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Abstract

We provide a new identity for the multistage Average Value-at-Risk. The identity is based on the
conditional Average Value-at-Risk at random level, which is introduced. It is of interest in situations,
where the information available increases over time, so it is – among other applications – customized
to multistage optimization. The identity relates to dynamic programming and is adapted to problems
which involve the Average Value-at-Risk in its objective. We elaborate further dynamic programming
equations for specific multistage optimization problems and derive a characterizing martingale property
for the value function.

The concept solves a particular aspect of time consistency and is adapted for situations, where
decisions are planned and executed consecutively in subsequent instants of time. We discuss the
approach for other risk measures, which are in frequent use for decision making under uncertainty,
particularly for financial decisions.
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time consistency
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1. Introduction

Risk averse stochastic programming has become increasingly important in recent years. The concept
builds on risk measures, which have been introduced and initiated in the pioneering paper [ADEH99].
Since then risk measures have been investigated from theoretical perspectives, but their behavior in
practical applications is of interest as well. Later the concept was generalized to account for problems
formulated in several stages of time.

As regards practical perspectives planning, particularly long-time financial planning has to be
mentioned as an important application area. Insurance and re-insurance companies as well incorporate
risk measures in their decisions, or in the pricing of individual contracts.

A special question arises when comparing multistage stochastic programming with dynamic pro-
gramming, which builds on the dynamic programming principle as a fundamental principle. This is
known as the Bellman principle, or Pontryagin’s minimum principle, cf. [FS06]. No such relation is
known for multistage stochastic programming, which makes multistage stochastic programming con-
siderably more difficult. However, significant efforts and investigations have been started in order to
provide a similar principle, among them the papers [Sha09, RS06a, Rus10]. The results available are
in such way that given some risk measures which account for consecutive times-periods, a risk measure
for the entire period is built. Other efforts attempt to decompose a given risk measure such that some
new risk measures, compounded, finally give the initial risk measure (cf. [RS06b]). Such a decompo-
sition is of particular interest for multistage optimization, as a decomposition would allow to better
characterize the strategy just for the next period, without having the entire time horizon in view –
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and this is expected to considerably reduce the time needed to finally compute the optimal solution
for the entire problem.

We prove that the Average Valuer-at-Risk has this property, it can be decomposed. For this purpose
one has to give up the constant risk level and accept a random risk level, which is adapted for each
partial observation.

The Average Value-at-Risk, for various reasons, is the most prominent (maybe most important)
risk measure and there exist various descriptions and representations for the Average Value-at-Risk.
Moreover any version independent risk measure – by Kusuoka’s representation provided in [Kus01] –
is built just of convex combinations of Average Value-at-Risk functionals, they represent the extreme
points in a reasonable class of risk measures. The recent paper [Sha11] further exposes the central role
of the Average Value-at-Risk.

We shall introduce the Average Value-at-Risk in Section 2, and conditionally at random level in
Section 3. Section 4 is devoted to the new decomposition for the Average Value-at-Risk. In the sub-
sequent section we intend to generalize the concept and provide a method to decompose more general
risk measures. However, it seems that just the Average Value-at-Risk can easily be handled. Section 7
provides the link to dynamic programming. The implications on multistage stochastic optimization, as
well as the central martingale property of the value function, are discussed in the following Section 8.
Selected applications and examples serve throughout the paper, and an intuitive reformulation of the
results is provided in the Appendix.

Finally, in Section 9 we propose an algorithm which is based on the results developed.
Artzner et al. gave an initial example to study the multiperiodic character of the Average Value-

at-Risk in [ADE+07]. We shall discuss and solve this example. However, as their example does not
reveal all peculiarities of the multistage Average Value-at-Risk we have added another simple example
in order to describe and foster the results in sufficient detail.

2. The Average Value-at-Risk and Representations

An outstanding example of a version independent acceptability functional, providing an idea of
how bad is bad (cf. [ADE+07]), is the Average Value-at-Risk at level α, denoted AV@Rα

1.

Definition 1 (Average Value-at-Risk). Let Y denote an integrable (L1) random variable and 0 ≤ α ≤ 1
a number. The Average Value-at-Risk at level α is

AV@Rα (Y ) = 1
α

ˆ α

0
V@Rq (Y ) dq, (1)

where V@Rα (Y ) := inf {y : P (Y ≤ y) ≥ α} is the Value-at-Risk, the random variable Y ’s
(left-continuous) quantile function.

1The importance of the
• Average Value-at-Risk

is reflected by the fact that there are various names simultaneously in the literature for the same quantity. Other names
include
• conditional value-at-risk (for the additional representation AV@Rα (Y ) = E [Y : Y ≤ V@Rα (Y )], valid for proba-

bilities without atoms),

• expected shortfall,

• tail value-at-risk or newly

• super-quantile (of course sub-quantile could be justified as well by simply changing the sign).

• Actuaries tend to use the term Conditional Tail Expectation (CTE).
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Figure 1: Density of Y and the Value-at-Risk, as
well as the Average Value-at-Risk at level α =
0.3

We have chosen the definition of the Average Value-at-
Risk in its concave setting to account for profits which we
intend to maximize. For this we shall call the AV@R an
acceptability functional rather than a risk functional. The
converse setting – in frequent use as well, accounting for
losses instead of profits representing the risk functional – is
ρ (Y ) = −AV@R (−Y ).

We list some alternative representation of the Average
Value-at-Risk as they will be of later use.

(i) The Average Value-at-Risk at level α is

AV@Rα (Y ) (2)
= inf {E [Y Z] : 0 ≤ Z, αZ ≤ 1 and EZ = 1} .

The infimum in (2) is among all positive random vari-
ables Z ≥ 0 with expectation EZ = 1 (densities), sat-
isfying the additional truncation constraint αZ ≤ 1,
as indicated. This infimum is attained if α > 0, and in this case the optimal random variable Z
in (2) is coupled in a anti-monotone way with Y (cf. [Nel98]). (2) is often being referred to as
the AV@R’s dual representation or dual formula.

(ii) The change of numéraire

AV@Rα (Y ) = min
{
EQ [Y ] : dQ

dP ≤
1
α

}
is an immediate reformulation of (2).

(iii) The Average Value-at-Risk at level α = 0 is

AV@R0 (Y ) = ess inf (Y ) ; (3)

it holds that AV@R0 (Y ) = limα→0 AV@Rα (Y ).
(iv) The relation2

AV@Rα (Y ) = max
q∈R

q − 1
α
E (q − Y )+ (4)

was elaborated in [RU02]. Notably the maximum in
(4) is attained at some q∗ ∈ R satisfying the quan-
tile like condition P [Y < q∗] ≤ α ≤ P [Y ≤ q∗] – cf.
Figure 1.

For future reference we state the following – rather straight forward – property on continuity and
convexity in the (adjusted) parameter α:

Lemma 2. The mapping

[0, 1] → R

α 7→

{
0 for α = 0,
α ·AV@Rα (Y ) whenever α > 0

(5)

is convex and continuous for Y ∈ L1.

2x+ is the positive part of x, that is x+ = x if x ≥ 0, and x+ = 0 else.
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Proof. From (1) it follows that α · AV@Rα (Y ) =
´ α

0 V@Rq (Y ) dq. As the function q 7→ V@Rq (Y ) is
increasing the assertion on convexity is immediate. Continuity in the interior of (0, 1) follows from
convexity. As for continuity in the point 0 just observe that

´ α
0 V@Rq (Y ) dq ≤

´ 1
0 V@Rq (Y ) dq =

EY <∞, as Y ∈ L1, and whence α ·AV@Rα (Y ) =
´ α

0 V@Rq (Y ) dq → 0 for α→ 0.

Remark 3. Another way of accepting convexity in Lemma 2 is (cf. [RO02]) to define

F
(2)
Y (η) := E (η − Y )+ =

ˆ η

−∞
(η − ξ)P (dξ)

and to observe that
α ·AV@Rα (Y ) = sup

η
ηα− F (2)

Y (η) ,

which immediately reveals convexity of (5) (cf. [Roc70] for more properties of the convex conjugate
function).

3. The Conditional Average Value-at-Risk at Random Level

We intend to account for multiple stages in time by employing a sigma algebra for each stage of
time, and we start with the situation of just two consecutive time steps. We denote the sigma algebra
at the final stage T by FT , and at some previous stage t < T by Ft. As the information increases
successively over time it is natural to assume that Ft ⊂ FT . Moreover the initial time shall be 0
(0 < t < T ), and the respective sigma algebra F0 is typically trivial, that is F0 = {∅, Ω} which
indicates that at time t = 0 nothing is known about the future evolution. To abbreviate the notation
we shall moreover write Y C F to express that Y is measurable with respect to the sigma algebra F .

The Average Value-at-Risk, as defined above, is an R−valued function on L1 (FT ), so AV@R quan-
tifies the entire future risk at stage 0. Having multistage stochastic optimization in mind it is desirable
to have an idea of the risk at the later stage t > 0 as well, dependent on observations Ft already
available at time t. This is accomplished by the conditional Average Value-at-Risk at random level. A
conditional Average Value-at-Risk for some previous sigma algebra Ft (Ft ⊂ FT ) is introduced, among
other attempts, in Pflug and Römisch, [PR07]. Based on the definition used there it will be necessary
to extend its formulation in order to find a conditional Average Value-at-Risk, given a previous sigma
algebra Ft ⊂ FT , where we allow in addition the level parameter α to vary itself – the random level.
That is to say we consider α not fixed any longer (α C F0), but α a Ft−measurable random variable
(αC Ft) in the sequel.

Definition 4. The conditional Average Value-at-Risk at random level α C Ft (0 ≤ α ≤ 1) is the
Ft−random variable

AV@Rα (Y |Ft) := ess inf {E (Y Z|Ft) : E (Z|Ft) = 1, 0 ≤ Z, αZ ≤ 1} . (6)

Remark 5. E (Y Z|Ft) is a random variable, the essential infimum in (6) thus is an infimum over a
family of random variables, and the resulting AV@Rα (Y |Ft) is an Ft−random variable itself; for the
definition of the essential infimum of random variables we refer – for example – to Appendix A in
[KS98] or [DS57] for details.

Note that the accepted notation “ess inf” in (6) is in contrast to its use in (3), as in (3) the ess inf
is just Y ’s biggest lower bound, which is a number in R.

The next theorem elaborates that the conditional Average Value-at-Risk at random level basically
preserves all properties of the usual Average Value-at-Risk introduced in (1).
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Theorem 6. For the conditional Average Value-at-Risk at random level α C Ft (0 ≤ α ≤ 1) the
following hold true:

(i) Predictability: AV@Rα (Y |Ft) = Y if Y C Ft;
(ii) Translation equivariance3: AV@Rα (Y + c|Ft) = AV@Rα (Y |Ft) + c if cC Ft;
(iii) Positive homogeneity: AV@Rα (λY |Ft) = λAV@Rα (Y |Ft) whenever λ C Ft, λ ≥ 0 and

bounded;
(iv) Monotonicity: AV@Rα1 (Y1|Ft) ≤ AV@Rα2 (Y2|Ft) whenever Y1 ≤ Y2 and α1 ≤ α2 almost

surely;
(v) Concavity: AV@Rα ((1− λ)Y0 + λY1|Ft) ≥ (1− λ) AV@Rα (Y0|Ft) +λAV@Rα (Y1|Ft) for λC
Ft and 0 ≤ λ ≤ 1, eventually;

(vi) Lower and Upper bounds: AV@R0 (Y ) ≤ AV@R0 (Y |Ft) ≤ AV@Rα (Y |Ft) ≤ E (Y |Ft).

Proof. As for the Predictability just observe that

AV@Rα (Y |Ft) = ess inf {Y · E (Z|Ft) : E (Z|Ft) = 1, 0 ≤ Z, αZ ≤ 1} ,
= ess inf {Y · 1 : E (Z|Ft) = 1, 0 ≤ Z, αZ ≤ 1} = Y

for Y C Ft, and Translation equivariance follows from

AV@Rα (Y + c|Ft) = ess inf {E (Y Z|Ft) + cE (Z|Ft) : E (Z|Ft) = 1, 0 ≤ Z, αZ ≤ 1}
= ess inf {E (Y Z|Ft) + c : E (Z|Ft) = 1, 0 ≤ Z, αZ ≤ 1}
= AV@Rα (Y |Ft) + c.

To accept that the conditional Average Value-at-Risk is positively homogeneous observe that
the assertion is correct for λ = 1A (A ∈ Ft); by passing to the limit one gets the assertion for
step-functions first, then for any positive function λ ∈ L∞ (Ft).

To prove Concavity as stated observe that

(1− λ)E (Y0Z|Ft) + λE (Y1Z|Ft) = E (((1− λ)Y0 + λY1)Z|Ft)

by the measurability assumption λC Ft, whence

AV@Rα ((1− λ)Y0 + λY1|Ft) = ess inf
Z

(1− λ)E (Y0Z|Ft) + λE (Y1Z|Ft)

≥ ess inf
Z0,Z1

(1− λ)E (Y0Z0|Ft) + λE (Y1Z1|Ft)

≥ (1− λ) ess inf
Z0

E (Y0Z0|Ft) + λ ess inf
Z1

E (Y1Z1|Ft)

= (1− λ) AV@Rα (Y0|Ft) + λAV@Rα (Y1|Ft) ,

where Z0 ≥ 0 and Z1 ≥ 0 are chosen to satisfy E (Zi|Ft) = 1 and αZi ≤ 1 each.
To observe the monotonicity property recall that α1 ≤ α2, whence

AV@Rα1 (Y1|Ft) = ess inf
Z
{E (ZY1|Ft) : Z ≥ 0, α1Z ≤ 1, E (Z|Ft) = 1}

≤ ess inf
Z
{E (ZY2|Ft) : Z ≥ 0, α1Z ≤ 1, E (Z|Ft) = 1}

≤ ess inf
Z
{E (ZY2|Ft) : Z ≥ 0, α2Z ≤ 1, E (Z|Ft) = 1}

= AV@Rα2 (Y2|Ft) .

The Upper bound finally becomes evident because Z = 1 is feasible for (6), the lower bounds already
have been used.

3In an economic or monetary environment this is often called Cash invariance instead.
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The next characterization, used in [PR07] to define the conditional Average Value-at-Risk in a
simpler context, extends to the situation αC Ft but replaces the ess inf by a usual inf:

Theorem 7 (Characterization). Suppose that αC Ft.

(i) The conditional Average Value-at-Risk at random level α is characterized by

E [1B ·AV@Rα (Y |Ft)] = inf {E [Y Z] : 0 ≤ Z, αZ ≤ 1B , E [Z|Ft] = 1B} (7)

for all sets B ∈ Ft.
(ii) Moreover the conjugate duality relation

AV@Rα (Y |Ft) = ess inf
Z

E [Y Z|Ft]−AV@R∗α (Z|Ft)

with

AV@R∗α (Z|Ft) =
{

0 if E [Z|Ft] = 1, 0 ≤ Z and αZ ≤ 1
−∞ else

(8)

holds true.

Remark 8. Notably α, Z and E [Z|Ft] may have various versions. The defining equation (8) is under-
stood to provide a version of AV@R∗α for any such version.

Proof. The essential infimum ess inf, by the characterizing theorem (Appendix A in [KS98] or [DS57]),
is a density provided by the Radon-Nikodym theorem satisfying

ˆ
B

AV@Rα (Y |Ft) dP = inf
{
E

[
K∑
k=1

1BkE (Y Zk|Ft)
]

: 0 ≤ Zk, αZk ≤ 1, E [Zk|Ft] = 1

}

where the infimum is among all finite and pairwise disjoint partitions B =
⋃K
k=1 Bk (Bj ∩ Bk = ∅),

Bk ∈ Ft and Zk feasible as above. Observe that Z = Z ·1B for the random variable Z :=
∑K
k=1 1BkZk,

and the latter equation thus rewrites as

E [1B AV@Rα (Y |Ft)] = inf {EY Z : 0 ≤ Z, αZ ≤ 1B , E [Z|Ft] = 1B} ,

which is the desired assertion.
As for the second assertion recall the Fenchel-Moreau-Rockafellar duality theorem which states

that
AV@Rα (Y |Ft) = ess inf

Z
E [Y Z|Ft]−AV@R∗α (Z|Ft)

where
AV@R∗α (Z|Ft) = ess inf

Y
E [Y Z|Ft]−AV@Rα (Y |Ft) .

Thus

AV@R∗α (Z|Ft) ≤ ess inf
γ∈R

E [(γ1)Z|Ft]−AV@Rα (γ1|Ft)

= ess inf
γ∈R

γ (E [Z|Ft]− 1)

and whence AV@R∗α (Z|Ft) = −∞ on the Ft−set {E [Z|Ft] 6= 1}.
Next suppose that B := {Z < 0} has positive measure, then E [Z1B |Ft] < 0 on B. Thus

AV@R∗α (Z|Ft) ≤ ess inf
γ>0

E [γ1BZ|Ft]−AV@Rα (γ1B |Ft)

≤ ess inf
γ>0

γE [Z1B |Ft] = −∞
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on B. Finally suppose that C := {αZ > 1} has positive measure, so

AV@R∗α (Z|Ft) ≤ ess inf
γ>0

E [−γα1CZ|Ft]−AV@Rα (−γα1C |Ft)

≤ ess inf
γ>0

−γE [αZ1C |Ft] + γE [1C |Ft]

= ess inf
γ>0

−γ (E [(αZ − 1)1C |Ft]) = −∞

on C by the same reasoning. Combining all three ingredients gives the statement, as they constitute
all conditions for the Average Value-at-Risk in (6).

Remark. It should be emphasized that the latter characterization (7) sequentially defines the
AV@Rα (Y |Ft) just on the sets B, it is then compounded by appropriately arranging the sets in
order to have the AV@Rα (Y |Ft) defined on the entire sample space.

Theorem 9. The Average Value-at-Risk at random level has the additional representation

AV@Rα (Y |Ft) = ess sup
{
Q− 1

α
E
[
(Q− Y )+ |Ft

]
: QC Ft

}
where the essential supremum is among all random variables Q ∈ L∞ (Ft) (QC Ft).

Proof. without proof – the proof is rather technical, but along the lines as the classical equivalence (2)
and (4).

Other, and partially different attempts to define the same random variable AV@Rα (Y |Ft) for
random α are elaborated and discussed in [Rus10] and [RS06a].

4. The Average Value-at-Risk in Multistage Evaluations

Given the Average Value-at-Risk conditional on Ft, how can one compute the Average Value-at-
Risk at time 0? This is the content of the next theorem, which contains a main result on the Average
Value-at-Risk in multistage situations. The following observation is in the focus of this paper, and it
will become central in our considerations on multistage stochastic optimization involving the Average
Value-at-Risk.

Theorem 10 (Nested decomposition of the AV@R). Let Y ∈ L1 (FT ), Ft ⊂ Fτ ⊂ FT .

(i) For α ∈ [0, 1] the Average Value-at-Risk obeys the decomposition

AV@Rα (Y ) = inf E [Zt ·AV@Rα·Zt (Y |Ft)] , (9)

where the infimum is among all densities ZtCFt with 0 ≤ Zt, αZt ≤ 1 and EZt = 1. For α > 0
the infimum in (9) is attained.

(ii) Moreover if Z is the optimal dual density for (2), that is AV@Rα (Y ) = EY Z with Z ≥ 0, αZ ≤ 1

and EZ = 1, then Zt = E [Z|Ft] is the best choice in (9).
(iii) The conditional Average Value-at-Risk at random level α C Ft (0 ≤ α ≤ 1) has the recursive

(nested) representation

AV@Rα (Y |Ft) = ess inf E [Zτ ·AV@Rα·Zτ (Y |Fτ )| Ft] , (10)

where the infimum is among all densities Zτ C Fτ with 0 ≤ Z, αZτ ≤ 1 and E [Zτ |Ft] = 1.

Remark. Note that α · Zt in the index of the inner AV@Rα·Zt is a Ft random variable satisfying
0 ≤ αZt ≤ 1, which means that AV@Rα·Zt (Y |Ft) is indeed available and well-defined, P−a.e..
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Figure 2: (cf. Artzner et al, [ADE+07]) Nested computation of AV@Rα (Y ) with α = 2
3 and outcomes with equal

probabilities. The intriguing and misleading fact is that the conditional Average Value-at-Risk, computed with the
initial, constant α = 2

3 , is AV@R 2
3 1

(Y |Ft) = +1, but AV@R 2
3

(Y ) = −1.

Example. Both, Figure 2 and 3, depict a typical, simple situation with two stages in time, the
increasing sigma algebras are visualized via the tree structure.

The statement of the latter Theorem 10 is contained in the figures, they include Z (the optimal
dual for (2)) and Z1 (the optimal dual for (9) at t = 1).

The example in Figure 2 is due to Artzner et al., [ADE+07]. The Average Value-at-Risk of the
random variable Y is AV@R 2

3
(Y ) = −1: The intriguing fact here is that the conditional Average

Valuer-at-Risk, computed with the initial α = 2
3 , is AV@R 2

31
(Y |Ft) = +1, which seems in conflicting

contrast to AV@R 2
3
(Y ) = −1. The following Corollary 11 elaborates on this gap.

However, by defining the conditional Average Value-at-Risk for random αCFt – as we did in (6) –
the discrepancy is eliminated and corrected.

Corollary 11. For any level 0 ≤ α ≤ 1,

AV@Rα (Y ) ≤ EAV@Rα (Y |Ft) ≤ EY ;

for any αC Ft (0 ≤ α ≤ 1),

AV@Rα (Y |Ft) ≤ E [AV@Rα (Y |Fτ )| Ft] ≤ E (Y |Ft) .

Proof. The first inequality is immediate by choosing the feasible random variable Z = 1 in Theorem
10. The second inequality follows from the monotonicity property in Theorem 6, as

EAV@Rα (Y |Ft) ≤ EAV@R1 (Y |Ft) = EE (Y |Ft) = EY

and AV@R1 has just one feasible dual variable, Z = 1.

Proof of Theorem 10. We shall assume first that α > 0.
Let Z C Ft be a simple step function with Z ≥ 0 and EZ = 1, ie. Z =

∑
i bi1Bi where bi ≥ 0 and

Bi ∩Bj = ∅. Then

E [Z AV@Rα·Z (Y |Ft)] =
∑
i

biE [1Bi AV@Rα·Z (Y |Ft)] =

=
∑
i

bi inf {E [Y Xi] : 0 ≤ Xi, αbi1BiXi ≤ 1Bi , E [Xi|Ft] = 1Bi}

= inf
{∑

i

biE [Y Xi] : 0 ≤ Xi, αbi1BiXi ≤ 1Bi , E [Xi|Ft] = 1Bi

}
.
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As E [Xi|Ft] = 1Bi , together with the additional constraint Xi ≥ 0, one infers that Xi = 0 on the
complement of Bi, that is to say Xi1Bi = Xi.

Define X :=
∑
i 1BiXi, thus

ZX =
∑
i,j

bi1Bi1BjXj =
∑
i

bi1BiXi =
∑
i

biXi

and

E [XY Z] =
∑
i

biE [Y Xi] ,

such that we further obtain by assembling on the mutually disjoint sets Bi

E [Z ·AV@Rα·Z (Y |Ft)] = inf {E [Y ZX] : 0 ≤ X, αZX ≤ 1, E [X|Ft] = 1} . (11)

Note next that E [XZ] = E [Z · E [X|Ft]] = E [Z · 1] = 1, and hence (associate Z̃ with XZ)

E [Z ·AV@Rα·Z (Y |Ft)] ≥ inf
{
E
[
Y Z̃
]

: 0 ≤ Z̃, αZ̃ ≤ 1, E
[
Z̃
]

= 1
}

= AV@Rα (Y ) .

It follows by semi-continuity that E [Z ·AV@Rα·Z (Y |Ft)] ≥ AV@Rα (Y ) for all Z ≥ 0 with EZ = 1
and αZ ≤ 1.

To obtain equality it remains to be shown that there is an Zt C Ft such that AV@Rα (Y ) =
E [Zt AV@RαZt ]. For this let Z be the optimal dual variable in equation (2), that is AV@Rα (Y ) =
E [Y Z] with Z ≥ 0, αZ ≤ 1 and EZ = 1, and define

Zt := E [Z|Ft] .

Zt C Ft is feasible, as 0 ≤ Zt, αZt ≤ 1 and EZt = 1. From the fact that X :=
{

Z
Zt

if Zt > 0
1 if Zt = 0

is

P−a.e. well-defined and feasible for (11) one deduces further that

E [Zt ·AV@Rα·Zt (Y |Ft)] = inf {E [Y ZtX] : 0 ≤ X, αZtX ≤ 1, E [X|Ft] = 1}

≤ E
[
Y Zt

Z

Zt

]
= E [Y Z] = AV@Rα (Y ) .

This is the converse inequality such that assertion (9) follows. The minimum is thus indeed attained
for Zt = E [Z|Ft], where Z is the optimal dual variable for the AV@Rα, which exists for α > 0.

As for α = 0 recall that AV@R0 (Y ) = ess inf Y and AV@R0 (Y ) ≤ AV@R0 (Y |Ft) and thus

AV@R0 (Y ) = EZt AV@R0 (Y ) ≤ EZt AV@R0 (Y |Ft) = EZt AV@R0·Zt (Y |Ft) .

As for the converse inequality choose Zε ≥ 0 with EZεY ≤ AV@R0 (Y ) + ε. By the conditional
L1 − L∞−Hölder inequality

AV@R0 (Y ) + ε ≥ EZεY ≥ E (E [Zε|Ft] AV@R0 (Y |Ft))
≥ E (E [Zε|Ft] AV@R0 (Y )) = AV@R0 (Y ) ,

whence
AV@R0 (Y ) ≥ EZεt AV@R0·Zεt (Y |Ft)− ε

for Zεt := E [Zε|Ft].
As for the remaining statement the proof reads along the same lines as above, but conditioned on

Ft.
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Convexity and Concavity
The Average Value-at-Risk – in its respective variable – is convex and concave:

• Concavity of the Average Value-at-Risk

Y 7→ AV@Rα (Y |Ft)

was elaborated in Theorem 6.

• Convexity of the Average Value-at-Risk – for the level parameter α – was elaborated in
Lemma 2. The following Theorem 12 extends this observation for measurable level parame-
ters, the map

Z 7→ Z ·AV@Rα·Z (Y |Ft)
is convex:

Theorem 12 (Convexity of the AV@R in its dual parameter). Let α, Z0, Z1 and λ C Ft with
0 ≤ λ ≤ 1, then

Zλ ·AV@Rα·Zλ (Y |Ft) ≤ (1− λ)Z0 ·AV@Rα·Z0 (Y |Ft) + λZ1 ·AV@Rα·Z1 (Y |Ft)

where Zλ = (1− λ)Z0 + λZ1.

Proof. Recall that by the definition of the conditional Average Value-at-Risk we have that

(1− λ)Z0·AV@Rα·Z0 (Y |Ft) + λZ1 ·AV@Rα·Z1 (Y |Ft)
= ess inf E (Y (1− λ)Z0f0|Ft) + ess inf E (Y λZ1f1|Ft)
= ess inf E (Y ((1− λ)Z0f0 + λZ1f1) |Ft)

where f0 ≥ 0, f1 ≥ 0, E (f0|Ft) = 1, E (f1|Ft) = 1, and moreover αZ0f0 ≤ 1 and αZ1f1 ≤ 1. It
follows that α ((1− λ)Z0f0 + λZ1f1) ≤ 1 and whence αZλf ≤ 1 for f := (1−λ)Z0f0+λZ1f1

Zλ
. Notice

that f is positive as well, and E (f |Ft) = E
(

(1−λ)Z0f0+λZ1f1
Zλ

∣∣∣Ft) = (1−λ)Z0+λZ1
Zλ

= 1, whence the
latter display continues as

(1− λ)Z0·AV@Rα·Z0 (Y |Ft) + λZ1 ·AV@Rα·Z1 (Y |Ft)
≥ ess inf E (Y Zλf |Ft) ,

the essential infimum being among all random variables f ≥ 0 with E (f |Ft) = 1 and αZλf ≤ 1.
Whence

(1− λ)Z0·AV@Rα·Z0 (Y |Ft) + λZ1 ·AV@Rα·Z1 (Y |Ft)
≥ AV@RαZλ (Y Zλ|Ft)
= Zλ AV@RαZλ (Y |Ft)

by positive homogeneity.

A comparable decomposition as elaborated in Theorem 10 for other risk measures than the Average
Value-at-Risk is significantly more complicated. As a notable example we give the following

Corollary 13. Let A be a version independent, positively homogenous acceptability functional and
Y ∈ L1 (FT ), Ft ⊂ FT . Then there is a measure m on [0, 1] such that

A (Y ) ≤
ˆ

E [Zα ·AV@Rα·Zα (Y |Ft)m (dα)]

for any (measurable) family (Zα), where Zα C Ft with 0 ≤ Zα, αZα ≤ 1 and EZα = 1. Moreover

A (Y ) = inf
U

ˆ
E
[
hα (U) ·AV@Rαhα(U) (Y |Ft)m (dα)

]
where the infimum is among all uniform random variable U , ie. P [U < u] = u for all 0 ≤ u ≤ 1.
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Figure 3: Nested computation of AV@Rα (Y ) with α = 0.25; in this tree-example with 11 nodes and 7 leaves the
transitional probabilities are indicated. It holds true that AV@R0.25(Y ) = 1.8 = EY Z = E [Z1 ·AV@RαZ1 (Y |Ft)].

Proof. Recall that by Kusuoka’s representation ([Kus01], [JST06])

A (Y ) = inf
m∈P

ˆ
AV@Rα (Y )m (dα)

where the infimum is among an adapted set of probability measures P. By the previous theorem and
(9) it follows that

AV@Rα (Y ) ≤ E [Zα ·AV@Rα·Zt (Y |Ft)] ,

for any α provided that Zα is feasible. Taking expectation with respect to m (dα) gives

A (Y ) =
ˆ

AV@Rα (Y )m (dα) ≤
ˆ

E [Zα ·AV@Rα·Zt (Y |Ft)]m (dα) ,

which is the first assertion.
As for the second observe that there is Z∗α by (2) for any α such that E [Y Z∗α] < AV@Rα (Y )+ε. As

Z∗α is a distortion (cf. [PR07]) it has the special representation Z∗α = hα (Uα) for some uniform random
variable Uα and hα (x) = 1

α1[0,α] (x). However, all Z∗α are coupled in an anti-monotone way with Y ,
so Uα and Uα′ are coupled in an co-monotone way and {Uα ≤ min (α, α′)} = {Uα′ ≤ min (α, α′)}.
Thus one may fix a single uniform variable U such that Z∗α := h (U) where h (x) =

´ 1
x

1
αm (dα) =´ 1

0 hα (x)m (dα). Define Zα := E [h (U) |Ft] and choose an ε−optimal probability measure m. With
this choice the second assertion is immediate as well.

5. Composition of risk measures

There is an eye-catching similarity of the outer form between (9) and (2). To catch the analogy it
would be desirable to establish an α̃ such that

AV@Rα (Y ) = AV@Rα̃ (AV@Rα·Zt (Y |Ft)) (12)

where Zt may already be chosen to be optimal.
The first observation in this direction is that AV@Rα·Zt (Y |Ft) and Zt are not coupled in an anti-

monotone way, as the example in Figure 3 reveals.
Next, in this example (Fig. 3) equality in (12) holds indeed for α̃ = 23

32 , the dual variable for this
choice α̃ is Z =

( 32
23 ,

2
23 ,

32
23
)
. This means that a positive weight ( 2

23 ) is assigned to AV@R0 = 5, although
{Y > 4} is not relevant for AV@R0.25. We take both points as indicators that there is probably no
insightful, general relation as suggested in (12).



12

To escape one may define AZt (Y ) := E [Y · Zt] (Zt the optimal dual), which is a risk measure. By
the latter theorem thus

AV@Rα (Y ) = AZt (AV@Rα·Zt (Y |Ft)) ,

such that the AV@R is indeed a composition of risk-measures. However, AZt already incorporates
information from Y and AZt is not version independent.

This can be avoided by the setting (cf. [ES11])

ÃZt (Y ) := inf
Z̃t∼Zt

E
[
Y · Z̃t

]
,

where the infimum is among all random variables Z̃t having the same law as Zt (ie. P [Zt ≤ z] =
P
[
Z̃t ≤ z

]
for all z ∈ R). This allows at least the inequality AV@Rα (Y ) ≥ ÃZt (AV@Rα·Zt (Y |Ft)).

6. Application to Multistage Optimization

Problem Formulation
The optimal investment problem (optimal portfolio allocation) is often chosen to elaborate and

discuss stochastic optimization problems. It is the objective of these problems to maximize the future
return, but taking the potential risk into account as well in some appropriate way.

Several problem formulations are in use to account for this purpose, for example

maximize EY
subject to A (Y ) ≥ q,

Y ∈ Y ,

where a strategy for the holdings Y is accepted if its acceptability A (Y ) at least exceeds a prior fixed q.
Another frequent formulation takes the opposite point of view and intends to solve

maximize A (Y )
s.t. EY ≥ r,

Y ∈ Y ,

where the best strategy Y , maximizing the acceptability, is required to have at least return r on
average. Both have restrictions imposed by some external parameter, q and r (resp.).

The alternative, in the sense of an integrated risk management and avoiding external parameters
and empty feasibility sets, consists in incorporating acceptability functionals in the objective such as

maximize EY + γ · A (Y )
s.t. Y ∈ Y ,

(13)

where γ is just a positive parameter to account for the emphasis that should be given to risk: γ is the
risk appetite, the degree of uncertainty the investor is willing to accept in respect of negative changes
to its assets.
Remark 14. For positively homogeneous acceptability functionals A the problem
maximize E (1− γ)Y + γ · A (Y ) is equivalent. This setting is often more appropriate for the

Average Value-at-Risk, as the objective value – for the inequality (1− γ)EY + γ ·AV@Rα (Y ) ≤ EY –
provides a lower bound for the expected return.

The problem formulation (13), which does not have a priori constraints, applies for optimal invest-
ment problems, and it can be found in multistage decision models for electricity management as well.
Multistage problems thus naturally can be formulated as

maximize EH (ξ, x (ξ)) + γ · A (H (ξ, x (ξ)))
s.t. xC F

x ∈X ,
(14)
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where at each stage t ∈ T a decision xt such that x = (xt) ∈X .
A natural choice for the filtration in the present context is Ft := σ (ξ0, . . . ξt): Note that x C F

forces xt to be a function of all previous observations, xt = xt (ξ0, . . . ξt) (cf. [Shi96, Theorem II.4.3]
for the respective measurability), which reflects the fact that the decisions xt have to be fixed without
knowledge of the future outcomes ξt+1, . . . ξT : the respective measurability constraint xCF (xt CFt,
t ∈ T) is called nonanticipativity.

We shall require the R−valued function H concave, defined on a convex set, such that (ξ any fixed
state)

H (ξ, (1− λ)x0 + λx1) ≥ (1− λ)H (ξ, x0) + λH (ξ, x1) .

By the monotonicity property and concavity of the acceptability functional A thus

A (H (ξ, (1− λ)x0 (ξ) + λx1 (ξ))) ≥ A ((1− λ)H (ξ, x0 (ξ)) + λH (ξ, x1 (ξ))) (15)
≥ (1− λ)A (H (ξ, x0 (ξ))) + λA (H (ξ, x1 (ξ))) ,

which means that A ◦H is concave as well. Notably concavity and the other assumptions above hold
for the Average Value-at-Risk and the conditional Average Value-at-Risk in particular.
Remark 15. To put the ingredients – the observations ξ = (ξ0, ξ1, . . . ξT ), which are sequentially
revealed, and the decisions x = (x0, x1, . . . xT ) – in chronological order recall that xt = xt (ξ0, . . . ξt).
The sequential arrangement using the arrow of time  thus is

ξ0  x0  ξ1  x1 . . .  ξt  xt . . .  ξT  xT .

We are hence interested in a decision xt after the observation ξt, and xt thus may be interpreted as a
response to the observations (ξ0, . . . ξt).
Remark 16 (Notational convention). We shall write H (x) for the random variable H (x) (ξ) :=
H (ξ, x (ξ)). For notational convenience we shall use the straight forward abbreviation ξi:j for the
fractional part ξi:j = (ξi, ξi+1, . . . ξj); in particular ξi:i = (ξi), x0:T = (x0:t−1, xt:T ) and xt:t−1 = () for
consistency.

7. Dynamic Programming Formulation

The dynamic programming principle is the basis of the solution technique developed by Bell-
man [Bel57] in the 1950’s for deterministic optimal control problems. They have been extended later
to account for stochastic problems as well, where typically

(i) the objective is an expectation and
(ii) the transition does not depend on the history, but just on the current state of the system – that

is to say for Markov chains.

Remark 17 (Multiperiod acceptability functionals). Some papers exclusively treat the functionH (x) =∑T
t=0 Ht (x0:t) in the present setting. This setting is just a special case and included in our general

formulation and framework of problem (14).
Moreover the theory developed below applies for more general risk functions as the Average Value-

at-Risk – for exampleA =
∑
k γk AV@Rαk – so in particular includes all approximations of law invariant

acceptability functionals by Kusuoka’s theorem. Above that an acceptability functional of the type

A (Y ) =
∑
k

Eγk AV@Rαk (Y |Ftk) (16)

for some Ftk−measurable αt and γt (αt, γt C Ftk) are included as well in the following discussion
(multiperiod acceptability functional).

However, as these more general acceptability functionals are to be treated in analogous way we
continue with the simple Average Value-at-Risk in lieu of the more general setting (16).
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The decomposition of the Average Value-at-Risk elaborated in Theorem 10 is the key which allows to
define – in line with the classical dynamic programming principle – a value function with properties
analogous to the classical theory.

For Markov processes the value function naturally is a function of time and the current status of
the system. In order to derive dynamic programming equations for the general multistage problem
it is necessary to carry the entire history of earlier decisions. To trigger the decision xt after the
observation ξt we define the value function

Vt (x0:t−1, α, γ) := ess sup
xt:T

E [H (x0:T )| Ft] + γ ·AV@Rα (H (x0:T ) |Ft) . (17)

The value function (17) depends on

• the decisions up to time t−1, x0:t−1, where xt:T in (17) is chosen such that (x0:T ) = (x0:t−1, xt,T ) ∈
X ,

• the random model parameters αC Ft and γ C Ft and

• the current status of the system due to the filtration Ft.

Evaluated at initial time t = 0 and assuming the sigma-algebra F0 trivial the value function relates to
the initial problem (14), as

sup
x0:T

EH (x0:T ) + γ ·AV@Rα (H (x0:T )) =

= ess sup
x0:T

E [H (x0:T ) |F0] + γ ·AV@Rα (H (x0:T ) |F0) (18)

= V0 (() , α, γ)

when employing the Average Value-at-Risk.
The decomposition theorem (Theorem 10) above allows to formulate the following

Theorem 18 (Dynamic Programming Principle). Assume H random upper semi-continuous with
respect to x and ξ valued in some convex, compact subset of Rn.
(i) The value function evaluates to

VT (x0:T−1, α, γ) = (1 + γ) ess sup
xT

H (x0:T )

at terminal time T .
(ii) For any t < τ , (t, τ ∈ T) the recursive relation

Vt (x0:t−1, α, γ) = ess sup
xt:τ−1

ess inf
Zt:τ

E [Vτ (x0:τ−1, α · Zt:τ , γ · Zt:τ )| Ft] , (19)

where Zt:τ C Fτ , 0 ≤ Zt:τ , αZt:τ ≤ 1 and E [Zt:τ |Ft] = 1, holds true.

Proof. A direct evaluation at terminal time t = T gives

VT (x0:T−1, α, γ) = ess sup
xT :T

E [H (x0:T ) |FT ] + γ ·AV@Rα (H (x0:T ) |FT )

= ess sup
xT

H (x0:T ) + γ ·H (x0:T )

= (1 + γ) ess sup
xT

H (x0:T ) ,

because the random variables, conditionally on the entire observations ξ0:T , are constant. The final
maximizations over xT :T = xT (ξ0:T ) moreover are deterministic, because all stochastic observations
are available.
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As for an intermediate time (t < T ) observe that

Vt (x0:t−1, α, γ) = ess sup
xt:T

E [H (x0:T ) |Ft] + γ ·AV@Rα (H (x0:T ) |Ft)

= ess sup
xt:T

ess inf
Zt:t+1

E
[

E [H (x0:T ) |Ft+1]
+γ · Zt:t+1 ·AV@Rα·Zt:t+1 (H (x0:T ) |Ft+1)

∣∣∣∣Ft]
due to the nested decomposition (10) of the Average Value-at-Risk at random level, elaborated in
Theorem 10; the ess inf is among all random variables Zt:t+1CFt+1 satisfying 0 ≤ α, αZt:t+1 ≤ 1 and
E [Zt:t+1|Ft] ≡ 1. By the discussions in the preceding sections the inner expression is concave in x0:T
and convex in Zt:t+1, by Sion’s minimax theorem (cf. [Sio58] and [Kom88]) one may thus interchange
the min and max to obtain

Vt (x0:t−1, α, γ) = ess sup
xt

ess inf
Zt:t+1

ess sup
xt+1:T

E
[

E [H (x0:T ) |Ft+1]
+γ · Zt:t+1 ·AV@Rα·Zt:t+1 (H (x0:T ) |Ft+1)

∣∣∣∣Ft]
As H is upper semi-continuous by assumption one may further apply the interchangeability principle
[RW97, Theorem 14.60] (cf. also [SDR09, p. 405]) such that

Vt (x0:t−1, α, γ) = ess sup
xt

ess inf
Zt:t+1

E
[
ess sup
xt+1:T

E [H (x0:T ) |Ft+1]
+γ · Zt:t+1 ·AV@Rα·Zt:t+1 (H (x0:T ) |Ft+1)

∣∣∣∣Ft]
= ess sup

xt

ess inf
Zt:t+1

E [Vt+1 (x0:t, α · Zt:t+1, γ · Zt:t+1)| Ft] ,

which is the desired relation for τ = t + 1. Repeating the computation from above t − τ times, or
conditioning on Fτ instead of Ft+1 reveals the general result.

8. Martingale Representation and Verification Theorem

The value function Vt introduced in (17) is a function of some general α C Ft and γ C Ft. To
specify for the right parameters assume that the optimal policy x = x0:T of problem (14) exists.
Theorem 18 then gradually reveals the optimal dual variables ZT ,ZT−1, . . . and finally Z0 (assuming
again that the respective argmins of the essential infimum ess inf exist). The conditions E [Zτ |Ft] = 1

(τ > t) imposed on the dual variables suggest to compound the densities and to consider the densities
Zt:τ := Zt ·Zt+1 · . . .Zτ such that E [Zt:τ |Ft] = Zt and E [Z0:τ |Ft] = Z0:t. With this setting the process
Z := (Z0:t)t∈T is a martingale, satisfying moreover 0 ≤ Zt and αZt ≤ 1 during all times t ∈ T. The
optimal pair (x,Z) is a saddle point for the respective Lagrangian.

This gives rise for the following definition.

Definition 19. Let α ∈ [0, 1] be a fixed level.
(i) Z = (Zt)t∈T is a feasible (for the nonanticipativity constraints) process of densities if

(a) Zt is a martingale with respect to the filtration Ft and
(b) 0 ≤ Zt, αZt ≤ 1 and EZt = 1 (t ∈ T).

(ii) The intermediate densities are Zt:τ := Zτ
Zt−1

(0 < t < τ) and Z0:τ := Zτ .

For feasible x and Z we consider the stochastic process

Mt (x, Z) := Vt (x0:t−1, αZ0:t, γZ0:t) (t ∈ T)

where α and γ – in contrast to (17) – are simple numbers.
Recall from (18) that M0 is a constant (if F0 is trivial) solving the original problem (14) if (x,Z)

are optimal. Above that we shall prove in the next theorem that Mt (x,Z) is a martingale in this case.

Theorem 20 (Martingale property). Given that x and Z are optimal, then the process Mt (x,Z) is a
martingale with respect to the filtration Ft.

Conversely, if Mt (x, Z) is a martingale and the argmax sets (for x) and argmin sets (for Z) in
(19) are non-empty, then x and Z are optimal.
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Proof. By the dynamic programming equation (19) and the respective maximality of Zt+1 and xt+1
we have that

Mt (x,Z) = Vt (x0:t−1, αZ0:t, γZ0:t)
= ess sup

xt:t

ess inf
Zt+1

E [Vt+1 ((x0:t−1, xt) , α · Z0:tZt+1, γ · Z0:tZt+1)| Ft]

= ess sup
xt:t

E [Vt+1 ((x0:t−1, xt) , α · Z0:t+1, γ · Z0:t+1)| Ft]

= E [Vt+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft]
= E [Mt+1 (x,Z)| Ft]

again by the interchangeable principle. Mt, hence, is a martingale with respect to the filtration Ft.
The converse follows from the following corollary.

Corollary 21 (Verification Theorem). Let x and Z be feasible for (14).
(i) Suppose that W satisfies

WT (x0:T−1, αZ0:T , γZ0:T ) ≥ (1 + γZ0:T )H (x0:T (ξ0:T )) and
Wt (x0:t−1, αZ0:t, γZ0:t) ≥ ess sup

xt

E [Wt+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft] ,

then the process Wt (x0:t−1, αZ0:t, γZ0:t) (t ∈ T) is a super-martingale dominating
V (x0:t−1, αZ0:t, γZ0:t), V ≤ W .

(ii) Let U satisfy

UT (x0:T−1, αZ0:T , γZ0:T ) ≤ (1 + γZ0:T )H (x0:T (ξ0:T )) and
Ut (x0:t−1, αZ0:t, γZ0:t) ≤ ess inf

Zt+1
E [Ut+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft] ,

then the process Ut (x0:t−1, αZ0:t, γZ0:t) is a sub-martingale dominated by V (x0:t−1, αZ0:t, γZ0:t),
U ≤ V .

Proof. The proof is by induction on t, starting at the final stage T . Observe first that UT ≤ VT ≤ WT

by assumption and (15). Then

Ut (x0:t−1, αZ0:t, γZ0:t) ≤ ess inf
Zt+1

E [Ut+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft]

≤ ess sup
xt

ess inf
Zt+1

E [Vt+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft]

= Vt (x0:t−1, αZ0:t, γZ0:t) ,

and thus U ≤ V .
As for Wt observe that

Wt (x0:t−1, αZ0:t, γZ0:t) ≥ ess sup
xt

E [Wt+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft]

≥ ess inf
Zt+1

ess sup
xt

E [Vt+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft]

≥ ess sup
xt

ess inf
Zt+1

E [Vt+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft]

= Vt (x0:t−1, α · Z0:t, γ · Z0:t) ,

because it always holds true that infz supx L (x, z) ≥ supx infz L (x, z).
W is a super-martingale, because

Wt (x0:t−1, αZ0:t, γZ0:t) ≥ ess sup
xt

E [Wt+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft]

≥ E [Wt+1 (x0:t, α · Z0:t+1, γ · Z0:t+1)| Ft] ,

which is the characterizing property; the proof that U is a sub-martingale is analogous.
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9. Algorithm for a sequential improvement

Figure 4: Saddle of the Lagrangian depending
on the optimal decision x and the dual density
Z.

The latter theorem and its subsequent corollary (ver-
ification theorem) allow to verify if a given policy x and
dual Z are optimal to solve the multistage problem (14).
In general, unfortunately, it may not be easy to verify even
existence of such a saddle point.

However, if x is given, then the verification theorem
allows to compute Z by looking up the respective argmin
sets, and conversely it is possible to find the optimal x to
given Z by computing the respective argmax sets.

Moreover, given a policy x and a dual density Z it is
possible to improve on these choices by taking the respec-
tive maximizers from the verification theorem. Iterating
the optimization procedures in an alternating way, how-
ever, may not necessarily give a sequence converging to the
saddle point, but an improvement can always be achieved.

The representation (4) is often and successively used to
solve the problem (14), as it rewrites as

maximizex,q E
(
H (x) + γq − γ

α (q −H (x))+
)

s.t. xC F
x ∈X ,

and this problem just involves maximization, which can often be implemented in a straight forward
way.

The decomposition theorem (Theorem 10) can be applied to specify a local problem, typically
leading to a considerable acceleration. For this recall that

EH (x) + γAV@Rα (H (x)) = inf
Z0:t

E (E (H (x)| Ft) + γZ0:t AV@RαZ0:t (H (x)| Ft)) ;

given the optimizing random variable Z0:t this suggests to improve x locally, that is to choose

xt ∈ argmax
xt

E (H (x)| Ft) + γZ0:t AV@RαZ0:t (H (x)| Ft)

= argmax
qCFt,xt

E (H (x)| Ft) + γZ0:tq −
γ

α
E
(

(q −H (x))+
∣∣∣Ft)

or to find at least a local improvement.
This strategy is indicated in Algorithm 1 and indeed gives an improvement.

Monotonicity of Algorithm 1.
The Algorithm 1 generates decisions xk0:T which are successive improvements, that is U

(
xk+1

0:T
)
≥

U
(
xk0:T

)
for all k.

Indeed, observe that

ess inf
Zt:t+1

E
[
H
(
xk+1

0:T
)∣∣Ft]+ γZt:t+1 AV@RαZt:t+1

(
H
(
xk+1

0:T
)∣∣Ft) (22)

= ess inf
Zt:t+1

ess sup
xt

E [H (x0:T )| Ft] + γZt:t+1 AV@RαZt:t+1 (H (x0:T )| Ft)

by the particular assignment rule (21) for xk+1
0:T . Moreover

(22) ≥ ess sup
xt

ess inf
Zt:t+1

E [H (x0:T )| Ft] + γZt:t+1 AV@RαZt:t+1 (H (x0:T )| Ft)
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Algorithm 1
Sequential improvement of the strategy x0:T by exploiting the nested structure of the acceptability
functional.
Step 0
Let x0

0:T be any feasible, initial solution of the problem (14),
Set k ← 0.

Step 1
Find Zk, such that 0 ≤ Zk ≤ 1

α , EZ
k = 1 and

EZkH
(
xk0:T

)
= AV@Rα

(
H
(
xk0:T

))
(20)

and define Zkt := E
(
Zk|Ft

)
.

Step 2
Choose

xk+1
t ∈ argmax

xtCFt
E
[
H
(
xk0:T

)∣∣Ft]+ γZkt AV@RαZkt

(
H
(
xk0:T

)∣∣Ft) (21)

= argmax
q, xtCFt

E
[
H
(
xk0:T

)
+ γZkt q −

γ

α

(
q −H

(
xk0:T

))+
∣∣∣Ft]

at any arbitrary stage t ∈ T and node specified by Ft.

Step 3
Set

U
(
xk+1

0:T
)

:= EH
(
xk+1

0:T
)

+ γAV@Rα

(
H
(
xk+1

0:T
))
,

increase k ← k + 1 and continue with Step 1 unless

U
(
xk+1

0:T
)
− U

(
xk0:T

)
< ε,

where ε is the desired improvement in each cycle k.

by the usual supx infy L ≤ infy supx L inequality, and it finally follows that

(22) ≥ ess inf
Zt:t+1

E
[
H
(
xk0:T

)∣∣Ft]+ γZt:t+1 AV@RαZt:t+1

(
H
(
xk0:T

)∣∣Ft)
= E

[
H
(
xk0:T

)∣∣Ft]+ γZkt:t+1 AV@RαZkt:t+1

(
H
(
xk0:T

)∣∣Ft)
for the particular choice xk0:T and due to the optimal choice Zkt:t+1 in (20).

Whence, irrespective of the next assignment for Z, the assignment xk+1 is better than xk:

U
(
xk0:T

)
≤ U

(
xk+1

0:T
)
≤ . . .V0,

the algorithm thus produces assignments xk which sequentially improve the value function at each
node specified by Ft and at each time t ∈ T.

10. Summary and Outlook

In this paper we introduce the conditional Average Value-at-Risk at random risk level. The cen-
tral result is a decomposition, which allows to reconstruct the Average Value-at-Risk given just the
conditional risk observations. For this purpose one has to give up the constant risk level and accept
a random risk level, adapted for each partial observation. The random risk level reflects the fact that
risk has to be quantified by adapted means, whenever some information already is available.
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Further it is the purpose of this paper to compound the ingredients developed and demonstrate,
how they can be arranged for stochastic programming: Dynamic programming equations are being
developed, which characterize the optimal policy.

Among influential papers and different attempts to get hold of dynamic programming equations
for multistage programming are the papers by Römisch and Guiges [RG10], then Shapiro [Sha09],
addressing the time consistency aspect, and in particular [ADE+07], addressing Bellman’s principle.

We believe that the nested decomposition, which we have derived for the Average Value-at-Risk, can
be extended to more general risk measures. Although there are some concepts to define the conditional
versions of a risk measure in general, it seems difficult do describe or characterize their conditional
versions in such way, that they can be compounded in some way to represent again the initial, general
acceptability functional: For the average value at risk the conditional version is an Average Value-at-
Risk again, but for other risk measures their shape considerably differs. Do polyhedral risk measures
(cf. [ER05]) allow a reasonable decomposition? We take these observations and questions as a main
intention and driver for future and further investigations on the subject.

A further discussion of approximations for the problem (14) with relation to the specific nested
distance, which was introduced in [Pfl09], discussed in [PP11a] and properly elaborated in [PP11b],
needs a clarification and is of particular interest for us as well.
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AppendixA. The “ω by ω” formulation of the decomposition

Disintegration And the Nesting Property
The random variable ZT minimizing (9) was observed in the proof of the decomposition theorem

(Theorem 10) to naturally decompose into

ZT = Zt · Zt:T (A.1)

where Zt = E [ZT |Ft]C Ft and Zt:T = ZT
E[Z|Ft] C FT .

Suppose that Ft results from a continuous projection, then one may apply the disintegration the-
orem (cf. [AGS05] or [DM88]) to obtain the decomposition

P [ · ] =
ˆ

Pt:T [ · |ωt]Pt [dωt] (A.2)

of the measure P. The pushforward measure Pt is a measure on Ft, and the map ωt 7→ Pt:T [A|ωt]
is Ft−measurable for all A ∈ FT .

Combing both decompositions (A.1) and (A.2), the decomposition (9) rewrites as

AV@Rα (Y ) =
ˆ
Zt (ωt)

ˆ
Y (ω)Zt:T (ω)Pt:T [dω|ωt] Pt [dωt] .

This gives evidence to rewrite the conditional Average Value-at-Risk as

AV@RαZt(ωt) (Y |ωt) = Eωt [Zωt (ωT )Y (ωT )]

in an obvious “ω by ω“ notation, such that

AV@Rα (Y ) = min
Z(.|ω0)∈AV@R∗α(ω0)

E

[
Z (ωt|ω0) · min

Z(.|ωt)∈AV@R∗
α·Z(ωt|ω0)(ωt)

Eωt [Z (ωT |ωt) · Y (ωT )]
]

where AV@R∗α (ωt) := {Z (.|ωt) : EωtZ (.|ωt) = 1, 0 ≤ Z (.|ωt) and αZ (.|ωt) ≤ 1}.
In order to provide the relations in form of a dynamic program one may define

VT (ωT , αT ) := Y (ωT ) and
Vt (ωt, αt) := min

Z∈AV@R∗αt (ωt)
Eωt [Z (ωT ) · VT (ωT , αt (ωt) · Z (ωT ))] , (A.3)

in a backwards recursive way such that

AV@Rα (Y ) = V0 (ω0, α) = min
Z∈AV@R∗α(ω0)

E [Z (ωt) · Vt (ωt, α · Z (ωt))] ,

as in (A.3).
This is a recursive formulation for the value function V , which is in line with the principles of

dynamic programming.

Tower Property and Dynamic Programming
Given not just two sigma algebras, but a finite sequence F := (Ft)t∈T (T = {t1 = 0, . . . tn = T})

with the property Ft ⊂ Fτ (t < τ , a filtration), one may apply the ingredients developed above
successively to obtain the recursive – or nested – representation

AV@Rα (Y ) =
ˆ
Zt1 (ωt1)

ˆ
Zt2 (ωt2) . . .

ˆ
Y (ω)Zt:T (ω)Ptn

[
dωtn |ωtn−1 , . . . ωt1

]
. . .Pt2 [dωt2 |ωt1 ]Pt1 [dωt1 ] .
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This representation is of particular interest if the probabilities are given as trees, as indicated in the
Figures 3 and 2.

Again this reduces to the recursive settings

VT (ωT , αT ) := Y (ωT )
Vt (ωt, αt) := min

Z∈AV@R∗αt
Eωt [Z (ωt+1) · Vt+1 (ωt+1, αtZ (ωt+1))]

as above such that

AV@Rα (Y ) = V0 (ω0, α) := min
Z∈AV@R∗α

E [Z (ωt) · Vt (ωt, α · Z (ωt))] .

The definition of Vt just involves the next Vt+1 and not later times, which is again in line with dynamic
programming.
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