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Chapter 1

Introduction

This thesis considers data which are functional in that each observation is a real

function. Most often the functions are discretely sampled, that means there is only

a finite set of distinct points with corresponding observed functional values which

must be used to estimate the underlying function. The basis function approach

reduces the estimation of a function to the estimation of a finite linear combination

of known basis functions. Since dealing with functional data and its analysis is

very computationally intensive, this thesis provides furthermore an implementation

approach using the interactive statistical computing environment XploRe. Chapter

2 gives a short introduction to the nature of functional data, its representation by

the basis function approach, and the main principles of implementation.

Chapter 3 deals in more detail with the theoretical background as well as aspects

of implementation of the three most important families of basis functions: the

Fourier basis, the polynomial basis and the B-spline basis. The main emphasis is

put on the latter.

Chapter 4 describes different smoothing methods for estimating the coefficients

of the basis expansions. Chapter 5 finally summarizes the main important facts

and provides a short outlook on further aspects of functional data analysis and

their implementation.



Chapter 2

Functional Data

2.1 Definition of Functional Data

In an increasing number of problems in a wide range of fields, the data observed

are not the univariate or multivariate observations of classical statistics, but are

functions attributable to an underlying infinite dimensional process.

Experimental economics, for instance, investigates the willingness to pay de-

pending on the amount of risk, which is a natural continuum. Stock and option

prices in finance are often treated as functions of time as in the Black-Scholes for-

mula, and implied volatilities display time dependent functional patterns across

strikes K and term structure τ , see Black & Scholes (1973). Growth curves, re-

action time distributions, and learning curves evolve continuously over time. In

engineering it is quite common to model continuous technical dynamic systems,

and the EEG and EMG records in medicine depict continuous processes. All these

examples share the property of being functionals of a continuous variable, most

often of time. The sophisticated on-line sensing and monitoring equipment which

is now routinely used for data collection in many fields makes it possible for the

study of data which are functions to be done. But this changes the kind of the

underlying sample space.

Formally, a given sample X = {X1, . . . , Xn} of independent observations is

the measurable mapping X : (Ω,A,P) → (H,H), where (Ω,A,P) is a probability

space, with Ω the set of all elementary events, a sigma algebra A of subsets of
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Ω, and a probability measure P defined on A; H is a measurable sample space

and H is a sigma algebra on H. In the case of multivariate data X is a (n × p)

random matrix containing n observations of p-dimensional row vectors of p (one-

dimensional) random variables (2 ≤ p <∞), andH is a p-dimensional vector space,

e.g. the p-dimensional Euclidean space Rp. If X consists of random functions then

H turns into a function space.

Since it is a function we denote the ith observation as Xi(t), i = 1, . . . , n of

some argument t. It will be assumed that the functions are observed on a finite

interval J = [tL, tU ] ⊂ R, where tL and tU denotes the lower and upper bound,

respectively. In the case when t is interpreted as time the random function Xi(t)

is called the ith realization of a continuous stochastic process X(t) ∈ H. Since this

is mostly the case, we will refer to stochastic processes in the following.

In many cases, the observations will be single functions, but there are also ap-

plications where the functions are surfaces observed over two- or three-dimensional

space, such as implied volatilities or spatial data. More generally, if Xi(t) is a

vector of m variables Xi1(t), . . . , Xim(t) then the observed data curves {Xi(t)}n
i=1

are independent realizations of an m-dimensional continuous stochastic process.

When analyzing sampled random functions, it is natural to consider each curve

as a single observations, to summarize the functions in terms of a mean function,

and to measure in some way the variation of the functions about this mean. Ram-

say & Dalzell (1991) introduce the name functional data analysis (FDA) to the

analysis of data of this kind which leads to the following definition:

Definition 1 (Functional Data) A sample X = {X1, . . . , Xn} is called func-

tional data when the ith observation is a real function Xi(t), t ∈ J, i = 1, . . . , n,

and hence, each Xi(t) is a point in some function space H.

To avoid confusion, a single functional datum, that means a single observed

function, is a called a replication. Functional data in turn is a random sample of

replications. If the argument t is interpreted as time, the ith replication is also

referred to as ith realization of the underlying continuous stochastic process X(t).
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According to Ramsay (1982) there were two lines of development in dealing

with functional data. The first had been the expression of traditional data analytic

technology in the language of functional analysis. This goes back in particular

to the French school of analyse des données, see the monographs of Cailliez &

Pagès (1976) and Dauxois & Pousse (1976) for introduction. The second line of

development had been the statistical application of spline functions, especially in

the scope of nonparametric function estimation. See Silverman (1985), and Green &

Silverman (1994) for details. In recent years, an increasing number of publications

on functional data analysis has been evolved. Among them were applications in

various fields of science as well as theoretical essays. With Ramsay & Silverman

(1997) and Ramsay & Silverman (2002) also two textbooks on functional data

analysis are available.

Many FDA methods are adaptions of classical multivariate methods such as

principal components analysis (PCA), linear modeling, and analysis of variance.

When analyzing the variation within and between functions, derivatives will be

used extensively. Furthermore, the related concepts of roughness and smoothness

of functions play a crucial role. These concepts will be introduced in the next

section.

2.2 Roughness and Smoothness of Functions

Due to the insight of Ramsay (1997), it is the smoothness of the process generating

functional data that differentiates this type of data from more classical multivariate

observations. This smoothness ensures that the information in the derivatives of

functions can be used in a reasonable way.

Derivatives also play an important role in scientific models. Often it is more

interesting how rapidly and to which amount a system responds rather than its

actual level of response. Furthermore, as described by Ramsay & Silverman (2002)

the first and the second derivatives can reflect the energy exchange within a system.

Especially in the natural sciences and in engineering, derivatives are also needed to
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construct models for data based on differential equations. In many fields such as

pharmacokinetics and industrial process control differential equations are especially

useful when feedback or input/output models are to be developed to control the

behavior of systems.

For ease of notation form = −1, 0, 1, 2, . . . we introduce the differential operator

Dmf(t) def=
dmf(t)
dtm

= f (m)(t),m ≥ 1, (2.1)

with D0f(t) = f(t) and

D−1f(t) =
∫ t

tL

f(s)ds.

Furthermore, the concept of inner products is needed. In the scope of this paper

it is sufficient to define inner products only for real function spaces. For a more

general definition, see, for example, Simmons (1963).

Definition 2 An inner product on the real function space H is a function 〈·, ·〉

defined on H×H with values in R and satisfying the properties

1. 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉,

2. 〈x, y〉 = 〈y, x〉,

3. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0, iff x = 0

for all x, y, z ∈ H; a, b ∈ R.

One easy way to quantify the degree of smoothness of a function is to use the

adjoined concept of roughness. Following Leurgans, Moyeed & Silverman (1993),

roughness is a measure of the rapidity of variability of a function f(t). It is gen-

erated by a positive definite quadratic form defined for functions f, g with square

integrable mth derivative as

PENm(f, g) def=
∫

J
Dmf(t)Dmg(t)dt. (2.2)

Here, the notation PENm(•) is used because the concept of roughness will be

primarily needed as penalty terms for smoothing techniques. See Chapter 4 for

details. It is obvious that the roughness is an inner product.
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The roughness of any particular function f is then quantified by setting f = g

in the quadratic form, to give

PENm(f) =
∫

J
{Dmf(t)}2dt. (2.3)

This allows to measure the closeness of f(t) to a polynomial of order m, see Defi-

nition 5.

One special case of roughness is total curvature. The curvature of a function

f(t), t ∈ J is defined as its squared second derivative {D2f(t)}2 and measures the

deviation of f(t) from being a linear function at t. Integrating on all arguments,

respectively the whole interval of interest J , yields the total curvature as

PEN2(f) =
∫

J
{D2f(t)}2dt. (2.4)

Often there is a need for a wider class of measures of deviation. Especially,

when there is periodicity in the data or an exponential trend, it would not be

sufficient to use the integrated squared mth derivative, because it can only penalize

deviations from polynomials. On the other hand, it may be that, locally at least,

the function f(t) should ideally satisfy a particular differential equation, and we

may wish to penalize departure from this. This can be done by using a linear

differential operator defined as follows:

Definition 3 The linear differential operator (LDO) L is defined as

Lf(t) = w0(t)f(t) + w1(t)Df(t) + . . .+ wm−1(t)Dm−1f(t) +Dmf(t), (2.5)

where the coefficients wi, i = 0, . . . ,m − 1 may either be constants or functions of

t ∈ J .

The roughness is then given by PENL(f) =
∫
J{Lf(t)}2dt. It is obvious that (2.3)

and (2.4) are special cases of LDOs.

Depending on the underlying LDO the degree of smoothness of a function

f(t), t ∈ J can be derived from the numerical value of the accompanied rough-

ness. Since roughness is a quadratic form, the degree of smoothness is also non-
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negative. The lower the roughness, the higher is the smoothness of the function.

If PENL(f) ≡ 0 then f is called to be ”hypersmooth”.

The concept of smoothness is essential in Chapter 4 when the coefficients of

the basis expansions will be estimated. The degree of smoothness is one competing

factor in smoothing discretely observed functional data by functions, besides the

squared bias.

2.3 Observed Functional Data

Although in functional data analysis the ith observation is a real function, func-

tional data are usually observed and recorded discretely. Typically, the sample

data contain a number of n independent replications and the record of replica-

tion Xi(t), i = 1, . . . , n might consist of ni pairs {tij , yij}, j = 1, . . . , ni, where tij

denotes the argument, and yij the observed functional value.

The choice of tij is very nonrestrictive, e. g. the argument values may vary

between the records and need not to be equally spaced. Furthermore, the number

of observations ni can differ between the records. But nevertheless, the argument

should lie in the range of values of interest, that means tij ∈ J for all i, j.

Usually the functional observations could not be observed without some random

noise. Let yi = (yi1, . . . , yini)
>, ti = (ti1, . . . , tini)

>, and εi = (εi1, . . . , εini)
>. An

adequate model of the underlying relationship between sample data and the true

functional values Xi(ti) is

yi = Xi(ti) + εi, (2.6)

where εi is assumed to be an unobservable error term with εi ∼ N(0,Σi) and Σi =

diag(σ2
i1, . . . , σ

2
ini

). The observed data yi are separated into two components, where

the structural component Xi(ti) has some simple or interpretable or otherwise

interesting low dimensional structure and the residual component εi is viewed as

noise, unwanted variation or possibly as data ready for further exploration. This

separation is possible because we observe several realizations of the underlying

stochastic process.
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In a first step these discrete sample data must be put into functional form, or

more precisely into smooth functions. Since some random noise is included in the

data the appropriate class of methods are smoothing techniques.

2.4 The Basis Function Approach

For representing functional data as smooth functions a flexible method is needed

that can track local curvature and provides a sufficient number of derivatives. One

such method is the basis function approach, a generalization of the linear regression

approach. The main idea is to replace the vector of inputs t with transformations

of t, and then to use linear models in this new space of derived input features, see

Hastie, Tibshirani & Friedman (2001).

In order to develop the theory of the basis function approach, some assumptions

of the underlying stochastic process X(t), t ∈ J are necessary. In the following the

space H is assumed to be a separable Hilbert space of measurable functions. The

first and second order moments of X(t) are assumed to exist and to be finite:

Xµ(t) = EX(t), t ∈ J, (2.7)

VarX(t) = E{X(t)− EX(t)}2, t ∈ J, (2.8)

ΓX(s, t) = E{X(s)− EX(s)}{X(t)− EX(t)}, s, t ∈ J. (2.9)

In order to simplify the notation, it is assumed that Xµ(t) = 0, t ∈ J .

Definition 4 A real function K(s, t) with the properties

1. K(s, t) = K(t, s),

2.
∑N

s=1

∑N
t=1K(s, t)αsαt ≥ 0, for any N ≥ 1;αs, αt ∈ R; s, t ∈ J

is called a positive-definite kernel on J2.

The corresponding space of functions HK is called a reproducing kernel Hilbert

space (RKHS), since K(s, t) possesses the reproducing property of HK

〈K(·, s),K(·, t)〉HK
= K(s, t), (2.10)
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where 〈·, ·〉HK
denotes the inner product induced by K. It is obvious that ΓX(s, t)

is a kernel. Hence, for every continuous stochastic process with finite second order

moments there exists a RKHS. See e.g. Istrǎţescu (1987) for the proof and a further

discussion of reproducing kernels.

The concept of RKHS is used to estimate the ith realization of a continuous

stochastic process out of a finite set of discrete observations {tij , yij}ni
j=1. Equation

(2.6) suggests a regression approach. One possibility is to minimize the penalized

residual sum of squares

min
Xi∈HK

[
{yi −Xi(ti)}> {yi −Xi(ti)}+ λPEN2(Xi)

]
, (2.11)

where λ is a smoothing parameter. More details on penalized regression are given

in Section 4.1. Wahba (1990) shows that the solution to (2.11) and even to a more

general class of penalized regression problems has the form of the finite-dimensional

linear combination

X̂i(t) =
K∑

k=1

cikφk(t), cik ∈ R;K <∞ (2.12)

where φk(t) = K(k, t) is a real-valued function whose values at t ∈ J is K(k, t).

The function φk(t) is known as the representer of evaluation at k in HK , since for

Xi(t) ∈ HK , it holds that 〈K(·, k), Xi〉 = Xi(k), see Hastie, Tibshirani & Friedman

(2001).

It can be shown that X̂i(t) in (2.12) converges to Xi(t) in quadratic mean as

K → ∞ uniformly in t ∈ J . See Wahba (1990) for the proof. It will be assumed

that at least part of the variation of the ith replication can be accounted for in

terms of (2.12). Hence, to ease notation we write Xi(t) instead of X̂i(t).

Following Hastie, Tibshirani & Friedman (2001) the functions φk(t) are referred

to as basis functions, since they are basis functions of a K-dimensional subspace

of HK . For details on the so called ”partitioning principle” see Ramsay & Dalzell

(1991). Hence, (2.12) is a basis function expansions, or shorter basis expansion. The

estimation of Xi(t) using (2.12) is therefore called the ”Basis Function Approach”.
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In order to ease notation the following vectors and matrices are introduced

introduced for a finite dimensional vector ti of arguments

Xi(ti) = Φ(ti)ci, (2.13)

where Xi(ti) = {Xi(ti1), . . . , Xi(tini)}>,

Φ(ti) = {φ1(ti), . . . , φK(ti)} =

 φ1(ti1) . . . φK(ti1)
...

. . .
...

φ1(tini) . . . φK(tini)


is a (ni ×K) matrix and ci = (ci1, . . . , ciK)>.

The basis function approach impose a finite-dimensional structure on the esti-

mation problem, by restricting the choice of Xi(t) to the span of a prescribed set

of basis functions φ1, . . . , φK . Estimating the ith realization Xi(t) of a continuous

stochastic process reduces to the use of a suitable set of simple structured basis

functions and the estimation of the unknown coefficients cik of the basis expansion.

In the scope of functional data analysis the same basis is used for all replica-

tions, since an adjusting to the requirements of one specific replication Xi(t) can

sufficiently be made by the vector of coefficients ci. In the case of multiple func-

tions, the basis expansion might also vary between the variables, as in the case of

simultaneously involved periodic and non-periodic variables.

The advantage of the basis function approach is that nonlinearity and local

features in the data can be easily absorbed by the basis functions while the model

is still linear in the transformations. Also, when computing the mth derivative of

Xi(t), this simplifies to computing the mth derivative of the basis functions. Hence,

the property of being smooth is primarily left to appropriate basis functions. When

evaluating a sample of functional observations computational effort is reduced,

because the basis functions have only to be calculated once.

The more basis functions are involved, the more complex the fitted function can

be. The degree to which the data yj are smoothed, rather than exactly reproduced

or interpolated, is determined by the number K of basis functions, see Ramsay

(1997).
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Several basis function approaches will be presented in Chapter 3. On how to

estimate the coefficients ci, i = 1, . . . , n will be dealt with in Chapter 4.

2.5 Implementing Functional Data Analysis in XploRe

Since dealing with functional data and its analysis is very computationally inten-

sive, some suitable software is necessary. The main problem arises from the fact

that functional data are functions but usually it is not possible to store a functional

mapping on a computer directly. Often, we can only store discrete arrays.

The interactive statistical computing environment XploRe is a matrix based

language which allows for the computation of arrays up to eight dimensions. The

main advantage for FDA purposes is that XploRe allows to store a functional map-

ping directly when it is already known before runtime by a proc-endp environment.

This makes it especially easy to design LDOs with variable coefficients, as will be il-

lustrated later on. Furthermore, XploRe has the possibility to include dynamically

linked libraries (DLLs). This allows for fast computation of complex algorithms

by using other softwares, such as C++. How to store functional data for further

analysis will be described in the next subsection.

2.5.1 Objects for Functional Data Analysis in XploRe

For a single functional replication several pieces of information are needed at least to

identify one specific functional basis, e.g. the number and type of basis functions,

parameters for the basis functions, or the range of interest, see Ramsay (2003).

Fortunately, XploRe has the capacity to define a single compound variable that

can contain several pieces of information of varying types, such as scalars, vectors,

strings, arrays etc. These are list variables.

In the spirit of object-oriented programming a class is a specification for a list

that pre-specifies its structure. According to Ramsay (2003) a class specifies the

type and gives a name for each piece of information in the compound variable but

furthermore, gives a type name to the compound object itself. Assigning a class
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name to a list allows the XploRe interpreter to know in advance what its internal

elements are.

Objects are specific variables created so as to conform to the specification in a

specific class. In the functional data context, for example, a functional data object,

called an fd object, in its simplest version conforms to the functional data class

that specifies that the object will have an array of numbers that are the coefficients

for basis function expansion, and another object called fdbasis object that specifies

a basis for the expansion, as described in Ramsay (2003).

There are four different objects needed for FDA in XploRe:

• an fdbasis object that specifies a basis for the expansion,

• an fd object that contains an array of coefficients for the basis expansion and

the underlying fdbasis object,

• a linear differential operator called LDO object, what in turn is only necessary

when dealing with LDOs with variable coefficients, and

• a bifd object which consists of an array of coefficients and two underlying

fdbasis objects. They arise naturally when dealing with covariance and cor-

relation functions of fd objects. bifd objects are different in the way that they

depend on two arguments.

fdbasis objects are created by the quantlet createfdbasis. They are a list

consisting of the elements ”type”, ”range”, ”nbasis”, and ”params”. See Section

3.5 for further details. fd objects are created by the quantlet data2fd. They are a

list consisting of the elements coef, and the underlying fdbasis object. The quant-

let data2fd will be described in Section 4.3. Generating LDO objects contains of

two parts. First, the user has to define the LDO in a proc-endp environment. Af-

terwards the LDO object must be created, either by using the createLDO quantlet

or by directly using the list concept. The following example illustrates the imple-

mentation of the LDO L = w1D + w2D
3 with w1(t) = 1.25t and w2(t) = 0.5t2:
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proc (wt) = LDO1 (evalarg)

wt = matrix (2, rows (evalarg), cols (evalarg))

wt[1] = 1.25 .* evalarg

wt[2] = 0.5 .* evalarg^2

endp

LDO = createLDO ("LDO1", #(1, 3))

LDOexample.xpl

The input parameter is the matrix of argument values, the output parameter

is an array where the first dimension coincides with the number of summands in

the LDO, the second and third are the rows and columns of the input parameter,

respectively. Note that this form must always be held. The single summands of

the LDO (here wt[1] and wt[2]) will be defined and computed inside the environ-

ment. Afterwards the LDO object can be created using the quantlet createLDO.

Its first input parameter is a string containing the name of the proc-endp environ-

ment where the LDO is defined, the second is a vector containing the number of

derivatives which will be needed for the single summands of the LDO. The output

is an LDO object, here called ”LDO”.

Up to now bifd objects are only needed for specific transformations of basis

expansions as in the case of covariances. From the theoretical point of view, there

could also be an underlying stochastic process depending on more than one argu-

ment. In practice, it might be difficult to find another continuum that is observed

additionally to time. Therefore in most cases it is sufficient to deal with several

variables but with the same argument.

2.5.2 Three Steps in an FDA

Figure 2.1 illustrates the three typical steps in doing functional data analysis. In a

first step, the fd object has to be created out of the discrete input data. According

to the basis function approach in Section 2.4 this can be divided into two sub-steps.

At the beginning, a system of basis functions must be specified. This will

contain different types of information, such as a string indicating the type of basis,

http://www.quantlet.de/codes//LDOexample.html
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Figure 2.1: Three Steps in Functional Data Analysis.

the lower and upper bounds of the interval of interest as a vector containing two

elements, the number of basis functions as an integer, and an array of parameters

which specify the basis. All this is stored in a functional object called fdbasis. How

to create and evaluate fdbasis objects will be described in Section 3.5. Afterwards,

the fdbasis object will be used to estimate to coefficients of the basis expansion.

Smoothing Methods for functional data are described in Chapter 4. Hence, the fd

object will contain two elements, an array of coefficients for the sample of functional

observations and the fdbasis object it refers to. How to create and evaluate fd

objects will be shown in Section 4.3.

In a second step, basic statistical and graphical tools will be applied to the

fd object. This covers functions used to display and summarize functional data,

such as means, standard deviations, variances, covariances and correlations. Also

one initial step in functional data analysis, a method called registration, might

be placed here. The third step finally applies the typical FDA methods to the fd

object. This paper only covers the first step.
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Figure 2.2: System of Quantlets for FDA.

Efficient implementation requires a system of quantlets which is shown in Figure

2.2, where an arrow indicates the direct use of a quantlet at a lower stage or a lower

position, respectively.

The system architecture consists of hierarchically ordered phases. This enables

a simple handling of future extensions. In general, only the quantlets at one stage

must be adjusted then. For example, when implementing localized basis function

estimation (see Section 4.4 for details) only the quantlets data2fd and evalfd at

the fourth stage must be adjusted. Of course, the already implemented quantlets

just cover the most important cases. Therefore remarks and hints on future exten-

sions are given in the following chapters as often as possible.

The computation of basis functions, their derivatives as well as linear differ-

ential operators applied on them is essential for functional data analysis. The

main important basis expansions and their computation are presented in the next

chapter.



Chapter 3

Basis Expansions

The basis functions will be chosen so that their span includes good approximations

to most smooth functions. Since they have to represent the underlying structure in

the sample data they must be able to flexibly exhibit the required curvature where

needed, but also to be nearly linear when appropriate. Furthermore, for computa-

tional reasons they should be fast to compute and easy to evaluate. Especially for

FDA purpose they must be differentiable as often as required.

This paper covers the three most common bases: Fourier bases, polynomial

bases, and B-spline bases. Fourier series are known to model periodic functions

and they also might be useful for periodic data with a fixed and known frequency.

They are dealt with in Section 3.2. Polynomials are easy to compute but also very

inflexible. They seem to be appropriate only for simple data structures without a

lot of local features. Polynomials will be introduced in Section 3.3. B-splines are a

very often used class of bases for non-periodic data in the functional data context.

Especially, their compact support and the fast computation as well as the ability to

create appropriate and smooth approximations of the underlying data favor their

extensive usage. They will be treated in Section 3.4. Finally Section 3.5 collects

all necessary information in order to compute fdbasis objects in XploRe.

Ramsay (2003) provides additional basis expansions, such as the exponential

basis with

φk(t) = exp {αkt}, k = 1, . . . ,K, (3.1)



3.1 Basis Expansions in XploRe 17

where αk is a rate parameter, and the power basis, consisting of a sequence of

possibly non-integer powers, including negative powers, of the argument t that

is required to be positive. Another possible class of basis functions arises out of

expanding a square integrable function in terms of wavelet series. The discrete

wavelet transform (DWT) is a fast, orthogonal series expansion that operates on

a data vector whose length is an integer power of two, transforming it into a

numerically different vector of the same length. DWT can be viewed as a rotation in

function space, from the input space or time domain, where the basis functions are

the unit vectors, to a different domain, see Press et al. (2002). For an introduction

to wavelets see e.g. Härdle et al. (1998), or Daubechies (1992). XploRe already

provides the twave library to deal with wavelets. Nevertheless using wavelet bases

is beyond the scope of this paper.

For users with special bases in mind that are not available so far the next

section gives an overview on the general concept of implementing basis expansions

in XploRe.

3.1 Basis Expansions in XploRe

Basis expansions in XploRe are provided by the so called evalgd quantlets. They

contain all specific computation algorithms for a certain class of basis expansions.

Currently, the existing evalgd quantlets

• Fourierevalgd,

• polyevalgd, and

• Bsplineevalgd

allow for computing the actual basis and all of its derivatives. If, for example,

for future purpose the definite integrals of a basis are needed, then the necessary

algorithms might also to be included in these quantlets.

The evalgd quantlets can only compute derivatives, but not LDOs. The quant-

let getbasismatrix at the next stage (see Figure 2.2) will be needed for that
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purpose. The idea behind this decomposition is to include the check, whether the

corresponding input parameter is an LDO object, only once in the getbasismatrix

quantlet, instead several times in the evalgd quantlets. This reduces extension ex-

penditure. Furthermore, if some additional operator checks, such as for nonlinear

differential operators, may be needed in future, they should also be included in the

getbasismatrix quantlet.

The evalgd quantlets are needed to have the following input parameters, maybe

in a different order:

argvals: a (n × p) matrix of argument values which the bases should be evalu-

ated at. To use a matrix will be primarily necessary when evaluating bifd

objects, or during the estimation of the basis expansion coefficients if several

replications are observed for different arguments.

deriv: a (r× 1) vector of non-negative integers, indicating the order of derivatives

to compute. The possibility to compute several derivatives simultaneously is

especially necessary for using LDOs because computation time is reduced.

params: some additional parameters, needed for identification or specification

purposes. E.g. the period when using Fourier bases (see Section 3.2).

The output is a (n×K × r× p) array, where the first dimension n corresponds

with the number of rows in argvals, the second dimension K corresponds to the

number of basis functions, the third dimension r corresponds to the number of

derivatives to compute, and the fourth dimension p corresponds to the number of

columns in argvals.

In the following three section, the already implemented evalgd quantlets and

their theoretical background will be displayed.
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3.2 Fourier Bases

phi = Fourierevalgd (xvec, nbasis, period{, deriv})
evaluates the fourier basis on xvec

Trigonometric functions are most widely used for approximating periodic func-

tions. As known from theory of Fourier series a periodic function f(t) can be

represented in terms of a finite or infinite Fourier series

f̂(t) = c0 + c1 sinωt+ c2 cosωt+ c3 sin 2ωt+ c4 cos 2ωt+ . . . . (3.2)

where ω = 2π
T is a known frequency. The period T usually coincides with the

interval J of interest. For their additive structure Fourier series can be easily used

as basis expansion.

Let K be an even integer, then the Fourier bases is defined by

φ0(t) =
1√
T
, (3.3)

φ2r−1(t) =
1√
T/2

sin rωt, (3.4)

φ2r(t) =
1√
T/2

cos rωt, (3.5)

for r = 1, . . . ,K/2. By the coefficients 1√
T

and 1√
T/2

, the basis functions become

orthonormal, that means∫
T
φk1(t)φk2(t)dt =

{
0, k1 6= k2,
1, k1 = k2

(3.6)

for k1, k2 = 0, . . . ,K.

Since each derivative of a trigonometric function is a shift by T/4 to the right,

the mth derivatives of Fourier bases can be computed by

Dmφ0(t) = 0,m ≥ 1 (3.7)

Dmφ2r−1(t) = (rω)m sin(rωt+
mπ

2ω
),m ≥ 0, (3.8)

Dmφ2r(t) = (rω)m cos(rωt+
mπ

2ω
),m ≥ 0 (3.9)

for r = 1, . . . ,K/2.
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The quantlet Fourierevalgd allows to compute Fourier bases and one or more

of their derivatives simultaneously for a matrix of arguments. Its syntax is

phi = Fourierevalgd (xvec, nbasis, period{, deriv})

with input parameters

xvec - a (p× q) matrix of arguments where the Fourier bases should be evaluated

at.

nbasis - a scalar, dimension of the functional basis

period - a scalar, period of functions

deriv - a (r × 1) vector containing order of derivative(s), if not the actual bases

will be computed

This quantlet returns a (p× nbasis× r× q) array, where one row contains the

evaluated bases for one argument. One example of actual Fourier bases for period

T = 10 and K = 5 is given in Figure 3.1.

Figure 3.1: Five Fourier Bases for period T = 10.

fb1.xpl

A Fourier series is especially useful for extremely stable functions, meaning

functions where there are no strong local features and where the curvature tends

http://www.quantlet.de/codes//fb1.html
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to be of the same order in the whole interval J . They generally yield expansions

which are uniformly smooth, but they are inappropriate to some degree for data

known or suspected to reflect discontinuities in the function itself or in low-order

derivatives. Also, they cannot exhibit very local features without using a large

number of bases. See Ramsay & Silverman (1997).

3.3 Polynomial Bases

phi = polyevalgd (xvec, nbasis{, deriv{, omega}})
computes polynomial basis matrix

Besides trigonometric functions, which are appropriate to approximate periodic

functional behavior, polynomials are used for approximating non-periodic func-

tions. According to the notation of de Boor (1978) and Schumaker (1981), we

introduce the following definition.

Definition 5 (Polynomial) A polynomial of order K is defined as

p(t) = c0 + c1t+ . . .+ cK−1t
K−1 =

K−1∑
k=0

ckt
k. (3.10)

This kind of definition will moreover be useful when dealing with B-splines in

Section 3.4.

A slightly modified version of (3.10) can be used for basis function expansion.

In this context, the k-th basis function is described as

φk(t) = (t− ω)k, k = 0, 1, . . . ,K − 1. (3.11)

In (3.11), ω represents a constant shift parameter, which helps to keep the polyno-

mials from getting too ill-conditioned. The mth derivative of φk(t) is

Dmφk(t) = k(k − 1) . . . (k −m+ 1)(t− ω)(k−m), k = 0, 1, . . . ,K − 1, (3.12)

for m = 1, 2, . . ..
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The quantlet polyevalgd computes polynomial bases and one or more of their

derivatives simultaneously for a vector of arguments. Its syntax is

phi = polyevalgd (xvec, nbasis{, deriv{, omega}})

with input parameters

xvec - a (p × q) matrix of arguments where the polynomial bases should be eval-

uated at.

nbasis - a scalar, indicating the dimension of the functional basis

deriv - a (r × 1) vector containing order of derivative(s), if not the actual bases

will be computed

omega - an optional scalar, indicating the shift parameter, if not omega will be set

to zero

This quantlet returns a (p× nbasis× r× q) array, where one row contains the

evaluated bases for one argument. One example of actual polynomial bases for the

interval J = [0, 1.1] is given in Figure 3.2.

Figure 3.2: Ten polynomial bases for J = [0, 1.1].

pb1.xpl

http://www.quantlet.de/codes//pb1.html
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While polynomials are evaluated, differentiated and integrated easily and in

finitely many steps using just the basic arithmetic operations, they also have some

unpleasant limitations. With increasing order there arise strong oscillations. They

are inflexible to capture local features and often only bad approximate at the end of

large intervals. Furthermore, they are very sensitive to the choice of interpolation

points and depend globally on local properties.

Nevertheless, polynomials seem to do well on sufficiently small intervals and

with low order. This suggests that in order to achieve a class of approximating

functions with greater flexibility, the interval of interest should be subdivided into

smaller pieces, and the function might be approximated by locally defined polyno-

mials of relatively low degree. This is the motivation behind piecewise polynomials,

splines and finally B-splines, which are all dealt with in the next section.

3.4 B-spline Bases

B-splines are widely used for basis expansions in the FDA context. They can

model sharp changes in the underlying function as well as its smooth variation.

Their band-structured matrix of values, as well as a fast computation favor an

extensive usage. Technically, B-splines are a basis of a certain subspace of the

space of piecewise polynomials and therefore a wider scope of theory is necessary

to introduce them. The concept of piecewise polynomial functions in Subsection

3.4.1, followed by the definition of polynomial splines in Subsection 3.4.2 provide

the mathematical background of B-splines and their main properties, which will be

dealt with in Subsections 3.4.3 to 3.4.5. Since the effort for computing B-splines is

more extensive Subsection 3.4.6 is reserved for that.

3.4.1 Piecewise Polynomial Functions

Divide the interval J = [tL, tU ] into m subintervals by a strictly increasing sequence

of points ξ = {ξi}m+1
i=1 , with tL = ξ1 < ξ2 < . . . < ξm < ξm+1 = tU . The points ξi

are called breakpoints. The idea of piecewise polynomial functions is stated in the
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following definition.

Definition 6 Let K be a positive integer. Then the corresponding piecewise poly-

nomial function f(t) of order K is defined by

f(t) def= pi(t) =
K−1∑
j=0

cijt
jI{t ∈ [ξi, ξi+1)}, i = 1, . . . ,m, (3.13)

where

I(t ∈ A) def=
{

1, t ∈ A
0, otherwise

is the indicator function defined on a set A.

Here the indicator function I(·) is used to make sure that only one piecewise

polynomial is defined on each subinterval.

One convenient basis function representation of (3.13) is

f(t) =
m∑

i=1

K−1∑
j=0

cijφij(t), (3.14)

where

φij(t) = tjI{t ∈ [ξi, ξi+1)}. (3.15)

Two piecewise polynomial functions agree if they consist of the same polyno-

mial pieces, broken at the same points. The collection of all piecewise polynomial

functions of orderK with breakpoint sequence ξ is denoted by PK,ξ, which is clearly

a linear space of dimension Km.

The main disadvantage of the above definition of piecewise polynomial func-

tions is illustrated in Figure 3.3. Piecewise polynomial functions need not to be

continuous or even smooth at the interior breakpoints.

This can be overcome by imposing the constraints

pi−1(ξi) = pi(ξi), i = 2, . . . ,m, (3.16)

to achieve a continuous piecewise polynomial function, and equivalently by

Dkpi−1(ξi) = Dkpi(ξi), i = 2, . . . ,m, k = 1, . . . ,K − 2, (3.17)



3.4 B-spline Bases 25

Figure 3.3: Piecewise Cubic Polynomials (thick) with ξ = {0, 0.6, 2.1, 3} for g(t) =
0.75t3 − 3t2 + 2.75t+ 1 + ε (thin), where ε ∼ N(0, 1/9).

pcp1.xpl

in order to obtain a continuous kth derivative of f(t), and therefore an appropriate

amount of smoothness at each interior breakpoint ξi. In other words, (3.16) and

(3.17) are continuity conditions for f(t) and its derivatives, respectively. Figures

3.4 - 3.6 illustrate different numbers of continuity conditions and their influence on

the piecewise polynomial function.

Let the number of continuity conditions at each interior breakpoint ξi, i =

2, . . . ,m be stored in the vector ν = {νi}m
i=2, where νi = k means that f(t) and

all derivatives up to Dk−1f(t) are continuous at ξi. As the conditions (3.16) and

(3.17) are linear and homogenous, the subset of all f(t) ∈ PK,ξ satisfying (3.16)

and (3.17) for a given vector ν is a linear subspace of PK,ξ and is denoted by

PK,ξ,ν . The continuity conditions lower the dimension of PK,ξ,ν to Km−
∑m

i=2 νi

and therefore also the number of necessary basis functions in (3.14).

Unfortunately, the basis functions (3.15) are no longer appropriate for the basis

expansion (3.14). One has to use the classical Lagrangian procedure or to eliminate

unnecessary coefficients by solving a linear equation system. A more direct way

in this case is to express (3.15) in terms of a suitable basis of PK,ξ,ν , such as the

http://www.quantlet.de/codes//pcp1.html
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Figure 3.4: Continuous Piecewise Cubic Polynomials. (One continuity condition
at each interior breakpoint.)

pcp1.xpl

Figure 3.5: Continuous Piecewise Cubic Polynomials with continuous first deriva-
tive. (Two continuity conditions at each interior breakpoint.)

pcp1.xpl

http://www.quantlet.de/codes//pcp1.html
http://www.quantlet.de/codes//pcp1.html
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Figure 3.6: Continuous Piecewise Cubic Polynomials with continuous second
derivative. (Three continuity conditions at each interior breakpoint.)

pcp1.xpl

truncated power basis.

Proposition 1 The truncated power basis

φij(t) =
{

(t− ξ1)j , i = 1
(t− ξi)

j
+, i = 2, . . . ,m,

(3.18)

where

(t− ξi)
j
+ =

{
(t− ξi)j , if t ≥ ξi

0, otherwise,
(3.19)

and j = νi, . . . ,K − 1 with ν1
def= 0 is a basis of PK,ξ,ν .

Proof. de Boor (1978).

In order to maintain the flexibility while at the same time achieving some degree

of global smoothness, one certain class of piecewise polynomial functions, the so

called polynomial splines, has been introduced.

3.4.2 Polynomial Splines

When approximating by a piecewise polynomial function one often wants to achieve

a globally smooth function. The concept of continuity conditions introduced in the

http://www.quantlet.de/codes//pcp1.html
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last subsection can be used to indicate a suitable subset of PK,ξ,ν . This leads to

the following definition:

Definition 7 Let K > 0 be an integer indicating the order of piecewise polynomi-

als, ξ = {ξi}m+1
i=1 be a given breakpoint sequence with tL = ξ1 < ξ2 < . . . < ξm <

ξm+1 = tU , and the vector ν = {νi}m
i=2 counts the number of continuity conditions

at each interior breakpoint.

If νi = K − 1 for all i = 2, . . . ,m then the piecewise polynomial function f(t)

is called polynomial spline of order K.

Splines minimize average squared curvature and consequently perform better

than interpolating polynomials. Furthermore, every continuous function on the

interval J = [tL, tU ] can be approximated arbitrary well by polynomial splines

with the order K fixed, given that a sufficient number of knots is provided. The

approximation power of splines also holds for the simultaneous approximation of

derivatives by derivatives of splines. The piecewise polynomial structures allows

for easy and fast computation of splines and their derivatives.

Since polynomial splines are a special subset of piecewise polynomial functions

they can also be written in terms of the truncated power basis introduced in Sub-

section 3.4.1.

For numerical application the truncated power basis (3.18) is not well suited.

For example, if an argument t is near the upper bound of the interval J , it is

necessary to evaluate all of the basis functions and to compute the entire sum. To

reduce the computational complexity a basis with local support would be useful.

By forming certain linear combinations of the truncated power functions a new

basis for PK,ξ,ν whose elements vanish outside a small interval can be obtained, as

will be shown in the next subsection.

3.4.3 Definition and Properties of B-splines

Originally, B-splines has been defined as a divided difference of the truncated power

basis. Divided differences arises out of the Newton form of interpolation, where for
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n+ 1 pairs {ti, yi}n
i=0 of arguments ti and values of an underlying function f with

yi = f(ti) a polynomial is applied in the form of

p(t) = c0 + c1(t− t0) + c2(t− t0)(t− t1) + . . .
+cn(t− t0)(t− t1) . . . (t− tn),

(3.20)

with
p(t0) = c0 = y0

p(t1) = c0 + c1(t1 − t0) = y1

p(t2) = c0 + c1(t2 − t0) + c2(t2 − t0)(t2 − t1) = y2

etc.

(3.21)

The coefficients ck, k = 0, . . . , n are uniquely determined by the n + 1 pairs of

arguments and function values. Let this relation be denoted by

ck
def= [x0, x1, . . . , xk]f. (3.22)

Schwarz (1997) shows that (3.22) can be computed recursively using

[xi0 , . . . , xik ] f =
[xi1 , . . . , xik ] f −

[
xi0 , . . . , xik−1

]
f

xik − xi0

, k = 1, . . . , n, (3.23)

where i0, . . . , ik are pairwise different integers with 0 ≤ ij ≤ n, j = 0, . . . , k, and

[xk] f = yk, k = 0, . . . , n. Because of the structure of (3.23), the term ”divided

difference” is used for (3.22). For a discussion of the main properties of divided

differences see de Boor (1978).

Hence, we can now give the definition of (normalized) B-splines.

Definition 8 (Normalized B-splines) For a nondecreasing sequence of knots τ

the i-th normalized B-spline of order k is defined by the rule

Bi,k(t) = (τi+k − τi)[τi, . . . , τi+k](• − t)k−1
+ , ∀ t ∈ R. (3.24)

Here the ”placeholder” is used to indicate that the k-th divided difference of the

function (τ − t)k−1
+ of the two variables τ and t is to be taken by fixing t and

considering (τ − t)k−1
+ as a function of t alone, see de Boor (1978). In equation

(3.24) the factor (τi+k−τi) is a normalization factor designed to produce the identity∑
i

Bi,k(t) = 1, ∀ t ∈ J (3.25)
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which asserts that the B-splines form a partition of unity. In the following, for

simplicity normalized B-splines are referred to as B-splines.

B-splines are in fact a basis of the space of piecewise polynomial functions. For

the proof see de Boor (1978), Schumaker (1981), or Curry & Schoenberg (1966),

respectively.

The dimension of a B-spline basis is greater than the dimension of a basis of

splines. Therefore some additional knots have to be included. Schumaker (1981)

called this extended partitioning. To extend the partitioning by a sequence of

breakpoints {ξi}m+1
i=1 , K − 1 additional initial and final knots are needed such that

τ1 ≤ τ2 ≤ . . . ≤ τK−1 ≤ ξ1 and ξm+1 ≤ τn+1 ≤ τn+2 ≤ . . . ≤ τn+K−1. The actual

values of these additional knots are arbitrary. Also in FDA it is customary to make

them all the same and equal to ξ1 and ξm+1, respectively.

The interior knot sequence τK , . . . , τn must be defined out of the breakpoint

sequence ξ. The desired amount of smoothness at an interior breakpoint ξi, i =

2, . . . ,m as measured by the number of continuity conditions νi must be translated

into a consistent multiplicity of knot τ• following the relationship

K − νi = number of knots at ξi.

In other words, for each additional knot at a point ξi, the spline function will have

one less continuous derivative at that knot. A B-spline of order K with K knots

at a breakpoint can, but not must, be discontinuous at that point.

Figures 3.7-3.10 show sequences of B-splines up to order four with equidistant

knots from 0 to 10. The partitions are extended appropriately.

Figure 3.11 illustrates the ability of B-splines to respond to different amounts

of smoothness at the interior breakpoints.

Using (3.24) for numerical computation can be problematic because precision

might have been lost during the computation of the various quotients needed for

divided differences. Also, special provisions have to be made in the case of re-

peated or multiple knots. Such a calculation would amount to evaluate Bi,k(x) in
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Figure 3.7: 1st order B-splines with (extended) partition τ = {0, 1, 2, . . . , 9, 10}.
bspl1.xpl

Figure 3.8: 2nd order B-splines with extended partition τ =
{0, 0, 1, 2, . . . , 9, 10, 10}.

bspl2.xpl

http://www.quantlet.de/codes//bspl1.html
http://www.quantlet.de/codes//bspl2.html
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Figure 3.9: 3rd order B-splines with extended partition τ =
{0, 0, 0, 1, 2, . . . , 9, 10, 10, 10}.

bspl3.xpl

Figure 3.10: 4th order B-splines with extended partition τ =
{0, 0, 0, 0, 1, 2, . . . , 9, 10, 10, 10, 10}.

bspl4.xpl

http://www.quantlet.de/codes//bspl3.html
http://www.quantlet.de/codes//bspl4.html
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Figure 3.11: B-splines of order 4 with knot sequence τ =
{0, 0, 0, 0, 1, 1, 1, 3, 3, 4, 6, 6, 6, 6, 6}.

bspl5.xpl

terms of the truncated power basis and would therefore be beset with precisely the

difficulties which was hoped to be avoided by introducing B-splines.

Fortunately, due to de Boor (1978) it is possible to evaluate B-splines with the

help of a recurrence relation which requires no special arrangements in the case of

multiple knots and does not suffer unnecessary loss of precision.

Proposition 2 The i-th (normalized) B-spline of order k (k = 1, . . . ,K) for the

nondecreasing knot sequence τ = {τi}n+K
i=1 can be computed as

Bi,k(t) =
t− τi

τi+k−1 − τi
Bi,k−1(t) +

τi+k − t

τi+k − τi+1
Bi+1,k−1(t), (3.26)

where

Bi,1(t) =
{

1 if τi ≤ t < τi+1

0 otherwise,
(3.27)

and i = 1, . . . , n+K − k, n = mK −
∑m

i=2 νi.

Proof. de Boor (1978).

In (3.26) each B-spline Bi,k(x) is computed from two B-spline basis functions

of degree k − 1. Hence, Bi,k(x) is recursively built from basis functions of degree

http://www.quantlet.de/codes//bspl5.html
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k = 1. This is numerically stable since only convex combinations of nonnegative

quantities are involved. Furthermore, Bi,k(x) ≥ 0, for all i.

Since B-splines could also have multiple knots some care has to be taken when

using the recurrence relation (3.26) in order to avoid division by zero. By (3.27)

Bi,1(t) = 0 if τi = τi+1. By induction one can show that Bi,k−1(t) = 0 if τi =

τi+1 = . . . = τi+k−1. Hence, the according term in (3.26) will be zero no matter

how its coefficient will be defined.

B-splines have compact and local support, e.g. Bi,k(x) = 0, for x /∈ [τi, τi+k].

This leads to a band structured cross product matrix and an O(k) computation of

all smoothing values, where O(•) denotes the order of computational complexity.

Because of their local support, there are at most k non-zero basis functions of

degree k on [τi, τi+k].

When using Kth order B-splines with m+1 knots, where m denotes the number

of truncated subintervals of J (see Subection 3.4.1) the basis expansion of the ith

replication is

Xi(t) =
m+K−1∑

j=1

cijφj(t), (3.28)

where φj(t) = Bj,K(t). According to de Boor (1978), expansion (3.28) is also called

a spline or B-spline function. The main advantage for computation comes from the

local support property of B-splines. For τl ≤ t ≤ τl+1, l ∈ [K,n] it is sufficient to

calculate

Xi(t) =
l∑

j=l−K+1

cijφj(t) =
l∑

j=l−K+1

cijBj,K(t) (3.29)

because all other B-splines of order K have no support on [τl, τl+1].

3.4.4 Derivatives of B-splines

Equivalently to actual B-splines a recurrence relation could also be found for com-

puting their mth derivative, as is claimed in the following proposition.
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Proposition 3 The mth derivative (m < K) of the kth order B-spline can be

computed recursively by

DmBi,k(t) = (k − 1)
{
Dm−1Bi,k−1(t)
τi+k−1 − τi

−
Dm−1Bi+1,k−1(t)

τi+k − τi+1

}
. (3.30)

Proof. Using (3.24) we get

DBi,k(t) = −(k − 1)(τi+k − τi)[τi, . . . , τi+k](• − t)k−2
+ . (3.31)

It holds that

[τi, . . . , τi+k](• − t)k−2
+ =

[τi+1, . . . , τi+k](• − t)k−2
+ − [τi, . . . , τi+k−1](• − t)k−2

+

τi+k − τi
,

(3.32)

and using (3.24) in (3.32), (3.31) becomes

DBi,k(t) = (k − 1)
{

Bi,k−1(t)
τi+k−1 − τi

−
Bi+1,k−1(t)
τi+k − τi+1

}
.

The first derivative of a B-spline is another B-spline of one less order. Recursively

applying this technique one can compute higher order derivatives, since

DmBi,k(t) = D
{
Dm−1Bi,k−1(t)

}
.

�

Figures 3.12 and 3.13 illustrate DBi,3(t), and D2Bi,3(t) of a third order B-

spline with knot sequence τ = {0, 2, 3, 6, 10}, respectively. A B-spline of order k

is a piecewise polynomial function of order k. Hence, it is obvious that its mth

derivative (m < k) must be a piecewise polynomial function of order k −m.

Since both recurrence relations (3.30) and (3.27) have the same structure and

furthermore B-splines of order K−m are needed for derivatives, their computation

in one algorithm might be reasonable. This will also be the spirit of the C++ pro-

gram bspline.cpp which is used for the quantlet Bsplineevalgd.xpl as described

in Section 3.4.6.
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Figure 3.12: DB1,3(t) (solid line) andDB2,3(t) (dotted line) with τ = {0, 2, 3, 6, 10}.
The derivatives are piecewise polynomial functions of order 2.

bsplderiv1.xpl

Figure 3.13: D2B1,3(t) (solid line) and D2B2,3(t) (dotted line) with τ =
{0, 2, 3, 6, 10}. The second order derivatives are piecewise constant functions, that
means piecewise polynomial functions of order 1.

bsplderiv2.xpl

http://www.quantlet.de/codes//bsplderiv1.html
http://www.quantlet.de/codes//bsplderiv2.html
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3.4.5 Tensor B-splines

In the case of multivariate replications there is a need for a generalization of the

B-spline concept to the multidimensional case. Using the tensor-product approach

is one reasonable possibility, because many of the simple algebraic properties of

ordinary one-dimensional B-splines can be carried over, and fortunately because of

its nature it is possible to work with the usual one-dimensional B-splines. Only a

short overview on the main results can be given here. For a more detailed discussion

the reader is referred to Schumaker (1981).

Definition 9 Consider a given d-dimensional nondecreasing knot sequence τ =

{τij}
nj+Kj

i=1 , j = 1, . . . , d, nj = mjKj −
∑m

l=2 νjl where mj and Kj denote the

number of subintervals and order of the j-th dimension, respectively. The tensor-

product B-splines is defined by

Bi1...id,k1...kd
(t1, . . . , td) =

d∏
j=1

Bij ,kj
(tj). (3.33)

General properties of the tensor-product B-splines can be derived from the

corresponding properties of the one-dimensional B-splines. See Schumaker (1981)

for discussion. Figure 3.14 and Figure 3.15 illustrate bivariate tensor-product B-

splines.

Equivalently to (3.28) the basis expansion of the ith replication has the form

Xi(t1, . . . , td) =
m1+K1−1∑

r1=1

. . .

md+Kd−1∑
rd=1

ci,r1...rd
Br1...rd,k1...kd

(t1, . . . , td) (3.34)

and because of the inherited property of local support for t = (t1, . . . , td) ∈⊗d
l=1[τjl,l, τjl+1,l] it is sufficient to compute

Xi(t) =
j1∑

r1=j1−K1

. . .

jd∑
rd=jd−Kd

ci,r1...rd
Br1...rd,k1...kd

(t1, . . . , td) (3.35)

for jr ∈ [Kr, nr], r = 1, . . . , d. For functional data tensor B-splines will be primarily

necessary when computing bifd objects, such as covariances.
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Figure 3.14: A bivariate tensor-product B-spline with k1 = k2 = 4 and τ•1 = τ•2 =
{0, 2, 3, 6, 10}.

tensor1.xpl

Figure 3.15: A bivariate tensor-product B-spline with k1 = k2 = 2 and τ•1 = τ•2 =
{0, 5, 10}.

tensor2.xpl

http://www.quantlet.de/codes//tensor1.html
http://www.quantlet.de/codes//tensor2.html
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3.4.6 XploRe Quantlet for B-spline Bases

phi = Bsplineevalgd (tvec, norder{, xvec{, deriv{, boolextend}}})
computes the basis matrix of B-splines for a given non-decreasing
sequence of knots tvec

The quantlet Bsplineevalgd allows to compute B-spline bases and one or more

of their derivatives simultaneously for a matrix of arguments. Bsplineevalgd

uses the C++ based dynamically linked library bspline.dll. The syntax of the

quantlet is

phi = Bsplineevalgd (tvec, norder{, xvec{, deriv{, boolextend}}})

with input parameters

tvec - a (n × 1) vector of strictly non-decreasing knot sequence. The same knot

sequence will be applied to all arguments xvec.

norder - integer indicates the B-spline order (e.g. for cubic B-splines norder = 4)

xvec - a (p×q) matrix of arguments where the B-splines matrix should be evaluated

at. The default value is tvec.

deriv - a (r × 1) vector of integers (≥ 0) containing the orders of derivatives to

compute. If deriv = 0 the actual B-spline bases will be calculated. The

default value is deriv = 0.

boolextend - If boolextend = 1 tvec will be extended appropriately to get mul-

tiple exterior knots. The default value is boolextend = 1.

This quantlet returns a (p× norder× r× q) array, where one row contains the

evaluated bases for one argument.

The automatic extension of the given knot sequence tvec can be suppressed by

using boolextend = 0 as input parameter. In this case the given knot sequence will

be used directly. Furthermore, this quantlet is able to deal with multiple interior
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knots, that means the only restriction is that the knot sequence must be strictly

non-decreasing.

When computing tensor product B-splines the same knot sequence must be ap-

plied to all dimensions. Furthermore, the orders of derivative cannot vary between

the dimensions. Nevertheless, this is sufficient to compute the most common bifd

objects, such as covariance.

In order to get non-singular basis matrices all function and derivative values

of arguments equal to the upper exterior knots must be set equal to its left-sided

limes. Numerically, this will be done by subtracting the smallest possible amount

of 10−15 from these arguments. As a result, their basis function values have an

absolute numerical error of at most 10−15.

3.5 Using fdbasis Objects in XploRe

fdbasis = createfdbasis(type,rangeval,nbasis,params)
creates the fdbasis object

basismat = getbasismatrix (evalarg, fdbasis {, Lfd})
computes the basis matrix, its derivatives, or applied LDOs
in evalarg associated with fdbasis object

The quantlet createfdbasis uniquely defines a basis by collecting all informa-

tion necessary to compute the basis. The quantlet has the syntax

fdbasis = createfdbasis (type, rangeval, nbasis, params)

with input parameters

type - a string indicating the type of basis. This may be one of ”fourier”, ”bspline”,

”poly”

rangeval - a vector of length 2 containing the lower and upper boundaries for the

range of argument values

nbasis - the number of basis functions
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params - Dimension and contents depend on the basis type. If the basis is ”fourier”,

this is a single number indicating the period. If the basis is ”bspline”, params

is strictly nondecreasing sequence of knots. If the basis is ”poly”, params can

optionally obtain a constant shift parameter.

This quantlet creates a functional data basis (fdbasis) object in two steps. First

it recognizes the type of basis by use of several variant spelling, and afterwards it

sets up the functional data basis depending on the type.

Technically, the fdbasis object is a list, consisting of the four input parame-

ters. Introducing a quantlet such as createfdbasis helps to avoid complications.

Furthermore, it offers the possibility to identify misspecifications at a very early

stage. The already implemented basis types just need list elements which are of

elementary types, such as strings and vectors. It might be in implementing another

basis that the params element requires a list. In such a case, an appropriate list

may be created before createfdbasis is called.

For evaluating the basis functions, its derivatives, or applied linear differen-

tial operators at a given vector, respectively matrix, of arguments the quantlet

getbasismatrix can be used. Its syntax is

basismat = getbasismatrix (evalarg, fdbasis {, Lfd})

with input parameters

evalarg - a (p× q) matrix of of values at which all functions are to be evaluated.

fdbasis - an fdbasis object

Lfd - This can be a (r×1) vector of integers which indicate the order of derivatives

to obtain. In the case of an LDO with constant coefficients Lfd must be a

(r×2) matrix, where the first column contains the coefficients, the second one

the orders of derivatives. When to apply an LDO with variable coefficients

Lfd must be an LDO object.
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This quantlet returns an (p × fdbasis.nbasis × x × q) array containing the

functional values, where x = r if Lfd is a vector, and x = 1 if Lfd is a (r × 2)

matrix, or an LDO object. fdbasis.nbasis is the element of the fdbasis object

which contains the number of basis functions. Directly this quantlet will be used

rarely. Nevertheless, it is frequently referred to when dealing with fd objects.

The quantlet getbasismatrix supports four different Lfd input types:

1. one single derivative,

2. a vector of derivatives,

3. an LDO with constant coefficients,

4. an LDO with variable coefficients.

In case (1) Lfd is a single integer, in case (2) Lfd is a vector of integers, in case

(3) Lfd is (r × 2) matrix, where the first column contains the coefficients and the

second the orders of derivative, in case (4) Lfd is an LDO object, that means a

list containing two elements: ldoname which indicates the name of the proc-endp

environment where the LDO is defined and derivs the vector of orders of deriva-

tives needed for the LDO. This LDO object can also be created by the quantlet

createLDO.

Some technical problems arise out of the manifold nature of the Lfd input

parameter. Lfd can be a matrix, or a list, respectively, what the quantlet has

to check for. The implemented algorithm for that purpose might be worth to

be mentioned. First a list is created out of the Lfd input parameter, no matter

whether or not it is already a list. Then for the created list the number of rows of

the vector containing the dimensions is computed. If this is unequal to one, then

Lfd is a matrix, and hence, an LDO with constant coefficients. If this is one and

unequal to the size of the created list, then Lfd must be a LDO object. Otherwise

Lfd is a vector, and contains the order of derivatives.

If some other bases should be added, then a link to their evalgd quantlet must

be added in the switch-case environment of getbasismatrix.
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The fdbasis objects only contain information on the type of basis expansion.

Its coefficients has been left open yet to be estimated. How this can be done is

described in detail in the next chapter.



Chapter 4

Smoothing Methods for
Functional Data

In Chapter 3 a functional observationXi(t) was represented by a linear combination

of K basis functions as

Xi(t) = Φ(t)ci, , t ∈ J, ci ∈ RK , i = 1, . . . , n. (4.1)

The vector of coefficients ci must be estimated with the help of the sample data

(ti,yi) and the relation

yi = Xi(ti) + εi = Φ(ti)ci + εi. (4.2)

This coincides with the classical linear regression model, and the most obvious

idea for estimating the coefficients ci is by minimizing the least squares criterion

to obtain the generalized least squares (GLS) estimator. This yields

ĉi =
{

Φ(ti)>Σ−1
i Φ(ti)

}−1
Φ(ti)>Σ−1

i yi (4.3)

as an estimator for ci. If the covariance matrix Σi of the vector of error terms

εi is unknown, an estimator Σ̂i must be used. This turns the procedure into the

estimated generalized least squares (EGLS) method. For a discussion as well as

estimating procedures for an unknown covariance matrix see Judge et al. (1988).

Unfortunately, the (E)GLS estimator leaves all the control on smoothness of the

underlying function to the basis functions. Therefore controlling for smoothness
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can only be done by choosing an appropriate basis expansion and in a discrete way

by specifing a sufficient number of basis functions. One possibility to overcome this

lack is to use the roughness penalty approach which will be introduced in the next

section.

4.1 Penalized Regression

4.1.1 The Roughness Penalty Approach

The roughness penalty approach is an extension of generalized least squares. The

main idea comes from the fact that the mean squared error (MSE) can be decom-

posed into

MSE = Bias2 + V ariance,

where Bias2 is defined as the sum of squared errors. Note that in minimizing

MSE, it can often greatly reduced by trading a little bit bias off against a lot of

sampling variance. According to the underlying model yi = Xi(ti)+εi, a completely

unbiased estimate of the function can be produced by a curve fitting yi exactly, as

by Newton interpolation, see Subsection 3.4.3. But any such curve must have high

variance, manifested in the rapid local variation of the curve. Hence, a measure of

its variance is the concept of roughness, as introduced in Section 2.2.

The idea of the roughness penalty approach is to penalize functions that would

lead to an estimated rough function. This will be done by determining the coef-

ficients in the usual GLS way but to introduce an additional penalty term. The

penalized least squares criterion for the ith replication is

PENSSEλ(Xi|yi) = {yi −Xi(ti)}>Wi {yi −Xi(ti)}+ λPENL(Xi), (4.4)

where λ is a smoothing parameter that measures the rate of exchange between the

fit to the data and variability of the estimated function, Wi is a symmetric weight

matrix, and the roughness PENL is used as the penalty term. Minimizing (4.4)

with respect to Xi(t) leads to an estimated function X̂i(t), t ∈ J . The classical

roughness penalty approach uses L = D2 as penalty operator, but for the same
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reasons as discussed in Section 2.2 when roughness of functions was introduced,

it might be useful to generalize this concept. Reinsch (1967) shows that when

L = D2 the resulting function X̂i(t) is a cubic spline with knots at the data points

ti. When using a general LDO Kimeldorf & Wahba (1970) show that the resulting

functions are so called L-splines. See Schumaker (1981) for a formal definition and

the properties of L-splines.

Figure 4.1 illustrates the impact of different amounts of λ on the estimated

function, using a B-spline basis expansion and L = D2 as penalty operator. As

λ→ 0, roughness matters less and the estimated function X̂i(t) tends to interpolate

the underlying data. As λ → ∞, roughness will be strongly penalized and as a

result X̂i(t) tends to be hypersmooth, here that means it tends to be a linear

function because of the given penalty operator.

Figure 4.1: Example of B-spline expansions of order 4 with λ = 0.00001 (dashed),
λ = 100 (solid), and λ = 10000 (dotted) for Canadian weather data.

rp1.xpl

When Xi(t) is represented by the basis expansion

Xi(t) =
K∑

k=1

cikφk(t) = Φ(t)ci, (4.5)

http://www.quantlet.de/codes//rp1.html
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the penalty term can be written

PENL(Xi) =
∫

J
L {Φ(t)ci}> L {Φ(t)ci} dt

= ci
>

∫
J
LΦ(t)>LΦ(t)dtci

= ci
>Rci, (4.6)

where the order K symmetric matrix R contains elements

Rkl =
∫

J
Lφk(t)Lφl(t)dt = 〈Lφk, Lφl〉, k, l = 1, . . . ,K.

How to compute the matrix of inner products R will be shown in Section 4.2 .

Using the basis function expansion (4.5) and (4.6) the penalized least squares

criterion becomes

PENSSEλ(Xi|yi) = {yi − Φ(ti)ci}>Wi {yi − Φ(ti)ci}+ λci
>Rci. (4.7)

If the error terms εi are assumed to be heteroscedastic, then Wi becomes the inverse

of the covariance matrix Σi, respectively the estimated covariance matrix Σ̂i if the

variances of the error term are unknown. Wi can also depend on the argument t

as will be discussed in Section 4.4.

The vector ci is minimized by

ĉi =
{

Φ(ti)>WiΦ(ti) + λR
}−1

Φ(ti)>Wiyi. (4.8)

The data fitting vector ŷi = Xi(ti) is

ŷi = Φ(ti)
{

Φ(ti)>WiΦ(ti) + λR
}−1

Φ(ti)>Wiyi = Sφ,λ,iyi, (4.9)

where the smoothing matrix

Sφ,λ,i = Φ(ti)
{

Φ(ti)>WiΦ(ti) + λR
}−1

Φ(ti)>Wi (4.10)

maps the data into the fit.

As shown above, the roughness penalty estimator has a structure similar to

the GLS estimator. Moreover, it provides a natural and flexible approach to curve
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estimation, especially when representing functional data as finite basis expansions.

Two parameters must be estimated in a way before starting the roughness penalty

approach: the smoothing parameter λ, and if necessary the linear differential oper-

ator used for penalization. How to do that is described in the next two subsections.

4.1.2 Choosing the Smoothing Parameter

Green & Silverman (1994) distinguish two philosophical approaches to the question

of choosing the smoothing parameter. The first approach is to choose the smoothing

parameter λ subjectively. By varying λ features of the data that arise on different

”scales” can be explored, and the one parameter value which ”looks best” might

be chosen. The second approach is to use an automatic method of choice such as

cross validation. Especially in the functional data context where large data sets

on several replications are used, an automatic method is essential in order to get

comparable results. Furthermore an automatic choice can in any case be used as a

starting point for subsequent subjective adjustment, see Silverman (1985).

Probably the most attractive class of methods for choosing the smoothing pa-

rameter is cross-validation. The main idea is to set aside a subset of the data, the

validation sample, to fit the model to the rest of the data, then to assess the fit

to the validation sample, and finally to choose the λ value that gives the best fit.

An important early reference to the use of cross-validation to guide the choice of

smoothing parameter is Craven & Wahba (1979). In the functional case, we omit

the functional data one at a time, and so the various terms in the cross-validation

score relate to the way that a whole function Xi(t) is predicted from the other

functions in the data set. The idea of leaving out whole data curves is discussed

by Rice & Silverman (1991).

Following Ramsay & Silverman (2002), let m−i
λ (t) denote the smoothed sample

mean calculated with smoothing parameter λ from all replications except Xi(t).

As a measure of global discrepancy compute the integrated squared error (ISE)

ISE{m−i
λ (t)} =

∫
J
{m−i

λ (t)−Xi(t)}2dt, (4.11)
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to see how well m−i
λ (t) predicts Xi(t). The cross-validation score CV (λ) is com-

puted by summing up the integrated squared errors (4.11) over all n replications

CV (λ) =
n∑

i=1

∫
J
{m−i

λ (t)−Xi(t)}2dt. (4.12)

The smaller the value of CV (λ), the better the performance of λ as measured by

the cross-validation score. Hence, minimizing (4.12) with respect to λ gives the

optimal smoothing parameter.

Since cross-validation is very time consuming, and tends too often to under-

smooth the data, Eubank (1988) introduces the generalized cross-validation crite-

rion. Here, the value of λ is chosen to minimize

GCV (λ) =
nSSE(λ)
(n− dfλ)2

=
n

n− dfλ
σ̂2(λ), (4.13)

where SSE(λ) = {yi−Φi(ti)ĉi}>Wi{yi−Φi(ti)ĉi} and σ̂2(λ) = SSE(λ)/(n−dfλ).

dfλ is the effective number of parameters or degrees of freedom that X̂i(t) = Φi(t)ĉi

uses in estimating Xi(t). Heckman & Ramsay (2000) define

dfλ = tr(Sφ,λ,i) + number of estimated parameters, (4.14)

where Sφ,λ,i is the smoothing matrix as before. One can show that, for fixed

coefficients in the LDO, tr(Sφ,λ) is a decreasing function of λ ranging from ni when

λ = 0 to the dimension of the kernel of L, as λ → ∞, see Heckman & Ramsay

(2000).

Usually, the numerator of GCV is small (i.e., Φi(ti)ĉi is close to interpolating the

data) when the denominator is small (when dfλ is close to ni). Thus minimizing

GCV means fitting the data well with few parameters, see Heckman & Ramsay

(2000).

4.1.3 Choosing the Linear Differential Operator

As introduced in Definition 3, for using a linear differential operator (LDO) its

order m and all (variable) coefficients wj(t), j = 0, . . . ,m − 1 must be known. In

practice, there is usually a general idea of the order and the coefficients because
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Operator L Parametric family for the kernel of L

D2 {1, t}
D4 {1, t, t2, t3}
D2 + γD, γ 6= 0 {1, exp(−γt)}
D4 + ω2D2, ω 6= 0 {1, t, cos(ωt), sin(ωt)}
(D2 − γD)(D2 + ω2D), γ, ω 6= 0 {1, exp(γt), cos(ωt), sin(ωt)}
D − ω(·)I, w(t) 6= 0

{
exp

[∫
w(u)du

]}
D2 − w(·)D,w(t) 6= 0

{
1,

∫
exp

[∫
w(v)dv

]
du

}
Table 4.1: Examples of differential operators and bases for the corresponding para-
metric families. Source: Heckman & Ramsay (2000).

many models are based upon scientific or physical models, and any of these can be

considered as the favored model for LDO. Table 4.1 summarizes examples of linear

differential operators and bases for the corresponding parametric families.

If the coefficients are not known they must be estimated out of the data. Usu-

ally, one uses a parametric model and assumes wj(t|θ) to depend on some parameter

vector θ. For example, when dealing with periodic data θ may include an unknown

period. The parameter vector can be estimated by using nonlinear least squares

techniques to minimize

min
αj ,θ

n∑
i=1

{yi −
∑

j

αjwj(ti|θ)}2, (4.15)

where αj are some additional weight factors. Heckman & Ramsay (2000) also dis-

cusses the possibility of minimizing the GCV criterion with respect to both λ and

the parameter vector θ.

However, the parametric model must in a way fit the data. Otherwise there

would not be any gain from using the associated penalty.
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4.2 Computing Inner Products

For the roughness penalty approach the penalty term

PENL(Xi) = ‖LXi‖2 = 〈LXi, LXi〉 (4.16)

must be computed. Using the basis function expansion (4.1) for Xi(t) the penalty

term can be written as

PENL(Xi) = ci
>Rci (4.17)

with

Rkl =
∫

J
Lφk(t)Lφl(t)dt = 〈Lφk, Lφl〉, k, l = 1, . . . ,K

as shown in (4.6). Hence, the most critical part in computing PENL(Xi) is obvi-

ously the calculation of the inner product matrix R. How to do this in particular

depends on the underlying basis function and the applied linear differential oper-

ator L. The main analytic and numerical algorithms are presented in Subsection

4.2.1. The accompanied quantlet inprod is introduced in Subsection 4.2.2.

4.2.1 Analytic and Numerical Solutions

If the linear differential operator L has constant coefficients then it is possible in

some cases to compute R analytically. Since in the roughness penalty context inner

products are only needed for two basis functions of the same family and with the

same order of derivatives we will restrict the presented analytic solutions to these

cases. In all other cases, the use of a numerical algorithm might be sufficient.

We will present the Romberg integration approach for that reason later on in this

subsection.

For computing inner products of Fourier bases the following proposition is use-

ful.

Proposition 4 If φl(t), φk(t), l, k = 0, . . . ,K are Fourier bases and the period is

T = tU − tL then for m = 0, 1, 2, . . .

1.
∫ tU
tL
Dmφ0(t)Dmφ0(t)dt =

{
1, m = 0,
0, m > 0,
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2.
∫ tU
tL
Dmφk(t)Dmφl(t)dt =

{
0, k 6= l(

kw
2

)2m
, k = l; l, k = 1, . . . ,K,

with

Dmφ0(t) =
{

1/
√
T , m = 0,

0, m > 0,
(4.18)

Dmφk(t) =
(kω/2)m√

T/2
sin

(
kωt+

mπ

2ω

)
, k = 2r − 1, r = 1, . . . ,K/2, (4.19)

and

Dmφl(t) =
(lω/2)m√

T/2
cos

(
lωt+

mπ

2ω

)
, l = 2r, r = 1, . . . ,K/2. (4.20)

Proof.

1. (4.18) holds by direct verification so that it leaves to consider∫ tU

tL

φ0(t)φ0(t)dt =
∫ tU

tL

1
T
dt =

tU − tL
T

= 1.

2. Using the relations for a, b ∈ R∫ 2π

0
sin ax sin bxdx =

∫ 2π

0
cos ax cos bxdx =

{
0, a 6= b,
π, a = b,

and T = 2π
ω it follows that∫ tU

tL

sin
(
k1ωt+

mπ

2ω

)
sin

(
k2ωt+

mπ

2ω

)
dt =

{
0, k1 6= k2,
T/2, k1 = k2,

for ki = 2ri − 1, ri = 1, . . . ,K/2, i = 1, 2, and∫ tU

tL

cos
(
l1ωt+

mπ

2ω

)
cos

(
l2ωt+

mπ

2ω

)
dt =

{
0, l1 6= l2,
T/2, l1 = l2,

for li = 2ri, ri = 1, . . . ,K/2, i = 1, 2, and by∫ 2π

0
sin ax cos bxdx = 0

it follows that ∫ tU

tL

sin
(
kωt+

mπ

2ω

)
cos

(
lωt+

mπ

2ω

)
dt = 0,

and the proposition gets directly verifiable.
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�

For computing inner products of polynomial bases the next proposition can be

used.

Proposition 5 If φk(t) = (t− ω)k is a polynomial bases and J = [a, b] then∫
J D

mφk(t)Dmφl(t)dt = u{(b− ω)Dmφk(b)Dmφl(b)−
−(a− ω)Dmφk(a)Dmφl(a)}

(4.21)

where

u =
1

k + l − 2m+ 1
.

Proof.∫
J D

mφk(t)Dmφk(t)dt =
∫
J D

m(t− ω)kDm(t− ω)ldt

= k(k − 1) . . . (k −m+ 1)l(l − 1) . . . (l −m+ 1)
∫ tU
tL

(t− ω)k+l−2mdt

= k(k−1)...(k−m+1)l(l−1)...(l−m+1)
k+l−2m+1

{
(tU − ω)k+l−2m+1 − (tL − ω)k+l−2m+1

}
= u{(b− ω)Dmφk(b)Dmφl(b)− (a− ω)Dmφk(a)Dmφl(a)}

�

When computing inner products of B-spline bases one special analytic case

appears if the order of derivative is equal to order of B-splines minus one. Then

the derivatives are piecewise constant on each subinterval with positive support and

their integrals are very easy to compute. It is easy to verify that for J = [τ1, τn+K ]∫
J
Dk−1Bi,k(t)Dk−1Bj,k(t)dt =

n+K−1∑
i=1

(τi+1 − τi)Dk−1Bi,k(s)Dk−1Bj,k(s), (4.22)

where s ∈ [τi, τi+1) can be chosen arbitrarily, since the derivatives are constant on

these intervals. The product of two constant functions is again a constant function

and multiplying it with the length of the interval gives the area among this product

function. In the quantlet inprod, see Subsection 4.2.2, s is chosen to be the mean

of the interval.
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For all other B-spline bases one approach is that B-splines can be written in

terms of piecewise polynomials. It holds for τl ≤ t < τl+1, l = 1, . . . , n+K− 1 that

Bi,k(t) =
k−1∑
j=0

cij
j!

(t− τl)j , (4.23)

where cij = DjBi,k(τl). See de Boor (1978) for the proof. Furthermore, it is obvious

that

DmBi,k(t) =
k−1∑
j=m

cij(t− τl)j−m,m < k, t ∈ [τl, τl+1). (4.24)

The arising idea is to compute the integrals piecewise and to add them up after-

wards. Here, the main advantage of the underlying quantlets concept becomes

clear. The possibility to compute several derivatives simultaneously much simpli-

fies computation time and effort in this procedure. For the calculation of inner

products of B-spline bases the following proposition is needed.

Proposition 6 For two B-splines and m < k it holds∫
J
DmBi,k(t)DmBj,k(t)dt =

n+K−1∑
l=1

1>(k−m)Tijl1(k−m), (4.25)

where the K dimensional quadratic matrix Tijl has elements

{Tijl}rs = ci,r+m−1cj,s+m−1
(τl+1 − τl)r+s−1

r + s− 1
, r, s = 1, . . . , k −m,

and 1(k−m) = (1, . . . , 1)> is of dimension k −m.

Proof. Use (4.24) and that

k−1∑
j=m

cij(t− τl)j−m =
k−m∑
j=1

ci,j+m−1(t− τl)j−1,m < k, t ∈ [τl, τl+1).

Then the integral in (4.25) becomes

n+K−1∑
l=1

∫ τl+1

τl

k−m∑
r=1

ci,r+m−1(t− τl)r−1
k−m∑
s=1

cj,s+m−1(t− τl)s−1dt. (4.26)

The product of the sums in the integral in (4.26) can be written in matrix notation

as
k−m∑
r=1

ci,r+m−1(t− τl)r−1
k−m∑
s=1

cj,s+m−1(t− τl)s−1 = 1>(k−m)Sijl1(k−m),
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with

{Sijl}rs = ci,r+m−1cj,s+m−1(t− τl)r+s−2, r, s = 1, . . . , k −m.

Since the integrand in (4.26) consists only on the sum of all elements of Sijl just

integrate the original function of each element as stored in Tijl

�

In all other cases a numerical solution is used provided by the Romberg algo-

rithm and extended with a Neville extrapolation, following Press et al. (2002). The

Romberg algorithm is a procedure for numerical integration. Gaussian Quadrature

what is in fact superior to the Romberg algorithm need a transformation to the in-

terval [0, 1] and also the computation of eigenvalues and eigenvectors, see Schwarz

(1997). The latter can be very time-consuming when dealing with high dimen-

sional matrices. Furthermore, since this will often be done in a numerical way an

additional loss of precision is almost unavoidable. For ease of notation let

f(t) def= φi(t)φj(t). (4.27)

The starting point of the Romberg approach is the trapezoidal rule of numerical

integration∫ tU

tL

f(t)dt ≈ hi[
1
2
f(tL) + f(t1) + . . .+ f(tn) +

1
2
f(tU )] def= T (hi), (4.28)

where the integral of a function f(t) is approximated by the sum of areas of the

n + 1 trapezoids, and hi is the step-length, that means the distance between two

adjoint evaluation points.

The Romberg method uses the results from m successive refinements of the

trapezoidal rule. If at most m+ 1 iterations should be done, the step length of the

mth iteration is

hi =
tU − tL

2i
, i = 0, 1, 2, . . . ,m. (4.29)

The following relation shows that during the refinements only the new evaluation
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points must be added

T (hi) = T

(
hi−1

2

)

=
1
2

T (hi−1) + hi−1

n−1∑
j=0

f

(
a+

hi−1

2
+ jhi−1

) , (4.30)

for i = 1, 2, . . . ,m;n = 2i−1. The computational effort of the Romberg method is

strongly lowered by using (4.30).

The successively lowering of the step-length h leads to apply the idea of Richard-

son’s deferred approach to the limit: Perform the numerical integration for various

values of the parameter h, and then extrapolate the result to the continuum limit

h = 0. Here, Neville’s algorithm can be used to extrapolate the successive refine-

ments to zero step-size, see Press et al. (2002).

Neville’s algorithm is a recursive way to use a given sequence of N + 1 points

{xi, yi}N
i=0, where xi denotes the ith argument and yi the ith function value, to

estimate the function value f(x) at some x, outside the range of the sequence. It

is based on the relationship between a ”daughter” P and its two ”parents”,

Pi(i+1)...,(i+m) =
(x− xi+m)Pi(i+1)...(i+m−1) + (xi − x)P(i+1)(i+2)...(i+m)

xi − xi+m
, (4.31)

where Pi = yi, i = 0, . . . , N , and m = 1, . . . , N . Press et al. (2002) suppose an

improvement on (4.31) to keep track of the small differences between parents and

daughters as defined by

Cm,i = Pi...(i+m) − Pi...(i+m−1),

Dm,i = Pi...(i+m) − P(i+1)...(i+m).
(4.32)

Their values for m = N are thus the error indication. Hence, with the help of

Neville extrapolation we can decide, whether the numerical values of inner products

have achieved a certain precision. For ease of use all these analytical and numerical

methods are included in one quantlet called inprod.
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4.2.2 The Quantlet inprod

inprodmat = inprod(fdo1,fdo2{,Lfd1{,Lfd2{,JMAX{,EPS}}}})
computes inner products of functions by analytic or numerical
integration, depending on the kind of input parameters

The quantlet inprod has the following input parameters

fdo1 - The first fd or fdbasis object

fdo2 - The second fd or fdbasis object

Lfd1 - The first evaluation object. This can be a scalar, a (r × 1) vector of order

of derivatives, a (r × 2) matrix in case of an LDO with constant coefficients,

where the first column contains the coefficients, the second one the orders of

derivatives. When to apply an LDO with variable coefficients Lfd1 must be

an LDO object. The default value is Lfd1 = 2.

Lfd2 - The second evaluation object. See Lfd1. The default value is Lfd2 = 2.

JMAX - Maximum number of iterations. The default value is JMAX = 15.

EPS - the fractional accuracy desired, as determined by the extrapolation error

estimate. The default value is 10−4.

The quantlet inprod returns an (nbasis1×nbasis2× x) array of inner products,

where nbasis1,nbasis2 are the number of basis functions of fdo1 and fdo2, respec-

tively, as given in their fdbasis.nbasis elements. x is equal to r, if Lfd1 and Lfd2

are vectors, otherwise x is equal to one. Note that if Lfd1 is a (r × 1) vector then

also Lfd2 must be a (r × 1) vector.

As given above, the maximum number of iterations can be influenced by the

user. JMAX should not be greater than 30 because the computation times increases

exponentially. Alternatively, the accuracy EPS can be defined by the user. But as

before, the increasing computation time should be kept in mind.
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The quantlet computes inner product analytically if fdo1 = fdo2, Lfd1 = Lfd2,

and Lfd1 is no LDO object for all B-splines and all polynomials, and for Fourier

bases if range = period. In all other cases the inner products are computed numer-

ically using a version of the Romberg algorithm with combination of Neville ex-

trapolation, see Subsection 4.2.1. Because of these special cases, the check whether

Lfd1 and Lfd2 are matrices or LDO objects as in the getbasismatrix quantlet

must be done again. If fdo1 and/or fdo2 are fd objects, the computation of their

inner products is separated in two parts. The corresponding matrix R of inner

products, see equation (4.17), will be computed as above, and afterwards multi-

plied with the coefficient vectors. In the scope of the hierarchical structure of the

FDA quantlets (see Figure 2.2) this must actually be done by the evalfd quant-

let, which will be introduced in Section 4.3. But the implemented version lowers

computational effort, since less quantlets must be called. Hence, to use evalfd

might be necessary, for example, if the coefficients are localized as in Section 4.4,

or otherwise dynamically dependent on the argument.

To follow the spirit of simultaneous computation, inprod can also compute

inner products for several derivatives simultaneously, what might be of less practical

value.

If some analytic inner product solutions should be added this can be done

easily by including the name of the basis in the if-condition before the special

cases, when fdo1 = fdo2 and Lfd1 = Lfd2 and Lfd1 is no LDO object should hold.

Otherwise it can be included before the else-condition (above ”all other cases:

Romberg integration”).



4.3 Creating fd objects in XploRe 59

4.3 Creating fd objects in XploRe

fdobject = data2fd (y, argvals, fdbasis{, Lfd{, W{, lambda}}})
converts an array y of function values plus an array argvals of
argument values into a functional data object

evalmat = evalfd (evalarg, fd{, Lfd})
evaluates an fd object, or the value of an LDO at argument
values evalarg

An fd object can be created using the quantlet data2fd. This quantlet uses

(4.8) to estimate the coefficients of the basis expansions. As a rule functions of t

are observed only at discrete sampling values ti, i = 1, . . . , n as before, and these

may or may not be equally spaced. But there may well be more than one function

of t being observed. The syntax of the quantlet is

fdobject = data2fd (y, argvals, fdbasis{, Lfd{, W{, lambda}}})

with input parameters

y - (p1× p2× p3) array of (observed) functional values used to compute the func-

tional data object. p1 is the number of observed values per replication, p2 is

the number of replications, p3 is the number of variables.

argvals - (n×m) matrix of argument values, wherem = 1 orm = p2, respectively.

If m = 1 the same arguments are applied to all replications and variables.

Otherwise it must hold that m = p2, then each replication is applied to a

certain vector of arguments.

basisfd - an fdbasis object

Lfd - Identifies the penalty term. This can be a scalar (≥ 1) containing the order of

derivative to penalize, or an LDO object if an LDO with variable coefficients

is to be penalized. When applying an LDO with constant coefficients, Lfd is

a (r × 2) matrix, where the first column contains the coefficients, the second

one the orders of derivatives. The default value is Lfd = 2.
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W - Weight matrix. The default value is the identity matrix.

lambda - Parameter for roughness penalty smoothing. If lambda is not specified it

will be estimated by the data for each replication separately.

The quantlet data2fd returns an fd object, containing the (nbasis × p2 × p3)

array of estimated coefficients and the underlying fdbasis object. nbasis is the

number of basis functions as indicated in the fdbasis object. Note that data2fd

requires the library multi because it uses the quantlet spur.

The input parameter y can be a vector, matrix or three-dimensional array,

respectively. When some observations at some arguments are missing just insert

NaNs. This is also the case when the number of observations vary between the

replications. The algorithm filters out the NaNs. The input parameter argvals

cannot contain NaNs, otherwise the getbasismatrix quantlet need to be readjusted

in order to handle NaNs. If a functional value is missing for a certain argument,

then just give an arbitrary value to the argument. The algorithm will filter out the

pair of values in any case. It takes more computation time when NaNs are included

in the functional data input because the compiler need to calculate the coefficients

for each replication separately.

If lambda is not given then it will be computed by

λ = 10−4 tr
{
Φ(ti)>Φ(ti)

}
trR

(4.33)

using the input parameters y and argvals. If necessary, lambda is computed

individually for each replication. If lambda should be zero, then this must be

given as input parameter. Note, if the number of basis functions is greater than

the number of observations of a single replication, lambda will be estimated by

(4.33) in any case, even if the corresponding input parameter is set equal to zero.

Otherwise (4.8) could not be used because the outer product of the basis matrices

in singular in this case.

The quantlet evalfd can be used to evaluate an fd object at a vector or matrix
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of arguments. The syntax is

evalmat = evalfd (evalarg, fd{, Lfd})

with input parameters

evalarg - a (p× q) matrix of argument values

fd - an fd object

Lfd - This can be a scalar (≥ 1) containing the order of derivative to penalize,

or an LDO object if an LDO with variable coefficients is to be penalized.

When applying an LDO with constant coefficients, Lfd is a (r × 2) matrix,

where the first column contains the coefficients, the second one the orders of

derivatives. The default value is Lfd = 0.

This quantlet returns an (p× q× x) array of functional values, where x is equal to

r if Lfd is a vector and equal to one otherwise.

With the help of these two quantlets fd objects can now be created and eval-

uated. In the next two sections, some special smoothing methods will be intro-

duced. These methods would need specific quantlets which are not implemented

yet. Therefore, some remarks on the computational requirements are also made.

4.4 Localized Basis Function Estimators

The idea is to combine kernel estimators and basis function estimators to yield

localized basis function estimators. A kernel estimator at a given point t is a linear

combination of local observations,

X̂i(t) =
n∑

j=1

Whj(t)yij , (4.34)

where Whj(t) are suitably defined weight functions, such as

Whj(t) =
Kh(t− tij)∑n

r=1Kh(t− tir)
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for the Nadaraya-Watson estimator (see Nadaraya, 1964, Watson, 1964), andKh(•) =
1
hK( •h) with some kernel function K(•) and the bandwidth h. Do not confuse

the kernel function with the (representing) kernel introduced in Section 2.4. An

overview on kernel density estimation and several kernel regression estimators is

given in Härdle et al. (2004).

When using a localized basis function estimator the roughness penalty approach

becomes

PENSSEλ(Xi(t)|yi) = {yi − Φ(ti)ci}>W(t){yi −Φ(ti)ci}+ λc>Rc, (4.35)

where W(t) = diag{Wh1(t), . . . ,Whni
(t)}. Hence, the vector of parameters which

minimizes (4.35) is

ĉi(t) =
{

Φ(ti)>W(t)Φ(ti) + λR
}−1

Φ(ti)>W(t)yi, (4.36)

and now depends on the argument t. The smoothing matrix becomes

Sφ,λ,i(t) = Φ(ti)
{

Φ(ti)>W(t)Φ(ti) + λR
}−1

Φ(ti)>W(t). (4.37)

By the design of the underlying kernel estimators, the weight values W(t) have

substantially positive support only for observations located close to the evalua-

tion argument t at which the function is to be estimated. Consequently, X̂i(t) is

essentially a linear combination only of the observations yi in the neighborhood

of t.

One advantage of this approach is, that the basis can better approximate local

features, since it only has to approximate data in a limited neighborhood of t.

This can be done with a small number K of basis functions. The price to pay for

this flexibility is that the expansion must essentially be carried out anew for each

evaluation point t, see Ramsay & Silverman (1997).

The localized basis function estimator might not be well suited for further

functional data analysis because of its high computational effort. That is why it has

not been implemented yet in XploRe. When doing so the data2fd quantlet must

be changed and also the evalfd quantlet, in order to be able to deal with variable
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coefficients of the basis function expansions, furthermore all quantlets which need

to evaluate the coefficient vector such as inprod.

4.5 The Regularized Basis Approach

In the roughness penalty approach the function Xi(t) were forced to lie in a rela-

tively low dimensional space, defined in terms of a suitable basis. In Section 4.4

we assume that not the whole function was in the span of a particular basis, but

rather we considered a local basis expansion at any given point. In this section two

complementary bases are used to fit the function to the observed data.

Assume that any function Xi(t) of interest can be expanded in terms of two

bases

Xi(t) =
J∑

j=1

dijψj(t) +
K∑

k=1

cikφk(t) (4.38)

or in matrix terms as

Xi(t) = Ψ(t)di + Φ(t)ci, (4.39)

with Ψ(t) = {ψ1(t), . . . , ψJ(t)},Φ(t) = {φ1(t), . . . , φK(t)},di = (di1, . . . , diJ)>, and

ci = (ci1, . . . , ciK)>. The basis functions Ψ(t) are small in number and chosen to

give reasonable account of the large-scale features of the data. For example, this

could be polynomial bases of low degree. The complementary basis functions Φ(t)

will generally be much larger in number, and are designed to catch local and other

features not representable by the other basis functions Ψ(t).

Now, assume that the roughness penalty must depend only on the coefficients

of Φ(t) because Ψ(t) are smooth enough. Otherwise, it would be sufficient to apply

the usual roughness penalty approach to the combined basis of Φ(t) and Ψ(t). Let

XiR(t) = Φ(t)ci and define a penalty term on XiR(t) using a linear differential

operator

PENL(XiR) =
∫

J
(LXiR(t))2dt =

∫
J
{

K∑
k=1

cikLφk(t)}2dt, (4.40)

or expressed alternatively as

PENL(XR) = c>Rc, (4.41)
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where the order K symmetric matrix R contains elements

Rkl =
∫

J
Lφk(t)Lφl(t)dt = 〈Lφk, Lφl〉

as before. Then the composite roughness penalty criterion becomes

PENSSEλ(Xi|yi) = {yi −Ψi(ti)di − Φi(ti)ci}>Wi {yi −Ψi(ti)di − Φi(ti)ci}
+ λci

>Rci.
(4.42)

Heckman and Ramsay (2000) show that (4.42) is furthermore a solution to the

general penalized regression problem (4.7) without specifying any basis function

expansion at all. Ramsay and Silverman (1997) show that by setting the partial

derivatives of (4.42) equal to zero the solutions for ci and di are

ĉi =
{

Φi(ti)>QΨiΦi(ti) + λR
}−1

Φi(ti)>QΨiyi (4.43)

and

d̂i = PΨi(ti)(yi − Φi(ti)ci), (4.44)

where PΨi = Ψi(ti)(Ψi(ti)>Ψi(ti))−1Ψi(ti)> is the projection matrix, and QΨi =

I − PΨi is the complementary projection. However, this resulting set of linear

equations can be extremely ill-conditioned, and moreover, the matrix calculations

require in general O(n3
i ) calculations. Heckman & Ramsay (2000) provide an O(ni)

algorithm.



Chapter 5

Summary and Outlook

The aim of this paper has been to introduce the concept of functional data, the basis

function approach for their representation as smooth functions, and smoothing

techniques for estimation out of discretely observed data. We showed the main

properties of the most often used basis expansions, the basic principles of penalized

regression and how to compute penalty matrices. The described system of quantlets

for the interactive statistical computing environment XploRe provides the creation

and computation of functional data (fd) objects and offers the starting point for

further functional data analysis.

In a next step, methods used to display and summarize functional data are to

be provided. Here the main advantage is that transformations such as variance,

covariance, or mean functions can be applied directly to the coef element of the fd

objects. As a result we do not need many specialized functions, except quantlets

such as for computing correlation or covariance functions. Afterwards, quantlets

for the typical FDA methods, as principal component analysis (PCA), principal

differential analysis (PDA), or functional linear models, has to be developed.

Additionally, the already implemented smoothing methods can be extended.

It can happen that a smoothing function is required to satisfy certain constraints.

The most often constraints in the spirit of Ramsay (2003) are: (1) that the function

be strictly positive, (2) that the function be strictly increasing or monotone, and

(3) that the function be a probability density function. Just using the standard
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smoothing functions above will often not work because there is no provision in them

for forcing the functions to be constrained in any way. Ramsay (1998) proposes

a methods under the constraint that the estimated smooth function is strictly

monotone. Ramsay & Silverman (2002) describe an algorithm on how to estimate

probability density functions using basis function expansions. Both methods are

more computationally intensive because iterative methods of nonlinear regression

need to be applied. As already mentioned, using wavelet bases for expansions might

be another aspect for further extension of the existing system of quantlets.

The novel statistical technology of functional data analysis has already sparked

a huge number of theoretical and applied essays. There are still a lot of perspectives

for further research. The system of quantlets, presented in this thesis may support

applications on functional data, as well as give impulses for future extensions.
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Electronic Source

The included CD-ROM contains the quantlets described in this thesis, as well as

all examples, and tex-files sources.

• ”FDA Quantlets” contains all FDA quantlets described in this thesis:

Bsplineevalgd.xpl

Fourierevalgd.xpl

polyevalgd.xpl

createfdbasis.xpl

getbasismatrix.xpl

data2fd.xpl

inprod.xpl

evalfd.xpl

createldo.xpl

• ”Examples” contains all examples and quantlets used for figures:

LDOexample.xpl

fb1.xpl

pb1.xpl

pcp1.xpl

bspl1.xpl

bspl2.xpl
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bspl3.xpl

bspl4.xpl

bspl5.xpl

bsplderiv1.xpl

bsplderiv2.xpl

tensor1.xpl

tensor2.xpl

rp1.xpl

• ”C++” contains all files of the dynamically linked library

• ”TeX-files” contains all file of the thesis produced by LaTeX. Note, the pdf-file

is NOT the web-supported version!!!


	Introduction
	Functional Data
	Definition of Functional Data
	Roughness and Smoothness of Functions
	Observed Functional Data
	The Basis Function Approach
	Implementing Functional Data Analysis in XploRe
	Objects for Functional Data Analysis in XploRe
	Three Steps in an FDA


	Basis Expansions
	Basis Expansions in XploRe
	Fourier Bases
	Polynomial Bases
	B-spline Bases
	Piecewise Polynomial Functions
	Polynomial Splines
	Definition and Properties of B-splines
	Derivatives of B-splines
	Tensor B-splines
	XploRe Quantlet for B-spline Bases

	Using fdbasis Objects in XploRe

	Smoothing Methods for Functional Data
	Penalized Regression
	The Roughness Penalty Approach
	Choosing the Smoothing Parameter
	Choosing the Linear Differential Operator

	Computing Inner Products
	Analytic and Numerical Solutions
	The Quantlet inprod

	Creating fd objects in XploRe
	Localized Basis Function Estimators
	The Regularized Basis Approach

	Summary and Outlook

