
THE PROVISION OF RELOCATION TRANSPARENCY
THROUGH A FORMALISED NAMING SYSTEM IN A

DISTRIBUTED MOBILE OBJECT SYSTEM

By

Katrina Elizabeth Falkner, B.Sc.(Ma. & Comp. Sc.)(Hons)

September 22, 2000

a thesis submitted for the degree of

Doctor of Philosophy

in the department of computer science

University of Adelaide

Contents

Abstract xi

Declaration xiii

Acknowledgments xiv

1 Introduction 1

1.1 Models for Relocation Transparency . 5

1.2 A Proposed Model for Relocation Transparency 8

1.3 Comparison of the Models . 10

1.4 The DISCWorld Metacomputing Environment 11

1.4.1 The DISCWorld ORB System . 12

1.4.2 Distribution and Object Models . 13

1.5 Contributions . 14

1.6 Thesis Structure . 16

2 Relocation Transparency in Existing Systems 18

2.1 Mobile Process Systems . 20

2.1.1 Charlotte . 21

2.1.2 DEMOS/MP . 21

2.1.3 MOSIX . 22

2.1.4 Sprite . 23

2.1.5 V-System . 23

2.2 Mobile Object Systems . 24

2.2.1 Ajents . 24

2.2.2 d’Agents or Agent Tcl . 25

2.2.3 Emerald . 26

2.2.4 MOA . 27

2.2.5 Obliq . 28

i

2.2.6 Sumatra . 29

2.3 Mobile Computer Systems . 30

2.3.1 Mobile IP . 31

2.3.2 Regional Directories . 31

2.4 Distributed Object Systems . 33

2.4.1 Aleph . 34

2.4.2 CORBA . 36

2.4.3 DCE . 37

2.4.4 DCOM . 39

2.4.5 Globe . 39

2.4.6 Globus/Nexus . 41

2.4.7 Hobbes . 42

2.4.8 Infospheres . 43

2.4.9 Java Remote Method Invocation . 44

2.4.10 Legion . 45

2.5 Summary . 46

3 Naming and Naming Models 49

3.1 Name Structure . 51

3.2 Naming Systems . 53

3.3 Naming Models and Classification Schemes 55

3.3.1 Name Binding Models . 55

3.3.2 Name Resolution Models . 59

3.3.3 Formalisation of the Naming Models 63

3.4 Summary . 73

4 Classification of Existing Systems 75

4.1 Name Binding Classification . 75

4.1.1 Mutability . 75

4.1.2 Knowledge . 78

4.1.3 Multiplicity . 78

4.1.4 Aliasing . 79

4.1.5 Name Sharing . 81

4.1.6 Descriptive Names . 82

4.1.7 Summary . 83

4.2 Name Resolution Classification . 83

4.2.1 Registered Preference . 84

ii

4.2.2 Mutability Preference . 85

4.2.3 Precision Preference . 86

4.2.4 Yellow-pages Preference . 87

4.2.5 Match-based Preference . 87

4.2.6 Voting Preference . 88

4.2.7 Temporal Preference . 89

4.2.8 Summary . 90

4.3 Classifications . 90

4.3.1 Mobile Process Systems . 90

4.3.2 Mobile Object Systems . 91

4.3.3 Mobile Host Systems . 95

4.3.4 Distributed Object Systems . 95

4.4 Summary . 100

5 The Extended Naming Model 104

5.1 Extensions to the Existing Models . 104

5.1.1 Extended Name Binding Model . 105

5.1.2 Extended Name Resolution Model 110

5.1.3 Formal Definitions . 112

5.2 Model Categories . 117

5.3 Reclassification of Existing Systems . 118

5.3.1 Mobile Process Systems . 119

5.3.2 Mobile Object Systems . 119

5.3.3 Mobile Host Systems . 121

5.3.4 Distributed Object Systems . 121

5.4 The DISCWorld ORB Naming Model . 125

5.4.1 Application of the Naming Model . 125

5.4.2 The General Naming Model . 128

5.4.3 Lifecycle of DISCWorld Names . 129

5.5 Summary . 131

6 The DISCWorld ORB System 135

6.1 Example Applications . 138

6.1.1 Example Legacy Applications . 138

6.1.2 Example Native Applications . 139

6.2 The DISCWorld ORB System . 143

6.2.1 ORB Model . 143

iii

6.2.2 Distribution Model . 145

6.2.3 Adaptability . 147

6.3 Mobility . 150

6.3.1 Location Independence and Location Transparency 151

6.3.2 Relocation Transparency . 152

6.3.3 Migration Transparency . 155

6.4 The Cost of Transparency . 156

6.5 Object Integration . 160

6.5.1 Server Integration . 160

6.5.2 Client Integration . 163

6.6 Communication Models . 165

6.6.1 RPC-style Communication . 166

6.6.2 Mobile Communication . 168

6.7 Summary . 170

7 Implementation 171

7.1 Implementation of the DISCWorld ORB . 171

7.1.1 Database Manager . 173

7.1.2 DISCWorld ORB Communications Protocol 175

7.1.3 Distribution Mechanisms . 179

7.2 Naming System . 180

7.2.1 Example Naming Model Functions 180

7.2.2 Complete Binding, Management and Resolution Functions 184

7.2.3 Aliasing Support . 185

7.3 Mobility . 187

7.3.1 Migration Implementation . 187

7.3.2 Migration Protocol . 188

7.3.3 Relocation Implementation . 190

7.4 Communication Models . 191

7.4.1 RPC-style Communication . 191

7.4.2 Mobile Communication . 193

7.5 Summary . 194

8 Evaluation 195

8.1 ORB System Design . 196

8.1.1 Distribution . 197

8.1.2 Adaptiveness . 198

iv

8.1.3 Protocol Evaluation . 198

8.1.4 The Hidden Costs of Multithreading 200

8.1.5 Summary . 201

8.2 Communication Models . 204

8.3 Naming Models . 204

8.3.1 Cost of Coherency . 205

8.3.2 Summary . 206

8.4 Location Costs . 207

8.4.1 Effect of Namespace Position . 207

8.4.2 Namespace Dispersion Costs . 214

8.4.3 Summary . 216

8.5 Transparency . 216

8.5.1 Transparency Models . 218

8.5.2 Scalability . 222

8.5.3 Comparison of Models . 223

8.5.4 Migration and Relocation Costs . 228

8.5.5 Summary . 232

8.6 Summary . 233

9 Summary and Conclusions 234

9.1 The Need for Transparency and Naming Models 234

9.1.1 The Update Relocation Model . 235

9.1.2 Formal Naming Models . 236

9.1.3 The Distributed ORB System . 236

9.2 Contributions and Final Conclusions . 237

9.3 Future Work . 239

9.4 Finale . 240

A Protocol Specification 241

A.1 Protocol Objects . 241

A.2 I/O Automata Definitions . 245

A.2.1 Client I/O Automaton . 246

A.2.2 Server I/O Automaton . 248

A.2.3 ORB I/O Automaton . 249

B API for DISCWorld ORB System 253

B.1 Registry Interface . 253

v

B.2 Policy Interface . 255

B.3 Alias Sets . 258

B.4 Communications Constructs . 260

C Policy Specification 263

Bibliography 265

vi

List of Tables

1 Transparency and independence within mobile systems. 47

2 Transparency and independence within distributed object systems. 47

3 Relocation schemes used within distributed and mobile object systems. . . . 48

4 Existing object system support for the name binding model. 102

5 Existing object system support for the name resolution model. 103

6 Differences in classification under the extended naming model. 131

7 Existing object system support for the extended name binding model. . . . 133

8 Existing object system support for descriptive and attribute-based naming. 133

9 Existing object system support for the extended name management model. 134

10 Existing object system support for the extended name resolution model. . . 134

11 Size of protocol objects produced by the serialisation mechanisms. 199

12 Serialisation costs for protocol objects. 200

13 Scalability of the relocation transparency models. 222

14 Protocol objects used within the DISCWorld ORB system. 245

vii

List of Figures

1 A stub-skeleton style communication. 6

2 Reference management using stub-scion chains. 7

3 Location and relocation within the proposed update model. 9

4 The trombone problem. 10

5 Stub-based client/server communication within an ORB system. 13

6 An example of a distributed Regional Directory. 32

7 The Arrow distributed directory protocol used within Aleph. 35

8 The tree storage mechanism for Globe’s location service. 41

9 Direction-based naming. 51

10 A structured, contextual naming scheme in tree form. 52

11 Dynamic extensions to a tree form naming scheme. 52

12 Objects ordered by their creation chain. 79

13 Detail of a CORBA IOR reference. 80

14 An example of subsystem naming models. 127

15 Lifecycle of a DISCWorld ORB reference. 131

16 Abstract view of the DISCWorld system. 136

17 Integration of legacy applications into DISCWorld. 140

18 Integration of native applications into DISCWorld. 141

19 Webserver integration using the DISCWorld ORB model. 142

20 Component model for a single registry system. 144

21 Structure of a DISCWorld ORB system. 145

22 Information flow through the ORB system. 147

23 Distributed multiple registry location model. 148

24 Maintaining domain structure through adaption. 149

25 Internal structure of a DISCWorld ORB reference. 152

26 Location and relocation within the DISCWorld ORB update model. 154

27 Distributed multiple registry relocation model. 155

28 Location cost for a local server. 157

viii

29 Location cost for a level 1 resident server. 158

30 Location cost for a level 2 resident server. 159

31 Example server registration code. 163

32 Example name resolution code for a client. 164

33 Example attribute set specification. 164

34 Example attribute-based resolution. 165

35 Example code fragment utilising future objects. 167

36 Itinerary for a mobile communicator. 169

37 Monitoring code for a mobile communicator. 169

38 Architecture of a level 1 DISCWorld ORB. 173

39 Implementation of the database manager bind function. 175

40 Registering a server object using the DISCWorld ORB APIs. 176

41 The process of activating a protocol object. 177

42 Example process method for the RegisterRequest protocol object. 178

43 Implementation of the single binding name management function. 181

44 Maintaining database segment coherency. 182

45 Implementation of the name reuse management function. 183

46 Implementation of the active rebinding management function. 183

47 Implementation of the complete binding function. 184

48 Object migration protocol. 188

49 Implementation of the migration initiation protocol object. 189

50 Process methods for the suspend and move protocol objects. 189

51 Implementation of the migration protocol object. 190

52 Implementation of the update relocation mechanism. 191

53 Annotated server interface definition. 192

54 Implementation of the mobile communicator migration process. 193

55 Thread creation costs. 202

56 Thread switching costs. 203

57 Average object location costs within the DISCWorld ORB system. 208

58 Cost of a local client locating a local server. 210

59 Cost of a remote client locating a local server. 211

60 Cost of a remote client locating a domain-based server. 212

61 Cost of a remote client locating a local server within a large namespace. . . 213

62 The effect of namespace caching within the DISCWorld ORB system. . . . 215

63 Serialisation costs for alias sets. 217

64 Comparison of global referencing models. 221

ix

65 Connection costs for the home and forwarding location, and update models. 224

66 Connection costs for the home location and update models. 226

67 Connection cost and scalability in the distributed update model. 227

68 Example migration path used in cost evaluation. 228

69 The effect of migration on invocation cost. 229

70 Costs of relocation models. 231

x

Abstract

Mobility in distributed object systems is useful as it can provide such properties as

load balancing, code to data movement, fault tolerance, migration to stable storage, and

autonomous semantics. In a widely distributed system, these properties are important

as they can help alleviate latency issues and increase performance within the system.

Additionally, they provide more flexibility in the programming of distributed systems by

relaxing static location restrictions. Location transparency removes the need for client

objects to explicitly know or define the location of a server object when communicating. If

a server object is capable of migration, relocation transparency maintains reference validity

throughout the migration.

Several models for providing relocation transparency exist, including the home location,

forwarding location, and broadcast models. This thesis proposes a model that uses

a distributed registry system and dynamic reference updating to provide location and

relocation transparency. A registry system is used to provide location independence by

resolving a location independent name to a reference that can be used by a client. A

naming system is used to provide correct binding and production of names within the

naming restrictions of the system.

The thesis proposes that the choice of naming system within a distributed or mobile

object system has a large effect on the system’s ability to support efficient transparent

object relocation. This thesis proposes that a formal analysis of naming systems enables

the selection of an appropriate naming system for a distributed or mobile object system

given the object system’s naming, distribution and transparency requirements. This thesis

presents a new classification scheme for naming systems, based on analysis of a broad

spectrum of naming systems.

A classification of existing mobile and distributed object systems with respect to existing

naming models is provided. It is shown that the current models need to be refined and

extended to completely and correctly classify the example systems. This thesis proposes

extensions and refinements that enable correct and complete classification of mobile and

distributed object systems with a need for transparency. The extended naming model is

xi

then used to describe a naming system that is capable of implementing any naming system

classifiable by the extended model. A classification of a naming system to support the

proposed model of location and relocation transparency is presented.

A distributed ORB system is designed and implemented to support the distributed

namespace and generic naming system implementation. The distributed ORB system is

hierarchically structured and is capable of adapting in response to node failure. This

ORB system is used to support client and server object integration in the DISCWorld

metacomputing environment. The ORB system is used to provide migration, replication

and cloning services to the DISCWorld metacomputing environment.

A qualitative analysis of the generic naming system and the DISCWorld ORB system

is performed. A comparison between the proposed model for location and relocation

transparency and existing models is also presented. This comparison shows that the

proposed model exhibits better location and relocation performance within the DISCWorld

environment. The distributed nature of the ORB system and namespace provides a scalable

nature in terms of namespace size, the number of objects within the system, and the

frequency of location and relocation requests.

xii

Declaration

This work contains no material which has been accepted for the award of any other degree

or diploma in any university or other tertiary institution and, to the best of my knowledge

and belief, contains no material previously published or written by another person, except

where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University of Adelaide

Library, being available for loan and photocopying.

Although DISCWorld is a joint development of the Distributed & High Performance

Computing Project group and other students, the work reported here on transparent

mobility support and naming systems within DISCWorld is my own work.

Katrina Elizabeth Falkner, B.Sc.(Ma. & Comp. Sc.)(Hons)

September 22, 2000

xiii

Acknowledgments

This work was carried out under the Distributed High Performance Computing

Infrastructure Project (DHPC-I) of the On-Line Data Archives Program (OLDA) of

the Advanced Computational Systems (ACSys) Cooperative Research Centre (CRC) and

funded by the Research Data Networks (RDN) CRC. ACSys and RDN are funded by the

Australian Commonwealth Government CRC Program.

I would like to thank my supervisors Michael Oudshoorn and Ken Hawick for their

comments on this work and their advice throughout my time as a PhD student. Michael

Oudshoorn deserves special thanks for all of his help, especially with the preparation of this

thesis, and his comments and interest in my work from when I was an Honours student

until now.

Many thanks to Chris Barter, Professor at Adelaide University, for his support

throughout my time at Adelaide University. Thanks also to Paul Coddington, Kevin

Maciunas, Dave Munro, Cheryl Pope, Francis Vaughan and Tracey Young.

Thanks also to past and present members of the DHPC group, who have made my

time as a PhD student an enjoyable experience: Duncan Grove, James Hercus, Heath

James, KimMason, Jesudas Mathew, Craig Patten, Andrew Silis, DarrenWebb and Andrew

Wendelborn.

I would like to thank my family for their constant support throughout my studies. My

parents believe that, with education, a person is able to do anything they wish. With their

help and support, and the guidance of my sister Julie, this has been possible for me.

Most of all, I would like to thank my husband, Nick Falkner, whose support and

friendship has been invaluable. Providing me with a fantastic and supportive environment,

reading my thesis drafts, and keeping me motivated were just part of the daily routine.

Katrina Falkner.

September 22, 2000.

Adelaide, Australia.

xiv

Chapter 1

Introduction

The object model is one of the most powerful and commonly used programming

paradigms. Distributed object systems require objects to remotely communicate,

performing coordinated computation. Migration of objects is an important aspect of

distributed object computing as it can help alleviate the effect of object or node failures,

and communications latency.

A mobile object is an object that is capable of moving, or being moved, readily from

one place to another. Mobility within a distributed object system allows mobility-enabled

objects to move freely between processing nodes within the distributed system. Mobility

within a distributed object system supports:

• load balancing (by moving objects from heavily loaded nodes to lightly loaded nodes),

• fault tolerance (by moving objects to new nodes in response to node partial failure),

• locality of data access (by moving objects to the vicinity of the data they require) and

• scheduling and monitoring of the distributed system (by allowing monitoring objects

to move about the distributed system assessing load and scheduling requirements).

Mobility can be used to hide latency within a widely distributed system by providing

specialised communications styles [45], such as moving an object to a remote site to perform

computation and then recalling the object to extract result values in place of a traditional

remote invocation in client/server systems. Additionally, mobility in a distributed object

system allows flexibility in the programming of distribution by removing static location

definition restrictions.

Mobility has been examined at many different levels: from thread or task-level mobility

within multiprocessor systems [102], and process or object mobility within a distributed

system [128, 130] to host mobility within a disconnected network [6, 93, 146]. One of the

most important issues when dealing with mobility within an object system is that of locality

and reference management [129,130,158]. Objects within a mobile object system may have

1

CHAPTER 1. INTRODUCTION 2

references to other objects within the system. When these objects move, it is important

that any references to them remain valid and that any referencing object always be able to

contact the mobile object regardless of the mobile object’s location.

An object reference that does not expose the location of the referenced object is said to be

location transparent; a location transparent reference can access a remote object in the same

manner regardless of the remote object’s current location or state. Location transparent

references have been implemented in several distributed object systems [83, 86, 109] and

allow distributed communication to be programmed without exposing or requiring location

specification. Transparency decreases complexity in distributed programming by taking

away the need to define object locations, but incurs additional communications overhead

as the location transparent reference must be resolved or evaluated to a direct reference to

the remote object [47,113,162].

As stated by Shapiro et al [164], “it is essential for performance that a stub contain the

actual address of its target”, where a stub is a type of reference. However, this requirement

leads to difficulties when the embedded location becomes invalid through object migration.

An object reference that does not require knowledge of the mobile object’s location is said

to be location independent.

An object that can change location without affecting other objects is said to be relocation

transparent. In a relocation transparent system, a client does not have to explicitly update

its references in any way as all relocation is performed transparently. An object that can

additionally change location without performing an explicit migratory action is termed

migration transparent.

An additional problem in a distributed object system is that of initially obtaining the

location of, or a reference to, an object. This task, and that of maintaining a reference, is

often performed by naming an object in some way and making that name known to potential

referencing objects. Saltzer states that “Names for objects are required so that programs can

refer to the objects, so that objects can be shared, and so that objects can be located at some

future time.” [158]. A name can take the place of, or be a part of, an object reference. This

causes the location transparency and location dependence of the reference to be dependent

on the name’s location transparency and location dependence. For example, suppose an

object reference is a combination of its object or procedure name, its host and optionally

some unique identifier for that host. This produces a globally unique name, however it is

neither location transparent or location independent.

The mechanism of matching a name to an object is termed name binding; the mechanism

of obtaining an object or object reference from a name is termed name resolution. A naming

context is the domain in which the names are understood. A name is always resolved with

respect to some naming context. A naming context may be a local context such as a single

node or a cluster, or a global context may be defined. A naming model defines how binding

CHAPTER 1. INTRODUCTION 3

and resolution is to be performed and how strong or weak restrictions on these actions will

be. A naming model is implemented by a naming system.

Many distributed object systems utilise a global or local naming service of some form to

identify services registered within the system. This naming service provides the ability to

locate a service from a name, to link or bind a service to a name and potentially to track a

service once linked to a name. Distributed object systems do not have an inherent need for

transparent names, as once a name has been resolved or a reference has been established,

the reference is indefinitely correct unless server failure or shutdown occurs. In this form

of system it is difficult to support mobility as references are neither location or relocation

transparent.

Many mobile object systems do not support a naming service or relocation transparency

and, as a result, provide no way of registering or tracking the identity of a mobile object. If

it is to maintain consistency, a mobile object system that allows external references to its

objects has a requirement for a globally unique name that is immutable for the lifetime of

the object. Once an object has been created and other objects have references to it the name

of the object must be globally unique to permit tracking throughout the object system. A

mobile object system that wishes to provide this, and similar, forms of consistency and also

provide location and relocation transparency must provide a naming system of some kind

to manage its namespace.

This thesis proposes a model of location and relocation transparency that uses a

distributed naming system. An expressive naming model is used to resolve names to

independent, location transparent references. The naming system is also used as a

framework that provides mobility in a location and migration transparent manner. This

framework can be extended to provide other services such as transparent replication and

service cloning. Names in this model act as object references and have variable, hierarchical

contexts, leading to some names being part of a global context and others part of a local

context.

Binding of names to objects was initially studied in depth by Saltzer [158, 159] with

respect to naming objects within operating systems (at the level of addressing schemes to

support dynamic binding and file systems)1; and has been examined in the implementation

of many mobile object systems [41, 62, 102, 162]. Bayerdorffer [15, 16] defines a model of

name binding that is applicable to concurrent object systems. This model defines several

properties that can, additionally, be used to classify distributed and mobile object systems.

Bowman et al [26] present a formal model of name resolution. These models are defined in

more detail in Chapter 3, and are used to classify existing distributed and mobile object

systems according to their name binding and resolution schemes in Chapter 4.

1A detailed study of naming and binding relative to a distributed directory structures with focus on client
caching is given by Terry in [174].

CHAPTER 1. INTRODUCTION 4

The classifications presented in Chapter 4 are used to highlight deficiencies in the

formal models and outline additional elements or changes to the models that increase their

suitability for classifying the example systems. Chapter 5 presents the defined extensions

to the models and uses these extensions to classify pertinent systems and to define the

extended naming model used within this thesis.

Distributed name services have been studied in the context of distributed file systems [35,

158] and global distribution systems [112]. The need for scalability in the name service

requires the name service to be distributed over the processing nodes within the system

rather than be centralised [174], however this distributed nature introduces coherency

and update problems [35, 112]. These issues have been discussed by Lampson in great

detail [112]; additionally by Cheriton and Mann [35] and Terry [174]. A centralised name

service for a widely distributed object system introduces a central point of failure and is

also a bottleneck for communications; a distributed name service alleviates these problems

but forces the system to either pass around large amounts of data (to keep replicas of a

logically centralized name service) or to pass requests through some hierarchy. The design

issues involved in designing a scalable and coherent distributed name service form part of

this thesis.

This thesis explores support for object mobility within distributed object systems,

specifically that found in systems based on an Object Request Broker (ORB) model. An

ORB system is a form of distributed object system that utilises an intermediate well-known

broker object to provide and manage references on a small scale. An ORB does this by

providing mappings between names and objects, supporting facilities for name binding and

name resolution. ORBs are an interesting platform as the model is easily extensible and

provide mechanisms for integrating additional support services into a distributed or mobile

object system, such as security or trading services [136].

This thesis extends the naming models provided by Bayerdorffer [15, 16] and Bowman

et al [26] to be more suitable for classifying distributed object systems with mobility. New

characteristics applicable to the classification of distributed and mobile object systems are

defined and existing systems are classified according to this extended model. An expressive

naming model based on these extended characteristics is outlined and forms the basis for an

implementation of location and relocation transparency within a distributed ORB system.

An implementation of a distributed ORB using this expressive naming model to support

object mobility and location and relocation transparent references is described. Analysis

of this implementation shows that the additional overhead in maintaining transparency

is outweighed by the benefit of robust reference management and the scalability of the

extended naming model and the distributed ORB system.

CHAPTER 1. INTRODUCTION 5

1.1 Models for Relocation Transparency

Several solutions have been suggested to maintain the validity of existing references within

a distributed object system. Mechanisms have been proposed based on the concept of a

home location; a home location is updated whenever an object moves and serves as the

client contact point for referencing. A home location can also be responsible for a form of

“descriptive” naming in that it keeps track of any additional information or status, such

as whether the object is idle, busy or blocked. The home location model has been used to

support location transparency in [12,34,49].

One common extension to the home location idea to to use a mobile home location [61,

116]. This results in a chain of homes or forwarding locations leading from the original

home location to the current location of the mobile object. A client reference may point to

any link in the chain. The forwarding location model has been used in [4,6,84].

A fragmented object [46, 122, 123] model is often chosen as the distribution model in a

distributed object system. A fragmented object is one with several components that may

be distributed over nodes within a distributed system, while appearing to be a single entity

to external clients. A fragmented object consists of several types of component:

• a set of fundamental components that make up the application,

• client interface components, existing on the client’s system, that support

communication within the fragment,

• an interface between fragments called the group interface, and

• low-level shared fragments, known as connective objects, that enable communication

between other fragments.

By having the server object distributed over several nodes, including client nodes,

the client can access the server abstractly regardless of the location of the fundamental

components. Multiple client interface fragments are distributed to the sites of clients to

allow this form of fragmented access. A client interface fragment can then be used as a

named reference and is responsible for maintaining reference validity and for any transparent

or independent locality that the model may support.

Fragmented objects are similar to concepts used in RPC [20, 22], CORBA [138],

DCOM [27] and Java RMI [167]. The fragmented object model differs from these in that it

provides support for connective objects and group interfaces that enables multiple levels of

fragmentation, while the other systems provide only one level of fragmentation: separating

client interface fragments and the remaining service fragments. Fragmented objects also

differ in that they can provide multiple client interface fragments dependent on the client.

A client interface fragment is often termed a stub [22, 138, 167] and can be viewed as

a simple proxy of the server object within a client/server communication. The stub has

CHAPTER 1. INTRODUCTION 6

Stub

Stub

Client

Stub

Client

Skel

Server

Reference

Stub

Skel

Skel

Server

Stub Object

Skeleton Object

Figure 1: A stub-skeleton style communication.

identical method signatures to the server and, hence, provides an abstract local interface

for all server methods available to the client. The stub is responsible for performing the

actual remote invocation and also may be responsible for maintaining reference transparency

and/or reference independence. On the server side additional code (often termed a

skeleton [22, 70, 83]) is used to translate the remote invocation from the stub to a local

invocation on the server object. Figure 1 shows a typical client/server system that uses

stubs and skeletons to perform remote invocation.

A further alternative used to manage location referencing is that of stub-scion pairs [164]

(SSPs). A stub is maintained as the object reference on the client side and a scion is

maintained for each stub on the server side; a stub-scion pair is produced for each object

reference created. When an object reference is moved, a new stub-scion pair is created to

produce a chain of pointers through which the correct reference can be obtained.

The way in which the stub-scion technique differs from that of forwarding locations or a

home location is that a stub within a stub-scion system may have multiple references to the

referenced object. A stub will contain a strong locator reference which will always lead to the

destination object and potentially multiple weak locator references that are not guaranteed

to complete but may contain a shorter path. A strong locator references through the chain

of SSPs which will eventually resolve to the server object. A weak reference will directly

reference the last known location of the server, encouraging efficient communication. Once

the server has relocated, the weak reference become invalid. A weak locator may be returned

as part of an invocation through a strong locator reference, and can be used as a direct

path for future invocations.

CHAPTER 1. INTRODUCTION 7

Y

Host C

Y

Weak Locator

Strong Locator

Direct Reference
Server

Ya Yb

Ya b cYb

Object Y moves from Host B to Host C

Host A

Host A Host B

Host B

After Object Y moves from Host B to Host C

Host C

Stub

Scion

Figure 2: Reference management using stub-scion chains.

Figure 2 shows an example of the stub-scion mechanism where Object Y relocates from

Host B to Host C, leaving updates of its location in the form of a SSP chain. Instead of

a single forwarding object or home object, scion objects are maintained for each existing

reference enabling a form of reference counting. Shapiro et al [164] use the stub-scion

mechanism to support a distributed acyclic garbage collection system where the invocation

protocol is used to provide suggestions of weak locators. Stub-scion chains have been used

to support reference management in Hobbes [121] and work by Baggio [7].

A central registry has also been proposed by systems such as Gardens [154], which treats

a distributed system as a closely linked parallel system. Each reference is treated as if it

were part of a shared memory system where offsets are managed as part of reference access;

this results in additional overhead but removes any required reference updating and also

any naming requirement. However, this type of system is only suitable for a restricted set

of distributed object systems where the structure of the system is known. V-System [124]

introduces a search-based mechanism where references are constructed of (logical host id,

local index) pairs. When an object moves, the logical host is duplicated and then set to the

new physical host address. As existing references become invalid, their entry in the mapping

cache becomes invalid and a request is broadcast to the network for the new logical host id.

CHAPTER 1. INTRODUCTION 8

1.2 A Proposed Model for Relocation Transparency

The model for location and relocation transparency proposed in this thesis relies on a

distributed and scalable registry system which acts as both a mobility service and a naming

service.

Location transparency is provided through the use of a distributed naming service. A

fragmented object model is used, with some location dependent information kept within

the client interface fragment as cached data only. When this data becomes invalid, new

location information can be obtained from the distributed naming service [51].

Three types of reference are recognised within the proposed model:

• Connected: references given to a client and currently being actively used.

• Unconnected: references given to clients but currently unconnected to a service.

• Unknown: references yet to be handed out.

A reference that has been enabled and used for remote access is a connected reference.

Relocation transparency is provided for connected references as the server object is able to

send update messages directly to the client upon migration; reconnection can be established

without any loss of messages or requests. This category of reference is the most common

to be found within the proposed system.

Unconnected references are possible as, within a fragmented object model (or even a stub

model), there is a delay between the return of the client interface fragment and activation

of the reference. References are only activated upon method invocation to minimise the

number of currently connected clients requiring migration updates. This time delay may

coincide with a migration of the object. In this category, there must be a facility for reference

updating upon a failed reference activation.

A client that has a name, but this name has not yet been resolved to a reference,

has an unknown reference. This object system has no way of knowing that this future

reference exists and is unable to maintain or verify the name’s validity. In this case, the

only requirement on the name service is to maintain validity within itself, i.e. its own

knowledge of references must be maintained at all times.

Unconnected references and connected references are similar to unrefined handles and

refined handles as introduced in the refined fragmented object model [46]. In the refined

fragmented object model, handles are client interface fragments that contain information

on how to contact an object. A handle can be unconnected due to the time delay between

reference transmission and connection. Handles are connected immediately when the client

receives them, not at a future communication point. Similarly to handles, unconnected and

connected references are capable of being freely copied within the distributed system.

Figure 3 shows an example of the proposed location mechanism at work. Object A

initially has an unconnected reference to object B (i), which is then connected using a client

CHAPTER 1. INTRODUCTION 9

A i B (i)

A i

B

m

cache
(iii)update

A i Bm (ii)

i Client Interface Fragment

m Temporary Migration Fragment

m Migration Fragment

A i

B

(v)

m

m

Bm
H3

A i
H1

H1 H2

migration

H2

H3

H2

H3

H1

H1

H1

H2

(iv)
Queues

Figure 3: Location and relocation within the proposed update model.

interface fragment and a migration fragment (ii). The migration fragment is responsible for

handling and updating connections and disappears after a completed migration. It does

not act as a forwarding pointer at any stage. When object B relocates, object A’s reference

is updated (iii); after migration is completed and request queues have been sent to the new

location, object A can reconnect and resume communication (iv). In (v) the client has a

newly connected reference to the new location of B.

A migration fragment is created for each connected client. This means that direct

communication and updating of connected clients can be performed, while unconnected

and unknown clients are unknown to the server and must perform relocation through the

name registry system. Relocation transparency is maintained by providing migration and

CHAPTER 1. INTRODUCTION 10

Client

Mobile Object

Home Location
a

m

n

Figure 4: The trombone problem.

client interface fragments which perform any additional update tasks and location querying.

No residual objects are left after object migration.

Interaction with the distributed name service is required when cached location

information becomes dirty without an update from a connected server. Relocation can

be performed by requesting a reference or a reference update (cached information only) for

a name matching the server. A name is maintained within the client interface fragment,

and consists of the object name and a unique identifier that identifies the communications

channel. This identifier is used to reconnect and claim queues of migrated requests. These

mechanisms are described in more detail in Chapter 6.

1.3 Comparison of the Models

One of the potential problems of the home location model is that the home location acts as

a central point of failure. If the home location fails, all existing object references and any

future object references become invalid. This also introduces a communications bottleneck.

An additional problem is that there may be large communications overhead unnecessarily

incurred if the mobile object and client are both separated by large distances (in terms of

latency) from the home location, but close to each other. This is commonly known as the

trombone problem [43,152].

Figure 4 shows an example of the trombone problem where a client has to communicate

through a mobile object’s home location where the distance between the objects causes a

large latency. It would be more efficient if it could communicate directly with the mobile

object. The values n and m in Figure 4 represent the latencies between the home location,

and the client and mobile object respectively, a represents the latency between the client

and mobile object through a direct communication, where a� n,m.

In a forwarding location model, a client may have any of the forwarding pointers as

their first reference to the mobile object, alleviating the bottleneck and central point of

failure issues. However, for initial clients the list of forwarding pointers to visit may become

arbitrarily large and potentially cyclic. A failure of a member of the chain will invalidate

any references to earlier chain members. Stub-scion chains incur the same cost as the

CHAPTER 1. INTRODUCTION 11

forwarding location model for the first invocation, however a shorter path can be returned

or piggy-backed as part of an invocation response to produce a direct reference (consisting

of a single SSP) for future usage.

Location management using home location and forwarding pointers are commonly used

methods in the areas of mobile object, mobile process and mobile host systems [129, 130].

The problems in these methods exist due to the presence of residual objects within the

object system. The use of residual objects results in out-of-date location information being

used throughout the object system; additionally this information is required by clients to

locate server objects. A reference that has to contact a home or forwarding location is not

location independent and in some systems, not even location transparent [138].

The model proposed within this thesis makes use of a fragmented object model with

migration fragments existing only for connected references. These migration fragments do

not act as a chain, a single migration fragment is used as a direct reference. Migration

fragments also allow updated location messages to be forwarded to the client. Unconnected

references can update their cached location hints by contacting the registry system. The

time between the provision of a reference and its connection is client dependent; in a system

where migration is infrequent this delay will be small (minimising relocation possibilities)

hence making this case uncommon.

Where relocation is common but client access is rare, the home location model does not

suffer from bottleneck issues. When the scale of distribution is small, the home location

model is ideal as the effect of tromboning is also removed.

In the case where relocation is uncommon but client access is frequent, the forwarding

location model and, more so, the SSP chain model can be efficient as the length of the chain

in each case will be small.

The proposed model is suited to the case where relocation is common and client access

is frequent. References can be updated transparently for connected clients without an

increasing chain of forwarding locations. Bottleneck issues are reduced due to the distributed

nature of the registry system and direct referencing. All models benefit from a smaller scale

of distribution due to the reduced latency costs and reduction of any potential trombone

effect.

1.4 The DISCWorld Metacomputing Environment

The proposed model of location and relocation transparency based on top of a distributed

registry system is implemented as part of the Distributed Information Systems Control

World (DISCWorld) metacomputing environment [78,82,104].

The DISCWorld metacomputing environment provides middleware support for

distributed systems. It supports web-based client access to legacy and specialised services

running within the DISCWorld system. DISCWorld supports dynamic reconfiguration and

CHAPTER 1. INTRODUCTION 12

adaption in response to data access requirements and processing load within a data-intensive

high-performance system. Additional services that DISCWorld provides are meta-data

resource discovery, data transport, process scheduling and monitoring services.

Several high-performance legacy applications have been developed to support

Geographical Information Systems (GIS) within the DISCWorld framework [37, 38, 103].

These services have been integrated into the DISCWorld metacomputing environment and

provide a mixture of mobile and host dependent code; and code implemented for high-

performance and low-performance systems.

1.4.1 The DISCWorld ORB System

The distributed registry system is based on an ORB model, and acts as a name server and

a framework for linking additional services into the DISCWorld ORB system [51,104]. The

DISCWorld ORB system is designed for native mobility support; this is implemented on

top of the ORB system as an additional service.

An ORB model defines a model for client/server communications utilising an

independent third party. Access to this third party may be transparent or it may be direct

depending on the system model or even on the types of communications and reference

access used within the same model. Examples of well known ORB models are the Common

Object Request Broker Architecture (CORBA) [136,138] and Java RMI [70,167]. These are

commonly identified examples of ORB systems, however many other distributed systems fit

the ORB model, including Globus [54,57] and Globe [177–179].

Essentially a distributed object system based on an ORB model is one that uses a

third party object to provide references and additionally manage name binding and name

resolution to some extent within client/server communication. A server will register its

service and potentially bind a name to this service (alternatively a name can be provided

by the naming system itself) through some facility provided by the ORB. This could entail

binding to an external ORB service [136] or accessing internal library code [39, 167]. A

client will request a named service from the ORB and obtain a reference, generally in the

form of a stub, to abstract over remote communication requirements.

The ORB provides a mapping between a name and the service object and is able to

provide stub code or a method to obtain stub code as provided. Figure 5 shows the operation

of typical client/server communication within an ORB model. Initially (i), a server object

registers its service or name with the ORB. When a client requests name resolution by the

ORB, a stub is returned to the client (ii). This stub can then be used to remotely invoke

methods on the server by communicating with the server’s skeleton object (iii).

An ORB model is useful for dynamic distributed object systems as it acts as a well

known contact point through which clients and servers can communicate. A publicised port

is commonly used as the ORB contact point. If communications libraries are provided to

CHAPTER 1. INTRODUCTION 13

Stub
ORBORB

API

Skeleton

Server

(iii) Invoke

ORB
API

Client

(i) Register

(ii) Locate

Figure 5: Stub-based client/server communication within an ORB system.

the client and server objects, this enables an ORB system to be accessed without explicit

remote communications required by the client and server code.

ORBs are often used as well known access points for additional services provided as

part of the distributed object system. Some commonly found services include security

services [136], trading services [17, 137] and contextual naming systems [135]. Mobility

services have also been proposed [128], while ORB-based systems with inbuilt mobility

have also been proposed [131].

The DISCWorld ORB system provides mechanisms for clients within the DISCWorld

system to register services, obtain references to services and perform optimised

communications. To support scalable wide-area communications, a communications

construct has been developed which utilises the inbuilt support for mobility and transparent

reference updating (see Section 6.6). The DISCWorld ORB system provides additional

service support for object migration, replication and cloning.

The DISCWorld ORB system has a hierarchical directory structure with adaptive

components and a distributed nature. Different models for updating these directories are

used dependent on the level of the registry within the hierarchy and the expected latency

within the system. The DISCWorld ORB’s naming model is consistent with the extended

naming model detailed in Chapter 5 and provides support for service relocation, name

aliasing, name extension and dynamic reassignment of names to objects. This naming model

avoids polling of services and provides a consistent communications scheme to support the

distributed directory service.

1.4.2 Distribution and Object Models

The distributed object model used within this thesis an example of a fragmented object

model. A client interface fragment or stub is used to separate the communications from

the application object. Client/server communications then occur through the stub and

the group interface fragment. Additional fragments are used to perform the low level

CHAPTER 1. INTRODUCTION 14

communications within the system and fragments are required to interface to the naming

system.

Objects are accessible through predefined, typed methods either locally through direct

invocation or remotely through the stub interface. Multiple stub interfaces can be accessed

by the system to support multiple protocols and multiple client types.

Objects that can be accessed or referenced remotely by another object must be named.

Local access need not be named although this is not prevented. Additionally objects passed

or returned in a remote invocation are passed by reference if named, but by value otherwise.

Naming is performed on a per-object basis so that multiple instantiations of the same class

or code may have different names. An object is named if it is registered with the ORB

system or has been exported as part of a remote communication; objects that are only

accessed locally are not named. Primitive types that do not exist as objects can not be

named.

Names are constructed using a contextual mechanism that supports three contexts.

Objects are accessed through their code defined names (such as variable names) within the

object’s private address space. Local names can be used within the local name registry

system that consists of a small collection of nodes involved in a computation; global names

can be used universally between name registry systems. An object may have multiple names

(global and local) where the local names can only be used within their valid context. User

defined contexts beyond these facilities can not be defined.

1.5 Contributions

This thesis discusses models for location and relocation transparency used within existing

mobile and distributed object systems. A new model, based on the combination of an

explicit update model and an ORB-based distributed directory system, is introduced.

Location transparent and independent naming to support this model is provided through a

global namespace managed by the ORB-based distributed directory system.

This thesis describes the development of a formal naming system classification model

based on existing work in the area by Bayerdorffer [15, 16] and Bowman et al [26].

Attention is also payed to other naming models preceding Bayerdorffer and Bowmans’

work [50,63,89,92,158,159]. This naming model is used to define a separation between the

naming system and the remaining parts of the system in which it will be used. The naming

models defined by Bayerdorffer and Bowman et al are used to classify existing mobile and

distributed object systems. This classification shows that these models do not correctly

or completely classify these kinds of object systems. Extensions and refinements to these

models are proposed that enable a complete and correct classification of existing mobile

and distributed object systems, specifically with a need for transparency.

CHAPTER 1. INTRODUCTION 15

Bowman et al define a formal model for defining name resolution systems. This

formalisation is extended to formally define first Bayerdorffer’s name binding model and

then the extended naming models. The definition of a formal classification model enables

the development of a generic support framework for naming systems.

An implementation of the proposed relocation transparency model within a distributed

object system with support for mobility is presented. The DISCWorld ORB system is

introduced as a motivating framework for the transparency and naming models. The

DISCWorld ORB system provides a global namespace managed by a naming system. The

implementation of this naming system is separated from the remaining implementation and

is based on, and classifiable by, the extended naming system classification model.

The DISCWorld ORB system supports an Application Programming Interface (API)

for client/server access to the registry system. This API allows transparent access to the

distributed directory service without requiring client/server knowledge of directory location

or structure. The DISCWorld ORB APIs provide support for object migration, cloning and

replication. This system provides an API for dynamically constructing mobile services to

perform batched remote invocations. This construct enables a sequence of connected remote

invocations to be programmed as an itinerary. The mobile object is then responsible for

colocating with the required service objects to perform more efficient local invocation.

This thesis describes an implementation of a prototype of the DISCWorld ORB system

which supports distributed and scalable object location and relocation. Experimentation

with the DISCWorld ORB system has shown that it provides better performance than

existing models for relocation transparency in terms of cost performance and scalability.

The DISCWorld ORB system also provides support for fault resilience and removes central

points of failure.

This thesis makes three main contributions. The first contribution is the development of

a formal naming model that is suitable for classifying existing mobile and distributed object

systems. The formal definition of this naming model enables support for generic naming

systems to be separated from the development of the remainder of the object system.

Separation in this way enables the naming model that is used within an object system to

be changed and updated according to requirements of the object system.

The second contribution of this thesis is the development of a model to support location

and relocation transparency. This model provides relocation transparency using location

transparent and independent references and has no central point of failure or bottleneck

issues.

The third contribution of this thesis is the development of a prototype distributed ORB

system, the DISCWorld ORB system, that supports the proposed generic naming model

and the model for relocation transparency. The DISCWorld ORB system is implemented

as a distributed, hierarchically structured, ORB system that is capable of fault resilience

and adaption. Experimentation with the DISCWorld ORB system shows that the proposed

CHAPTER 1. INTRODUCTION 16

model for relocation transparency provides better location and relocation performance and

is scalable in terms of the number of nodes within the system, the number of names within

the global namespace, and the frequency of client requests.

1.6 Thesis Structure

This thesis is divided into three logical parts. The first part introduces the problem and

defines the problem area through a literature review. This introductory chapter outlines the

area within which the rest of the thesis falls and outlines the main contributions of the work.

This chapter motivates mobility in distributed object systems and discusses additionally

the need for naming in distributed object systems for client/server communication. It

outlines how naming can provide the facility for mobility and transparent locality within a

distributed object system. A system is outlined, based on an ORB-style system where an

expressive naming model is used to provide location transparent and independent mobility.

The benefits of this system are outlined and examined. Chapter 2 examines existing mobile

and distributed systems, specifically looking at each system’s support for location and

relocation transparency and distributed communication.

The second part of this thesis discusses the issue of naming. Chapter 3 presents problems

in the area of naming within mobile and distributed object systems. Naming models used

to classify naming systems, including the models defined by Bayerdorffer and Bowman et al,

are presented in both an informal and formal manner. In Chapter 4, these naming models

are then used to classify the naming systems of existing mobile and distributed object

systems. A taxonomy of the classified naming schemes is presented. This classification

is used to highlight deficiencies in the current models. Chapter 5 presents motivation

for extending the naming models to provide characteristics suitable for distributed object

systems with mobility and distributed systems constructed around an ORB model. It

presents the extended model and uses it to form a reclassification of the systems described

in Chapter 4. This extended model is then used to define a naming system suitable for

location and relocation transparency in a distributed object system with mobility support.

An expressive naming system is presented and it is shown how this system can support

transparent object mobility by providing a state dependent mixture of location dependent

and location independent mappings.

The third and final part of this thesis presents the example system that has been

developed as part of this work and shows how this system is used to support the naming

models and relocation model developed throughout parts one and two of this thesis.

Chapter 6 outlines the system that has been developed to support mobility of objects within

the DISCWorld Metacomputing system. It presents the naming model and its classification

suitable for use with a mobile object system. Chapter 6 also discusses how the naming

model can be extended to a distributed directory system with partially contextual names.

CHAPTER 1. INTRODUCTION 17

Chapter 7 presents a discussion of the implementation of this system and how tasks such

as distributed aliasing were achieved. Chapter 8 presents an evaluation of the extended

naming model and its effectiveness within a distributed ORB system supporting mobility.

A comparison between the performance (with respect to both relocation cost, location cost

and communication cost) using the proposed model for transparency and existing models

is presented.

Chapter 9 presents conclusions from this work and outlines future work that is still to

be done in the areas of relocation transparency and naming.

Appendices present more detailed descriptions of the policy specification and

communications protocols that are used within the DISCWorld ORB system. APIs for

client and server access are also provided.

