxpx, tq is non-singular . Furthermore mxpx, tq is continuous in x and t since
m P C1pRn ˆ I,Rnq and so the inverse m´1

x px, tq is also continuous in x and t.
Then (5.4) can be reformulated as

x1 “ mxpx, tq´1 pfpx, tq ´ mtpx, tqq “: f̃px, tq
for t P I with initial value xpt0q “ x0 P R

n. The function f̃ is continuous as a combination
of continuous functions. Hence we can apply the Peano Theorem, cf. [Zei86, Theorem
3.B]. We obtain a local solution x P C1pJ,Rnq on a subinterval J Ď I which can be
extended to the whole interval I because of the a priori estimate above, cf. [Zei90, p.801
(iii)]. So there is a solution x‹ P C1pI,Rnq of (5.4).

Now we prove the uniqueness of the solution. Therefore let x1, x2 be two solutions which
fulfill (5.4). Therefore we have on I:

d

dt
mpx1ptq, tq ´ d

dt
mpx2ptq, tq “ fpx1ptq, tq ´ fpx2ptq, tq.
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We have x1pt0q “ x0 “ x2pt0q and integration over rt0, ts, t P I yields

mpx1ptq, tq ´ mpx2ptq, tq “
ż t

t0

fpx1psq, sq ´ fpx2psq, sqds.

Using the strong monotonicity of m and the Lipschitz continuity of f we see that

}x1ptq ´ x2ptq} ď 1

μ
}mpx1ptq, tq ´ mpx2ptq, tq}

ď 1

μ

ż t

t0

}fpx1psq, sq ´ fpx2psq, sq} ds

ď Lf

μ

ż t

t0

}x1psq ´ x2psq} ds.

with μ ą 0. Gronwall’s Lemma now reveals that x1ptq “ x2ptq for all t P I.
Now we have solvability criteria for both algebraic and differential equations.

5.3 General DAEs

Next we obtain a global solvability result for quasilinear DAEs by combining the results
of the last two sections.

Definition 5.9. (Quasilinear DAE)
Let I Ă R be a compact time interval. Consider the following set of equations

A
d

dt
dpxptq, tq ` bpxptq, tq “ 0 (5.5)

with A P R
nˆm, d P C1pRn ˆ I,Rmq and b P CpRn ˆ I,Rnq with a continuous partial

derivative B
Bxbpx, tq. We call (5.5) a quasilinear DAE.

Analogous to Section 4.4 our next objective is to decouple the DAE. In contrast to The-
orem 4.35 the decoupling in this section will be global. Before formulating such a global
decoupling we present the matrix chain of a quasilinear DAE with a semi-properly stated
derivative term and constant basis functions, since these restrictions essentially simplify
the matrix chain. The definition of a semi-properly stated derivative term simplifies to
the conditions

imA “ imA
B

Bxdpx, tq, @px, tq P R
n ˆ I, (5.6)

and that im B
Bxdpx, tq has a basis continuously depending on x and t in the case of a

quasilinear DAE.
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5 Solvability and Uniqueness

We define the matrix functions

Dpx, tq “ B
Bxdpx, tq

Bpx, tq “ B
Bxbpx, tq

and notice that the matrix A in Equation (5.5) equals the matrix A at the beginning of
the matrix chain. We obtain the next sequence of matrix functions

G1px, tq “V JADpx, tqP,
Bv

x1
px1, x, tq “V JBpx, tqP ` V JApDpx, tqP q1 “ Bv

x1,˚px, tq ` pG1px, tqq1,

Bv
y1

px, tq “V JBpx, tqQ ` V JApDpx, tqQq1 “ V JBpx, tqQ,

Bw
x1

px, tq “WJBpx, tqP,
Bw

y1
px, tq “WJBpx, tqQ

with Bv
x1,˚px, tq :“ V JBpx, tqP . Next we denote the other stages of the matrix chain

Gi “ V J
xi´1

Gi´1Qxi´1
Bv

xi
“ V J

xi´1
Bxi´1

Bv
yi

“ V J
xi´1

Byi´1

Bw
xi

“ WJ
xi´1

Bxi´1
Bw

yi
“ WJ

xi´1
Byi´1

with

Byi´1
“Bv

yi´1
Qyi´1

Bxi´1
“Bv

xi´1
Qxi´1

´ Bv
yi´1

Pyi´1
pV J

yi´1
Bw

yi´1
Pyi´1

q´1V J
yi´1

Bw
xi´1

Qxi´1

“pBv
xi´1,˚ ` G1

i´1qQxi´1
´ Bv

yi´1
Pyi´1

pV J
yi´1

Bw
yi´1

Pyi´1
q´1V J

yi´1
Bw

xi´1
Qxi´1

.

We want to stress the fact that the terms pGipx, tqq1 only appears in the Bv
xi
matrices and

consequently only these matrices depend on a jet variable.

Bv
xi

“ V J
xi´1

Bxi´1

“ V J
xi´1

ppBv
xi´1,˚ ` G1

i´1qQxi´1
´ Bv

yi´1
Pyi´1

pV J
yi´1

Bw
yi´1

Pyi´1
q´1V J

yi´1
Bw

xi´1
Qxi´1

q
“ V J

xi´1
pBv

xi´1,˚Qxi´1
´ Bv

yi´1
Pyi´1

pV J
yi´1

Bw
yi´1

Pyi´1
q´1V J

yi´1
Bw

xi´1
Qxi´1

q ` G1
i

“ Bv
xi,˚ ` G1

i

Bw
xi

“ WJ
xi´1

Bxi´1

“ WJ
xi´1

pBv
xi´1,˚Qxi´1

´ Bv
yi´1

Pyi´1
pV J

yi´1
Bw

yi´1
Pyi´1

q´1V J
yi´1

Bw
xi´1

Qxi´1
q

“ WJ
xi´1

Bxi´1,˚

with

Bxi´1,˚ :“ Bv
xi´1,˚Qxi´1

´ Bv
yi´1

Pyi´1
pV J

yi´1
Bw

yi´1
Pyi´1

q´1V J
yi´1

Bw
xi´1

Qxi´1
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Bv
xi,˚ :“ V J

xi´1
Bxi´1,˚.

Similar to Section 4.4 the basis functions have to meet the following assumption:

Assumption 5.10. (Constant basis chain)
Consider a DAE (5.5) with a finite Dissection Index. Assume that all basis functions
except Vxμ´1 and Wxμ´1 are constant. Furthermore let the alternative basis functions Vẙ

and Wẙ , see Definition 4.15 , be constant.

Assumption 5.10 seems to be very strict when we think of the projector of the Tractabil-
ity Index or the basis functions of the Strangeness Index. In contrast to these index
concepts the basis functions of the Dissection Index fulfill Assumption 5.10 for a large
application class, i.e. electric circuits including semiconductor devices, memristors and
electromagnetic devices. Additionally we need the DAE to be sufficiently smooth and
certain matrices of the matrix chain need to be strongly monotone.

Assumption 5.11. (Differentiability and strong monotonicity)
Consider a DAE (5.5) with a semi-properly stated derivative term and a finite Dissection
Index μ. Let the DAE fulfill Assumption 5.10. For 1 ď i ď μ´ 1 assume that the matrix
valued functions:

V J
yi
Bw

yi
px, tqPyi and WJ

yi
Bw

xi
px, tqPxi

,

pW ˚
y qJGμ´1px, tqQxμ´1 and pV ˚

y qJBv
yμ´1

px, tqQyμ´1

are strongly monotone. Furthermore assume that b is continuously differentiable and that:

WJ
xi´1

V J
xi´2

. . . V J
x0
bpx, tq, for i “ 1, . . . , μ ´ 1

WJ
xi
V J
xi´1

. . . V J
x0
Adpx, tq, for i “ 1, . . . , μ ´ 2

are pμ ´ iq times continuously differentiable with V J
xi´2

. . . V J
x0

:“ I for i “ 1.

With the help of these preparations we formulate the following theorem.

Theorem 5.12. (Global decoupling)
Consider a DAE (5.5) with I‹ :“ rt0, T s Ă I:

A
d

dt
dpxptq, tq ` bpxptq, tq “ 0, @t P I‹.

(i) Let the DAE have a finite Dissection Index μ.

(ii) Let the DAE fulfill the Assumptions 5.10 and 5.11.
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5 Solvability and Uniqueness

Then there are pμ ` 1 ´ iq times differentiable functions Ψỹi and pμ ` 2 ´ jq times dif-
ferentiable functions Ψx̃j

with 1 ď i ď μ and 1 ď j ď μ ´ 1 such that the DAE can be
decoupled into

d

dt
dμpxμ, tq ` bμpxμ, tq “ 0

ỹμ “ Ψỹμpxμ, t,
d

dt
dμ´1pxμ, tqq

ỹi “ Ψỹipxi, tq, 1 ď i ď μ ´ 1

x̃j “ Ψx̃j
ptq, 1 ď j ď μ ´ 1.

Proof .
We define the transformation matrix

T “ `
Qxμ Qx0Px1 . . . Qxμ´2Pxμ´1 Qy0Py1 . . . Qyμ´1Pyμ

˘
such that the variable x is split into:

x “ Qxμxμ `
μ´1ÿ
i“1

Qxi´1
Pxi

x̃i `
μÿ

i“1

Qyi´1
Pyi ỹi

“ T
`
xμ x̃1 . . . x̃μ´1 ỹ1 . . . ỹμ

˘J
.

We will prove by an induction that for 1 ď i ď μ and 1 ď j ď μ ´ 1 the solution parts
ỹi and x̃j can be described by a pμ ` 1 ´ iq times differentiable function Ψỹi and by a
pμ ` 2 ´ jq times differentiable function Ψx̃j

, i.e.

ỹi “ Ψỹipxi, tq and x̃j “ Ψx̃j
ptq

with

B
Bxi

Ψỹipxi, tq “ ´pV J
yi´1

Bw
yi´1

Pyi´1
q´1V J

yi´1
Bw

xi´1
Qxi´1

.

Furthermore there are functions dμ and bμ such that for the solution part xμ holds:

d

dt
dμpxμ, tq ` bμpxμ, tq “ 0

with B
Bxμ

dμpxμ, tq “ pWẙ qJGμ´1px1, x, tqQxμ´1 .

We assume, for a moment, the existence of the functions Ψx̃i
and Ψỹi . Based on these

functions we recursively define functions di and bi starting with

d0px0, tq “ AdpPx0, tq and b0px0, y0, tq “ bpPx0 ` Qy0, tq
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For the Jacobians of d0 and b0 with respect to x0 and y0 it holds that:

B
Bx0

d0 “ ADP,
B

Bx0

b0 “ BP and
B

By0 b0 “ BQ.

For all 1 ď i ď μ we define

dipxi, tq “ V J
xi´1

di´1pQxi
xi ` Pxi

Ψx̃i
ptq, tq,

bipxi, yi, tq “ V J
xi´1

bi´1pQxi
xi ` Pxi

Ψx̃i
ptq, Qyiyi ` PyiΨỹipxi, tq, tq

First we prove the statement of the theorem for 1 ď i ď μ´2 by a mathematical induction.
Additionally we show that for the Jacobians of bi it holds that

B
Bxi

di “ GiQxi
,

B
Bxi

bi “ Bxi,˚,
B

Byi bi “ Byi

for 1 ď i ď μ ´ 1.
Base case: (i “ 1)
We factorize the DAE with V J

x0
, V J

y1
WJ

x0
and WJ

y1
WJ

x0
:

A
d

dt
dpxptq, tq ` bpxptq, tq “ 0

ô
¨
˝ V J

x0

V J
y1
WJ

x0

WJ
y1
WJ

x0

˛
‚pA d

dt
dpxptq, tq ` bpxptq, tqq “ 0

The DAE has a semi-properly stated derivative term hence imAD “ imA and for this
reason it holds

WJ
x0
G “ WJAD “ 0 ô WJA “ 0

with WJ
x0

“ WJ. This leads to:

V J
y1
WJ

x0
bpx, tq “ 0, (5.7a)

WJ
y1
WJ

x0
bpx, tq “ 0. (5.7b)

We split x “ Px0 `Qy0 “ Qx0x0 `Qy0y0 and notice that Qy0y0 vanishes in (5.7b) due to
the definition of WJ

y1
and Lemma (4.8):

V J
y1
WJ

x0
bpQx0x0 ` Qy0y0, tq “ 0, (5.8a)

WJ
y1
WJ

x0
bpQx0x0, tq “ 0. (5.8b)

154



5 Solvability and Uniqueness

As the next step we split x0 “ Px1x̃1 ` Qx1x1 and y0 “ Py1 ỹ1 ` Qy1y1 and see that Qy1y1
vanishes in (5.8a) and Qx1x1 vanishes in (5.8b) due to the definitions of Qx1 and Qy1 and
Lemma (4.8) again:

V J
y1
WJ

x0
bpQx0Px1x̃1 ` Qx0Qx1x1 ` Qy0Py1 ỹ1, tq “ 0 (5.9a)

WJ
y1
WJ

x0
bpQx0Px1x̃1, tq “ 0. (5.9b)

The Jacobian B
Bx̃1

WJ
y1
WJ

x0
bpQx0Px1x̃1, tq “ WJ

y1
WJ

x0
BQx0Px1 “ WJ

y1
Bw

y1
Px1 is strongly

monotone due to Assumption 5.11. Then by Lemma 5.6 there is a solution function
which globally describes x̃1:

x̃1 “ Ψx̃1ptq.
Also by Lemma 5.6 and Assumption 5.11 the function Ψx̃1 is pμ ` 1q times continuously
differentiable. Insert this expression into (5.9a) and obtain

V J
y1
WJ

x0
bpQx0Px1Ψx̃1ptq ` Qx0Qx1x1 ` Qy0Py1 ỹ1, tq “ 0 (5.10a)

ôV J
y1
WJ

x0
b0pPx1Ψx̃1ptq ` Qx1x1, Py1 ỹ1, tq “ 0. (5.10b)

The partial derivative of Equation (5.10b) with respect to ỹ1

B
Bỹ1V

J
y1
WJ

x0
b0pPx1Ψx̃1ptq ` Qx1x1, Py1 ỹ1, tq “ V J

y1
WJ

x0
BQy0Py1 “ V J

y1
Bw

y1
Py1

is strongly monotone due to Assumption 5.11. Again by Lemma 5.6 there is a solution
function which globally describes ỹ1:

ỹ1 “ Ψỹ1px1, tq
with

B
Bx1

Ψỹ1 “ ´pV J
y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1

which follows exactly as in the proof of the Implicit Function Theorem, c.f. [Zei86](p.
153). By Lemma 5.6 and Assumption 5.11 the function Ψỹ1 is μ times continuously
differentiable. We consider

d1px1, tq “ V J
x0
d0pQx1x1 ` Px1Ψx̃1ptq, tq,

b1px1, y1, tq “ V J
x0
b0pQx1x1 ` Px1Ψx̃1ptq, Qy1y1 ` Py1Ψỹ1px1, tq, tq.

For the Jacobians of d1 and b1 with respect to x1 and y1 it holds that:

B
Bx1

d1 “ V J
x0

p B
Bx0

d0qQx1 “ V J
x0
ADQx0Qx1 “ G1Qx1 ,
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B
Bx1

b1 “ V J
x0

pp B
Bx0

b0qQx1 ` p B
By0 b0qPy1p B

Bx1

Ψỹ1qq

“ pV J
x0

B
Bx0

b0qQx1 ` pV J
x0

B
By0 b0qPy1p B

Bx1

Ψỹ1q
“ Bv

x1,˚Qx1 ´ Bv
y1
Py1pV J

y1
Bw

y1
Py1q´1V J

y1
Bw

x1
Qx1

“ Bx1,˚ ,

B
By1 b1 “ pV J

x0

B
By0 b0qQy1 “ Bv

y1
Qy1 “ By1 .

We complete the base case by notating

A
d

dt
dpx, tq ` bpx, tq “ 0

ô
¨
˝ d

dt
d1px1, tq ` b1px1, y1, tq “ 0

ỹ1 ´ Ψỹ1px1, tq “ 0
x̃1 ´ Ψx̃1ptq “ 0

˛
‚.

Induction step: (i ´ 1 ÞÑ i ď μ ´ 1)
By the induction hypothesis we got

d

dt
di´1pxi´1, tq ` bi´1pxi´1, yi´1, tq “ 0

ô
¨
˝ V J

xi´1

V J
yi
WJ

xi´1

WJ
yi
WJ

xi´1

˛
‚p d

dt
di´1pxi´1, tq ` bi´1pxi´1, yi´1, tqq “ 0

with B
Bxi´1

WJ
xi´1

di´1pxi´1, tq “ WJ
xi´1

Gi´1Qxi´1
being zero due to the construction ofWJ

xi´1
.

Hence we write

WJ
xi´1

di´1pxi´1, tq “ WJ
xi´1

di´1ptq
by Lemma (4.8) and obtain

V J
yi
WJ

xi´1
bi´1pxi´1, yi´1, tq ` d

dt
pV J

yi
WJ

xi´1
di´1ptqq “ 0,

WJ
yi
WJ

xi´1
bi´1pxi´1, tq ` d

dt
pWJ

yi
WJ

xi´1
di´1ptqq “ 0.

Split yi´1 “ Pyi ỹi ` Qyiyi and xi´1 “ Pxi
x̃i ` Qxi

xi and obtain with the help of Lemma
(4.8)

V J
yi
WJ

xi´1
bi´1pPxi

x̃i ` Qxi
xi, Pyi ỹi, tq ` d

dt
pV J

yi
WJ

xi´1
di´1ptqq “ 0, (5.11a)
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5 Solvability and Uniqueness

WJ
yi
WJ

xi´1
bi´1pPxi

x̃i, tq ` d

dt
pWJ

yi
WJ

xi´1
di´1ptqq “ 0. (5.11b)

Equation (5.11b) yields an explicit global expression

x̃i “ Ψx̃i
ptq

with Ψx̃i
being pμ ` 1 ´ iq times continuously differentiable by Assumption 5.11. Insert

this expression into (5.11a) and obtain

V J
yi
WJ

xi´1
bi´1pPxi

Ψx̃i
ptq ` Qxi

xi, Pyi ỹi, tq ` d

dt
pV J

yi
WJ

xi´1
di´1ptqq “ 0, (5.12)

which analogously yields an explicit global expression

ỹi “ Ψỹipxi, tq
with Ψỹi being pμ`1´ iq times continuously differentiable by Assumption 5.11. Together
we achieve

d

dt
di´1pxi´1, tq ` bi´1pxi´1, yi´1, tq “ 0

ô
¨
˝ d

dt
dipxi, tq ` bipxi, yi, tq “ 0

ỹi ´ Ψỹipxi, tq “ 0
x̃i ´ Ψx̃i

ptq “ 0

˛
‚

with

bipxi, yi, tq “ V J
xi´1

bi´1pQxi
xi ` Pxi

Ψx̃i
ptq, Qyiyi ` PyiΨỹipxi, tq, tq

and dipxi, tq :“ V J
xi´1

di´1pQxi
xi ` Pxi

Ψx̃i
ptq, tq. Furthermore we obtain:

B
Bxi

di “ V J
xi´1

p B
Bxi´1

di´1qQxi´1
“ V J

xi´1
Gi´1Qxi´1

Qxi
“ GiQxi

,

B
Bxi

bi “ V J
xi´1

pp B
Bxi´1

bi´1qQxi
` p B

Byi´1

bi´1qPyip B
Bxi

Ψỹiqq

“ pV J
xi´1

B
Bxi´1

bi´1qQxi
` pV J

xi´1

B
Byi´1

bi´1qPyip B
Bxi

Ψỹiq
“ Bv

xi,˚Qxi
´ Bv

yi
PyipV J

yi
Bw

yi
Pyiq´1V J

yi
Bw

xi
Qxi

“ Bxi,˚ ,

B
Byi bi “ pV J

xi´1

B
Byi´1

bi´1qQyi “ Bv
yi
Qyi “ Byi .

The induction step is completed. Analogous to the previous steps, we obtain under the
usage of Lemma 5.6 and Assumption 5.11

d

dt
dμ´1pxμ´1, tq ` bμ´1pxμ´1, yμ´1, tq “ 0
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ô
ˆ
V J
xμ´1,˚p d

dt
dμ´1pxμ´1, tq ` bμ´1pxμ´1, yμ´1, tqq “ 0

WJ
xμ´1,˚p d

dt
dμ´1pxμ´1, tq ` bμ´1pxμ´1, yμ´1, tqq “ 0

˙

ô
ˆ
V J
xμ´1,˚

d
dt
dμ´1pxμ´1, tq ` V J

xμ´1,˚bμ´1pxμ´1, yμ´1, tq “ 0
d
dt
WJ

xμ´1,˚dμ´1pxμ´1, tq ` WJ
xμ´1,˚bμ´1pxμ´1, tq “ 0

˙

ô
ˆ

d
dt
dμpxμ, tq ` bμpxμ, tq “ 0

ỹμ “ Ψỹμpxμ, t,
d
dt
dμ´1pxμ, tqq

˙
.

Now we obtain the global solvability result with the help of Theorem 5.8 and Theorem
5.12.

Theorem 5.13. (Global solvability)
Consider a DAE (5.5), let I‹ :“ rt0, T s Ă I be compact and connected and let x0 P R

n

be the initial value of the IVP

A
d

dt
dpxptq, tq ` bpxptq, tq “ 0, @t P I‹

xpt0q “ x0.

(i) Let the DAE have a finite Dissection Index μ.

(ii) Let the DAE fulfill the Assumptions 5.10 and 5.11.

(iii) Let b be Lipschitz continuous with respect to x.

Then there is at least one consistent initial value x0 and for each consistent initial value
x0 there is a unique solution on I‹.

Proof .
With the help of Theorem 5.12 we can decouple the DAE into

d

dt
dμpxμ, tq ` bμpxμ, tq “ 0 (5.13a)

ỹμ “ Ψỹμpxμ, t,
d

dt
dμ´1pxμ, tqq (5.13b)

ỹi “ Ψỹipxi, tq, 1 ď i ď μ ´ 1 (5.13c)

x̃j “ Ψx̃j
ptq, 1 ď j ď μ ´ 1 (5.13d)

with B
Bxμ

dμpxμ, tq “ pWẙ qJGμ´1px1, x, tqQxμ´1 being strongly monotone and consequently

non-singular and

x “ T
`
xμ x̃1 . . . x̃μ´1 ỹ1 . . . ỹμ

˘J
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5 Solvability and Uniqueness

with T being non-singular. We mainly have to show that the Lipschitz continuity of b is
inherited by bμ. Therefore we proof by an induction that bi is Lipschitz continuous with
respect to xi and yi and that Ψỹi is Lipschitz continuous with respect to yi.
Base case: (i “ 1)
With b being Lipschitz continuous and P and Q being constant, we obtain the Lipschitz
continuity of

b0px0, y0, tq “ bpPx0 ` Qy0, tq
with respect to x0 and y0. We remember Equation (5.10b):

V J
y1
WJ

x0
b0pPx1Ψx̃1ptq ` Qx1x1, Py1 ỹ1, tq “ 0.

The function on the left hand side is Lipschitz continuous with respect to x1 while it
is strongly monotone with respect to ỹ1. By Lemma 5.6 the global solution function
Ψỹ1px1, tq is Lipschitz continuous with respect to x1. Due to the constant basis functions
we achieve the Lipschitz continuity of b1 with respect to x1 and y1, since b1 is a composition
of Lipschitz continuous functions:

b1px1, y1, tq “ V J
x0
b0pQx1x1 ` Px1Ψx̃1ptq, Qy1y1 ` Py1Ψỹ1px1, tq, tq.

Induction step: (i ´ 1 ÞÑ i ď μ ´ 1)
For the induction step we remember Equation (5.12):

V J
yi
WJ

xi´1
bi´1pPxi

Ψx̃i
ptq ` Qxi

xi, Pyi ỹi, tq ` d

dt
pV J

yi
WJ

xi´1
di´1ptqq “ 0.

Again the function on the left hand side is Lipschitz continuous with respect to xi while
it is strongly monotone with respect to ỹi. Hence, Ψỹipxi, tq is Lipschitz continuous with
respect to xi and therefore

bipxi, yi, tq “ V J
xi´1

bi´1pQxi
xi ` Pxi

Ψx̃i
ptq, Qyiyi ` PyiΨỹipxi, tq, tq

is Lipschitz continuous with respect to xi and yi as a composition of Lipschitz continuous
functions. The induction is concluded.

At last we obtain the Lipschitz continuity of bμ, since the alternative basis ending is
constant:

bμpxμ, tq “ WJ
xμ´1,˚bμ´1pxμ´1, tq “ WJ

xμ´1,˚bμ´1pxμ´1, yμ´1, tq.
For every xμ we obtain a unique global solution on a fixed interval of the implicit ODE
(5.13a) by Theorem 5.8. Inserting this solution and the Equations (5.13d) into the Equa-
tions (5.13b) and (5.13c) concludes the proof.
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We generalize the solvability result by relaxing the Assumption 5.11.

Assumption 5.14. Consider a DAE (5.5) with a semi-properly stated derivative term
and a finite Dissection Index μ. Let the DAE fulfill Assumption 5.10. For 1 ď i ď μ ´ 1
assume that the matrix valued functions:

V J
yi
Bw

yi
px, tqPyi and WJ

yi
Bw

xi
px, tqPxi

,

pW ˚
y qJGμ´1px, tqQxμ´1 and pV ˚

y qJBv
yμ´1

px, tqQyμ´1

fulfill the assumptions of the Jacobian in Lemma 5.7. Furthermore assume that b is
continuously differentiable and that:

WJ
xi´1

V J
xi´2

. . . V J
x0
bpx, tq, for i “ 1, . . . , μ ´ 1

WJ
xi
V J
xi´1

. . . V J
x0
Adpx, tq, for i “ 1, . . . , μ ´ 2

are pμ ´ iq times continuously differentiable with V J
xi´2

. . . V J
x0

:“ I for i “ 1.

We notice that a strong monotone Jacobian fulfills the assumptions in Lemma 5.7. Hence
Assumption 5.11 is stricter than Assumption 5.14. With the help of Assumption 5.14 we
formulate the following corollary:

Corollary 5.15. Consider a DAE (5.5), let I‹ :“ rt0, T s Ă I be compact and connected
and let x0 P R

n be the initial value of the IVP

A
d

dt
dpxptq, tq ` bpxptq, tq “ 0, @t P I‹

xpt0q “ x0.

(i) Let the DAE have a finite Dissection Index μ.

(ii) Let the DAE fulfill the Assumptions 5.10 and 5.14.

(iii) Let b be Lipschitz continuous with respect to x.

Then there is at least one consistent initial value x0 and for each consistent initial value
x0 there is a unique solution on I‹.

To prove Corollary 5.15 we would need to mimic the proof of Theorem 5.12 and 5.13
under Assumption 5.14 instead of Assumption 5.11.
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5 Solvability and Uniqueness

5.4 Circuit Equations

In this section we apply Theorem 5.13 to the equations of the circuit applications of
Section 3.1. First we write the extended MNA equations (3.34) as a semi-linear DAE.
Therefore we use the matrix and the function

A :“

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

AC 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0
0 0 Mζ 0 0 0
0 0 0 0 0 0
0 0 0 I 0 0
0 0 0 0 Mε 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‹‹‹‹‚

and dpx, tq :“

¨
˚̊̊
˚̊̊
˝

qCpAJ
C e, tq

φLpjL, tq
ζ

φMpqM , tq
E
J

˛
‹‹‹‹‹‹‚

from Section 4.3 and define

bpx, tq :“

¨
˚̊̊
˚̊̊
˚̊̊
˚̋

ACgCpAJ
C e, ζ,Ψq ` ARgRpAJ

Re, qM , tq ` ALjL ` AV jV ` AIisptq
´AJ

Le ` χLE
AJ

V e ´ vsptq
hζpAJ

Se, ζ,Ψq
TΨptq ´ hΨpζq

´AT
Me

MσE ´ J ´ χT
LjL

MCCE

˛
‹‹‹‹‹‹‹‹‹‹‚

with the variables x “ `
e jL jV ζ Ψ qM E J

˘J
. This enables us to write the

extended MNA in the form Ad1px, tq ` bpx, tq “ 0. To prove the global solvability of the
extended MNA we assume the capacitors, inductors and resistors to be globally passive.

Assumption 5.16 (Global passivity of the simple elements).
The element relations qC , φL and gR are strongly monotone with respect to their first
arguments and gR is Lipschitz continuous with respect to its first argument.

The matrices CS and LE are positive definite for the models of the semiconductor and elec-
tromagnetic devices investigated in Section 3. Therefore they are also strongly monotone
since these matrices are constant. Hence the functions

qCpAJ
C e, tq “

ˆ
qCpAJ

Ce, tq
CSA

J
Se

˙
and φLpjL, tq “

ˆ
φLpjL, tq
LEjE

˙

are strongly monotone with respect to their first argument if we assume 5.16. The func-
tions φM and gM are not strongly monotone with respect to their first argument, respec-
tively, for the example given in Section 3.1.3. Furthermore the functions

gMpAJ
Me, qM , tq, gCpAJ

C e, ζ,Ψq and hζpAJ
Se, ζ,Ψq
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are not Lipschitz continuous in general. At the first glance this seems to be a problem
since the strong monotonicity and the Lipschitz continuity are needed for the global
solvability of the extended MNA. But since these functions only describe the physical
behavior correctly inside a physically reasonable domain, it does not weaken the models
if we alter these functions outside this region. The same strategy is used in [Bar04] with
respect to the temperature of a thermal resistor and in [JMT13] for circuits including
memristor. By the next two lemmata we introduce two cut-off strategies.

Lemma 5.17. (Lipschitz cut-off)
Let k ě 1 and define the box Q “ rai, bisn with ai ă bi for 1 ď i ď n. Consider a
function f P CkpRn,Rmq which is not Lipschitz continuous. Then there exists a function
f̃ P CkpRn,Rmq with f̃ being Lipschitz continuous and f̃pxq “ fpxq for all x P Q.

Proof . Let there be a small real number δ ą 0 and a slightly bigger box Qδ “ rai ´
δ, bi ` δsn. We define the auxiliary functions

gptq “
#
e´ 1

t2 , for t ą 0

0, for t ď 0

and

kptq “ gp1 ` tq
gp1 ` tq ` gp1 ´ tq ñ

$’&
’%
kptq “ 0, for t ď ´1

0 ď kptq ď 1, for ´ 1 ď t ď 1

kptq “ 1, for t ě 1.

Additionally we define the functions

hi1ptq “ 2

δ
pt ´ aiq ` 1 ñ

#
hi1ptq ď ´1, for t ď ai ´ δ

hi1ptq ě 1, for t ě ai

and

hi2ptq “ 2

δ
pt ´ bi ´ δq ` 1 ñ

#
hi2ptq ď ´1, for t ď bi

hi2ptq ě 1, for t ě bi ` δ.

Combining these functions we define

ki1ptq “ kphi1ptqq ñ

$’&
’%
ki1ptq “ 0, for t ď ai ´ δ

0 ď ki1ptq ď 1, for ai ´ δ ă t ă ai

ki1ptq “ 1, for t ě ai

162



5 Solvability and Uniqueness

and

ki2ptq “ kphi2ptqq ñ

$’&
’%
ki2ptq “ 0, for t ď bi

0 ď ki2ptq ď 1, for bi ă t ă bi ` δ

ki2ptq “ 1, for t ě bi ` δ

with ki1, ki2 P C8pR,Rq since both ki1 and ki2 are combinations of C8 functions. Now
we can notate our cut-off function component-wise

lipxiq :“ pai ´ δqp1 ´ ki1pxiqq ` xiki1pxiqp1 ´ ki2pxiqq ` pbi ` δqki2pxiq
with

lipxiq “ ai ´ δ, for xi ď ai ´ δ

lipxiq “ xi, for ai ă xi ă bi

lipxiq “ bi ` δ, for xi ě bi ` δ.

This yields for the complete cut-off function that l P C8pRn,Rnq, lpxq “ x for all x P Q
and lpxq P Qδ for all x P R.
We define f̃pxq :“ fplpxqq and it directly follows that f̃pxq “ fpxq for all x P Q. The
Lipschitz continuity follows if we consider the following: The Jacobian of l has a compact
supporter since l is constant except for a compact region. Therefore there is a constant
L such that maxxPRn

›› B
Bx lpxq›› ď L. And so it holds:›››› d

dx
f̃pxq

›››› “
›››› d

dx
fplpxqq

››››
“

›››› B
Bxfplpxqq B

Bxlpxq
››››

ď
›››› B

Bxfplpxqq
››››

›››› B
Bxlpxq

››››
ď max

xPQδ

›››› B
Bxfpxq

››››L.
Therefore we can create a Lipschitz continuous auxiliary function which is identical to
the original function on a compact region.

In the case of the function gR we need a cut-off strategy which creates Lipschitz continuity
while it preserves strong monotonicity. The following lemma provides such a cut-off
strategy.
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Lemma 5.18. (Monotonicity preserving cut-off)
Consider a function M : R Ñ R with M1,M2 ą 0 such that M1 ď Mpyq ď M2 and
| B

ByMpyq| ď M3 for all y P R and an interval Q “ r´c, cs with c ą 0. The function

gpx, yq :“ Mpyqx is both strongly monotone and Lipschitz continuous in x, but not
Lipschitz continuous in y. Then there exists a function g̃ which is Lipschitz continuous
in y while it preserves the strong monotonicity and the Lipschitz continuity in x while it
fulfills g̃px, yq “ gpx, yq for all x P Q.

Proof .
Let δ ą 0, a “ ´c ´ δ and b “ c ` δ. We define two functions k1 and k2 as before
depending on a and b. Then we define

g̃px, yq :“ pM2pk2pxq ` 1 ´ k1pxqq ` Mpyqk1pxqp1 ´ k2pxqqqx,
for x P Q it holds

g̃px, yq “ pM2pk2pxq ` 1 ´ k1pxqq ` Mpyqk1pxqp1 ´ k2pxqqqx
“ pM2 ¨ 0 ` Mpyq ¨ 1 ¨ 1qx
“ gpx, yq.

Hence g̃ is a suitable auxiliary function if we are only interested in g for x P Q. First we
check preservation of the strong monotonicity and the Lipschitz continuity with respect
to x. Therefore we calculate the partial derivative by using k2pxq “ 0 for all x with
k1
1pxq ‰ 0 and k1pxq “ 1 for all x with k1

2pxq ‰ 0:

B
Bxg̃px, yq “M2pk2pxq ` 1 ´ k1pxqq ` Mpyqk1pxqp1 ´ k2pxqq

` pM2pk1
2pxq ´ k1

1pxqq ` Mpyqk1
1pxqp1 ´ k2pxqq ´ Mpyqk1pxqk1

2pxqqqx
“M2pk2pxq ` 1 ´ k1pxqq ` Mpyqk1pxqp1 ´ k2pxqq

` pM2pk1
2pxq ´ k1

1pxqq ´ Mpyqpk1
2pxq ´ k1

1pxqqqx
“M2pk2pxq ` 1 ´ k1pxqq ` Mpyqk1pxqp1 ´ k2pxqq

` pM2 ´ Mpyqqpk1
2pxq ´ k1

1pxqqx.
We obtain two inequalities

M1 ď M1pp1 ´ k1pxqqk2pxq ` 1q
“ M1pk2pxq ` 1 ´ k1pxq ` k1pxqp1 ´ k2pxqqq
ď M2pk2pxq ` 1 ´ k1pxqq ` Mpyqk1pxqp1 ´ k2pxqq
ď M2pk2pxq ` 1 ´ k1pxq ` k1pxqp1 ´ k2pxqqq
“ M2pp1 ´ k1pxqqk2pxq ` 1q
ď 2M2
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5 Solvability and Uniqueness

and

0 ď pM2 ´ Mpyqqpk1
2pxq ´ k1

1pxqqx ď M4

with the help of the description

pM2 ´ Mpyqqpk1
2pxq ´ k1

1pxqqx “

$’&
’%

´pM2 ´ Mpyqqk1
1pxqx , x P r´c ´ δ,´cs,

pM2 ´ Mpyqqk1
2pxqx , x P rc, c ` δs,

0 , else.

This leads to

M1 ď B
Bxg̃px, yq ď 2M2 ` M4

which yields the strong monotonicity and the Lipschitz continuity since M1,M2 and M4

are positive. The Lipschitz continuity with respect to y follows by

| B
By g̃px, yq| “| B

ByMpyqk1pxqp1 ´ k2pxqqx| “ | B
ByMpyq||k1pxqp1 ´ k2pxqqx| ď M3pc ` δq.

We use the cut-off strategy of Lemma 5.17 to obtain substitute functions for

gCpAJ
C e, ζ,Ψq and hζpAJ

Se, ζ,Ψq.
Therefore we have to choose reasonable compact regions for AJ

C e, ζ and Ψ. We start with
ζ which represents the electron densities and hole densities in the semiconductor material.
Since the exact solutions of these densities are never negative we choose ai “ 0 for all
ai belonging to ζ. Depending on the material coefficients of the semiconductor and the
oxide, we have to choose the absolute values of the remaining ai and bi sufficiently large. It
is possible to choose these boundaries sufficiently large since in reality the semiconductor
device only works properly if it is neither too hot nor too cold. Therefore the functions gC
and hζ represent the real behavior of the semiconductor only if AJ

C e and Ψ do not grow
too large and so it does not matter if we cut-off the function after this point.
For the memristor function gM we provide a specific auxiliary function for the HP mem-
ristor of [SSSW08]. The following steps can also be found in [JMT13]. But here we
present them more detailed, in particular we use Lemma 5.18. In this case we have
gMpu, qq “ Mpqq´1u with the JacobianMpqq “ Roff p1´μV Ron

d2
qq. We introduce the param-

eter α “ 1 ´ 1
360

and the cut-off function lMpqq with a “ ´α d2

μV Ron
and b “ α d2

μV Ron
which

is constructed as in Lemma 5.17. With the help of lMpqq we are able to define M̃pqq “
MplMpqqq “ Roff p1´ μV Ron

d2
lMpqqq. Then M̃pqq “ Mpqq as long as Ron ď Mpqq ď Roff and
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there are M1,M2 ą 0 with M1 ď M̃pqq ď M2 and | B
BqM̃pqq| “ Roff

μV Ron

d2
| B

Bq lMpqq| ď M3.
This leads to the functions

φ̃Mpqq “
ż q

0

M̃ppqdp and g̃Mpu, qq “ M̃pqq´1u

with φ̃Mpqq being strongly monotone and g̃Mpu, qq being strongly monotone and Lipschitz
continuous in u. By Lemma 5.18 we obtain a function ḡMpu, qq “ M̄pu, qq´1u which is
both strongly monotone and Lipschitz continuous in u and Lipschitz continuous in q and
coincides with φ̃Mpqq for u in an arbitrary but fixed box.
Hence, we are able to provide auxiliary functions for

φMpqM , tq, gMpAJ
Me, qM , tq, gCpAJ

C e, ζ,Ψq and hζpAJ
Se, ζ,Ψq

with φM and gM being strongly monotone with respect to their first argument and gM ,
gC and hζ being Lipschitz continuous in all their arguments except the time t. Therefore
we assume without any loss of generality:

Assumption 5.19 (Global passivity).
The functions qC, φL, φM and gR are strongly monotone with respect to their first argu-
ments. Furthermore the functions gC, gR, hζ and hΨ are Lipschitz continuous with respect
to all their arguments but the time.

Under this assumption we formulate the following theorem.

Theorem 5.20. Let Assumption 5.19 be fulfilled and let vsptq and isptq be continuously
differentiable. Then the extended MNA equations (3.34) have at least one initial value
and for each initial value there is a global unique solution.

Proof . We have to check the requirements of Theorem 5.13. By the results of Section 4.3
we already know that the extended MNA equations have a Dissection Index two or lower
with a constant basis chain. Therefore requirement (i) is fulfilled. To check requirement
(ii) we choose the basis functions

Py1 “
¨
˝0 PV QV PR 0
0 0 0 VV

I 0 0 0

˛
‚, Vy1 “

¨
˝PV QV PR 0 0

0 0 VV 0
0 0 0 I

˛
‚

and

Px1 “ V ˚
y “

¨
˚̊̊
˚̊̊
˝

PCV 0
0 PLI
0 0
0 0
0 0
0 0

˛
‹‹‹‹‹‹‚
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5 Solvability and Uniqueness

to obtain

V J
y1
Bw

y1
px, tqPy1 “

¨
˚̋̊0 PJ

V AC̄RGRAJ̄
CRPV PJ

V AC̄RGRAJ̄
CV̄RPR PJ

V AC̄V VV

0 PJ
RAC̄V̄RGRAJ̄

CRPV PJ
RAC̄V̄RGRAJ̄

CV̄RPR 0
0 ´V J

V AJ̄
CV PV 0 0

T 0 0 0

˛
‹‹‚,

WJ
y1
Bv

x1
px, tqPx1 “

ˆ
0 AC̄V̄ R̄LPLI

´WJ
V A

J
V PCPCV 0

˙

pV ˚
y qJBv

y1
px, tqQy1 “

ˆ
0 PJ

CV P
J
C AVWV

´PJ
LIA

J̄
CV̄ R̄L 0

˙
,

and

pW ˚
y qJG1px, tqQx1

“

¨
˚̊̊
˚̊̊
˝

QJ
CV P

J
C ACCpAJ

C e, tqAJ
CPCQCV 0 0 0 0 0

0 QT
LILpjL, tqQLI 0 0 0 0

0 0 Mζ 0 0 0
0 0 0 MpqM , tq 0 0
0 0 0 0 Mε 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‚
.

The matrices WJ
y1
Bv

x1
px, tqPx1 and pVẙ qJBv

y1
px, tqQy1 are constant hence they fulfill the

requirements of Lemma 5.7 and pWẙ qJG1px, tqQx1 fulfills these requirements since it is
strongly monotone. The matrix V J

y1
Bw

y1
px, tqPy1 fulfills the requirements of Lemma 5.7

since GR is strongly monotone and Lipschitz continuous andˆ
0 ´V J

V AJ̄
CV PV

T 0

˙
and PJ

V AC̄V VV

are constant.
The third condition, namely the Lipschitz continuity of b, follows directly from Assump-
tion 5.19 since b is a composition of Lipschitz continuous functions.

5.5 Summary and Outlook

In this chapter we provided sufficient criteria for the global unique solvability of semi-
linear DAEs. This has been done in two major steps. First we derived criteria for
the solvability of an implicit ODE. Afterwards we showed under which assumption it is
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possible to decouple a semi-linear DAE such that the implicit inherent ODE fulfills these
criteria. We emphasize at this point that the solvability results in this chapter are not
limited to index 1 DAEs but hold for DAEs with an arbitrary index with the monotonicity
properties proposed in Assumption 5.11.
One important tool for the decoupling is the concept of the strong monotonicity. To
use the concept of strong monotonicity to obtain global solvability results for DAEs, or
abstract DAEs, was introduced by Michael Matthes in [Mat13]. The Dissection concept
cooperates very well with the strong monotonicity concept since it is able to preserve the
strong monotonicity during the decoupling. In [JMT13] this cooperation has already been
used for the index 1 circuits including memristors.
The results regarding the circuit application in this chapter can be seen as a generalization
of the results in [JMT13]. Here we showed the global unique solvability of index 2 circuits
including a semiconductor model, memristors and an electromagnetic model.
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6 Convergence Analysis

This chapter deals with DAE related convergence issues. In Section 2.1 we have already
witnessed that classical ODE methods, like the implicit Euler, may fail when applied
to DAEs. This problem is presented by Example 2.12 which also plays an important
role in this section. In particular we discuss the influence of the terms Q1

x0
pX2, tq and

Q1
xi

pX i`1, tq which appear in the matrix chain of the Dissection Index. These derivative
terms may lead to numerical instabilities which are the main topic of this chapter.
After presenting more examples for the problems caused by the derivative terms we pro-
vide sufficient criteria to avoids these problems. In the final section of this chapter we
show that there is a class of collocation methods which are unharmed by these instabil-
ities. In [KM07] these convergence issues are also tackled. The strategy in [KM07] is
to use a new stabilization method which is used together with the classical integration
methods to obtain convergence. The combination of the methods consists of three steps:
In every integration step the DAE is transformed by the stabilization method, then the
classical integration method is applied and afterwards the transformation is undone again
by the stabilization method. In contrast to [KM07] we are interested in methods which
do not need a transformation of the DAE.

Regularity and Characteristic Values

We consider again Example 2.12 from Section 2.1: Let I :“ r0, 3s and let t P I.

x1
1 ` ηtx1

2 “ ´p1 ` ηqx2

x1 ` ηtx2 “ e´t

with η P R. We compute a basis chain of Example 2.12, before we further discuss its
numerical problems. We denote

A “
ˆ
1 ηt
0 0

˙
, D “

ˆ
1 0
0 1

˙
and B “

ˆ
0 1 ` η
1 ηt

˙
.

Therefore we can choose

P “
ˆ
1
ηt

˙
, Q “

ˆ´ηt
1

˙
, V “

ˆ
1
0

˙
and W “

ˆ
0
1

˙
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and gain

G1 “ `
1 ` pηtq2˘

, Bw
x1

“ `
1 ` pηtq2˘ , Bw

y1
“ `

0
˘

and

Bv
y1

“ V JBptqQptq ` V JAptqQ1ptq “ `
1 ` η

˘ ` `´η
˘ “ `

1
˘
.

Hence, the DAE has Dissection Index 2. We notice that the derivative term V JAptqQ1ptq
is needed for reflecting the regularity of the DAE correctly for η “ ´1.
In Section 2.1 it is mentioned that the numerical solution provided by the implicit Euler
does not converge to the exact solution

x1ptq “ p1 ´ ηtqe´t, x2ptq “ e´t

of Example 2.12 if η ă ´1
2
. In particular the implicit Euler is not able to provide any

numerical solution values if η “ ´1. In this case we obtain the equations

x1
1 ´ tx1

2 “ 0

x1 ´ tx2 “ e´t,

which leads to the discretized system

x1,n ´ tnx2,n “ x1,n´1 ´ tnx2,n´1

x1,n ´ tnx2,n “ e´tn .

This system is not solvable with respect to x1,n and x2,n. It seems that the implicit Euler
does not put the derivative term V JAptqQ1ptq into action, which in this case leads to an
singular system. The next example has the same problem, but this time the problem is
more hidden.

Example 6.1.
Let I :“ r0, 3s and let t P I.

sinptqx1
1 ` cosptqx1

2 “ ´x3

x1
3 “ ´cosptqx1 ` sinptqx2

0 “ 1 ´ sinptqx1 ´ cosptqx2

The exact solution of the problem is given by x1ptq “ sinptq, x2ptq “ cosptq and x3ptq “ 0.

Again we provide a basis chain of the Dissection Index first. We denote

A “
¨
˝sinptq cosptq 0

0 0 1
0 0 0

˛
‚, D “

¨
˝1 0 0
0 1 0
0 0 1

˛
‚ and B “

¨
˝ 0 0 1
cosptq ´sinptq 0
sinptq cosptq 0

˛
‚.
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6 Convergence Analysis

Therefore we can choose

P “
¨
˝sinptq 0
cosptq 0
0 1

˛
‚, Q “

¨
˝ cosptq

´sinptq
0

˛
‚, V “

¨
˝1 0
0 1
0 0

˛
‚ and W “

¨
˝0
0
1

˛
‚

and gain

G1 “
ˆ
1 0
0 1

˙
, Bw

x1
“ `

1 0
˘
, Bw

y1
“ `

0
˘

and

Bv
y1

“ V JBptqQptq ` V JAptqQ1ptq “
ˆ
0
1

˙
`

ˆ´1
0

˙
“

ˆ´1
1

˙
.

Due to the matrices Bw
y1
, Bw

x1
we can choose Qx1 “ `

0 1
˘J

. After calculating G1Qx1 “`
0 1

˘J
we can choose Wx1 “ `

1 0
˘J

and obtain Bw
y2

“ `
1
˘
. Hence, the DAE has

Dissection Index 2. We notice again the derivative term V JAptqQ1ptq is crucial for the
DAE to have index 2. If we would calculate the matrix chain without the derivative term,
the chain would end after the third stage instead of the second. We calculate

B̃v
y1

“ V JBptqQptq “
ˆ
0
1

˙
and B̃v

x1
“ V JBptqP ptq “

ˆ
0 1
0 0

˙

instead of Bv
y1

and Bv
x1
. Then we obtain

G̃2 “ `
1
˘

and B̃v
y2

“ V J
x1
B̃v

y1
Qy1 “ `

1
˘

which leads to

B̃w
y2

“ WJ
x1
B̃v

y1
Qy1 “ `

0
˘

and B̃w
x2

“ WJ
x1
B̃v

x1
Qx1 “ `

1
˘
.

We try to simulate Example 6.1 with the implicit Euler. Though the discretized sys-
tem is regular, simulating this DAE by the implicit Euler does not provide satisfying
results, see Figure 6.1. From these examples we deduce that the implicit Euler is not
suitable for integrating DAEs with characteristic values depending on the derivative term
V JAptqQ1ptq.
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Figure 6.1: Numerical and exact solution of Example 6.1 simulated with the implicit Euler and a time
step size h “ 0.1. The magnitude of the numerical solution is around 10100.

This problem invokes two questions: Is there for each DAE a numerical method which
preserves the index behavior during the discretization? Or is there even a numerical
method which preserves the index behavior during the discretization for each DAE?

Artificial Dynamics

Example 2.12 in Section 2.1 shows us that the pure appearance of the derivative term
V JAptqQ1ptq in the matrix chain is enough for the numerical solution to diverge. For
η “ ´0.55 neither the index nor the characteristic values of Example 2.12 depend on
the derivative terms but the numerical solution, generated by the implicit Euler, grow
unbounded as the time step size decreases, see Figure 6.2.

Figure 6.2: Numerical and exact solution of Example 2.12 simulated with the implicit Euler and the time
step sizes h “ 0.1 (left) and h “ 0.01 (right).

This problem is not confined to the implicit Euler method. Also the BDF2 Method
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6 Convergence Analysis

Figure 6.3: Numerical and exact solution of Example 2.12 simulated with the BDF2 method and the time
step sizes h “ 0.1 (left) and h “ 0.01 (right).

as well as the RadauIIA Method show the same problem.

Figure 6.4: Numerical and exact solution of Example 2.12 simulated with the RadauIIA Method with 3
stages and the time step sizes h “ 0.1(left) and h “ 0.01(right).

These simulations show us that not only the implicit Euler is affected by this instability
but also the BDF and Radau IIA methods. Two of the best known DAE solver packages
are DASSL and RADAU, see [Pet82] and [HNW02]. While RADAU is based on the Radau
IIA method, DASSL uses BDF-methods to solve a DAE. In the following we explain the
underling problem of these methods on the basis of implicit Euler.

The basic idea behind the implicit Euler is the approximation of the derivative by a
difference quotient: (h ą 0)

x1ptq « xptq ´ xpt ´ hq
h

Difference schemes like the difference quotient have a fundamental flaw. They do not
commutate with the product rule. We use two differentiable functions f, g P C1pR,Rq to
explain this problem.
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which leads to an explicit description of the numerical solution if we discretize Equation
(6.2) with the implicit Euler method

x0,n “ 1

1 ` pηtnq2 e
´tn ,

y0,n “ ´p1 ` 2ηqηtnx0,n ´ p1 ` pηtnq2qx0,n ´ x0,n´1

h
.

We notice that there are no dynamics in these equations, i.e. the solutions at a time point
tn are independent from the initial values at t0. This behavior is expected since we have
to deal with an index two DAE with two components. Next we apply the implicit Euler
method before using the product rule and the decoupling of the Dissection Index and
obtain ˆ

1 ηtn
0 0

˙
xn ´ xn´1

h
`

ˆ
0 1 ` η
1 ηtn

˙
xn “

ˆ
0

e´tn

˙
.

In the discrete case we use the variable splitting in the time point tn

xn “
ˆ

1
ηtn

˙
x0,n `

ˆ´ηtn
1

˙
y0,n

and in the time point tn´1

xn´1 “
ˆ

1
ηtn´1

˙
x0,n´1 `

ˆ´ηtn´1

1

˙
y0,n´1

to obtain the system

ˆ
1 ηtn
0 0

˙ ˆ
1
ηtn

˙
x0,n `

ˆ´ηtn
1

˙
y0,n ´

ˆˆ
1

ηtn´1

˙
x0,n´1 `

ˆ´ηtn´1

1

˙
y0,n´1

˙
h

`
ˆ
0 1 ` η
1 ηtn

˙ ˆˆ
1
ηtn

˙
x0,n `

ˆ´ηtn
1

˙
y0,n

˙
“

ˆ
0

e´tn

˙
.

We rearrange these equations into the form of Equation (6.1).ˆ
1 ` pηtnq2

0

˙
x0,n ´ x0,n´1

h
`

ˆp1 ` ηqηtn
1 ` pηtnq2

˙
x0,n `

ˆ
η2tn
0

˙
x0,n´1

`
ˆ
1 ` η
0

˙
y0,n `

ˆ´η
0

˙
y0,n´1 “

ˆ
0

e´tn

˙

The product rule and the difference quotient do not commutate and as a consequence we
have to deal with the termsˆ´η

0

˙
y0,n´1 and

ˆ
η2tn
0

˙
x0,n´1.
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The evaluation shift in the function f in the Figure 6.5 is reflected by the evaluation shift
of x0 and y0. In this case the numerical solution must be described dependent of y0,n´1

x0,n “ 1

1 ` pηtnq2 e
´tn

y0,n “ η

1 ` η
y0,n´1 ´ 1

1 ` η

´
p1 ` ηqηtnx0,n ` η2tnx0,n´1 ` p1 ` pηtnq2qx0,n ´ x0,n´1

h

¯
.

Hence we deal with a dynamical behavior, which should not be the case. Therefore we
call this dynamics artificial. In particular this artificial dynamic is unstable if η ă ´0.5,
since it holds ˇ̌̌

ˇ η

1 ` η

ˇ̌̌
ˇ ď 1 ô η ě ´0.5.

These artificial dynamics can also manipulate the inherent dynamics. We demonstrate
this with the following example

Example 6.2. ([HMM98, LMT13])
Let I :“ r0, 3s and let t P I. We consider the DAE¨

˝1 0 0
0 1 0
0 0 0

˛
‚x1 ´

¨
˝ ´10 1 1
ηpηt2 ´ t ` 1q ´10 ηt

p1 ´ ηtq 1 0

˛
‚x “ 0 (6.3)

with the exact solution

xptq “ `
e´10t ´p1 ´ ηtqe´10t p1 ´ ηtqe´10t

˘J

for the initial value x0 “ `
1 ´1 1

˘J
.

By the canonical choice

P “ V “
¨
˝1 0
0 1
0 0

˛
‚ and Q “ W “

¨
˝0
0
1

˛
‚

we obtain

WJBPx0 “ `
1 ´ ηt 1

˘
x0 “ 0 (6.4)

with x “ Px0 ` Qy0. Hence, we can choose

Px1 “
ˆ
1 ´ ηt

1

˙
and Qx1 “

ˆ
1

ηt ´ 1

˙
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6 Convergence Analysis

and define x0 “ Px1x̃1 ` Qx1x1 which yields x̃1 “ 0 with the help of Equation (6.4).
Thereby we obtain

x0 “ Qx1x1 “
ˆ

1
ηt ´ 1

˙
x1

and the derivative of x0 can be continuously described by

x1
0 “ pQx1x1q1 “ Qx1x

1
1 ` Q1

x1
x1 “

ˆ
1

ηt ´ 1

˙
x1
1 `

ˆ
0
η

˙
x1. (6.5)

By factorizing the equations of Example 6.2 by V J and transforming them by P and Q
we get

x1
0 “

ˆ ´10 1
ηpηt2 ´ t ` 1q ´10

˙
x0 `

ˆ
1
ηt

˙
y0

which yields together with Equation (6.7) and x0 “ Qx1x1:ˆ
1

ηt ´ 1

˙
x1
1 `

ˆ
0
η

˙
x1 “

ˆ
ηt ´ 11

ηtpηt ´ 11q ` η ` 10

˙
x1 `

ˆ
1
ηt

˙
y0 (6.6)

We multiply one of the basis functions of the alternative basis ending from Lemma 4.15

W ˚
y “

ˆ
ηt
´1

˙

to the left of (6.6) and thereby we obtain

x1
1 “ ´10x1

which describes the inherent dynamic. If we discretize Example 6.3 by the implicit Euler
method, before we use the product rule and the decoupling, we obtain:¨

˝1 0 0
0 1 0
0 0 0

˛
‚xn ´ xn´1

h
´

¨
˝ ´10 1 1
ηpηt2 ´ t ` 1q ´10 ηt

p1 ´ ηtq 1 0

˛
‚xn “ 0.

By factorizing these equations by V J and WJ and transforming them by P and Q we
obtain

x0,n ´ x0,n´1

h
“

ˆ ´10 1
ηpηt2n ´ t ` 1q ´10

˙
x0,n `

ˆ
1
ηtn

˙
y0,n

0 “ `
1 ´ ηtn 1

˘
x0,n.
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We use the transformation x0,n “ Px1,n x̃1,n `Qx1,nx1,n and get again x̃1,n “ 0 and thereby
x0,n “ Qx1,nx1,n. But after the time discretization this yields

x0,n ´ x0,n´1

h
“

ˆ
1

ηtn ´ 1

˙
x1,n ´ x1,n´1

h
`

ˆ
0
η

˙
x1,n´1 (6.7)

instead of (6.5). Hence we obtain

ˆ
1

ηtn ´ 1

˙
x1,n ´ x1,n´1

h
`

ˆ
0
η

˙
x1,n´1 “

ˆ
ηtn ´ 11

ηtnpηtn ´ 11q ` η ` 10

˙
x1,n `

ˆ
1
ηtn

˙
y0,n

instead of (6.6). By a multiplication with

W ˚
y,n “

ˆ
ηtn
´1

˙

from the left we obtain

x1,n ´ x1,n´1

h
´ ηx1,n´1 “ ´pη ` 10qx1,n

which describes the discrete version of the inherent dynamic. By rearranging this equation
to

x1,n “ 1 ` hη

1 ` hpη ` 10qx1,n´1

we see that | 1`hη
1`hpη`10q | ď 1 is necessary for the convergence of x1,n, if we apply the implicit

Euler method. Due toˇ̌̌
ˇ 1 ` hη

1 ` hpη ` 10q
ˇ̌̌
ˇ ă 1 ñ

ˇ̌̌
ˇ1 ´ 10h

1 ` hpη ` 10q
ˇ̌̌
ˇ ă 1

ñ 10h

1 ` hpη ` 10q ą 0

ñ 1 ` hpη ` 10q ą 0, η ă ´10

ñ h ă ´ 1

η ` 10

the condition h ă ´ 1
η`10

is necessary for the convergence of x1,n. Hence the appearance
of an artificial dynamic in an inherent dynamic can invoke additional time step size
restrictions as we see in Figure 6.6.
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6 Convergence Analysis

Figure 6.6: Numerical and exact solution of Example 6.2 simulated with the implicit Euler and a time
step sizes h “ 11 ¨ 10´3(upper left), h “ 10.5 ¨ 10´3(upper right), h “ 9 ¨ 10´3(lower left) and
h “ 1 ¨ 10´3(lower right).

The implicit Euler method, applied to Example 2.12, is unconditionally unstable for
η ă ´0.5. When we apply the implicit Euler method to Example 6.2 we only have to
choose the time step size sufficiently small for the Euler method to converge. For proper
formulated index 2 DAEs the implicit Euler method might have to fulfill additional time
step size restrictions but it never becomes unconditionally unstable. As the next example
shows this is no longer the case if we deal with index 3 DAEs.

Example 6.3. Let I :“ r0, 3s and let t P I. We consider the DAE¨
˝1 0 0
0 1 0
0 0 0

˛
‚x1 “

¨
˝sinptqcosptq ´sinptqsinptq cosptq
cosptqcosptq ´sinptqcosptq ´sinptq

sinptq cosptq 0

˛
‚x `

¨
˝ cosptq ´ cosptqsinptq

´sinptq ` sinptqsinptq
1

˛
‚

with the exact solution

xptq “ `
sinptq cosptq sinptq˘J

for the initial value x0 “ `
0 1 0

˘J
.

Again we split the DAE by the canonical choice of the first basis functions and obtain:

x1
0 “

ˆ
sinptqcosptq ´sinptqsinptq
cosptqcosptq ´sinptqcosptq

˙
x0 `

ˆ
cosptq

´sinptq
˙
y0 `

ˆ
cosptq ´ cosptqsinptq

´sinptq ` sinptqsinptq
˙
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0 “ `
sinptq cosptq˘

x0 ´ 1

We choose

Px1 “
ˆ
sinptq
cosptq

˙
and Qx1 “

ˆ
cosptq

´sinptq
˙

and split x0 “ Px1ptqx̃1 ` Qx1ptqx1 which yields x̃1 “ 1. Then we can write x0 “
Qx1ptqx1 ` Px1ptq and get

x1
0 “ Q1

x1
ptqx1 ` Qx1ptqx1

1 ` P 1
x1

ptq (6.8)

By inserting these relations we getˆ
cosptq

´sinptq
˙
x1
1 “ 2

ˆ
sinptq
cosptq

˙
x1 `

ˆ
cosptq

´sinptq
˙
y0 `

ˆ´cosptqsinptq
sinptqsinptq

˙

which enables us to choose

Vx1 “
ˆ

cosptq
´sinptq

˙
and Wx1 “

ˆ
sinptq
cosptq

˙
.

By factorizing with V J
x1

and WJ
x1

we achieve

y0 “ x1
1 ` sinptq

2x1 “ 0.
(6.9)

Now we decouple the discretized system. We start with the system

x0,n ´ x0,n´1

h
“

ˆ
sinptnqcosptnq ´sinptnqsinptnq
cosptnqcosptnq ´sinptnqcosptnq

˙
x0,n `

ˆ
cosptnq

´sinptnq
˙
y0,n

`
ˆ

cosptnq ´ cosptnqsinptnq
´sinptnq ` sinptnqsinptnq

˙
0 “ `

sinptnq cosptnq˘
x0,n ´ 1

(6.10)

and define Px1,n :“ Px1ptnq, Qx1,n :“ Qx1ptnq, Vx1,n :“ Vx1ptnq and Wx1,n :“ Wx1ptnq.
Analogous to the continuous case we obtain x̃1,n “ 1 and analog to (6.8) we get

x0,n ´ x0,n´1

h
“ Px1,n ´ Px1,n´1

h
` Qx1,n ´ Qx1,n´1

h
x1,n´1 ` Qx1,n

x1,n ´ x1,n´1

h
. (6.11)

With the help of the Taylor expansions

sinptn´1q “ sinptnq ´ cosptnqh ´ 1

2
sinptnqh2 ` Oph3q
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6 Convergence Analysis

cosptn´1q “ cosptnq ` sinptnqh ´ 1

2
cosptnqh2 ` Oph3q

we get

Px1,n ´ Px1,n´1

h
“ Qx1,n ` 1

2
Px1,nh ` Oph2q (6.12)

and

Qx1,n ´ Qx1,n´1

h
“ ´Px1,n ` 1

2
Qx1,nh ` Oph2q. (6.13)

Figure 6.7: Numerical and exact solutions of the third component of Example 6.3 with h “ 0.01 using
the implicit Euler.

With the help of (6.11), (6.12) and (6.13) we can transform (6.10) into

x1,n “ ´x1,n´1 ` 1

2
h ` Oph2q

y0,n “ sinptnq ` x1,n ´ x1,n´1

h
` Ophq.

This yields

x1,2n´1 “ 1

2
h ` Oph2q
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x1,2n “ Oph2q
and

y0,2n´1 “ sinpt2n´1q ` 1

2
` Ophq

y0,2n “ sinpt2nq ´ 1

2
` Ophq

which coincides with the numerical simulation results in Figure 6.7.
In the following section we amplify the source of the problems presented in this section.
Furthermore we present a class of methods which overcomes the problems regarding the
artificial dynamics.

6.1 Implicit Methods

The previous examples show that classical numerical methods may lose their conver-
gence properties when applied to DAEs. In this section sufficient convergence criteria for
nonlinear DAEs in standard form are presented. The mentioned convergence problems
already occur in the index 2 case and therefore we restrict ourselves to index 2 DAEs in
this section. The main aim of this section is to amplify the source of the convergence
issues. In particular we want to exclude the non-linearity of the DAE as such a source
and draw focus to the basis functions, such that it is sufficient to consider linear DAEs
when analyzing these convergence problems. In this section we use BDF methods for
time discretization. Similar results for index 2 DAEs discretized by other methods can be
found in [Voi06]. In contrast to these results we do not need any structural assumption
of the equation of the DAE, but we need some of the basis function to be constant.

Definition 6.4.
Consider a sufficiently smooth nonlinear DAE in standard form with initial conditions on
a time interval I “ rt0, T s:

fpx1, x, tq “ 0, xpt0q “ x0.

We define the difference quotient with k-steps and the BDF-coefficients αj

x1
n :“ 1

h

kÿ
j“0

αjxn´j

and therewith we formulate the BDF method with k-steps

fpx1
n, xn, tnq “ δn

with xn being the solution approximation at tn and δn being the perturbation caused by
the rounding errors and the used nonlinear solver.
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6 Convergence Analysis

For the convergence analysis we need to define the consistency error of a BDF:

Definition 6.5. (Consistency error) The consistency error of a BDF method is defined
by

Lnpxq :“ 1

h

kÿ
j“0

αjxptn´jq ´ x1ptnq.

We say a BDF method has a consistency error of order k if Lnpxq “ Ophkq.
It is common knowledge that a BDF method with k-steps has consistency order k, if the
exact solution is smooth enough. The following theorem shows that the only possible
problem source is the non-linearity or even time dependence of the basis functions Q and
Qx1 . In particular the equations of the extended MNA fulfill the assumptions of Theorem
6.6, see Section 4.3.

Theorem 6.6.
Consider a sufficiently smooth nonlinear DAE in standard form with Dissection Index
2 and a global unique solution which is sufficiently smooth. Assume that there exist
constant basis functions Q and Qx1 . Furthermore let the errors in the first k steps and
the rounding errors be sufficiently small. Then the BDF method with k-steps converges
with order k for 2 ď k ď 6, i.e.

}en} “ }xptnq ´ xn} ď chk

with c ą 0 being independent of h and en being the global error.

Proof .
First we show the feasibility of the methods by an induction over the time steps. In
particular we show that the methods produce numerical values xi in a sufficiently small
neighborhood around the solution. We assumed that the error in the first k steps fulfills

}xptiq ´ xi} ď Ophkq, for i ď k ´ 1.

Therefore the induction start is automatically fulfilled. Hence we assume that the errors
of the previous steps are of order k and show that also the error in the n-th step is of
order k.
Both basis functions Q and Qx1 are assumed to be constant which enables us to also
choose constant basis functions P and Px1 . The remaining basis functions may depend
on time, the solution function and its derivative.
We define the following notation

V J
n :“ V Jpx1ptnq, xptnq, tnq V J

x1,n
:“ V J

x1
px1ptnq, xptnq, tnq
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WJ
n :“ WJpx1ptnq, xptnq, tnq WJ

x1,n
:“ WJ

x1
px1ptnq, xptnq, tnq

Py1,n :“ Py1px1ptnq, xptnq, tnq V J
y1,n

:“ V J
y1

px1ptnq, xptnq, tnq
Qy1,n :“ Qy1px1ptnq, xptnq, tnq WJ

y1,n
:“ WJ

y1
px1ptnq, xptnq, tnq

to decouple the discretized DAE

fpx1
n, xn, tnq “ δn.

Before we start the decoupling we split the exact solution into

xptq “ PPx1x̃1ptq ` PQx1x1ptq ` Qy0ptq (6.14)

and the global error into

en “ PPx1 ẽ
x
1,n ` PQx1e

x
1,n ` Qey0,n. (6.15)

First we insert the splitting xn “: Px0,n `Qy0,n and apply a factorization by multiplying
V J
n and WJ

n from the left side

V J
n fpPx1

0,n, Px0,n ` Qy0,n, tnq “ V J
n δn (6.16a)

WJ
n fpPx1

0,n, Px0,n ` Qy0,n, tnq “ WJ
n δn. (6.16b)

Notice that it holds pPx0,nq1 “ Px1
0,n since P is constant. Hence, we do not deal with

the product stability problem here. Next we insert transformations and factorizations at
once. We factorize (6.16a) by V J

x1,n
and WJ

x1,n
and (6.16b) by V J

y1,n
and WJ

y1,n
, while we

insert the transformations x0,n “: Px1x̃1,n ` Qx1x1,n and y0,n “: Py1,n ỹ1,n ` Qy1,n ỹ2,n.

V J
x1,n

V J
n fpPPx1 x̃

1
1,n ` PQx1x

1
1,n, PPx1 x̃1,n ` PQx1x1,n ` QQy1,nỹ2,n ` QPy1,nỹ1,n, tnq “ V J

x1,n
V J
n δn (6.17a)

WJ
x1,n

V J
n fpPPx1 x̃

1
1,n ` PQx1x

1
1,n, PPx1 x̃1,n ` PQx1x1,n ` QQy1,nỹ2,n ` QPy1,nỹ1,n, tnq “ WJ

x1,n
V J
n δn (6.17b)

V J
y1,n

WJ
n fpPPx1 x̃

1
1,n ` PQx1x

1
1,n, PPx1 x̃1,n ` PQx1x1,n ` QQy1,nỹ2,n ` QPy1,nỹ1,n, tnq “ V J

y1,n
WJ

n δn (6.17c)

WJ
y1,n

WJ
n fpPPx1 x̃

1
1,n ` PQx1x

1
1,n, PPx1 x̃1,n ` QQy1,nỹ2,n ` QPy1,nỹ1,n, tnq “ WJ

y1,n
WJ

n δn (6.17d)

Again we notice that we avoid the product stability problem due to pQx1x1,nq1 “ Qx1x
1
1,n.

The next objective is to reduce the system component down to x̃1,n and x1,n. Therefore
we apply the Lemma 4.32 on (6.17a) around the transformed exact solutions x̃1ptq, x1ptq,
ỹ1ptq, ỹ2ptq and the derivatives x̃1

1ptq, x1
1ptq and obtain

x1
1,n “ Ψ̄x1

1
px̃1

1,n, x1,n, x̃1,n, ỹ1,n, ỹ2,n, tn, δnq. (6.18)

We also use the Lemma 4.32 to achieve an explicit description for ỹ1,n and ỹ2,n. In
particular we apply the Lemma 4.32 on (6.17b) and (6.17c) around the transformed exact
solution and its derivative. Together with (6.18) this yields

ỹ1,n “ Ψỹ1px̃1
1,n, x1,n, x̃1,n, tn, δnq (6.19a)
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ỹ2,n “ Ψỹ2px̃1
1,n, x1,n, x̃1,n, tn, δnq (6.19b)

with B
Bx̃1

1,n
Ψỹ1px̃1

1ptq, x1ptq, x̃1ptq, t, 0q “ 0 for all t P I. At last we apply the Lemma 4.32

on (6.17d) and together with (6.18) and (6.19) we obtain

x̃1,n “ Ψx̃1px̃1
1,n, x1,n, tn, δnq (6.20)

with B
Bx̃1

1,n
Ψx̃1px̃1

1ptq, x1ptq, t, 0q “ 0 and B
Bx1,n

Ψx̃1px̃1
1ptq, x1ptq, t, 0q “ 0 for all t P I. Now

we can combine (6.18) with (6.20) and (6.19) and achieve

x1
1,n “ Ψx1

1
px̃1

1,n, x1,n, tn, δnq, (6.21)

which finally yields the system

x1,n “ ´
kÿ

j“1

αj

α0

x1,n´j ` h
1

α0

Ψx1
1
px̃1

1,n, x1,n, tn, δnq (6.22a)

x̃1,n “ Ψx̃1px̃1
1,n, x1,n, tn, δnq. (6.22b)

Before we estimate the error between the numerical and the exact solution we need to
prove that (6.22) has a solution in a neighborhood of the exact solution. Therefore we
consider the function

Φpx1,n, x̃1,nq “
ˆ
Φ1px1,n, x̃1,nq
Φ2px1,n, x̃1,nq

˙
“

ˆ´ řk
j“1

αj

α0
x1,n´j ` h 1

α0
Ψx1

1
px̃1

1,n, x1,n, tn, δnq
Ψx̃1px̃1

1,n, x1,n, tn, δnq
˙

and notice that a fixpoint of Φ is a solution of (6.22). Let r ą 0 and z P R
n. We define

Brpzq :“ tx P R
n | }x ´ z}2 ď ru

as the closed sphere around z with the radius r. We remember that the consistency error
is of order k, i.e. ||Lnpxq|| ď cLh

k and choose

Ωn “ Bhk

˜
x1ptnq `

kÿ
j“1

αj

α0

ex1,n´j

¸
ˆ Bhk`1px̃1ptnqq

and

Ω1
n “ Bhk´1px̃1

1ptnqq ˆ Bhk´1px1ptnqq.
Then Φ has a unique fixpoint in Ωn with h being sufficiently small. We will prove this by
the Schauder Fixed Point Theorem. We only have to show that Φpxq P Ωn for all x P Ωn,
since Φ is continuous on Ωn. Therefore we define the four closed convex hulls

ΩBΨx1
1
:“ conv

#
B

Bpx̃1
1, x1, δqΨx1

1
pzq|z P

ď
i

Ω1
i ˆ I ˆ Bhk`1p0q

+
,
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ΩBδ,Ψx1
1
:“ conv

#
B
BδΨx1

1
pzq|z P

ď
i

Ω1
i ˆ I ˆ Bhk`1p0q

+
,

ΩBδ,Ψx̃1
:“ conv

#
B
BδΨx̃1pzq|z P

ď
i

Ω1
i ˆ I ˆ Bhk`1p0q

+
,

ΩB2Ψx̃1
:“ conv

#
B2

Bpx̃1
1, x1q2Ψx̃1pzq|z P

ď
i

Ω1
i ˆ I ˆ Bhk`1p0q

+

and the constants

cBΨx1
1
:“ max

xPΩBΨ
x1
1

}x} , cBδ,Ψx1
1
:“ max

xPΩBδ,Ψ
x1
1

}x} ,

cBδ,Ψx̃1
:“ max

xPΩBδ,Ψx̃1

}x} , cB2Ψx̃1
:“ max

xPΩB2Ψx̃1

}x}

which exist since
Ť

i Ω
1
i ˆ I ˆ Bhk`1p0q is compact. By the Mean Value Theorem it holds

for all px1,n, x̃1,nq P Ωn that there is a J1 P ΩBΨx1
1
such that

Φ1px1,n, x̃1,nq ´
˜
x1ptnq `

kÿ
j“1

αj

α0

ex1,n´j

¸

“ ´
˜
x1ptnq `

kÿ
j“1

αj

α0

ex1,n´j

¸
´

kÿ
j“1

αj

α0

x1,n´j ` h
1

α0

Ψx1
1
px̃1

1,n, x1,n, tn, δnq

“ ´
kÿ

j“0

αj

α0

x1ptn´jq ` h
1

α0

Ψx1
1
px̃1

1,n, x1,n, tn, δnq

“ ´ h
1

α0

˜
1

h

kÿ
j“0

αjx1ptn´jq ´ Ψx1
1
px̃1

1,n, x1,n, tn, δnq
¸

“ ´ h
1

α0

`
x1
1ptnq ` Lnpxq ´ Ψx1

1
px̃1

1,n, x1,n, tn, δnq˘

“ ´ h
1

α0

¨
˝Lnpxq ´ J1

¨
˝px̃1

1,n ´ x̃1
1ptnqq

px1,n ´ x1ptnqq
δn

˛
‚

˛
‚

and that there is a J2 P ΩBδ,Ψx̃1
and a H P ΩB2Ψx̃1

such that

Φ2px1,n, x̃1,nq ´ x̃1ptnq “ Ψx̃1px̃1
1,n, x1,n, tn, δnq ´ x̃1ptnq

“ J2δ `
ˆpx̃1

1,n ´ x̃1
1ptnqq

px1,n ´ x1ptnqq
˙J

H

ˆpx̃1
1,n ´ x̃1

1ptnqq
px1,n ´ x1ptnqq

˙
.
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We obtain with the help of the splitting of the exact solution (6.14) and the induction
statement

x̃1
1,n ´ x̃1

1ptnq “ 1

h

kÿ
j“0

αjx̃1,n´j ´ x̃1
1ptnq “ 1

h

kÿ
j“0

αjx̃1ptn´jq ´ x̃1
1ptnq ` Ophkq

“ Lnpx̃1q ` Ophkq “ Ophkq
and

x1,n ´ x1ptnq “
kÿ

j“1

αj

α0

ex1,n´j ` Ophkq “ Ophkq

for all px1,n, x̃1,nq P Ωn. Hence we obtain for a sufficiently small step size h and for
}δ} ď 1

2cBδ,Ψ
x1
1

hk`1:

›››››Φ1px1,n, x̃1,nq ´
˜
x1ptnq `

kÿ
j“0

αj

α0

ex1,n´j

¸›››››
ď h

1

α0

p}Lnpxq} ` cBΨx1
1
p››x̃1

1,n ´ x̃1
1ptnq›› ` }x1,n ´ x1ptnq} ` }δ}qq

ď Ophk`1q ď hk

and

}Φ2px1,n, x̃1,nq ´ x̃1ptnq}
ď cBδ,Ψx1

1
}δ} ` p››x̃1

1,n ´ x̃1
1ptnq›› ` }x1,n ´ x1ptnq}qcB2Ψx̃1

p››x̃1
1,n ´ x̃1

1ptnq›› ` }x1,n ´ x1ptnq}q
ď 1

2
hk`1 ` Oph2kq ď hk`1.

Thereby it holds Φpxq P Ωn for all x P Ωn and we get a solution of (6.22) by the Schauder
Fixed Point Theorem. At this point the induction is concluded and the feasibility of the
methods is shown.

To show convergence we use the knowledge that x1,n and x̃1,n are solutions of (6.22) in
Ωn. Then Equation (6.22a) yields

x1,n “ ´
kÿ

j“1

αj

α0

x1,n´j ` h
1

α0

Ψx1
1
px̃1

1ptnq ` Ophkq, x1,n, tn, δnq

which can be written as

x1,n “ ´
kÿ

j“1

αj

α0

x1,n´j ` h
1

α0

Ψx1
1
px̃1

1ptnq, x1,n, tn, 0q ` Ophk`1q ` J3δn
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by a Taylor expansion and the Mean Value Theorem and a J3 P ΩBδ,Ψx1
1
. For a more

compact notation we define

f̃px1,n, tnq :“ Ψx1
1
px̃1

1ptnq, x1,n, tn, 0q
and get

x1,n “ ´
kÿ

j“1

αj

α0

x1,n´j ` h
1

α0

f̃px1,n, tnq ` Ophk`1q ` J3δn. (6.23)

Analogous to the discretized system we decouple the DAE

fpx1ptq, xptq, tq “ 0

along the exact solution xptq. We obtain the equations

V J
x1,n

V J
n fpPPx1 x̃

1
1ptq ` PQx1x

1
1ptq, PPx1 x̃1ptq ` PQx1x1ptq ` QQy1,nỹ2ptq ` QPy1,nỹ1ptq, tq “ 0 (6.24a)

WJ
x1,n

V J
n fpPPx1 x̃

1
1ptq ` PQx1x

1
1ptq, PPx1 x̃1ptq ` PQx1x1ptq ` QQy1,nỹ2ptq ` QPy1,nỹ1ptq, tq “ 0 (6.24b)

V J
y1,n

WJ
n fpPPx1 x̃

1
1ptq ` PQx1x

1
1ptq, PPx1 x̃1ptq ` PQx1x1ptq ` QQy1,nỹ2ptq ` QPy1,nỹ1ptq, tq “ 0 (6.24c)

WJ
y1,n

WJ
n fpPPx1 x̃

1
1ptq ` PQx1x

1
1ptq, PPx1 x̃1ptq ` QQy1,nỹ2ptq ` QPy1,nỹ1ptq, tq “ 0 (6.24d)

which yield the same inverse functions Ψ̄x1
1
, Ψỹ1 , Ψỹ2 , Ψx̃1 and Ψx1

1
as the discretized

system by the Lemma 4.32. Hence we obtain

x1
1ptq “ Ψ̄x1

1
px̃1

1ptq, x1ptq, x̃1ptq, ỹ1ptq, ỹ2ptq, t, 0q
and thereby

ỹ1ptq “ Ψỹ1px̃1
1ptq, x1ptq, x̃1ptq, t, 0q

ỹ2ptq “ Ψỹ2px̃1
1ptq, x1ptq, x̃1ptq, t, 0q

which yield

x̃1ptq “ Ψx̃1px̃1
1ptq, x1ptq, t, 0q

and we finally get

x1
1ptq “ Ψx1

1
px̃1

1ptq, x1ptq, t, 0q “ f̃px1ptq, tq.
Together with Equation (6.23) we obtain

x1,n “ ´
kÿ

j“1

αj

α0

x1,n´j ` h
1

α0

f̃px1,n, tnq ` Ophk`1q ` cδp¨qδn
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6 Convergence Analysis

x1ptnq “ ´
kÿ

j“1

αj

α0

x1ptn´jq ` h
1

α0

f̃px1ptnq, tnq ` Ophk`1q.

We subtract these equations from each other and get

x1ptnq ´ x1,n “ ´
kÿ

j“1

αj

α0

px1ptn´jq ´ x1,n´jq ` h
1

α0

pf̃px1ptnq, tnq ´ 1

α0

f̃px1,n, tnqq ` Ophk`1q

with δn P Ophk`1q. We use the Mean Value Theorem to obtain

x1ptnq ´ x1,n “ pα0I ´ hBnq´1p´
kÿ

j“1

αjpx1ptn´jq ´ x1,n´jq ` Ophk`1qq

with Bn :“ ş1
0

B
Bx f̃psx1ptnq`ps´1qx1,n, tnqds bounded by a bound independent from n since

x1,n P Bhk

´
x1ptnq ` řk

j“1
αj

α0
ex1,n´j

¯
and ex1,n´j P Ophkq. But this equation is nothing else

than the error recursion of a BDF-method applied to an ODE with a Lipschitz continuous
function f̃ . Hence, the stability of the BDF-methods for k ď 6 yields

}x1ptnq ´ x1,n} ď Ophkq
which yields together with (6.19) and px1,n, x̃1,nq P Ωn

}xptnq ´ xn} ď Ophkq.

Q and Qx1 being constant is the crucial assumption in Theorem 6.6. This assumption
can be compared to the definition of numerical qualified DAEs in [HMT03]. In the next
section we will present methods which converge independently of this assumption.

6.2 Left-discontinuous Collocation Methods

In the last section we identified the non-linearity or even the time dependence of the basis
functions Q and Qx1 as the source of the numerical instabilities while the non-linearity of
the functions of the DAE proved itself harmless. By this reason we restrict ourselves to
linear time dependent DAEs in this section for the purpose of simplicity.

Definition 6.7. (Linear time dependent DAEs in standard form)
Let I Ă R be an open subset. Let A,B P CpI,Rnˆnq be continuous with A being singular
for all t P I. We call

Aptqx1ptq ` Bptqxptq “ qptq, xpt0q “ x0 (6.25)
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a linear time dependent DAE with q P CpI,Rnq. Let I‹ :“ rt0, T s Ă I. We call x‹ P
C1pI‹,Rnq a solution of (6.25) on I‹ if the initial conditions are fulfilled, i.e. x‹pt0q “ x0,
and

Aptqx1
‹ptq ` Bptqx‹ptq “ qptq @t P I‹.

We introduce the left-discontinuous collocation methods for linear DAEs. These methods
will be able to handle the convergence issues regarding the basis functions Q and Qx1

without a transformation of the DAE in contrast to the methods used in literature, see
[KM07].

Definition 6.8. (Left-discontinuous collocation methods)

Let 0 “ c1 ă . . . ă cs “ 1 be real numbers, and let b ‰ 0 an arbitrary real number. The
corresponding left-discontinuous collocation method is then defined via a polynomial of
degree s ´ 1 satisfying

Aptn´1q
ˆ
uptn´1q ´ xn´1

hb
` u1ptn´1q

˙
` Bptn´1quptn´1q “ qptn´1q (6.26a)

Aptniqu1ptniq ` Bptniquptniq “ qptniq, i “ 2, . . . , s (6.26b)

xn “ uptnq (6.26c)

with tni “ tn´1 ` cih.

A left-discontinuous collocation method can be written as a Runge-Kutta method. The
analogous result for ODEs can be found in [HWL06].

Theorem 6.9.

Denote the Lagrange-polynomials by �ipτq “ śs
l“2,l‰i

τ´cl
ci´cl

and define

pAqij :“ aij :“
#
b, j “ 1,şci
0
�jpτqdτ ´ b�jp0q, else.

The matrix A is non-singular and we notate pA´1qij :“ αij. Then the Equations (6.26)
are equivalent to

Aptniq
sÿ

j“1

αij
uptnjq ´ xn´1

h
` Bptniquptniq “ qptniq, i “ 1, . . . , s

xn “ uptnq.

Proof .
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6 Convergence Analysis

First we show that A is non-singular. Therefore we define the k-th power of the vector of

the nodes ci by ck :“ `
. . . cki . . .

˘J
. Then it holds for every discontinuous collocation

method, cf. [HWL06] Theorem 1.8,

Ack´1 :“ 1

k
ck, k “ 1, . . . , s ´ 1.

Together with A `
1 0 . . . 0

˘J “ b
`
1 . . . 1

˘J
this yields tc0, c1, . . . , cs´1u Ă imA and

since
`
c0 c1 . . . cs´1

˘
is a Vandermonde-Matrix due to ci ă cj for i ă j we obtain

R
s “ im

`
c0 c1 . . . cs´1

˘ Ă imA,

which yields the regularity of A.
We define k1 :“ uptn´1q´xn´1

hb
` u1ptn´1q and ki :“ u1ptniq for i “ 2, . . . , s, such that (6.26)

can be written as:

Aptniqki ` Bptniquptniq “ qptniq, i “ 1, . . . , s

xn “ uptnq.
We can represent the derivative of the polynomial u as

u1ptn´1 ` τhq “
sÿ

j“2

u1ptnjq�jpτq “
sÿ

j“2

kj�jpτq (6.27)

with the help of the Lagrange-polynomials �ipτq. This yields in particular u1ptn´1q “řs
j“2 kj�jp0q, while the definition of k1 can be rearranged into

uptn´1q “ xn´1 ` hbk1 ´ hbu1ptn´1q
“ xn´1 ` hbk1 ´ hb

sÿ
j“2

kj�jp0q.

We integrate (6.27) from 0 to ci for i “ 2, . . . , s and obtain

uptniq “ uptn´1q ` h
sÿ

j“2

kj

ż ci

0

�jpτqdτ

“ xn´1 ` hbk1 ` h
sÿ

j“2

kj

ˆż ci

0

�jpτqdτ ´ b�jp0q
˙

“ xn´1 ` h
sÿ

j“1

aijkj.
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Hence we get uptniq´xn´1

h
“ řs

j“1 aijkj for i “ 1, . . . , s, which yields

ki “
sÿ

j“1

αij
uptnjq ´ xn´1

h
,

since A is non-singular.

We integrate (6.27) from 0 to 1 and obtain

uptnsq “ xn´1 ` hbk1 ` h
sÿ

j“2

asjkj.

By Equation (6.26c) we achieve

xn “ xn´1 ` hbk1 ` h
sÿ

j“2

asjkj

hence the collocation method (6.26) is a Runge-Kutta method with the Butcher-tableau

0 b a12 . . . a1s
c2
...

...
...

...
cs´1

1 b as2 . . . ass
b as2 . . . ass

Therefore the Runge-Kutta method is stiffly accurate with A :“ paijq being non-singular,
but additionally we have the property

ai1 “ b for 1 ď i ď s and c1 “ 0, (6.28)

which will be crucial for the convergence of the method. We define the consistency error
as in [LMT13].

Definition 6.10. (Consistency error) We define the consistency error of a discontinuous
collocation method by

Lnipxq :“ 1

h

sÿ
j“1

αijpxptnjq ´ xptn´1qq ´ x1ptniq.

We say a discontinuous collocation method has a consistency error of order k if Lnipxq “
Ophkq for i “ 1, . . . , s.
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6 Convergence Analysis

With the help of a standard Taylor expansion approach we describe the consistency order
of the collocation methods (6.26).

Theorem 6.11. (Consistency)
All discontinuous collocation methods (6.26) have a consistency error of order s ´ 1.

Proof .
First we show that for every left-discontinuous collocation method holds:

c1 “ 0 and
sÿ

j“1

αij “ 0, i “ 2, . . . , s (6.29)

and
sÿ

j“1
j‰i

αijpcj ´ ciq “ 1 and
sÿ

j“1
j‰i

αijpcj ´ ciqk “ 0, i “ 1, . . . , s. (6.30)

for k “ 2, . . . , s ´ 1. It holds c1 “ 0 by definition and
řs

j“1 αij “ 0 holds due to

A´1A “ I ñ A´1A

¨
˚̊̊
˝
1
0
...
0

˛
‹‹‹‚“

¨
˚̊̊
˝
1
0
...
0

˛
‹‹‹‚ ñ A´1b

¨
˚̋1
...
1

˛
‹‚“

¨
˚̊̊
˝
1
0
...
0

˛
‹‹‹‚ ñ

sÿ
j“1

αij “ 0

for i “ 2, . . . , s and b ‰ 0. To prove (6.30) we need again the collocation property from
[HWL06]

Ack´1 “ 1

k
ck, k “ 1, . . . , s ´ 1

ñ kck´1 “ A´1ck, k “ 1, . . . , s ´ 1

ñ kck´1
i “

sÿ
j“1

αijc
k
j , i “ 1, . . . , s, k “ 1, . . . , s ´ 1.

By (6.29) for k “ 1 it follows:

sÿ
j“1
j‰i

αijpcj ´ ciq “ ´ci

sÿ
j“1
j‰i

αij `
sÿ

j“1
j‰i

αijcj “ αiici `
sÿ

j“1
j‰i

αijcj “
sÿ

j“1

αijcj “ 1

and for k “ 2, . . . , s and i “ 1 there follows:

sÿ
j“1
j‰1

α1jpcj ´ c1qk “
sÿ

j“2

α1jc
k
j “

sÿ
j“1

α1jc
k
j “ kck´1

1 “ 0
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while for i “ 2, . . . , s there follows:

sÿ
j“1
j‰i

αijpcj ´ ciqk

“
sÿ

j“1
j‰i

αij

kÿ
l“0

ˆ
k

l

˙
ck´l
j clip´1ql

“
kÿ

l“0

ˆ
k

l

˙
clip´1ql

sÿ
j“1
j‰i

αijc
k´l
j

“
kÿ

l“0

ˆ
k

l

˙
clip´1qlppk ´ lqck´l´1

i ´ αiic
k´l
i q

“ck´1
i

kÿ
l“0

ˆ
k

l

˙
p´1qlpk ´ l ´ αiiciq

“ck´1
i

kÿ
l“0

ˆ
k

l

˙
p´1qlpk ´ αiiciq ` ck´1

i

kÿ
l“0

ˆ
k

l

˙
p´1qlp´lq

“pk ´ aiiciqck´1
i

kÿ
l“0

ˆ
k

l

˙
p´1ql ` kck´1

i

kÿ
l“1

ˆ
k ´ 1

l ´ 1

˙
p´1ql´1

“pk ´ aiiciqck´1
i p1 ´ 1qk ` kck´1

i p1 ´ 1qk´1 “ 0.

With the help of the Taylor expansions

xptnjq :“ xptniq ` x1ptniqpcj ´ ciqh `
s´1ÿ
k“2

1

k!
xpkqptniqpcj ´ ciqkhk ` Ophsq

we obtain the desired result:

Lnipxq :“1

h
pxptniq ´ xptn´1qq

sÿ
j“1

αij ` p
sÿ

j“1
j‰i

αijpcj ´ ciq ´ 1qx1ptniq

`
s´1ÿ
k“2

1

k!
xpkqptniqp

sÿ
j“1
j‰i

αijpcj ´ ciqkqhk´1 ` Ophs´1q

“Ophs´1q.
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6 Convergence Analysis

We chose the discontinuous collocation methods (6.26) to overcome the instabilities cre-
ated by artificial dynamics as in Example 2.12. The singular matrix problem of Example
2.12 however is not eliminated by this choice. At least not for DAEs in standard for-
mulation. We formulate the singular matrix problem in terms of the applicability of a
discontinuous collocation method:

Definition 6.12.
Consider a s-stage discontinuous collocation method (6.26) with s ě 2 and an index 2
DAE Aptqx1 `Bptqx “ qptq. We call the collocation method applicable to the DAE if the
matrix

1

h

¨
˚̋. . .

Aptiq
. . .

˛
‹‚pA b Iq `

¨
˚̋. . .

Bptiq
. . .

˛
‹‚ (6.31)

is non-singular, with ti “ t ` cih for t P I.
Furthermore we define the matrix

pMqij :“
#
0, i “ j,

αijpcj ´ ciq, j ‰ i
(6.32)

and formulate the following lemma which will be needed to provide an equivalent criterion
for the applicability of a collocation method:

Lemma 6.13.
Consider a s-stage discontinuous collocation method (6.26) with s ě 2 and two matrices
A,B P R

nˆn. Let A ` B be non-singular let M be the matrix as described above. It
follows that

M b A ` I b B

is non-singular if A ´ 1
s´1

B is non-singular.

Proof .
For the entries of M holds

sÿ
j“1
j‰i

mij “ 1, i “ 1, . . . , s

sÿ
j“1
j‰i

mijpcj ´ ciqk “ 0, k “ 1, . . . , s ´ 2, i “ 1, . . . , s

195



by (6.30). These conditions can be written as

Cim̂i “

¨
˚̊̊
˝
1
0
...
0

˛
‹‹‹‚ with pCiqkj :“

#
pcj ´ ciqk´1, j ă i,

pcj`1 ´ ciqk´1, j ě i

and m̂i the i-th row of M without the diagonal entry. Again we deal with a Vandermonde
matrix, hence we can write

mij “
sź

k“1
k‰i,j

ck ´ ci
ck ´ cj

with j ‰ i (6.33)

as the first column of each inverse of the matrices Ci. With the help of this explicit
description (6.33) it follows

m1jmj1 “
sź

k“1
k‰1,j

ck ´ c1
ck ´ cj

sź
k“1
k‰j,1

ck ´ cj
ck ´ c1

“ 1 (6.34)

for j ą 1 and

m1lmlj “
sź

k“1
k‰1,l

ck ´ c1
ck ´ cl

sź
k“1
k‰l,j

ck ´ cl
ck ´ cj

“
¨
˚̋ sź

k“1
k‰1,l,j

ck ´ c1
ck ´ cl

˛
‹‚

¨
˚̋ sź

k“1
k‰l,j,1

ck ´ cl
ck ´ cj

˛
‹‚cj ´ c1

cj ´ cl

c1 ´ cl
c1 ´ cj

“ ´
¨
˚̋ sź

k“1
k‰1,l,j

ck ´ c1
ck ´ cj

˛
‹‚cl ´ c1
cl ´ cj

“ ´
¨
˚̋ sź

k“1
k‰1,j

ck ´ c1
ck ´ cj

˛
‹‚

“ ´m1j

(6.35)

196



6 Convergence Analysis

for j ‰ l ą 1. After these preparations we prove that

M b A ` I b B “

¨
˚̊̊
˚̋̊

B m12A m13A . . . m1sA
m21A B m23A . . . m2sA

m31A m32A
. . .

...
...

. . .

ms1A ms2A B

˛
‹‹‹‹‹‚

is non-singular if A ` B and B ´ ps ´ 1qA are non-singular. To do so we transform
MbA`IbB into a matrix which is obviously non-singular and we only use transformation
which preserve the non-singularity. We start by multiplying the k-th row block by m1k

for k ą 1 and obtain: ¨
˚̊̊
˚̋̊
B m12A m13A . . . m1sA
A m12B ´m13A . . . ´m1sA

A ´m12A
. . .

...
...

. . .

A ´m12A m1sB

˛
‹‹‹‹‹‚

by (6.34) and (6.35). We add the first row block to all other rows and afterwards multiply
all but the first rows by pA ` Bq´1 to achieve:

¨
˚̊̊
˚̋̊
B m12A m13A . . . m1sA
I m12I 0 . . . 0

I 0
. . .

...
...

. . .

I 0 m1sI.

˛
‹‹‹‹‹‚

By multiplying all rows but the first row with A and subtracting them from the first row
we get ¨

˚̊̊
˚̋̊
B ´ ps ´ 1qA 0 0 . . . 0

I m12I 0 . . . 0

I 0
. . .

...
...

. . .

I 0 m1sI

˛
‹‹‹‹‹‚

and the proof is concluded.

Now we can state a lemma which helps to exclude the regularity problem.
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Lemma 6.14.
Consider a s-stage discontinuous collocation method (6.26) with s ě 2 and a DAE Aptqx1`
Bptqx “ qptq with Dissection Index 2 with A,B P C2pI,Rnˆnq.
Then there is a H ą 0 such that the collocation method is applicable for all h ď H if
Aptqx1 ´ 1

s´1
Bptqx “ qptq is a DAE with Dissection Index 2.

Proof . First of all we mention that the basis functions P,Q, V and W as well as the basis
functions Py1 , Qy1 , Vy1 ,Wy1 , Px1 , Qx1 , Vx1 andWx1 are two times continuously differentiable
due to Lemma 4.7 and A,B P C2pI,Rnˆnq.
In the following we show that the matrix (6.31) has a trivial kernel if Aptqx1 ´ 1

s´1
Bptqx “

qptq is a DAE with Dissection Index 2. Therefore let X “ pX1, . . . , Xsq be an element of
the kernel of (6.31):

Aptiq1
h

sÿ
j“1

αijXj ` BptiqXi “ 0, @1 ď i ď s,

which can be written as

V JptiqAptiq1
h

sÿ
j“1

αijXj ` V JptiqBptiqXi “ 0 (6.36a)

WJptiqBptiqXi “ 0. (6.36b)

For 1 ď i ď s we transform Xi with the help of the basis functions P,Q, Px1 , Qx1 , Py1 and
Qy1 :

Xi “ P ptiqXx0
i ` QptiqXy0

i

“ P ptiqpQx1ptiqXx2
i ` Px1ptiqX x̃1

i q ` QptiqpQy1ptiqX ỹ2
i ` Py1ptiqX ỹ1

i q.
We factorize Equation (6.36b) by V J

y1
and WJ

y1
and insert the variable transformation to

obtain

V J
y1

ptiqBw
x1

ptiqPx1ptiqX x̃1
i ` V J

y1
ptiqBw

x1
ptiqQx1ptiqXx2

i ` V J
y1

ptiqBw
y1

ptiqPy1ptiqX ỹ1
i “ 0,

WJ
y1

ptiqBw
x1

ptiqPx1ptiqX x̃1
i “ 0.

This yields

X ỹ1
i “ ´pV J

y1
ptiqBw

y1
ptiqPy1ptiqq´1V J

y1
ptiqBw

x1
ptiqQx1ptiqXx2

i “ M i
x2,y1

Xx2
i , (6.37a)

X x̃1
i “ 0. (6.37b)

We remember the definition of ti “ t ` cih as in Definition 6.12 and notate the Taylor
series of the basis function P and Q at ti evaluated in tj

P ptjq “ P ptiq ` P 1ptiqptj ´ tiq ` RP pti, tjqptj ´ tiq2
“ P ptiq ` P 1ptiqpcj ´ ciqh ` RP pti, tjqpcj ´ ciq2h2,

Qptjq “ Qptiq ` Q1ptiqpcj ´ ciqh ` RQpti, tjqpcj ´ ciq2h2

(6.38)
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6 Convergence Analysis

for 1 ď i, j ď s with RP pti, tjq and RQpti, tjq being the residual term of the Taylor series
expansion. Next we insert the variable transformations into Equation (6.36a)

V JptiqAptiq1
h

sÿ
j“1

αijpP ptjqXx0
j ` QptjqXy0

j q ` V JptiqBptiqXi “ 0

and make use of the Taylor series to obtain

0 “G1ptiq
sÿ

j“1

αij

Xx0
j

h

`
sÿ

j“1
j‰i

αijpcj ´ ciqV JptiqAptiqP 1ptiqXx0
j ` V JptiqBptiqP ptiqXx0

i ` h
sÿ

j“1
j‰i

MP pti, tjqXx0
j

`
sÿ

j“1
j‰i

αijpcj ´ ciqV JptiqAptiqQ1ptiqXy0
j ` V JptiqBptiqQptiqXy0

i ` h
sÿ

j“1
j‰i

MQpti, tjqXy0
j

with

MP pti, tjq :“ αijpcj ´ ciq2V JptiqAptiqRP pti, tjq (6.39a)

MQpti, tjq :“ αijpcj ´ ciq2V JptiqAptiqRQpti, tjq. (6.39b)

We split the variable into

Xx0
i “ Qx1ptiqXx2

i

Xy0
i “ Qy1ptiqX ỹ2

i ´ Py1ptiqpV J
y1

ptiqBw
y1

ptiqPy1ptiqq´1V J
y1

ptiqBw
x1

ptiqQx1ptiqXx2
i

with the help of (6.37). Again we make use of a Taylor series expansion:

Qy1ptjq “ Qy1ptiq ` RQy1
pti, tjqpcj ´ ciqh,

Qx1ptjq “ Qx1ptiq ` RQx1
pti, tjqpcj ´ ciqh (6.40)

to obtain

0 “G1ptiqQx1ptiq
sÿ

j“1

αij

Xx2
j

h
` M i

x2
Xx2 (6.41)

`
sÿ

j“1
j‰i

αijpcj ´ ciqV JptiqAptiqQ1ptiqQy1ptiqX ỹ2
j ` V JptiqBptiqQptiqQy1ptiqX ỹ2

i

` h
sÿ

j“1
j‰i

`
MQpti, tjqQy1ptjq ` αijpcj ´ ciqV JptiqAptiqQ1ptiqRQy1

pti, tjqpcj ´ ciq
˘
X ỹ2

j
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with certain matrices M i
x2
. In the following we will deal with the X ỹ2 component. There-

fore we multiply (6.41) by WJ
x1

ptiq and obtain

0 “ WJ
x1

ptiqM i
x2
Xx2

`
sÿ

j“1
j‰i

αijpcj ´ ciqWJ
x1

ptiqV JptiqAptiqQ1ptiqQy1ptiqX ỹ2
j ` WJ

x1
ptiqV JptiqBptiqQptiqQy1ptiqX ỹ2

i

` h
sÿ

j“1
j‰i

WJ
x1

ptiq
`
MQpti, tjqQy1ptjq ` αijpcj ´ ciqV JptiqAptiqQ1ptiqRQy1

pti, tjqpcj ´ ciq
˘
X ỹ2

j

With the help of two additional Taylor series expansions

pWJ
x1
V JAQ1Qy1qptiq “ pWJ

x1
V JAQ1Qy1qptq ` RApti, tqcih

pWJ
x1
V JBQQy1qptiq “ pWJ

x1
V JBQQy1qptq ` RBpti, tqcih

(6.42)

we then get

0 “WJ
x1

ptiqM i
x2
Xx2

`
sÿ

j“1
j‰i

αijpcj ´ ciqpWJ
x1
V JAQ1Qy1qptqX ỹ2

j ` pWJ
x1
V JBQQy1qptqX ỹ2

i

` h
sÿ

j“1
j‰i

MQy1
pti, tj, tqX ỹ2

j

by denoting the matrices in front of the hX ỹ2
j terms by MQy1

pti, tj, tq and get

M i
x2
Xx2

“
sÿ

j“1
j‰i

αijpcj ´ ciqWJ
x1

ptqV JptqAptqQ1ptqQy1ptqX ỹ2
j ` WJ

x1
ptqV JptqBptqQptqQy1ptqX ỹ2

i

`h
sÿ

j“1
j‰i

MQy1
pti, tj, tqX ỹ2

j .

This equation can be written as

pM b pWJ
x1
V JAQ1Qy1qptq ` I b pWJ

x1
V JBQQy1qptq ` hM̄Qy1

qX ỹ2 “Mx2X
x2

with the help of the matrix tensor product b and the matrix

pMqij :“
#
0, i “ j,

αijpcj ´ ciq, j ‰ i.
.
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6 Convergence Analysis

By Lemma 6.13 the matrix

M b pWJ
x1
V JAQ1Qy1qptq ` I b pWJ

x1
V JBQQy1qptq

is non-singular because

pWJ
x1
V JAQ1Qy1qptq ` pWJ

x1
V JBQQy1qptq

“pWJ
x1
V JAQ1Qy1 ` WJ

x1
V JBQQy1qptq

“pWJ
x1

pV JAQ1 ` V JBQqQy1qptq
“pWJ

x1
Bw

y1
Qy1qptq

“Bw
y2

ptq
is non-singular since we deal with an index 2 DAE and

pWJ
x1
V JAQ1Qy1qptq ´ 1

s ´ 1
pWJ

x1
V JBQQy1qptq

“pWJ
x1
V JAQ1Qy1qptq `

ˆ
WJ

x1
V J

ˆ
´ 1

s ´ 1
B

˙
QQy1

˙
ptq

“
ˆ
WJ

x1
V JAQ1Qy1 ` WJ

x1
V J

ˆ
´ 1

s ´ 1
B

˙
QQy1

˙
ptq

“
ˆ
WJ

x1

ˆ
V JAQ1 ` V J

ˆ
´ 1

s ´ 1
B

˙
Q

˙
Qy1

˙
ptq

“B̃w
y2

ptq
is non-singular since Aptqx1 ´ 1

s´1
Bptqx “ qptq is an index 2 DAE, here B̃w

y2
belongs to the

matrix chain of Aptqx1 ´ 1
s´1

Bptqx “ qptq. By the Banach Perturbation Lemma we get

X ỹ2 “Mx2,ỹ2X
x2 (6.43)

with Mx2,ỹ2 :“ pM b pWJ
x1
V JAQ1Qy1qptq ` I b pWJ

x1
V JBQQy1qptq ` hM̄Qy1

q´1Mx2 .
Therefore we only have to deal with the Xx2 component. Again we start with Equation
(6.41)

0 “G1ptiqQx1ptiq
sÿ

j“1

αij

Xx2
j

h
` M i

x2
Xx2

`
sÿ

j“1
j‰i

αijpcj ´ ciqV JptiqAptiqQ1ptiqQy1ptiqX ỹ2
j ` V JptiqBptiqQptiqQy1ptiqX ỹ2

i

` h
sÿ

j“1
j‰i

`
MQpti, tjqQy1ptjq ` αijpcj ´ ciqV JptiqAptiqQ1ptiqRQy1

pti, tjqpcj ´ ciq
˘
X ỹ2

j
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By (6.37a), (6.37b) and (6.43) there exist matrices Ki
x2

such that it holds:

G1ptiqQx1ptiq
sÿ

j“1

αijX
x2
j ` hKi

x2
Xx2 “ 0.

With the help of a multiplication by G´1
2 ptiqV J

x1
ptiq from the left we obtain

sÿ
j“1

αijX
x2
j ` hG´1

2 ptiqV J
x1

ptiqKi
x2
Xx2 “ 0

which can be written as

pA´1 b I ` hK̄x2qXx2 “ 0

with the help of the matrix tensor product and

K̄x2 “
¨
˚̋ ...
G´1

2 ptiqV J
x1

ptiqKi
x2

...

˛
‹‚.

Finally the Banach Perturbation Lemma yields

Xx2 “ 0

which concludes the proof.

Finally we show that a discontinuous collocation method converges if it is applicability.

Theorem 6.15.
Consider a s-stage discontinuous collocation method (6.26) and a DAE

Aptqx1 ` Bptqx “ qptq
with Dissection Index 2, A,B P C2pI,Rnˆnq and q being continuously differentiable.
Furthermore let the DAE be uniquely solvable by a global solution which is sufficiently
smooth. Let x0 fulfill the obvious constraints, i.e. WJpt0qBpt0qx0 “ WJpt0qqpt0q, and
let Aptqx1 ´ 1

s´1
Bptqx “ qptq have Dissection Index 2. Then for h ą 0 and δn P Ophsq it

holds:

DC ą 0 : ||en||8 ď Cp||e0||8 ` hs´1q
with en :“ xptnq ´ xn being the global error at tn and δn being the rounding and solver
errors in the n-th step.
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6 Convergence Analysis

Proof .
By Definition 6.10 it holds

Aptniq
sÿ

j“1

αij
xptnjq ´ xptn´1q

h
` Bptniqxptniq “ qptniq ` AptniqLnipxq, @1 ď i ď s,

xptnq “ xptnq.
Due to Lemma 6.14 there are Xni which fulfill

Aptniq
sÿ

j“1

αij
Xnj ´ xn´1

h
` BptniqXni “ qptniq ´ δni, @1 ď i ď s,

xn “ Xns

with δn :“ `
. . . δni . . .

˘J
. We call δn the global perturbation and δni the stage pertur-

bations. Then xn is the solution of the discontinuous collocation method 6.26 regarding
these perturbations. We define eni :“ xptniq ´ Xni and en :“ xptnq ´ xn and obtain

Aptniq
sÿ

j“1

αij
enj ´ en´1

h
` Bptniqeni “ AptniqLnipxq ` δni, @1 ď i ď s, (6.44a)

en “ ens. (6.44b)

We split the stage errors into

eni “ P ptniqex0
ni ` Qptniqey0ni

“ P ptniqpQx1ptniqex2
ni ` Px1ptniqex̃1

ni q ` QptniqpQy1ptniqeỹ2ni ` Py1ptniqeỹ1niq
(6.45)

and the global step errors into

en “ P ptnqex0
n ` Qptnqey0n

“ P ptnqpQx1ptnqex2
n ` Px1ptnqex̃1

n q ` QptnqpQy1ptnqeỹ2n ` Py1ptnqeỹ1n q. (6.46)

We multiply the i-th equation of (6.44a) by WJptniq and get

WJptniqBptniqP ptniqex0
ni ` WJptniqBptniqQptniqey0ni “ WJptniqδni

for all 1 ď i ď s. Using the matrix chain notation we obtain

Bw
x1

ptniqex0
ni ` Bw

y1
ptniqey0ni “ WJptniqδni,

which can be further decoupled to

V J
y1
Bw

x1
Px1e

x̃1
ni ` V J

y1
Bw

x1
Qx1e

x2
ni ` V J

y1
Bw

y1
Py1e

ỹ1
ni “ V J

y1
WJδni,
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WJ
y1
Bw

x1
Px1e

x̃1
ni “ WJ

y1
WJδni

evaluated in tni. Hence we obtain

eỹ1ni “ δy1ni ´ pV J
y1

ptniqBw
y1

ptniqPy1ptniqq´1V J
y1

ptniqBw
x1

ptniqQx1ptniqex2
ni ,

ex̃1
ni “ δx1

ni

(6.47)

with

δx1
ni :“ pWJ

y1
ptniqBw

x1
ptniqPx1ptniqq´1WJ

y1
ptniqWJptniqδni,

δy1ni :“ pV J
y1

ptniqBw
y1

ptniqPy1ptniqq´1pV J
y1

ptniqWJptniqδni ´ V J
y1

ptniqBw
x1

ptniqPx1ptniqδx1
ni q.

Next we multiply the i-th equation of (6.44a) by V Jptniq and obtain

V JptniqAptniq
sÿ

j“1

αij
enj ´ en´1

h
` V JptniqBptniqeni “ V JptniqpAptniqLnipxq ` δniq

for all 1 ď i ď s. Inserting the splitting of the errors then yields

V JptniqAptniq
sÿ

j“1

αij

P ptnjqex0
nj ` Qptnjqey0nj ´ P ptn´1qex0

n´1

h
` V JptniqBptniqeni

“ V JptniqpAptniqLnipxq ` δniq.
with the help of (6.29) for all 1 ď i ď s . By the Taylor expansions (6.38) in tni for P ptnjq
and Qptnjq and (6.29) we obtain

V JptniqpAptniqLnipxq ` δniq
“ G1ptniq

sÿ
j“1

αij

ex0
nj ´ ex0

n´1

h

`
sÿ

j“1
j‰i

αijpcj ´ ciqV JptniqAptniqP 1ptniqex0
nj ` V JptniqBptniqP ptniqex0

ni

`
sÿ

j“1
j‰i

αijpcj ´ ciqV JptniqAptniqQ1ptniqey0nj ` V JptniqBptniqQptniqey0ni

` h
sÿ

j“1
j‰i

MP ptni, tnjqex0
nj ` h

sÿ
j“1
j‰i

MQptni, tnjqey0nj.

By (6.47) the error splitting can be described by

ex0
n´1 “ Qx1ptn´1qex2

n´1 ` Px1ptn´1qδx1
n´1
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6 Convergence Analysis

ex0
ni “ Qx1ptniqex2

ni ` Px1ptniqδx1
ni

ey0ni “ Qy1ptniqeỹ2ni ` Py1ptniqδy1ni
´ Py1ptniqpV J

y1
ptniqBw

y1
ptniqPy1ptniqq´1V J

y1
ptniqBw

x1
ptniqQx1ptniqex2

ni .

Here the global perturbation, as well as the stage perturbations, are split analogously
to the global error (6.45) and the stage error (6.46). This leads, combined with Taylor
expansions (6.40) in tni for Qx1ptnjq and Qy1ptnjq, to

0 “ G1ptniqQx1ptniq
sÿ

j“1

αij

ex2
nj ´ ex2

n´1

h
` M i

x2,ne
X2
n ´ V JptniqAptniqLnipxq ` Mδ,1δn ` 1

h
Mδ,2δn

`
sÿ

j“1
j‰i

αijpcj ´ ciqV JptniqAptniqQ1ptniqQy1ptniqeỹ2nj ` V JptniqBptniqQptniqQy1ptniqeỹ2ni

` h
sÿ

j“1
j‰i

`
MQptni, tnjqQy1ptnjq ` αijpcj ´ ciqV JptniqAptniqQ1ptniqRQy1

ptni, tnjqpcj ´ ciq
˘
eỹ2nj

with eX2
n :“ `

. . . ex2
ni . . .

˘J
and certain matrices M i

x2,n
, Mδ,1 and Mδ,2. We multiply

each of these equations by WJ
x1

ptniq respectively and obtain

0 “ WJ
x1

ptniqpM i
x2,n

eX2
n ` V JptniqAptniqLnipxq ` Mδ,1δn ` 1

h
Mδ,2δnq

`
sÿ

j“1
j‰i

αijpcj ´ ciqWJ
x1

ptniqV JptniqAptniqQ1ptniqQy1ptniqeỹ2nj

` WJ
x1

ptniqV JptniqBptniqQptniqQy1ptniqeỹ2ni
` h

sÿ
j“1
j‰i

`
MQptni, tnjqQy1ptnjq ` αijpcj ´ ciqV JptniqAptniqQ1ptniqRQy1

ptni, tnjqpcj ´ ciq
˘
eỹ2nj

which will describe the error components eỹ2ni. With the help of the Taylor expansions
(6.42) we get

0 “WJ
x1

ptniqpM i
x2,n

eX2
n ` V JptniqAptniqLnipxq ` Mδ,1δn ` 1

h
Mδ,2δnq

`
sÿ

j“1
j‰i

αijpcj ´ ciqpWJ
x1
V JAQ1Qy1qptn´1qeỹ2nj ` pWJ

x1
V JBQQy1qptn´1qeỹ2ni

` h
sÿ

j“1
j‰i

MQy1
ptni, tnj, tn´1qeỹ2nj.
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This equation can be written as

pM b pWJ
x1
V JAQ1Qy1qptn´1q ` I b pWJ

x1
V JBQQy1qptn´1q ` hM̄Qy1

qeỸ2
n

“WJ
x1

ptniqpM i
x2,n

eX2
n ` V JptniqAptniqLnipxq ` Mδ,1δn ` 1

h
Mδ,2δnq

with the help of the matrix tensor product b, eỸ2
n :“ `

. . . eỹ2ni . . .
˘J

and the matrix M
as in (6.32). By the Banach Perturbation Lemma we get

eỸ2
n “pM b pWJ

x1
V JAQ1Qy1qptn´1q ` I b pWJ

x1
V JBQQy1qptn´1q ` hM̄Qy1

q´1

WJ
x1

ptniqpM i
x2,n

eX2
n ` V JptniqAptniqLnipxq ` Mδ,1δn ` 1

h
Mδ,2δnq.

(6.48)

To deal with the error terms ex2
ni we again consider the system

0 “G1ptniqQx1ptniq
sÿ

j“1

αij

ex2
nj ´ ex2

n´1

h
` M i

x2,ne
X2
n ` V JptniqAptniqLnipxq ` Mδ,1δn ` 1

h
Mδ,2δn

`
sÿ

j“1
j‰i

αijpcj ´ ciqV JptniqAptniqQ1ptniqQy1ptniqeỹ2nj ` V JptniqBptniqQptniqQy1ptniqeỹ2ni

` h
sÿ

j“1
j‰i

`
MQptni, tnjqQy1ptnjq ` αijpcj ´ ciqV JptniqAptniqQ1ptniqRQy1

ptni, tnjqpcj ´ ciq
˘
eỹ2nj

which can be written as

0 “G1ptniqQx1ptniq
sÿ

j“1

αij

ex2
nj ´ ex2

n´1

h
` M i

x2,n
eX2
n

` V JptniqAptniqLnipxq ` Mδ,1δn ` 1

h
Mδ,2δn

with the help of Equation (6.48). We multiply each of these equations by G´1
2 ptniqV J

x1
ptniq

and achieve

0 “
sÿ

j“1

αij

ex2
nj ´ ex2

n´1

h

` G´1
2 ptniqV J

x1
ptniqpM i

x2,n
eX2
n ` V JptniqAptniqLnipxq ` Mδ,1δn ` 1

h
Mδ,2δnq

This can be written as

0 “pA´1 b Iqe
X2
n ´ Ex2

n´1

h
` Mx2,ne

X2
n ` Lnpxq ` Mδ,1δn ` 1

h
Mδ,2δn
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6 Convergence Analysis

which finally leads to

eX2
n “pI ` hMx2,nq´1pEx2

n´1 ´ hpLnpxq ` Mδ,1δn ` 1

h
Mδ,2δnqq

with Ex2
n´1 :“

`
ex2
n´1 . . . ex2

n´1

˘J
. Now we obtain the estimation

}ex2
n } ď ››eX2

n

›› ď ››pI ` hMx2,nq´1
›› p››Ex2

n´1

›› ` h}Lnpxq ` Mδ,1δn ` 1

h
Mδ,2δn}q

ď ››pI ` hMx2,nq´1
›› p››ex2

n´1

›› ` Ophsqq
ď p1 ` 2 }Mx2,n}hqp››ex2

n´1

›› ` Ophsqq

which leads by standard ODE estimations to the existence of a constant Cx2 ą 0 such
that

}ex2
n } ď Cx2p}ex2

0 } ` Ophs´1qq.

With the help of (6.48) and (6.47) this yields a constant C ą 0 such that

}en} ď Cp}e0} ` Ophs´1qq

and the proof is concluded.

The most important feature of Theorem 6.15 is that it does not need any restriction
regarding the basis functions, except differentiability and that their ranks are constant.
According to this the simulation of the Examples 6.2 and 2.12 by an left-discontinuous
collocation method should converge against the exact solution without any additional
step size restriction. As an example of the class of left-discontinuous collocation method
we choose the Lobatto IIIC methods. While the implicit Euler cannot provide satisfying
results for Example 6.2 by using a step size h “ 10´1 due to the new step size restriction,
see Figure 6.6, the Lobatto IIIC method with two stages manages to do so.
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Figure 6.8: Numerical and exact solution of Example 6.2 simulated with the Lobatto IIIC method with
two stages and the time step size h “ 10´1.

Also the manipulation of an algebraic variable by artificial dynamics is no problem for the
Lobatto IIIC methods, in contrast to the results we saw for the implicit Euler in Figure
2.4.

Figure 6.9: Numerical and exact solution of Example 2.12 simulated with the Lobatto IIIC method with
two stages and the time step sizes h “ 10´1(left) and h “ 10´2(right).

6.3 Summary and Outlook

In this chapter we saw that widely used methods like the BDF-methods, as well as the
RAUDAU IIA, methods may not converge against the exact solution of a DAE if the
basis functions Qx0pX1, tq and Qxi

pX i, tq are not constant.
We showed that the BDF methods, with at least two steps, converge for a general non-
linear index 2 DAE if Qx0pX1, tq and Qx1pX1, tq are constant. Thereby we isolated the
source for the convergence problems to these basic functions.
At last we presented a class of collocation methods and proved their convergence for the
time dependent linear case even if Qx0ptq and Qx1ptq are not constant. But we still needed
a regularity assumption.
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6 Convergence Analysis

Hence, the left-discontinuous collocation methods overcome the problems regarding the
artificial dynamics but not those regarding the regularity. We close this chapter with
the following question: Is there a method which is convergent and applicable to every
sufficiently smooth DAE with Dissection Index 2 and constant characteristic values?
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7 Half-explicit Methods

In Section 4.3 we showed that the Dissection Index concept provides a constant basis
chain for the extended MNA without controlled sources (4.24). Even with controlled
sources we may be able to obtain a constant basis chain as we saw in Example 4.29.
Perturbation estimations and global solvability results are obtained in the Sections 4.4
and 5.4 by using the constant basis chain of the MNA. In this chapter we use the constant
basis chain to decouple the MNA, including controlled sources into a semi-explicit DAE
to accelerate its simulation, by using half-explicit methods. Half-explicit methods can be
found in literature for various kinds of DAE systems. In [ASW93] half-explicit methods
for semi-explicit index 1 DAEs are analyzed. A more general class of index 1 DAEs is
studied in [LM14]. In [LM14] only the splitting of the equation is explicitly given such
that the DAE can be written as

fpx1, x, tq “ 0

gpx, tq “ 0.

In [BH93, Arn98, Mur97] half-explicit methods for index 2 DAEs in Hessenberg-form

x1 “ fpx, y, tq
0 “ gpx, tq

are presented and studied and [Ost93] even considers Hessenberg systems up to index 3.
The structure

Ad1px, tq ` bpx, tq “ 0

of the MNA prevents us from using half-explicit methods. Therefore we use the constant
basis chain to decouple the MNA into a semi-explicit DAE and afterwards we present
half-explicit methods arising from a mix of the BDF-methods and the Adams-Bashford
methods. The index of the resulting semi-explicit DAEs can exceed two since we con-
sider circuits including controlled sources. For the convergence proof of our half-explicit
methods, we restrict ourselves to DAEs with a Dissection Index of three or lower.

7.1 Topological Decoupling

In this section we will transform the extended MNA (3.34) into a DAE with the structure

Mpxqx1 “ fpx, y, tq
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0 “ gpx, y, tq
with Mpxq being sparse, positive definite and symmetric. Therefore we exploit the con-
stant basis functions. To do so, we need to provide a cheap way to calculate these basis
functions. The basis functions may be constant but for large systems their calculation
could get troublesome nevertheless. Considering that it can be difficult to calculate the
kernel of a very large matrix. To avoid the calculation of the basis functions we present
a way to describe them directly by the topology of the electric circuit.

7.1.1 Topological basis functions

For the network topological description of the basis functions we consider two arbitrary
element classes and notate the sets of elements in these classes by X and Y . Let the mass
node be connected to at least one element in X and let AX be the associated incidence
matrix. The element set X may decompose into nX connected components CX,i with
1 ď i ď nX . We renumber the nodes with respect to the X-connected components and
number the mass node at the end to achieve a more elegant notation. Hence CX,nX

includes the mass node. Then the basis functions of the kernel and the complementary
kernel of AJ

X can be chosen as

QX “

¨
˚̊̊
˝
1|CX,1|

. . .

1|CX,nX´1|
0

˛
‹‹‹‚ and PX “

¨
˚̊̊
˚̊̊
˚̋

I|CX,1|´1

0J
|CX,1|´1

. . .

I|CX,nX´1|´1

0J
|CX,nX´1|´1

I|CX,nX
|´1

˛
‹‹‹‹‹‹‹‚

with 1N :“ `
1 . . . 1

˘J P R
N . Now AX̄Y “ AJ

YQX is the incidence matrix of the graph
shrunk by the edges of the elements in X. Notice that there may be elements in Y which
are now linked to only one node in the shrunken graph. Next we can choose the matrices
QY and PY with respect to the shrunken graph analogously to QX and PX . This process
can be continued successively.
For the basis functions of the transposed kernel and the transposed complementary kernel
of AJ

X we need to provide the definition a spanning tree:

Definition 7.1. (Spanning tree)
A tree of a graph G is a connected undirected graph with no loop. It is a spanning tree
of a graph G if it includes every node of G. A spanning tree of a connected graph G can
also be defined as a maximal set of edges of G that contains no loops, or as a minimal set
of edges that connect all nodes.

and the definition a fundamental loop:
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7 Half-explicit Methods

Definition 7.2. (Fundamental loop)
We consider a graph G “ pN,Eq and a spanning tree T “ pNT , ET q of the graph G.
Adding one edge of EzET to the spanning tree will create a loop. Such a loop is called a
fundamental loop.

There is a distinct fundamental loop for each edge in EzET . Thus, there is a one-to-one
correspondence between fundamental loops and edges not in the spanning tree. For a
connected graph with |N | nodes, any spanning tree will have |N | ´ 1 edges, and thus, a
graph of |E| edges and one of its spanning trees will have |E|´|N |`1 fundamental loops.
We define a set of mX X-fundamental loops LX,i with 1 ď i ď mX to describe the
transposed kernel and the transposed complementary kernel ofAJ

X . For every fundamental
loop we choose an arbitrary loop direction. Furthermore, we choose a spanning tree T
and renumber the edges such that the first edges do not belong to the spanning tree.
With the help of these preparations we can describe each of the fundamental loops by a
vector

pLX,iqj “

$’&
’%
1, if the j-th edge of the i-th loop has the i-th loop’s direction

´1, if the j-th edge of the i-th loop has not the i-th loop’s direction

0, else.

Then the basis functions of the transposed kernel and the transposed complementary
kernel of AJ

X can be chosen as

WX “ `
LX,1 . . . LX,mX

˘
and VX “

ˆ
0mX

I|X|´mX

˙
.

This strategy works for an arbitrary graph. Therefore it also works for a shrunken graph.
In the next subsection we make use of these topological basis functions to transform the
extended MNA, including controlled sources.

7.1.2 Extended MNA with controlled sources

In the previous chapters we always assume the sources in an electric circuit to be indepen-
dent, with a few exceptions. This is a reasonable assumption as long as all semiconductor
and electromagnetic devices are modeled with the help of a PDE. If we approximate some
of these devices by an equivalent circuit, there usually appear many controlled sources in
the electric circuit. Hence it becomes interesting to efficiently simulate electric circuits
including controlled sources, as well as distributed devices. The extended MNA equations
including controlled sources are given by
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AC

ˆ
d

dt
qCpAJ

C e, tq ` gCpAJ
C e, ζ,Ψq

˙
` ARgRpAJ

Re, qM , tq ` ALjL

`AV jV ` AIispAJe, jL, jV , tq “ 0, (7.1a)

d

dt
φLpjL, tq ´ AJ

Le ` χLE “ 0, (7.1b)

AJ
V e ´ vspAJe, jL, jV , tq “ 0, (7.1c)

Mζ
d

dt
ζ ` hζpAJ

Se, ζ,Ψq “ 0, (7.1d)

TΨ ´ hΨpζq “ 0, (7.1e)

d

dt
φMpqM , tq ´ AT

Me “ 0, (7.1f)

Mε
d

dt
E ` MσE ´ J ´ χT

LjL “ 0, (7.1g)

d

dt
J ` MCCE “ 0. (7.1h)

In order to transform these equations into the following form

Mpxqx1 “ fpx, y, tq (7.2a)

0 “ gpx, y, tq (7.2b)

we have to deal with the term AC d
dt
qCpAJ

C e, tq. Therefore let Qcs and Pcs be the basis
functions with respect to the kernel and the complementary kernel of AJ

C . These ba-
sis functions can be described in a topological way and are thereby suitable for a fast
simulation. We split the node potentials with the help of Qcs and Pcs and obtain

e “ Pcsex ` Qcsey.

By inserting this splitting and factorizing (7.1a) by QJ
cs and PJ

cs we get

PJ
csAC

ˆ
d

dt
qCpAJ

C Pcsex, tq ` gCpAJ
C Pcsex, ζ,Ψq

˙
` PJ

csARgRpAJ
RpPcsex ` Qcseyq, qM , tq ` PJ

csALjL

`PJ
csAV jV ` PJ

csAI ispAJpPcsex ` Qcseyq, jL, jV , tq “ 0,

QJ
csARgRpAJ

RpPcsex ` Qcseyq, qM , tq ` QJ
csALjL ` QJ

csAV jV ` QJ
csAI ispAJpPcsex ` Qcseyq, jL, jV , tq “ 0.

We use the chain rule to obtain

PJ
csAC

d

dt
qCpAJ

CPcsex, tq “ PJ
csAC

B
Bv qCpAJ

CPcsex, tqAJ
CPcs

d

dt
ex ` PJ

csAC
B
BtqCpAJ

CPcsex, tq
which leads to

Mpxqx1 “ fpx, y, tq
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7 Half-explicit Methods

0 “ gpx, y, tq
with the variables x :“ `

ex jL ζ qM E J
˘J

and y :“ `
ey jV Ψ

˘J
, the matrix

Mpxq “

¨
˚̊̊
˚̊̊
˝

PJ
csAC B

BvqCpAJ
CPcsex, tqAJ

CPcs 0 0 0 0 0
0 B

BjφLpjL, tq 0 0 0 0

0 0 Mζ 0 0 0
0 0 0 B

BqφMpqM , tq 0 0

0 0 0 0 Mε 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‚

and the functions

fpx, y, tq :“

¨
˚̊̊
˚̊̊
˝

f1px, y, tq
AJ

Le ´ χLE ´ B
BtφLpjL, tq

´hζpAJ
Se, ζ,Ψq

AT
Me ´ B

BtφMpqM , tq
J ` χT

LjL ´ MσE
´MCCE

˛
‹‹‹‹‹‹‚

and gpx, y, tq :“
¨
˝ g1px, y, tq
AJ

V e ´ vspAJe, jL, jV , tq
TΨ ´ hϕpζq

˛
‚

with

f1px, y, tq
:“ ´ pPJ

csAC

ˆ B
BtqCpAJ

CPcsex, tq ` gCpAJ
CPcsex, ζ,Ψq

˙
` PJ

csALjL ` PJ
csAV jV

` PJ
csARgRpAJ

RpPcsex ` Qcseyq, qM , tq ` PJ
csAIispAJpPcsex ` Qcseyq, jL, jV , tqq

and

g1px, y, tq :“ QJ
csARgRpAJ

RpPcsex ` Qcseyq, qM , tq ` QJ
csALjL ` QJ

csAV jV

` QJ
csAIispAJpPcsex ` Qcseyq, jL, jV , tq

with Mpxq being positive definite and symmetric since

B
Bv qCpv, tq, B

Bj φLpj, tq,Mζ ,
B
BqφMpq, tq and Mε

are positive definite and symmetric. We can transform (7.2) into a semi-explicit DAE
since Mpxq is non-singular:

x1 “ Mpxq´1fpx, y, tq
0 “ gpx, y, tq.

Naturally in practice we do not actually calculate the inverse. In our particular case
the matrix Mpxq is positive definite and symmetric and therefore we can use iterative
methods like the CG-method.
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7.1.3 Extended MNA without controlled sources

When we exclude the controlled sources we deal with the following DAE:

AC

ˆ
d

dt
qCpAJ

C e, tq ` gCpAJ
C e, ζ,Ψq

˙
` ARgRpAJ

Re, qM , tq ` ALjL

`AV jV ` AIisptq “ 0, (7.3a)

d

dt
φLpjL, tq ´ AJ

Le ` χLE “ 0, (7.3b)

AJ
V e ´ vsptq “ 0, (7.3c)

Mζ
d

dt
ζ ` hζpAJ

Se, ζ,Ψq “ 0,

TΨ ´ hΨpζq “ 0,

d

dt
φMpqM , tq ´ AT

Me “ 0,

Mε
d

dt
E ` MσE ´ J ´ χT

LjL “ 0,

d

dt
J ` MCCE “ 0.

In this case, it is possible to extract an index 1 DAE, in semi-explicit form, from the
equations. Therefore we define a sequence of topological motivated basis functions. Let
QV and PV be the basis function associated to the kernel and the complementary kernel
of AJ

V . Then we call

AV̄ X :“ QJ
VAX , X P tC,R,L, Iu

the V-reduced incidence matrix of the capacitor-like elements, resistor-like elements,
inductor-like elements or current sources, respectively. Further let QC and PC be the basis
function associated to the kernel and the complementary kernel of AJ̄

V C. Analogously we
call

AV̄ C̄X :“ QJ
CQ

J
VAX , X P tR,L, Iu

the VC-reduced incidence matrix of the resistor-like elements, inductor-like elements or
current sources, respectively. At last we obtain the basis function QR and PR associated
to the kernel and the complementary kernel of AJ̄

V C̄R and denote by

AV̄ C̄R̄X :“ QJ
RQ

J
CQ

J
VAX , X P tL, Iu

the VCR-reduced incidence matrix of the inductor-like elements or current sources, re-
spectively.
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7 Half-explicit Methods

We consider an arbitrary electric circuit. We remove all voltage sources and identify all
nodes which were connected by voltage sources. We call this new circuit the V-reduced
circuit. The V-reduced incidence matrices, defined above, are the incidence matrices of the
V-reduced circuit if we choose the basis function according to Section 7.1.1. Analogously
we can interpret the VC-reduced and the VCR-reduced incidence matrices.
Successively we split the potential variable e into

e “ PV eV ` QV pPCeC ` QCpPReR ` QReLqq
“ PV eV ` QV PCeC ` QVQCPReR ` QVQCQReL

with the help of the basis splitting approach. The equations of (7.3) will also be split
successively in order (7.3c),(7.3a) and (7.3b).
Equation (7.3c) provides

AT
V e “ vsptq ñ AT

V PV eV “ vsptq ñ eV “ pAT
V PV q´1vsptq “: v˚

s ptq
and therefore eV can be written as a known time depending function. Next we split
equation (7.3a) by multiplying PJ

V , P
J
C Q

J
V , P

J
RQ

J
CQ

J
V and QJ

RQ
J
CQ

J
V from the left and

obtain an explicit description of the currents through the voltage sources

jV “ ´pPJ
V AV q´1PJ

V pAC

ˆ
d

dt
qCpAJ

C e, tq ` gCpAJ
C e, ζ,Ψq

˙
` ARgRpAJ

Re, qM , tq ` ALjL ` AI isptqq

and a system which does not depend on these currents

PJ
C pAV̄ C

ˆ
d

dt
qCpAJ

C e, tq ` gCpAJ
C e, ζ,Ψq

˙
` AV̄RgRpAJ

Re, qM , tq ` AV̄ LjL ` AV̄ I isptqq “ 0 (7.4a)

PJ
RpAV̄ C̄RgRpAJ

Re, qM , tq ` AV̄ C̄LjL ` AV̄ C̄I isptqq “ 0 (7.4b)

AV̄ C̄R̄LjL ` AV̄ C̄R̄I isptq “ 0. (7.4c)

Let QLI and PLI be the associated basis functions of the kernel and the complementary
kernel of AV̄ C̄R̄L. Then we split the currents along the inductors into

jL “ PLIjLI ` QLIjLĪ .

Equation (7.4c) then provides a explicit formula for jLI by

AV̄ C̄R̄LjL “ ´AV̄ C̄R̄Iisptq
ñ AV̄ C̄R̄LPLIjLI “ ´AV̄ C̄R̄Iisptq
ñ jLI “ ´pAV̄ C̄R̄LPLIq´1AV̄ C̄R̄Iisptq “: i˚

s ptq.
With the help of vs̊ ptq and is̊ ptq we define the functions

qV̄ Cpx, tq :“ qCpx ` AJ
RPV v

˚
s ptq, tq
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gV̄ CpeC, ζ,Ψq :“ gCpAJ̄
VRPCeC ` AJ

RPV v
˚
s ptq, ζ,Ψq

φĪLpx, tq :“ φLpx ` PLIi˚
s ptq, tq

gV̄ C̄Rpx, eC, qM , tq :“ gRpx ` AJ̄
VRPCeC ` AJ

RPV v
˚
s ptq, qM , tq.

Then we insert the variable splitting of the potentials and the current of the inductors
into (7.4a), (7.4b) and (7.3b) to obtain

PJ
C AV̄ C

ˆ
d

dt
qV̄ CpAJ̄

V CPCeC, tq ` gV̄ CpeC, ζ,Ψq
˙

` PJ
C AV̄RgV̄ C̄RpAJ̄

V C̄RPReR, eC, qM , tq
`PJ

C AV̄ LQLIjLĪ ` iCptq “ 0

d

dt
φĪLpQLIjLĪ , tq ´ AJ̄

V LPCeC ´ AJ̄
V C̄LPReR ´ AJ̄

V C̄R̄LeL ´ AJ
LPV v

˚
s ptq ` χLE “ 0

PJ
RAV̄ C̄RgV̄ C̄RpAJ̄

V C̄RPReR, eC, qM , tq ` PJ
RAV̄ C̄LQLIjLĪ ` iRptq “ 0

with

iCptq :“ PJ
C AV̄ Iisptq ` PJ

C AV̄ LPLIi˚
s ptq

iRptq :“ PJ
RAV̄ C̄Iisptq ` PJ

RAV̄ C̄LPLIi˚
s ptq.

Next we split (7.3b) by multiplying PJ
LI , Q

J
LI from the left and obtain a reduced system

in eC, eR, jLĪ :

PJ
C AV̄ C

ˆ
d

dt
qV̄ CpAJ̄

V CPCeC, tq ` gV̄ CpeC, ζ,Ψq
˙

` PJ
C AV̄RgV̄ C̄RpAJ̄

V C̄RPReR, eC, qM , tq
`PJ

C AV̄ LQLIjLĪ ` iCptq “ 0

QJ
LI

d

dt
φĪLpQLIjLĪ , tq ´ QJ

LIA
J̄
V LPCeC ´ QJ

LIA
J̄
V C̄LPReR ` QJ

LIχLE ` vLptq “ 0

PJ
RAV̄ C̄RgV̄ C̄RpAJ̄

V C̄RPReR, eC, qM , tq ` PJ
RAV̄ C̄LQLIjLĪ ` iRptq “ 0

with vLptq :“ ´QJ
LIA

J
LPV vs̊ ptq and an explicit presentation for

eL “ pPJ
LIA

J̄
V C̄R̄Lq´1PJ

LIp d
dt
φĪLpQLIjLĪ , tq ´ AJ̄

V L PCeC ´ AJ̄
V C̄LPReR ´ AJ

LPV v
˚
s ptq ` χLEq.

We define the matrices

MCpeC, tq :“ PJ
C AV̄ C

d

dx
qV̄ CpAJ̄

V CPCeC, tqAJ̄
V CPC

MLpjLĪ , tq :“ QJ
LI

d

dx
φĪLpQLIjLĪ , tqQLI

which leads to

Mpxqx1 “ fpx, y, tq (7.5a)
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7 Half-explicit Methods

0 “ gpx, y, tq (7.5b)

z “ hpx1, x, y, tq (7.5c)

with the variables x :“ `
eC jLĪ ζ qM E J

˘J
and y :“ `

eR Ψ
˘J

, the matrix

Mpxq “

¨
˚̊̊
˚̊̊
˝

MCpeC, tq 0 0 0 0 0
0 MLpjLĪ , tq 0 0 0 0
0 0 Mζ 0 0 0
0 0 0 B

BqφMpqM , tq 0 0

0 0 0 0 Mε 0
0 0 0 0 0 I

˛
‹‹‹‹‹‹‚

and the functions

fpx, y, tq :“

¨
˚̊̊
˚̊̊
˝

´f1px, y, tq
´f2px, y, tq

´hζpAJ
S pPV vs̊ ptq ` QV PCeCq, ζ,Ψq

AT
MpPV vs̊ ptq ` QV PCeC ` QVQCPReRq ´ B

BtφMpqM , tq
J ` χT

LpPLIis̊ ptq ` QLIjLĪq ´ MσE
´MCCE

˛
‹‹‹‹‹‹‚

with

f1px, y, tq :“PJ
C AV̄ C

ˆ B
BtqV̄ CpAJ̄

V CPCeC, tq ` gV̄ CpeC, ζ,Ψq
˙

` PJ
C AV̄ LQLIjLĪ

` PJ
C AV̄RgV̄ C̄RpAJ̄

V C̄RPReR, eC, qM , tq ` iCptq
f2px, y, tq :“QJ

LI
B
BtφĪLpQLIjLĪ , tq ´ QJ

LIA
J̄
V LPCeC ´ QJ

LIA
J̄
V C̄LPReR ` QJ

LIχLE ` vLptq

and

gpx, y, tq :“
ˆ
PJ
RAV̄ C̄RgV̄ C̄RpAJ̄

V C̄RPReR, eC, qM , tq ` PJ
RAV̄ C̄LQLIjLĪ ` iRptq

TΨ ´ hϕpζq
˙

with Mpxq and B
Bygpx, y, tq being positive definite and symmetric. Furthermore we define

z :“ `
jV eL jLI eV

˘J
and

hpx1, x, y, tq :“¨
˚̋̊ ´pPJ

V AV q´1PJ
V h1px, y, tq

pPJ
LIA

J̄
V C̄R̄Lq´1PJ

LIp d
dt
φĪLpQLIjLĪ , tq ´ AJ̄

V L PCeC ´ AJ̄
V C̄LPReR ´ AJ

LPV vs̊ ptq ` χLEq
´pAV̄ C̄R̄LPLIq´1AV̄ C̄R̄Iisptq

pAT
V PV q´1vsptq

˛
‹‹‚
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with

h1px, y, tq :“pAV̄ C

ˆ
d

dt
qV̄ CpAJ̄

V CPCeC, tq ` gV̄ CpeC, ζ,Ψq
˙

` AV̄ LQLIjLĪ

` AV̄RgV̄ C̄RpAJ̄
V C̄RPReR, eC, qM , tq ` AV̄ Iisptq ` AV̄ LPLIi˚

s ptq.
We drop the last equation of (7.5) and obtain

x1 “ Mpxq´1fpx, y, tq
0 “ gpx, y, tq

by multiplying the inverse of Mpxq from the left. Again we can use iterative solvers
instead of actually calculating the inverse of M .

7.2 Explicit Methods

In this section we introduce a new class of half-explicit methods and prove their con-
vergence. Our class of half-explicit methods will be defined on semi-explicit DAEs. We
repeat the definition of a semi-explicit DAE at this point.

Definition 7.3. (Semi-explicit DAE)
Let I Ă R, Dx Ă R

nx and Dy Ă R
ny be open subsets. Consider the following set of

equations

x1 “ fpx, y, tq (7.6a)

0 “ gpx, y, tq (7.6b)

with f P CpDx ˆ Dy ˆ I,Rnxq and g P CpDx ˆ Dy ˆ I,Rnyq. Further, let the partial
derivatives of f and g, with respect to x and y, be continuous. We call (7.6) a semi-
explicit DAE.

We restrict ourselves to a subclass of semi-explicit DAEs by the following set of assump-
tions:

Assumption 7.4.
Consider a semi-explicit DAE (7.6). Let the Dissection Index be 3 at most. Furthermore
we assume that there are constant basis functions Qxi

for i ď 2 and that it is possible to
choose all the other basis functions, including the alternative basis function ending from
Lemma 4.15, state independent.

The basis function Qx0 is always constant for a semi-explicit DAE since the solution
variable is already split into dynamic and algebraic components. The Assumption 7.4
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7 Half-explicit Methods

excludes the mechanical applications but includes the circuits applications without con-
trolled sources. In the case of circuits applications with controlled sources Assumption
7.4 may not hold. Before we formulate the half-explicit methods, we calculate the basis
chain for a semi-explicit DAE since we can profit from its structure and Assumption 7.4.
In particular we express the matrix chain directly in terms of the partial derivatives of f
and g. As always we start the matrix chain by

AD “ A “ D “
ˆ
I 0
0 0

˙
and Bpx, y, tq “

ˆ´ B
Bxfpx, y, tq ´ B

Byfpx, y, tq
B

Bxgpx, y, tq B
Bygpx, y, tq

˙
.

The first set of basis functions is given by:

P “ V “
ˆ
I
0

˙
and Q “ W “

ˆ
0
I

˙
.

Thereby we obtain the set of matrices:

G1 “ I, Bv
x1

px, y, tq “ ´ B
Bxfpx, y, tq, Bv

y1
px, y, tq “ ´ B

Byfpx, y, tq,

Bw
x1

px, y, tq “ B
Bxgpx, y, tq, Bw

y1
px, y, tq “ B

Bygpx, y, tq.

Let Py1ptq, Qy1ptq, Vy1ptq and Wy1ptq be the associated basis function of the partial deriva-
tive

B
Bygpx, y, tq “ Bw

y1
px, y, tq.

Next we obtain Px1 and Qx1 as the basis functions of the complementary kernel and the
kernel of

WJ
y1

ptq B
Bxgpx, y, tq “ WJ

y1
ptqBw

x1
px, y, tq.

Here Px1 and Qx1 are chosen such that
`
Px1 Qx1

˘
is orthonormal. This enables us to

choose

Vx1 “ Qx1 and Wx1 “ Px1

due to G1Qx1 “ IQx1 “ Qx1 . This leads to

G2 “ V J
x1
G1Qx1 “ V J

x1
Qx1 “ QJ

x1
Qx1 “ I

and

Bv
x2

p¨q “ ´V J
x1

B
Bxfp¨qQx1 ` V J

x1

B
Byfp¨qPy1ptq

ˆ
V J
y1

ptq B
Bygp¨qPy1ptq

˙´1

V J
y1

ptq B
Bxgp¨qQx1 ,
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Bv
y2

p¨q “ ´V J
x1

B
Byfp¨qQy1ptq,

Bw
x2

p¨q “ ´WJ
x1

B
Bxfp¨qQx1 ` WJ

x1

B
Byfp¨qPy1ptq

ˆ
V J
y1

ptq B
Bygp¨qPy1ptq

˙´1

V J
y1

ptq B
Bxgp¨qQx1 ,

Bw
y2

p¨q “ ´WJ
x1

B
Byfp¨qQy1ptq

with p¨q short for px, y, tq. Next, let Py2ptq, Qy2ptq, Vy2ptq and Wy2ptq be the associated
basis function of the partial derivative

WJ
x1

B
Byfpx, y, tqQy1ptq “ Bw

y2
px, y, tq.

Again we choose the basis functions Px2 and Qx2 of the complementary kernel and the
kernel of

WJ
y2

ptqp´WJ
x1

B
Bxfp¨qQx1 ` WJ

x1

B
Byfp¨qPy1ptq

ˆ
V J
y1

ptq B
Bygp¨qPy1ptq

˙´1

V J
y1

ptq B
Bxgp¨qQx1q

“WJ
y2

ptqBw
x2

px, y, tq
such that

`
Px1 Qx1

˘
is orthonormal. Again this leads to the possibility to choose

Vx2 “ Qx2 and Wx2 “ Px2

due to G2Qx2 “ IQx2 “ Qx2 . By Assumption 7.4 we restricted ourselves to index 3 DAEs.
Hence, we conclude the matrix chain with

Bw
y3

px, y, tq :“ ´WJ
x2
WJ

x1

B
Byfp¨qQy1ptqQy2ptq.

The explicit description of the matrix chain by the partial derivatives of f and g will be-
come useful when we prove the convergence of the half-explicit methods. In the following
we define a class of half-explicit methods consisting of one Adams-Bashforth step and
two BDF steps. Therefore we call this methods the ABDF methods. Multistep methods
are popular in circuit simulation and by the ABDF methods there now is a half-explicit
multistep method applicable to index 3 DAEs.

Definition 7.5. (ABDF Methods)
We consider a semi-explicit DAE (7.6) fulfilling Assumption 7.4. For the differentiable
part (7.6a), we define the BDF with k steps by the function

F pZ, x, y, tq “ ´
kÿ

j“1

αj

α0

Zj ` h
1

α0

fpx, y, tq
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7 Half-explicit Methods

with αi being the BDF-coefficients for 0 ď i ď 6. We denote Xn´1 :“
`
xn´1 . . . xn´k

˘J

and define the ABDF method with k-steps

xAB
n “ xn´1 ` h

kÿ
j“1

βjfpxn´j, yn´j, tn´jq (7.7a)

xn “ F pXn´1, F pXn´1, x
AB
n , yn, tnq, yn, tnq (7.7b)

0 “ gpF pXn´1, F pXn´1, x
AB
n , yn, tnq, yn, tnq, yn, tnq (7.7c)

with βi being the AB-coefficients for 0 ď i ď 6.

The following theorem guarantees the convergence of the ABDF methods under certain
assumptions.

Theorem 7.6. (Convergence of the ABDF Methods)
We consider a semi-explicit DAE (7.6) fulfilling Assumption 7.4. Furthermore, we assume
that f and g are k`1 times continuously differentiable but at least two times continuously
differentiable. Let there be a global unique solution for the DAE (7.6) and let the initial
errors in the first k steps be sufficiently small. Then the ABDF Methods, with k steps,
converge with order k ´ 1 in the y-components and with order k in the x-components.

Proof . Analog to the previous sections we split the numerical solutions

xn “ Px1x̃1,n ` Qx1Px2x̃2,n ` Qx1Qx2x3,n

and

yn “ Py1ptnqỹ1,n ` Qy1ptnqPy2ptnqỹ2,n ` Qy1ptnqQy2ptnqỹ3,n
as well as the global error of x

ex,n “ Px1ex̃1,n ` Qx1Px2ex̃2,n ` Qx1Qx2ex3,n

and the global error of y

ey,n “ Py1ptnqeỹ1,n ` Qy1ptnqPy2ptnqeỹ2,n ` Qy1ptnqQy2ptnqeỹ3,n.
The complete proof is an induction over the time steps. In particular we show that it
holds for all n:

ex̃1,n “ Ophk`1q, ex̃2,n “ Ophkq, ex3,n “ Ophkq
eỹ1,n “ Ophkq, eỹ2,n “ Ophkq, eỹ3,n “ Ophk´1q

The induction start is automatically fulfilled since the initial errors are assumed to be
sufficiently small.
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Solvability of the discretized system:
First, we have to show that the Equation (7.7c) has a solution yn. Therefore we consider

0 “ gpF pXn´1, F pXn´1, x
AB
n , yn, tnq, yn, tnq, yn, tnq ` δn,

which can be written as

x1
n “ xn´1 ` h

kÿ
j“1

βjfpxn´j, yn´j, tn´jq (7.8a)

x2
n “ F pXn´1, x

1
n, yn, tnq (7.8b)

x3
n “ F pXn´1, x

2
n, yn, tnq (7.8c)

0 “ gpx3
n, yn, tnq ` δn (7.8d)

with the help of the auxiliary variables x1
n, x

2
n and x3

n.

Decoupling to a fix point equation:
We denote

Pyi,n :“ Pyiptnq Qyi,n :“ Qyiptnq
V J
yi,n

:“ V J
yi

ptnq WJ
yi,n

:“ WJ
yi

ptnq
for i ď 2 and decouple Equation (7.8d) with the help of these basis functions

0 “ V J
y1,n

gpx3
n, Py1,nỹ1,n, tnq ` V J

y1,n
δn (7.9a)

0 “ WJ
y1,n

gpPx1pPJ
x1
x3
nq, ¨, tnq ` WJ

y1,n
δn. (7.9b)

In a neighborhood around the solution we obtain by Lemma 4.32 and by the Equations
(7.9a), (7.9b) and (7.8c):

ỹ1,n “ Ψỹ1px3
n, tn, δnq

Ψx̃1ptn, δnq “ PJ
x1
x3
n “ ´

kÿ
j“1

αj

α0

PJ
x1
xn´j ` h

1

α0

PJ
x1
fpx2

n, yn, tnq

with Ψx̃1ptn, 0q “ x̃1ptnq. Furthermore it holds

1

h

˜
α0Ψx̃1ptn, δnq `

kÿ
j“1

αjx̃1,n´j

¸

“x̃1
1ptnq ` Lnpx̃1q ` 1

h

˜
kÿ

j“1

αje
x̃1
n´j ` α0pΨx̃1ptn, δnq ´ Ψx̃1ptn, 0qq

¸
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“x̃1
1ptnq ` Lnpx̃1q ` α0

h
JΨx̃1

δn ` 1

h

kÿ
j“1

αje
x̃1
n´j

“x̃1
1ptnq ` Ophkq

since Lnpx̃1q “ Ophkq, δn “ Ophk`1q and ex̃1
n´j “ Ophk`1q due to the induction statement.

Hence we obtain

x̃1
1ptnq ` Ophkq “ 1

h

˜
α0Ψx̃1ptn, δnq `

kÿ
j“1

αjx̃1,n´j

¸
“ PJ

x1
fpx2

n, yn, tnq

which can be written as

x̃1
1ptnq ` Ophkq “ WJ

x1
fpx2

n, Py1,nỹ1,n ` Qy1,nPy2,nỹ2,n, tnq (7.10)

since we are able to choose PJ
x1

“ WJ
x1
. As second decoupling step we split (7.10) with

the help of V J
y2,n

and WJ
y2,n

and obtain

V J
y2,n

x̃1
1ptnq ` Ophkq “ V J

y2,n
WJ

x1
fpx2

n, Py1,nỹ1,n ` Qy1,nPy2,nỹ2,n, tnq
WJ

y2,n
x̃1
1ptnq ` Ophkq “ WJ

y2,n
WJ

x1
fpx2

n, Py1,nỹ1,n, tnq.
By inserting the expression Ψỹ1px3

n, tn, δnq for ỹ1, we get:

V J
y2,n

x̃1
1ptnq ` Ophkq “ V J

y2,n
WJ

x1
fpx2

n, Py1,nΨỹ1px3
n, tn, δnq ` Qy1,nPy2,nỹ2,n, tnq

WJ
y2,n

x̃1
1ptnq ` Ophkq “ WJ

y2,n
WJ

x1
fpx2

n, Py1,nΨỹ1px2
n ` px3

n ´ x2
nq, tn, δnq, tnq

which then yields functions Ψỹ2 and Ψx̃2 by Lemma 4.32 such that:

ỹ2,n “ Ψỹ2px2
n, x

3
n, tn, δn, h

kq
x̃2
2,n “ Ψx̃2px3

n ´ x2
n, tn, δn, h

kq.
It holds

1

h

˜
α0Ψx̃2px3

n ´ x2
n, tn, δn, h

kq `
kÿ

j“1

αjx̃2,n´j

¸

“x̃1
2ptnq ` Lnpx̃2q ` 1

h

˜
kÿ

j“1

αje
x̃2
n´j ` α0pΨx̃2px3

n ´ x2
n, tn, δn, h

kq ´ Ψx̃2p0, tn, 0, 0qq
¸

“x̃1
2ptnq ` Ophk´1q ` 1

h
α0

`
Ψx̃2px3

n ´ x2
n, tn, δn, h

kq ´ Ψx̃2p0, tn, 0, 0q˘
since Lnpx̃2q “ Ophkq and ex̃1

n´j “ Ophkq due to the induction statement. Therefore we
obtain

x̃1
2ptnq ` Ophk´1q ` 1

h
α0

`
Ψx̃2px3

n ´ x2
n, tn, δn, h

kq ´ Ψx̃2p0, tn, 0, 0q˘ “ PJ
x2
QJ

x1
fpx1

n, yn, tnq.
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We choose Vx1 “ Qx1 and Px2 “ Wx2 and write

x̃1
2ptnq ` Ophk´1q ` 1

h
α0

`
Ψx̃2px3

n ´ x2
n, tn, δn, h

kq ´ Ψx̃2p0, tn, 0, 0q˘ “ WJ
x2
V J
x1
fpx1

n, yn, tnq

which yields

ỹ3,n “ Ψỹ3px1
n, x

2
n, x

3
n,Ψx̃2px3

n ´ x2
n, tn, δn, h

kq ´ Ψx̃2p0, tn, 0, 0q, tn, δn, hk´1q.
At last we need to describe x3

3,n. Therefore we multiply (7.8c) by pWẙ qJQJ
x1

from the left
and obtain

pW ˚
y qJQJ

x1
x3
n

“ ´
kÿ

j“1

αj

α0

pW ˚
y qJQJ

x1
xn´j

` h
1

α0

pW ˚
y qJQJ

x1
fpx2

n, Py1,nỹ1,n ` Qy1,nPy2,nỹ2,n ` Qy1,nQy2,nỹ3,n, tnq

“ ´
kÿ

j“1

αj

α0

pW ˚
y qJQJ

x1
xn´j

` h
1

α0

pW ˚
y qJQJ

x1
fpx2

n, Py1,nỹ1,n ` Qy1,nPy2,nỹ2,n ` Qy1,nQy2,nỹ3ptnq, tnq

“pW ˚
y qJQJ

x1

˜
´

kÿ
j“1

αj

α0

xn´j ` h
1

α0

fpx2
n, Py1,nỹ1,n ` Qy1,nPy2,nỹ2,n ` Qy1,nQy2,nỹ3ptnq, tnq

¸
.

We choose Px2 such that pWẙ qJPx2 “ 0 and thereby obtain

QJ
x2
QJ

x1
x3
n

“QJ
x2
QJ

x1

˜
´

kÿ
j“1

αj

α0

xn´j ` h
1

α0

fpx2
n, Py1,nỹ1,n ` Qy1,nPy2,nỹ2,n ` Qy1,nQy2,nỹ3ptnq, tnq

¸

which can be written as

x3ptnq ´ x3
3,n

“QJ
x2
QJ

x1

1

α0

h
`
x1ptq ´ fpx2

n, Py1,nỹ1,n ` Qy1,nPy2,nỹ2,n ` Qy1,nQy2,nỹ3ptnq, tnq˘ ` Ophkq

since Lnpxq “ Ophkq and ex,n´j “ Ophkq due to the induction statement. Together we
obtain the equations

ỹ1,n “ Ψỹ1px3
n, tn, δnq (7.11a)
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ỹ2,n “ Ψỹ2px2
n, x

3
n, tn, δn, h

kq (7.11b)

ỹ3,n “ Ψỹ3px1
n, x

2
n, x

3
n,Ψx̃2px3

n ´ x2
n, tn, δn, h

kq ´ Ψx̃2p0, tn, 0, 0q, tn, δn, hk´1q (7.11c)

x̃3
1,n “ Ψx̃1ptn, δnq (7.11d)

x̃2
2,n “ Ψx̃2px3

n ´ x2
n, tn, δn, h

kq (7.11e)

and

x3ptnq ´ x3
3,n (7.12)

“QJ
x2
QJ

x1

1

α0

h
`
x1ptq ´ fpx2

n, Py1,nỹ1,n ` Qy1,nPy2,nỹ2,n ` Qy1,nQy2,nỹ3ptnq, tnq˘ ` Ophkq.

We define

Φpỹ1,n, ỹ2,n, ỹ3,nq “
¨
˝ Φỹ1px3

npynq, tn, δnq
Φỹ2px2

npynq, x3
npynq, tn, δn, hkq

Φỹ3px1
npynq, x2

npynq, x3
npynq,ΔΨ, tn, δn, h

k´1q

˛
‚

with yn “ Py1 ỹ1,n ` Qy1Py2 ỹ2,n ` Qy1Qy2 ỹ3,n and ΔΨ :“ Ψx̃2px3
npynq ´ x2

npynq, tn, δn, hkq ´
Ψx̃2p0, tn, 0, 0q. Next we have to show that Φ has a fix-point.

Fix-point Theorem of Schauder:
We prove that there are constants cỹ1 , cỹ2 and cỹ3 such that Φ has a fix-point in

D :“ Bcỹ1h
k pỹ1ptnqq ˆ Bcỹ2h

k pỹ2ptnqq ˆ Bcỹ3h
k´1 pỹ3ptnqq

by the Fix-point Theorem of Schauder. For h sufficiently small Φ is defined on the whole
domain D. Since Φ is continuous we have to show that there are constants cỹ1 ą 0, cỹ2 ą 0
and cỹ3 ą 0 such that Φpxq P D for all x P D. In the following we assume that yn P D
and denote cy “ maxtcỹ1 , cỹ2 , cỹ3u. Then it follows yn P Bcyhk´1pyptnqq and by

x1
n “ xn´1 ` h

s`1ÿ
j“1

βjfpxn´j, yn´j, tn´jq

x2
n “ F pXn´1, x

1
n, yn, tnq

there is a constant c1 ą 0 with

x1
n, x

2
n P Bc1hkpxptnqq. (7.13)

Notice that c1 may depend on cy. Furthermore we obtain a constant c2 ą 0 by

x3
n ´ x2

n “ F pXn´1, x
2
n, yn, tnq ´ F pXn´1, x

1
n, yn, tnq

“ h

α0

pfpx2
n, yn, tq ´ fpx1

n, yn, tqq
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“ h

α0

ż 1

0

B
Bxfpsx2

n ` p1 ´ sqx1
n, yn, tqdspx2

n ´ x1
nq

“ h

α0

ż 1

0

B
Bxfpsx2

n ` p1 ´ sqx1
n, yn, tqdsppx2

n ´ xptnqq ´ px1
n ´ x1ptnqqq

with px3
n ´x2

nq P Bc2hk`1p0q due to x1
n, x

2
n P Bc1hkpxptnqq. Again c2 may depend on cy. But

for a sufficiently small h we get a constant c3 ą 0 with

px3
n ´ x2

nq P Bc3hkpxptnqq (7.14)

and c3 being independent from cy. Hence there is a ξ2 with x3
n “ x2

n ` ξ2h
k and }ξ2} ď c3.

By (7.11d) and }δ} ď hk`1, we get

x̃3
1,n P Bc̃1hk`1px̃1ptnqq (7.15)

with c̃1 ą 0 being a constant independent from cy. Furthermore, (7.11e) can now be
rewritten into:

x̃2
2,n “ Ψx̃2px3

n ´ x2
n, tn, δn, h

kq
“ Ψx̃2px2

n ` ξ2h
k ´ x2

n, tn, δn, h
kq

“ Ψx̃2pξ2hk, tn, δn, h
kq

which yields a constant c̃2 ą 0 with

x̃2
2,n P Bc̃2hkpx̃2ptnqq (7.16)

and c̃2 ą 0 being a constant independent from cy. Finally we obtain a constant c̃3 ą 0
with x̃3

3,n P Bc̃3hkpx̃3ptnqq and c̃3 ą 0 being a constant independent from cy by (7.12) and
pỹ1,n, ỹ2,nq P Bcỹ1h

k pỹ1ptnqq ˆ Bcỹ2h
k pỹ2ptnqq. Together with (7.13) and (7.14) the three

constants c̃1, c̃2 and c̃3 yield a constant c̃x ą 0 with

x1
n P Bc̃xhk´1pxptnqq and x2

n, x
3
n P Bc̃xhkpxptnqq (7.17)

and c̃x being a constant independent from cy. Thereby we find constant c̃ỹi for i “ 1, 2, 3
with

Φpỹ1,n, ỹ2,n, ỹ3,nq

“
¨
˝ Φỹ1px3

npynq, tn, δnq
Φỹ2px2

npynq, x3
npynq, tn, δn, hkq

Φỹ3px1
npynq, x2

npynq, x3
npynq,ΔΨ, tn, δn, h

k´1q

˛
‚

“
¨
˝ Φỹ1pxptnq, tn, 0q ` c̃ỹ1h

k

Φỹ2pxptnq, xptnq, tn, 0, 0q ` c̃ỹ2h
k

Φỹ3pxptnq, xptnq, xptnq,Ψx̃2p0, tn, 0, 0q ´ Ψx̃2p0, tn, 0, 0q, tn, 0, 0q ` c̃ỹ3h
k´1

˛
‚
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“
¨
˝ ỹ1ptnq ` c̃ỹ1h

k

ỹ2ptnq ` c̃ỹ2h
k

ỹ3ptnq ` c̃ỹ3h
k´1

˛
‚

with ΔΨ :“ Ψx̃2px3
npynq ´ x2

npynq, tn, δn, hkq ´ Ψx̃2p0, tn, 0, 0q. For h sufficiently small, we
can choose c̃ỹi “ 1

2
cỹi for i “ 1, 2, 3 and get Φpỹ1,n, ỹ2,n, ỹ3,nq P D.

Error recursion for xn

In the following let yn solve

0 “ gpF pXn´1, F pXn´1, x
AB
n , yn, tnq, yn, tnq, yn, tnq ` δn.

Again we consider the equations of the method

x1
n “ xn´1 ` h

kÿ
j“1

βjfpxn´j, yn´j, tn´jq (7.18a)

x2
n “ F pXn´1, x

1
n, yn, tnq (7.18b)

xn “ F pXn´1, x
2
n, yn, tnq. (7.18c)

Furthermore the consistency error yields the equations:

xptnq “ xptn´1q ` h
kÿ

j“1

βjfpxptn´jq, yptn´jq, tn´jq ` Ophk`1q (7.19a)

xptnq “ ´
kÿ

j“1

αj

α0

xptn´jq ` h
1

α0

fpxptnq, yptnq, tnq ` Ophk`1q. (7.19b)

Error bound for x̃1,n and x̃2,n:
We notice that the constants in (7.14), (7.15) and (7.16) are not only independent of cy
but can also be chosen independently from the step n. Therefore we get ex̃1,n “ Ophk`1q
and ex̃2,n “ Ophkq. Now we only have to analyze the error of the inherent dynamic x3,n.

Error recursion for x3,n:
We multiply pWẙ qJQJ

x1
to (7.18c), to obtain

pW ˚
y qJQJ

x1
xn

“pW ˚
y qJQJ

x1

˜
´

kÿ
j“1

αj

α0

xn´j ` h
1

α0

fpx2
n, yptnq ` Py1,ncỹ1,nh

k ` Qy1,nPy2,ncỹ2,nh
k, tnq

¸

“pW ˚
y qJQJ

x1

˜
´

kÿ
j“1

αj

α0

xn´j ` h
1

α0

fpx2
n, yptnq, tnq

¸
` Ophk`1q

229



and insert the transformation of xn to get

pW ˚
y qJQx2x3,n “ ´pW ˚

y qJQx2

kÿ
j“1

αj

α0

x3,n´j ` h
1

α0

pW ˚
y qJQJ

x1
fpx2

n, yptnq, tnq ` Ophk`1q.

By multiplying the inverse of pWẙ qJQx2 we achieve

x3,n “ ´
kÿ

j“1

αj

α0

x3,n´j ` h
1

α0

ppW ˚
y qJQx2q´1pW ˚

y qJQJ
x1
fpx2

n, yptnq, tnq ` Ophk`1q

and analogously we obtain

x3ptnq “ ´
kÿ

j“1

αj

α0

x3ptn´jq ` h
1

α0

ppW ˚
y qJQx2q´1pW ˚

y qJQJ
x1
fpxptnq, yptnq, tnq ` Ophk`1q

from (7.19b). By subtracting these two equations, we obtain an error recursion for x3,n

which depends on pxptnq ´ x2
nq:

ex3,n “ ´
kÿ

j“1

αj

α0

ex3,n´j ` hBf 3
npxptnq ´ x2

nq ` Ophk`1q.

Here Bf 3
n is a suitable matrix provided by the Mean Value Theorem, as in the proof to

Theorem 6.6. Hence, we have to investigate the term xptnq ´ x2
n. Therefore consider

(7.18b) and (7.19b). By inserting yptnq ` Ophk´1q for yn, we obtain:

x2
n “ ´

kÿ
j“1

αj

α0

xn´j ` h
1

α0

fpx1
n, yptnq, tnq ` Ophkq

xptnq “ ´
kÿ

j“1

αj

α0

xptn´jq ` h
1

α0

fpxptnq, yptnq, tnq ` Ophkq

which leads to

pxptnq ´ x2
nq “ ´

kÿ
j“1

αj

α0

pxptn´jq ´ xn´jq ` hBf 2
npxptnq ´ x1

nq ` Ophkq

by subtracting these two equations. Also Bf 2
n is a suitable matrix provided by the Mean

Value Theorem, as in the proof to Theorem 6.6.
We now have to deal with the term xptnq ´x1

n. Considering (7.18a) and (7.19a), we again
use yn “ yptnq ` Ophk´1q to obtain

x1
n “ xn´1 ` h

kÿ
j“1

βjfpxn´j, yptn´jq, tn´jq ` Ophkq
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7 Half-explicit Methods

xptnq “ xptn´1q ` h
kÿ

j“1

βjfpxptn´jq, yptn´jq, tn´jq ` Ophkq.

Once again by subtracting we obtain

pxptnq ´ x1
nq “ pxptn´1q ´ xn´1q ` h

kÿ
j“1

βjBf 1
n´jpxptn´jq ´ x1

n´jq ` Ophkq.

Again Bf 1
n´j are obtained by the Mean Value Theorem, as in the proof to Theorem 6.6.

Altogether we have the following three equations available:

pxptnq ´ x1
nq “ en´1 ` h

kÿ
j“1

βjBf 1
n´jen´j ` Ophkq

pxptnq ´ x2
nq “ ´

kÿ
j“1

αj

α0

en´j ` hBf 2
npxptnq ´ x1

nq ` Ophkq

ex3,n “ ´
kÿ

j“1

αj

α0

ex3,n´j ` hBf 3
npxptnq ´ x2

nq ` Ophk`1q

which can be combined to:

ex3,n “ ´
kÿ

j“1

αj

α0

ex3,n´j

` hBf 3
np´

kÿ
j“1

αj

α0

en´j ` hBf 2
npen´1 ` h

kÿ
j“1

βjBf 1
n´jen´jq ` Ophk`1q.

By transforming the error en into ex̃1,n, ex̃2,n and ex3,n and by using ex̃1,n “ Ophk`1q and
ex̃2,n “ Ophkq we get:

ex3,n “ ´
kÿ

j“1

αj

α0

ex3,n´j

` hBf̃ 3
np´

kÿ
j“1

αj

α0

ex3,n´j ` hBf̃ 2
npex3,n´1 ` h

kÿ
j“1

βjBf̃ 1
n´jex3,n´jq ` Ophk`1q.

with certain matrices f̃ 3
n, f̃

2
n and f̃ 1

n´j. This recursion can be written as

Ex̃3,n “ AEx̃3,n´1 ` hBEx̃3,n´1 ` Ophk`1q
“ pA ` hBqEx̃3,n´1 ` Ophk`1q
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with

A “

¨
˚̊̊
˚̋̊

´α1

α0
I ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ´αk

α0
I

I 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0
. . . . . .

...
...

. . . . . .
...

0 ¨ ¨ ¨ 0 I 0

˛
‹‹‹‹‹‚, Ex̃3,n :“

¨
˚̋ ex3,n

...
ex3,n´k`1

˛
‹‚

and a matrix B with }B} being bounded for a sufficiently small h. At this point we can
proceed according to standard ODE convergence proofs and obtain ex3,n “ Ophkq.
We close this section by applying a ABDF method to the model of the Ring Modulator,
see Figure 7.2, a well known electric circuit example, cf. [Hor76] and [KRS92]. Therefore
define the constant capacitance values, resistance values, inductance values

C “ 1.6 ¨ 10´8F Ls1 “ 0.002H R “ 25000Ω Rp “ 50Ω
Cp “ 10´8F Ls2 “ 5 ¨ 10´4H Rg1 “ 36.3Ω Ri “ 50Ω
Lh “ 4.45H Ls3 “ 5 ¨ 10´4H Rg2 “ Rg3 “ 17.3Ω Rc “ 600Ω

the input potentials e1inptq “ 0.5 ˚ sinp2000πtq, e2inptq “ 2 ˚ sinp20000πtq and the nonlinear
conductance gpuq “ γpeδu ´ 1q with δ “ 17.7493332 and γ “ 40.67286402 ¨ 10´9.
The equations of the MNA of the Ring Modulator can be reduced to a semi-explicit DAE
with 11 differential equations and 4 algebraic equations. We apply the ABDF method
with order one and a constant time step size h “ 3 ¨10´8 to the reduced set of equation of
the Ring Modulator with the simulation interval I “ r0, 10´3s. We obtain the same results
as in [Hor76] and [KRS92] and present the voltages U1, U2 and the voltage U3 :“ e2 ´ e1

Figure 7.1: The voltages U1, U2 and U3 :“ e2 ´ e1.

for a qualitative comparison.
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7 Half-explicit Methods

The circuit diagram of the Ring Modulator is given by:

e1

e2

Ri ` Rg1

Ls1

R Lh

I1

C U1
I3´I4

2

e1in

I5´I6
2

Lh

I2

R C U2

Rc ` Rg1

Ls1

eout

Ls2

I5

Ls3

I6

Ls2
I3 Ls3

I4

U2

2
U2

2

U1

2
U1

2

Rg2 Rg3

Rg2 Rg3

Rp Cp

e2in

Figure 7.2: Circuit diagram of the Ring Modulator
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7.3 Summery and Outlook

This chapter had two objectives. The first objective was to obtain an explicit description
of the basis functions for electric circuits including semiconductor devices, memristors and
electromagnetic devices by the networks topology. With the help of these basis functions
we decoupled the equations of the extended MNA into a semi-explicit DAE. If we only
consider independent sources the decoupled DAE has index one. In the case of a circuit
with controlled sources we still obtain a semi-explicit DAE but the index may be larger
than one.
While half-explicit Runge-Kutta methods are well established for higher index DAEs, half-
explicit multistep methods are mostly defined for index one DAEs. The second objective of
this chapter was to introduce a half-explicit multistep method for semi-explicit DAEs with
an index three or lower. We constructed such methods by a mixture of BDF and Adams
Bashford methods and proved their convergence for semi-explicit index three DAEs. Then
we closed the chapter with a numeric example.
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8 Conclusion and Outlook

This thesis addressed differential-algebraic equations. We focused our investigations to
general differential-algebraic equations resulting from a spatial discretization of PDAEs.
We discussed and extended existing results regarding the modeling and numerical sim-
ulation of DAEs. Furthermore, we investigated the global unique solvability and the
sensitivity of solutions with respect to perturbations of DAEs.
We aimed for three main objectives:

1. A global solvability theorem which can be applied to coupled systems to mathemat-
ically justify their coupling approach.

2. Numerical methods which are stable without needing any structural assumptions.

3. A way to apply explicit methods to coupled systems to be able to handle the size
of the coupled systems by parallelizing the algorithms.

The most important tool to achieve these objectives was the concept of the Dissection
Index. In contrast to the the Tractability Index and the Strangeness Index, the Dissection
Index fulfills the following properties:

1. The complexity of the decoupling procedure reflects the complexity of the DAE.

2. The decoupling procedure preserves properties like symmetry, monotonicity and
positive definiteness.

3. The decoupling procedure is realized by a step-by-step approach with independent
stages.

The Dissection Index can be interpreted as a mix of the Tractability Index and the
Strangeness Index. The index arises as we use the linearization concept of the Tractability
Index and the decoupling procedure of the Strangeness Index.
After introducing our new index concept and proving that it is well defined, see Theo-
rem 4.19 and 4.22, we analyzed the sensitivity to perturbations of differential-algebraic
equations. We were able to proof a connection between the Dissection Index and the
Perturbation Index for DAEs with an arbitrarily high index, see Theorem 4.38. In case
of the perturbation analysis and also for the convergence theory it is necessary to assume
that the unperturbed DAE has a global unique solution. Furthermore we needed to prove
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the global unique solvability of our considered coupled systems to mathematically justify
their coupling approach. We provided sufficient criteria for the global unique solvability
of differential-algebraic equations with an arbitrary index, see Theorem 5.13, and applied
this theoretical result to our circuit application, see Theorem 5.20.
Furthermore, we dealt with challenges of the applicability, the stability and the conver-
gence of numerical methods. It is known that standard ODE methods like the implicit
Euler methods, the BDF methods or the Radau IIA methods may loose their convergence
if applied to DAEs, cf. [GP83, LMT13]. We identified the source of these instabilities
and provided sufficient convergence criteria for the standard ODE methods, see Theorem
6.6. Then we introduced a class of methods which overcomes these instability problems
and proved their convergence, see Theorem 6.15.
In the last chapter we investigated half-explicit methods applied to DAEs. Since it is no
longer possible to accelerate CPUs as it were in the past, parallelizing algorithms becomes
more and more important. Hence explicit methods are focus even more nowadays because
they can be parallelized very efficiently. We introduce a new class of of half-explicit
multistep methods for index 3 DAEs and prove their convergence, see Theorem 7.6.

The coupled systems, which were considered in this thesis, can be embedded in a more
general network approach, cf. [JT14]. This general network approach includes various
network applications such as water or gas transportation networks, blood flow networks
or electric circuits. For all of these networks it is important to be able to simulate the
behavior of the respective network in advance. In comparison to blood flow networks or
electric circuits the flow rate in a water transportation network is slow relative to distance
the water has to cover. Therefore it is necessary to anticipate changes in the water demand
and know how to react to those changes before handed, since it may take hours up to
days till the water arrives at the needed locations. In the case of a blood flow network it
is of great interest to know how the quantities of the network react if a new substance, for
example a medicine, is insert into the network. With the help of simulations the effects of
new drugs can be tested without putting test subjects in potential danger. In particular
if new drugs for children are developed simulations can be of great importance. The next
objective is to apply the results of this thesis to all the other kinds of network besides
electric circuits.
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[Meh12] V. Mehrmann. Index concepts for differential-algebraic equations. Preprint,
TU Berlin, 2012.

[MG05] J. ter Maten M. Günther, U. Feldmann. Modelling and discretization of circuit
problems, volume 13 of Handbook of numerical analysis. Elsevier, 2005.

[Moc83] M. S. Mock. Analysis of Mathematical Models of Semiconductor Devices.
Boole Press, 1983.

241



[MSW99] J. Miller, W. Schilders, and S. Wang. Application of finite element methods to
the simulation of semiconductor devices. Rep. Prog. Phys., 62:277–353, 1999.

[Mur97] A. Murua. Partitioned half-explicit Runge-Kutta methods for differential-
algebraic systems of index 2. Computing, 59(1):43–61, 1997.

[OR70] J.M. Ortega and W.C. Rheinboldt. Iterative solution of nonlinear equations
in several variables. Academic Press, 1970.

[Ost93] Alexander Ostermann. A class of half-explicit Runge-Kutta methods for
differential-algebraic systems of index 3. Applied Numerical Mathematics,
13(1-3):165 – 179, 1993.

[Pet82] L.R. Petzold. Description of DASSL: A differential/algebraic system solver.
Sep 1982.

[Pul12] R. Pulch. Stochastic Collocation and Stochastic Galerkin Methods for Linear
Differential Algebraic Equations. Preprint, Bergische Universität Wuppertal,
2012.

[Rei91] S. Reich. On an existence and uniqueness theory for nonlinear differential-
algebraic equations. Circuits, Systems and Signal Processing, 10(3):343–359,
1991.

[Ria11] R. Riaza. Dynamical properties of electrical circuits with fully nonlinear mem-
ristors. Nonlinear Analysis: Real World Applications, 12(6):3674–3686, 2011.

[RK04] A.G. Rutkas and I.G. Khudoshin. Global solvability of one degenerate semi-
linear differential operator equation. Nonlinear Oscillations, 7:403–417, 2004.

[RR88] R. Schwertassek R.E. Roberson. Dynamics of multibody systems. Springer-
Verlag, Berlin, Germany, 1988.

[RT11] R. Riaza and C. Tischendorf. Semistate models of electrical circuits includ-
ing memristors. International journal of Circuit Theory and Applications,
39(6):607–627, 2011.

[SBST14] L. Jansen S. Baumanns, M. Selva Soto, and C. Tischendorf. Analysis of semi-
discretized differential algebraic equation from coupled circuit device simula-
tion. Computational and Applied Mathematics, 2014.
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