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Abstract

One of the di�culties of the numerical integration methods for di�eren�
tial�algebraic equations �DAEs� is the computation of consistent initial
values before starting the integration� i�e�� to calculate values that satisfy
the given algebraic constraints as well as the hidden constraints if higher
index problems are considered�
This paper presents an algorithm that permits the consistent initialization
of index � or � DAE�systems resulting from electric circuit simulation by
means of modi	ed nodal analysis �MNA�� The presented approach arises
from the topological properties of the network and holds for circuits that
may contain some speci	c controlled sources�
The article starts up from 
��� Several denotations and results we use were
introduced there in greater detail�
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� Introduction

For ordinary di�erential equations initial values have to be prescribed for all
variables in order to determine a uniquely de�ned solution� Since di�erential�
algebraic systems consist precisely of di�erential equations coupled with alge�
braic equations� not all components appear in dynamic form� Indeed� some of
them are determined by algebraic constraints� In Section � we briey introduce
the problems related to this fact for linear systems� The de�nition of consistent
initial values for nonlinear systems is presented then in Section �� For gen�
eral nonlinear systems� there are many di�culties related to the determination
of consistent initial values that have been handled making use of di�erent ap�
proaches� cf� Pantelides ��	��� � Leimkuhler ��		��� Hansen ��		��� Kr�oner et
al� ��		��� Lamour ��		��� Gopal et al� ��			�� etc� Fortunately� the equa�
tions obtained in circuit simulation by means of MNA present special structural
properties which we can make use of to compute them� These equations are
introduced in Section 
� In Section � we present an algorithm to construct a
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nonlinear system whose solution is a consistent initial value� This algorithm is
based on a topological analysis of the network� To prove its correctness� it is
necessary to realize a detailed analysis of the structural properties� Hence� in
Section �� we summarize the structural results obtained in ��� and extend them
whith regard to consistent initialization� Thereupon� in Section �� the equations
are transcribed topologically� We conclude the article illustrating the algorithm
by means of two examples in Section ��

� Considering linear DAEs

To briey outline the di�culties associated with the computing of consistent ini�
tial values for di�erential�algebraic equations �DAEs�� we present the tractabil�
ity index for linear DAEs with constant coe�cients and an approach for consis�
tent initialization� which makes use of the projectors associated with it�

Consider a linear DAE of the form�

Ax� �Bx � q�t�� �����

where A is singular� For the tractability index we de�ne N �� kerA and
S �� fz � Bz � im Ag�

De�nition ��� A vector x� � Rm is a consistent initial value of ����� if there
exists a solution of ����� that ful�ls x�t�� � x��

Taking into account that the singularity of A implies that ����� contains some
algebraic equations� a consistent initial value obviously has to ful�l them� More�
over� the di�erentiation of these algebraic equations can lead to further algebraic
equations� called hidden constraints� which a consistent initial value has to ful�l�
too� The following index de�nitions characterize this possibilities properly�

De�nition ��� The DAE ����� is called index���tractable � if the matrix A� ��
A�BQ is regular for a constant projector Q onto N �

Remarks�

�� The matrix A� is regular if and only if N � S � f�g�

�� The de�nition does not depend on the choice of the projector Q�

For the next de�nition we consider N� �� kerA� and S� �� fz � BPz � im A�g
for P �� �I �Q��

De�nition ��� The DAE ����� is called index���tractable� if

�cf� �����
�cf� �����
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�� it is not index���tractable�

�� A� �� A� �BPQ� is regular for a projector Q� onto N��

Remarks�

�� The matrix A� is regular if and only if N� � S� � f�g �

�� The de�nition does not depend on the choice of the projector Q��

De�nition ��� In the following� the canonical projector Q� �� Q�A
��
� BP onto

N� along S� is considered�

Note that this matrix chain can be continued to de�ne higher index problems�
For index�� equations hidden constraints appear if we derive some of the equa�
tions of the system� This implies that an initial value has to be chosen in such
a way that not only the system�s equations� but� additionally� these hidden con�
straints have to be ful�lled�

With regard to the consistent initial value� we are also interested in the corre�
sponding values of the derivatives appearing in the DAE� i� e�� in Px��

De�nition ��� A vector �x�� P y�� is a consistent initialization of ����� if x� is
a consistent initial value and �x�� P y�� ful�ls APy� �Bx� � q�t���

If index�� DAEs are considered� then a consistent initialization can be calculated
solving the system

Ay� �Bx� � q�t��� �����

P �x� � x�� �Qy� � �� �����

for an arbitrary x��

Note that P �x� � x�� � � �xes values for the dynamic components and that
Qy� � � precisely �xes the values we are not interested in� obtaining a regular
system�

An e�cient approach� to calculate consistent initial values at t� in the index��
case consists in solving the system�

Ay� �Bx� � q�t��� ���
�

PP��x� � x�� � PQ��y� �A��
� q��t��� �Qy� � �� �����

for P� �� I �Q� and an arbitrary x��

Note that PP��x��x�� � � �xes values for the dynamic components� PQ��y��
PQ�A

��
� q��t��� � � describes the hidden constraints� and Qy� � � precisely

�cf� ���� ������ Note that this approach can be extended to some nonlinear cases�
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�xes the values we are not interested in� obtaining a regular system�

The results presented in ��� imply that for nonlinear circuits the projectors PP�
and PQ� depend on the solution� In this paper we will set up a system similar
to ���
������� with the aid of constant projectors� making use of the fact that
the space S� is constant for the conventional MNA� The results can be adapted�
afterwards� for the charge�oriented MNA�
Furthermore� the equations obtained in that way can be interpreted topolog�
ically� For instance� as the projector Q is known for the MNA equations� we
know that� for certain components� we need not to calculate a value for y� More�
over� topological procedures that locate the hidden constraints and provide the
information needed to �x values for the dynamic component will be developed�
By means of these topological considerations we �nally aim at constructing a
system of equations that provides a consistent initialization and is� in general�
considerably smaller than ���
� ������� This is of special importance because
of the large dimension of many circuits �about ��� cirucit elements�� In the
present paper we will not consider how to choose a suitable x�� This will be
analyzed in ����

� About consistent initial values for nonlinear

DAEs

Let us consider now more general di�erential�algebraic equations of the form

f�x�� x� t� � �� �����

where df
dx�

is singular� In this article� df
dx�

is assumed to have a constant nullspace�

De�nition ��� A vector x� � Rm is a consistent initial value of ����� if there
exists a solution of ����� that ful�ls x�t�� � x��

Again� the singularity of df
dx�

implies di�culties with regard to the calculation
of consistent initial values� which can be described analogously as for the linear
case�
Actually� we are also interested in the corresponding values of the derivatives
appearing in the DAE� i�e�� in the values of Px� if P is de�ned as P �� I � Q

for a projector Q onto ker df
dx�

�

De�nition ��� A vector �x�� P y�� is a consistent initialization of ����� if x� is
a consistent initial value and �x�� P y�� ful�ls the equation f�Py�� x�� t�� � ��

In the following we will analyze how a consistent initialization can be computed
for those DAEs that result in circuit simulation by modi�ed nodal analysis
�MNA�� The index de�nitions and properties for the equations obtained by
MNA have been exposed in detail in ����






� The MNA equations

Let us analyze the DAE system we obtain by the application of the MNA from
lumped networks containing nonlinear and possibly time�variant resistances�
capacitances� inductances� independent voltage and current sources� and some
speci�c controlled sources�

We denote by q and � the vectors of the charge associated with the capacitances
and the uxes associated with the inductances� by jL and jV the current vector
of inductances and voltage sources and by e the vector of node potentials�
Let the vectors i���� and v��� represent functions of current and voltage sources�
In this paper� for the controlled sources we assume the prerequisites from ����
which are exposed in the Tables ��� and ����

In order to describe the network composed by branches and nodes we make use
of the reduced incidence matrix� which is de�ned by

aik ��

��
�
�� if branch k leaves node i
�� if branch k enters node i
� if branch k is not incident with node i

for all the nodes i but the datum node �cf� �����

To write down the MNA� equations� we split the reduced incidence matrix A into
the element�related incidence matrices A � �ACALARAV AI�� where AC � AL�
AR� AV � and AI describe the branch�current relation for capacitive branches�
inductive branches� resistive branches� branches of voltage sources and branches
of current sources� respectively�

If we de�ne

C�u� t� ��
�q�u� t�

�u
� q�t�u� t� ��

�q�u� t�

�t
� L�j� t� ��

���j� t�

�j
� ��t�j� t� ��

���j� t�

�t
�

the DAE system we obtain from networks by the conventional MNA reads

ACC�AT
Ce� t�A

T
C

de

dt
�ACq

�

t�A
T
Ce� t� �ARr�A

T
Re� t�

�ALjL �AV jV �AI i��� � �� �
���

L�jL� t�
djL

dt
� ��t�jL� t��AT

Le � �� �
���

AT
V e� v��� � �� �
���

Later on we will also need G�u� t� �� �r�u�t�
�u

�

�A detailed discussion on how we set up this equations can be found in �	��
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Figure 
��� Circuit with C�V loop

In this article we �rst analyze the network with respect to the conventional MNA
and� afterwards� extend the results to the systems obtained by charge�oriented
MNA� These systems are �cf� again �����

AC

dq

dt
�ARr�A

T
Re� t� �ALjL �AV jV �AI i��� � �� �
�
�

d�

dt
�AT

Le � �� �
���

AT
V e� v��� � �� �
���

q � qC�A
T
Ce� t� � �� �
���

�� �L�jL� t� � �� �
���

Analogously to ���� we suppose that the capacitance matrix C�AT
Ce� t�� the induc�

tance matrix L�jL� t�� and the conductance matrix G�AT
Re� t� of all capacitances�

inductances and resistances� respectively� are positive de�nite ��
We will also make use of the fact that the reduced incidence matrix �ACALARAV �
has full row rank and that AV has full column rank� because cutsets of current
sources only and loops of voltage sources only are forbidden �cf� ���� � �����

Example� In Figure 
�� we consider an index�� example� The dynamical com�
ponents seem to be e� and e�� With regard to a consistent initialization� the
problem arises from the fact that we cannot prescribe an arbitrary initial value
for e� and e� � If we assign a value to one of them� say e��� then the other one�
i� e� e��� is �xed by e�� � e�� � v�t���

The problem becomes more complicated if many capacitances and voltage sources
form several loops� The aim of this article is to develop topological criteria to
�x values for the dynamic component and determine the hidden constraints in
order to calculate a consistent initial value�

�Of course� the same restriction on the positive de
niteness of the conductance matrix from
Corollary ��� of �	� can be made here� Therefore� for the resistances with incidence nodes that
are connected to each other by capacitances and�or voltage sources� no positive de
niteness
of the corresponding conductance matrix has to be assumed�
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� The resulting topological initialization

To characterize the structures of the network that are relevant for index�� sys�
tems we introduce the following denotations�

De�nition ���

�� An L�I cutset is a cutset consisting of inductances and	or current sources
only�

�� A C�V loop is a loop consisting of capacitances and voltage sources�

�� Consider the graph remaining when we delete all the branches except for
those containing capacitances and all nodes that are not incident with
capacitances� We call each of the connected subgraphs of the network
obtained in this way a C�subgraph� Note that by this de�nition each
C�subgraph is connected and the distinct C�subgraphs are disjoint�


� Consider� analogously� the graph that remains when we delete all branches
except for those containing capacitances� voltage sources or resistances�
and the corresponding nodes� A CRV�subgraph is a connected subgraph
obtained in this way�

�� We say that a C�subgraph forms a part of a C�V loop if one of the capac�
itances of that C�subgraph forms a part of a C�V loop�

In ��� it was shown that the existence of L�I cutsets or C�V loops implicates
index�� systems �cf� Theorem ��
�� These two network properties a�ect� conse�
quently� the determination of consistent initial values� The main result of this
article is summarized in the following theorem�

Theorem ��� We obtain a consistent initialization �x�� P y�� of the DAE sys�
tem �
��� � �
��� for networks that may contain controlled sources like the ones
speci�ed in the Tables ��� and ��� solving the system consisting of

�� the original DAE system

�� the equations obtained by the PROCEDURES � and �

�� an arbitrary setting of the potential di�erence between each uncoloured
node �uncoloured in the sense of PROCEDURE �� and the corresponding
minimal node of the C�subgraph which the node belongs to� For the nodes
of the C�subgraph that contains the datum node� we set the node potentials�


� an arbitrary setting for the currents through all inductances but the ones
deleted in PROCEDURE ��

Theorem ��� The values obtained in Theorem ��� can be used to determine a
consistent initialization for the DAE system �
�
� � �
��� calculating addition�
ally the values of the charges and �uxes across capacitances and inductances
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that correspond to the values of the node potentials and currents through induc�
tances� respectively� and computing the values of its corresponding derivatives
analogously�

The following two procedures analyze the structure of a given circuit with regard
to the two topological properties described in Theorem ��
� which lead to index��
systems� Two examples illustrating them can be found in Section ��

PROCEDURE �

�� We �nd the independent C�V loops as follows�

�a� Consider a C�V loop in the given network graph� If no loop is found�
then go to � �

�b� Save the voltage sources and the C�subgraphs that form part of the
chosen C�V loop�

�c� Write the equation resulting from the sum of the derivatives of the
characteristic equations of the voltage sources contained in the C�V
loop� taking into account the orientation of the loop and the reference
direction of the considered branches�
For instance� if the voltage sources v�� ���� vk form part of the C�V
loop and we de�ne

�j ��

�
�� if the orientation of the loop coincides with that of vj �
�� else�

then the equation we write in this step is
Pk

j	� �j��A
T
V e�

�

j � v�j� � ��

�d� Form a new network graph by deleting the branch of one voltage
source that forms a part of the loop� leaving the nodes unchanged�

�e� Return to �a� considering the new network graph�

�� To �x appropriate values in Theorem ��� we analyze again the C�subgraphs
and the voltage sources that form part of the C�V loops more precisely�

�a� Colour all nodes that are not incident with capacitances�

�b� Colour one arbitrary node of each C�subgraph� But if a C�subgraph
contains the datum node� then the datum node is coloured� We
call each of these nodes the minimal node of the corresponding C�
subgraph
�

�c� Denote by G the subgraph of the network composed only by the
voltage sources that form part of the C�V loops� Note that G need
not to be connected�

�d� Consider a C�subgraph that forms part of a C�V loop�

�The notion of a minimal node will become clear in the course of the article� We need such
a reference node because� in fact� we set branch voltages� not node potentials�
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�e� If it forms di�erent loops with G� then we consider only C�V loops
that enter the C�subgraph once and proceed as follows�

i� Check if the minimal node or an already coloured node is incident
with G� forming a C�V loop� If such a loop is found� then we
consider it �rst� Otherwise we consider an arbitrary one�

ii� Look at the nodes of the loop at which G is incident with the
C�subgraph and color one of them which is neither the minimal
node nor has been colored before� Delete from G the voltage
source of the loop that is incident with the node colored last�

iii� If the C�subgraph forms further loops with G� then go to ��e�i�

�f� Add to G the C�subgraph considered in the two previous steps�

�g� Consider a C�subgraph that forms a part of C�V loops and has not
been considered yet� and go to �e� If no such C�subgraph exists� then
end�

The following procedure starts up again from the initial graph�

PROCEDURE �

�� Search an L�I cutset� If one is found� then pick an arbitrary inductance of
this cutset� Realize that we can always �nd such an inductance because
cutsets of current sources only are forbidden� If no cutset is found� then
end�

�� Write the equation resulting from the derivation of the cutset equation
arising from ��
For instance� if the current sources i�� ���� ik and the inductances jL�� ���� jL�k

form part of the L�I cutset and we de�ne

�j ��

�
�� if the orientation of the cutset coincides with that of ij �
�� else�

���j ��

�
�� if the orientation of the cutset coincides with that of jL�j �

�� else�

then the equation obtained in this step reads
Pk

j	� �ji
�
j�
P�k

�j	� ���jj
�

L�j � ��

�� Delete the chosen inductance from the network contracting the nodes it is
incident with�


� Return to ��

In the next section we present the theoretical results which the above procedures
are based on�

	



� Index and consistent initialization for MNA

��� Some de�nitions and results

In the following we present some of the results from ��� concerning the index
of the DAE system and the expressions for the hidden constraints in terms
of appropriate projectors� To this end� we need the following de�nitions and
results�

De�nition 	�� To characterize the topological properties of the network� we
de�ne the projectors QC � QV�C � �QV�C and QR�CV onto kerAT

C � kerA
T
VQC �

kerQT
CAV � and kerAT

RQCQV�C� respectively�
Note that QCRV �� QCQV�CQR�CV is a projector onto ker�ACARAV �

T �
The complementary projectors will be denoted by P� �� I �Q�� with the corre�
sponding subindices�

In ���� the following was shown to hold�

Lemma 	��
�� If the network does not contain L�I cutsets� then QCRV � ��
�� If the network does not contain C�V loops� then �QV�C � ��

In this article� we suppose that the controlled sources that form part of the
network ful�l the conditions exposed in ���� We summarize their properties in
the Tables ��� and ����

If we consider the element�related splitting of �QV�C � i� e��

�QV�C �

�
� �QV�C�t

� �QV�C�contr�

�
�

then we can summarize the prerequisites we assume for the controlled volt�
age sources as follows�

�QT
V�Cv�A

T e�
dq�AT

Ce� t�

dt
� jL� jV � t� � �QT

V�Cvt�t�� �����

v�AT e�
dq�AT

Ce� t�

dt
� jL� jV � t� � v��A

T
Ce� jL� t� �����

for a suitable function v� and for a vector vt�t� that contains the functions of
independent voltage sources and zeros instead of the functions of controlled
voltage sources� Analogously as in ���� in the following we will drop the
index ��

Table ���� Condition for controlled voltage sources
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For controlled current sources we suppose that at least one of the following
characterizations holds�

a�

QT
CRVAI i�A

T e�
dq�AT

Ce� t�

dt
� jL� jV � t� � QT

CRVAItit� �����

i�AT e�
dq�AT

Ce� t�

dt
� jL� jV � t� � ia�A

T
Ce� A

T
V e� jL� t� ���
�

for a suitable function ia�

b�

QT
CAIb � �� �����

i�AT e�
dq�AT

Ce� t�

dt
� jL� jV � t� � ib�A

T e� jL� �PV�CjV � t� �����

for a suitable function ib�

c�

QT
V�CQ

T
CAIc � �� �����

i�AT e�
dq�AT

Ce� t�

dt
� jL� jV � t� � ic�A

T e� jL� t� �����

for a suitable function ic�

Table ���� Conditions for controlled current sources

Regarding ������ ������ and ������ the assumptions made for the controlled cur�
rent sources imply that

QT
CRVAI i�A

T e� jL� jV � t� � QT
CRVAItit ���	�

is always ful�lled� Thus� we generally assume that the controlled sources do not
form part of the C�V loops or L�I cutsets�
To shorten denotations we write

i�AT e� jL� �PV�CjV � t� ������

when we do not distinguish between ���
�� ����� and ������ Furthermore� we will
also write a dot instead of the argument sometimes�

��



Lemma 	�� The matrices

H��A
T
Ce� t� �� ACC�AT

Ce� t�A
T
C �QT

CQC �

H� �� QT
CAV A

T
VQC �QT

V�CQV�C �

H� �� AT
VQCQ

T
CAV � �QT

V�C
�QV�C �

H��A
T
Ce� t� �� �QT

V�CA
T
VH

��
� AV

�QV�C � �P T
V�C

�PV�C �

H��jL� t� �� QT
CRVALL

���jL� t�A
T
LQCRV � P T

CRV PCRV �

H
 �� �QT
V�CA

T
V AV

�QV�C � �P T
V�C

�PV�C �

H� �� QT
CRVALA

T
LQCRV � P T

CRV PCRV

are regular�

The regularity of H��H� has already been proved in ���� The proof for H
 and
H� is analogous�

In ��� we obtained the following result�

Theorem 	�� Consider lumped electric circuits satisfying the assumptions of
the Tables ��� and ���� Then it holds

�� For the conventional MNA

�a� If the network contains neither L�I cutsets nor controlled C�V loops�
then the conventional MNA leads to an index�� DAE and the con�
straints are only the explicit ones

QT
C

�
ARr�A

T
Re� t� �ALjL �AV jV�

AIa�cia�c�A
T e� jL� t�

�
� �� ������

AT
V e� v�AT

Ce� jL� t� � �� ������

�b� If the network contains L�I cutsets or C�V loops� then the conven�
tional MNA leads to an index�� DAE� With regard to the constraints�
we distinguish the following three possibilities�

i� If the network does not contain an L�I cutset �but contains con�
trolled C�V loops�� then the constraints are the explicit ones�
������ and ������� and� additionally� the hidden constraint

�QT
V�CA

T
VH

��
� �AT

Ce� t�P
T
C

�
ACq

�

t�A
T
Ce� t� �ARr�A

T
Re� t� �ALjL

�AV jV �AI i�A
T e� jL� �PV�CjV � t�

�
� �QT

V�C

dvt

dt
� ��������

��



ii� If the network does not contain controlled C�V loops� but con�
tains L�I cutsets� the constraints are the explicit ones� ������
and ������� and� additionally� the hidden constraint

QT
CRV

�
ALL

���jL� t�
�
AT
Le� ��t�jL� t�

	
�AIt

dit

dt

�
� �� ����
�

iii� If the network contains L�I cutsets and C�V loops� then the con�
straints are the explicit ones� ������ and ������� and the hidden
ones ������ and ����
��

�� For the charge�oriented MNA the explicit constraints are ������� �������
�
��� and �
���� The hidden constraints are ������ and ����
�� appear�
ing under the same topological conditions as considering the conventional
MNA� The index statements coincide for the conventional and the charge�
oriented MNA�

For the sake of simplicity� we will sometimes drop the arguments of the matrices
H in the following and write a dot if they are not constant�

��� The conventional MNA

Let us now analyze the consequences Theorem ��
 for the consistent initializa�
tion�

Corollary 	�� Assume that the network contains controlled sources like the
ones described in the Tables ��� and ���� Let �e�� j�L� j

�
V � be an arbitrary initial

vector� Then we can �x values for the dynamic component of a consistent initial
vector �e�� jL�� jV �� for the system �
�����
��� in the following way

�
PC � PCAV

�QV�CH
��



�QT
V�CA

T
V

	 �
e� � e�

	
� �� �������

I �AT
LQCRVH

��
� QT

CRVAL

	 �
jL� � j�L

	
� �� ������

Note that� if the network does not contain C�V loops� then �QV�C � � holds and
equation ������ reads PC�e��e�� � �� Correspondingly� if the network does not
contain L�I cutsets� then QCRV � � and equation ������ reads jL� � j�L � ��

Corollary 	�	 If the network contains controlled sources that ful�l the condi�
tions of the Tables ��� and ���� we can� according to Corollary ���� gradually
determine consistent initial values for the system �
�����
����
Considering the splitting e� � PCe��QCPV�Ce��QCQV�CPR�CV e��QCRV e�
and jV � �

�QV�CjV ��
�PV�CjV �� we obtain a consistent initial value as follows

PCe� �� PCe
� � PCAV

�QV�CH
��



�QT
V�C

�
vt�t���AT

V PCe
�
	
�

jL� �� j�L �AT
LQCRVH

��
� QT

CRV

�
�AIt it�t���ALj

�
L

	
�

QCPV�Ce� �� QCH
��
� QT

CAV
�P T
V�C

�
�AT

V PCe� � v�AT
Ce�� jL�� t��

	
�

��



whereas the value of QCQV�CPR�CV e� can be obtained by solving the equation

P T
R�CVQ

T
V�CQ

T
C

�
ARr�A

T
R�PC �QCPV�C �QCQV�CPR�CV �e���

ALjL� �AI i�A
T
Ce�� A

T
V e�� jL�� t��

�
� ��

With these values we can then �gure out gradually that

QCRV e� �� �
�
QCRVH

��
� ���QT

CRV

	
��

ALL
���jL�� t��A

T
L �PC �QCPV�C �QCQV�CPR�CV � e�

�ALL
���jL�� t���

�

t�jL�� t�� �AIt

dit

dt
�t��

�
�

�PV�CjV � �� �H��
� AT

VQCP
T
V�CQ

T
C



ARr�A

T
Re�� t��

�ALjL� � AI i�A
T e�� jL�� t���

�
�

�QV�CjV � �� �H��
� ��� �QT

V�CA
T
VH

��
� ���P T

C

�
AT
Cq

�

t�A
T
Ce�� t��

�ARr�A
T
Re�� t�� �ALjL� �AV

�PV�CjV�

AI i�A
T e�� jL��

�PV�CjV �� t��

�
�H��

� ��� �QT
V�C

dvt

dt
�t���

Note that each time H��
� ��� � H��

� �AT
Ce�� t��� H��

� ��� � H��
� �AT

Ce�� t�� or
H��

� ��� � H��
� �jL�� t�� appear� we already know the corresponding values AT

Ce�
or jL� and can thus insert them into the expressions� On the other hand� the
Tables ��� and ��� imply that this holds analogously for the controlled sources�
Observe further that� if the network contains no C�V loops or no L�I cutsets�
then all expressions containing �QV�C or QCRV � respectively� do not appear�

Remark� Corollary ��� implies that the choice of �e�� j�L� j
�
V � is arbitrary as long

as the nonlinear equation that leads to the expression for QCQV�CPR�CV e� is
solvable�

Proof of Corollary 	���
Let us split the constraints as follows�

�P T
V�CA

T
V e � �P T

V�Cv���� ������

�QT
V�CA

T
V e �

�QT
V�Cvt� ������

P T
V�CQ

T
C �ARr�A

T
Re� t� �ALjL �AV jV �AI i���� � �� ����	�

�




P T
R�CVQ

T
V�CQ

T
C �ARr�A

T
Re� t� �ALjL �AI i���� � �� ������

QT
CRV �ALjL �AIt it� � �� ������

�QT
V�CA

T
VH

��
� ���P T

C

�
ACq

�

t�A
T
Ce� t� �ARr�A

T
Re� t� �ALjL

�AV jV �AI i���

�
� �QT

V�C

dvt

dt
� �� ������

QT
CRV

�
ALL

���jL� t�
�
AT
Le� ��t�jL� t�

	
�AIt

dit

dt

�
� �� ������

Observe that� of course� if the network does not contain L�I cutsets� we have

QT
V�CQ

T
C �ARr�A

T
Re� t� �ALjL �AI i���� � �

instead of equation ������ � and the equations ������ and ������ do not appear�
On the other hand� if the network does not contain C�V loops� then ������ reads

AT
V e � v����

whereas ������ and ������ do not appear�

We observe that each equation leads to a constraint for a particular compo�
nent of the value �e�� jL�� jV ��� but that not all its components are constrained�
Therefore� we have a certain degree of freedom for the choice of a consistent
initial vector� In particular� we note that PCe� can be chosen arbitrarily� if
equation ������ does not constrain it� Analogously� jL� is only constrained by
������ if this equation appears�

Using the projectors

�
PC � PCAV

�QV�CH
��



�QT
V�CA

T
V

	
and

�
I �AT

LQCRVH
��
� QT

CRVAL

	

we can set the values of PCe� and jL�� which can be chosen arbitrarily� precisely�
This holds because� on the one hand�

imPC �

im
�
PC � PCAV

�QV�CH
��



�QT
V�CA

T
V

	
� im

�
PCAV

�QV�CH
��



�QT
V�CA

T
V

	

holds� Moreover� since rank PCAV
�QV�CH

��



�QT
V�CA

T
V� rank �QV�C � the rela�

tion rank
�
PC � PCAV

�QV�CH
��



�QT
V�CA

T
V

	
� rank PC � rank �QV�C is ful�lled�

On the other hand� if nL denotes the number of inductive branches of the net�
work� we obtain analogously

RnL � im
�
I �AT

LQCRVH
��
� QT

CRV AL

	
� im

�
AT
LQCRVH

��
� QT

CRVAL

	
�

��



Furthermore� since rank AT
LQCRVH

��
� QT

CRVAL � rank QCRV is satis�ed�
rank

�
I �AT

LQCRVH
��
� QT

CRVAL

	
� nL� rank QCRV is given�

q�e�d�

Proof of Corollary 	�	
The representations follow directly from Corollary ���� by transformations anal�
ogous to those we made in the proof of Theorem ��� in ���� Observe that the
controlled sources that may appear do not form part of the C�V loops nor L�I
cutsets� by assumption� Therefore� it is easy to verify Corollary ���� because�
according to the Tables ��� and ���� the sources lead to expressions on the right�
hand side that already have a �xed value thanks to the preceding steps�

q�e�d�

Remark� Let us compare the previous approach to set values for the dynamic
component with the one presented in Section �� To this end� we interpret the
setting of values for the dynamic component from Corollary ��� as a projector
� of the form�

� �

�
PC � PCAV

�QV�CH
��



�QT
V�CA

T
V � �

� I �AT
LQCRVH

��
� QT

CRV AL �
� � �

�
A �

Like this� the statements of Corollary ��� can be expressed for x� � �e�� j�L� j
�
V �

and x� � �e�� jL�� jV �� in terms of ��x� �x�� � �� in analogy to the expression
PP��x� � x�� � � �cf� Section ���
Analyzing these projectors by making use of the expressions presented in ����
we note that im PP� � im � is satis�ed�
Indeed� it holds that � �� P �I � �� if � is a projector along ker�PQ�� �
S��This may be of special interest with regard to projected methods like the
one presented in �����

��� The charge�oriented MNA

For the charge�oriented MNA the results from the previous section can be
adapted�

Corollary 	�� Corollary ��� holds for the charge�oriented MNA� too�

Proof� Theorem ��
 shows that the constraints that appear for the conventional
MNA are constraints for the charge�oriented MNA� too� This implies that we
can also set the initial values analogously as we did in Corollary ����

q�e�d�

Corollary 	� The settings of Corollary ��� can be realized for the charge�
oriented MNA analogously� if we set

q� �� qC�A
T
Ce�� t���

�� �� �L�jL�� t��

additionally�

��



C

Re1 e2

v(t)

Conventional MNA

�

R
�e� � e��� jV 	 ��

�
�

R
�e� � e�� � Ce

�
� 	 ��

�e� � v�t� 	 ��

Fixing a value for the
dynamic component

e�� 	 e
�
��

Charge�oriented MNA

�

R
�e� � e�� � jV 	 ��

�
�

R
�e� � e�� � q

� 	 ��

�e� � v�t� 	 ��

q � Ce� 	 ��

Fixing a value for the
dynamic component

Explicitly q� 	 q
�
�

Implicitly e�� 	 e
�
�

and� therefore� q� 	 Ce
�
��

Figure ���� Fixing a value for the dynamic component for the conventional and
the charge�oriented MNA for an index�� example�

Proof� If we regard the equations arising from the charge�oriented MNA it
becomes clear that we can �x the values PCe� and jL� to �x the values of q�
and �� by means of the equations �
��� and �
����

q�e�d�

Remarks�

� Comparing the previous results for the initial values with those obtained
by the approach presented in Section � we note that� if the index�� case
is considered� we do not �x Px explicitely� but a part of Qx that �xes
Px� Figure ��� illustrates the di�erence� In the index�� case� this can be
interpreted correspondingly�

� Note that the Corollaries ���� ���� ��� and ��� hold for index�� and index��
systems�

� Topological consistent initialization by means

of the PROCEDURES � and �

��� Introduction

In this section we will analyze the equations described in Corollary ���

�
PC � PCAV

�QV�CH
��



�QT
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T
V

	 �
e� � e�

	
� �� ������

I �AT
LQCRVH

��
� QT

CRV AL

	 �
jL� � j�L

	
� �� �����
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and the equations that lead to the hidden constraints from Theorem ��
� i�e�

�QT
V�CA

T
V PC

de

dt
� �QT

V�C

dvt

dt
� �� �����

QT
CRV AL

djL

dt
�QT

CRVAIt

dit

dt
� �� ���
�

from a topological point of view to set up a system that allows us to calculate
a consistent initialization�

Observe that AV
�QV�CH

��



�QT
V�CA

T
V is a projector onto im�AV

�QV�C� and that

AT
LQCRVH

��
� QT

CRV AL is a projector onto im�AT
LQCRV ��

In the following our aim is to guarantee that the equations ����� � ���
� are ful�
�lled without requiring the inversion of the matrices H
 and H�� The approach
makes use of the topological properties of the network and the considerations
from above will be used for the proof� We start analyzing the projectors QC �
QCRV and �QV�C �

��� The projectors that describe the network properties

In fact� there are several possibilities to choose the projectors from De�nition
���� Since the index conditions and the manifold de�ned by the constraints are
independent of their choice� we will de�ne some speci�c projectors and explain
their meaning in terms of the network topology�

Construction of QC

To build a projector onto kerAT
C we do not have to write down the matrix AT

C

explicitly� By the following procedure� we can construct this projector with the
aid of topological considerations�

Step �

Consider all C�subgraphs of the network��

Step �
Without loss of generality� we suppose that the nodes of the network are num�
bered in such a way that� for each C�subgraph� the numbers of the nodes con�
tained in it are successive� We denote each set of nodes of a C�subgraph by
C�i� if i is the minimal node�number that appears in this set� Note that� for
this purpose� we denote the datum�node by � and the corresponding set by C����

Step �
Consider C��� if it exists� For all j � C���� j �� �� we set the j�th column of QC

�For the de
nition of a C�subgraph cf� Section �

��



equal to ��

Step 

For the remaining node�sets C�i� we do the following successively�
For the i�th column of QC we set the elements �QC�ki � k � i� ���� �max

j�C�i�j�� equal
to �� and the remaining elements equal to ��
For all the other j � C�i�� j �� i� we set the j�th column of QC equal to ��

Step �
For the remaining columns we set the diagonal element equal to � and the others
equal to ��

Theorem ��� The matrix de�ned above is a projector onto kerAT
C � if the ca�

pacitive incidence matrix AC is de�ned considering the same numbering of the
nodes�

Proof�
�� QC is a projector�
This follows directly from the diagonal block form of QC �diag�B�� ���� Bn��
whereas�

Bi � � or B� �

�
BBB
� � � � � �
� � � � � �
���

���
���

� � � � � �

�
CCCA for i � �� ���� n� �����

�� im QC � kerAT
C �

If n denotes the number of nodes of the network� it holds that

im QC � f�z�� ���� zn�� zi � zj �j � C�i�� i �� � and � zj � � �j � C���� j �� �g

� ker AT
C �

q�e�d�

Remark� The same procedure can be used to construct a projector QCRV onto
ker�ACARAV �

T if CRV�subgraphs� are considered instead of C�subgraphs�
Note that the assumptions on the numbering of the nodes made for both cases
do not come into conict with each other� To simplify further considerations�
we assume that the nodes of all CRV�subgraphs are numbered successively in a
way that the nodes of each C�subgraph are numbered successively� too� In this
way the corresponding matrices QC and QCRV are lower triangular matrices
and ful�l our purposes�

Concerning QT
CAV � To get an idea of what the projector �QV�C may look like�

we consider the entries of the matrix QT
CAV if QC is de�ned as above�

�For a de
nition of CRV�subgraphs cf� Section �

�	



� For the rows of QT
CAV that correspond to nodes that are not incident with

capacitances� the entries �� and �� remain unchanged�

� For the rows of QT
CAV that correspond to nodes that are incident with

capacitances� the multiplication of QT
C by AV results in the summation

of the � and �� that indicate the incidence of the voltage sources with
each C�subgraph� i�e�� the i�th row of QT

CAV describes the incidence of
the voltage sources with nodes of C�i�� while the j�th rows that do not
correspond to minimal elements are trivial� Of course� if the C�subgraph
C��� is considered� then all entries become zero�

Hence� each column of QT
CAV describes the incidence of one voltage source� The

columns are ordered in the same way as AV � describing the same voltage sources�

� If one column of QT
CAV becomes trivial� then the corresponding voltage

source is� at both ends� incident with the same C�subgraph� forming a part
of a relative simple C�V loop�

� If the column is not trivial� then we distinguish the following cases�

� If� in the i�th row of the considered column� there appears a ��
or a �� and the node i is not incident with capacitances� then the
corresponding voltage source leaves or enters the node� respectively�

� If� in the i�th row of the considered column� there is no zero and the
node i is the minimal node of the C�subgraph C�i�� then �� means
that the node which the voltage source leaves belongs to C�i�� and
�� means that the node the voltage source enters belongs to C�i��

Theorem ��� Let v�� ���� vr � � 	 r� be arbitrary voltage sources of the network�
These voltage sources form part of at least one C�V loop� if and only if there
exists a linear combination of the columns of QT

CAV with factors ���� and ����
that corresponds to these voltage sources�

Proof�
Without loss of generality� we assume that we can always choose the factor �����
i�e�� that the orientation of the branches coincides with the orientation of the
loop�

Again� we have to analyze separately the case that the datum node is incident
with one of the voltage sources or that one of the C�subgraphs is C����

�� Let us �rst suppose� for reasons of simplicity� that the datum node is not
incident with one of the voltage sources�

�a� If a voltage source vk is incident with the same C�subgraph at both
ends� forming a part of a C�V loop� then the respective column QT

CAV

is trivial by de�nition�

��



�b� If several voltage sources form a loop with some C�subgraphs� then�
for each C�subgraph considered� there is a voltage source that enters
and another one that leaves it� If we consider any kind of loop� it
may also occur that several voltage sources of the loop are incident
with the same C�subgraph� but there will always be as many leaving
it as entering it�
Therefore� the sum of all columns corresponding to those voltage
sources that form a part of one C�V loop is equal to zero�

�� Suppose that one of the C�subgraphs is C���� Then the corresponding
columns of QC consist if zeros� and the respective rows of QT

CAV are
trivial� too�

�a� On the one hand� if a voltage source is incident with C��� at both
ends� then the corresponding column of QT

CAV is trivial again�

�b� On the other hand� if some elements of C��� belong to a C�V loop�
then the same number of voltage sources that form part of the con�
sidered C�V loop will enter and leave C���� Consequently� also in
this case the sum of the concerned columns becomes zero�

�� Finally� we consider the case that the datum node lies between two voltage
sources that form part of one of the considered loops� but that it is not
incident with a capacitance that forms part of that C�V loop� Then�
multiplication by QT

C results in zeros instead of the corresponding entries
�� and ��� Hence� as both voltage sources are incident with the same
node� the sum of the concerned columns becomes zero again�

By construction� the inverse is true� too�
q�e�d�

Lemma ��� Consider an arbitrary network containing at least one C�V loop
and the projector �QV�C associated with it� If we consider the network that
results when deleting a voltage source that forms part of a C�V loop� then the
corresponding projector associated to this new network� say �QV���C� ful�ls

rank �QV�C � �rank �QV���C� � ��

Proof� The deletion of a voltage source of the network can be interpreted as the
deletion of the corresponding column of AV � We denote the new incidence ma�
trix by AV�� � Obviously� we thus think of QV�� as the projector onto QT

CAV�� �
On the one hand� as we just delete a voltage source that forms part of a C�V
loop� Theorem ��� implies that rank QT

CAV � rank QT
CAV�� is ful�lled� There�

fore� dim �ker QT
CAV � � dim �ker QT

CAV��� � � holds� On the other hand�
QT
CAV�� has one column less than QT

CAV �
Consequently� if nV denotes the number of voltage sources of the network� then
�QV�C is an nV �square matrix� �QV���C an �nV � ���square matrix� and the
asserted relation holds�

��



Summarizing� the deletion of the voltage source reduces the size and rank of
�QV�C by one�

q�e�d�

Lemma ��� Consider an arbitrary network containing at least one L�I cutset
and the projector QCRV associated with it� If we consider the network we obtain
when deleting an inductance that forms part of an L�I cutset and contracting the
corresponding incident nodes� then the corresponding projector associated with
this new network� say QCRV ��

� ful�ls

rank QCRV � �rank QCRV ��
� � ��

Proof� Note that by the contraction of two nodes the resulting network graph
contains one node less and� therefore� the incidence matrix of this new network
graph� say �ACARAV ALAI ���� has one row less than the original one� With
respect to the position of the deleted inductance we distinguish two possible
cases�

�� Consider the case that the inductance is incident with a node that does not
form a part of a CRV�subgraph� The deletion of such a node implies the
deletion of a column of �ACARAV AL�

T that is trivial for the submatrix
�ACARAV �

T � Therefore� this deletion reduces the rank and the size of
QCRV by one�

�� Let now the inductance we contract be incident with two di�erent CRV�
subgraphs� Then its contraction means that we join two of the CRV�
subgraphs� and thus have� for example�m�� instead ofm CRV�subgraphs�
Further� the new network obtained contains one less node than the original
one�
Recall that the de�nition of QCRV depends directly on the cardinality and
form of the CRV�subgraphs� and that its size coincides with the number
of nodes of the network and is lowered by one if we delete one node� We
consider the following two possible cases�

�a� Suppose that we delete an inductance that is incident with the CRV�
subgraph containing the datum node� i�e�� CRV ����
Then we remove exactly that node which is incident with this in�
ductance and the CRV�subgraph that does not contain the datum
node� In this case the new projector QCRV��� which projects onto
�ACARAV �

T
��� results from QCRV by deleting� on the one hand�

the row that corresponds to the minimal node of the CRV�subgraph
which the deleted node corresponds to and� on the other hand� the
symmetric column� Therefore� taking into account the block form of
QCRV � we note that we delete a column with some nonzero elements�
and that� because of the block form ������ it holds that rank QCRV�
rank QCRV�� � ��

��



�b� Let us explain now what will happen if we remove an inductance that
is not incident with CRV ���� Consider then the two nodes we want
to contract and which belong to two di�erent CRV�subgraphs� To
obtain a suitable projector� we may then proceed as follows�
First we construct a new column of the size of QCRV starting from
the two columns i� and i� that correspond to the two minimal nodes
of the CRV�subgraphs CRV �i�� and CRV �i�� which the chosen in�
ductance is incident with� de�ning its elements as � if one of these
two columns has a � in that row� and � else� i�e�� the new column is
the sum of the two others�
Then� we introduce this new column into QCRV instead of the col�
umn i� if i� � i�� Finally� we delete the column i� and the symmetric
row to obtain QCRV���
Note that QCRV�� is only of a form analogous to the projectors de�
scribed in Theorem ��� if the CRV�subgraphs were successive� but
that it is a projector in any case�

q�e�d�

��� Topological determination of the hidden constraints

With the aid of the projectors QC and QCRV de�ned in the last section we are
able to show how the equations ����� and ���
� can be interpreted in terms of
the network topology�

Theorem ��� The equations ����� and ���
� can be written down making use
of topological considerations

�� PROCEDURE �� Step � leads to the constraints ����� locating the linear
independent C�V loops�

�� PROCEDURE � leads to the constraints ���
� searching the linear inde�
pendent L�I cutsets�

Proof�
�� We already know that the number of linear independent constraints obtained
from the C�V loops coincides exactly with the rank of �QV�C � Note that in the
�j����th run of PROCEDURE �� the algorithm deletes a column of the succes�
sively resulting matrix AV�j and that the procedure continues until there are no
more linear dependent columns of QT

CAV�j � i� e�� until �QV�j�C becomes trivial�
Therefore� Lemma ��� implies that each loop considered in the procedure de�nes
exactly one constraint� and that there are no further constraints derived from
C�V loops�
Since the columns of �QV�C that are relevant for the rank describe loops made of
voltage sources and the C�subgraphs� each of such columns leads to an equation
like the ones described in PROCEDURE ��

��



�� Since �ACARAV AL�
T has full column rank� the number of linear indepen�

dent constraints that result from ���
� coincides with the rank of QT
CRV �

Therefore� Lemma ��
 implies that each L�I cutset which is considered by PRO�
CEDURE � leads to one constraint� and that there are no further constraints
resulting from L�I cutsets� When the PROCEDURE � is unable to �nd further
L�I cutsets� then the network that is considered contains only one single CRV�
subgraph that contains the datum node� Hence� the corresponding nullspace
becomes� by de�nition� trivial� In that moment the procedure stops�
Since QT

CRV multiplied by the incidence matrix describes the incidences of the
network that results form the original one by contraction of its CRV�subgraphs�
the constraints ���
� can be interpreted as the node equations of this new net�
work graph� or� of course� linear combinations of them� Therefore� the con�
straints ���
� correspond to the derivatives of the cutset equations described in
PROCEDURE ��

q�e�d�

��� Topological �xing of values for the dynamic compo�

nent

Let us now interpret the equations ����� and ����� in terms of the network
topology�

Theorem ��	 Instead of solving the system ����� and ����� to set a consistent
initial value� we can make use of the following topological considerations

�� Set an initial value for the potential di�erence between each uncoloured
node �uncoloured in the sense of PROCEDURE �� and the corresponding
minimal node of the C�subgraph which the node belongs to�

�� Set an initial value for the currents through all inductances except for those
deleted in PROCEDURE ��

Proof�
For reasons of simplicity� we start considering the assertion for the currents
through inductances�

�� Recall that� if there appear no L�I cutsets� we can set jL��j�L � � arbitrarily�
On the other hand� if they appear� then ���
� is not trivial and� in particular�
the equation

QT
CRV �ALjL �AIt it� � � �����

restricts the arbitrary setting of jL�� Each equation of this kind �xes one in�
ductive current in terms of the currents through the current sources and the
remaining inductances that form the cutset� because it is of the form�

kX
j	�

�jjLj �

�kX
�j	�

��ji�j � �� �����

�




Note that by PROCEDURE � we obtain the derivative of such equations� There�
fore� the setting performed by ����� may be interpreted as the setting of precisely
the currents through the inductances we have not deleted with PROCEDURE
�� The currents through the deleted indunctances are then �xed by equations
like ������ The solvability can easily be checked� because each deleted induc�
tance does not appear in the forthcoming equations�

�� In order to understand the setting of the node potentials� let us �rst have
a look at the meaning of the variable setting we undertake in case no C�V
loops appear in the network� Considering the de�nition of PC � we note that
PC�e� � e�� � � sets node potential di�erences between the minimal nodes i of
each C�subgraph and the remaining nodes of that C�subgraph C�i��
Of course� if the C�subgraph is C���� then it �xes its node potential�
Note that� if C�V loops appear in the network� then ����� is not trivial� and�
hence�

�QT
V�CA

T
V PCe �

�QT
V�Cv �����

restricts the setting of PCe��

Recall that the equations obtained by PROCEDURE � are sums of the deriva�
tives of the characteristic equations of the voltage sources that appear in each
independent loop� i�e�� each of them is of the form�

X
j�loop

�j

�
dej

dt
�
de�j

dt

�
�
X

j�loop

�j
dvj

dt
�

where ej denotes the node potential of the node that the voltage source j leaves�
e�j denotes the node potential of the node that the voltage source j enters� and
�j � �� or ��� depending on the orientation of the loop and on the orientation
of the branches�
Thus� the corresponding underived equations� which arise from ������ are of the
form

X
j�loop

�j�ej � e�j� �
X

j�loop

�jvj � ���	�

These equations obviously restrict the choice of the initial value we set� if no
C�V loops appear� Note that for each equation like ���	� we can pick a node m
that is incident with a capacitance� that is not a minimal node and that forms
part of the loop� If we assume that ei is the node potential of the minimal node
of the C�subgraph which m belongs to� then we can write ���	� in the following
way�

�m�em � ei� � �m�e�m � ei��

kX
j�loop

j ��m

�jej �

kX
j�loop

j ��m

�je�j �

kX
j�loop

�jvj �

��



As the loop enters and leaves the C�subgraph the same number of times� we can
rearrange the summands of the right�hand side with regard to the incidence of
the voltage sources with the C�subgraphs� Thus� em� ei is �xed if we have val�
ues for the node potential di�erences between the remaining nodes of the loop
and the corresponding minimal nodes of the C�subgraphs which they belong to�
Considering that each equation of that form �xes one of such node potential
di�erences� it makes sense to take a di�erent one for each loop� This explains
the colouring in PROCEDURE �� Note that Step � d �i� guarantees that we
can always colour a suitable node�
It remains to show the solvability of the obtained equations� For an arbitrary
colouring of as many nodes as C�V�loops appearing� equation ����� may not
be solvable� To show that there exists a unique solution for the coloring per�
formed in PROCEDURE �� we �rst note that the order in which we consider
the loops does not inuence the solution space of the system ������ Therefore�
we can suppose that the loops we �nd and the voltage sources we delete have
the same order in the Steps � and �� In this way it is easy to verify that we can
successively obtain the values for the node potential di�erences if we consider
the C�subgraphs in the same order as we did in Step �� For this� we make use
of the fact that each C�subgraph contains its corresponding minimal node and�
additionally� as many colored nodes as C�V�loops it forms with the correspond�
ing subgraph G� Note that� by construction� the successively de�ned subgraphs
G never form C�V loops themselves� Therefore� there always exists a voltage
source that forms part of the loops considered in the Steps ��e�ii ���e�iii and that
is incident with a node k of the C�subgraph for which an expression �ek � ei�
is given� In this way� we can calculate values �ek � ei� for all colored nodes of
that C�subgraph successively and go on with the next one�

q�e�d�

��	 Recapitulation

Theorem ��� follows directly from the ones proved above and resumes the results
with regard to the consistent initialization� Theorem ��� results by a straight
forward computation�

We conclude this section with a few comments on the meaning of the �xing
of values for the dynamic component� Remember that we set up the circuit
equations �
��� � �
��� making use of KCL for the nodes and writing down the
characteristic equations of the voltage de�ning elements� When we initialize
index � or index � systems� we just give values to its dynamic variables� Addi�
tionally� the input functions� i� e�� the independent voltage and current sources�
assign values� too� Taking this into account� the consistent initialization exactly
guarantees that Kirchho��s Current and Voltage Laws are ful�lled for all cutset
and loops� respectively� in the index�� case� In the index � and index � cases�
this occurs by construction� but in the index�� case we have to take care for it�
i� e�� we cannot assign an initial value to all dynamic variables� That means� for

��



each independent L�I cutset the current of one of the inductances results from
KCL and for each independent C�V loop one node potential results from the
KVL�
Note that capacitive loops do not lead to initialization problems because the
dynamic variables are the voltages across the branches� i�e�� the node potential
di�erences of the capacitive nodes�

� Examples

Example �� Consider the NAND�Gate� from Figure 	��� PROCEDURE �
colours the nodes �� and �� because no capacitances are incident with them�
and then �nds three C�V loops and colours the nodes �� 	 and ��� For the
remaining nodes� we can prescribe an arbitrary initial node potential�
�QT
V�CA

T
V e�

�QT
V�Cv��� � � is given by�

�e
 � V��

�e� � V��

�e�� � VBB �

Example �� Consider the tree of an oscillator�� from Figure 	��� PROCE�
DURE � could delete� for instance� Ld� LS and LG�� Therefore� if we prescribe
initial values for the currents through LG�� Lg and LS�� a consistent initial value
can be computed�
QT
CRVALjL �QT

CRV AI i��� � � is given by�

�jLG� � jLG� � jLg � ��

�jLS � jLg � jLd � ��

�jLS� � jLS � ��

� Conclusion

In this article we show how to make use of the special structure of the equa�
tions obtained by means of the MNA in electric circuit simulation with regard
to consistent initialization� The structural properties have been interpreted
topologically to provide a selection of variables to �x values for the dynamic
component similarly to �����
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