
Static Analysis of

Monadic Datalog
on Finite Labeled Trees

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

im Fach Informatik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von

Herr Dipl.-Inf. André Frochaux

Präsidentin der Humboldt-Universität zu Berlin

Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät

Prof. Dr. Elmar Kulke

Gutachter/innen:

1. Prof. Dr. Nicole Schweikardt, Humboldt-Universität zu Berlin

2. Prof. Dr. Isolde Adler, University of Leeds

3. Prof. Dr. Johannes Köbler, Humboldt-Universität zu Berlin

Tag der mündlichen Prüfung: 16.12.2016

Abstract iii

Abstract

This thesis provides a comprehensive investigation into the decidability and complexity
of the fundamental problems entailed by static analysis of monadic datalog on finite
labeled trees.

Static analysis is used for optimizing queries without considering concrete databa-
se instances but exploiting information about the represented structure. Static analysis
relies on three basic decision problems. First, the emptiness problem whose task is to de-
cide whether a query returns the empty result on every database. Second, the equivalence
problem asking if the result of two given queries always coincides on every database. And
finally, the query containment problem where it is to decide whether on every database
a given query produces a subset of the results of a second given query. We are interested
in finding out whether these problems are decidable and, if so, what their complexity is.

We consider the aforementioned problems for monadic datalog on different repre-
sentations of finite labeled trees. Mainly, tree structures shape the basis for models of
semistructured data, probably best known in form of XML databases. We distinguish
unordered and ordered trees which use the axis child, as well as the axes firstchild and
nextsibling, respectively. An extension of the schemas by the descendant-axis is also con-
sidered. Furthermore, we distinguish ranked and unranked labeling alphabets.

Depending on the schema, the query language monadic datalog can reach the expres-
sive power of monadic second order logic but remains efficiently evaluable. The query
containment problem of monadic datalog on finite structures is known to be complete for
2Exptime. As we cannot express in monadic datalog that a finite structure is a tree, this
result implies neither decidability nor a certain complexity for the query containment
problem of monadic datalog on finite trees.

By using monadic second order logic, we show in a first step the decidability of
the aforementioned problems on all considered representations of trees. Furthermore, we
carve out the differences in the expressive power of monadic datalog on the different
schemas. Usually, a wide range of expressive power suggests a wide range of complexity
for the problems on the various schemas. But surprisingly, this is not confirmed by this
thesis. The extensions by the predicates root, leaf, and last sibling gain the expressiveness
of monadic datalog but not the complexity of the problems entailed by static analysis.
In contrast, allowing the descendant-axis does not increase the expressive power but the
complexity of our problems.

Then, the Exptime-hardness for all used schemas is shown by a reduction from
the two person corridor tiling problem to the emptiness problem for monadic datalog
on unordered unranked trees. This result is extended to all problems using one of the
introduced schema.

After that, we demonstrate the membership to Exptime for the considered problems
if the descendant-axis is omitted. To this aim, we translate the programs into two-way
alternating tree automata whose principle of operation is very similar to monadic datalog
evaluation. Those automata are transformed into nondeterministic bottom-up automata.
This leads to an algorithm deciding the problems within exponential time. Consequently,
these problems are complete for Exptime.

If the descendant-axis is involved, we present an algorithm that computes for a given
query an equivalent query without descendant predicate in exponential time. Therefore,

iv Zusammenfassung

the considered problems belong to 2Exptime in that case. A matching lower bound is
proven by a reduction from the word problem of exponential space bounded alternating
Turing machines.

Finally, we change the point of view from the set semantics to the bag semantics,
reflecting the fact that in implemented database systems multiple occurrences of tuples
are not eliminated unless elimination is explicitly requested. We propose a semantics for
monadic datalog in the bag theoretic context. After that, we prove that the complexity
of the emptiness problem of monadic datalog on finite trees under bag semantics is the
same as under set semantics. Furthermore, we show by a reduction from a variant of
Hilbert’s tenth problem that the query containment problem of monadic datalog under
bag semantics is undecidable in general.

Zusammenfassung

Die vorliegende Dissertation beinhaltet eine umfassende Untersuchung der Entscheid-
barkeit und Komplexität der Probleme, welche sich durch eine statische Analyse für
monadisches Datalog auf endlichen gefärbten Bäumen stellen.

Statische Analyse bedeutet hierbei Anfrageoptimierung ohne Blick auf konkrete In-
stanzen, aber mit Rücksicht auf deren zugrundeliegende Struktur. Im Kern beinhaltet
dies die Lösung der drei folgenden Probleme: das Leerheitsproblem (die Frage, ob ei-
ne Anfrage auf jeder Instanz ein leeres Ergebnis liefert), das Äquivalenzproblem (die
Frage, ob zwei Anfragen auf jeder Instanz das gleiche Ergebnis liefern) und das Query-
Containment-Problem (die Frage, ob das Ergebnis der einen Anfrage auf jeder Datenbank
im Ergebnis der anderen Anfrage enthalten ist). Von Interesse ist dabei, ob die Fragen
für eine gegebene Anfragesprache entscheidbar sind und wenn ja, welche Komplexität
ihnen inne wohnt.

Wir betrachten diese Probleme für monadisches Datalog auf unterschiedlichen Reprä-
sentationen für endliche gefärbte Bäume. Baumstrukturen sind oft Grundlage für Mo-
delle von semistrukturierten Daten (in ihrer bekanntesten Form als XML-Datenbanken).
Hierbei unterscheiden wir zwischen ungeordneten und geordneten Bäumen, welche die
Achsen child bzw. firstchild und nextsibling nutzen. Die verwendeten Schema können
auch zusätzlich durch die descendant-Achse erweitert werden. Außerdem wird zwischen
Färbungen mittels Alphabeten mit und ohne Rang unterschieden.

Monadisches Datalog ist eine Anfragesprache, die in Abhängigkeit vom gewählten
Schema die Ausdrucksstärke der monadischen Logik zweiter Stufe erreicht und dennoch
mit einem effizienten Algorithmus ausgewertet werden kann. Für monadisches Data-
log auf endlichen Strukturen ist bereits bekannt, dass das Query-Containment-Problem
vollständig für 2Exptime ist. Dies impliziert allerdings weder die Entscheidbarkeit noch
eine bestimmte Komplexität für das Problem auf Baumstrukturen, da in monadischem
Datalog nicht ausdrückbar ist, dass eine endliche Struktur einen Baum repräsentiert.

Mit Hilfe der monadischen Logik zweiter Stufe wird zunächst die Entscheidbarkeit der
drei oben genannten Probleme auf allen betrachteten Baumrepräsentationen gezeigt. Da-
bei wird auch die in Abhängikeit von der gewählten Baumrepräsentation (und damit dem
Schema) stark unterschiedliche Ausdrucksstärke herausgearbeitet. Diese suggeriert eine
starke Diversität bei der Komplexität der Probleme statischer Analyse, welche sich je-
doch in späteren Kapiteln nicht bestätigt. In Gegensatz hierzu, erhöht das Hinzunehmen

Zusammenfassung v

der descendant-Achse die Ausdrucksstärke nicht, aber die Komplexität der betrachteten
Probleme.

Nachfolgend wird die Exptime-Härte für alle verwendeten Schema gezeigt. Grund-
lage der Beweise ist eine Reduktion vom Two Person Corridor Tiling Problem auf das
Leerheitsproblem von monadischem Datalog auf ungeordneten Bäumen mit Beschriftun-
gen aus einem Alphabet ohne Rang. Dieses Ergebnis wird auf alle verwendeten Schema
und Repräsentationen übertragen.

Für den Nachweis der Zugehörigkeit werden anschließend mDatalog-Programme oh-
ne descendant-Achse in Zwei-Wege-Alternierende-Baumautomaten übersetzt. Deren Ar-
beitsweise ist sehr mit der Auswertung von Programmen in monadischem Datalog mittels
der oben genannten Achsen auf Bäumen verwandt. Diese Automaten werden in nichtde-
terministische Baumautomaten übersetzt, welche bereits in diversen Arbeiten sehr gut
untersucht wurden. Insgesamt werden die Probleme mit diesem Vorgehen der Klasse
Exptime zugeordnet, weshalb sie insgesamt vollständig für Exptime sind.

Für den Fall, dass die descendant-Achse involviert ist, wird ein Algorithmus vorge-
stellt, welcher äquivalente Anfragen ohne Verwendung der descendant-Achse in exponen-
tieller Zeit berechnet, wodurch die Probleme insgesamt in zweifach exponentieller Zeit
gelöst werden können. Eine passende untere Schranke wird für fast alle Schema durch
eine Reduktion vom Wortproblem für alternierende, exponentiell platzbeschränkte Tu-
ringmaschinen gezeigt.

Im abschließenden Kapitel wechseln wir die Sichtweise von der Mengen-Semantik hin
zur Multimengen-Semantik. Dies trägt der Tatsache Rechnung, dass in implementier-
ten Datenbanksystemen Tupel in Relationen – wie in Ergebnissen – mehrfach vorkom-
men können. Wir schlagen eine Semantik für Datalog unter Multimengen-Semantik vor
und zeigen, dass die Komplexität des Leerheitsproblems für monadisches Datalog auf
endlichen Bäumen unter Multimengen-Semantik der Komplexität des Problems unter
Mengen-Semantik entspricht. Außerdem zeigen wir mittels einer Reduktion von einer
Variante von Hilberts zehntem Problem, dass das Query-Containment-Problem für mo-
nadisches Datalog auf endlichen, gefärbten Bäumen unter Multimengen-Semantik im
Allgemeinen unentscheidbar ist.

Acknowledgments vii

Acknowledgments

This thesis would not have been possible without the support of many people throughout
the last years.

First and foremost, I want to thank my advisor Prof. Dr. Nicole Schweikardt for
offering a place in her group, for giving me freedom in my work and research. I greatly
benefited from her deep scientific insights and her talent to put complex ideas into simple
terms for solving seemingly intractable problems. I am grateful for the excellent guidance
and the continuous support, for the patience and the encouragement throughout the last
years of research and thesis writing.

I thank Prof. Dr. Isolde Adler and Prof. Dr. Johannes Köbler very much for serving
as a reviewer of this thesis.

A special thanks goes to Prof. Dr. Leser for bringing the bag semantics to my atten-
tion.

Of course, I would like to thank all my former and current colleagues forming an
agreeable atmosphere. Particularly, this is due to Jutta Nadland and Eva Sandig assisting
(and sometimes saving) us so often in many different ways as well as Petra Kämpfer
managing the technical support.

I would like to double out André Hernich and Mariano Zelke. They introduced me
into a researcher’s life and working at a university. Thanks for ongoing interest into my
ideas and for countless inspiring discussions on and off researcher’s topics.

I grateful thank Mariano for carefully proofreading this thesis. Moreover, I thank
Maria Tammik, Christoph Berkholz, Joachim Bremer, and Lucas Heimberg for reading
parts of this thesis and their helpful comments.

Thanks to Lucas for preparing several awesome suppers in Frankfurt and to Noemi
helping us out to eat all that.

Ein besonderer Dank geht an meine Freunde und meine Familie hier in Berlin. Unter-
stützung während der Frankfurter Zeit hieß vor allem Verzicht! Ganz besonders traf das
natürlich Etienne, dem immer wieder noch viel spannendere Projekte als das Arbeiten
an einer Dissertation einfallen und Violette, die alle Tiefen und Höhen, die so eine Zeit
mit sich bringt, ganz tapfer ertragen und mich immer wieder bestärkt hat.

pour toi,
mon soleil, mes étoiles,

mon roc et ma tempête,
mon tout, ma compagne.

ma violette.

Contents

Acknowledgments vii

Contents xi

1 Introduction 1

2 Preliminaries 7
2.1 Alphabets . 7
2.2 Complexity Classes . 8
2.3 Relational Structures . 8
2.4 Tree Structures . 8

2.4.1 Unordered Trees . 9
2.4.2 Ordered Trees . 11

2.5 Syntax and Semantics of Datalog . 12
2.6 A Note on Conjunctive Queries . 17
2.7 Considered Problems during a Static Analysis 18

3 Expressive Power and Decidability 21
3.1 Monadic Second-Order Logic (MSO) . 22
3.2 Expressive Power of mDatalog on Ordered Trees 25

3.2.1 Expressive Power on Unranked Ordered Trees 25
3.2.2 Expressive Power on Ranked Ordered Trees 27

3.3 Expressive Power of mDatalog on Unordered Trees 29
3.3.1 Expressive Power on Unranked Unordered Trees 30
3.3.2 Expressive Power on Ranked Unordered Trees 31

3.4 Decidability Results . 33

4 On Hardness 41
4.1 The Hardness of the Emptiness Problem of

mDatalog(τ
{root,leaf}
u) on Unranked Unordered Trees 41

4.2 The Hardness of the Emptiness Problem of
mDatalog on Unranked Unordered Trees in General 48

4.3 The Hardness of the Emptiness Problem
of mDatalog on Ranked Unordered Trees 52

4.4 Transferring the Hardness Results to the
Corresponding Problems of mDatalog on Ordered Trees 60

5 On Membership 63

xi

xii Contents

5.1 From Unary Queries to Boolean Queries 65
5.2 From Ordered Unranked Trees to Binary Trees 67

5.2.1 Binary trees . 67
5.2.2 Representing Ordered Unranked Trees by Binary Trees 67

5.3 Nondeterministic Bottom-Up Tree Automata (NBTA) 69
5.4 Two-Way Alternating Tree Automata (2ATA) 73
5.5 Finishing the Proof of Theorem 5.1 . 79
5.6 Consequences of Theorem 5.1 . 80

6 Dealing with the Descendant-Axis 85
6.1 On Membership . 85
6.2 Omitting the descendant-axis . 88

6.2.1 Easy Observations . 88
6.2.2 An Example . 89
6.2.3 Path Rules . 92

6.3 On Hardness of the QCP on Ordered Unranked Trees Using desc 98
6.4 On Hardness on Ranked Trees . 102
6.5 On Hardness on Unranked Trees . 118

7 Beyond Set Semantics 127
7.1 Conjunctive Queries under Bag Semantics 128
7.2 Datalog Queries under Bag Semantics . 129
7.3 Static Analysis of Datalog under Bag Semantics 132

7.3.1 The Emptiness Problem of Datalog under Bag Semantics 133
7.3.2 The Query Containment Problem of Datalog under Bag Semantics 134

8 Conclusion 143

Bibliography 147

Index 152

Chapter 1

Introduction

In basically every query language there are countless equivalent database queries to a
given query. Those queries produce on an arbitrary database instance the same result
but executing them may lead to different query plans and highly diverse evaluation
procedures after the compilation. Therefore, the evaluation time of equivalent queries
can differ widely. Finding to a given query an equivalent query with minimal evaluation
time is the main task of query optimizing. An optimizer can address to different points.
In this thesis we focus on optimization without taking care of concrete database instances.

In particular, this approach is of interest in a context where the same query is eval-
uated many times on databases with rapidly changing data. Following this approach, it
is fundamental to consider the three following questions (cf. [SSS09]).

(1.) Does query Q produce the empty result on every database D?

A query Q producing on every database the empty result is called unsatisfiable.

(2.) Does query Q1 produce the same result as query Q2 on every database D?

Two queries Q1 and Q2 producing on every database the same result are called
equivalent.

(3.) Is the result of Q1 on every database D a subset of the result that Q2 produces on
D?

A query Q1 producing on every database a result that is a subset of the result of
Q2 is called contained in Q2.

The decision problems corresponding to these questions are called the emptiness
problem, the equivalence problem, and the query containment problem, respectively.

Of course, there is a strong connection between these three questions. So, Q1 and Q2

are equivalent if and only ifQ1 is contained inQ2 andQ2 is contained inQ1. Furthermore,
if a query Q1 is equivalent to a query that always produces the empty result, then Q1 is
unsatisfiable.

Clearly, the equivalence problem reduces to the query containment problem. More-
over, if a language is closed under complementation and conjunction, then the contain-
ment problem reduces to the emptiness problem: Q1 is contained in Q2 if and only if the

1

2 Chapter 1. Introduction

result of a query saying ’Q1 and not Q2’ is always empty. Finally, the containment prob-
lem reduces to the equivalence problem if the query language is closed under disjunction:
Q1 is contained in Q2 if and only if the query ’Q1 or Q2’ is equivalent to Q2.

The whole area of reasoning about the semantic properties of queries is called static
analysis.

We consider the above-mentioned problems for monadic datalog on finite labeled
trees. Practically all models of semistructured data base on labeled trees. The probably
best known form of semistructured data is XML. Example 1.1 illustrates how an XML
file can be modeled through a labeled tree. Usually, the children of the same node in
such a tree model are sorted by a sibling ordering. If such an order is present, we speak
of ordered trees. If otherwise the ordering is irrelevant or omitted, then the trees are
called unordered.

Example 1.1. Figure 1.1 shows how to obtain a tree model from a document with
semistructured data, in this case an XML document of an ordering. The document
uses the following labeling alphabet

Σ = {order, head, date, name, address, item, orderno, price, . . .}.

(a)

<?xml version=" ... ">

<order>

<head>

<date> ... </date>

<name> ... </name>

<address> ... </address>

</head>

<item>

<orderno> ... </orderno>
<price> ... </price>

<...> ...

</item>
...

</order>

(b)

1
2
3
4
5

6
7
8

(c)

v1 order

v2 head

v3

date v4

name

v5

address

v6

item

v8 price

v7orderno

Figure 1.1: (a) An XML document, (b) consecutive numbering of the opening tags and
(c) the resulting tree model where the labels are placed beside the nodes.

The type definitions for such documents are given in (extended) context-free gram-
mars, for XML in the form of DTDs. Derivation trees of context-free grammars are
ranked, that means that the number of children of a node is determined by the label of
that node and therefore the number of children of a node is bounded by some constant.
If extended context-free grammars are used, which allow arbitrary regular expressions

Chapter 1. Introduction 3

over grammar symbols on the right-hand side of productions, the derivation trees will
be unranked. Thus, by contrast to ranked trees, unranked trees have no restrictions on
the number of children a node can have.

As such semistructured documents are one of the standards for information exchange
in the world wide web, it is of interest to query, transform, or validate them. Certainly,
(query) automata, logics, and query languages for trees have been studied extensively.
As an overview, also in the context of XML, we refer to surveys like [Abi01], [Lib06],
[Nev02], [NS02], [Sch07], and [Via01]. It turns out that query languages and schema
formalisms for XML tend to use monadic second order logic (MSO) as the benchmark.
It can be seen that type definitions, for example, are essentially equivalent to MSO
sentences and various query languages have the expressive power of unary MSO queries.

MSO over trees is well-understood (cf. [TW68], [Don70], [Cou90]). The combined
complexity, that is with respect to both the input and the query size, for the evaluation
problem of MSO over trees is known to be complete for PSPACE. Adherent to the
assumption that the same query is posed many times against a changing database, it is
reasonable to consider evaluation complexity in terms of the size of the database only.
This complexity is called data complexity. Considering data complexity, unary MSO
queries on trees can be evaluated in linear time (cf. [FFG01] and [FG02]) by using an
approach having nonelementary complexity in terms of the size of the query.

As a consequence of Trahtenbrot’s Theorem (cf. [EF95]), the emptiness problem, the
equivalence problem, and the query containment problem for MSO on finite structures
are not decidable in general. However, on trees, these problems are decidable [TW68] by
using translations into tree automata with nonelementary size [FG02].

We consider the query language monadic datalog. Datalog itself can be seen as a stan-
dard tool for expressing queries with recursion. The data complexity of the evaluation
problem is P-complete (implicit in [Var82], [Imm86]) whereas the combined complexity
is complete for Exptime (implicit in [Var82]). The emptiness problem of datalog is de-
cidable (cf. [AHV95]), but the equivalence problem and the query containment problem
are undecidable [Shm87].

Depending on the schema and the structures under consideration, the monadic version
of datalog can reach the expressive power of MSO. In [GK04], Gottlob and Koch proved
that the combined complexity of the evaluation problem over arbitrary finite structures is
complete for NP. Already in 1988, Cosmadakis et al. [CGKV88] showed that the query
containment problem for monadic datalog on finite structures is decidable within 2-fold
exponential time and hard for Exptime. This complexity gap was closed by Benedikt
et al. [BBS12] in 2012 by proving 2Exptime-completeness.

Gottlob and Koch [GK04] established the first results for monadic datalog concerning
trees. They showed that the combined complexity of the evaluation problem for monadic
datalog for ordered unranked labeled trees is solvable in polynomial time, yet in linear
time if the query is in Tree-Marking Normal Form, a normal form introduced in the
same article. Furthermore, they showed that the query containment problem for ordered
unranked labeled trees is hard for Exptime and decidable. For achieving these results,
a schema is utilized providing the firstchild axis, the nextchild axis, and unary relations
for representing the root, the leaves, the last siblings, and the labels of the node. The
hardness result is obtained by a reduction from query automata introduced by Neven
and Schwentick in [NS02]. A tight upper bound was left open.

4 Chapter 1. Introduction

In this thesis, we close this complexity gap by presenting an algorithm that decides
the query containment problem for monadic datalog on ordered unranked trees within
exponential time. A translation of Boolean queries within polynomial time into two-
way alternating tree automata plays a key role in this approach. Two-way alternating
automata were introduced in [Slu85].

Moreover, by a reduction from the two person corridor tiling problem, we prove
that the problem is hard for Exptime even if only the binary predicates firstchild and
nextsibling together with the labeling predicates are used. These Exptime-completeness
results are extended to the emptiness problem and the equivalence problem. At once,
we establish Exptime-completeness for the mentioned problems for monadic datalog on
unordered unranked labeled trees where the schema uses the relation child and the unary
labeling predicates. These completeness results hold even for extensions of the schema
by the root and the leaf predicate.

Finally, we extend the former schema by the relation descendant. In contrast to the
former extensions by the unary predicates, the descendant predicate does not increase
the expressive power of the queries. We usually assume that increasing the expressive
power goes hand in hand with a higher complexity of the considered problems. However,
if we extend the schema by root, leaf, or last sibling relations this is not the case, as noted
above. But even more surprisingly, the allowance of the descendant predicate enhances
the complexity of the considered problems without increasing the expressiveness.

During the last part of this thesis, for practically all schemas, a 2Exptime lower
bound is proven. By a reduction from the validity problem for Boolean conjunctive
queries, we achieve this result for the query containment problem of monadic datalog
on ordered unranked labeled trees. After that, we obtain 2Exptime-hardness for the
emptiness problem for Boolean monadic datalog on unordered ranked labeled trees by
a reduction from the word problem for exponential space bounded alternating Turing
machines. This result is adopted to the remaining problems and tree representations
which allow the descendant axis. A matching upper bound is given by presenting an al-
gorithm solving the problems for all considered schemas by extending rewriting methods
of conjunctive queries introduced in [GKS06]. For unordered unranked labeled trees, this
answers a question posed by Abiteboul et al. in [ABMW13] asking whether the query
containment problem of monadic datalog is decidable for unordered unranked labeled
trees if the descendant axis is or is not involved.

Besides, we provide evidence for all afore considered problems for all mentioned rep-
resentations of trees labeled by a ranked alphabet.

With real world databases in mind, we finally investigate the emptiness problem and
the query containment problem for monadic datalog on trees under bag semantics. To
this end, we propose a semantics for monadic datalog under bag semantics that extends
the known proof tree semantics of the set theoretic context.

Structure of this Thesis

Chapter 2 fixes the basic notations used throughout this thesis. It defines the various
representations of finite labeled trees including the underlying relational structures. Fur-
thermore, Chapter 2 provides definitions of syntax and semantics of monadic datalog and
point out monotonicity and preservation under homomorphisms, two important proper-

Chapter 1. Introduction 5

ties of monadic datalog. Finally, we formalize the emptiness problem, the equivalence
problem, as well as the query containment problem.

Chapter 3 introduces monadic second order logic (MSO). We analyze the expressive
power of monadic datalog by utilizing its monotonicity and preservation properties and
compare them with the expressive power of MSO. Translating monadic datalog queries
into unary queries in MSO leads to decidability results for the three aforementioned
problems on all introduced tree structures and their different schemas. The content of
Chapter 3 for unranked finite trees was published in [FS13].

In Chapter 4, we focus on the lower bounds. Therefore, we give a reduction from
the two person corridor tiling problem to the emptiness problem of monadic datalog on
unordered unranked labeled trees using a schema extended by unary predicates denoting
the root and the leaves of the tree. In a second step, we show that this extension can be
skipped. Later, the result is transferred to the emptiness problem for monadic datalog
on ranked unordered trees. This is done by modifying the former reduction to use a
ranked alphabet making the reduction more intuitive in some steps.

In Chapter 5, we concentrate on the upper bound for schemas not using the descen-
dant axis. To this end, we solve the query containment problem for unary monadic
datalog queries on unranked ordered labeled trees using a maximal extended schema for
ordered trees. As on this schema it is expressible that a finite labeled tree respects a
certain rank, this result implies the membership even for ranked trees. The former result
is obtained by using the automata-theoretic method. In particular, we translate the two
given unary monadic datalog queries into appropriate Boolean queries which in turn will
be translated into Boolean queries in monadic datalog on binary trees. This enables a
further translation into nondeterministic bottom-up tree automata. One query can be
translated directly. For the second query, a (repeated) negation would prevent the 2-fold
exponential time bound and instead a detour via two-way alternating tree automata is
demonstrated. After the two corresponding nondeterministic bottom-up tree automata
are obtained, the problem is reduced to standard methods of automata theory. Finally,
the algorithm solving the query containment problem for monadic datalog on finite la-
beled trees can be used to solve the emptiness problem and the equivalence problem
within the same effort.

The content of Chapter 4 and Chapter 5, concerning the query containment problem
for monadic datalog on unranked labeled trees, was published in [FGS14].

In Chapter 6, we consider schemas allowing the use of the descendant axis. At first,
we present an algorithm to rewrite, within exponential time, such queries into monadic
datalog queries which do not make use of the descendant predicate. Together, with
the results of Chapter 5, this leads to an algorithm solving the problems within 2-fold
exponential time. For the lower bound, we first offer an intuitive and short reduction from
the validity problem for Boolean conjunctive queries with respect to a tree automaton
to the query containment problem for monadic datalog on ordered unranked trees using
predicates to denote first child, next sibling, descendant, root, leaf, last sibling, as well as
the labeling predicates. As the reduction makes heavily use of the order, an adaption to
unranked trees seems to be pointless. Thus, an alternative, more technically, reduction
from the word problem of exponential space bounded alternating Turing machines to
the emptiness problem for Boolean monadic datalog on unordered ranked labeled trees
is presented. This reduction can be extended to a proof for unranked labeled trees.

6 Chapter 1. Introduction

Finally, the obtained result is carried over to all considered problems on basically all
used representations.

The membership result of the query containment problem for monadic datalog on
unranked labeled trees using the descendant axis was published in [FGS14]. The corre-
sponding hardness result was published in [FS16].

Chapter 7 gives a brief introduction to bag semantics. We propose a semantics
for datalog under bag semantics and investigate the emptiness problem and the query
containment problem of monadic datalog on finite labeled trees. We prove that the
complexity of the emptiness problem of monadic datalog under set semantics carries
over to the emptiness problem under bag semantics. Considering the query containment
problem for monadic datalog on finite labeled trees under bag semantics, we show that
the problem in general is undecidable. Starting point for the proof is the m-variable
Diophantine equation problem over the natural numbers that is a variant of Hilbert’s
tenth problem.

Finally, Chapter 8 concludes this thesis by briefly summarizing the results.

Chapter 2

Preliminaries

In this chapter we fix the basic notations used throughout this thesis. We define the var-
ious representations of finite labeled trees including the underlying relational structures.
Furthermore, we give definitions of syntax and semantics of monadic datalog and point
out monotonicity and preservation under homomorphisms, two important properties of
monadic datalog. Finally, we formalize the emptiness problem, the equivalence problem,
as well as the query containment problem.

Basic Notations

We write N for the set of non-negative integers, and we let N>1 := N \ {0}. For a set S
we write 2S to denote the power set of S that is the set {X : X ⊆ S}.

Let M be a set. The set B+(M) of positive Boolean formulas over M contains
all elements in M , and is closed under ∧ and ∨.1 For a set M ′ ⊆ M and a formula
θ ∈ B+(M), we say that M ′ satisfies θ if and only if by assigning true to elements in M ′

and false to elements in M \M ′ the formula θ of propositional logic (without variables)
evaluates to true.

2.1 Alphabets

We distinguish between two kinds of alphabets. An unranked alphabet Σ is always a
finite, non-empty set, whereas a ranked alphabet Σ is a pair (σ, ar) of a finite, non-empty
set of symbols σ and a function ar : σ → N. Since the symbol set σ of Σ is finite, there
exists a smallest m ∈ N such that there is the unique partition σ = Σ0 ∪̇ Σ1 ∪̇ . . . ∪̇ Σm

where

Σm 6= ∅ and Σi = {α ∈ σ | ar(α) = i}, 0 6 i 6 m.

We define rkmax(Σ) := m. To denote an element α ∈ σ for a ranked alphabet Σ = (σ, ar),
we often write α ∈ Σ.

1An inductive definition of the set B+(M): Let M be a set.
(Base) M ⊆ B+(M)

(Inductive Step) Let ψ and ϕ be elements of B+(M), then we have
(I) (ψ ∧ ϕ) ∈ B+(M)
(II) (ψ ∨ ϕ) ∈ B+(M)

7

8 Chapter 2. Preliminaries

The size |Σ| of an unranked alphabet Σ is the number of its elements. For a ranked
alphabet Σ = (σ, ar) we define:

|Σ| :=
∑
α∈σ

(1 + ar(α)).

2.2 Complexity Classes

Next, we recall some definitions concerning the complexity classes. Let T : N → N be
a function. The sets Dtime(T (n)) and Atime(T (n)) denote the classes of languages
accepted, that means decision problems decided, in time T (n) by deterministic and al-
ternating Turing machines, respectively. The classes Dspace(S(n)) and Aspace(S(n)),
for a function S : N → N, are defined analogously, in the context of the resource space.
In this thesis, we consider the following complexity classes of decision problems.

Exptime :=
⋃
k∈N

Dtime(2(nk))

AExpspace :=
⋃
k∈N

Aspace(2(nk))

2Exptime :=
⋃
k∈N

Dtime(2(2(n
k)))

As a consequence of the Time Hierarchy Theorem [HS65] it holds that Exptime (
2Exptime. By [CKS81], we know that AExpspace = 2Exptime. For further back-
ground on complexity classes and (alternating) Turing machines, we refer to textbooks
like [Pap94] and [AB09].

2.3 Relational Structures

As usual, a schema (or relational signature) τ consists of a finite number of relation
symbols R, each of a fixed arity ar(R) ∈ N>1. A τ -structure A consists of a finite,
non-empty set A called the domain (or universe) of A, and a relation RA ⊆ Aar(R) for
each relation symbol R ∈ τ . Sometimes it will be convenient to identify A with the set
of atomic facts of A that is the set

atoms(A) := { R(a1, . . . , ar) : R ∈ τ, r = ar(R), (a1, . . . , ar) ∈ RA }.
If τ and τ ′ are schemas such that τ ⊆ τ ′ and A is a τ -structure and B a τ ′-structure,
then A is the τ -reduct of B and B is a τ ′-expansion of A if A and B have the same
domain and RA = RB is true for all R ∈ τ .

If τ is a schema and ` is a list of relation symbols, we write τ ` to denote the extension
of the schema τ by the relation symbols in `. Furthermore, τΣ denotes the extension of
τ by new unary relation symbols labelα for all α ∈ Σ.

2.4 Tree Structures

Throughout the whole thesis, we consider finite, node labeled trees and distinguish be-
tween ordered and unordered trees.

2.4 Tree Structures 9

2.4.1 Unordered Trees

Let Σ be a ranked or unranked alphabet.
An unordered Σ-labeled tree T = (V T , λT , ET) consists of a finite set V T of nodes,

a function λT : V T → Σ assigning to each node v of T a label λ(v) ∈ Σ, and a set
ET ⊆ V T × V T of directed edges such that the following holds true:

• There is exactly one node rootT ∈ V T with in-degree 0. This node is called the
root of T .

• Every node v ∈ V T with v 6= rootT has in-degree 1, and there is exactly one directed
path from rootT to v.

• If Σ is a ranked alphabet, then additionally every node v labeled by λT (v) has
exactly ar(λT (v)) children.

If we want to point out that an unordered Σ-labeled tree is labeled by symbols from
a ranked alphabet, then we call it a ranked unordered Σ-labeled tree. Otherwise, if it
is labeled by symbols from an unranked alphabet, we call it an unranked unordered
Σ-labeled tree.

Note that the alphabet is always finite. For a fixed ranked alphabet Σ this implies
a bounded maximal number of children for all nodes of any ranked Σ-labeled tree. Un-
ranked trees are not affected by this restriction.

As done in [ABMW13], we represent an unordered Σ-labeled tree T by a τu,Σ-structure
Su(T) with the unary predicates labelα for all α ∈ Σ and the binary predicate child
where

• the domain of Su(T) is the set V T of all nodes of T ,

• for each label α ∈ Σ, labelSu(T)
α consists of the set of all nodes labeled α that is

labelSu(T)
α = {v ∈ V T : λT (v) = α}, and

• childSu(T) = ET .

We fix the schema

τu := {child}

for the τu,Σ-structures, and when no confusion arises we simply write T instead of Su(T).

Example 2.1. Let T be the unranked Σ-labeled unordered tree from Figure 2.1,2 for
Σ = {Black,White}. The τu,Σ-structure A = Su(T) representing T consists of the domain

A = {v0, v1, v2, v3, v4, v5, v6, v7, v8}

and the relations

2Note that an unordered tree does not contain any information on the relative order of the children
of a node. Thus, the arrangement of children given in the picture is only one of many possibilities to
draw the tree.

10 Chapter 2. Preliminaries

v0

v1 v2

v6 v7

v3 v4

v8

v5

Figure 2.1: An example tree T labeled by symbols from the unranked alphabet Σ =
{Black,White}.

• labelABlack = {v0, v1, v3, v5, v7, v8},

• labelAWhite = {v2, v4, v6},

• childA =

{
(v0, v1), (v0, v2), (v0, v3), (v0, v4), (v0, v5),
(v2, v6), (v2, v7), (v4, v8)

}
.

The set of atomic facts of A is the set atoms(A) =
labelBlack(v0), labelBlack(v1), labelBlack(v3), labelBlack(v5),
labelBlack(v7), labelBlack(v8), labelWhite(v2), labelWhite(v4),
labelWhite(v6), child(v0, v1), child(v0, v2), child(v0, v3),
child(v0, v4), child(v0, v5), child(v2, v6), child(v2, v7), child(v4, v8)

 .

y

We will also consider extensions of the schema τu by the binary predicate desc (as a
shortcut for descendant) and the unary predicates root and leaf .

For the set M = {desc, root, leaf}, the τMu,Σ-representation SMu (T) of an unordered
Σ-labeled tree T is the expansion of Su(T) by the relations

• descS
M
u (T) which is the transitive (and non-reflexive) closure of ET ,

• rootS
M
u (T) consists of the root node rootT of T ,

• leafS
M
u (T) consists of all leaves of T , i.e., all v ∈ V T that have out-degree 0.

For a set N ⊆ {desc, root, leaf} we let

τNu := τu ∪N,

and for every Σ-labeled unordered tree T we let SNu (T) be the τNu -reduct of SMu (T). If
N is a singleton set, we omit the curly brackets — in particular, we write τdescu instead

of τ
{desc}
u and Sdesc

u (T) instead of S{desc}u (T).

2.4 Tree Structures 11

2.4.2 Ordered Trees

An ordered Σ-labeled tree T = (V T , λT , ET , orderT) consists of the same components as
an unordered Σ-labeled tree and, in addition, orderT fixes, for each node u of T , a strict
linear order of all the children of u in T .

If we want to point out that an ordered Σ-labeled tree is labeled by symbols from a
ranked alphabet, then we call it ranked ordered Σ-labeled tree. Otherwise, if it is labeled
by symbols from an unranked alphabet, we call it unranked ordered Σ-labeled tree.

We represent an ordered Σ-labeled tree T by a relational τo,Σ-structure So(T) with
the unary predicates labelα (for every α ∈ Σ) and the binary predicates fc (as a shortcut
for first child) and ns (as a shortcut for next sibling) where fc and ns have arity two
and labelα has arity one as follows:

• The domain of So(T) is the set V T of all nodes of T ,

• for each α ∈ Σ, the relation labelSo(T)
α is defined in the same way as for unordered

trees,

• fcSo(T) consists of all tuples (u, v) of nodes such that v is the first child of u in T
(that is orderT lists v as the first child of u),

• nsSo(T) consists of all tuples (v, v′) of nodes such that v and v′ have the same
parent, i.e., there is an u ∈ V T such that (u, v) ∈ ET and (u, v′) ∈ ET , and v′

is the immediate successor of v in the linear order of the children of u given by
orderT ,

and we fix the schema

τo := { fc,ns }.

Often we will also consider the extensions of the schema by the binary predicates child
and desc as well as the unary predicates root, leaf , and ls (as a shortcut for last sibling).

For the set M = { child, desc, root, leaf , ls }, the τMo -representation SMo (T) of an
ordered Σ-labeled tree T is the expansion of So(T) by the relations

• childS
M
o (T), descS

M
o (T), rootS

M
o (T), and leafS

M
o (T) which are defined in the same

way as for unordered trees and

• lsS
M
o (T) which consists of all nodes such that orderT lists v as the last child of its

parent u.

For a set N ⊆ {child, desc, root, leaf , ls} we let

τNo := τo ∪N,

and for every ordered Σ-labeled tree T we let SNo (T) be the τNo -reduct of SMo (T). If N
is a singleton set, we omit the curly brackets.

In [GK04] Gottlob and Koch represent ordered Σ-labeled trees T by τGK,Σ-structures

SGK(T) := S{root,leaf ,ls}o (T) for the schema

τGK := τ
{root,leaf ,ls}
o = { fc, ns, root, leaf , ls }.

12 Chapter 2. Preliminaries

Example 2.2. Let T be the unranked ordered Σ-labeled tree from Figure 2.1 for Σ =
{Black,White} where the order of the children of each node is from left to right as
depicted in the illustration. The τGK,Σ-structure B = SGK(T) representing T has the
domain

B = {v0, v1, v2, v3, v4, v5, v6, v7, v8}

and the relations

• labelBBlack = {v0, v1, v3, v5, v7, v8},

• labelBWhite = {v2, v4, v6},

• rootB = {v0},

• leafB = {v1, v3, v5, v6, v7, v8},

• fcB = { (v0, v1), (v2, v6), (v4, v8) },

• nsB = { (v1, v2), (v2, v3), (v3, v4), (v4, v5), (v6, v7) },

• lsB = {v5, v7, v8}.

Note that the root node of T is not included in any sibling relation. y

2.5 Syntax and Semantics of Datalog

The following definition of datalog, and monadic datalog respectively, is basically taken
from [GK04].

A datalog rule is an expression of the form

h← b1, . . . , bn,

for n ∈ N>1, where h, b1, . . . , bn are called atoms of the rule, h is called the rule’s head ,
and b1, . . . , bn (understood as a conjunction of atoms) is called the body . Each atom is
of the form P (x1, . . . , xm) where P is a predicate of some arity m ∈ N>1 and x1, . . . , xm
are variables. Rules are required to be safe in the sense that all variables appearing in
the head also have to appear in the body.

A datalog program is a finite set of datalog rules. Let P be a datalog program and
let r be a datalog rule. We write var(r) for the set of all variables occurring in the rule
r, and we let var(P) :=

⋃
r∈P var(r). Predicates that occur in the head of a rule of

P are called intensional , whereas predicates that only occur in the body of rules of P
are called extensional . We write idb(P) and edb(P) to denote the sets of intensional
and extensional predicates of P , and we say that P is of schema τ if edb(P) ⊆ τ for a
schema τ . A datalog program belongs to monadic datalog (mDatalog, for short), if all
its intensional predicates have arity 1.

For defining the semantics of datalog, let τ be a schema, let P be a datalog program
of schema τ , let A be a domain, and let

FP,A := { R(a1, . . . , ar) : R ∈ τ ∪ idb(P), r = ar(R), a1, . . . , ar ∈ A }

2.5 Syntax and Semantics of Datalog 13

be the set of all possible atomic facts over A. A valuation β for P in A is a function
β :

(
var(P) ∪ A

)
→ A where β(a) = a for all a ∈ A. For an atom P (x1, . . . , xm)

occurring in a rule of P we let

β
(
P (x1, . . . , xm)

)
:= P

(
β(x1), . . . , β(xm)

)
.

The immediate consequence operator TP : 2FP,A → 2FP,A induced by the datalog program
P on domain A maps every C ⊆ FP,A to

TP(C) := C ∪

 β(h) :
there is a rule h← b1, . . . , bn in P
and a valuation β for P in A such
that β(b1), . . . , β(bn) ∈ C

 .

Clearly, TP is monotone, i.e., for C ⊆ D ⊆ FP,A we have TP(C) ⊆ TP(D).

Letting T 0
P (C) := C and T i+1

P (C) := TP
(
T iP(C)

)
for all i ∈ N, it is straightforward

to see that

C = T 0
P (C) ⊆ T 1

P (C) ⊆ · · · ⊆ T iP(C) ⊆ T i+1
P (C) ⊆ · · · ⊆ FP,A.

For a finite domain A, the set FP,A is finite, and hence there is an i0 ∈ N such that
T i0P (C) = T iP(C) for all i > i0. In particular, the set T ωP (C) := T i0P (C) is a fixpoint of the
immediate consequence operator TP . By Knaster and Tarski’s theorem we know that
this fixpoint is the smallest fixpoint of TP which contains C.

Theorem 2.3 (Knaster and Tarski [Tar55]). Let τ be a schema, let P be a datalog
program of schema τ , and let A be a finite domain. For every C ⊆ FP,A we have

T ωP (C) =
⋂
{D : TP(D) = D and C ⊆ D ⊆ FP,A }

=
⋂
{D : TP(D) ⊆ D and C ⊆ D ⊆ FP,A }. y

A k-ary datalog query of schema τ is a tuple Q = (P , P) where P is a datalog program
of schema τ and P is an (intensional or extensional) predicate of arity k occurring in P .
P and P are called the program and the query predicate of Q. A k-ary monadic datalog
query is a k-ary datalog query Q = (P , P) where P is a monadic datalog program.
When evaluated in a finite τ -structure A, the query Q results in the following k-ary
relation over A:

Q(A) := { (a1, . . . , ak) ∈ Ak : P (a1, . . . , ak) ∈ T ωP
(
atoms(A)

)
}.

Unary queries are queries of arity k = 1. On Σ-labeled (un)ordered trees, a unary query
Q assigns to each (un)ordered Σ-labeled tree T a set Q(T) ⊆ V T of nodes.

The Boolean monadic datalog query QBool specified by an unary monadic datalog
query Q = (P , P) is the Boolean query with QBool(T) = yes if and only if the tree’s root
node belongs to Q(T).

The size ||Q|| of a monadic datalog query Q is the length of Q = (P , P) viewed as a
string over a suitable alphabet.

14 Chapter 2. Preliminaries

Example 2.4. Consider the schema τGK,Σ introduced in Section 2.4.2 for representing
ordered Σ-labeled trees for Σ = {Black, White}. We present a unary monadic datalog
query Q = (P ,Ans) of schema τGK,Σ such that for every ordered Σ-labeled tree T we have

Q
(
SGK(T)

)
=

{ rootT } if the number of White labeled

children of T ′s root is exactly two,

∅ otherwise.

To this end, we let P consist of the following rules:

Ans(x) ← root(x), fc(x, y), White2(y)

White2(x) ← labelBlack(x), ns(x, y), White2(y)

White2(x) ← labelWhite(x), ns(x, y), White1(y)

White1(x) ← labelBlack(x), ns(x, y), White1(y)

White1(x) ← labelWhite(x), ns(x, y), White0(y)

White0(x) ← labelBlack(x), ns(x, y), White0(y)

White1(x) ← labelWhite(x), ls(x)

White0(x) ← labelBlack(x), ls(x)

The program starts on every last sibling and ’counts’ in the reverse order of orderT the
occurrences of White-labeled nodes. It gets stuck if there are more then two. But if there
are exactly two occurrences, then the first node of all the siblings will be marked by White2

and so, by the first rule, we have Ans(rootT) ∈ T ωP (T) if the root of T has exactly two
children labeled with the symbol White.

In particular, Q returns {rootT} on the tree from Example 2.2; and the Boolean Query
QBool = (P , Ans) answers on this input with yes. y

Next, we present an alternative definition of the semantics of datalog. We will show that
the proof-theoretic semantics is equivalent to the aforementioned semantics that is called
fixpoint semantics . Having both definitions gives us the freedom to choose in ongoing
proofs the variant that is more suitable.

The main idea of the proof-theoretic semantics is that the answer of a datalog program
consists of the set of facts that can be proven from the atomic facts using the rules of
the program as proof rules in the given structure. A proof of such an atomic fact is
represented by a proof tree.

Let A be a domain. For k ∈ N and a1, . . . , ak ∈ A, a proof tree TP,A of the fact
P (a1, . . . , ak) from the datalog program P and the finite structure A with universe A is
a finite labeled tree where

• each vertex of the tree is labeled by an atomic fact,

• the root is labeled by P (a1, . . . , ak),

• each leaf is labeled by an atomic fact from atoms(A), and

• for each non-leaf vertex v with children v1, . . . , vl with l ∈ N there exists a rule
h(x)← b1(x1), . . . , bl(xl) in P and a valuation β such that:

2.5 Syntax and Semantics of Datalog 15

(1) v is labeled by h(β(x))

(2) the child vi is labeled by bi(β(xi)) for every 1 6 i 6 l.

Example 2.5. Consider the monadic datalog query Q presented in Example 2.4. Let T
be the ordered Σ-labeled tree from Example 2.2.

The depicted tree is a proof tree of the fact Ans(v0) from P and T . As v0 is the root
of T it witness the answer yes of QBool = (P , Ans) on input T .

Ans(v0)

root(v0) fc(v0, v1) White2(v1)

labelBlack(v1) ns(v1, v2) White2(v2)

labelWhite(v2) ns(v2, v3) White1(v3)

labelBlack(v3) ns(v3, v4) White1(v4)

labelWhite(v4) ns(v4, v5) White0(v5)

labelBlack(v5) ls(v5)

Figure 2.2: A proof tree of the fact Ans(v0) from P and T .

The equivalence of both semantics is a consequence of the following proposition.

Proposition 2.6 (Folklore). Let A be a domain. Let (a1, . . . , ak) ∈ Ak, k ∈ N. For each
datalog program P, all finite structures A and all atomic facts P (a1, . . . , ak) ∈ FP,A it
holds:

P (a1, . . . , ak) ∈ T ωP (atoms(A)) if and only if
there exists a proof tree

for P (a1, . . . , ak) from P and A.

Proof. For the only if -direction, we show by induction over the stages of the fixpoint
process, that for every fact P (a1, . . . , ak) ∈ T ωP (atoms(A)) there is a proof tree of (at
most) height i.
(Base case.) Let the atomic fact P (a1, . . . , ak) ∈ T 0

P(atoms(A)). Then, by definition the
fact is an element of atoms(A). Now, the tree consisting of only one node labeled by
P (a1, . . . , ak) is a proof tree for P (a1, . . . , ak) from P and A.
(Induction step.) Assuming for each fact in T iP(atoms(A)) there exists a proof tree of
height (at most) i. Let P (a1, . . . , ak) ∈ T i+1

P (atoms(A)). If P (a1, . . . , ak) is already an

16 Chapter 2. Preliminaries

element of T iP(atoms(A)) then, by hypothesis, there exists a proof tree for P (a1, . . . , ak)
of height less than i+ 1.

Otherwise, we have P (a1, . . . , ak) ∈ T i+1
P (atoms(A)) \ T iP(atoms(A)). Now, by the

definition of the TP operator there exists a rule h← b1, . . . , bl and a valuation β such that
β(b1), . . . , β(bl) ∈ T iP(atoms(A)) and P (a1, . . . , ak) = β(h). By induction hypothesis
there exists for every j, 1 6 j 6 l a proof tree Tj for the atomic fact β(bj) from P
and A of height (at most) i. Now the proof tree consisting of the root P (a1, . . . , ak)
connected with the root nodes of these proof trees Tj as children, forms a proof tree for
fact P (a1, . . . , ak) from P and A.

For the converse direction, we proceed by an induction over the height of the proof
tree of the fact P (a1, . . . , ak) from P and A.
(Base case.) Assuming the proof tree for an atomic fact P (a1, . . . , ak) has only one node.
As this node is a leaf, the fact must be an element of atoms(A). Then, by definition,
P (a1, . . . , ak) is an element of T 0

P (atoms(A)) and therefore, P (a1, . . . , ak) is an element
of T ωP (atoms(A)).
(Induction step.) Assuming for every fact witnessed by a proof tree from P and A of
height i it holds that the atomic fact is an element of T ωP (atoms(A)). Let T be a proof tree
for the fact P (a1, . . . , ak) from P andA of height i+1. For some l ∈ N, let v1, . . . , vl be the
children of the root node v of T . Let P1(~a1), . . . , Pl(~al) be the labels of the children nodes.
The subtrees T1, . . . , Tl rooted at the children of v, themselves are proof trees for the facts
P1(~a1), . . . , Pl(~al). By induction hypothesis, these facts are elements of T ωP (atoms(A)).
As v is the parent node of v1, . . . , vl in the proof tree for the fact P (a1, . . . , ak), there exists
a rule h(x)← b1(x1), . . . , bl(xl) in P and a valuation β such that v is labeled by h(β(x))
and the children v1, . . . , vl are labeled by b1(β(x1)) = P1(~a1), . . . , bl(β(xl)) = Pl(~al). By
the definition of the TP operator this implies that h(β(x)) = P (a1, . . . , ak) is contained
in T ωP (atoms(A)).

Now, let us recall two useful properties of mDatalog queries.

Remark 2.7 (Folklore). The monotonicity of the immediate consequence operator im-
plies that datalog queries Q of schema τ are monotone in the following sense: If A and
B are τ -structures with atoms(A) ⊆ atoms(B), then Q(A) ⊆ Q(B).

Proof. Let Q = (P , P) be a datalog query of schema τ , let A and B be τ -structures with
atoms(A) ⊆ atoms(B). The proof is by an easy induction over the fixpoint process.
(Base case.) T 0

P (atoms(A)) = atoms(A) ⊆ atoms(B) = T 0
P (atoms(B)).

(Inductive step.) Let i ∈ N. By induction, we have T iP(atoms(A)) ⊆ T iP(atoms(B)).
Therefore, by monotonicity,
T i+1
P (atoms(A)) = TP(T iP(atoms(A)) ⊆ TP(T iP(atoms(B)) = T i+1

P (atoms(B)).

The second property is the well-known fact that datalog is preserved under homomor-
phisms in the following sense. A homomorphism from a τ -structure A to a τ -structure
B is a mapping h : A → B such that for all R ∈ τ and all tuples (a1, . . . , ar) ∈ RA

we have (h(a1), . . . , h(ar)) ∈ RB. As a shorthand, for any set S ⊆ Ak we let h(S) =
{
(
h(a1), . . . , h(ak)

)
: (a1, . . . , ak) ∈ S}.

Lemma 2.8 (Folklore). Any k-ary datalog query Q of schema τ is preserved under
homomorphisms in the following sense: If A and B are τ -structures, and h is a homo-
morphism from A to B, then h

(
Q(A)

)
⊆ Q(B).

2.6 A Note on Conjunctive Queries 17

Proof. Let A and B be τ -structures and let h : A→ B be a homomorphism from A to B.
Furthermore, let Q = (P , P) where P is a datalog program of schema τ . For an atomic
fact f = R(a1, . . . , ar) ∈ FP,A, let h(f) := R(h(a1), . . . , h(ar)) be the corresponding
atomic fact in FP,B. Furthermore, for a set S ⊆ FP,A, let h(S) := {h(f) : f ∈ S} be the
corresponding subset of FP,B.

First, note that by the definition of the immediate consequence operator TP it is
straightforward to see that the following is true: If C ⊆ FP,A and D ⊆ FP,B such that
h(C) ⊆ D, then h(TP(C)) ⊆ TP(D).

Next, note that this immediately implies that the following is true: If C ⊆ FP,A and
D ⊆ FP,B such that h(C) ⊆ D, then h

(
T ωP (C)

)
⊆ T ωP (D).

Finally, note that h is a homomorphism from A to B, and thus h
(
atoms(A)

)
⊆

atoms(B). Consequently, h
(
T ωP
(
atoms(A)

))
⊆ T ωP

(
atoms(B)

)
. In particular, this means

that h
(
Q(A)

)
⊆ Q(B).

2.6 A Note on Conjunctive Queries

In this section, we take a brief look at the datalog programs consisting of only one non
recursive rule.3 Each of these rules can be read as a conjunctive query . Formally, for a
schema τ , a conjunctive query Q (CQ(τ)-query, for short) is an expression of the form

Ans(u)← R1(u1) ∧ . . . ∧Rn(un)

where n ∈ N>1, {R1, . . . , Rn} ⊆ τ , u, u1, . . . , un are free tuples,4 ar(ui) = ar(Ri) for every
i ∈ {1, . . . , n}, and finally, every variable in u must occur at least once in u1, . . . , un. The
set var(Q) is the set of all variables occurring in Q. The semantics for a given conjunctive
query Q in a τ -structure A with universe A is defined by

Q(A) :=

{
β(u)

∣∣∣∣ β is a valuation for Q in A and
β(Ri(ui)) ∈ atoms(A) for all i ∈ {1, . . . , n}

}
.

Note, that conjunctive queries are not syntactically contained in datalog queries. Indeed
for k ∈ N>1, the k-ary conjunctive query QCQ of the form

Ans(u)← R1(u1) ∧ . . . ∧Rn(un)

is equivalent to the k-ary datalog query Q = (P ,Ans) where

P := { Ans(u)← R1(u1), . . . , Rn(un) } .

A Boolean conjunctive query Q of the form

Ans()← R1(u1) ∧ . . . ∧Rn(un)

evaluated on a τ -structure A yields yes if and only if there exists a valuation β for Q in
A with β(Ri(ui)) ∈ atoms(A) for all i in {1, . . . , n}.

To translate Boolean conjunctive queries on trees into datalog, we use the following
lemma.

3A datalog rule r is non recursive if its head predicate does not occur in its body.
4This means that every component is either a variable or a constant.

18 Chapter 2. Preliminaries

Lemma 2.9. Let τ be one of the schemas τNu and τMo where N is equal to or a subset
of {root, leaf ,desc} and M is equal to or a subset of {root, leaf , child,desc, ls}.

For every Boolean CQ(τ)-query QCQ there exists an unary mDatalog(τ)-query Q =
(P , P), such that for every finite labeled tree T corresponding to τ we have

QCQ(T) = QBool(T).

The mDatalog-query Q can be obtained from QCQ in time linear in the size of QCQ.

Proof. Let QCQ be a conjunctive query of the form

Ans()← R1(u1) ∧ . . . ∧Rn(un)

for an n ∈ N>1. Furthermore, let x ∈ var(QCQ) be a variable occurring in Q. Now, if τ is
a schema over unordered trees then the desired mDatalog(τ)-query Q = (P , P) consists
of the following program

P :=

{
P (x) ← child(x, y), P (y)
P (x) ← R1(u1), . . . , Rn(un)

}
.

Otherwise, if τ is a schema over ordered trees then the program P consists of the following
rules.

P :=

P (x) ← fc(x, y), P (y)
P (x) ← ns(x, y), P (y)
P (x) ← R1(u1), . . . , Rn(un)

 .

It is straightforward to see that QBool(T) = yes if and only if QCQ(T) = yes for all finite
labeled trees T .

2.7 Considered Problems during a Static Analysis

As we have seen in Chapter 1 it is fundamental to answer the three following questions
for a considered database language and arbitrary queries Q, Q1, and Q2 during a static
analysis.

(1.) Does query Q produce the empty result on every database D?

(2.) Does query Q1 produce the same result as query Q2 on every database D?

(3.) Is the result of Q1 on every database D a subset of the result of Q2 on D?

As usual, we formalize such questions as decision problems dealing with the considered
languages and databases. To this end, let τ be one of the schemas introduced in Section
2.4.1 or 2.4.2 for representing (unordered or ordered) Σ-labeled trees as a relational
structures.

Addressing question (1.), a unary query Q such that for every Σ-labeled tree T we
have Q(T) = ∅ is called unsatisfiable, and we write Q = ∅ to indicate that Q is
unsatisfiables. If Q is a Boolean query of schema τ , we write Q = ∅ to indicate that
there is no Σ-labeled tree T , such that Q(T) = yes. We write Q 6= ∅ to indicate that
Q = ∅ does not hold.

2.7 Considered Problems during a Static Analysis 19

Example 2.10. For every non-empty alphabet Σ and every unordered Σ-labeled tree T
the result of the query Q∅

τu = (Pu, Pu) with

Pu := {Pu(x)← child(x, x)}
is empty. Analogously, for every non-empty alphabet Σ and every ordered Σ-labeled tree
T the result of the query Q∅

τo = (Po, Po) with

Po := {Po(x)← fc(x, x)}
is empty. y

The corresponding decision problem is called the emptiness problem and defined as fol-
lows.

The emptiness problem for mDatalog(τ) on labeled trees

Input: A finite alphabet Σ and
an unary (or Boolean) mDatalog(τΣ)-query Q.

Question: Is Q = ∅ ?

Addressing question (2.), for two unary queries Q1 and Q2 of schema τ we write Q1 ≡ Q2

to indicate that for every Σ-labeled tree T we have Q1(T) = Q2(T). Similarly, if Q1 and
Q2 are Boolean queries of schema τ , we write Q1 ≡ Q2 to indicate that for every Σ-
labeled tree T we have Q1(T) = yes if and only if Q2(T) = yes. We write Q1 6≡ Q2 to
indicate that Q1 ≡ Q2 does not hold.

The corresponding decision problem is called the equivalence problem and defined as
follows.

The equivalence problem for mDatalog(τ) on labeled trees

Input: A finite alphabet Σ and
two unary (or Boolean) mDatalog(τΣ)-queries Q1 and Q2.

Question: Is Q1 ≡ Q2 ?

For the remaining task (3.) and two unary queries Q1 and Q2 of schema τ we write
Q1 ⊆ Q2 to indicate that for every Σ-labeled tree T we have Q1(T) ⊆ Q2(T). Similarly,
if Q1 and Q2 are Boolean queries of schema τ , we write Q1 ⊆ Q2 to indicate that for
every Σ-labeled tree T , if Q1(T) = yes then also Q2(T) = yes. We write Q1 6⊆ Q2 to
indicate that Q1 ⊆ Q2 does not hold. The query containment problem (QCP, for short)
is defined as follows:

The QCP for mDatalog(τ) on labeled trees

Input: A finite alphabet Σ and
two unary (or Boolean) mDatalog(τΣ)-queries Q1 and Q2.

Question: Is Q1 ⊆ Q2 ?

For P being one of these problems, we often write “P for unary mDatalog(τ)” to de-
note that only unary queries are considered. Analogously we write “P for Boolean
mDatalog(τ)” to indicate that only Boolean queries are considered. Sometimes, we also
restrict these problems to ranked/unranked and ordered/unordered trees.

Chapter 3

The Logic Point of View:

Expressive Power and Decidability

In the first part of this chapter we will consider the expressive power of monadic datalog
on the presented tree structures by using the introduced schemas. A difference in the
expressive power is often accompanied by a difference in the complexity of a considered
problem, but we will see later on this is not necessarily the case.

The second part is dedicated to the decidability of our problems. Since we know
about the decidability of the query containment problem on finite structures (in 2-fold
exponential time) by Cosmadakis, Gaifman, Kanellakis, and Vardi [CGKV88], we might
be tempted to infer the decidability on trees. The canonical way to decide the contain-
ment of two monadic datalog queries on trees would be to combine them with a query
QT stating that an arbitrary finite structure is a tree. And afterwards, to decide the con-
tainment problem of the resulting queries on arbitrary finite structure. However, there
does not exits such a query QT by the following proposition.

Proposition 3.1.

(a) Let M be equal to or a subset of {root, leaf ,desc}. There is no query Q in
mDatalog(τMu), such that Q yields yes on a set S of atomic facts of schema τMu if
and only if there exists an unordered Σ-labeled tree T such that S = atoms(SMu (T)).

(b) Let N be equal to or a subset of {root, leaf , child, ls,desc}. There is no query Q
in mDatalog(τNo), such that Q answers yes on a set S of atomic facts of schema τNo
if and only if there exists an ordered Σ-labeled tree T such that S = atoms(SNo (T)).

Proof. (a) We choose Σ = {a} and the labeled unordered tree T as illustrated in Figure
3.1 (a) described by

atoms(T) =

{
child(v0, v1), child(v1, v2),

labela(v0), labela(v1), labela(v2)

}
.

We assume the mDatalog(τu)-query Q can decide whether a given structure describes
a tree or not. Therefore, Q yields yes on atoms(T). If we add the atom child(v2, v0)
to atoms(T) then the structure becomes cyclic and by assumption Q answers no on
the input atoms(T) ∪ {child(v2, v0)} (cf. Figure 3.1 (b)). But this is a contradiction

21

22 Chapter 3. Expressive Power and Decidability

to the monotonicity of (monadic) datalog (cf. Remark 2.7) since we have atoms(T) ⊆
atoms(T) ∪ {child(v2, v0)} and so the assumption must be false.

For extensions of τu to τMu with M ⊆ {root, leaf ,desc} and the appropriate exten-
sions of atoms(T) the proof proceeds in the same way.

(a)

v0

v1

v2

(b)

v0

v1

v2

Figure 3.1: (a) The tree T and (b) its extension to a non-tree structure.

(b) The proof proceeds analogously to (a) with the sets

atoms(T ′) =

{
fc(v0, v1), fc(v1, v2),

labela(v0), labela(v1), labela(v2)

}
.

and atoms(T ′) ∪ fc(v2, v0).

3.1 Monadic Second-Order Logic (MSO)

The set MSO(τ) of all monadic second-order formulas of schema τ is defined as usual, cf.
e.g. [Lib04]: There are two kinds of variables, namely node variables , denoted by lower-
case letters x, y, . . ., x1, x2, . . . ranging over elements of the domain, and set variables ,
denoted by upper-case letters X, Y , . . ., X1, X2, . . . ranging over sets of elements of the
domain.

An atomic MSO(τ)-formula is of the form

(A1) R(x1, . . . , xr), where R ∈ τ , r = ar(R), and x1, . . . , xr are node variables,

(A2) x = y, where x and y are node variables, or

(A3) X(x), where x is a node variable and X is a set variable.

If x is a node variable, X a set variable, and ϕ and ψ are MSO(τ)-formulas, then

(BC) ¬ϕ and (ϕ ∨ ψ) are MSO(τ)-formulas,

(Q1) ∃xϕ and ∀xϕ are MSO(τ)-formulas,

(Q2) ∃Xϕ and ∀Xϕ are MSO(τ)-formulas.

3.1 Monadic Second-Order Logic (MSO) 23

Quantifiers of the form (Q1) are called first-order quantifiers ; quantifiers of the form (Q2)
are called set quantifiers . MSO(τ)-formulas without set quantifiers are called first-order
formulas (FO(τ)-formulas , for short). The size ||ϕ|| of a formula ϕ is the length of ϕ
viewed as a string over the alphabet

τ ∪ {x, y, z,X, Y, Z, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ∪ {(,)} ∪ {=,¬,∨,∃,∀} ∪ {, }.

As abbreviations we use the Boolean connectives (ϕ ∧ ψ), (ϕ → ψ), and (ϕ ↔ ψ), the
statement x 6= y for node variables, and the statements X = Y , X 6= Y , and X ⊆ Y for
set variables. Note that all these can easily be expressed in first-order logic. To improve
readability of formulas, we will sometimes add or omit parentheses if no ambiguity arises.

By free(ϕ) we denote the set of (node or set) variables that occur freely (i.e., not
within the range of a node or set quantifier) in ϕ. A sentence is a formula without
free variables. We write ϕ(x1, . . . , xk, X1, . . . , X`) to indicate that ϕ has k free node
variables x1, . . . , xk and ` free set variables X1, . . . , X`. For a τ -structure A, elements
a1, . . . , ak ∈ A, and sets A1, . . . , A` ⊆ A, we write A |= ϕ(a1, . . . , ak, A1, . . . , A`) to
indicate that A satisfies the formula ϕ when interpreting the free occurrences of the
variables x1, . . . , xk, X1, . . . , X` with a1, . . . , ak, A1, . . . , A`. A formula ϕ(x1, . . . , xk) with
k free node variables and no free set variable defines a k-ary query on τ -structures which,
when evaluated in a τ -structure A, results in the k-ary relation

ϕ(A) := { (a1, . . . , ak) ∈ Ak : A |= ϕ(a1, . . . , ak) }.

Example 3.2. Consider the schema τu,Σ which we introduced in Section 2.4.1 in order
to represent unordered Σ-labeled trees. Let Σ = {Black,White}. We present a unary
FO(τu,Σ)-query ϕ(x) such that for every unordered Σ-labeled tree T we have

ϕ
(
Su(T)

)
=

{ rootT } if the number of White labeled

children of T ′s root is exactly two,

∅ otherwise.

The FO(τu,Σ)-formula ϕ(x) is as follows:

¬∃u child(u, x) ∧

∃y ∃z
(
y 6= z ∧ child(x, y) ∧ child(x, z) ∧ labelWhite(y) ∧ labelWhite(z)∧

∀v
(

child(x, v) → (v = y ∨ v = z ∨ ¬ labelWhite(v))
))

y

A ∀∃-MSO(τ)-formula is an MSO(τ)-formula of the form

∀X1 · · · ∀Xm ∃x1 · · · ∃xk ξ

where m, k ∈ N, X1, . . . , Xm are set variables, x1, . . . , xk are node variables, and ξ is a
formula that does not contain any (node or set) quantifier.

It is well-known that unary monadic datalog queries can be translated into equivalent
∀∃-MSO queries.

24 Chapter 3. Expressive Power and Decidability

Proposition 3.3 (Folklore, cf.[GK04]). Let τ be a schema. For every unary monadic
datalog query Q = (P , P) of schema τ there exists a ∀∃-MSO(τ)-formula ϕ(x) such that
Q(A) = ϕ(A) is true for any finite τ -structure A.

Furthermore, there is an algorithm which computes ϕ from Q in time polynomial in
the size of Q.

Proof. Let {X1, . . . , Xm} = idb(P) be the set of intensional predicates of P , and w.l.o.g
let X1 = P . For every rule r of P of the form h← b1, . . . , bn, with {z1, . . . , zk} = var(r)
let

ψr(X1, . . . , Xm) := ∀z1 · · · ∀zk
(

(b1 ∧ · · · ∧ bn) → h
)
.

Now, let χ(X1, . . . , Xm) :=
∧
r∈P ψr(X1, . . . , Xm). Finally, let x be a node variable that

does not occur in χ(X1, . . . , Xm) and let

ϕ(x) := ∀X1 · · · ∀Xm

(
χ(X1, . . . , Xm) → X1(x)

)
.

Obviously, ϕ(x) is equivalent, on the class of all τ -structures, to the formula

∀X1 · · · ∀Xm

(
X1(x) ∨ ¬χ

)
,

and ¬χ is equivalent to
∨
r∈P ¬ψr while ¬ψr is equivalent to

∃z1 · · · ∃zk ¬
(
(b1 ∧ · · · ∧ bn)→ h

)
.

Thus, it is straightforward to see that ϕ(x) is equivalent to a ∀∃-MSO(τ)-formula and
this formula can be constructed in time polynomial in the size of Q.

It remains to verify that Q(A) = ϕ(A) for every τ -structure A. To this end, let A
be an arbitrary τ -structure. By the construction of ϕ(x) we know for a ∈ A that

a ∈ ϕ(A) ⇐⇒ a ∈ XA′1 for every τ ∪ {X1, . . . , Xm}-expansion A′ of A with A′ |= χ.

Now let C := atoms(A). Moreover, consider arbitrary sets A1, . . . , Am ⊆ A, let A′ be
the τ ∪ {X1, . . . , Xm}-structure obtained as the expansion of A by XAi := Ai for all
i ∈ {1, . . . ,m}, and let D := atoms(A′). Clearly, C ⊆ D ⊆ FP,A. Furthermore, note
that χ is constructed in such a way that the following is true:

A′ |= χ ⇐⇒ TP(D) ⊆ D.

By the theorem of Knaster and Tarski (Theorem 2.3), we know that

T ωP (C) =
⋂
{D : TP(D) ⊆ D and C ⊆ D ⊆ FP,A }.

Thus, for a ∈ A we have

a ∈ Q(A)

⇐⇒ X1(a) ∈ T ωP (C)

⇐⇒ X1(a) ∈ D for every D with TP(D) ⊆ D and C ⊆ D ⊆ FP,A

⇐⇒ a ∈ XA′1 for every τ ∪ {X1, . . . , Xm}-expansion A′ of A with A′ |= χ

⇐⇒ a ∈ ϕ(A).

This completes the proof of Proposition 3.3.

3.2 Expressive Power of mDatalog on Ordered Trees 25

3.2 Expressive Power of mDatalog on Ordered Trees

Let τ be one of the schemas introduced in Section 2.4.2, i.e., τ = τMo,Σ for some M ⊆
{child,desc, root, leaf , ls}. We say that a unary query q on Σ-labeled ordered trees
is mDatalog(τ)-definable if and only if there exists a unary monadic datalog query Q
of schema τ such that for every ordered Σ-labeled tree T we have q(T) = Q(SMo (T)).
Similarly, for any subset L of MSO, q is called L(τ)-definable if and only if there exists
an L(τ)-formula ϕ(x) such that for every ordered Σ-labeled tree T we have q(T) =
ϕ(SMo (T)).

Often, we will simply writeQ(T) instead ofQ(SMo (T)), and ϕ(T) instead of ϕ(SMo (T)).

3.2.1 Expressive Power on Unranked Ordered Trees

Proposition 3.3 implies that unary queries on Σ-labeled ordered trees which are definable
in mDatalog(τ) are also definable in MSO(τ). In [GK04] it was shown that for unranked
Σ-labeled ordered trees using the particular schema τ = τGK,Σ the converse also holds:

Theorem 3.4 (Gottlob and Koch [GK04]). A unary query on unranked ordered Σ-labeled
trees is definable in mDatalog(τGK,Σ) if, and only if, it is definable in MSO(τGK,Σ).
Furthermore, there is an algorithm which translates a given unary mDatalog(τGK,Σ)-query
into an equivalent unary MSO(τGK,Σ)-query, and vice versa. y

In the remainder of this subsection, we will see that adding the child and desc relations
does not increase the expressive power of mDatalog or MSO on ordered Σ-labeled trees.
However, omitting any of the relations root, leaf , or ls substantially decreases the
expressive power of mDatalog on unranked ordered trees, but does not decrease the
expressive power of MSO.

Proposition 3.5 (Folklore). Let M be the set { child, desc, root, leaf , ls }. There
exist MSO(τo,Σ)-formulas

ϕchild(x, y), ϕdesc(x, y), ϕroot(x), ϕleaf (x), ϕls(x),

such that for every ordered Σ-labeled tree T and all nodes a, b of T we have

So(T) |= ϕchild(a, b) ⇐⇒ SMo (T) |= child(a, b),
So(T) |= ϕdesc(a, b) ⇐⇒ SMo (T) |= desc(a, b),
So(T) |= ϕroot(a) ⇐⇒ SMo (T) |= root(a),
So(T) |= ϕleaf (a) ⇐⇒ SMo (T) |= leaf(a),
So(T) |= ϕls(a) ⇐⇒ SMo (T) |= ls(a).

Proof. Obviously, we can choose

ϕroot(x) := ¬∃y
(

fc(y, x) ∨ ns(y, x)
)
,

ϕleaf (x) := ¬∃y fc(x, y),

ϕls(x) := ¬∃y ns(x, y).

In order to construct ϕchild(x, y) and ϕdesc(x, y), we use the following auxiliary formulas:
Let %(x, y) be an arbitrary formula, let X be a set variable, and let

cl%(x,y)(X) := ∀x ∀y
((

X(x) ∧ %(x, y)
)
→ X(y)

)
.

26 Chapter 3. Expressive Power and Decidability

Clearly, this formula holds for a set X if and only if X is closed under “%-successors”.
In particular, the formula

ϕns∗(x, y) := ∀X
((

X(x) ∧ clns(x,y)(X)
)
→ X(y)

)
expresses that y is either equal to x or it is a sibling of x which is bigger than x with
respect to the linear order of all children of x and y’s common parent. Consequently, we
can choose

ϕchild(x, y) := ∃x′
(

fc(x, x′) ∧ ϕns∗(x
′, y)

)
.

Since the desc-relation is the transitive (and non-reflexive) closure of the child-relation,
we can choose

ϕdesc(x, y) := x 6= y ∧ ∀X
((

X(x) ∧ clϕchild(x,y)(X)
)
→ X(y)

)
.

In combination with Theorem 3.4 and Proposition 3.3, this leads to:

Corollary 3.6. Let M be the set { child, desc, root, leaf , ls }. The following lan-
guages can express exactly the same unary queries on unranked ordered Σ-labeled trees:

mDatalog(τGK,Σ), mDatalog(τMo,Σ), MSO(τMo,Σ), MSO(τGK,Σ), MSO(τo,Σ).

Furthermore, there exits an algorithm which translates a given unary query on unranked
ordered Σ-labeled trees formulated in one of these languages into an equivalent queries
formulated in any of the other languages.

In particular, adding the child and desc relations to τGK neither increases the ex-
pressive power of monadic datalog nor the expressive power of MSO on unranked ordered
Σ-labeled trees.

Proof. Since τGK ⊆ τMo , mDatalog(τGK,Σ) is at most as expressive as mDatalog(τMo,Σ)
which, by Proposition 3.3, is at most as expressive as MSO(τMo,Σ).

By Proposition 3.5, MSO(τMo,Σ) is as expressive on ordered Σ-labeled trees as MSO(τo,Σ)
and MSO(τGK,Σ) which, by Theorem 3.4, is as expressive on unranked ordered Σ-labeled
trees as mDatalog(τGK,Σ).

Furthermore, by Proposition 3.3, Proposition 3.5, and Theorem 3.4, the translation
from one language to another is constructive.

Next, we note that omitting any of the unary relations root, leaf , or ls decreases the
expressive power of monadic datalog on unranked ordered Σ-labeled trees.

Proposition 3.7. Let M be the set { child, desc, root, leaf , ls }.
For any relation rel ∈ {root, leaf , ls}, the unary query qrel with

qrel(T) = {v ∈ V T : SMo (T) |= rel(v)}

for every unranked ordered Σ-labeled tree T can be expressed in mDatalog({rel}), but not
in mDatalog(τMo,Σ \ {rel}).

3.2 Expressive Power of mDatalog on Ordered Trees 27

Proof. It is obvious that the query qrel can be expressed in mDatalog({rel}).
Let N ⊆ {child,desc, root, leaf , ls} be such that τNo = τMo \ {rel}. Assume, for

contradiction, that qrel is expressed by an mDatalog(τNo)-query Q = (P , P).
First, consider the case where rel = root. Let T0 be the tree consisting of a single

node v labeled α ∈ Σ, and let T1 be the tree consisting of two nodes u, v, both labeled
α, such that v is the unique child of u. Since τNo = τMo \ {root}, we have

atoms
(
SNo (T0)

)
= { labelα(v), leaf(v) }, and

atoms
(
SNo (T1)

)
= atoms

(
SNo (T0)

)
∪

labelα(u), fc(u, v),
ls(v), child(u, v),
desc(u, v)

 .

It holds that atoms(SNo (T0)) ⊆ atoms(SNo (T1)) and thus, due to the monotonicity stated
in Remark 2.7, we have Q(SNo (T0)) ⊆ Q(SNo (T1)) for all queries Q. This contradicts the
fact that v ∈ qroot(T0) = Q(SNo (T0)) but v 6∈ qroot(T1) = Q(SNo (T1)).

Next, consider the case where rel = leaf , and let T0 again be the tree consisting
of a single node v labeled α ∈ Σ. Let T ′1 be the tree consisting of two nodes v and w,
both labeled α, such that w is the unique child of v. Since τNo = τMo \ {leaf}, it is
straightforward to see that atoms(SNo (T0)) ⊆ atoms(SNo (T ′1)). By monotonicity, we have
that Q(SNo (T0)) ⊆ Q(SNo (T ′1)) contradicting the fact that v ∈ qleaf (T0) = Q(SNo (T0)) but
v 6∈ qleaf (T ′1) = Q(SNo (T ′1)).

Finally, consider the case where rel = ls. Let T1 again be the tree consisting of
two nodes u, v, both labeled α, such that v is the unique child of u. Let T2 be the
tree consisting of three nodes u, v, w, all labeled α, such that v and w are the first
and the second child of u. Since τNo = τMo \ {ls}, it is straightforward to see that
atoms(SNo (T1)) ⊆ atoms(SNo (T2)). By monotonicity, we have Q(SNo (T1)) ⊆ Q(SNo (T2)),
contradicting the fact that v ∈ qls(T1) = Q(SNo (T1)) but v 6∈ qls(T2) = Q(SNo (T2)).

3.2.2 Expressive Power on Ranked Ordered Trees

In this subsection we will consider the expressive power on ranked ordered Σ-labeled
trees and may surprisingly point out several differences.

At first, we will see that we can verify in monadic second order logic whether an
unranked tree respects a given ranked alphabet over the same symbol set.
By the next proposition, we obtain for the root relation a result similar to Proposition 3.7
for unranked ordered trees.

Proposition 3.8. Let M be the set { child, desc, root, leaf , ls }.
The unary query Qroot with

Qroot(T) = {v ∈ V T : SMo (T) |= root(v)}

for every ranked ordered Σ-labeled tree T can be expressed in mDatalog({root}), but not
in mDatalog(τMo,Σ \ {root}).

Proof. It is obvious that the query Qroot can be expressed in mDatalog({root}).
Let Σ = (σ, ar) the ranked alphabet where σ = {a0, a1} and where ar is defined as

follows:
ar(a0) = 0 and ar(a1) = 1.

28 Chapter 3. Expressive Power and Decidability

Let T0 be the tree consisting of a single node v labeled by a0, and let T1 be the tree
consisting of two nodes u and v such that the a0-labeled node v is the unique child of u
which is labeled by a1. For N := M \ {root}, we have

atoms
(
SNo (T0)

)
= { labela0(v), leaf(v) }

and

atoms
(
SNo (T1)

)
= atoms

(
SNo (T0)

)
∪

labela1(u), fc(u, v),
ls(v), child(u, v),
desc(u, v)

 .

We have that atoms(SNo (T0)) ⊆ atoms(SNo (T1)) and thus, due to the monotonicity stated
in Remark 2.7, we have Q(SNo (T0)) ⊆ Q(SNo (T1)) for all queries Q. This contradicts the
fact that v ∈ qroot(T0) = Q(SNo (T0)) but v 6∈ qroot(T1) = Q(SNo (T1)).

Note that in the case of leaf and ls a construction similar to the proof of Proposition 3.7 is
not possible since adding a new child node would contradict the rank labeling of the par-
ent nodes. By using the meta information in the alphabet, we obtain the surprising fact
that on ranked trees even the unary relations leaf and ls are mDatalog(τo,Σ)-definable.

Proposition 3.9. Let M be the set { child, desc, root, leaf , ls }.
For any relation rel ∈ {leaf , ls} and every ranked alphabet Σ, there exists a unary query
Qrel in mDatalog(τo,Σ) such that

Qrel(T) = {v ∈ V T : SMo (T) |= rel(v)}

for every ranked ordered Σ-labeled tree T .
Furthermore the query Qrel can be constructed in time linear in the size of Σ.

Proof. First, we consider rel = leaf . Since Σ is a ranked alphabet, we know that a
node v of a ranked ordered Σ-labeled tree T is labeled by a symbol of Σ0 if and only if
v is a leaf. Therefore, we have Qleaf = (P , leaf) where P is the following set of rules in
mDatalog(τo,Σ): {

leaf(x)← labelα(x) |α ∈ Σ0

}
.

Now, we consider the case rel = ls. Since Σ is a ranked alphabet, we know that a
node v of a ranked ordered Σ-labeled tree T is labeled by a symbol of Σi, for every
0 6 i 6 rkmax(Σ) if and only if v has i children. We construct the program P for the
query Qls = (P , ls) progressively over the sets Σi of the partition of Σ.

For every symbol α ∈ Σ1 we add the rule

ls(x1) ← labelα(y), fc(y, x1)

to P . For every symbol α ∈ Σ2 we add the rule

ls(x2) ← labelα(y), fc(y, x1),ns(x1, x2),

and we proceed as follows:
For 0 6 i 6 rkmax(Σ) and for every symbol α ∈ Σi, we add

3.3 Expressive Power of mDatalog on Unordered Trees 29

ls(xi) ← labelα(y), fc(y, x1),ns(x1, x2),ns(x2, x3), . . . ,ns(xi−1, xi),

It is easy to verify that for every ranked ordered Σ-labeled tree T , the query Qls yields
exactly the set of the last sibling nodes on T .

This approach is constructive and gives us a linear time algorithm for every query
Qrel.

The final remark for this section is the following corollary.

Corollary 3.10. Let M be the set { child, desc, root, leaf , ls } and let Σ be a ranked
alphabet. The following languages can express exactly the same unary queries on ranked
ordered Σ-labeled trees:

mDatalog(τ rooto,Σ), mDatalog(τGK,Σ), mDatalog(τMo,Σ), MSO(τMo,Σ), MSO(τGK,Σ), MSO(τo,Σ).

Furthermore, there is an algorithm which translates a given unary query on ranked
ordered Σ-labeled trees formulated in one of these languages into equivalent queries for-
mulated in any of the other languages on ranked ordered Σ-labeled trees.

In particular, adding the leaf , ls, child, and desc relations to τ rooto does neither
increase the expressive power of monadic datalog nor the expressive power of MSO on
ranked ordered Σ-labeled trees.

Proof. Since τ rooto ⊆ τGK, mDatalog(τ rooto,Σ) is at most as expressive as mDatalog(τGK).
Further, τGK ⊆ τMo and therefore mDatalog(τGK,Σ) is at most as expressive as
mDatalog(τMo,Σ) which, by Proposition 3.3, is at most as expressive as MSO(τMo,Σ).

By Proposition 3.5, MSO(τMo,Σ) is as expressive on Σ-labeled ordered trees as MSO(τo,Σ)
and MSO(τGK,Σ) which, by Theorem 3.4, is as expressive on ranked ordered Σ-labeled
trees as mDatalog(τGK,Σ). Finally by Proposition 3.9, mDatalog(τGK,Σ) is as expressive
on ranked ordered Σ-labeled trees as mDatalog(τ rooto,Σ).

Furthermore, by the used propositions and theorems the translation from one lan-
guage to another is constructive.

3.3 Expressive Power of mDatalog

on Unordered Trees

Let τ be one of the schemas introduced in Section 2.4.1, i.e., τ = τMu,Σ for some M ⊆
{desc, root, leaf}. We say that a unary query q on Σ-labeled unordered trees is definable
in mDatalog(τ) (or, mDatalog(τ)-definable) if and only if there exists a unary monadic
datalog query Q of schema τ such that for every unordered Σ-labeled tree T we have
q(T) = Q(SMu (T)). Similarly, for any subset L of MSO, q is called L(τ)-definable if and
only if there is an L(τ)-formula ϕ(x) such that for every unordered Σ-labeled tree T we
have q(T) = ϕ(SMu (T)).

Often, we will simply writeQ(T) instead ofQ(SMu (T)), and ϕ(T) instead of ϕ(SMu (T)).
Proposition 3.3 implies that unary queries on unordered Σ-labeled trees which are

definable in mDatalog(τ) are also definable in MSO(τ). It is straightforward to see that

MSO(τu) can express all the relations present in τ
{desc,root,leaf}
u :

30 Chapter 3. Expressive Power and Decidability

Proposition 3.11 (Folklore). Let M be the set {desc, root, leaf }. There are MSO(τu,Σ)-
formulas

ϕdesc(x, y), ϕroot(x), ϕleaf (x)

such that for every unordered Σ-labeled tree T and all nodes a, b of T we have

Su(T) |= ϕdesc(a, b) ⇐⇒ SMu (T) |= desc(a, b),
Su(T) |= ϕroot(a) ⇐⇒ SMu (T) |= root(a),
Su(T) |= ϕleaf (a) ⇐⇒ SMu (T) |= leaf(a).

Proof. Obviously, we can choose

ϕroot(x) := ¬∃y child(y, x),

ϕleaf (x) := ¬∃y child(x, y).

In order to construct ϕdesc(x, y), we use the following auxiliary formula: Let %(x, y) be
an arbitrary formula, let X be a set variable, and let

cl%(x,y)(X) := ∀x ∀y
((

X(x) ∧ %(x, y)
)
→ X(y)

)
.

Clearly, this formula holds for a set X if and only if X is closed under “%-successors”.
In particular, the formula

ϕchild∗(x, y) := ∀X
((

X(x) ∧ clchild(x,y)(X)
)
→ X(y)

)
expresses that y is either equal to x or it is a descendant of x. Thus, we can choose

ϕdesc(x, y) := x 6= y ∧ ϕchild∗(x, y).

3.3.1 Expressive Power on Unranked Unordered Trees

Unlike to the case of unranked ordered trees, mDatalog(τ
{desc,root,leaf}
u,Σ) cannot express

all unary queries expressible in MSO(τu,Σ) on unranked unordered trees, as the following
observation shows.

Proposition 3.12. Let M be the set {desc, root, leaf}. The unary query qtwo with

qtwo(T) = {v ∈ V T : exactly two children of v are labeled by α}

for every unranked unordered Σ-labeled tree T is expressible in MSO(τu,Σ), but not in
mDatalog(τMu,Σ).

Proof. It is obvious that the query qtwo is defined by the MSO(τu,Σ)-formula ψ(x) :=

∃y1 ∃y2

(
child(x, y1) ∧ child(x, y2) ∧ labelα(y1) ∧ labelα(y2) ∧ y1 6= y2 ∧

∀z
(

(child(x, z) ∧ labelα(z)) → (z = y1 ∨ z = y2)
))
.

For contradiction, assume that qtwo is expressed by an mDatalog(τMu,Σ)-query Q = (P , P)
on unranked unordered Σ-labeled trees. Let T2 be the unranked unordered Σ-labeled

3.3 Expressive Power of mDatalog on Unordered Trees 31

tree consisting of three nodes u, v1, v2, all labeled α, such that v1 and v2 are children of
u. Furthermore, let T3 be the tree consisting of four nodes u, v1, v2, v3, all labeled α, such
that v1, v2, v3 are children of u. Since

τu,Σ = {labelα : α ∈ Σ} ∪ { child, desc, root, leaf },

it is straightforward to see that atoms(SMu (T2)) ⊆ atoms(SMu (T3)). Thus, due to the
monotonicity stated in Remark 2.7, we have Q(SMu (T2)) ⊆ Q(SMu (T3)) for all queries Q.
This contradicts the fact that u ∈ qtwo(T2) = Q(SMu (T2)) but u 6∈ qtwo(T3) = Q(SMu (T3)).

Next, we note that omitting any of the relations root or leaf further decreases the
expressive power of monadic datalog on unranked unordered Σ-labeled trees.

Proposition 3.13. Let M be the set {desc, root, leaf}.
For any relation rel ∈ {root, leaf}, the query qrel with

qrel(T) = {v ∈ V T : SMu (T) |= rel(v)}

every unranked unordered Σ-labeled tree T can be expressed in mDatalog({rel}), but not
in mDatalog(τMu,Σ \ rel).

Proof. The proof of is analogous to the corresponding parts of the proof of Proposi-
tion 3.7.

In summary, we immediately obtain the following:

Corollary 3.14. Let M be the set {desc, root, leaf}.

(a) MSO(τu,Σ) can express exactly the same unary queries on unranked unordered Σ-
labeled trees as MSO(τMu,Σ). There is a polynomial time algorithm which trans-
lates a given unary MSO(τMu,Σ)-query on Σ-labeled unordered trees into an equivalent
MSO(τu,Σ)-query.

Furthermore, both languages are capable of expressing strictly more unary queries on
unranked unordered Σ-labeled trees than mDatalog(τMu,Σ).

(b) Omitting any of the relations root or leaf strictly decreases the expressive power of
unary mDatalog(τMu,Σ)-queries on unranked unordered Σ-labeled trees. y

3.3.2 Expressive Power on Ranked Unordered Trees

In the following we are going to establish a result corresponding to Proposition 3.12 for
ranked unordered trees, but we have to use a different approach in the proof.

Proposition 3.15. Let M be the set {desc, root, leaf} and let Σ be a ranked alphabet.
The unary query qtwo with

qtwo(T) = {v ∈ V T : exactly two children of v are labeled by α}

for every ranked unordered Σ-labeled tree T is expressible in MSO(τu,Σ), but not in
mDatalog(τMu,Σ).

32 Chapter 3. Expressive Power and Decidability

Proof. It is obvious that the query qtwo is defined by the MSO(τu,Σ)-formula ψ(x) from
the proof of Proposition 3.12.
For the mDatalog part of the proof, we cannot use the monotonicity of datalog since
adding a new child to node v within a ranked tree T to obtain T ′ requires a new label of
v since the number of children changes. This implies atoms(SMu (T)) 6⊆ atoms(SMu (T ′)).

For contradiction, assume that qtwo is expressed by an mDatalog(τMu,Σ)-query Q =
(P , P) on ranked unordered Σ-labeled trees. We will conclude the proof by using
Lemma 2.8 stating that datalog queries are preserved under homomorphisms.

Let Σ = (σ, ar) be a ranked alphabet where σ = {α, β, γ} and ar is defined as follows:

ar(α) = 0, ar(β) = 0, and ar(γ) = 2.

Let T1 be the ranked unordered Σ-labeled tree consisting of three nodes a, a1, a2 such
that a1 and a2 are children of a. The nodes a1 and a2 of T1 are each labeled by α and
γ is the label of a. Furthermore, let T2 be the ranked tree consisting of three nodes b
(labeled by γ), b1 (labeled by α), and b2 (labeled by β) such that b1 and b2 are children
of b. Let A := SMu (T1) and B := SMu (T2).

Consider the mapping h : A → B with h(a) = b and h(a1) = h(a2) = b1. It is not
difficult to see that h is a homomorphism from A to B since

• labelAα = {a1, a2} and h({a1, a2}) = {b1} = labelBα

• labelAβ = ∅ and labelBβ = {b2}

• labelAγ = {a} and h({a}) = {b} = labelBγ

• childA = {(a, a1), (a, a2)}
and h({(a, a1), (a, a2)}) = {(b, b1)} ⊆ {(b, b1), (b, b2)} = childB

• descA = childA and h(childA) ⊆ childB = descB

• rootA = {a} and h({a}) = {b} = rootB

• leafA = {a1, a2} and h({a1, a2}) = {b1} ⊆ {b1, b2} = leafB

From Lemma 2.8 we obtain that h(Q(A)) ⊆ Q(B). This contradicts the fact that
a ∈ qtwo(T1) = Q(A), but h(a) = b /∈ qtwo(T2) = Q(B).

Next, we note that omitting the relation root decreases the expressive power of monadic
datalog on ranked unordered Σ-labeled trees.

Proposition 3.16. Let M be the set {desc, root, leaf}.
The unary query Qroot with

Qroot(T) = {v ∈ V T : SMu (T) |= root(v)}

for every ranked unordered Σ-labeled tree T can be expressed in mDatalog({root}), but
not in mDatalog(τMu,Σ \ {root}).

Proof. The proof of is analogous to the proof of Proposition 3.8 for the ranked ordered
case.

3.4 Decidability Results 33

As done in Proposition 3.9 on ranked ordered trees, the leaf predicate can also be
expressed in mDatalog(τu,Σ) on ranked unordered Σ-labeled trees.

Proposition 3.17. Let M be the set { child, desc, root, leaf }.
For every ranked alphabet Σ, there is a unary query Qleaf in mDatalog(τu,Σ) such that

Qleaf (T) = {v ∈ V T : SMu (T) |= leaf(v)}

for every ranked unordered Σ-labeled tree T .
Furthermore the query Qleaf can be constructed in time linear in the size of Σ.

Proof. Since Σ is a ranked alphabet, we know that a node v of a ranked unordered Σ-
labeled tree T is labeled by a symbol of Σ0 if and only if v is a leaf. Therefore, we have
Qleaf = (P , leaf) where P is the following set of rules in mDatalog(τu,Σ):{

leaf(x)← labelα(x) |α ∈ Σ0

}
.

Obviously, there exists an algorithm that constructs Qleaf within time linear in the size
of the given alphabet Σ.

In summary, we immediately obtain the following:

Corollary 3.18. Let M be the set {desc, root, leaf}.

(a) MSO(τu,Σ) can express exactly the same unary queries on ranked unordered Σ-labeled
trees as MSO(τMu,Σ). There is a polynomial time algorithm which translates a given
unary MSO(τMu,Σ)-query on Σ-labeled unordered trees into an equivalent MSO(τu,Σ)-
query.

Furthermore, both languages are capable of expressing strictly more unary queries on
ranked unordered Σ-labeled trees than mDatalog(τMu,Σ).

(b) Omitting the relation root strictly decreases the expressive power of unary
mDatalog(τMu,Σ)-queries on ranked unordered Σ-labeled trees. y

3.4 Decidability Results

In this section, we obtain decidability for the problems introduced in Section 2.7. For
ordered Σ-labeled trees, the following is known:

Theorem 3.19 (Gottlob and Koch [GK04]).
The QCP for unary mDatalog(τGK) on unranked ordered labeled trees is decidable and
Exptime-hard. y

Using Corollary 3.6 and the fact that τGK,Σ ⊆ τ
{child,desc,root,leaf ,ls}
o,Σ , this immediately

leads to:

Theorem 3.20. Let M be the set {child,desc, root, leaf , ls}.
The QCP for unary mDatalog(τMo) on unranked ordered labeled trees is decidable and

Exptime-hard. y

34 Chapter 3. Expressive Power and Decidability

Next, we prove the decidability for ranked ordered Σ-labeled trees.

Proposition 3.21. Let M be the set {child,desc, root, leaf , ls}.
The QCP for unary mDatalog(τMo) on ranked ordered labeled trees is decidable.

Proof. Let Σ = (σ, ar) be the ranked alphabet and let Q1 = (P1, P1) and Q2 = (P2, P2)
be two mDatalog(τMo,Σ)-queries. We want to decide whether it holds for every ranked
ordered Σ-labeled tree T that Q1(T) ⊆ Q2(T).

In the following Lemma 3.22 we will see that there exists an mDatalog(τMo,σ)-query
Qrk = (Prk, Prk) such that the query predicate Prk yields true for every node of an
unranked ordered σ-labeled tree T if and only if T respects the ranked alphabet. This
means that there is a ranked ordered Σ-labeled tree T ′ such that SMo (T) = SMo (T ′). If
there exists no such a ranked tree then the query predicate is false for every node of T .

Without loss of generality we have idb(Q1)∩Prk = idb(Q2)∩Prk = ∅. For the given
query Q1 we will now construct the query Q′1 = (P ′1, P ′1). We let

P ′1 = P1 ∪ Prk ∪
{
P ′1 ← P1(x), Prk(x)

}
.

For the given query Q2 we analogously construct the query Q′2 = (P ′2, P ′2). We let

P ′2 = P2 ∪ Prk ∪
{
P ′2 ← P2(x), Prk(x)

}
.

By using Theorem 3.20, we decide yes to the QCP (Σ, Q1, Q2) on ranked ordered σ-
labeled trees if and only if the QCP (σ,Q′1, Q

′
2) for unary mDatalog(τMo) on unranked

ordered σ-labeled trees is decided to yes since we have:

Q1 6⊆ Q2

⇐⇒ there is a ranked ordered Σ-labeled tree T and a node v ∈ T
such that v ∈ T ωP1

(T) and v /∈ T ωP2
(T)

⇐⇒ there is a ranked ordered Σ-labeled tree T ,

an unranked ordered σ-labeled tree T ′, and a node v ∈ T ′ such that

SMo (T) = SMo (T ′), v ∈ T ωP ′1(T
′), and v /∈ T ωP ′2(T

′)

⇐⇒ Q′1 6⊆ Q′2

Lemma 3.22. Let M be a set with {root, leaf , ls} ⊆M ⊆ {child,desc, root, leaf , ls}
and let Σ = (σ, ar) be a ranked alphabet.

There is a unary mDatalog(τMo,σ)-query Qrk = (Prk, Prk) such that for every unranked
ordered σ-labeled tree T we have

Prk(v) ∈ T ωPrk
(T)

for every node v ∈ T ⇐⇒ there exists a ranked ordered Σ-labeled tree T ′

such that SMo (T) = SMo (T ′).

Moreover, if such a tree T ′ does not exists then we have for every node v in T that
Prk(v) /∈ T ωPrk

(T).
This query can be constructed in time linear in the size of the input Σ.

Proof. We want to construct a query Qrk = (Prk, Prk) such that for every unranked
ordered σ-labeled tree T and every of its nodes v we have Prk(v) ∈ T ωPrk

(T) if and only

3.4 Decidability Results 35

if there exists a ranked ordered Σ-labeled tree T ′ such that SMo (T) = SMo (T ′). This
in particular, means that if such a tree T ′ does not exist there is no node v ∈ T with
Prk(v) ∈ T ωPrk

(T).
Let Σ = (σ, ar) be a ranked alphabet. The program P ′rk in mDatalog(τMo,σ) consists

of the following rules.
For every α ∈ Σ0 we have the rule

ok(x)← leaf(x), labelα(x).

For every α ∈ Σ1 we have the rule

ok(x)← labelα(x), fc(x, y), ok(y), ls(y).

For every α ∈ Σ2 we have the rule

ok(x)← labelα(x), fc(x, y1), ok(y1),ns(y1, y2), ok(y2), ls(y2).

And for every α ∈ Σi where 2 < i 6 rkmax(Σ) we have

ok(x)← labelα(x), fc(x, y1), ok(y1),ns(y1, y2), ok(y2), . . . ,ns(yi−1, yi), ok(yi), ls(yi)

in P ′rk and for the root node we have

Prk(x)← root(x), ok(x).

It is easy to verify by induction over the height of the unranked tree T that the
Boolean query Q = (P ′rk, Prk) yields yes for an unranked ordered σ-labeled tree T if
and only if there exists a ranked ordered Σ-labeled tree T ′ such that SMo (T) = SMo (T ′).
Furthermore, we have at most Prk(v) ∈ T ωP ′rk(T) if v = rootT .

Now we obtain the demanded query Q = (Prk, Prk) by distributing the membership
of the root node to Prk onto the other nodes of T with

Prk = P ′rk ∪ { Prk(x)← Prk(y), child(y, x) }

To also obtain decidability for the case of unordered Σ-labeled trees, we can use the
following result:

Theorem 3.23 (Seese [See91]). The problem

Satisfiability of MSO(τu,Σ)-sentences on unranked unordered
Σ-labeled trees

Input: An MSO(τu,Σ)-sentence ϕ.

Question: Does there exist an unranked unordered Σ-labeled finite tree
T such that Su(T) |= ϕ?

is decidable. y

Combining this with Proposition 3.3 and Proposition 3.11, we obtain:

36 Chapter 3. Expressive Power and Decidability

Theorem 3.24. Let M be the set {desc, root, leaf }.The QCP for unary mDatalog(τMu)
on unranked unordered labeled trees is decidable.

Proof. An algorithm for deciding the QCP for two given unary mDatalog(τMu,Σ)-queries
on unranked unordered Σ-labeled trees can proceed as follows:

On the input of two unary mDatalog(τMu,Σ)-queries Q1 and Q2 the algorithm needs to
decide whether we have Q1 ⊆ Q2 or not. First use the algorithm from Proposition 3.3
to construct two MSO(τMu,Σ)-formulas ϕ1(x) and ϕ2(x) such that, for each i ∈ {1, 2}, the
formula ϕi(x) defines the same unary query on unranked unordered Σ-labeled trees as
Qi.

Afterwards, use Proposition 3.11 to translate the MSO(τMu,Σ)-formulas ϕ1(x) and
ϕ2(x) into MSO(τu,Σ)-formulas ψ1(x) and ψ2(x) which are equivalent to ϕ1(x) and ϕ2(x)
on unordered Σ-labeled trees.

Finally, let
ϕ := ∃x

(
ψ1(x) ∧ ¬ψ2(x)

)
,

and use the algorithm provided by Theorem 3.23 to decide whether there is an unranked
unordered Σ-labeled tree T such that Su(T) |= ϕ. We output “no” if this algorithm
outputs “yes” and we output “yes” otherwise.

To verify that this algorithm produces the correct answer, note that for every un-
ranked unordered Σ-labeled tree T the following is true:

Su(T) |= ϕ
⇐⇒ there is a node a of T with SMu (T) |= ψ1(a) and SMu (T) 6|= ψ2(a)
⇐⇒ there is a node a of T with a ∈ Q1(SMu (T)) and a 6∈ Q2(SMu (T))
⇐⇒ Q1(SMu (T)) 6⊆ Q2(SMu (T)).

Thus, the MSO(τu,Σ)-sentence ϕ is satisfiable on unranked unordered Σ-labeled trees if
and only if Q1 6⊆ Q2.

This proof can easily be extended to a proof for the ranked case.

Theorem 3.25. Let M be the set {desc, root, leaf }.The QCP for unary mDatalog(τMu)
on ranked unordered labeled trees is decidable.

Proof. As we will see in the following Lemma 3.26 we cannot use the approach of creating
a reduction from ranked to unranked trees as we did in the case of renked ordered trees in
Proposition 3.21. However, an algorithm deciding the QCP for the given ranked alphabet
Σ = (σ, ar) and two given unary mDatalog(τMu,σ)-queries on ranked unordered Σ-labeled
trees can proceed as follows:

Upon input of two unary mDatalog(τMu,σ)-queries Q1 and Q2 it is to decide whether
we have Q1 ⊆ Q2 or not. First use the algorithm from Proposition 3.3 to construct two
MSO(τMu,σ)-formulas ϕ1(x) and ϕ2(x) such that, for each i ∈ {1, 2}, the formula ϕi(x)
defines the same unary query on ranked unordered Σ-labeled trees as Qi.

Afterwards, use Proposition 3.11 to translate the MSO(τMu,σ)-formulas ϕ1(x) and ϕ2(x)
into MSO(τu,σ)-formulas ψ1(x) and ψ2(x) which are equivalent to ϕ1(x) and ϕ2(x) on
ranked unordered Σ-labeled trees.

Let ϕrk(Σ) be the MSO(τu,σ)-sentence obtained by Lemma 3.28 such that for every
unranked unordered σ-labeled tree T we have

Su(T) |= ϕrk(Σ) ⇐⇒ Every node labeled by α ∈ σ has exactly ar(α) children.

3.4 Decidability Results 37

Now finally, let

ϕ := ∃x
(
ψ1(x) ∧ ¬ψ2(x) ∧ ϕrk(Σ)

)
,

and use the algorithm provided by Theorem 3.23 to decide whether there is an unranked
unordered σ-labeled tree T such that Su(T) |= ϕ. We output “no” if this algorithm
outputs “yes” and we output “yes” otherwise.

To verify that this algorithm produces the correct answer, note that for every un-
ranked unordered Σ-labeled tree T the following is true:

Su(T) |= ϕ
⇐⇒ SMu (T) |= ϕrk(Σ) and

there is a node a of T with SMu (T) |= ψ1(a) and SMu (T) 6|= ψ2(a)
⇐⇒ there is a ranked unordered Σ-labeled tree T ′ with SMu (T) = SMu (T ′) and

there is a node a of T ′ with a ∈ Q1(SMu (T ′)) and a 6∈ Q2(SMu (T ′))
⇐⇒ there is a ranked unordered Σ-labeled tree T ′ such that

Q1(SMu (T ′)) 6⊆ Q2(SMu (T ′)).

Thus, the MSO(τu,Σ)-sentence ϕ is satisfiable on unranked unordered σ-labeled trees if
and only if Q1 6⊆ Q2 on ranked unordered Σ-labeled trees.

Lemma 3.26. Let M be the set {desc, root, leaf} and let Σ = (σ, ar) be a ranked
alphabet.

There exists no unary mDatalog(τMu,σ)-query Qrk = (Prk, Prk) such that for every
unranked unordered σ-labeled tree T we have

Prk(v) ∈ T ωPrk
(T)

for every node v ∈ T ⇐⇒ there exists a ranked unordered Σ-labeled tree T ′

such that SMu (T) = SMu (T ′)

and Prk(v) /∈ T ωPrk
(T) for every node v ∈ T if such a tree T ′ does not exists.

Proof. We assume that a query as described in the lemma exists and let Qrk = (Prk, Prk)
be such a unary mDatalog(τMu,σ)-query.

This implies that rootT ∈ T ωPrk
(T) if and only if there exists a ranked unordered Σ-

labeled tree T ′ such that SMu (T) = SMu (T ′) which is a contradiction to Lemma 3.27 for
the Boolean query Q′rk = (Prk, Prk).

Lemma 3.27. Let M be the set {desc, root, leaf} and let Σ = (σ, ar) be a ranked
alphabet.

There exists no Boolean mDatalog(τMu,σ)-query Qrk = (Prk, Prk) such that for every
unranked unordered σ-labeled tree T we have

Qrk(T) = yes ⇐⇒ there exists a ranked unordered Σ-labeled tree T ′

such that SMu (T) = SMu (T ′).

Proof. Let Σ = (σ, ar) be a ranked alphabet where σ = {α0, α1}, ar(α0) = 0, and
ar(α1) = 1. We assume Qrk is such a query for Σ.

Let T0 be the tree consisting of two nodes u and v such that v is the unique child of
u. The node u is labeled by α1 and v is labeled by α0. Let T1 be a tree consisting of the

38 Chapter 3. Expressive Power and Decidability

three nodes u, v, and w, with u labeled by α1 and both v and w labeled by α0. And let
the nodes v and w be the children of u. Now we have

atoms(SMu (T0)) = { root(u), labelα1(u), child(u, v), desc(u, v), labelα0(v), leaf(v)}
atoms(SMu (T1)) = atoms(SMu (T0)) ∪ { child(u,w), desc(u,w), labelα0(w), leaf(w)}

It is easy to verify that there exists for T0 a ranked unordered Σ-labeled tree T ′0 with
SMu (T0) = SMu (T ′0), but such a tree for T1 does not exist since the root node u of T1 is
labeled by the unary symbol α1 even though it has two children.

It holds that atoms(SMu (T0)) ⊆ atoms(SMu (T1)) and thus, due to the monotonicity
stated in Remark 2.7, we have Q(SNu (T0)) ⊆ Q(SNu (T1)) for all queries Q. This contra-
dicts the fact that Qrk(T0) yields yes and Qrk(T1) = no.

Lemma 3.28. Let Σ = (σ, ar) be a ranked alphabet. Let T be an unranked unordered
σ-labeled tree. There exists an MSO(τu,σ)-sentence ϕrk(Σ) such that

Su(T) |= ϕrk(Σ) ⇐⇒ Every node labeled by α ∈ σ has exactly ar(α) children.

We can furthermore construct this formula within polynomial time for any given ranked
alphabet.

Proof. Let ϕleaf the MSO(τu,σ)-formula from Proposition 3.11. With the formula

ϕ0 :=
∧
α∈Σ0

∀x
(
labelα(x) ↔ ϕleaf (x)

)
we have for every unranked unordered σ-labeled tree T

Su(T) |= ϕ0 ⇐⇒ Every node labeled by α ∈ Σ0 has no children.

Next, we define the formulas ϕ1, ϕ2, . . . , ϕm which correspond to the sets Σ1, Σ2, . . ., Σm

ϕ1 :=
∧
α∈Σ1

∀x
(
labelα(x) ↔ ∃y1

(
child(x, y1) ∧ ∀y(child(x, y)→ y1 = y)

))
ϕ2 :=

∧
α∈Σ2

∀x
(
labelα(x) ↔ ∃y1 ∃y2

(
child(x, y1) ∧ child(x, y2) ∧ ¬y1 = y2

∧∀y(child(x, y)→ (y1 = y ∨ y2 = y))
))

...

ϕm :=
∧
α∈Σm

∀x
(
labelα(x) ↔ ∃y1 . . . ∃ym

(∧
16i6m

(
child(x, yi) ∧

∧
16j<i

¬yj = yi
)

∧∀y(child(x, y)→
∨

16i6m

yi = y)
))

and obtain

Su(T) |= ϕi ⇐⇒ Every node labeled by α ∈ Σi has i children

3.4 Decidability Results 39

for every i ∈ N with 0 6 i 6 m. Finally, we define

ϕ :=
∧

06i6m

ϕi

and obtain

Su(T) |= ϕ ⇐⇒ Every node labeled by α ∈ σ has exactly ar(α) children.

Obviously, there is an algorithm that uses this construction and terminates in time
polynomial in Σ.

By definition, we have Q1 ≡ Q2 if and only if Q1 ⊆ Q2 and Q2 ⊆ Q1. Thus, the
decidability of the query containment problem for mDatalog stated in Theorem 3.20 and
Theorem 3.24 for the unranked case as well as Proposition 3.21 and Theorem 3.25 for
the ranked case immediately leads to the following.

Corollary 3.29.

(a) The equivalence problem for unary mDatalog(τ
{child,desc,root,leaf ,ls}
o) on labeled ordered

trees is decidable.

(b) The equivalence problem for unary mDatalog(τ
{desc,root,leaf}
u) on labeled unordered

trees is decidable. y

Finally, Corollary 3.29 together with Example 2.10 leads to the following.

Corollary 3.30.

(a) The emptiness problem for unary mDatalog(τ
{child,desc,root,leaf ,ls}
o) on labeled ordered

trees is decidable.

(b) The emptiness problem for unary mDatalog(τ
{desc,root,leaf}
u) on labeled unordered

trees is decidable.

Proof. Let Q be the input query for which we want to decide whether or not it is
unsatisfiable on trees. Let Q∅ be the unsatisfiable query from Example 2.10.

It is straightforward to see that Q ≡ Q∅ if, and only if, Q is unsatisfiable on trees.
Thus, we can use the algorithms for deciding equivalence of queries on trees (provided
by Corollary 3.29) to decide whether or not Q is satisfiable on trees.

Chapter 4

The Other Problems Point of View:

On Hardness

By Section 3.4, we know that all the considered problems of Section 2.7 are decidable. In
this chapter, as a first step to determine the complexity of these problems, we investigate
their hardness. Every hardness result provides us with a lower bound.

4.1 The Hardness of the Emptiness Problem

of mDatalog(τ
{root,leaf}
u)

on Unranked Unordered Trees

This section’s goal is to prove the following proposition.

Proposition 4.1. The emptiness problem for Boolean mDatalog(τ
{root,leaf}
u) on unranked

unordered labeled trees is Exptime-hard.

Proof. Our proof proceeds by a reduction from the Exptime-complete two person corri-
dor tiling problem (TPCT) [Chl86]. The task of the TPCT-problem is to decide whether
the first player in the following two person corridor tiling game has a winning strategy.

There are two players: Player 1 (the Constructor) and Player 2 (the Saboteur). The
game board is a corridor of a given width n and an unbounded length. There is a finite
set D of types of tiles (or, dominoes), and from every tile type an unlimited number of
tiles is available. The first row f (of width n) of tiles as well as the combination of tile
types in the designated last row ` (of width n) are given.

The players alternately select a tile and put it into the next vacant position (row-
wise from left to right); Player 1 starts at the leftmost position of the second row. Both
players have to respect horizontal and vertical constraints given by two sets H, V ⊆ D2.
A tile d chosen for the j-th column of the i-th row has to fit to its vertical neighbor dv
in the j-th column of the (i−1)-th row in the sense that (dv, d) ∈ V . Furthermore, if
j > 2, then tile d also has to fit to its horizontal neighbor dh in the (j−1)-th column of
the i-th row in the sense that (dh, d) ∈ H. If a player is unable to choose a fitting tile,
the game ends and Player 1 loses.

The ultimate goal of Player 1 is to produce a tiling whose last row is `; in this case he
wins and the game ends. Player 2 wins if either the game goes on for an infinite number

41

42 Chapter 4. On Hardness

of steps, or one of the players gets stuck in a situation where he cannot find a fitting tile.
The two person corridor tiling problem (TPCT) is the following decision problem.

TPCT

Input: A tuple I = (D, H, V, n, f, `) such that D is a finite set,
H,V ⊆ D2, n > 2, f, ` ∈ Dn.

Question: Does Player 1 have a winning strategy in the
two person corridor tiling game specified by I?

Theorem 4.2 (Chlebus [Chl86]). The problem TPCT is Exptime-complete. y

Note that Exptime is closed under complementation. Thus, for proving Proposition 4.1
it suffices to give a polynomial-time reduction from TPCT to the complement of the
emptiness problem for mDatalog(τ

{root,leaf}
u) on unranked unordered labeled trees. For

a given TPCT-instance I = (D, H, V, n, f, `) we will construct a finite alphabet Σ and a

Boolean mDatalog(τ
{root,leaf}
u,Σ)-query Q, such that

Player 1 has a winning strategy in the
two person corridor tiling game specified by I

⇐⇒ there exists an unranked unordered Σ-labeled tree T
such that Q(T) = yes (i.e., Q 6= ∅).

We will represent strategies for Player 1 by Σ-labeled trees. The query Q will describe
necessary properties which are met by every tree that describes a winning strategy for
Player 1.

The following representation of a winning strategy for Player 1 is basically taken from
[Löd12]. We represent a strategy for Player 1 by an unranked unordered Σ-labeled tree
with

Σ := D × {1, 2,⊥, !}.
The first component of a letter (d, i) ∈ Σ corresponds to the tile d that has been played,
while the second component indicates whose turn it is to place the next tile (1 for
Player 1, 2 for Player 2, ⊥ if the move is not allowed because a vertical or horizontal
constraint was violated, and ! if the game is over because Player 1 has won). In the
following, we will say that a node is labeled d (for some d ∈ D) to express that its label
belongs to {d} × {1, 2,⊥, !}. Accordingly, we will say that a node is labeled i (for some
i ∈ {1, 2,⊥, !}) to express that its label belongs to D × {i}.

A finite Σ-labeled tree T is called good if it satisfies the following conditions (1)–(9).
It is not difficult to verify that Player 1 has a winning strategy if, and only if, there exists
a finite Σ-labeled tree that is good.

(1) The root is labeled by (d, 2) for some d ∈ D. (This indicates that at the beginning
of the game, Player 1 chooses tile d, and Player 2 is next).

(2) Nodes with labels ⊥ or ! are leaves.

(3) Nodes with labels in D × {1} have at least one child. (Such a child describes the
choice made by Player 1 in the next step).

4.1 The Hardness of the Emptiness Problem of
mDatalog(τ

{root,leaf}
u) on Unranked Unordered Trees 43

(4) Nodes with labels in D × {2} have at least |D| children – one for each tile type
d ∈ D. (These children represent the potential choices that Player 2 might make in
the next step).

(5) There is no node labeled 1 or 2 such that all of its children are labeled by ⊥. (I.e.,
the game never gets stuck).

(6) Labels from D × {1} and D × {2} alternate on each path from the root to a leaf.
(I.e., both players alternately choose a tile).

(7) If a node x is labeled !, then the number of nodes visited by the path from the root
to x is a multiple of n and the last n nodes on this path are labeled according to `.
(This means that the last n nodes of the path describe a row which has the desired
labeling `.)

(8) At each node x labeled (d, i) with i 6= ⊥, the tile d respects the horizontal and the
vertical constraints.

(9) At each node labeled (d,⊥) for some d ∈ D, the tile d violates the horizontal or the
vertical constraints.

To be precise, the conditions (8) and (9) mean the following. We define the depth of a
node as follows: The root has depth 1; and for each node x of depth j, all children of x
are of depth j+1.

(a) A node x labeled with tile d ∈ D respects the horizontal constraints if x

• is either of depth congruent 1 modulo n (and thus corresponds to a position in
the first column of a row),

• or we have (dh, d) ∈ H, where the parent of x is labeled with tile dh ∈ D (i.e.,
x corresponds to a position where tile d is chosen in some column j > 2, and
this tile fits to its horizontal neighbor dh in column j−1).

(b) A node x labeled with a tile d ∈ D respects the vertical constraints if x

• is either of depth j ∈ {1, . . . , n} and we have (fj, d) ∈ H
(i.e., x corresponds to the j-th position in the second row and fits to the j-th
entry fj of the first row f),

• or it is of depth j > n+1 and we have (dv, d) ∈ V , where the ancestor of x at
depth j−n is labeled with tile dv ∈ D
(i.e., x corresponds to a position where tile d is chosen in some row i > 3, and
this tile fits to its vertical neighbor dv in row i−1).

As noted above, Player 1 has a winning strategy if and only if there exists a finite
Σ-labeled tree T that is good, i.e., that satisfies the conditions (1)–(9). The first idea
towards completing the proof of Proposition 4.1 is to try to find a monadic Datalog
query Q such that for any unranked unordered Σ-labeled tree T the following is true:
T is good if, and only if, Q(T) = yes. In fact, it is not difficult to construct for each

44 Chapter 4. On Hardness

1 2 . . . n
f

· · · · · · ·· · · · · · ·· · · · · · ·
l

(d, 2)

(d3, 1)(d2, 1)

(d′, 2)

(d4, 1)

Player 1’s move

Player 2’s choice

Player 1’s next move

Figure 4.1: Player 1 chooses a tiling d ∈ D by following the strategy and for every answer
of Player 2 there exists a child node that represents its domino type choice.

condition (c) with c 6= 4 and c 6= 5 a Boolean mDatalog(τ
{root,leaf}
u,Σ)-query Qc such that

for any Σ-labeled tree T we have:

Qc(T) = yes ⇐⇒ T fulfills condition (c).

However, for the conditions (4) and (5), we were unable to find an according monadic
datalog query which precisely characterizes all trees that fulfill these conditions.

As a remedy, we define a notion of almost-good trees in such a way that the following
is true:

(i) Every almost-good tree T contains a good tree;1 and every good tree also is almost-
good.

(ii) We can find a Boolean mDatalog(τ root,leafu,Σ)-query Q such that for any Σ-labeled
tree T the following is true: T is almost-good if, and only if, Q(T) = yes.

For defining the notion of almost-good trees, we need the following notation. Let T be
an unranked unordered Σ-labeled tree. By performing a top-down scan of T , we select
a subset of the leaves as candidates as follows:

A leaf of T is a candidate if the path from the root to the parent of the leaf is

• labeled with symbols from D×{1} and D×{2} alternately, starting with a symbol
from D × {2} and

• every node on this path fulfills the vertical and the horizontal condition

and the leaf itself is labeled

• by ⊥ and violates the vertical or the horizontal condition

or it is labeled

1How a good tree T will be contained in an almost-good tree T ′:
We have
• V T ⊆ V T ′ • rootT = rootT

′ • ET ⊆ ET ′ • λT = λT
′

|V T

• {v : v is a leaf in T} ⊆ {v : v is a leaf in T ′}.

4.1 The Hardness of the Emptiness Problem of
mDatalog(τ

{root,leaf}
u) on Unranked Unordered Trees 45

• by ! and

– fulfills the vertical and the horizontal condition,

– the number of nodes visited by the path from the root to x is a multiple of n,

and

– the last n nodes on this path are labeled according to `.

Note that for the subtree T ′ of T induced by the root and the candidate nodes satisfies
the conditions (1) - (3) and (6) - (9).

To obtain the set of candidate nodes, we construct the program P in the following
way.

For accessing the parts d and i of a node-label (d, i) ∈ Σ, it will be convenient to
include into P the rules

labeld(x)← label(d,i)(x) and labeli(x)← label(d,i)(x)

for every letter (d, i) ∈ Σ. Furthermore, for all d, d′ ∈ D and i, i′ ∈ {1, 2,⊥, !} with d 6= d′

and i 6= i′ we add to P the rules

label6=d(x)← labeld′(x) and label6=i(x)← labeli′(x).

For every node we introduce the predicate alt to indicate that the path from the root
to this node starts with a label from D × {2} and continues with an alternation from
D × {1} and D × {2} by the rules

alt(x)← root(x), label2(x)

and
alt(x)← alt(y), child(y, x), labeli(x), labeli′(y)

for i, i′ ∈ {1, 2} with i 6= i′.
To count the multiples of n and to detect a violation or satisfaction of the horizontal

and/or vertical condition, it will be convenient to use predicates Columnj for each j ∈
{1, . . . , n}, such that Columnj(x) indicates that node x corresponds to a tile placed in
column j of the corridor. Thus, we add to P the rules

Column1(x)← root(x)

Column1(x)← child(y, x),Columnn(y),

and for each j ∈ {2, . . . , n} the rule

Columnj(x)← child(y, x),Columnj−1(y).

Furthermore, for each j ∈ {1, . . . , n−1} we add to P the rule

Column6=n(x)← Columnj(x)

and for each j ∈ {2, . . . , n} we add to P the rule

Column 6=1(x)← Columnj(x).

46 Chapter 4. On Hardness

To verify condition (8) it will be convenient to use predicates OkayH and OkayV such
that OkayH(x) (resp., OkayV (x)) indicates that node x satisfies the horizontal (resp., the
vertical) constraints. Thus, for all (dh, d) ∈ H, we add to P the rules

OkayH(x)←Column1(x)

OkayH(x)←Column 6=1(x), child(y, x), labeldh(y), labeld(x).

Similarly, for all (dv, d) ∈ V , we add add to P the rules

OkayV (x)← child(y1, y2), . . . , child(yn−1, yn), child(yn, x),

labeldv(y1), labeld(x).

To detect nodes that correspond to tiles placed in the corridor’s second row, i.e., tiles
that must fit to the given first row f = (f1, . . . , fn) ∈ Dn, we furthermore add for each
j ∈ {1, . . . , n} and each d ∈ D with (fj, d) ∈ V the rule

OkayV (xj)← root(x1), child(x1, x2), . . . , child(xn−1, xn), labeld(xj).

We combine the path conditions above in a additional predicate path by the following
rule

path(x)← alt(x),OkayH(x),OkayV (x), root(x)

path(x)← alt(x),OkayH(x),OkayV (x), child(y, x), path(y)

To detect a violation of the horizontal or vertical constraint in condition (9), it will be con-
venient to use predicates BuggyH and BuggyV , such that BuggyH(x) (resp., BuggyV (x))
indicates that node x violates the horizontal (resp., the vertical) constraints. Thus, for
all (dh, d) ∈ D2 \H, we add to P the rule

BuggyH(x)←Column 6=1(x), child(y, x), labeldh(y), labeld(x)

Similarly, for all (dv, d) ∈ D2 \ V , we add add to P the rule

BuggyV (x)← child(y1, y2), . . . , child(yn−1, yn), child(yn, x),

labeldv(y1), labeld(x)

To detect nodes that correspond to tiles placed in the corridor’s second row, i.e., tiles
that must fit to the given first row f = (f1, . . . , fn) ∈ Dn, we furthermore add for each
j ∈ {1, . . . , n} and each d ∈ D with (fj, d) 6∈ V , the rule

BuggyV (xj)← root(x1), child(x1, x2), . . . , child(xn−1, xn), labeld(xj).

Next, we introduce a predicate that is true for a node if any violation happened

Buggy(x)← BuggyV (x) and Buggy(x)← BuggyH(x)

and a predicate Okay for a node if no violation happened.

Okay(x)← OkayV (x), OkayH(x)

4.1 The Hardness of the Emptiness Problem of
mDatalog(τ

{root,leaf}
u) on Unranked Unordered Trees 47

To verify condition (7) we add the following rule

`(xn)← label`1(x1), child(x1, x2), label`2(x2), . . .

, child(xn−1, xn), label`n(xn), Columnn(xn),

where `j for 1 6 j 6 n denotes the j-th position of the designated last row `. And so
the predicate ` holds for a node if it completes a row where all tiles correspond to the
tiles of the given last row.
To finalize the top-down scan, we introduce the rules to assign a leaf as candidate

Candidate(x)← leaf(x), label⊥(x), child(y, x), path(y),Buggy(x)
Candidate(x)← leaf(x), label!(x), child(y, x), path(y),Okay(x), `(x)

Now, by performing a bottom-up scan of T , we define the set of nodes that are
candidates as follows:

• For each node x of T that is labeled 1, x is a candidate if x has a child that is a
candidate and that is not labeled ⊥.

• For each node x of T that is labeled 2, x is a candidate if

– for each d ∈ D, x has a child that is a candidate and that is labeled d, and

– x has a child that is a candidate and that is not labeled ⊥.

After the bottom-up scan, we can answer the query by yes if and only if the root
node is a candidate.

We mark the root and the attached connected set of candidates as relevant nodes
(performed by a second top-down scan of T) as follows:

• The root of T is relevant if it is a candidate.

• For each non-root node x of T , x is relevant if it is a candidate and its parent is
relevant.

Note that according to this definition, in particular, the following is true:

• Every relevant node of T either is a leaf of T or has a child that is relevant.

• If the root of T is relevant, then it is labeled in D×{2}, and the set of all relevant
nodes of T forms a tree, which we will call TRelevant.

• Relevant nodes with labels ⊥ or ! are leaves.

• Every relevant node with label in D × {1} has a relevant child that is not labeled
⊥.

• Every relevant node with label in D × {2} has, for each d ∈ D, a relevant child
labeled d; and it has a relevant child that is not labeled ⊥.

Thus, the following is true for every Σ-labeled tree T :

48 Chapter 4. On Hardness

(∗): If the root of T is relevant, then
the tree TRelevant satisfies the conditions (1)–(9).

Furthermore, note that if T is good, then TRelevant = T .
We say that a Σ-labeled tree T is almost-good if its root node is relevant and the tree

TRelevant is good, i.e., satisfies the conditions (1)–(9).

Our next goal is to extend P to an mDatalog(τ
{root,leaf}
u,Σ)-program PRelevant which

constructs, in an intensional predicate called Relevant, the set of all relevant nodes. We
start with PRelevant := P .

To describe the candidate nodes, we add to PRelevant the rules

Candidate(x)← label1(x), child(x, y),Candidate(y), label6=⊥(y),

as well as the following rule, where d1, . . . , dm is a list of all elements in D:

Candidate(x)← label2(x), child(x, y1), . . . , child(x, ym),

Candidate(y1), . . . ,Candidate(ym),

labeld1(y1), . . . , labeldm(ym),

child(x, y),Candidate(y), label6=⊥(y).

To describe the relevant nodes, we add to PRelevant the rules

Relevant(x)← root(x),Candidate(x), label2(x)

Relevant(x)← Candidate(x), child(y, x),Relevant(y)

This completes the definition of the monadic datalog program PRelevant.

In summary, for each TPCT-instance I = (D, H, V, n, f, `), we can construct within

polynomial time the alphabet Σ := D×{1, 2,⊥, !} and a Boolean mDatalog(τ
{root,leaf}
u,Σ)-

query Q such that the following is true for every unranked unordered Σ-labeled tree
T :

Q(T) = yes ⇐⇒ the root of T is relevant and
the tree TRelevant satisfies the conditions (1)–(9).

Thus, Q 6= ∅ if, and only if, Player 1 has a winning strategy in the two person corridor
tiling game specified by I. Hence, we have established a polynomial-time reduction from
TPCT to the complement of the emptiness problem for Boolean mDatalog(τ

{root,leaf}
u)

on unranked unordered labeled trees. This completes the proof of Proposition 4.1.

Remark 4.3. Note that in this approach the relations root and leaf are used as anchor
for the scans. By Proposition 3.7, we know there is no possibility to extend this program
by intensional predicates root and leaf that would fulfill this role on the same tree.

4.2 The Hardness of

the Emptiness Problem of mDatalog on

Unranked Unordered Trees in General

In this section we generalize the result of Section 4.1 to unranked unordered labeled trees
in general and we will prove the following proposition.

4.2 The Hardness of the Emptiness Problem of
mDatalog on Unranked Unordered Trees in General 49

Proposition 4.4. The emptiness problem for Boolean mDatalog(τu) on unranked un-
ordered labeled trees is Exptime-hard.

The proof of the proposition needs the term of a connected query and Lemma 4.5 given
hereafter.

Let τ be a schema consisting of relations of arity at most two. Let r be a rule of a
monadic datalog query of schema τ . The undirected rule graph Gr is the graph whose
vertex set is the set of variables of r, and for two nodes x and y from var(r) we have
(x, y) ∈ EGr if a binary atom of the form R(x, y) or R(y, x) for a binary symbol R ∈ τ
occurs in the rule’s body. A rule in monadic datalog is connected if its rule graph Gr is
connected. A query Q = (P , P) is connected if every rule of its program P is connected.
Every connected rule can only speak about local node properties and their relations. An
unconnected rule indicates that a property of the whole tree is tested and the property
does not have to be complied nearby the node that will be evaluated with the head
variable.

Lemma 4.5. For every mDatalog(τ
{root,leaf}
u,Σ)-query Q there exists an mDatalog(τ

{root,leaf}
u,Σ)-

query Qc that is connected and equivalent on labeled unordered trees. There is an algo-
rithm that computes Qc from Q in time polynomial in the size of Q.

Proof. The key idea of the proof is to identify the unconnected parts of the rules. These
parts speak about properties of the whole tree and do not depend on the node associated
with the head variable. We introduce new idb-predicates as switches which hold for every
node of the tree if the tree fulfills the property and for none if not.

Let Q = (P , P) be the input query. The algorithm can proceed rulewise since a query
is connected if every rule of its program is connected. Initially, let P ′ be the empty set.
If the i-th rule ri of P is connected, we add ri to P ′. Otherwise, let Gri consist of n
connected components Ci

0, Ci
1, . . ., Ci

n−1, for an n ∈ N>1. W.l.o.g, let Ci
0 contain the

head variable and for a component Ci
j let atoms(Ci

j) be the set of all (unary and binary)
body atoms which contain variables of Ci

j and occur in ri. Furthermore, let x be the
head variable and headri be the head atom. Now, we choose for every j ∈ N>1 with
1 6 j 6 n− 1 a variable xj that is contained in Ci

j and add the following rules to P ′:

Ci
j(xj)← atoms(Ci

j)

Ci
j(xj)← child(x, xj), C

i
j(x)

Ci
j(xj)← child(xj, x), Ci

j(x)

By these rules we distribute the tree properties tested in the components over all nodes
of the tree and can retrieve these properties in the head variable by the following rule

headri(x)← atoms(Ci
0), Ci

1(x), . . . , Ci
n−1(x).

Finally, the queryQ′ = (P ′, P) is an equivalent query that is connected. This is computed
in polynomial time in the size of the input query and the correctness can be verified
quickly by the semantics of mDatalog over labeled unordered trees.

Note that this lemma and its proof can be easily modified for all introduced schemas
over unordered and ordered trees.

50 Chapter 4. On Hardness

Now we are ready to prove Proposition 4.4.

Proof of Proposition 4.4:

By Proposition 4.1 it suffices to construct a polynomial time reduction from the emptiness
problem for mDatalog(τ

{root,leaf}
u) to the emptiness problem for mDatalog(τu). As we

know by the proof of Proposition 4.1 and Remark 4.3, the knowledge of the root node and
the leaves is essential for the reduction from the TPCT and so an extension of the proof
of Proposition 4.1 is less promising. Similarly, as a reduction from the emptiness problem
of mDatalog(τ

{root,leaf}
u) that constructs a query for the same (potentially relabeled) tree

does not seem to be very promising.

To prove Proposition 4.4, we will modify the input query Q in mDatalog(τ
{root,leaf}
u)

such that the obtained query in mDatalog(τu) accepts exactly the trees labeled by an
extended alphabet Σ̃ which contain a tree that will be accepted by the original query Q.
Since a Σ̃-labeled tree potentially represents more than one Σ-labeled tree, subtrees are
separated by a unique symbol in the node above the root-labeled node. In a first step,
the program PArea marks these subtrees with the Area-predicate and their roots and
leaves by the root and leaf -predicate. The Area-predicate together with the premise of
a connected query ensures that tree properties of a subtree will only affect the evaluation
in this subtree because if one rule leaves one of these subtrees it must speak about at
least one separator node that is not a member of any area.

(a)

α

αi

α1, . . . , αn

(b) (α′, {separator})
(α, {root})

(αi,∅)

(α1, {leaf}), . . . , (αn, {leaf})

A
re
a

(c)

Figure 4.2: (a) A Σ-labeled tree T and (b) its corresponding Σ̃-labeled tree T̃ where α′

is any symbol from Σ. In T̃ the node above the original root is labeled as separator, the
originial root is additionally labeled by root such as the originial leaves are additionally
labeled by leaf , and finally all inner nodes carry the ∅-symbol. (c) All separator nodes
are filled black and all root nodes of subtrees corresponding to a tree depicted in (b) are
filled white. In particular, a subtree in (c) only consists of its root node. The constructed
query will answer on this input yes if and only if at least one of the five depicted subtrees
is accepted by the original query.

Let Σ and Q = (P , P) be an input for the emptiness problem for mDatalog(τ root,leafu).
We choose Σ̃ := Σ× 2{separator,root,leaf}.

Let P1
Area be the first part of the mDatalog(τu,Σ̃)-program PArea consisting of the

4.2 The Hardness of the Emptiness Problem of
mDatalog on Unranked Unordered Trees in General 51

following rules:

labelα(x)← label(α,I)(x)

separator(x)← label(α,{separator})(x)

candroot and leaf(x)← label(α,{root,leaf})(x)

candroot not leaf(x)← label(α,{root})(x)

candleaf not root(x)← label(α,{leaf})(x)

candinner node(x)← label(α,∅)(x)

for all α ∈ Σ and all I ⊆ {separator, root, leaf}. The first rule of P1
Area provides the

original labels for the rewritten rules of the original query later on. Furthermore, we mark
the separator nodes as well as the nodes as candidates for the root node, the leaves, and
the inner nodes. Note if a node carries an inconsistent label like (α, {root, separator}),
it will not longer be considered for a potential subtree.

The mDatalog(τu,Σ̃)-program P2
Area marks potential root nodes as root candidates if

their parent node is a separator:

candroot(x)← separator(y), child(y, x), candroot and leaf(x)

candroot(x)← separator(y), child(y, x), candroot not leaf(x)

The mDatalog(τu,Σ̃)-program P3
Area distributes the root- and leaf -predicates for all sub-

trees consisting of only one node:

root(x)← candroot(x), candroot and leaf(x)

leaf(x)← candroot(x), candroot and leaf(x)

For subtrees with several nodes an assignment in this way is not possible since we have
to check whether on the path between any leaf candidate and its root there exists a
node that is not labeled as inner node or if there is a root candidate located above
the leaf candidate. To do so, we parse the potential subtree twice by the following
mDatalog(τu,Σ̃)-program P4

Area.

leaf inner cand(x)← candinner node(x), child(x, y), candleaf not root(y)

leaf inner cand(x)← candinner node(x), child(x, y), leaf inner cand(y)

root(x)← candroot(x), child(x, y), leaf inner cand(y)

inner node(x)← root(y), candroot not leaf (y), child(y, x), leaf inner cand(x)

inner node(x)← inner node(y), child(y, x), leaf inner cand(x)

leaf(x)← inner node(y), child(y, x), candleaf not root(x)

And P5
Area considers the case that between a leaf and its root there is no inner node:

root(x)← candroot(x), candroot not leaf(x), child(x, y), candleaf not root(y)

leaf(x)← root(y), candroot not leaf(y), child(y, x), candleaf not root(x)

Finally, P6
Area marks every correctly labeled subtree as tree area:

Area(x)← leaf(x)

Area(x)← root(x)

Area(x)← inner node(x)

52 Chapter 4. On Hardness

It is easy to verify that the mDatalog(τu,Σ̃)-program PArea := P1
Area∪P2

Area∪P3
Area∪P4

Area∪
P5
Area ∪ P6

Area is constructed completely independent of the input query Q and therefore
in constant time. Furthermore, it provides the predicates root and leaf for all subtrees
representing a tree of the original input and marks all nodes of these subtrees by Area.
Additionally, it provides the orginal labels through the labelα-predicates.

Now, for the input query Q = (P , P), we assume Q is connected, otherwise we use
Lemma 4.5 to obtain a connected query. From P we obtain the program P ′ by adding
rulewise to every rule r the atoms

{Area(x) |x ∈ var(r)}.

The resulting query Q̃ = (P̃ , P̃) with

P̃ := P ′ ∪ PArea ∪ { P̃ (x)← root(x), P (x) } ∪ { P̃ (x)← child(x, y), P̃ (y) }

is obtained from Q in polynomial time.
Let T be a Σ-labeled tree such that Q(T) = yes. Then we know by construction that

Q̃(T̃) = yes for the Σ̃-labeled tree T̃ obtained from T (cf. Figure 4.2).
Let T̃ be a Σ̃-labeled tree such that Q̃(T̃) = yes. Then at least one with Area marked

subtree of T̃ is accepted by the mDatalog(τu,Σ̃)-query Q̃. Let T̃sub be one of them. In

particular, we know that for the root-labeled node v of T̃sub, we have

P (v) ∈ T ωP̃ (T̃) and P̃ (v) ∈ T ωP̃ (T̃).

Now clearly, the Σ-reduct T of T̃sub is a witness for Q 6= ∅.
Thus, we presented a reduction from the emptiness problem for Boolean

mDatalog(τ
{root,leaf}
u) to the emptiness problem for Boolean mDatalog(τu) within poly-

nomial time such that for the input Σ and Q, as well as for the extended alphabet Σ̃ and
the constructed query Q̃ the following is true.

There exists a Σ-labeled unordered
tree T such that Q(T) = yes.

⇔ There exists a Σ̃-labeled unordered

tree T ′ such that Q̃(T ′) = yes.

By this reduction and Proposition 4.1 we obtain the statement of Proposition 4.4.

4.3 The Hardness of the Emptiness Problem

of mDatalog on Ranked Unordered Trees

The section’s goal is to prove the Exptime-hardness of the emptiness problem of mDatalog
on ranked unordered trees. Just like in the unranked case, the proof will proceed by a
reduction from the two person corridor tiling problem, but in contrast to the proof of
Proposition 4.1 the strategy tree directly will be the accepted tree of our datalog program
and it will not be a hidden subtree. Additionally, the next step which simulates the root
and leaf -predicate is unlikely nicer since the rank gives us the necessary possibilities.

Proposition 4.6. The emptiness problem for Boolean mDatalog(τ
{root,leaf}
u) on ranked

unordered labeled trees is Exptime-hard.

4.3 The Hardness of the Emptiness Problem
of mDatalog on Ranked Unordered Trees 53

Proof. Similar to the proof of Proposition 4.1, our proof proceeds by a polynomial time
reduction from TPCT which is Exptime-complete by Theorem 4.2. The problem is de-
scribed in the mentioned proof on page 41 f. Note that Exptime is closed under comple-
mentation. Thus, for proving Proposition 4.6 it suffices to give a polynomial-time reduc-
tion from TPCT to the complement of the emptiness problem for mDatalog(τ

{root,leaf}
u)

on ranked unordered labeled trees. For a given TPCT-instance I = (D, H, V, n, f, `) we

will construct a ranked finite alphabet Σ and a Boolean mDatalog(τ
{root,leaf}
u,Σ)-query Q,

such that

Player 1 has a winning strategy in the
two person corridor tiling game specified by I

⇐⇒ there exists an ranked unordered Σ-labeled tree T
such that Q(T) = yes (i.e., Q 6= ∅).

Again, we will represent strategies for Player 1 by Σ-labeled trees. The query Q will
describe necessary properties which are met by every tree that describes a winning strat-
egy for Player 1 and we represent a strategy for Player 1 in the same manner. Hence,
we choose the ranked alphabet Σ = (σ, ar) with

σ := D × {1, 2,⊥, !}

and for α = (a, I) ∈ σ with a ∈ D and I ∈ {1, 2,⊥, !} we define

ar(α) =

0 if I = ⊥ or I = !

1 if I = 1

|D| if I = 2

Obviously, we could now take this ranked alphabet and the proof of Proposition 4.1 would
work as well for ranked unordered trees: However, we can perform it in a shorter, more
elegant way. We recall that Player 1 has a winning strategy if and only if there exists
a finite Σ-labeled tree that in the actual context is ranked and satisfies the following
conditions (1)–(9).

(1) The root is labeled by (d, 2) for some d ∈ D. (This indicates that at the beginning
of the game, Player 1 chooses tile d, and Player 2 is next).

(2) Nodes with labels ⊥ or ! are leaves.

(3) Nodes with labels in D × {1} have at least one child. (Such a child describes the
choice made by Player 1 in the next step).

(4) Nodes with labels in D×{2} have at least |D| children – one for each tile type d ∈ D.
(These children represent the potential choices that Player 2 might make in the next
step).

(5) There is no node labeled 1 or 2 such that all of its children are labeled by ⊥. (I.e.,
the game never gets stuck).

(6) Labels from D × {1} and D × {2} alternate on each path from the root to a leaf.
(I.e., both players alternately choose a tile).

54 Chapter 4. On Hardness

(7) If a node x is labeled !, then the number of nodes visited by the path from the root
to x is a multiple of n and the last n nodes on this path are labeled according to `.
(This means that the last n nodes of the path describe a row which has the desired
labeling `.)

(8) At each node x labeled (d, i) with i 6= ⊥, the tile d respects the horizontal and the
vertical constraints.

(9) At each node labeled (d,⊥) for some d ∈ D, the tile d violates the horizontal or the
vertical constraints.

Remember, the conditions (8) and (9) mean the following. We define the depth of a node
as follows: The root has depth 1; and for each node x of depth j, all children of x are of
depth j+1.

(a) A node x labeled with tile d ∈ D respects the horizontal constraints if x

• is either of depth congruent 1 modulo n (and thus corresponds to a position in
the first column of a row),

• or we have (dh, d) ∈ H, where the parent of x is labeled with tile dh ∈ D (i.e.,
x corresponds to a position where tile d is chosen in some column j > 2, and
this tile fits to its horizontal neighbor dh in column j−1).

(b) A node x labeled with a tile d ∈ D respects the vertical constraints if x

• is either of depth j ∈ {1, . . . , n} and we have (fj, d) ∈ H
(i.e., x corresponds to the j-th position in the second row and fits to the j-th
entry fj of the first row f),

• or it is of depth j > n+1 and we have (dv, d) ∈ V , where the ancestor of x at
depth j−n is labeled with tile dv ∈ D
(i.e., x corresponds to a position where tile d is chosen in some row i > 3, and
this tile fits to its vertical neighbor dv in row i−1).

As noted above, Player 1 has a winning strategy if and only if there exists a finite Σ-
labeled tree T that satisfies the conditions (1)–(9). We realize that the conditions (2)
is already granted by the defined ranked alphabet Σ. For condition (3) the alphabet
granted exactly one child and the first part of condition (4) the ranked alphabet Σ
granted exactly |D| children. This implies that the described tree defines exactly one
strategy. In the former definition, the tree can contain more than one strategy.

Now, we start to construct the program P such that finally for the Boolean
mDatalog(τ

{root,leaf}
u,Σ)-query Q = (P , P) and every ranked Σ-labeled tree T we have:

Q(T) = yes ⇐⇒ T fulfills conditions (1)–(9).

For accessing the parts d and i of a node-label (d, i) ∈ Σ, it will be convenient to include
into P the rules

labeld(x)← label(d,i)(x) and labeli(x)← label(d,i)(x)

4.3 The Hardness of the Emptiness Problem
of mDatalog on Ranked Unordered Trees 55

for every letter (d, i) ∈ Σ. Furthermore, for all d, d′ ∈ D and i, i′ ∈ {1, 2,⊥, !} with d 6= d′

and i 6= i′ we add to P the rules

label6=d(x)← labeld′(x) and label6=i(x)← labeli′(x).

For every node we introduce the predicate alt to indicate that the path from the root
to this node starts with a label from D × {2} and continues with and alternation from
D × {1} and D × {2} by the rules

alt(x)← root(x), label2(x)

and
alt(x)← alt(y), child(y, x), labeli(x), labeli′(y)

for i, i′ ∈ {1, 2} with i 6= i′.
To count the multiples of n and to detect a violation or satisfaction of the horizontal

and/or vertical condition, it will be convenient to use predicates Columnj for each j ∈
{1, . . . , n}, such that Columnj(x) indicates that node x corresponds to a tile placed in
column j of the corridor. Thus, we add to P the rules

Column1(x)← root(x)

Column1(x)← child(y, x),Columnn(y),

and for each j ∈ {2, . . . , n} the rule

Columnj(x)← child(y, x),Columnj−1(y).

Furthermore, for each j ∈ {1, . . . , n−1} we add to P the rule

Column6=n(x)← Columnj(x)

and for each j ∈ {2, . . . , n} we add to P the rule

Column 6=1(x)← Columnj(x).

To verify condition (8) it will be convenient to use predicates OkayH and OkayV such
that OkayH(x) (resp., OkayV (x)) indicates that node x satisfies the horizontal (resp., the
vertical) constraints. Thus, for all (dh, d) ∈ H, we add to P the rules

OkayH(x)←Column1(x)

OkayH(x)←Column 6=1(x), child(y, x), labeldh(y), labeld(x).

Similarly, for all (dv, d) ∈ V , we add add to P the rules

OkayV (x)← child(y1, y2), . . . , child(yn−1, yn), child(yn, x),

labeldv(y1), labeld(x).

To detect nodes that correspond to tiles placed in the corridor’s second row, i.e., tiles
that must fit to the given first row f = (f1, . . . , fn) ∈ Dn, we furthermore add for each
j ∈ {1, . . . , n} and each d ∈ D with (fj, d) ∈ V the rule

OkayV (xj)← root(x1), child(x1, x2), . . . , child(xn−1, xn), labeld(xj).

56 Chapter 4. On Hardness

We combine acceptance of the vertical and the horizontal constraint in a node by the
following rule

Okay(x)← OkayH(x),OkayV (x)

To detect a violation of the horizontal or vertical constraint in condition (9), it will be con-
venient to use predicates BuggyH and BuggyV , such that BuggyH(x) (resp., BuggyV (x))
indicates that node x violates the horizontal (resp., the vertical) constraints. Thus, for
all (dh, d) ∈ D2 \H, we add to P the rule

BuggyH(x)←Column 6=1(x), child(y, x), labeldh(y), labeld(x)

Similarly, for all (dv, d) ∈ D2 \ V , we add add to P the rule

BuggyV (x)← child(y1, y2), . . . , child(yn−1, yn), child(yn, x),

labeldv(y1), labeld(x)

To detect nodes that correspond to tiles placed in the corridor’s second row, i.e., tiles
that must fit to the given first row f = (f1, . . . , fn) ∈ Dn, we furthermore add for each
j ∈ {1, . . . , n} and each d ∈ D with (fj, d) 6∈ V , the rule

BuggyV (xj)← root(x1), child(x1, x2), . . . , child(xn−1, xn), labeld(xj).

Next, we introduce a predicate that is true for a node if any violation happened.

Buggy(x)← BuggyV (x) and Buggy(x)← BuggyH(x)

To verify condition (7) we add the following rule

l(xn)← labell1(x1), child(x1, x2), labell2(x2), . . .

, child(xn−1, xn), labelln(xn), Columnn(xn),

where lj for 1 6 j 6 n denotes the j-th position of the designated last row l. And so the
predicate l holds for a node if it completes a row where all tiles correlates to the tiles of
the given last row.

To verify condition (5) we introduce the predicate notall⊥ which is true for a node if
and only if not every child is labeled by ⊥.

notall⊥(x)← child(x, y), label1(y)

notall⊥(x)← child(x, y), label2(y)

notall⊥(x)← child(x, y), label!(y)

Now, by performing a bottom-up scan of T , we define the set of nodes x by the
predicate Scanok such that the subtree defined by all the descendants of x and the node
x as root defines a strategy for Player 1 from this point in the game, which means it
fulfills all the conditions (2)–(9) for this part of the original tree. And after all, if the
root is labeled by (d, 2) for some d ∈ D then we have that the whole tree fulfills all the
conditions (1)–(9).

Scanok(x)← leaf(x), alt(x), label⊥(x),Buggy(x)

Scanok(x)← leaf(x), alt(x), label!(x),Okay(x), l(x)

4.3 The Hardness of the Emptiness Problem
of mDatalog on Ranked Unordered Trees 57

In this way for a leaf x we have Scanok(x) ∈ T ωP (T) for a ranked unordered Σ-labeled
tree if and only if the leaf corresponds to the last step in a winning game, which means
the leaf itself satisfies conditions (1)–(9).

To continue, we proceed with the inner nodes

Scanok(x)← label1(x), alt(x), notall⊥(x),Okay(x), child(x, y1), Scanok(y1)

Scanok(x)← label2(x), alt(x), notall⊥(x),Okay(x), child(x, y1), . . . , child(x, ym),

labeld1(y1), . . . , labeldm(ym), Scanok(y1), . . . , Scanok(ym)

where d1, . . . , dm is a list of all elements in D. In this way ensure the remaining part of
the condition (4) in the second rule.

And finally for the root not we add

P (x)← label2(x), Scanok(x), root(x).

In summary, for each TPCT-instance I = (D, H, V, n, f, `), we can construct within

polynomial time the ranked alphabet Σ and a Boolean mDatalog(τ
{root,leaf}
u,Σ)-query Q

such that the following is true for every ranked unordered Σ-labeled tree T :

Q(T) = yes ⇐⇒ the tree T satisfies the conditions (1)–(9).

Thus, Q 6= ∅ if, and only if, Player 1 has a winning strategy in the two person corridor
tiling game specified by I. Hence, we have established a polynomial-time reduction from
TPCT to the complement of the emptiness problem for Boolean mDatalog(τ

{root,leaf}
u)

on ranked unordered labeled trees. This completes the proof of Proposition 4.6.

Proposition 4.7. The emptiness problem for Boolean mDatalog(τ rootu) on ranked un-
ordered labeled trees is Exptime-hard.

Proof. The proof proceeds by a reduction from the emptiness problem for Boolean
mDatalog(τ

{root,leaf}
u) on ranked unordered labeled trees which is Exptime-hard by

Proposition 4.6.
Let Σ and Q = (P , P) be the input for the original emptiness problem, thus a ranked

alphabet and a Boolean mDatalog(τ
{root,leaf}
u,Σ)-query. It is to decide whether we have

Q = ∅.
By Proposition 3.17 we have an mDatalog(τu,Σ)-query Qleaf = (Pleaf , leaf) con-

structible in linear time in the size of Σ such that leaf(v) ∈ T ωP (T) for every ranked
unordered tree T if and only if v is a leaf of T . Clearly, for the Boolean mDatalog(τ rootu,Σ)-
query Q′ = (Pleaf ∪ P , P) we have Q′ = ∅ if and only if Q = ∅.

Proposition 4.8. The emptiness problem for Boolean mDatalog(τu) on ranked unordered
labeled trees is Exptime-hard.

Proof. The proof proceeds by a reduction from the emptiness problem for Boolean
mDatalog(τ rootu) on ranked unordered labeled trees which is Exptime-hard by Proposi-
tion 4.7.

Let the ranked alphabet Σ and the Boolean mDatalog(τ rootu,Σ)-query Q = (P , P) be
the input for the original emptiness problem. It is to decide whether we have Q = ∅

58 Chapter 4. On Hardness

by using the emptiness problem for Boolean mDatalog(τu) on ranked unordered labeled
trees.

We define for Σ and m = rkmax(Σ) the set RK = {root, 1, . . . ,m} and the following
ranked alphabet Σ̃ = (σ̃, ãr), where σ̃ = Σ×RK and for a symbol α = (a, I) ∈ Σ×RK,
we define ãr(α) = ar(a). Now, for every Σ-labeled tree there is a set of Σ̃-labeled trees
where the second component of the labeling defines the root and an order on all children
relating to their parent nodes. This gives us the possibility to separate the children of a
node.

Let P̃labels be the mDatalog(τu,Σ̃)-program consisting of the rules

labela(x)← label(a,I)(x)

candroot(x)← label(a,root)(x)

1st(x)← label(a,1)(x)

2nd(x)← label(a,2)(x)

...

mth(x)← label(a,m)(x)

for all a ∈ Σ and all I ∈ RK.
Let P̃cons be the mDatalog(τu,Σ̃)-program consisting of the rules of P̃labels ∪ Pleaf (cf.

Proposition 4.7) along with the following rules:

Pcons(x)← leaf(x)

and for every α ∈ Σ̃ and its arity n = ãr(α) we have

Pcons(x)← labelα(x), child(x, y1), 1st(y1), Pcons(y1),

child(x, y2), 2nd(y2), Pcons(y2), . . . , child(x, yn), nth(yn), Pcons(yn)

and finally

root(x)← Pcons(x), candroot(x).

It is easy to verify that for a ranked unordered Σ̃-labeled tree and its node v ∈ T we
have Pcons(v) ∈ T ωP̃cons

(T) if itself and all its descendants have numerated children and
in particular, none of its descendant is labeled as root. This implies that the Boolean
mDatalog(τu,Σ̃)-query Qroot = (P̃cons, root) yields yes on input T only if its root node
and only its root node is labeled by (a, root) for any symbol a ∈ Σ.

Now, we choose the resulting mDatalog(τu,Σ̃)-query Q′ = (P ′, P ′) as follows:

P ′ := P ∪ P̃cons ∪ { P ′(x)← P (x), root(x) }

This construction is done in polynomial time in the size of the input alphabet Σ together
with Q and it remains to verify the following claim:

Q = ∅ if and only if Q′ = ∅.

4.4 The Hardness of the Emptiness Problem
of mDatalog on Ranked Unordered Trees 59

Assume Q 6= ∅ which means there exists a ranked unordered Σ-labeled tree T such
that Q(T) = yes. Clearly, there exists a Σ̃-labeled tree T ′ such that the Σ-reduct 2 of
T ′ is T , the root node of T ′ is labeled as root, all children of any node are enumerated,
T fulfills Q and therefore we have Q′(T ′) = yes.

Assume Q′ 6= ∅ that implies there exists a ranked unordered Σ̃-labeled tree T ′ such
thatQ′(T ′) = yes which implies we have P (rootT

′
) ∈ T ωP ′(T ′) and root(rootT

′
) ∈ T ωP ′(T ′).

The latter ensures that for T ′ the root node and only the root node is labeled correctly
as root. This together with the fact P (rootT

′
) ∈ T ωP ′(T ′) ensures that Q(T) = yes for

the Σ-reduct T of T ′.

Via polynomial-time reduction from the emptiness problem we obtain Exptime-hardness
for the remaining problems on unordered trees.

Corollary 4.9.

(a) The equivalence problem for Boolean mDatalog(τu) on labeled unordered trees is
Exptime-hard.

(b) The query containment problem for Boolean mDatalog(τu) on labeled unordered trees
is Exptime-hard.

Proof. (a) This proof proceeds by reduction from the emptiness problem for Boolean
mDatalog(τu) on labeled unordered trees which is Exptime-hard by Proposition 4.4 in
the unranked case and by Proposition 4.8 in the ranked case. The task is to decide
whether a given Boolean mDatalog(τu,Σ)-query Q is empty or not. Let Q∅

τu be a query
that is unsatisfiable, for expample the query Q∅

τu from Example 2.10. Now, the following
is true

Q ≡ ∅ ⇔ Q ≡ Q∅
τu

Thus, we obtain a polynomial-time reduction from the emptiness problem for Boolean
mDatalog(τu) to the equivalence problem for Boolean mDatalog(τu).

(b) Likewise to (a), this proof proceeds by a reduction from the emptiness problem
for Boolean mDatalog(τu) on labeled unordered trees which is Exptime-hard. The
task by using the query containment problem is to decide whether a given Boolean
mDatalog(τu,Σ)-query Q is empty or not. Let Q∅

τu be a query in monadic datalog of the
schema τu that is unsatisfiable, for expample the query Q∅

τu from Example 2.10. Now,
the following is true.

Q ≡ ∅ ⇔ Q ⊆ Q∅
τu

Thus, we obtain a polynomial-time reduction from the emptiness problem for Boolean
mDatalog(τu) to the query containment problem for Boolean mDatalog(τu).

2The Σ-reduct T is obtained from T ′ by relabeling every node by its own first component of the
label.

60 Chapter 4. On Hardness

4.4 Transferring the Hardness Results

to the Corresponding Problems

of mDatalog on Ordered Trees

The aim of this section is to transfer the results of the previous sections to the emptiness,
the equivalence, and the query containment problem on labeled ordered trees.

Corollary 4.10. The emptiness problem for Boolean mDatalog(τo) on labeled ordered
trees is Exptime-hard.

The proof is via a polynomial-time reduction from the emptiness problem for Boolean
mDatalog(τu) on labeled unordered trees which, according to Proposition 4.4 in the
unranked case and Proposition 4.8 in the ranked case, is Exptime-hard.

For establishing the reduction, we will rewrite monadic datalog programs of schema
τu,Σ into suitable programs of schema τo,Σ (i.e., we will rewrite the child relation by
means of the relations fc and ns). For doing this, we can use a result by Gottlob and
Koch [GK04] which transforms monadic datalog programs into a certain normal form
called tree-marking normal form (TMNF).

Definition 4.11. Let τ be a schema that consists of relation symbols of arity at most
two. A monadic datalog program P of schema τ is in TMNF if each rule of P is of one
of the following forms:3

(i) X(x)← R(x, y), Y (y)

(ii) X(x)← R(y, x), Y (y)

(iii) X(x)← Y (x), Z(x)

where R is a binary predicate from τ , X ∈ idb(P), and the unary predicates Y and Z
are either intensional or belong to τ .

Theorem 4.12 (Gottlob and Koch [GK04, Theorem 5.2]).
For each monadic datalog program P of schema τ childGK , there is an equivalent program in
TMNF of schema τGK which can be computed in time O(||P||).

A detailed analysis shows that the proof given in [GK04] in fact also proves the following:

Corollary 4.13 (implicit in [GK04]). For each monadic datalog program P of schema
τ childo , there is an equivalent program in TMNF of schema τo, which can be computed in
time O(||P||).

We are now ready for the proof of Corollary 4.10.

Proof of Corollary 4.10:
From Proposition 4.4 and Proposition 4.8 we already know the Exptime-hardness of
the emptiness problem for Boolean mDatalog(τu) on labeled unordered trees. Thus, it
suffices to give a polynomial-time reduction from this problem to the emptiness problem
for Boolean mDatalog(τo) on labeled ordered trees.

3Gottlob and Koch [GK04] also allow rules of the form X(x) ← Y (x). Note that such a rule is
equivalent to the rule X(x)← Y (x), Y (x).

4.4 Transferring the Hardness Results to the
Corresponding Problems of mDatalog on Ordered Trees 61

For this, note that τu ⊆ τ childo . Thus, upon input of a query Q in Boolean
mDatalog(τu,Σ), we can apply Corollary 4.13 to compute, in linear time, a Boolean
mDatalog(τo,Σ)-query Q′ such that Q′(T) = Q(T) is true for all ordered trees T . Fur-
thermore, since Q is of schema τu,Σ, we have that Q(T) = Q(T̃) is true for all ordered
trees T and their unordered version T̃ . Thus, we have Q = ∅ if and only if Q′ = ∅. Now
we have established a polynomial-time reduction from the emptiness problem for un-
ordered trees using schema τu,Σ to the emptiness problem for ordered trees using schema
τo,Σ. This completes the proof of Corollary 4.10.

By rewriting monadic datalog programs of schema τu,Σ into suitable programs of schema
τo,Σ analogously to the proof of Corollary 4.10 and Corollary 4.9 we immediately obtain
the following corollary.

Corollary 4.14.

(a) The equivalence problem problem and

(b) the query containment

for Boolean mDatalog(τo) on labeled ordered trees are Exptime-hard.

Chapter 5

The Automata Point of View:

On Membership

In this chapter we consider the upper bound for the several problems in the case of
an omitted descendant-axis. Programs containing a desc-predicate are considered in
Chapter 6. First, we present a matching upper bound for the QCP for monadic datalog
on unranked trees. To preserve clarity of the proof, we start with a sketch to give an idea
of the proof and carry out the full proof step by step later on. After that, we proceed
on by adopting the upper bound for the ranked case and finally, we close this chapter
by extending the results to the membership of the emptiness problem and equivalence
problem.

Theorem 5.1.
The query containment problem for unary mDatalog(τ childGK) on unranked ordered labeled
trees belongs to Exptime.

Sketch. Consider a schema τ ⊆ τ child,descGK,Σ . By using the automata-theoretic approach
[CGKV88], a canonical method for deciding the QCP for unary mDatalog(τ) proceeds
as follows:

(1) Transform the input queries Q1 and Q2 into Boolean queries Q′1 and Q′2 on binary
trees such that Q1 ⊆ Q2 if and only if Q′1 ⊆ Q′2.

(2) Construct tree automata A
yes
1 and Ano2 such that Ayes1 (resp. Ano2) accepts exactly those

trees T with Q′1(T) = yes (resp. Q′2(T) = no).

(3) Construct the product automaton B of Ayes1 and Ano2 such that B accepts exactly those
trees that are accepted by A

yes
1 and by Ano2 . Afterwards, check if the tree language

described by B is empty. Note that this is the case if and only if Q1 ⊆ Q2.

With time polynomial in the size of Q1 and Q2, step (1) can be achieved in a standard
way by appropriately extending the labeling alphabet Σ.

For step (3), if A
yes
1 and Ano2 are nondeterministic bottom-up tree automata, the

construction of B takes time polynomial in the sizes of Ayes1 and Ano2 , and the emptiness
test can be done in time polynomial in the size of B (see e.g. [CDG+08]).

The first idea for tackling step (2) is to use a standard translation of Boolean monadic
datalog queries into monadic second-order (MSO) sentences: By Proposition 3.3 we know

63

64 Chapter 5. On Membership

that any Boolean mDatalog(τΣ)-query Q can be translated in polynomial time into an
equivalent MSO-sentence ϕQ of the form

∀X1 · · · ∀Xn ∃z1 · · · ∃z`
∨m
j=1 γj

where n is the number of intensional predicates of Q’s monadic datalog program P , `
and m are linear in the size of Q. Each γj is a conjunction of at most b atoms or negated
atoms where b is linear in the maximum number of atoms occurring in the body of a rule
of P . Applying the standard method for translating MSO-sentences into tree automata
(cf., e.g., [Tho97]), we can translate the sentence ¬ϕQ into a nondeterministic bottom-up
tree-automaton Ano that accepts a tree T if and only if Q(T) = no. This automaton has

2(m′·cb′) states, where m′ and b′ are linear in m and b, respectively, and c is a constant not

depending on Q or Σ. Thus, Ano can be constructed in time polynomial in |Σ|·2n+`+m′·cb′ .
Using the subset construction, we obtain an automaton Ayes which accepts a tree T

if and only if Q(T) = yes. This automaton has 22(m
′·cb
′
)

states.
Note that, a priori, b′ might be linearly related to the size of Q. Thus, the approach

described so far leads to a 3-fold exponential algorithm that solves the QCP for unary
mDatalog(τ).

In case that τ does not contain the desc-predicate, we obtain a 2-fold exponential
algorithm as follows: At the end of step (1) we rewrite Q′1 and Q′2 into queries that do
not contain the child-predicate and we transform both queries into tree marking normal
form (TMNF). This is a normal form in which bodies of rules consist of at most two
atoms where at least one is unary. By Theorem 4.12 we obtain that these transformations
can be done in time polynomial in the size of Q′1 and Q′2. Note that for TMNF-queries,
the parameters b and b′ are constants (i.e., they do not depend on the query). Thus, the
above description shows that for TMNF-queries the automaton Ano2 can be constructed
in 1-fold exponential time and A

yes
1 can be constructed in 2-fold exponential time.

Finally, the key idea to obtain a 1-fold exponential algorithm solving the QCP is to
use a different construction for the automaton A

yes
1 , which does not use the detour via

an MSO-formula but, instead, takes a detour via a two-way alternating tree automaton
(2ATA): We show that a Boolean TMNF-query can be translated in polynomial time into
a 2ATA Â

yes

1 that accepts a tree T if and only if Q1(T) = yes. It is known that, within
1-fold exponential time, a 2ATA can be transformed into an equivalent nondeterministic
bottom-up tree automaton (this was claimed already in [CGKV88]; detailed proofs of
more general results can be found in [Var98, MFS10]). In summary, this leads to a 1-fold
exponential algorithm for solving the QCP for mDatalog(τ childGK) on ordered trees.

Since τ root,leafu ⊆ τ childGK , Theorem 5.1 immediately implies:

Corollary 5.2. The query containment problem for unary mDatalog(τ root,leafu) on un-
ranked unordered labeled trees belongs to Exptime. y

We proceed as described in the proof sketch given above. Section 5.1 and Section
5.2 contain the transformations of step (1). The construction of the nondeterministic
bottom-up tree automata Ano2 and the automata A

yes
1 of step (2), the latter via an 2ATA,

can be found in Section 5.3 and Section 5.4, respectively. In Section 5.5, we use the
results of the two previous sections and perform the remaining step (3) to obtain the
proof of Theorem 5.1.

5.1 From Unary Queries to Boolean Queries 65

5.1 From Unary Queries to Boolean Queries

Let Σ be an unranked finite alphabet, let T be an unranked ordered Σ-labeled tree, and
let v be a node of T . Considering the extended alphabet Σ′ := Σ× {0, 1}, we represent
the tuple (T, v) by an unranked ordered Σ′-labeled tree T ′v as follows: T ′v is obtained
from T by changing the node labels, so that node v receives label (αv, 1) and all further
nodes u receive labels (αu, 0) where αv and αu denote the labels of the nodes in T .

Lemma 5.3. Every unary mDatalog(τ childGK,Σ)-query Q can be rewritten, in linear time,
into a Boolean mDatalog(τ childGK,Σ′)-query Q′Bool which satisfies the following:

• For every unranked ordered Σ-labeled tree T and every node v of T we have
v ∈ Q(T) ⇐⇒ Q′Bool(T

′
v) = yes.

• For every unranked ordered Σ′-labeled tree T ′ with Q′Bool(T
′) = yes, there exists an

ordered Σ-labeled tree T and a node v of T such that T ′ = T ′v.

Proof. Let Q = (P , P). We will construct Q′Bool as follows:

(i) Q′Bool will simulate the program P of Q.

(ii) In parallel, Q′Bool checks that the input tree contains exactly one node whose label is
of the form (α, 1) for some α ∈ Σ. We construct Q′Bool in such a way that it returns
true if and only if the input tree’s root node receives the intensional predicate C1.

(iii) Finally, the root node receives the query predicate of Q′Bool if and only if it has the
C1-predicate and the query predicate P of the query Q contains a node with label
(α, 1) for some α ∈ Σ.

To this end, we let Q′Bool be specified by a monadic datalog program P ′ and a query
predicate P ′ chosen as follows:

Start with P ′ := ∅. For each letter α ∈ Σ, we add to P ′ the rules

labelα(x)← label(α,0)(x) X0(x)← label(α,0)(x)

labelα(x)← label(α,1)(x) X1(x)← label(α,1)(x)

where X0 and X1 are unary relation symbols that do not occur in P .

Next, add to P ′ all rules of P . Note that this way we ensure that P ′ simulates P ,
and hence (i) is achieved.

To achieve (ii), we use two intensional predicates C0 and C1. We choose rules that
proceed the tree built by the fc and ns relations in a right-to-left and bottom-up manner
and propagates, via the predicates C0 and C1, whether the subtree rooted at the current
node contains exactly none or exactly one node that carry the predicate X1. This is

66 Chapter 5. On Membership

achieved by the following list of rules, which we add to P ′:

C0(x)← leaf(x), ls(x), X0(x)

C1(x)← leaf(x), ls(x), X1(x)

C0(x)← leaf(x),ns(x, y), X0(x), C0(y)

C1(x)← leaf(x),ns(x, y), X0(x), C1(y)

C1(x)← leaf(x),ns(x, y), X1(x), C0(y)

C0(x)← ls(x), fc(x, y), X0(x), C0(y)

C1(x)← ls(x), fc(x, y), X0(x), C1(y)

C1(x)← ls(x), fc(x, y), X1(x), C0(y)

C0(x)← fc(x, y),ns(x, z), X0(x), C0(y), C0(z)

C1(x)← fc(x, y),ns(x, z), X0(x), C0(y), C1(z)

C1(x)← fc(x, y),ns(x, z), X0(x), C1(y), C0(z)

C1(x)← fc(x, y),ns(x, z), X1(x), C0(y), C0(z)

Finally, we achieve (iii) by letting P ′ be a new intensional predicate and by adding to P ′
the rule

P ′(x)← root(x), C1(x), P (y), X1(y).

Clearly, P ′ can be generated in time linear in the size of Q.

As an immediate consequence, we obtain:

Lemma 5.4. Let Σ be a finite alphabet and let Σ′ := Σ×{0, 1}. Within linear time, we
can rewrite given unary mDatalog(τ childGK,Σ)-queries Q1 and Q2 into Boolean mDatalog(τ childGK,Σ′)-
queries Q′1 and Q′2 such that Q1 ⊆ Q2 if and only if Q′1 ⊆ Q′2.

Proof. For each i ∈ {1, 2} let Q′i be the query obtained by Lemma 5.3.
If Q1 6⊆ Q2, there are an ordered Σ-labeled tree T and a node v of T such that

v ∈ Q1(T) and v 6∈ Q2(T). By Lemma 5.3 we obtain thatQ′1(T ′v) = yes andQ′2(T ′v) = no.
Thus, Q′1 6⊆ Q′2.

If otherwise Q′1 6⊆ Q′2, there is an ordered Σ′-labeled tree T ′ such that Q′1(T ′) = yes
and Q′2(T ′) = no. Since Q′1(T ′) = yes, Lemma 5.3 tells us that there are an ordered
Σ-labeled tree T and a node v of T such that T ′ = T ′v. Furthermore, by Lemma 5.3 we
know that v ∈ Q1(T) and v 6∈ Q2(T). Thus, Q1 6⊆ Q2.

Finally, we use Theorem 4.12 to eliminate the child-predicate and to obtain queries in
TMNF.

Proposition 5.5. Let Σ be a finite alphabet and let Σ′ := Σ × {0, 1}. Within lin-
ear time, we can rewrite given unary mDatalog(τ childGK,Σ)-queries Q1 and Q2 into Boolean
mDatalog(τGK,Σ′)-queries Q′1 and Q′2 such that Q1 ⊆ Q2 if and only if Q′1 ⊆ Q′2. Fur-
thermore, the programs of Q′1 and Q′2 are in TMNF.

Proof. We apply Lemma 5.4 to obtain Boolean queries Q′1 and Q′2. Afterwards, we apply
Theorem 4.12 to rewrite the programs of the queries Q′1 and Q′2 into programs in TMNF
of schema τGK,Σ′ .

5.2 From Ordered Unranked Trees to Binary Trees 67

5.2 From Ordered Unranked Trees to Binary Trees

For achieving steps (2) and (3) we use the classical notion of nondeterministic tree
automata which operate on ordered binary Σ-labeled trees. This section’s goal is to fix
notations concerning binary trees and to show that in order to prove Theorem 5.1 it
suffices to find a 1-fold exponential algorithm that solves the QCP for Boolean queries
in TMNF regarding binary trees.

5.2.1 Binary trees

An ordered Σ-labeled binary tree (for short: binary tree) T = (V T , λT , LT , RT) consists
of a finite set V T of nodes, a function λT : V T → Σ assigning to each node v of T a
label λT (v) ∈ Σ, and disjoint sets LT , RT ⊆ V T ×V T such that the graph (V T , ET) with
ET := LT ∪ RT is a rooted directed tree where edges are directed from the root to the
leaves, and each node has at most two children. For a tuple (u, v) ∈ LT (resp., RT), we
say that node v is the left child (resp., the right child) of node u.

We represent such a tree T as a relational structure of domain V T with unary and
binary relations: For each label α ∈ Σ, labelα(x) expresses that x is a node with label
α; lc(x, y) (resp., rc(x, y)) expresses that y is the left (resp., right) child of node x;
root(x) expresses that x is the tree’s root node; has no lc(x) (resp., has no rc(x))
expresses that node x has no left child (resp., no right child), i.e., there is no node y with
(x, y) ∈ LT (resp., RT).

We denote this relational structure representing T by Sb(T), but when no confusion
arises we simply write T instead of Sb(T). This relational structure is of schema

τb,Σ := {lc, rc} ∪ {root,has no lc,has no rc} ∪ {labelα : α ∈ Σ}.

5.2.2 Representing Ordered Unranked Trees by Binary Trees

We use a slight variant of the standard representation (cf., e.g., [Nev02]) of ordered
unranked trees by binary trees. We represent an ordered unranked Σ-labeled tree T by
a binary tree bin(T) as follows: bin(T) has the same vertex set and the same node labels
as T , the left child relation Lbin(T) consists of all tuples (x, y) such that y is the first child
of x in T (i.e., fc(x, y) is true in So(T)), and the right child relation Rbin(T) consists of
all tuples (x, y) such that y is the next sibling of x in T (i.e., ns(x, y) is true in So(T)).

Note that the relational structure Sb(bin(T)) is obtained from the structure So(T) as
follows:

• drop the relations child and desc,

• rename the relations fc, ns, leaf , ls into lc, rc, has no lc, has no rc, and

• insert the root node into the relation has no rc.

Furthermore, note that for a binary tree T ′ there exists an unranked ordered tree T with
T ′ = bin(T) if and only if the root of T ′ has no right child and in this case the tree T is
unique.

68 Chapter 5. On Membership

Example 5.6. Figure 5.1 shows how to obtain the binary tree bin(T) for the given tree
T from Example 2.2.

(a)

v0

v1 v2

v6 v7

v3 v4

v8

v5

(b) v0

v1

v2

v3

v4

v5

v6

v7

v8

lc

rc

rc

rc

rc

lc

rc

lc

Figure 5.1: (a) Let T be the ordered Σ-labeled tree from Example 2.2 for Σ =
{Black,White} where the order of the children of each node is from left to right as
depicted in the illustration. (b) The binary version bin(T) of the ordered tree T .

Lemma 5.7. Every Boolean mDatalog(τGK,Σ)-query Q can be rewritten, in linear time,
into a Boolean mDatalog(τb,Σ)-query Q′ which satisfies the following:

• For every ordered unranked Σ-labeled tree T we have
Q(T) = yes ⇐⇒ Q′(bin(T)) = yes.

• For every ordered Σ-labeled binary tree T ′ with Q′(T ′) = yes there is an ordered
unranked Σ-labeled tree T such that T ′ = bin(T).

Furthermore, if the program of Q is in TMNF, then also the program of Q′ is in TMNF.

Proof. Let Q = (P , P). We specify Q′ by a monadic datalog program P ′ and a query
predicate P ′ as follows: P ′ is obtained from P by renaming in each rule the predicates
fc, ns, leaf , and ls into the predicates lc, rc, has no lc, and has no rc. Furthermore,
we let P ′ be a new intensional predicate and we add to P ′ the rule

P ′(x)← P (x),has no rc(x).

It is straightforward to verify that the resulting Boolean query Q′ has the desired prop-
erties.

By combining this lemma with Proposition 5.5, we obtain the following:

Proposition 5.8. Let Σ be a finite alphabet and let Σ′ := Σ×{0, 1}. Within linear time,
we can rewrite given unary mDatalog(τ childGK,Σ)-queries Q1 and Q2 (querying ordered Σ-
labeled unranked trees) into Boolean mDatalog(τb,Σ′)-queries Q′1 and Q′2 (querying ordered
Σ′-labeled binary trees) such that Q1 ⊆ Q2 if and only if Q′1 ⊆ Q′2. Furthermore, the
programs of Q′1 and Q′2 are in TMNF.

5.3 Nondeterministic Bottom-Up Tree Automata (NBTA) 69

Proof. We first apply Proposition 5.5 to obtain Boolean mDatalog(τGK,Σ′)-queries Q̃1

and Q̃2, whose programs are in TMNF, such that Q1 ⊆ Q2 if and only if Q̃1 ⊆ Q̃2.
Next, we apply Lemma 5.7 to rewrite Q̃1 and Q̃2 into Boolean mDatalog(τb,Σ′)-queries

Q′1 and Q′2. It is straightforward to check that Q̃1 ⊆ Q̃2 if and only if Q′1 ⊆ Q′2:
If Q̃1 6⊆ Q̃2, there is an ordered Σ′-labeled unranked tree T such that Q̃1(T) = yes

and Q̃2(T) = no. By Lemma 5.7 we obtain that Q′1(bin(T)) = yes and Q′2(bin(T)) = no.
Thus, Q′1 6⊆ Q′2.

If otherwise Q′1 6⊆ Q′2 then there is an ordered Σ′-labeled binary tree T ′ such that
Q′1(T ′) = yes and Q′2(T ′) = no. Since Q′1(T ′) = yes, Lemma 5.7 tells us that there is an
ordered Σ′-labeled unranked tree T such that T ′ = bin(T). Furthermore, by Lemma 5.7
we know that Q̃1(T) = yes and Q̃2(T) = no. Thus, Q̃1 6⊆ Q̃2.

Proposition 5.8 implies that in order to prove Theorem 5.1 it suffices to show that
the following problem can be solved in 1-fold exponential time:

Boolean-TMNF-QCP for mDatalog(τb) on binary labeled trees

Input: A finite alphabet Σ and two Boolean mDatalog(τb,Σ)-queries
Q1 and Q2 whose programs are in TMNF.

Question: Is Q1 ⊆ Q2 ?

This finishes step (1) of the agenda described in the proof’s sketch for Theorem 5.1.

5.3 Nondeterministic Bottom-Up Tree Automata

(NBTA)

In this section we recall the classical notion (cf., e.g., [Tho97]) of nondeterministic
bottom-up tree automata and show that a Boolean monadic datalog query Q on bi-
nary trees can be translated, within 1-fold exponential time, into an NBTA AnoQ which
accepts exactly those binary trees T for which Q(T) = no.

A nondeterministic bottom-up tree automaton (NBTA, for short) A is specified by a
tuple (Σ, S,∆, F), where Σ is a finite non-empty alphabet, S is a finite set of states ,
F ⊆ S is the set of accepting states , and ∆ is the transition relation with

∆ ⊆ S# × S# × Σ× S, (5.1)

where S# := S ∪ {#} for a symbol # that does not belong to S.
A run of A on an ordered Σ-labeled binary tree T is a mapping ρ : V T → S such that

the following is true for all nodes v of T where α denotes the label of v in T :

• If v has no left child and no right child, then
(
#,#, α, ρ(v)

)
∈ ∆.

• If v has a left child u` and a right child ur, then
(
ρ(u`), ρ(ur), α, ρ(v)

)
∈ ∆.

• If v has a left child u` but no right child, then
(
ρ(u`),#, α, ρ(v)

)
∈ ∆.

70 Chapter 5. On Membership

• If v has a right child ur but no left child, then
(
#, ρ(ur), α, ρ(v)

)
∈ ∆.

A run ρ of A on T is accepting if ρ(rootT) ∈ F where rootT is the root node of T . The
automaton A accepts the tree T if there exists an accepting run of A on T . A tree T is
rejected if and only if it is not accepted. The tree language L(A) is the set of all ordered
Σ-labeled binary trees T that are accepted by A. A set L of ordered Σ-labeled binary
trees is regular if L = L(A) for some NBTA A.

We define the size ||A|| of an NBTA A to be the length of a reasonable representation
of the tuple (Σ, S,∆, F). In particular, we let ||A|| := |Σ|+ |S|+ |∆|+ |F |. Note that due
to (5.1) we have

||A|| = O(|S|3·|Σ|). (5.2)

It is well-known that the usual automata constructions for NFAs (i.e., nondetermin-
istic finite automata on words) also apply to NBTAs. For formulating the results needed
for our purposes, we introduce the following notation: For finite alphabets Σ and Γ we
let projΣ be the mapping from Σ×Γ to Σ with projΣ(α, β) := α for all (α, β) ∈ Σ×Γ. If
T is a (Σ×Γ)-labeled tree, we write projΣ(T) to denote the Σ-labeled tree obtained from
T by replacing each node label (α, β) by the node label α.

By using standard automata constructions, we obtain:

Proposition 5.9 (Folklore; see e.g. [CDG+08]).

Union: For all NBTAs A1 and A2 over the same alphabet Σ, an NBTA A∪ with L(A∪) =
L(A1) ∪ L(A2) can be constructed in time linear in ||A1|| and ||A2||. Furthermore, if
ki is the number of states of Ai, for i ∈ {1, 2}, then the number of states of A∪ is
k1+k2.

Intersection: For all NBTAs A1 and A2 over the same alphabet Σ, an NBTA A∩ with
L(A∩) = L(A1) ∩ L(A2) can be constructed in time polynomial in ||A1|| and ||A2||.
Furthermore, if ki is the number of states of Ai, for i ∈ {1, 2}, then the number of
states of A∩ is k1·k2.

Complementation: For every NBTA A, an NBTA Ac which accepts exactly those trees
that are rejected by A can be constructed in time polynomial in ||A||·2k, where k
denotes the number of states of A. Furthermore, the number of states of Ac is 2k.

Projection: For every NBTA A over an alphabet of the form Σ×Γ, an NBTA Ap over
alphabet Σ with L(Ap) = { projΣ(T) : T ∈ L(A) } can be constructed in time
polynomial in ||A||. Furthermore, the number of states of Ap is the same as the
number of states of A. y

The emptiness problem for NBTAs is defined as follows:

Emptiness problem for NBTAs

Input: An NBTA A = (Σ, S,∆, F).

Question: Is L(A) = ∅?

Similarly to NFAs, the emptiness problem for NBTAs can be solved efficiently:

5.3 Nondeterministic Bottom-Up Tree Automata (NBTA) 71

Proposition 5.10 (Folklore; see e.g. [CDG+08]). The emptiness problem for NBTAs
can be solved in time polynomial in the size of the input automaton. y

The following result establishes a relation between monadic datalog and NBTAs.

Proposition 5.11. Let Σ be a finite alphabet and let Q be a Boolean mDatalog(τb,Σ)-
query whose program is in TMNF. Within time polynomial in |Σ|·2||Q|| we can construct
an NBTA Ano with 2O(||Q||) states, which accepts exactly those ordered Σ-labeled binary
trees T where Q(T) = no.

Proof. Our proof proceeds as described in the proof sketch given in the beginning of
this chapter. Let P be the program of Q, let X1 be the query predicate of Q, and let
X1, . . . , Xn be the list of all intensional predicates of P .

Step 1: Transform Q into an equivalent monadic second-order sentence ϕQ:
We follow the standard construction (cf., [GK04, Proposition 3.3]) which uses the fact
that the result T ωP (C) of a monadic datalog program P on a set C of atomic facts is the
fixed-point of the immediate consequence operator TP that contains C:

For any rule r of P of the form hr ← br1, . . . , b
r
m, define the formula

ψr := ∀z1 · · · ∀z`
(

(br1 ∧ · · · ∧ brm)→ hr
)
,

where z1, . . . , z` is the list of variables appearing in the rule r. As P is in TMNF, we
know that m = 2 and ` 6 2. W.l.o.g. we can assume that all rules use variables in
{z1, z2}.

Let SAT(X1, . . . , Xn) be the conjunction of the formulas ψr for all rules r in P , and
let

ϕQ := ∀X1 · · · ∀Xn

(
SAT(X1, . . . , Xn)→ X1(root)

)
.

It is straightforward to verify (see [GK04, Proposition 3.3]) that for any ordered Σ-
labeled binary tree T we have Q(T) = yes if and only if the tree T , expanded by a
constant root interpreted by the tree’s root node, satisfies the MSO-sentence ϕQ.

Clearly, ϕQ is equivalent to ∀X1 · · · ∀Xn

(
X1(root) ∨ ¬SAT(X1, . . . , Xn)

)
. Further-

more, ¬SAT is equivalent to
∨
r∈P ¬ψr and ¬ψr is equivalent to the formula ∃z1∃z2 (br1∧

br2 ∧ ¬hr), for a TMNF-rule r of the form hr ← br1, b
r
2. Combined, we obtain that ϕQ is

equivalent to the formula

ϕ′Q := ∀X1 · · · ∀Xn ∃z1∃z2

(
X1(root) ∨

∨
r∈P

(
br1 ∧ br2 ∧ ¬hr

))
.

Clearly, for any tree T we have Q(T) = no if and only if T satisfies the formula ¬ϕ′Q,
which is equivalent to the formula

ϕ̃Q := ∃X1 · · · ∃Xn ¬ ∃z1∃z2

(
X1(root) ∨

∨
r∈P

(
br1 ∧ br2 ∧ ¬hr

))
.

Step 2: Transform ϕ̃Q into an equivalent NBTA:
We proceed in the same way as in well-known textbook proofs for Büchi’s Theorem,
respectively, the Theorem by Doner [Don70] as well as Thatcher and Wright [TW68]

72 Chapter 5. On Membership

stating the equivalence of MSO-definable languages and regular languages of finite words
and trees, respectively (cf. e.g. [Tho97, FG06]):

Based on the formula ϕ̃Q we give the construction of the desired NBTA Ano along
the composition of the formula.

For the induction base, we have to handle quantifier-free formulas occurring in ϕ̃Q.
For this, we consider trees over alphabet Σn := Σ × Γ × Γ′ for Γ := {0, 1}n and Γ′ :=
{0, 1}2. If a node v has the label (α, γ, γ′), for γ = γ1 · · · γn and γ′ = γ′1γ

′
2, we interpret

this as the information that v has Σ-label α, belongs to the relation Xi if and only if
γi = 1, and is the value of the variable zj if and only if γ′j = 1 (for i ∈ {1, . . . , n}
and j ∈ {1, 2}). We will refer to γ′j (resp., γi and α) as the zj-component (resp., the
Xi-component and the Σ-component) of the label.

To check that the values in the zj-components of a labeling indeed represent a vari-
able assignment, we build for each j ∈ {1, 2} an NBTA Azj that accepts exactly those
Σn-labeled trees where exactly one node carries a label whose zj-component is 1. For
example, the NBTA Az2 can be chosen as (Σn, S,∆, F) with S = {s0, s1}, F = {s1}, and
∆ consisting of the transitions

(#,#, β, sν), (s0, s0, β, sν), (s0,#, β, sν), (#, s0, β, sν)

for all ν ∈ {0, 1} and all labels β ∈ Σ× Γ× {0, 1} × {ν}, and the transitions

(s1,#, β, s1), (#, s1, β, s1), (s1, s0, β, s1), (s0, s1, β, s1)

for all labels β ∈ Σ × Γ × {0, 1} × {0}. This automaton performs a bottom-up scan of
the tree and remains in state s0 until it encounters a node whose label has a 1 in its
z2-component. The latter induces a change into state s1. The automaton gets stuck (i.e.,
no run exists) if it is in state s1 and encounters another node whose label has a 1 in its
z2-component.

To check whether an atomic or negated atomic formula χ (occurring in ϕ̃Q) is satisfied
by an input tree, we build an NBTA Aχ that accepts an input tree T if and only if T
contains for each variable zj occurring in χ a node vj whose zj-component is 1 such
that the nodes vj satisfy χ. If χ involves a unary atom, this can be achieved in a
straightforward way using an automaton with 2 states. If χ is a binary atom, this is not
difficult either. For example, if χ = lc(z2, z1), the NBTA Aχ performs a bottom-up scan
of the tree and remains in state s0 until it encounters a node v1 whose z1-component
is labeled 1. The latter induces a change into state s1. From there on, the automaton
either gets stuck or it sees that v1 is the left child of a node v2 whose z2-component is
one. The latter induces a change into an accepting state s2 which is propagated to the
root.

Note that each of the NBTAs constructed so far has at most three states and, ac-
cording to (5.2), has size O(33·|Σn|) = O(|Σn|).

The formula ϕ̃Q contains a conjunction ζr of the form (br1 ∧ br2 ∧ ¬hr) for each rule
r ∈ P . We already have constructed NBTAs Abr1 , Abr2 , A¬hr , Az1 , and Az2 , each of which has
at most three states and size O(|Σn|). By using the intersection construction mentioned
in Proposition 5.9, we can build the intersection automaton Aζr of these five NBTAs.
This can be achieved in time polynomial in O(|Σn|) and the resulting automaton has at
most 35 states and thus, due to (5.2), has size O(|Σn|).

The quantifier-free part of the formula ϕ̃Q is the disjunction of the formula X1(root)
and the formulas ζr, for all r ∈ P . We already have available NBTAs AX1(root) and Aζr for

5.4 Two-Way Alternating Tree Automata (2ATA) 73

each r ∈ P . Using the union construction mentioned in Proposition 5.9, we can build
the union automaton Aqf of these automata. This can be achieved in time polynomial
in O(|P|·|Σn|) and the resulting automaton has at most (|P|+1)·35 = O(|P|) states and
thus, due to (5.2), has size O(|P|3·|Σn|).

Note that Aqf is an NBTA over the alphabet Σ×Γ×Γ′. We now use the projection
construction mentioned in Proposition 5.9 to build an NBTA A∃z1∃z2 accepting the set
of all trees of the form projΣ×Γ(T) for T accepted by Aqf. The resulting automaton has
O(|P|) states as Aqf, has size O(|P|3·|Σ×Γ|) = O(|P|3·|Σ|·2n), and can be constructed in
time polynomial in O(|P|3·|Σn|).

Next, we use the complementation construction mentioned in Proposition 5.9 to build
an NBTA A¬ which accepts exactly those trees that are rejected by A∃z1∃z2 . The automa-
ton A¬ has 2O(|P|) states and thus, due to (5.2), size O(2O(|P|)·|Σ×Γ|) = O(2O(|P|)·|Σ|·2n).
It can be constructed in time polynomial in the size of A∃z1∃z2 and 2O(|P|), i.e., polynomial
in 2O(|P|)·|P|3·|Σ|·2n

Finally, we use the projection construction mentioned in Proposition 5.9 to build
an NBTA Ano accepting the set of all trees of the form projΣ(T) for T accepted by
A¬. The resulting automaton has the same number of states as A¬, i.e., 2O(|P|) and can
be constructed in time polynomial in the size of A¬, i.e., polynomial in 2O(|P|)·|Σ|·2n =
|Σ|·2n+O(|P|) = |Σ|·2O(||Q||).

It is straightforward to verify that the NBTA Ano accepts exactly those Σ-labeled
trees T that satisfy the formula ϕ̃Q, i.e., those trees T with Q(T) = no. The entire
construction of the automaton Ano took time polynomial in |Σ|·2||Q||. This completes the
proof of Proposition 5.11.

This concludes the construction of the automaton Ano of step (2) of the agenda
presented in the proof’s sketch above. By applying to Ano the complementation con-
struction mentioned in Proposition 5.9, we obtain an NBTA Ayes which accepts exactly
the Σ-labeled trees T with Q(T) = yes. However, the number of states of Ano is 2O(||Q||),

and hence the construction of Ayes takes time polynomial in ||Ano||·22O(||Q||)
, which is 2-fold

exponential in the size of the query Q.

To construct an NBTA equivalent to Ayes within 1-fold exponential time, we use a
different automata model, which is described in the next section.

5.4 Two-Way Alternating Tree Automata (2ATA)

In this section we recall the notion (cf., e.g., [CGKV88, Var98, MFS10]) of two-way
alternating tree automata (2ATA) and show that a Boolean monadic datalog query Q
on binary trees can be translated, within polynomial time, into a 2ATA Â

yes
which

accepts exactly those binary trees T for which Q(T) = yes. The following definitions
concerning 2ATAs are basically taken from [CGKV88, Var98].

For navigating in a binary tree T we consider the operations up, stay, left, right. They
are viewed as functions from V T

⊥ to V T
⊥ where V T

⊥ = V T ∪ {⊥} for the node set V T of T
and a symbol ⊥ not in V T . Each of the operations in Op := {up, stay, left, right} maps ⊥
to ⊥. Furthermore, for each node v of T , we have stay(v) = v while up(v) is the parent

74 Chapter 5. On Membership

of v in T (resp. ⊥ if v is the root of T), left(v) is the left child of v in T (resp. ⊥ if v has
no left child), and right(v) is the right child of v in T (resp. ⊥ if v has no right child).

A two-way alternating tree automaton (2ATA, for short) Â is specified by a tuple
(Σ, S, s0, δ, F), where

• Σ is a finite non-empty alphabet,

• S is a finite set of states ,

• s0 ∈ S is the initial state,

• F ⊆ S is the set of accepting states , and

• δ : S × Σ→ B+(S×Op) is the transition function.

As input, Â receives a Σ-labeled binary tree T . It starts in the initial state s0 at T ’s root
node. Whenever Â is in a state s ∈ S and currently visits a node v of T of label α ∈ Σ,
it can either choose to stop its computation or to perform a further step in which the
formula θ := δ(s, α) determines what is done next: The automaton nondeterministically
guesses a satisfying assignment for θ, i.e., a set { (s1, o1), . . . , (sk, ok) } (for some k > 1)
which satisfies θ. Then, it starts k independent copies of Â, namely a copy which starts
in state si at node oi(v), for each i ∈ {1, . . . , k}. In case that oi(v) = ⊥, the according
automaton stops. The acceptance condition demands that for every situation (s, v) in
which the automaton stops, s must be an accepting state.

This can be formalised by the following notion of a run R that is a labeled tree where
the label (s, o, v) of a node w of R denotes a transition into state s via the operation o
onto node v.

A run of Â on a Σ-labeled binary tree T is a finite unordered unranked Γ-labeled tree
R, for Γ := S ×Op× V T

⊥ which satisfies the following conditions:

(1) The root of R is labeled with (s0, stay, rootT), where s0 is the initial state and rootT

is the root of T .

(2) If w is a node of R that is labeled (s, o, v) with v = ⊥, then w is a leaf of R.

(3) If w is a node of R that is labeled (s, o, v) such that v is a node of T and w′ is a
child of w in R that is labeled (s′, o′, v′), then v′ = o′(v).

(4) If w is a node of R that is labeled (s, o, v) such that v is a node of T labeled α ∈ Σ
and w has exactly k children labeled (s1, o1, v1), . . . , (sk, ok, vk), then the formula
θ := δ(s, α) is satisfied by the set { (s1, o1), . . . , (sk, ok) }.

A run R of Â on T is accepting if every leaf of R is labeled with an accepting state,
i.e.: whenever (s, o, v) is the label of a leaf of R, we have s ∈ F . The automaton Â

accepts the tree T if there exists an accepting run of Â on T . The tree language L(Â) is
the set of all ordered Σ-labeled binary trees T that are accepted by Â.

The size ||Â|| of a 2ATA Â is defined as the length of a reasonable representation of
the tuple (Σ, S, S0, δ, F).

Example 5.12. Figure 5.2 illustrates the operation method of a 2ATA. y

5.4 Two-Way Alternating Tree Automata (2ATA) 75

(a) (b) (c)

v0

v1α

v3v2

(q, O, v1)

(q1, up, v0) (q2, stay, v1)

(q, right, v3)

(q, O, v1)

(q3, left, v2)

Figure 5.2: Let (a) be a part of an input tree T of a 2ATA A. We assume the actual posi-
tion during a run of A on T is labeled with (q, O, v1) for O ∈ {left, right, up, stay}, meaning
the automaton has reached node v1, its state is q. It reads in the next step the label α
at node v1. We assume that δ(q, α) = (((q1, up) ∧ (q, right) ∧ (q2, stay)) ∨ (q3, left)).
Now, there are two possibilities to proceed the next step. (b) The first is to extend the
run tree by three new children on the actual position. For the first child a new instance
of the automaton starts in state q1 at v0 ∈ T since the automaton moves up on the input
tree and therefore the label of the first child is (q1, up, v0). A second instance moves to
the right child v3 of v1 an continues the run from the (q, right, v3)-labeled node in state q,
whereas the last instance stays on the input tree at node v1, switches to q2 and continues
the run starting from the third child. (c) The second possibility is to continue the run
with one new child and an instance reading in state q3 the label of v2 ∈ T that is the left
child of v1.

It is known that 2ATAs accept exactly the same tree languages as NBTAs, i.e., the regular
tree languages. Furthermore, there is a 1-fold exponential algorithm that translates a
2ATA into an equivalent NBTA:

Theorem 5.13 (Cosmadakis et al. [CGKV88]). For every 2ATA Â, an NBTA A with
L(A) = L(Â) can be constructed within time 1-fold exponential in ||Â||. y

To be precise, [CGKV88] formulated the theorem not in terms of the running time
but only in terms of the size of the generated NBTA. A proof sketch of the theorem
can be found in [CGKV88]; detailed proofs of more general results can be found in
[Var98, MFS10].

Our next goal is to construct a polynomial-time algorithm which translates a Boolean
monadic datalog query Q in TMNF into an equivalent 2ATA Â which accepts exactly
those trees T with Q(T) = yes.

To construct such a 2ATA, we will exploit the striking similarity between runs of
2ATAs and proof trees characterizing the semantics of datalog. For constructing the
desired 2ATA, the following observation will be very convenient:

Let Q be a Boolean mDatalog(τb,Σ)-query whose program is in TMNF. Let P and
P be the program and the query predicate of Q, respectively. For a Σ-labeled binary
tree T with root node rootT we have Q(T) = yes if and only if there exists a proof tree
PT for the fact P (rootT) such that the leaves of the proof tree are labeled with facts in
atoms(Sb(T)). Note that for the particular case of TMNF-programs such a proof tree
PT has the following properties:

76 Chapter 5. On Membership

• The root of PT is labeled with the atomic fact P (rootT).

• Each leaf of PT is labeled with an atomic fact of one of the following forms:

– labelα(v) where α ∈ Σ and v is a node of T labeled α,

– root(rootT), where rootT is the root of T ,

– has no lc(v) (resp., has no rc(v)), where v is a node of T that has no left
child (resp., has no right child)

– lc(v1, v2) (resp., rc(v1, v2)), where v2 is the left (resp., right) child of v1 in T .

• Each non-leaf node of PT is labeled with a fact X(v) where v is a node of T and
X ∈ idb(P).

• Every non-leaf node w of PT has exactly two children w1 and w2. If w is labeled
by an atomic fact X(v), then P contains a rule r whose head is of the form X(x)
and the following is true:

(a) If the body of r is of the form Y (x), Z(x), then w1 is labeled Y (v) and w2 is
labeled Z(v).

(b) If the body of r is of the form lc(x, y), Y (y), then node v of T has a left child
v′ and in PT the nodes w1 and w2 are labeled with the facts lc(v, v′) and
Y (v′).

Accordingly, if the body of r is of the form rc(x, y), Y (y), then node v of T
has a right child v′ and in PT the nodes w1 and w2 are labeled with the facts
rc(v, v′) and Y (v′).

(c) If the body of r is of the form lc(y, x), Y (y), then node v of T is the left child
of its parent v′ and in PT the nodes w1 and w2 are labeled with the facts
lc(v′, v) and Y (v′).

Accordingly, if the body of r is of the form rc(y, x), Y (y), then node v of T
is the right child of its parent v′, and in PT the nodes w1 and w2 are labeled
with the facts rc(v′, v) and Y (v′).

We will build a 2ATA for which an accepting run R on an input tree T precisely corre-
sponds to a proof tree PT for the fact P (rootT). To better cope with technical details
in the automaton construction, we will consider automata which receive input trees that
are labeled by the extended alphabet Σ̂, with

Σ̂ := Σ× 2{ root, has no lc, has no rc, is lc, is rc }.

With every Σ-labeled binary tree T we associate a Σ̂-labeled binary tree T̂ that is ob-
tained from T by replacing the label of each node v labeled α ∈ Σ with the label (α, I)
where I ⊆ { root, has no lc, has no rc, is lc, is rc } is given as follows:

root ∈ I ⇐⇒ v is the root of T ,

has no lc ∈ I ⇐⇒ v is a node of T that has no left child,

has no rc ∈ I ⇐⇒ v is a node of T that has no right child,

is lc ∈ I ⇐⇒ v is the left child of its parent v′ in T ,

is rc ∈ I ⇐⇒ v is the right child of its parent v′ in T .

5.4 Two-Way Alternating Tree Automata (2ATA) 77

We are now ready for this section’s key result:

Proposition 5.14. Let Σ be a finite alphabet and let Q be a Boolean mDatalog(τb,Σ)-
query whose program is in TMNF. Within time polynomial in the size of Q and Σ, we can
construct a 2ATA Â such that for all Σ-labeled binary trees T , the automaton Â accepts
the tree T̂ if, and only if, Q(T) = yes.

Proof. Let P and P be the program and the query predicate of Q. We construct the
automaton Â in such a way that a proof tree PT for the fact P (rootT) can easily be
turned into an accepting run of Â on T̂ (and vice versa).

The state set S of Â = (Σ̂, S, s0, δ, F) is chosen as the set of all intensional predicates
of P , all unary relation symbols in τb,Σ, and additionally, we use states called is lc, is rc,
accept, and reject. Thus,

S = {accept, reject} ∪ idb(P) ∪
{labelα : α ∈ Σ} ∪ { root, has no lc, has no rc, is lc, is rc }.

The query predicate P is the initial state and accept is the only accepting state. I.e.,
s0 := P and F := {accept}.
The transition function δ : S × Σ̂→ B+(S×Op) is chosen as follows:
Let β = (α, I) be an arbitrary letter in Σ̂. We let

δ(accept, β) := (accept, stay) and δ(reject, β) := (reject, stay).

For every α′ ∈ Σ we let

δ(labelα′ , β) :=

{
(accept, stay) if α′ = α

(reject, stay) otherwise.

For every X ∈ { root, has no lc, has no rc, is lc, is rc } we let

δ(X, β) :=

{
(accept, stay) if X ∈ I
(reject, stay) otherwise.

For the case that X ∈ idb(P), the formula δ(X, β) is specified as follows. We let PX be
the set of all rules of P whose head is of the form X(x) and we choose

δ(X, β) :=
∨
r∈PX

θr,

where the formula θr ∈ B+(S×Op) is chosen as indicated in the following table:

rule r of the form conjunction θr

X(x)← Y (x), Z(x) (Y, stay) ∧ (Z, stay)

X(x)← lc(x, y), Y (y) (is lc, left) ∧ (Y, left)

X(x)← rc(x, y), Y (y) (is rc, right) ∧ (Y, right)

X(x)← lc(y, x), Y (y) (is lc, stay) ∧ (Y, up)

X(x)← rc(y, x), Y (y) (is rc, stay) ∧ (Y, up)

78 Chapter 5. On Membership

Clearly, this automaton Â can be constructed in time polynomial in the size of Σ and
Q. Indeed, it remains to verify that for any Σ-labeled binary tree T we have Q(T) = yes
⇐⇒ Â accepts T̂ .

For the “=⇒”-direction, let PT be a proof tree for the the fact P (rootT). We can
transform PT into a run R of Â on T̂ as follows: Assign the new label (P, stay, rootT) to
the root node of PT. For each non-leaf node w of PT note that w is originally labeled
by an atomic fact X(v) with X ∈ idb(P) and w has exactly two children w1, w2 in PT.

(a) If w1 and w2 are labeled Y (v) and Z(v), respectively, then assign to node w1 the
new label (Y, stay, v) and to node w2 the new label (Z, stay, v).

(b) If w1 and w2 are labeled lc(v, v′) and Y (v′), respectively, then assign to node w1 the
new label (is lc, left, v′) and to node w2 the new label (Y, left, v′). Furthermore, we
add to w1 a new child labeled (accept, stay, v).

We proceed analogously in the case that w1, w2 are labeled rc(v, v′), Y (v′).

(c) If w1 and w2 are labeled lc(v′, v) and Y (v′), respectively, then assign to w1 the new
label (is lc, stay, v), and to node w2 the new label (Y, up, v′). Furthermore, we add
to w1 a new child labeled (accept, stay, v).

We proceed analogously in the case that w1, w2 are labeled rc(v′, v), Y (v′).

Finally, for each leaf w of PT that was originally labeled X(v) for an
X ∈ {root,has no lc,has no rc} ∪ {labelα : α ∈ Σ}, we add a new child w1 that
receives the new label (accept, stay, v).

It is straightforward to verify that the obtained tree R is an accepting run of Â on T̂ .

For the direction “⇐=”, let R be an accepting run of Â on T̂ . Along the definition
of δ it is straightforward to see that we can assume w.l.o.g. that each node of R has at
most two children.

The run R can be turned into a proof tree PT for the fact P (rootT) (i.e., witnessing
that Q(T) = yes) as follows: Consider each node w of R, and let (s, o, v) be the label of
node w.

Since R is an accepting run and accept is the only accepting state, we know by
the construction of δ that s 6= reject and that v 6= ⊥ if s 6= accept. In case that
s ∈ τb,Σ ∪ idb(P), we assign to w the new label “s(v)”.

In the case that s = labelα′ for an α′ ∈ Σ, we know by the construction of δ and the
fact that R is an accepting run that node w has a unique child w1 in R and this node
w1 is labeled with (accept, stay, v). Furthermore, we know by the construction of δ that
α′ = α where β = (α, I) is the label of node v in T̂ . Thus, the statement “labelα′(v)” is
true for node v in T . Hence, we delete the node w1 (and all nodes in the subtree rooted
at w1).

In the case that s ∈ {root,has no lc,has no rc, is lc, is rc}, we know by the con-
struction of δ and the fact that R is an accepting run that node w has a unique child
w1 in R and this node w1 is labeled with (accept, stay, v). Furthermore, we know by
the construction of δ that s ∈ I, where β = (α, I) is the label of node v in T̂ . Thus, the
statement “s(v)” is true for node v in T . Hence, we delete the node w1 (and all nodes in
the subtree rooted at w1).

5.5 Finishing the Proof of Theorem 5.1 79

In case that s ∈ {root,has no lc,has no rc}, the node w then is a leaf labeled with
an atomic fact “s(v)” that is true in T .
In case that s = is lc, the statement “is lc(v)” is a true statement, but it is not suitable
as label in a proof tree since the predicate is lc does not belong to the schema τb,Σ.
Therefore, we replace the label “is lc(v)” by the label “lc(v′, v)” where v′ is the parent
of v in T . We proceed analogously in case that s = is rc.

It is straightforward to verify that the obtained tree PT is a proof tree for P (rootT).
This completes the proof of Proposition 5.14.

Finally, we are ready for establishing the second part of step (2) of the agenda de-
scribed in the proof’s sketch for Theorem 5.1.

Proposition 5.15. Let Σ be a finite alphabet and let Q be a Boolean mDatalog(τb,Σ)-
query whose program is in TMNF. Within time 1-fold exponential in the size of Q and
Σ, we can construct an NBTA Ayes, which accepts exactly those ordered Σ-labeled binary
trees T where Q(T) = yes.

Proof. First, we use Proposition 5.14 to construct, within polynomial time, a 2ATA Â

such that for all ordered binary Σ-labeled trees T , the automaton Â accepts the Σ̂-labeled
tree T̂ if and only if Q(T) = yes.

Now, we use Theorem 5.13 to construct, within time 1-fold exponential in ||Â|| (i.e.,
1-fold exponential in the size of Q and Σ), an NBTA A with L(A) = L(Â).

Note that A operates on Σ̂-labeled trees, while we are looking for an NBTA Ayes

operating on Σ-labeled trees. To obtain such an automaton, we proceed as follows:
Let B be an NBTA of alphabet Σ̂ which accepts exactly those Σ̂-labeled trees T ′ for

which there exists a Σ-labeled tree T such that T ′ = T̂ . Building such an NBTA is
straightforward: the automaton just needs to check that the Σ̂-labels correctly identify
the root node, the nodes that are left (right) children, and the nodes that have no left
(right) child.

Using the intersection construction mentioned in Proposition 5.9, we can build the
intersection automaton A′ of B and A. Hence, A′ accepts a Σ̂-labeled tree T ′ if and only
if there exists a Σ-labeled tree T such that T ′ = T̂ and T̂ is accepted by A.

Finally, we use the projection construction described in Proposition 5.9 to obtain an
NBTA Ayes over alphabet Σ such that L(Ayes) = {projΣ(T ′) : T ′ ∈ L(A′)}. Thus,

Ayes accepts a tree T ⇐⇒ T̂ is accepted by A

⇐⇒ Q(T) = yes.

As the intersection and projection constructions can be performed within time poly-
nomial in the size of its input NBTAs, the entire construction of Ayes takes time at most
1-fold exponential in the size of Q and Σ.

5.5 Finishing the Proof of Theorem 5.1

As noted on page 69 we show the following proposition which leads to a short proof of
the original query containment problem in Theorem 5.1.

80 Chapter 5. On Membership

Proposition 5.16. The Boolean-TMNF-QCP for mDatalog(τb) on binary labeled trees
belongs to Exptime.

Proof. Let Σ and the Boolean mDatalog(τb,Σ)-queries Q1 and Q2 in TMNF be the input
of the Boolean-TMNF-QCP.

By using Proposition 5.15, we can construct, within time 1-fold exponential in the
size of Q1 and Σ, an NBTA A

yes
1 which accepts exactly those Σ-labeled binary trees T

where Q1(T) = yes.
By using Proposition 5.11, we can construct, within time 1-fold exponential in the

size of Q2 and Σ, an NBTA Ano2 which accepts exactly those Σ-labeled binary trees T
where Q2(T) = no.

Now, we use the intersection construction mentioned in Proposition 5.9 to build the
intersection automaton B of Ayes1 and Ano2 . Clearly, B accepts a Σ-labeled binary tree T if
and only if Q1(T) = yes and Q2(T) = no.

Finally, we use the emptiness test provided by Proposition 5.10 to check whether
L(B) is the empty language. Clearly, this is the case if and only if Q1 ⊆ Q2.

Since the intersection construction and the emptiness test take only time polynomial
in the size of the input automata, the entire algorithm for checking whether Q1 ⊆ Q2

runs in time 1-fold exponential in the size of Σ, Q1, and Q2.

Proof of Theorem 5.1:
Our goal is to show that the QCP for unary mDatalog(τ childGK) on unranked ordered
labeled trees belongs to Exptime.

Let Σ, Q1, and Q2 be an input for the QCP. Let Σ′ := Σ×{0, 1}. By using Proposi-
tion 5.8 we obtain, within linear time, Boolean mDatalog(τb,Σ′)-queries Q′1 and Q′2 such
that Q1 ⊆ Q2 if and only if Q′1 ⊆ Q′2 and the programs of Q′1 and Q′2 are in TMNF.

It remains to decide the Boolean-TMNF-QCP on input Σ′, Q′1, and Q′2 in 1-fold
exponential time which can be done by Proposition 5.16.

Thus, the algorithm for checking whether Q1 ⊆ Q2 runs in time 1-fold exponential in
the size of Σ, Q1, and Q2. This completes the proof of Theorem 5.1

5.6 Consequences of Theorem 5.1

This subsection’s goal is to transfer the result of Theorem 5.1 to the case of ranked trees.
In particular, we show the following.

Corollary 5.17.

(a) The query containment problem for unary mDatalog(τ childGK) on ranked ordered labeled
trees belongs to Exptime.

(b) The query containment problem for unary mDatalog(τ root,leafu) on ranked unordered
labeled trees belongs to Exptime.

Proof. Assume (a) is true then (b) follows immediately since τ root,leafu ⊆ τ childGK .
Let the ranked alphabet Σ(σ, ar) and the mDatalog(τ childGK,Σ)-queries Q1 = (P1, P1) and

Q2 = (P2, P2) be the input for the QCP on ranked ordered labeled trees. It is to decide
whether for every ranked ordered Σ-labeled tree T holds Q1(T) ⊆ Q2(T).

5.6 Consequences of Theorem 5.1 81

By Lemma 3.22 we know there is an mDatalog(τ childGK,Σ)-query Qrk = (Prk, Prk) such
that the query predicate Prk yields true for every node of an unranked ordered σ-labeled
tree T if and only if T respects the ranked alphabet that means there is a ranked ordered
Σ-labeled tree T ′ such that SMo (T) = SMo (T ′). If there is not such a ranked tree the
query predicate is false for every node of T .

W.l.o.g. we have idb(Q1) ∩ Prk = idb(Q2) ∩ Prk = ∅. Now, for the given query Q1

we construct the query Q′1 = (P ′1, P ′1) where

P ′1 = P1 ∪ Prk ∪
{
P ′1 ← P1(x), Prk(x)

}
and analog for the given query Q2 construct the query Q′2 = (P ′2, P ′2) where

P ′2 = P2 ∪ Prk ∪
{
P ′2 ← P2(x), Prk(x)

}
.

By using the algorithm provided by Theorem 5.1, we return yes to the QCP (Σ, Q1, Q2)
on ranked ordered Σ-labeled trees if and only if theQCP (σ,Q′1, Q

′
2) for unary mDatalog(τMo)

on unranked ordered σ-labeled trees is evaluated to yes since we have:

Q1 6⊆ Q2

⇐⇒ there is a ranked ordered Σ-labeled tree T and a node v ∈ T
such that v ∈ T ωP1

(T) and v /∈ T ωP2
(T)

⇐⇒ there is a ranked ordered Σ-labeled tree T ,

an unranked ordered σ-labeled tree T ′, and a node v ∈ T ′ such that

SMo (T) = SMo (T ′), v ∈ T ωP ′1(T
′), and v /∈ T ωP ′2(T

′)

⇐⇒ Q′1 6⊆ Q′2

The construction of Prk can be done in time linear in the size of the input alphabet
Σ (cf. Lemma 3.22) and by Theorem 5.1 the algorithm that decides QCP (σ,Q′1, Q

′
2)

terminates in time exponential in the size of the input σ,Q′1, and Q′2. Thus, the query
containment problem for unary mDatalog(τ childGK) on ranked ordered labeled trees belongs
to Exptime.

Now we are ready to formulate and prove the first completeness result of mDatalog
on finite labeled trees in general.

Corollary 5.18. Let τ be one of the schema τNu and τMo where N is equal to or a subset
of {root, leaf} and M is equal to or a subset of {root, leaf , child, ls}.

The query containment problem for mDatalog(τ) on finite labeled trees is complete
for Exptime.

Proof. We have to show that the problem is hard for Exptime and it belongs to
Exptime for the different schemas and alphabets given.

By Corollary 4.9 we know that the query containment problem of mDatalog(τNu)
on (ranked and unranked) unordered labeled trees is Exptime-hard. Moreover, by
Corollary 4.14 we know that the query containment problem of mDatalog(τMo) on (ranked
and unranked) ordered labeled trees is Exptime-hard. This implies that the query
containment problem for mDatalog(τ) on finite labeled trees is Exptime-hard.

82 Chapter 5. On Membership

By Corollary 5.17 we know that the query containment problem for mDatalog(τ)
on finite labeled trees belongs to Exptime in the ranked case as well as it belongs to
Exptime by Theorem 5.1 and Corollary 5.2 in the unranked case.

Thus, the query containment problem for mDatalog(τ) on finite labeled trees is com-
plete for Exptime.

The used Theorems and Corollaries for Corollary 5.18 provide a 1-fold exponential al-
gorithm that solves the query containment problem even for unary monadic datalog on
labeled trees. Now, we can use this algorithm to solve the equivalence and the emptiness
problem with the same time resources.

Corollary 5.19. Let τ be one of the schema τNu and τMo where N is equal to or a subset
of {root, leaf} and M is equal to or a subset of {root, leaf , child, ls}.

(a) The equivalence problem for unary mDatalog(τ) on labeled finite trees and

(b) the emptiness problem for unary mDatalog(τ) on labeled finite trees

belong to Exptime.

Proof. Let A be the algorithm obtained by the used results of Corollary 5.18.
(a) Let Σ, Q1 and Q2 be an input for the equivalence problem. An algorithm A≡ that
decides the problem can proceed as follows.

(1) it starts A(Σ, Q1, Q2),

(2) it starts A(Σ, Q2, Q1),

(3) if A(Σ, Q1, Q2) or A(Σ, Q2, Q1) returns no then A≡ returns no, otherwise A≡ returns
yes.

By definition of equivalence and query containment, this algorithm A≡ decides correctly
and A≡ is a 1-fold exponential time algorithm since so is A.
(b) Let Q∅

τ be a query in monadic datalog of the schema τ that is unsatisfiable for
example the query Q∅

τ from Example 2.10 and let Σ and Q be an input for the emptiness
problem. An algorithm A∅ that decides the problem can proceed as follows.

(1) it starts A(Σ, Q,Q∅
τ),

(2) if A(Σ, Q,Q∅
τ) returns yes then A∅ returns yes, otherwise A∅ returns no.

By definition of emptiness and query containment, this algorithm A∅ decides correctly
and A∅ is a 1-fold exponential time algorithm since so is A.

We close this chapter by presenting completeness results for the remaining problems.

Corollary 5.20. Let τ be one of the schema τNu and τMo where N is equal to or a subset
of {root, leaf} and M is equal to or a subset of {root, leaf , child, ls}.

(a) The equivalence problem for unary mDatalog(τ) on labeled finite trees and

(b) the emptiness problem for unary mDatalog(τ) on labeled finite trees

5.6 Consequences of Theorem 5.1 83

are complete for Exptime.

Proof. By Corollary 5.19 both problems belong to Exptime. Now it suffices to refer to
the corresponding hardness results.
(a) The equivalence problem is Exptime-hard by Corollary 4.9 in the (unranked and
ranked) unordered case and by Corollary 4.14 for the ordered case.
(b) The emptiness problem is Exptime-hard by Proposition 4.4 and Proposition 4.8 in
the unordered case as well as by Corollary 4.10 in the ordered case.

Chapter 6

The Distant Relatives Point of View:

Dealing with the Descendant-Axis

In this chapter we consider the case that the descendant-axis is involved. We present
algorithms solving the emptiness problem, the equivalence problem, and the query con-
tainment problem within 2-fold exponential time. After that, we identify classes of
queries rewritable within polynomial time into queries that do not use the desc predi-
cate. By using results of the previous chapter, we conclude Exptime-completeness for
the aforementioned problems on these classes.

Finally, we will see that these problems are hard for 2Exptime in general. To
achieve this, we foremost present an intuitive reduction from the validity problem of
Boolean conjunctive queries with respect to a tree automaton to the query containment
problem of Boolean mDatalog on ordered unranked trees using a maximal schema. This
proof cannot be extended to unordered trees. And so, for the general case a reduction
from the word problem of exponential space bounded alternating Turing machines will
be presented.

6.1 On Membership

It is to clarify whether the Exptime-membership results of Theorem 5.1 and Corol-
lary 5.2 can be generalized to queries that also use the descendant predicate desc. How-
ever, the first approach described in the proof of Theorem 5.1 yields a 3-fold exponential
algorithm. We can improve this by using methods and results from [GK04] and [GKS06]
to eliminate the desc-predicate at the expense of an exponential blow-up of the query
size. Afterwards, we apply the algorithms provided by Theorem 5.1 and Corollary 5.2.
This leads to the following:

Theorem 6.1. The QCP for unary mDatalog(τ
{root,leaf ,desc}
u) on unordered trees and for

unary mDatalog(τ
{child,desc}
GK) on ordered trees can be solved in 2-fold exponential time.

Note that τ
{root,leaf ,desc}
u ⊆ τ

{child,desc}
GK . Thus, to prove Theorem 6.1, it suffices to provide

a 2-fold exponential algorithm for the QCP for unary mDatalog(τ
{child,desc}
GK) on ordered

trees.
Upon input of two mDatalog(τ

{child,desc}
GK,Σ)-queries Q1 and Q2, our algorithm proceeds

as follows: First, within exponential time, we transform Q1 and Q2 into equivalent queries

85

86 Chapter 6. Dealing with the Descendant-Axis

Q′1 and Q′2 that do not contain the desc-predicate. Afterwards, we use the algorithm
provided by Theorem 5.1 for unranked trees or Corollary 5.17 for ranked trees to decide
whether Q′1 ⊆ Q′2 in time exponential in the size of Q′1 and Q′2. Thus, Theorem 6.1 is an
immediate consequence of Theorem 5.1, Corollary 5.17, and the following Lemma 6.2.

Lemma 6.2. For every mDatalog(τ
{child,desc}
GK,Σ)-query Q there is an equivalent

mDatalog(τ childGK,Σ)-query Q′, which can be computed in 1-fold exponential time.

The proof of Lemma 6.2 proceeds in three steps:

Step 1: Gottlob, Koch, and Schulz [GKS06, Theorem 6.6] showed that every conjunctive
query using the axes child, desc, ns can be rewritten, in 1-fold exponential time,
into an equivalent union of acyclic conjunctive queries. We extend their result to
monadic datalog rules that may also contain the fc-relation (see Lemma 6.5 below).

Step 2: Afterwards, we use a result of [GK04] which shows that every acyclic conjunc-
tive query can be rewritten, in linear time, into a monadic datalog program in
TMNF (see Lemma 6.4 below).

Step 3: Finally, we observe that each TMNF-rule which uses the desc-relation can be
replaced (in linear time) by two suitable rules using child (see Proposition 6.3).

Step 3 is established by the following obvious proposition:

Proposition 6.3.
Over trees, the rule X(x)← desc(x, y), Y (y) is equivalent to the rules

X(x)← child(x, y), Y (y)

X(x)← child(x, y), X(y).

Similarly, the rule X(x)← desc(y, x), Y (y) is equivalent to the rules

X(x)← child(y, x), Y (y)

X(x)← child(y, x), X(y). y

For Steps 1 and 2, let us recall the notion of acyclic queries considered in [GK04, GKS06].
Let τ be a schema consisting of relations of arity at most two. Let r be a rule of a monadic
datalog query of schema τ . The directed rule graph Gr is the multigraph whose vertex set
is the set of variables of r, and where for each binary atom of the form R(x, y) occurring
in the rule’s body, there is a directed edge eR from node x to node y. The shadow
of Gr is the undirected multigraph obtained from Gr by ignoring the edge directions.
We say that r contains a directed cycle if the multigraph Gr contains a directed cycle.
Accordingly, r contains an undirected cycle if the shadow of Gr contains a cycle. A rule
is called acyclic if it does not contain an undirected cycle; an mDatalog(τ)-program is
acyclic if all its rules are acyclic.

Step 2 of our agenda is provided by the following lemma.

Lemma 6.4 ([GK04, Lemma 5.8]). Let r be an acyclic monadic datalog rule over rela-
tions that are either unary or binary. Then, r can be decomposed in linear time into a
monadic datalog program in which each rule is in one of the three forms

X(x)← R(y, x), Y (y) X(x)← R(x, y), Y (y) X(x)← Y (x), Z(z)

where x (resp., Y) may but does not have to be different from z (resp., Z).

6.1 On Membership 87

Finally, Step 1 of our agenda is established by the following Lemma 6.5, which gener-
alizes a result by Gottlob, Koch, and Schulz [GKS06, Theorem 6.6] to queries that may
make use of the fc-predicate.

Lemma 6.5. Every unary mDatalog(τ
{child,desc}
GK,Σ)-query Q can be rewritten, in 1-fold

exponential time, into an equivalent mDatalog(τ
{child,desc}
GK,Σ)-query Q′ such that each rule

in the program of Q′ is acyclic.

Proof. Let P be the program of Q. We choose Q′ to have the same query predicate as
Q. The program P ′ of Q′ is constructed as follows.

We initialize P ′ to be equal to P . Then, while P ′ is not acyclic, do the following:
Let r be a rule in P ′ that is not acyclic. Remove r from P ′.
Case 1: If r contains a directed cycle, note that r is not satisfiable (since the directed
cycle is built from the axes fc, ns, child, desc).
Thus, we simply drop r.

Case 2: Otherwise, r must contain an undirected cycle, but no directed cycle. Then,
the directed query graph Gr is a DAG, and there must exist a variable z of r which
belongs to an undirected cycle, such that Gr contains no directed path from z to another
variable that belongs to an undirected cycle. For this variable z, the rule’s body must
contain two atoms of the form R(x, z) and S(y, z) (where R, S ∈ {fc,ns, child,desc},
and x, y are variables). We make the following case distinction:

(i) In case that R = fc and S = ns (or vice versa), note that the rule is unsatisfiable,
and hence we simply drop r.

(ii) In case that R = S ∈ {fc,ns, child}, note that R(x, z) ∧ S(y, z) is equivalent to
R(x, z) ∧ y=x. Thus, we let r̃ be the rule obtained from r by omitting the atom
S(y, z) and replacing all occurrences of y by x. We add r̃ to P ′.

(iii) In case that R = S = desc, note that R(x, z) ∧ S(y, z) is equivalent to ϕ :=(
desc(x, y) ∧ desc(y, z)

)
∨
(
desc(y, x) ∧ desc(x, z)

)
∨
(

desc(x, z) ∧ y=x
)
.

For each i ∈ {1, 2, 3} we let r̃i be the rule obtained from r by replacing“R(x, z), S(y, z)”
with the i-th clause of ϕ. Concerning r̃3, we furthermore delete the atom y=x and
replace all occurrences of y by x. We add r̃1, r̃2, and r̃3 to P ′.

(iv) In case that R = fc and S = child (or vice versa), note that R(x, z) ∧ S(y, z) is
equivalent to R(x, z) ∧ y=x. Hence, we proceed in the same way as in case (ii).

(v) In case that R = ns and S ∈ {child,desc} (or vice versa), note that R(x, z) ∧
S(y, z) is equivalent to R(x, z) ∧ S(y, x). We let r̃ be the rule obtained from r by
replacing the atom S(y, z) with the atom S(y, x), and we add r̃ to P ′.

(vi) In case that R ∈ {fc, child} and S = desc (or vice versa), note that R(x, z)∧S(y, z)
is equivalent to ϕ :=(

R(x, z) ∧ desc(y, x)
)
∨
(
R(x, z) ∧ y=x

)
.

88 Chapter 6. Dealing with the Descendant-Axis

For each i ∈ {1, 2} we let r̃i be the rule obtained from r by replacing“R(x, z), S(y, z)”
with the i-th clause of ϕ. Concerning r̃2, we furthermore delete the atom y=x and
replace all occurrences of y by x. We add r̃1 and r̃2 to P ′.

Clearly, the obtained query Q′ is equivalent to the original query Q. Furthermore, along
the same lines as in the proof of [GKS06, Lemma 6.5], one can show that the algorithm
terminates after a number of steps that is at most 1-fold exponential in the size of the
input query Q. Of course, upon termination the program P ′ is acyclic. Thus, the proof
of Lemma 6.5 is complete.

Finally, we are ready for the proof of Lemma 6.2.

Proof of Lemma 6.2:
Let Q be the given mDatalog(τ

{child,desc}
GK,Σ)-query. Using Lemma 6.5 we construct, within

1-fold exponential time, an equivalent mDatalog(τ
{child,desc}
GK,Σ)-query Q1 such that each

rule in the program P1 of Q1 is acyclic. By applying Lemma 6.4 to each rule of P1, we
obtain an equivalent mDatalog(τ

{child,desc}
GK,Σ)-query Q2 such that each rule in the program

P2 of Q2 is in one of the following forms:

X(x)← R(y, x), Y (y) X(x)← R(x, y), Y (y) X(x)← Y (x), Z(z)

with R ∈ {fc,ns, child,desc}.
Applying Fact 6.3, we then replace every rule of P2 that contains the desc-relation by
two rules that use the child-relation.
This leads to an mDatalog(τ childGK,Σ)-query Q3 that is equivalent to Q. Furthermore, Q3 is
computed in time 1-fold exponential in the size of Q.

Transferring the results of Theorem 6.1 in the same way as in Corollary 5.19, we obtain
the following.

Corollary 6.6.

(a) The equivalence and the emptiness problem for unary mDatalog(τ
{root,leaf ,desc}
u) on

labeled unordered trees can be solved in 2-fold exponential time.

(b) The equivalence problem and the emptiness problem for unary mDatalog(τ
{child,desc}
GK)

on labeled ordered trees can be solved in 2-fold exponential time.

6.2 Omitting the descendant-axis

In this section, we identify classes of queries in monadic datalog on labeled trees that use
the descendant-axis but can be rewritten with an efficient algorithm, i.e., an algorithm
that uses time polynomial in the size of the query.

6.2.1 Easy Observations

Analyzing the proof of Theorem 6.1, the crucial point is the cyclicity of programs, more
precisely, in compliance with Theorem 4.12, the cyclicity of rules that contain the desc-
predicate. So, for the first, we note the following.

6.2 Omitting the descendant-axis 89

Corollary 6.7. Let Q = (P , P) be an mDatalog(τ
{child,desc}
GK,Σ)-query such that every

cyclic rule r in P does not contain the desc-predicate. An equivalent acyclic query Q′ in
mDatalog(τ childGK,Σ) can be computed within polynomial time.

Proof. An algorithm that computes Q′ on input Q can proceed rulewise, as follows. If
a rule r contains the desc-predicate, by assumption r has to be acyclic. Now, we use
Lemma 6.4 and Proposition 6.3 to rewrite the rule. Otherwise, r does not contain a
desc-predicate, but, potentially, is a cyclic rule, we use Theorem 4.12.

Corollary 6.7 immediately implies the following weaker statement.

Corollary 6.8. Let Q = (P , P) be an acyclic mDatalog(τ
{child,desc}
GK,Σ)-query Q. An equiv-

alent acyclic query Q′ in mDatalog(τ childGK,Σ) can be computed within polynomial time. y

6.2.2 An Example

Thus, it remains to consider cyclic rules which contain the desc-predicate. We obtained
the membership result of Theorem 6.1 by using a result of Gottlob, Koch, and Schulz
in the context of unions of conjunctive queries. In the same publication Gottlob et al.
proved that in general this bound is tight.

For their tightness proof, they considered the following n-diamond Boolean conjunc-
tive query Dn.1

Dn ← Y1(y1) ∧
n∧
i=1

(
desc(yi, xi) ∧Xi(xi) ∧ desc(xi, yi+1)∧

desc(yi, x
′
i) ∧X ′i(x′i) ∧ desc(x′i, yi+1) ∧ Yi+1(yi+1)

)
The reason for the name’s choice can be seen in Figure 6.1(a). In Theorem 7 of [GKS06]
it is shown that there is no family (Qn)n>1 of unions of acyclic conjunctive queries not
using desc that is equivalent to Dn and of size polynomial in n.

Which trees fulfill this query? The query Dn asks for a path in the tree which starts
in any node and contains nodes labeled by Y1, Y2, . . . , Yn+1 in ascending sequence in the
direction away from the root. Additionally, for every 1 6 i 6 n there have to be at least
two nodes in any order where one is labeled by Xi and the other by X ′i, within the path
between Yi and Yi+1.

Now, let us consider this query in the context of mDatalog. To this end, we generalize
this query to an (m1, . . . ,mn)-chain of diamonds and obtain a query depicted in Figure
6.1(c). A direct translation to a Boolean mDatalog(τdescu)-query leads to the query
Q(m1,...,mn) = (P , P) with

P = { r, P (x)← child(x, y), P (y) }

1In [GKS06] the predicate desc is denoted by child+.

90 Chapter 6. Dealing with the Descendant-Axis

(a) (b) (c)
desc desc

desc desc

desc desc

desc desc

desc desc

desc desc

Y1

Y2

Y3

Yn

Yn+1

X1

X2

Xn

X ′1

X ′2

X ′n

Y1

X ′1

X1

Y2

X2

Yn+1

· · · ·

Y1

Y2

X1
1 X1

2 X1
m1

· · ·

Y3

X2
1 X2

2 X2
m2

· · · ·

Yn+1

Yn

Xn
1 Xn

2 Xn
mn

Figure 6.1: (a) The query graph GDn of Dn. (b) An unordered tree that fulfills the query
Dn. The witness path is drawn in black as well as the crucial nodes and their labels. (c)
The query graph GD(m1,...,mn)

of D(m1,...,mn) which is a chain of diamonds and in this way
a generalization of the n-diamond query Dn.

P (yn+1)← labelY1(y1),for r :=

desc(y1, x
1
1), labelX1

1
(x1

1),desc(x1
1, y2),

desc(y1, x
1
2), labelX1

2
(x1

2),desc(x1
2, y2),

...

desc(y1, x
1
m1

), labelX1
m1

(x1
m1

),desc(x1
m1
, y2),

labelY2(y2),

desc(y2, x
2
1), labelX2

1
(x2

1),desc(x2
1, y3),

desc(y2, x
2
2), labelX2

2
(x2

2),desc(x2
2, y3),

...

desc(y2, x
2
m2

), labelX2
m2

(x2
m2

),desc(x2
m2
, y3),

labelY3(y3),

...

labelYn(yn),

desc(yn, x
n
1), labelXn

1
(xn1),desc(xn1 , yn+1),

desc(yn, x
n
2), labelXn

2
(xn2),desc(xn2 , yn+1),

...

desc(yn, x
n
mn

), labelXn
mn

(xnmn
),desc(xnmn

, yn+1),

labelYn+1(yn+1).

6.2 Omitting the descendant-axis 91

The second rule of P is only necessary because of the specific definition of a Boolean
query. For m1 = m2 = . . . = mn = 2 the query is equivalent to the conjunctive query
Dn in the sense that Q(2,...,2)(T) = Dn(T) for every n ∈ N on every Σ-labeled unordered
input tree T .

Let us use the following set P ′ of acyclic rules to replace the cyclic rule r in P .

AccY1(x)← labelY1(x)

AccdescY1
(x)← desc(y, x), AccY1(y)

AccX1
1
(x)← labelX1

1
(x), AccdescY1

(x)

AccdescX1
1

(x)← desc(y, x), AccX1
1
(y)

AccX1
2
(x)← labelX1

2
(x), AccdescY1

(x)

AccdescX1
2

(x)← desc(y, x), AccX1
2
(y)

...

AccX1
m1

(x)← labelX1
m1

(x), AccdescY1
(x)

AccdescX1
m1

(x)← desc(y, x), AccX1
m1

(y)

AccY2(x)← labelY2(x), AccdescX1
1

(x), AccdescX1
2

(x), . . . , AccdescX1
m1

(x)

AccdescY2
(x)← desc(y, x), AccY2(y)

...

AccYn(x)← labelYn(x), Accdesc
Xn−1

1
(x), Accdesc

Xn−1
2

(x), . . . , Accdesc
Xn−1

mn−1
(x)

AccdescYn (x)← desc(y, x), AccYn(y)

AccXn
1
(x)← labelXn

1
(x), AccdescYn (x)

AccdescXn
1

(x)← desc(y, x), AccXn
1
(y)

AccXn
2
(x)← labelXn

2
(x), AccdescYn (x)

AccdescXn
2

(x)← desc(y, x), AccXn
2
(y)

...

AccXn
mn

(x)← labelXn
mn

(x), AccdescYn (x)

AccdescXn
mn

(x)← desc(y, x), AccXn
mn

(y)

AccYn+1(x)← labelYn+1(x), AccdescXn
1

(x), AccdescXn
2

(x), . . . , AccdescXn
mn

(x)

P (x)← AccYn+1(x)

We obtain an equivalent query Q′ which is acyclic. It is easy to verify that Q′ can be
constructed in time polynomial in the size of Q(m1,...,mn) and Dn, respectively. The idea
for the construction of P ′ is to transport the information top-down, from the Y1 colored
node down to the Yn+1 colored node: For every node v of an input tree T colored by a
color X in level i the fact AccX(v) becomes true if and only if there is an ancestor v′

colored Yi and its ancestors fulfill the part from a Y1 colored node in T to v′.

92 Chapter 6. Dealing with the Descendant-Axis

Finally, we translated (a generalization of) the n-diamond query Dn of [GKS06] into
an acyclic query in monadic datalog within polynomial time. Recall, that the n-diamond
query was used to prove a gap of exponential size between conjunctive queries using desc
and unions of acyclic conjunctive queries (using desc).

6.2.3 Path Rules

Now, we use the observation of the previous subsection to identify a class of rules that
can be handled in a similar way as the generalized n-diamond query. For this subsection
let τdesc be a schema over finite labeled trees, such that the only binary relation symbol
is desc.

Let r be a rule of a monadic datalog query of schema τdesc. We assume that r has
no directed cycles, otherwise it is unsatisfiable. The rule r is called a path rule if for
every connected component of the directed rule graph there exists a variable x in r such
that x is in every topological sort over the attendant component the maximum, and one
of these maxima is the head variable. A topological sort is a linear order ≺ over the
variables of r such that for every pair (x, y) of variables and every atom desc(x, y) in r
it holds x ≺ y.2 For example, the Yn+1 colored node in Figure 6.1(a) is such a unique
maximum.

Note, for every model of a path rule the value function maps the variables to nodes
of one path in the tree. Therefore a path rule speaks about path properties.3

First, we observe that it is easily decidable if a given rule r in mDatalog(τdesc) is a
path rule or not.

Lemma 6.9. Let r be a rule in mDatalog(τdesc). There is an algorithm that decides on
input r within polynomial time if r is a path rule.

Proof. It is to verify if for every connected component of the rule graph of r there exists
exactly one variable that does not have an outgoing edge, and one of them is the head
variable.4

An algorithm deciding path rules can proceed as follows. We split the rule according
to its connected components C0, C1, Now, we start with the empty sets CandCi

and
nonCandCi

for every component by reading the component Ci atom by atom. If an atom
is binary, that is an atom of the form desc(x, y), we verify

(1) if the variable y is not element of one of the sets CandCi
and nonCandCi

, then we
add y to CandCi

and

(2) if x ∈ CandCi
, then we delete x from CandCi

and insert it into nonCandCi
.

Finally, if every component is read, we return yes if each of the sets CandCi
consists of

exactly one variable, and one of them is the head variable of r. Otherwise we return no.
It is obvious that the algorithm has polynomial running time and it is easy to verify that
the algorithm is correct.

2Since r has no directed cycles at least one such order exists and as desc is not reflexive such an
order is not reflexive.

3That’s the reason for choosing the name path rule. These path rules are different from known regular
path queries in the context of graph databases.

4An introduction into topological order and corresponding sorting algorithms can be found in various
textbooks, for example Cormen, Leiserson, Rivest, and Stein [CLRS09].

6.2 Omitting the descendant-axis 93

Before we start to give a construction and prove its correctness, we need the meaning
of exactly colored rules and queries. An associated lemma provides us to every mDatalog
rule on finite labeled trees an equivalent query of exactly colored rules.

Let P be a program in mDatalog over finite labeled trees. Let r be a rule of P that
contains at least one binary atom. We call r exactly colored if and only if for every
variable x of r there exists exactly one idb predicate Px of P and vice versa,5 such that
Px(x) ∈ body(r).

Let SPbin ⊆ P be the set of all rules of P which have at least one binary atom in its
body. Then the program P is called exactly colored if and only if every rule r ∈ SPbin is
exactly colored, this means for every variable x of a rule r there exists exactly one idb
predicate P r

x of P and vice versa, such that P r
x (x) ∈ body(r) and P r

x (y) /∈ body(r′) for
every rule r′ 6= r and every variable y.

Lemma 6.10. Let Σ be an alphabet and let τ be a schema over finite labeled trees. For
every query Q = (P , P) in mDatalog(τ) there exists a query Q′ = (P ′, P ′), such that P ′
is exactly colored and for every Σ-labeled finite tree T and every node v ∈ T we have

P (v) ∈ T ωP (T) ⇐⇒ P ′(v) ∈ T ωP ′(T).

The program P ′ can be constructed in time polynomial in the size of P.

Proof. If τ is a schema for unordered labeled trees, we start with

P ′ := {I0(x)← child(x, y) , I0(x)← child(y, x)}

and if τ is a schema for ordered labeled trees, we initialize P ′ with

P ′ := {I0(x)← fc(x, y) , I0(x)← fc(y, x) , I0(x)← ns(y, x)}.

Now I0 becomes true for every node of the tree.
From now, an algorithm that constructs P ′ proceeds rulewise. If the i-th rule r of P

has no binary atom then it puts the rule r to P ′. Otherwise, let {x1, . . . , x| var(r)|} be the
variables of r. We introduce |var(r)| new unary idb predicates I i1, . . ., I i| var(r)|. Let Predi1
be the set of unary atoms of r and Predi2 be the set of the binary atoms of r. Now, we
add the rule r′ with head head(r′) := head(r) and

body(r′) = Predi2 ∪
⋃

16j6| var(r)|

I ij(xj),

this means we remove the old unary atoms and give to every variable a unique color.
Additionally, we add for every variable xj ∈ {x1, . . . , x| var(r)|} the following rule to P ′. If
there is no predicate P such that P (xj) ∈ Predi1, then we add

I ij(x)← I0(x)

to P ′ and otherwise we add the rule with head I ij(x) and the body that contains for every
atom P (xj) ∈ Predi1 an atom P (x) (for any predicate P). In this way the new color of
the variable v in r′ is the mix of all existing colors of v in r.

Finally, if the iteration is complete, we obtain the desired query in time polynomial
in the size of P .

5This means there is no variable y 6= x , such that Px(y) ∈ body(r).

94 Chapter 6. Dealing with the Descendant-Axis

The next step of our agenda is to show that for every path rule r there exists an acyclic
program that is equivalent and its size is polynomial in r. Therefore, we introduce the
following set according to the definition of FP,A (c.f. page 13) for a finite labeled tree T
and a program P in mDatalog.

FP,T := atoms(T) ∪ { R(v) : R ∈ idb(P), v ∈ V T }

Proposition 6.11. Let P be a monadic datalog program for finite labeled trees. Let
r ∈ P be a path rule in mDatalog(τdesc) with head predicate h. There exists a set of
acyclic rules P ′ in mDatalog(τdesc), such that for every finite labeled tree T , every node
v ∈ T , and every set P (T) with atoms(T) ⊆ P (T) ⊆ FP,T we have

h(v) ∈ T ω{r}(P (T)) ⇐⇒ h(v) ∈ T ωP ′(P (T)).

The program P ′ can be constructed in time polynomial in the size of r.

Proof. Let r be the input rule with head variable x. By Lemma 6.10, we can assume
that r is exactly colored.

An algorithm that computes an equivalent query can proceed as follows. In a first
step it constructs the rule graph and obtains its set of components C = {C0, C1, . . .} of
size c ∈ N. Analogously to Lemma 6.9, the algorithm determines to every component Ci
the head variable xi. For the beginning we add

h(x)← C0(x0), C1(x1), . . . , Cc−1(xc−1)

to the empty set P ′ of rules. Observe x is equal to xi for some 0 6 i < c. Now, we
proceed component wise and consider the rules ri for 0 6 i < c

Ci(xi)← r|V (Ci)

where r|M for a set M ⊆ var(r) of variables denotes the following set of body atoms of
the rule r.

r|M := { b ∈ body(r) | var(b) ⊆M }
For a given component rule ri := Ci(x0) ← r|V (Ci)

with n = | var(ri)|, let yn−1, yn−2,
. . ., y1, y0 be the variables in an arbitrary topological sort ≺ri . Thus implies y0 = xi.
Furthermore, for 0 6 j < n let M j

i be the following set

M j
i :=

{
x

∣∣∣∣ x ∈ var(ri),
x has at most j successors concerning ≺ri

}
.

Recursively over M j
i , we build a query equivalent to rji := Ci(x0)← r|

M
j
i

and finally

for Mn−1
i , we obtain a query equivalent to the component rule ri. By repeating this

approach for all components Ci ∈ C of r we obtain the desired query.
For M0

i the rule r0
i is of the form

Ci(x0)← X0(x0)

6.2 Omitting the descendant-axis 95

for some unique color X0. Now, it is obvious that we obtain an equivalent query if the
program P0

i consists of the following rules.

AccX0(x)← X0(x)

Ci(x)← AccX0(x)

For M j
i with j > 0, we extend the program Pj−1

i obtained from rj−1
i in the following

way. Let xj be the new variable such that {xj} = M j
i \M

j−1
i . Furthermore, let Xj be

the unique color of xj. In a first step, we set Pji := Pj−1
i and we add the rules

AccXj
(x)← Xj(x)

AccdescXj
(y)← desc(x, y),AccXj

(x)

to Pji . Let

Binji := {desc(xj, x) ∈ body(rji) | x ∈ var(rj)}
= r|

M
j
i

\ (r|
M

j−1
i

∪ {Xj(xj)})

be the set of all new binary predicates. Observe, Binji is the set of all binary predicates of
ri where xj occurs in the first component. For every variable x with desc(xj, x) ∈ Binji
and its unique color X there exists by construction a unique rule r′ ∈ Pji with head
predicate AccX(x). Each body of such a rule will be extended by the atom AccdescXj

(x).

For j = n− 1 we set P ′i := Pji and finally P ′ :=
⋃

06i<c
P ′i.

As every binary atom of r occurs in exactly one set Binji for 0 6 j < n and 0 6 i < c,
the construction can be done within polynomial time. For the correctness, it suffices to
show that for every unordered labeled tree T , every node v ∈ T , and every set P (T)
with atoms(T) ⊆ P (T) ⊆ FP,T it holds that

Ci(v) ∈ T ω{ri}(P (T)) ⇐⇒ Ci(v) ∈ T ωPi
(P (T)).

To establish the necessary condition, we prove the following invariant by induction over
j for the rules rji .

If there is a value function β : var(rji) → V (T) that satisfies rji , then for
every color X of a variable x ∈ var(rji) we have AccX(β(x)) ∈ T ωPj

i

(P (T)).

As β satisfies rji , it implies for β(x0) = v and Ci(v) ∈ T ω{rji }(P (T)) that AccX0(v) ∈
T ωPj

i

(P (T)) and by the rule Ci(x)← AccX0(x) the fact Ci(v) ∈ T ωPj
i

(P (T)).

For the induction base the claim is clear since every satisfying value function is a
function that assigns x0 to an X0 colored node v of the input tree T that fulfills the rule

AccX0(x)← X0(x)

of P i0. Let the claim be true for j > 0.
We assume the value function β satisfies the rule rj+1

i . Let xj+1 be the new variable
such that {xj+1} = M j+1

i \M j
i and let Xj+1 be the unique color of xj+1. Since β satisfies

the rule rj+1
i , it also satisfies the rule rji and by induction hypothesis it holds for every

variable x ∈ var(rji) and its color X that AccX(β(x)) ∈ T ωPj
i

(P (T)). Now, Pj+1
i and Pji

differ in only two points.

96 Chapter 6. Dealing with the Descendant-Axis

(1) The new rules

AccXj+1
(x)← Xj+1(x)

AccdescXj+1
(y)← desc(x, y),AccXj+1

(x)

(2) In the bodies of all AccX(x) headed rules of variables connected by an desc(xj, x)
predicate in rj+1

i . These are extended by AccdescXj+1
(x).

As β satisfies rj+1
i , we know Xj+1(β(xj+1)) is true and therefore AccXj+1

(β(xj+1)) is

in T ωPj+1
i

(P (T)). Moreover, we have AccdescX (v′) ∈ T ωPj+1
i

(P (T)) for all descendants v′ of

β(xj). For the extended rules we know by the satisfying property of β that all variables x
connected with desc(xj, x) are actually descendants of β(xj) and therefore the extended
rules in Pj+1

i where satisfied by β.
For the converse direction, the sufficient condition, we show by induction over the

stages j of the fix point process T ωPi
(P (T)) the following invariant.

If AccX(v) for some node v ∈ T is newly added during stage j of the fix point
process then the path rule riX is fulfilled by a value function β : var(riX) →
V (T) with β(x) = v where x is the variable of color X.

The path rule riX is defined as follows. Let Gi be the rule graph of ri. Now the rule graph
GiX of riX is the induced sub graph of Gi where the set V (riX) of nodes is defined as
V (riX) := {X}∪{Y |X is reachable from Y } and the head variable of riX is the variable
colored by X.

Note, if AccX0(v) ∈ T ωPi
(P (T)) for some node v ∈ T is true and therefore it holds that

Ci(v) ∈ T ωPi
(P (T)), it is implied that Ci(v) ∈ T ω{ri}(P (T)).

For the inductive base we consider j = 1 since for no color X the predicate AccX ∈
idb(P) ∪ edb(P) and so for node v ∈ T , we have AccX(v) ∈ T 0

Pi
(P (T)). Let AccX(v) ∈

T 1
Pi

(P (T)) be true for some color X and some node v ∈ T . As AccX(v) /∈ T 0
Pi

(P (T)), the
fact AccX(v) is provided by the rule

AccX(x)← X(x).

Thus, v is colored by X. The induced path rule riX of ri is of the form CX
i (x)← X(x)

that is satisfied by β with β(x) = v.
For the inductive step, we assume AccX(v) ∈ T jPi

(P (T)) and AccX(v) /∈ T j−1
Pi

(P (T))

is true for some node color X and some node v ∈ T . Now, AccX(v) ∈ T jPi
(P (T)) is

provided by a rule of from

AccX(x)← X(x),AccDescX1
(x), . . . ,AccDescXl

(x)

for some colors X1, . . . , Xl and l ∈ N>1.
By construction, this implies that AccX1(v1), . . . ,AccXl

(vl) ∈ T j−1
Pi

(P (T)) for some
predecessor v1, . . . , vl of v. Using the induction hypothesis, we know there are value
functions β1, . . . , βl such that

(1) β1(x1) = v1, β2(x2) = v2, . . . , βl(xl) = vl and

(2) βs(xs) satisfies riXs
for 1 6 s 6 l.

6.2 Omitting the descendant-axis 97

For l = 1 it is obvious that the following extension β′ of β with

β′(x′) :=

{
β1(x′) x′ ∈ var(riX1

)

v x′ = x

is satisfying riX .

In the same way, we can determine a satisfying value function if the rule graphs
riX1

. . . . riXs
have disjoint nodes. Then

β′(x′) :=

{
βs(x

′) x′ ∈ var(riXs
) for 1 6 s 6 l

v x′ = x

fulfills the rule graph riX as all predecessor v1, . . . , vs of v are located of the same path
from v to the root of T .

It remains the case that the colors of riX1
. . . . riXs

are not disjoint. Let riX1
and riX2

be two rules having the same color X ′. Next, we observe that the rules (riX1
)X′ and

(riX2
)X′ have the same rule graph. Recall, the nodes of the images of β1 and β2 are

located on the same path and therefore the value function β′ with

β′(x′) :=

β1(x′) x′ ∈ var(riX1

), x′ /∈ var(riX2
)

β2(x′) x′ /∈ var(riX1
), x′ ∈ var(riX2

)

β1(x′) x′ ∈ var(riX1
), x′ ∈ var(riX2

), β1(x′) is a predecessor of β2(x′) in T

β2(x′) otherwise

satisfies riX1
and riX2

. Using this approach successively, a value function β′ satisfying
riX1

. . . . riXs
is defined and can be extended such that β(x) = v.

We summarize the results of this section by the following proposition that is obtained
immediately from the propositions and corollaries of this section and that leads to a
class of monadic datalog queries efficiently rewritable into queries without desc-atoms.
For this class of queries of schema τ child,descGK , the emptiness problem, the equivalence
problem, and the query containment problem can be solved within 1-fold exponential
time.

Proposition 6.12. Let τ be a schema over finite labeled trees such that τ ⊆ τ child,descGK .
Any mDatalog(τΣ)-query Q = (P , P) can be rewritten into an equivalent monadic datalog
query from schema τ childGK in time polynomial in the size of the query if for every rule r
of P at least one of the following conditions is satisfied:

(a) r does not contain the desc predicate, or

(b) r is acyclic, or

(c) every binary predicate in the body of r is a desc predicate and the rule r is a path
rule. y

98 Chapter 6. Dealing with the Descendant-Axis

We close this section by considering a unary (m1, . . . ,mn) chain of diamonds rule not
asking for the Yn+1 colored node but for the Y1 colored node. A rewriting of the last rule

P (x)← AccYn+1(x)

of P ′ (presented on page 91) to

P (x)← AccY1(x)

would not suffice. A program Pup constructed in an analogous way but giving the
information bottom up will also not suffice. This is because a query Q′ using Pup

constructed in this way cannot distinguish between the tree T depicted in Figure 6.2(b)
which is a model of the query and the tree T ′ (Figure 6.2(c)) which is not.

(a) (b) (c)
desc desc

desc desc

Y1

Y2

X1 X ′1

Y1

X ′1

X1

Y2

Y1

X ′1

Y2

X1

Y2

Figure 6.2: (a) The query graph GQ of Q = ({r},Ans) where r is the following rule:

Ans(y1) ← Y1(y1),desc(y1, x1), X1(x1),desc(y1, x
′
1), X ′1(x′1),

desc(x1, y2),desc(x′1, y2), Y2(y2).
(b) An unordered tree T that fulfills the unary query Q and (c) an unordered tree T ′

that does not fulfill the unary query Q. The trees T and T ′ cannot be distinguished from
each other by a unary mDatalog(τu)-program which is organized in a bottom-up scan.6

So, we realize: Important information speaking about properties of a node or a set of
nodes on a path can be collected top-down. But merging information bottom-up seems
to be unsafe in the sense that different paths can be involved.

6.3 On Hardness of the QCP on Ordered Unranked

Trees Using the Descendant-Axis

In the previous section, we have seen that there are classes of queries using desc which
can be efficiently translated into queries without desc that means the considered static
analysis problems Exptime-complete for them. In general, this translation is not pos-
sible, more precisely, the problems are complete for 2Exptime if the descendant-axis is
involved. The actual section’s goal is to show that the query containment problem for
unranked ordered trees using the schema τdescGK is hard for 2Exptime.

We use the following result by Björklund, Martens, and Schwentick published in 2008.

Theorem 6.13 (Björklund et al. [BMS08a]). Validity of Boolean CQ(child,desc) with
respect to a tree automaton is 2Exptime-complete.

6As a solution for this special case, we can combine a top-down scan with a subsequent bottom-up
scan.

6.3 On Hardness of the QCP on Ordered Unranked Trees Using desc 99

This problem was considered in the context of conjunctive queries on trees, reflecting
semi-structured data with respect to DTD and XML Schema Definitions, represented by
a nondeterministic tree automaton,7 which are formally defined as follows.8

A nondeterministic (unranked) tree automaton (NTA, for short) A = (Σ, S,∆, F)
consists of an unranked alphabet Σ, a finite set of states S, F ⊆ S the set of accepting
(or final) states, and a set of transition rules ∆ of the form (s, α) → L, where s ∈ S
is a state of A, α ∈ Σ, and L is a regular string language over the states of A. The
regular languages themselves are given by NFA’s AL = (ΣL, QL, δL, qL, FL), where the
alphabet ΣL := S simply consists of the states of the NTA A, QL is the set of states,
δL ⊆ (QL×ΣL×QL) is the transition relation, qL ∈ QL is the initial (or starting) state,
and FL ⊆ QL is the set of accepting states. A run and the acceptance condition of the
NFA is defined as usual. A run of the NTA A on an ordered unranked tree T is a mapping
ρ : V T → S such that the following is true for all nodes v of T where α is the label of v
in T :

• If v has n children u1, . . . , un (from left to the right) then there exists a rule
(s, α)→ L in ∆ such that ρ(v) = s and wv = ρ(u1) · · · ρ(un) ∈ L.

• If v is a leaf then there exists a rule (s, α)→ L in ∆ such that ρ(v) = s and ε ∈ L
where ε is the empty word (string).

A run is accepting if the root is labeled with an accepting state s ∈ F , a finite
unranked ordered tree T labeled by Σ is accepted if there exists an accepting run of A
on T , and finally, the set of all accepted trees is denoted by L(A), the language of the
automaton A.

We define strL(A) := {L : ∆ contains a rule (s, α) → L} to be the set of all string
languages occurring in the image of ∆. The size of the automaton A is the size of the
NTA together with its NFA’s AL, precisely

||A|| := |Σ|+ |S|+ |∆|+
∑

L∈ strL(A)

||AL||, where AL decides L and ||AL|| := |QL|+ |δL|.

Now, we are ready to prove the following theorem.

Theorem 6.14. Let N be the following set N := {child,desc}. The QCP for Boolean
mDatalog(τNGK) on ordered unranked trees is hard for 2Exptime.

Proof. The proof proceeds by a polynomial time reduction from the Validity Problem
for Boolean CQ(child,desc) with respect to a tree automaton that is 2Exptime-hard
by Theorem 6.13.

Let the CQ(child,desc)-query QCQ and the NTA A together with its NFA’s AL be
the input for the Validity Problem where the unranked alphabet Σ is the input alphabet
of A. We construct from QCQ an mDatalog(τNGK,Σ)-query Q = (P , P) and from A an
mDatalog(τGK,Σ)-query QA = (PA, PA) within polynomial time in the size of QCQ and A,9

such that QCQ is valid w.r.t A if and only if QA ⊆ Q.

7In fact, these automata represent much more expressive Relax NG schemas (cf. [CM01]).
8Note, the transition relation differs substantially from the transition relation of the nondeterministic

bottom-up tree automaton introduced in section 5.3. In particular, this automaton receives unranked
trees as input and not necessarily binary trees.

9Note, QA is an mDatalog(τNGK,Σ)-query (that does not use the desc predicate) since τGK,Σ ⊆ τNGK,Σ.

100 Chapter 6. Dealing with the Descendant-Axis

Using Lemma 2.9, we obtain an equivalent mDatalog(τNGK,Σ)-query QA from QCQ

within linear time. The following Lemma 6.15 provides us with a Boolean mDatalog(τGK,Σ)-
query QA constructed from a NTA A working on unranked ordered trees labeled by Σ in
time polynomial in the size of A such that for every unranked ordered tree T , A accepts
T if and only if QA = yes.

Now, it holds that:

QCQ is valid w.r.t A

⇐⇒ for every unranked ordered tree T ∈ L(A), we have QCQ(T) = yes

⇐⇒ for every unranked ordered tree T with QA(T) = yes, we have Q(T) = yes

⇐⇒ for every unranked ordered tree T , we have QA(T) ⊆ Q(T)

⇐⇒ QA ⊆ Q.

To establish the claim of Theorem 6.14, it remains to verify the following lemma.

Lemma 6.15. Let A = (Σ, S,∆, F) be an NTA over the unranked alphabet Σ. There
exists an mDatalog(τGK,Σ)-query Q = (P , P), such that for every unranked ordered tree
T labeled by symbols from Σ it holds that

A accepts T ⇐⇒ Q(T) = yes.

Q is constructible from A in time polynomial in the size of A.

Proof. Let A = (Σ, S,∆, F) be an NTA over the unranked alphabet Σ. The datalog
program will compute for every node v ∈ T the set of states the automaton A can receive
in this node. So, we introduce for every state s of A an idb predicate s. The query Q
will accept an input tree T if we have s(rootT) ∈ T ωP (T) for at least one state s ∈ F . In
some sense the program will compute the well known power set construction.

Moreover, the program simulates the NFA AL for every string language L ∈ strL(A).
To this end, let for every unordered unranked tree T the set

FT := atoms(T) ∪ {s(v) : v ∈ V T , s ∈ S is a state of A}

be the set consisting all atomic facts over T together with an assignment of all states of
A to every node in T . For now, let P (T) be a set with atoms(T) ⊆ P (T) ⊆ FT . We start
by constructing for every NFA AL such a program PL.

For a given L let AL = (ΣL = S,QL, δL, qL, FL) be the automaton given by the input,
such that L(AL) = L. Let v be a node in T and u1, . . . , un all its children where u1 is the
first child of v. We simulate AL in the same way as above by computing for every node
u ∈ u1, . . . , un the set of states q ∈ AL reachable by reading words on the nodes starting
in u1, going on from one sibling to the next. To do this, we introduce the idb predicates
Lq and AccL, whereas a node u ∈ u1, . . . , un is marked by Lq if the automaton AL can
reach the state q ∈ QL by reading a word starting in u1. Furthermore, a last sibling un
is marked by AccL if this automaton can reach a final state in un, what means that AL
accepts the input. The possible input of AL on a node u is given by the facts s(u) in
P (T) for any state s of A.

6.3 On Hardness of the QCP on Ordered Unranked Trees Using desc 101

For the beginning let PL be the empty set. For every entry (qL, s, q) in δL where qL
is the initial state of AL, which says the automaton AL starting in the first child x can
reach state q by reading input s, we add the rule

Lq(x)← fc(y, x), s(x)

to PL.
Now, for every entry (q, s, q′) in δL, we add the rule

Lq′(x)← Lq(y),ns(y, x), s(x)

that ensures that a node x is marked with the state q′ of AL if its predecessor sibling in
respect to orderT holds the state q and the input s(x) is a fact in P (T).

Finally, a last sibling can accept a language if it carries a final state of AL. So, we
finish PL by adding the rules

AccL(x)← ls(x), Lq(x)

for all final states q ∈ FL of AL.
Now, it is easy to verify that for the constructed program PL, every ordered unranked

tree T , and every set P (T) with atoms(T) ⊆ P (T) ⊆ FT the following is true:

For all non leaves v in T and all its children u1, u2, . . . , un mentioned in the
sibling order, such that u1 is the first child of v and un is the last one, it
holds that AccL(un) ∈ T ωPL

(P (T)) if and only if there are s1, . . . , sn ∈ S, such
that the facts s1(u1), s2(u2), . . . , sn(un) are elements of P (T) and the word
s1(u1) s2(u2) · · · sn(un) ∈ L.

Apparently, all the programs PL for L ∈ strL(A) can be constructed in time linear in the
size of AL and have disjoint rules.

Now, we start to construct the program P to simulate the complete entire A. For the
beginning let P consist of all the programs PL, so it is

P :=
⋃

L∈strL(A)

PL.

The computation of A starts in the leaves and to initiate the simulation of A we add for
every rule (s, α)→ L with ε ∈ L the following rule10

s(x)← labelα(x), leaf(x)

to P . The programs PL ensure that every last sibling un is marked by AccL(un) if the
states of A are assigned to un and its siblings form a word in L. By adding for every
language L the rule

childAccL(x)← child(x, y), ls(y),AccL(y)

10This can be easily checked by verifying whether the initial state qL of the NFA AL is an element of
its set of final states FL.

102 Chapter 6. Dealing with the Descendant-Axis

to P , we transport this information from the last sibling to its parent node. Now, for
every rule (s, α)→ L in ∆ we add the datalog rule

s(x)← childAccL(x), labelα(x)

to P to push to computation of A. Finally, we have to test the acceptance of A by
accepting the computation if the root is marked by an final state of A. So, we add

P (x)← root(x), sA(x)

to P for every state s in the set F of final states of A and now, the mDatalog(τGK,Σ)-query
Q = (P , P) yields yes on the input of an unranked ordered tree T if and only if the
automaton A accepts the same input T . It it easy to verify that Q can be computed in
time polynomial in the size of A.

6.4 On Hardness on Ranked Trees

In the previous section, we have seen an intuitive and short proof that proceeds by a
reduction from a known problem that is hard for 2Exptime. In this proof, we used the
order on children during the simulation of the NFA intensely. So, we are not able to
extend this proof for results on unordered trees and a more technical proof for this sec-
tion’s goal is necessary. By a reduction from the word acceptance problem of exponential
space bounded alternating Turing machine, we establish the following theorem.

Theorem 6.16. The emptiness problem for Boolean mDatalog(τdescu) on ranked un-
ordered labeled trees is 2Exptime-hard.

The proof idea of Theorem 6.16 is based on the proof of Theorem 6.13 presented
in the full version of the MFCS publication by Björklund, Martens, and Schwentick
[BMS08b]. The used alternating Turing machine was introduced at FOCS’76 by Chandra
and Stockmeyer [CS76], as well as by Kozen [Koz76], and presented in a joint journal
publication in 1981[CKS81].11

An alternating Turing machine (ATM, for short) A = (Q,Σ,Γ, δ, q0) consists of

• a finite set of states Q partitioned into universal states Q∀, existential states Q∃,
an accepting state qa, and a rejecting state qr,

• the finite input alphabet Σ,

• the finite tape alphabet Γ ⊃ Σ, that contains the special blank symbol /∈ Σ,

• the initial (or, starting) state q0 and

• the transition relation δ ⊆ ((Q× Γ)× (Q× Γ× {L,R, S})).
11For more in-depth information about the topic of alternating Turing machines, we recommend

chapter three of Balcázar, Dı́az, and Gabarró [BDG90] or the textbooks by Sipser [Sip97], Kozen [Koz06],
as well as Vollmer [Vol99] in the context of circuit complexity.

6.4 On Hardness on Ranked Trees 103

As usual the letters L, R, and S denote the directions left, right, and stay in which the
head on the tape is moved.

A configuration c of A is given by specifying its state, the content of its tape together
with the position of the tape head. Thus, we interpret a string of the form w1qw2 with
w1, w2 ∈ Γ∗, q ∈ Q as the configuration in which the tape contains the word w1w2,
followed by blanks, the head’s tape position is the first letter of w2, and q is the current
state of the machine. A transition rule ((q, a), (q′, b,D)) ∈ δ denotes a step of A by reading
in state q the letter a ∈ Γ, overwriting a on the current position by b ∈ Γ, moving the
head depending on D ∈ {L,R, S} one position to the left, to the right, or stay, and
finally, switching to state q′. A configuration c′ obtained by applying a rule of δ to a
given configuration c is called successor configuration of c. The configuration w1bq

′w2,
for example, is a successor configuration of w1qaw2 obtained by appling the transition
rule ((q, a), (q′, b, R)). A configuration w1qw2 is a halting configuration if q is either the
accepting state qa or the rejecting state qr. Without loss of generality, we can assume
that there is no successor configuration of any halting configuration, and furthermore,
before halting, the automaton moves its head to the left on the first non-blank symbol
on the tape, so each halting configuration is of the form qw.

A computation tree TA of the ATM A on input w ∈ Σ∗ is a tree labeled with configu-
rations of A, such that the root of TA is labeled by q0w, and for each node u of TA labeled
by w1qw2,

• if q ∈ Q∃, then u has exactly one child, and this child is labeled with a successor
configuration of w1qw2,

• if q ∈ Q∀, then u has a child v for every successor configuration w′1q
′w′2 of w1qw2,

and v is labeled by w′1q
′w′2

• if q ∈ {qa, qr}, then u is a leaf of TA.

Observe that TA can be infinite, since A may have non-halting computation branches. A
computation tree is accepting if all its branches are finite and all its leaves are labeled by
configurations in state qa. The language L(A) of the ATM A is the set of words w ∈ Σ∗

for which there exists an accepting computation tree of A on w.
We say that an ATM is normalized if every non-halting universal configuration has

precisely two different successor configurations, each universal step only affects the state
of the machine, and additionally, the machine proceeds from a universal state to an
existential state, and vice versa.

Lemma 6.17. For every alternating Turing machine A there exists a normalized al-
ternating Turing machine An with L(A) = L(An). An can be constructed from A within
polynomial time.

Proof. To construct the normalized alternating Turing machine An, we proceed in three
steps in the following order.

(1) We ensure that every non halting universal step only affects the state of the machine.

(2) We introduce new states such that universal and existential configurations alternate.

104 Chapter 6. Dealing with the Descendant-Axis

(3) We ensure that every non halting universal state has exactly two different successor
configurations.

Moreover, we ensure that no construction step destroys previously achieved properties.
For every universal state q that affects the head position or that writes on the tape

there exists a tuple ((q, a), (q′, b,D)) ∈ δ such that a 6= b or D 6= S. Now, we introduce
a new state q∃ ∈ Q∃ and replace ((q, a), (q′, b,D)) with the tuples ((q, a), (q∃, a, S)) and
((q∃, a), (q′, b,D)).

After (1) is true for the entire automaton, we consider every tuple ((q, a), (q′, b,D)) ∈
δ where q, q′ ∈ Q∃. Now, we introduce a new state q∀ ∈ Q∀ and replace ((q, a), (q′, b,D))
with the tuples ((q, a), (q∀, b, S)) and ((q∀, b), (q′, b,D)). For condition (2), it remains to
consider successive universal configurations. Thus for every tuple ((q, a), (q′, a, S)) ∈ δ
where q, q′ ∈ Q∀, we introduce a new state q∃ ∈ Q∃ and replace ((q, a), (q′, a, S)) with
the tuples ((q, a), (q∃, a, S)) and ((q∃, a), (q′, a, S)).12 Note, condition (1) is still fulfilled.

The final step is to ensure that every universal non-halting node has exactly two
different successors. Now, we have to consider three cases.

(a) The pair (q, a), with q ∈ Q∀ and a ∈ Γ has n > 2 successor configurations.
Let {((q, a), (qi, a, S))}0<i6n be the tuples of δ leading to these successor configu-
rations. (Recall, condition (1) is fulfilled.) Now, we introduce two new states q∃ and
q∀ and replace the entries ((q, a), (qn, a, S)) and ((q, a), (qn−1, a, S)) by the tuples
((q, a), (q∃, a, S)), ((q∃, a), (q∀, a, S)), ((q∀, a), (qn, a, S)), and ((q∀, a), (qn−1, a, S)).

Now, the original state q at reading a has n− 1 successors and the newly introduced
state q∀ has exactly two. This will be iterated n − 2 times and finally the new
universal states, as well as the state q, have at reading the letter a exactly two
successor configurations.

(b) For (q, a) there exists exactly one successor state q′, where q′ 6= qa and q′ 6= qr. This
means the successor state is neither the accepting state nor the rejecting state of the
machine. Now, q′ is an existential state. To this end, we introduce a new existential
state q∃, and extend the transition relation by the tuple ((q, a), (q∃, a, S)), as well as
by ((q∃, a), (q′′, b,D)) for every tuple ((q′, a), (q′′, b,D)) in δ.

(c) For (q, a) there exists exactly one successor state q′ that is the accepting or the re-
jecting state. Now, we introduce a new existential state q∃ and extend the transition
relation δ by the two tuples ((q, a), (q∃, a, S)) and ((q∃, a), (q′, a, S)).

Note, there is exactly one accepting and exactly one rejecting state, and therefore a
direct duplication is not possible.

It is easy to verify that the resulting automaton An can be constructed from A within
polynomial time in the size of A and L(A) = L(An).

Now, we are ready to prove Theorem 6.16.

Proof of Theorem 6.16:
Our proof proceeds by a reduction from the word problem for exponential space bounded

12Observe, ensured by condition (1), it already holds for every universal state that D = S and the
tape content is untouched.

6.4 On Hardness on Ranked Trees 105

ATM A. In this problem, the input consists of an exponential space bounded ATM A and
an input word w for A, and the task is to decide if w ∈ L(A). In [CKS81], this problem
was shown to be 2Exptime-complete.

Our reduction will be done from an ATM with empty input. Therefore, we construct
for the given ATM A and the given word w an ATM Aw that works in space exponential
in the size of w and accepts the empty input word if and only if A accepts w. To do this,
we let Aw start by writing w on the empty tape, afterwards Aw returns to the leftmost
tape position and finally, it starts to simulate the original machine A. By Lemma 6.17,
we can assume that Aw is normalized and since the computation is exponentially space
bounded, the non blank portion of the tape during the computation of Aw on empty
input is never longer than 2n, where n is polynomial in the size |w| of the original input
word.

We will choose a suitable ranked alphabet ΣT , independent from Aw. Within poly-
nomial time, we construct an mDatalog(τdescu,ΣT

)-query Q = (P ,Ans) such that

Q 6= ∅ ⇐⇒ there is an accepting computation tree for Aw

⇐⇒ w ∈ L(A).

Since 2Exptime is closed under complement, this implies that the emptiness problem
for Boolean mDatalog(τdescu) on ranked unordered labeled trees is 2Exptime-hard.

In the next paragraphs, we present the encoding of the computation tree that is
basically taken from [BMS08b] and includes the encoding of the configuration tree, both
are adapted to our problem. So, let TAw be a computation tree of Aw = (Q,Σ,Γ, δ, q0)
(cf. Figure 6.3), we fix an arbitrary order of the children of each universal node such that
every universal node has a left child and a right child.13 Now the encoding T := enc(TAw)
can be obtained from TAw by replacing every node v labeled by w1qw2 with a tree enc(tv),
as follows

• if v is universal, then the root of enc(tv) is labeled with CT∀,

• if v is existential, and v is the root of TAw or v is the left child of a universal node,
then the root of enc(tv) is labeled with CTleft

∃ ,

• if v is existential, and v is the right child of a universal node, then the root of
enc(tv) is labeled with CTright

∃ ,

• exactly one child of the root of enc(tv) is labeled by r (this will be the root of the
subtree that encodes the configuration at v), and

• for each child ui of v in TAw , enc(tv) has a subtree enc(tui), which is the encoded
subtree of TAw obtained by the replacement of ui.

14

The set of subtrees denoted by their root label r encode the configurations that originally
labeled the computation tree. We have to navigate through 2n tape cells and we must
be able to compare the i-th cell of one configuration with the i-th cell of the predecessor

13A node u is a universal node if it is labeled by a configuration w1qw2 where q is a universal state.
If q is an existential state then u is existential.

14In fact, for a non halting configuration there is exactly one child if v is existential. If v is universal,
there are exactly two children, since Aw is normalized.

106 Chapter 6. Dealing with the Descendant-Axis

(a) (b)
v1 w′1q1w

′′
1

v2 w′2q2w
′′
2

v3 w′3q3w
′′
3

v5 w′5q5w
′′
5

v4w′4q4w
′′
4

CT∀

CTright
∃r

r CT∀

r

CTleft
∃

CTright
∃

Figure 6.3: (a) A part of a computation tree TAw where the node v1 is labeled by w′1q1w
′′
1

is universal, its children are existential. In particular, the node v2 labeled by w′2q2w
′′
2 is

the right children of v1 and v2 itself has one child, the universal node v3, and so on. (b)
The replacement of v1 is a tree with a root node labeled by CT∀ and with three children,
the first is labeled by r and the root of a subtree encoding the configuration in v1, the
second is a replacement for its left child, and the third is the replacement for its right
child. The obtained tree T := enc(TAw) is an unordered ranked tree.

configuration. Thus, the configuration tree is basically a binary tree of height n that
has 2n leaves to carry the information for the tape cells, together with the information
of the current state of the machine and the position of the head. This sequence of
2n configuration cells will carry the whole information about the configuration of the
machine in this working step. To this end, the set of configuration cells is partitioned
into three types.

• The set BCells of basic cells is equal to Γ. A basic cell represents a tape cell
that is not currently visited by the head and also is not visited in the predecessor
configuration.

• The set CCells of current tape head cells is equal to Γ× δ. The letter from Γ repre-
sents the tape content in the actual position that is currently visited by the head,
while the transition from δ is the transition which leads to the actual configuration.

• The set PCells of previous tape head cells is equal to Γ × (Q × Γ) and represents
tape cells that were visited by the head in the predecessor configuration, but not
in the current one. The first letter from Γ represents the actual content on the
tape in this cell and the pair (Q × Γ) the previous state and tape content in the
predecessor configuration.

Observe that the number k of all possible configuration cells for Aw is polynomial in the
size of the automaton and so we can refer to each possible configuration cell by a natural
number i in {1, . . . , k}.

Next, we fix a set of constraints, that allows to decide if a sequence C1 of 2n con-
figuration cells is a valid successor configuration of another sequence C0. We start with
constraints to ensure a certain degree of consistency inside a given sequence. The set
H(Aw) of horizontal constraints consists of the following rules:

(H1) The only cell allowed to the left of a cell (a, ((q1, b), (q2, c, R))) ∈ CCells is the cell
(c, (q1, b)) ∈ PCells.

6.4 On Hardness on Ranked Trees 107

(H2) The only cell allowed to the right of a cell (a, ((q1, b), (q2, c, L))) ∈ CCells is the cell
(c, (q1, b)) ∈ PCells.

(H3) The only cell allowed to the right of the basic cell ∈ Γ is itself.

To fix the set V (Aw) of vertical constraints between two consecutive sequences C0 and
C1, we imagine the predecessor is lying cell by cell on top of its successor such that the
i-th configuration cell of C0 is lying on top of the i-th cell of C1.

(V1) If the i-th cell is a BCell a ∈ Γ then the only allowed cells on the i-th tape position
in a successor configuration are a itself and any CCell (a, ((q1, b), (q2, c,m)) where
m ∈ {L,R}. The latter is the case that the automaton Aw just moved to this
cell, coming from the left or the right. The letter on this position is currently
untouched, but the letter in the left (right) neighbor is overwritten if b 6= c and
m = L (m = R).

(V2) If the i-th cell is a CCell (a, ((q1, b), (q2, c,m))) then the only allowed cells on the
i-th tape position in a successor configuration are any (d, (q2, a)) ∈ PCells and any
(d, ((q2, a), (q3, d,m

′))) ∈ CCells where m′ = S.

(V3) If the i-th cell is a PCell (a, (q, b)) then the only allowed cells on the i-th tape posi-
tion in a successor configuration are the BCell a and any CCell (a, ((q1, b), (q2, c,m))
where m ∈ {L,R}.

Figure 6.4 illustrates an example of valid transitions respecting these constraints. It is
easy to verify that if C0 is a valid encoding of a configuration, C1 is a valid encoding of a
successor configuration if and only if all horizontal and vertical conditions are satisfied.

Now, we are ready to describe the structure of the r-rooted subtrees that encode the
configuration; that is the last remaining part of the whole encoding. We already noted
that these configuration trees are based on binary trees of height n. Every non root node
carries the label s and Björklund et al. called them skeleton nodes . Every skeleton node
has an attached navigation gadget , that is a short path of four nodes labeled by p, 0, 1,
⊥ for denoting any children as left children, and labeled by p, 1, 0, ⊥ for right children
in the sequence from the skeleton node to the leaf of the gadget (cf. Figure 6.5 (a)).

Each leaf skeleton node, that is a skeleton node that has no skeleton node as child,
carries besides the navigation gadget, a configuration cell gadget that consists of a path
of length k+2.15 The root node of this path is labeled by m (for me) followed by k nodes
labeled with digits 0 and 1, and the path ends in a leaf labeled with ⊥. k − 1 nodes on
this path are labeled with 0, only the i-th node is labeled by 1, telling the current cell is
the cell number i.

To finish the description of the encoding, for technical reasons, we start in the top of
the computation tree with a node labeled with > that has exactly one child, the topmost
configuration node. Now, we are ready to define the ranked alphabet ΣT and afterwards,
to construct the query. The alphabet consists of the following symbols:

> of arity ar(>) = 1, that denotes the root node of the encoded computation
tree.

15Recall, k is the number of all possible configuration cells of Aw.

108 Chapter 6. Dealing with the Descendant-Axis

Cx

.

BCell

e

CCell

b

((q, c), (q′, f, L))

PCell

f

(q, c)

Cx+1

.

BCell

e

CCell

a

((q′, b), (q′′, a, S))

BCell

f

Figure 6.4: This example shows the corresponding parts of a valid configuration Cx and
its successor configuration Cx+1. The previous transition ((q, c), (q′, f, L)) leading to
configuraion Cx was reading a c ∈ Γ on the right cell, writing an f ∈ Γ, switching the
state from q to q′, and finally moving the head one position to the left. The changeover
from Cx to Cx+1 was done by using transition ((q′, b), (q′′, a, S)), saying reading in state
q′ the letter b, write the letter a, switch to state q′′, and stay with the head at the current
position.

CT∀ of arity ar(CT∀) = 3, that denotes a universal configuration.

Leaf-CT∀ of arity ar(Leaf-CT∀) = 1, that denotes a halting configuration,
that is a child of an existential configuration.16

CTleft
∃ of arity ar(CTleft

∃) = 2, that denotes an existential configuration where
the configuration itself is the left child of a universal configuration (or
the initial configuration).

CTright
∃ of arity ar(CTright

∃) = 2, that denotes an existential configuration
where the configuration itself is the right child of a universal configura-
tion.

Leaf-CTleft
∃ of arity ar(Leaf-CTleft

∃) = 1, that denotes a halting configuration
where the configuration itself is the left child of a universal configuration
(or the initial configuration).

Leaf-CTright
∃ of arity ar(Leaf-CTright

∃) = 1, that denotes a halting configu-
ration where the configuration itself is the right child of a universal
configuration.

r of arity ar(r) = 2, that denotes the root node of a configuration tree.

s of arity ar(s) = 3, that denotes a skeleton node of a configuration tree.

sleaf of arity ar(sleaf) = 2, that denotes a skeleton leaf node that is a leaf of
the configuration tree.

16To be precise, a halting configuration is neither an existential nor a universal configuration, but the
labels tell us whose configuration child it is.

6.4 On Hardness on Ranked Trees 109

(a) (b)
s

ss p

0

1

⊥

sleaf

p m

1

0

⊥

0

1

0

⊥

k

i

Figure 6.5: (a) A skeleton node that is an inner node of the configuration tree, since
it has two children labeled with s. The navigation gadget denotes this node as the left
child of its parent node. (b) A skeleton node that is a leaf of the configuration tree that
carries a navigation gadget saying it is the right child of its parent node. Moreover, it is
carrying a cell gadget m followed by k digits where the i-th one is labeled with 1 if the
actual cell is cell i ∈ {1, . . . , k}, while the other digits are 0.

p of arity ar(p) = 1, that denotes the root of an navigation gadget.

m of arity ar(m) = 1, that denotes the root of a cell gadget ’me’.

0 and 1 of arity ar(0) = ar(1) = 1, for the values of the gadgets.

⊥ the only symbol of ΣT of arity ar(⊥) = 0. So every leaf of the encoding
tree is labeled by ⊥.

The construction of the demanded query Q = (P , Ans) starts with a program P1 that
ensures the newly introduced idb predicate structure for the root if the input tree T is
structured as an encoded computation tree. In particular, the input tree must fulfill the
following conditions.

(1) The root of the tree is labeled with > and has exactly one child that represents the
initial configuration.

(2) Each configuration node has exactly one child labeled with r.

(3) Every configuration cell gadget correctly encodes a configuration cell.

(4) Each encoded configuration tree is complete and has height n.

(5) Every skeleton node has exactly one correctly assigned navigation gadget.

(6) All horizontal constraints from H(Aw) are satisfied.

(7) The universal and existential configurations must alternate on the subtree of CT
labeled nodes.

110 Chapter 6. Dealing with the Descendant-Axis

(8) For each non halting universal configuration, the two child configuration nodes rep-
resent two encoded configuration trees with two different CCells.

(9) The highest encoded configuration tree has the start configuration cell

(, ((q0,), (q0, , S)))

as its leftmost configuration cell. Recall that q0 is the initial state of Aw and the
computation starts on an empty tape.

(10) Every configuration node that has no successor configuration encodes a final config-
uration, that implies the leftmost configuration cell is of the form

(a, ((q, b), (qa, c,m))).

Recall qa is the accepting state of the machine, the machine, upon accepting, moves
its head to the leftmost tape cell, and finally, an input tree is accepted if every path
in the computation tree leads to an accepting halting configuration.

The program P1 will start in the leaves of the encoded tree and verifies the structure
step by step in the direction to the root node. For the beginning the program P1 is the
empty set of rules and the first rule we add is to call leaves by what they are. Thus, we
add

leaf(x)← label⊥(x)

In any case, a leaf belongs to a gadget, that is a cell configuration or a navigation gadget,
and therefore we count the length of the digit path up to the length of k by the following
rules.

0(x)← label0(x)

1(x)← label1(x)

digit(x)← 0(x)

digit(x)← 1(x)

digit0(x)← leaf(x)

digit1(x)← digit(x), child(x, y), digit0(y)

digit2(x)← digit(x), child(x, y), digit1(y)

. . .

digitk(x)← digit(x), child(x, y), digitk−1(y)

Additionally, to ensure that a navigation gadget and the ’me’ cell configuration gadget
have exactly one node labeled with 1, we count the amount of 1-labeled nodes on every
digit path by the following rules.

count1
<1(x)← leaf(x)

count1
<1(x)← 0(x), child(x, y), count1

<1(y)

count1
=1(x)← 1(x), child(x, y), count1

<1(y)

count1
=1(x)← 0(x), child(x, y), count1

=1(y)

6.4 On Hardness on Ranked Trees 111

We propagate these counting results to the gadget roots if they are labeled by m or p by
adding the following rules to P1:

count1
=1(x)← labelp(x), child(x, y), count1

=1(y)

digit2(x)← labelp(x), child(x, y), digit2(y)

p(x)← labelp(x), count1
=1(x), digit2(x)

count1
=1(x)← labelm(x), child(x, y), count1

=1(y)

digitk(x)← labelm(x), child(x, y), digitk(y)

m(x)← labelm(x), count1
=1(x), digitk(x)

Now, the predicate p becomes true for a node v of the input tree T if it is labeled with
p and it is the starting node of a navigation gadget that actually denotes a direction.
Similarly, m becomes true for a node v of the input tree T if it is labeled with m and it is
the starting node of a ’me’ cell configuration gadget that actually denotes a configuration
cell.

For the rest of the section, we introduce a predicate childi(x, y) for a natural number
i as short hand for the set of atoms

child(x, x1), child(x1, x2), . . . , child(xi−1, y)

where childi(x, y) states the fact that y is a descendant of x in the i-th generation.
By the following rules, every m-marked node knows which configuration i ∈ {1, . . . k}

it encodes.

mk=1(x)← m(x), child(x, x1), 1(x1)

mk=2(x)← m(x), child2(x, x2), 1(x2)

...

mk=i(x)← m(x), childi(x, xi), 1(xi)

...

mk=k(x)← m(x), childk(x, xk), 1(xk)

Now, we mark the leaves of the skeleton nodes with the idb predicate sleaf that are
leaves in the configuration tree considered without the gadgets.

sleaf (x)← labelsleaf (x), child(x, xm),m(xm), child(x, xp), p(xp)

Observe, the label sleaf has arity two, so there cannot be further children the rule could
work on. Now, for the subtrees rooted by nodes marked with sleaf the condition (3) is
fulfilled. By the next rules, we mark the nodes carrying the label s or sleaf regarding
their navigation gadget as left child using sL or as right child by using sR. Remember a
correct navigation gadget is marked by the idb predicate p.

sL(x)← labelsleaf (x), child(x, xp), p(xp), child(xp, xn), 0(xn)

sR(x)← labelsleaf (x), child(x, xp), p(xp), child(xp, xn), 1(xn)

sL(x)← labels(x), child(x, xp), p(xp), child(xp, xn), 0(xn)

sR(x)← labels(x), child(x, xp), p(xp), child(xp, xn), 1(xn)

112 Chapter 6. Dealing with the Descendant-Axis

We mark the entire configuration tree with the predicate s, that affects the nodes marked
by sleaf and every node labeled by s that have a correct navigation gadget, as well as
left and right children.

s(x)← sleaf (x)

s(x)← sL(x), child(x, xl), sL(xl), s(xl), child(x, xr), sR(xr), s(xr)

s(x)← sR(x), child(x, xl), sL(xl), s(xl), child(x, xr), sR(xr), s(xr)

Note that an inner node of the configuration tree is itself a left or right child, that implies
there is such a navigation gadget and it gets the s predicate, if it has a left and a right
child, marked with sL and sR. This implies, this node cannot own a second navigation
gadget that claims the opposite of another navigation gadget since the arity of the symbol
s enforces the limit of exactly three children. Remember, we have to ensure that the
configuration tree is complete and has height n. This will be done if both children of
the r labeled root of the configuration tree are marked by height n− 1 and by s since s
is only true for them if every s child itself has two s children downto the leaves of the
configuration tree. So, up to n − 1, we count the height of the configuration tree by
adding the following rules to P1.

sh=0(x)← sleaf (x)

sh=1(x)← child(x, xl), sL(xl), sh=0(xl), child(x, xr), sR(xr), sh=0(xr)

...

sh=n−1(x)← child(x, xl), sL(xl), sh=n−2(xl), child(x, xr), sR(xr), sh=n−2(xr)

Finally we mark a node labeled by r with the predicate rnav if it is the root of a navigable
and complete configuration tree and add the rule

rnav(x)← labelr(x), child(x, xl), sL(xl), s(xl), sh=n−1(xl),

child(x, xr), sR(xr), s(xr), sh=n−1(xr)

to P1. Observe that during the computation of P1(T) a node labeled by r gets marked
with rnav if it is a root of a complete configuration tree of height n where every skeleton
node carries a correct navigation gadget and in the skeleton leaves a cell configuration is
correctly encoded. So, the conditions (3) – (5) are fulfilled.

The next goal is to ensure condition (6) that stands for the horizontal constraints
(H1)–(H3). This actually holds if the tuple (i, j) of two neighboring configurations cells
is contained in the relation H(Aw). Remember, a node labeled by m is already marked
by mk=i for its encoded configuration i. In a first step and for every i ∈ {1, . . . , k}, we
propagate this information to the skeleton leaves by the following rules.

(k = i)leaf (x)← sleaf (x), child(x, y),mk=i(y)

Next, we propagate for a subtree of the configuration tree its leftmost and its rightmost
configuration cell. Furthermore, it is to verify if the rightmost cell of the left child fits
together with the leftmost cell of the right child. Therefore, we use the new predicates

6.4 On Hardness on Ranked Trees 113

(k = i)left and (k = i)right for every i ∈ {1, . . . , k} in the following rules

(k = i)left(x)← s(x), (k = i)leaf (x)

(k = i)right(x)← s(x), (k = i)leaf (x)

(k = i)left(x)← s(x), child(x, xl), sL(xl), (k = i)left(xl)

(k = i)right(x)← s(x), child(x, xr), sR(xr), (k = i)right(xr),

as well as for every (i, j) ∈ H(Aw), the predicate H (if the nodes children fit together) in
the following rules

H(x)← s(x), child(x, xl), sL(xl), sleaf (xl), (k = i)right(xl),

child(x, xr), sR(xr), sleaf (xr), (k = j)left(xr)

H(x)← s(x), child(x, xl), sL(xl), H(xl), (k = i)right(xl),

child(x, xr), sR(xr), H(xr), (k = j)left(xr)

H(x)← labelr(x), child(x, xl), sL(xl), H(xl), (k = i)right(xl),

child(x, xr), sR(xr), H(xr), (k = j)left(xr).

Now, a node labeled by r is marked with H if its configuration tree satisfies all horizontal
constraints from H(Aw). By the following rules, we ensure that in a configuration tree
there do not exist two different CCells and use the idb predicate θi if the CCell i exists
in a subtree and Nonθ if a cell does not belong to CCells. For all i ∈ {1, . . . , k} where
i ∈ CCells, we add the rule

θi(x)← (k = i)leaf (x)

and for all j ∈ {1, . . . , k} where j /∈ CCells, we add the rules

Nonθ(x)← (k = j)leaf (x)

to P1. This will be propagated by

θi(x)← child(x, xl), sL(xl), θi(xl), child(x, xr), sR(xr),Nonθ(xr)

θi(x)← child(x, xl), sL(xl),Nonθ(xl), child(x, xr), sR(xr), θi(xr)

for every i ∈ {1, . . . , k} where i ∈ CCells and finally, a node labeled by r carries the idb
predicate θi for exactly one i ∈ {1, . . . , k} if its configuration contains exactly one CCell,
that is the configuration cell i. Otherwise, the node is not marked by any θi predicate.
Implied by the following rules

r(x)← labelr(x), H(x), rnav(x), θi(x) for all i ∈ CCells

every root node of a configuration tree is marked with r if its configuration tree satisfies
the conditions (3)–(6).

Purposing the bottom-up analysis of the input tree, we have to verify that a con-
figuration node labeled by Leaf-CT∀, Leaf-CTleft

∃ , or Leaf-CTright
∃ represents a halting

configuration that is given as CCell in the leftmost cell of its configuration tree. So,

114 Chapter 6. Dealing with the Descendant-Axis

for all i ∈ CCells representing a configuration cell with current state qa that is the only
accepting state of Aw, we add the rules

Leaf-CT∀(x)← labelLeaf-CT∀(x), child(x, xr), r(xr), θi(xr), (k = i)left(xr)

Leaf-CTleft
∃ (x)← labelLeaf-CTleft

∃
(x), child(x, xr), r(xr), θi(xr), (k = i)left(xr)

Leaf-CTright
∃ (x)← labelLeaf-CTright

∃
(x), child(x, xr), r(xr), θi(xr), (k = i)left(xr)

Recall that the rank of the symbols representing a halting configuration is ar(Leaf-CT∀) =
ar(Leaf-CTright

∃) = ar(Leaf-CTleft
∃) = 1 and so, for every subtree rooted by a node marked

with the latter introduced idb predicates, we ensured conditions (2)–(6) and (10).
It remains to analyze the subtrees of the CT labeled nodes. Recall that an inner node

of the CT tree will be positively marked if

(a) it is labeled as universal configuration and it has two existential configuration children
(one or both can be a leaf configuration node) carrying different CCells, or

(b) it is labeled as existential configuration and it has exactly one universal configuration
child (or one leaf configuration node).

Additionally, it has an r rooted configuration tree as child and the CCell on the r node
denotes a state of the machine that is existential if the configuration node is labeled as
existential or that is universal if the configuration node is labeled as universal.17 So,
we introduce predicates state∃ and state∀, as well as we extend the handling of the
idb-predicates Leaf-CT∀, Leaf-CTright

∃ , and Leaf-CTleft
∃ by the following rules

state∃(x)← r(x), θi(x)

for all i ∈ CCells where i is a configuration cell of an existential state, and

state∀(x)← r(x), θj(x)

for all j ∈ CCells where j is a configuration cell of a universal state, and finally, we add

CTleft
∃ (x)← Leaf-CTleft

∃ (x)

CTleft
∃ (x)← state∃(x), labelCTleft

∃
(x), child(x, xr), r(xr), child(x, xa),CT∀(xa),

CTright
∃ (x)← Leaf-CTright

∃ (x)

CTright
∃ (x)← state∃(x), labelCTright

∃
(x), child(x, xr), r(xr), child(x, xa),CT∀(xa)

CT∀(x)← Leaf-CT∀(x)

CT∀(x)← state∀(x), labelCT∀(x), child(x, xr), r(xr),

child(x, x1),CTleft
∃ (x1), child(x1, x1r), r(x1r), θi(x1r),

child(x, x2),CTright
∃ (x2), child(x2, x2r), r(x2r), θj(x2r)

for all i 6= j ∈ {1, . . . k}. Observe that a node v is marked with CTleft
∃ , CTright

∃ , or CT∀
if its subtree rooted by v satisfies the conditions (2) – (8) and (10).

17Recall, the rank of CTleft
∃ , CTright

∃ , and CT∀ is ar(CTleft
∃) = 2, ar(CTright

∃) = 2, and ar(CT∀) = 3.

6.4 On Hardness on Ranked Trees 115

Now, to ensure condition (9) we fix i ∈ CCells that represents the configuration
(, ((q0,), (q0, , S))) and add the following rules

Start-CT(x)← CT∀(x), child(x, xr), r(xr), θi(xr)

Start-CT(x)← CTleft
∃ (x), child(x, xr), r(xr), θi(xr)

to P1. It is not forbidden that more than one node of the computation tree carries
the marker as start configuration node, but the topmost configuration node has to be
marked. And therefore, we add the rule

structure(x>)← label>(x>), child(x>, xCT), Start-CT(xCT)

and obtain a program P1 such that a query Q′ = (P1, structure) yields yes on an input
tree T if and only if T satisfies conditions (1)–(10), that is, if and only if it is structured
as an encoded computation tree of Aw.

To complete the demanded query Q = (P ,Ans), it remains to extend the program
P1 in a way that Q accepts the tree if the structure predicate is true for its root and the
encoded configurations do not violate the transition relation. For the beginning, let P
consist of all rules of P1. To shorten the query program, we mark all configuration nodes
with the predicate CT by adding the following rules.

CT(x)← CT∀(x) Leaf-CT(x)← Leaf-CT∀(x)

CT(x)← CTleft
∃ (x) Leaf-CT(x)← Leaf-CTleft

∃ (x)

CT(x)← CTright
∃ (x) Leaf-CT(x)← Leaf-CTright

∃ (x)

Since the upcoming rules are rather large, we introduce short hands as binary predi-
cates.18 First, we define a predicate Succ(xr1 , xr2) that is true for two nodes xr1 and xr2
if they are root nodes of successive encoded configuration trees.

Succ(xr1 , xr2) :=

{
r(xr1), r(xr2),CT(s1),CT(s2),

child(s1, s2), child(s1, xr1), child(s2, xr2)

}
The next predicate SameLeveli(xs1 , xs2) for an i > 0 states for two nodes xs1 and xs2
that they are on the same level i in the configuration tree of two successive encoded
configuration trees.

SameLeveli(xs1 , xs2) := {s(xs1), s(xs2)}∪Succ(xr1 , xr2)∪childi(xr1 , xs1)∪childi(xr2 , xs2)

The predicate SameLevelLRi (xs1 , xs2) extends the predicate SameLeveli(xs1 , xs2) by the
following property: The nodes xs1 and xs2 have to be both the left or both the right
child of their parent.

SameLevelLRi (xs1 , xs2) :=

SameLeveli(xs1 , xs2)∪
{child(xs1 , xp1), p(xp1), child(xs2 , xp2), p(xp2),

desc(xp1 , xt1), 1(xt1),desc(xp2 , xt2), 1(xt2)}
∪ childi+4(z, xt1) ∪ childi+5(z, xt2)

18This does not mean that our datalog program is no longer a monadic program, in fact, we use these
predicates for replacements in the rule to increase the readability of the whole rule. Variables occurring
in the definition of the predicate, but not in the head, have to be renamed in a later context if it is
necessary.

116 Chapter 6. Dealing with the Descendant-Axis

Observe that the node z is the configuration node of the predecessor configuration or its
parent node and so, for the initial configuration at the top of the encoded computation
tree, the extra buffering node above is necessary. Furthermore, this is the only point
during the reduction where the desc predicate is actually indispensable; we use it to
guess whether the nodes are left or right children. In particular, if the nodes xt1 and
xt2 do not indicate the same left- or right-orientation then the distance to z is not i+ 4
for the predecessor and i + 5 for the successor and a valuation of the rule will not be
possible. Even another labeling of the encoding tree that tells us directly whether a child
is the left or the right one seems to be impossible because it implies a rule for every path
through the configuration tree; that leads to 2n rules and this would avoid a reduction
in time polynomial in n and the size of the automaton.

Now, we are able to introduce a predicate SameCell(xs1 , xs2) that states for two
skeleton nodes xs1 and xs2 reflecting the same cell of successive encoded configuration
cell sequences; those cells are at depth n of any configuration tree.

SameCell(xs1 , ys2) :=
⋃

16i6n−1

(
{child(xi, xi+1), child(yi, yi+1)} ∪ SameLevelLRi (xi, yi)

)
∪{child(xn−1, xs1), child(yn−1, ys2)} ∪ SameLevelLRn (xs1 , ys2)

Next, we use the idb predicate δ to denote that a configuration cell meshes with its
predecessor configuration cell with respect to the transition relation. So, for every tuple
(i, j) ∈ V (Aw) we add the following rule

δ(xs2)← SameCell(xs1 , xs2), child(xs1 , xm1),m(xm1),mk=i(xm1),

child(xs2 , xm2),m(xm2),mk=j(xm2)

to P . To verify the correctness of this rule, recall that the m-labeled node v of a
’me’ cell configuration gadget is already marked with mk=i(v) if its gadget encodes the
configuration cell i. Now, we have to verify that every configuration cell of the encoded
sequence respects the transition relation regarding its predecessor configuration cell and
propagate this information to the configuration node by the following rules.

δ(x)← child(x, xl), sL(xl), δ(xl), child(x, xr), sR(xr), δ(xr)

δ(x)← CT(x), child(x, xr), r(xr), δ(xr)

The next step is to collect the information that every configuration node is a valid
successor up to the top of the tree and we obtain that a configuration node v is marked
with ∆ if the subtree rooted at v is a suffix of a valid computation tree.

∆(x)← Leaf-CT(x)

∆(x)← CTleft
∃ (x), child(x, xa),CT∀(xa),∆(xa), δ(xa)

∆(x)← CTright
∃ (x), child(x, xa),CT∀(xa),∆(xa), δ(xa)

∆(x)← CT∀(x), child(x, x1),CTleft
∃ (x1),∆(x1), δ(x1),

child(x, x2),CTright
∃ (x2),∆(x2), δ(x2)

Clearly, if the topmost configuration tree is an initial configuration and marked with ∆
then we know that the input tree represents a valid accepting computation of Aw. To

6.5 On Hardness on Ranked Trees 117

this end, we conclude the construction by adding the rule

Ans(x)← structure(x), child(x, xCT),∆(xCT)

and obtain the demanded query Q = (P ,Ans) within polynomial time; that finishes the
proof of Theorem 6.16.

The hardness of the emptiness problem implies the following corollary by using the
same proof as for Corollary 4.9

Corollary 6.18.

(a) The equivalence problem for Boolean mDatalog(τdescu) on ranked labeled unordered
trees is 2Exptime-hard.

(b) The query containment problem for Boolean mDatalog(τdescu) on ranked labeled un-
ordered trees is 2Exptime-hard. y

Finally, we obtain the following completeness result.

Corollary 6.19. Let τ be a schema with τdescu ⊆ τ ⊆ τ root,leaf ,descu .

(a) The emptiness problem for mDatalog(τ) on ranked labeled unordered trees is complete
for 2Exptime.

(b) The equivalence problem for mDatalog(τ) on ranked labeled unordered trees is com-
plete for 2Exptime.

(c) The query containment problem for mDatalog(τ) on ranked labeled unordered trees
is complete for 2Exptime.

Proof. All problems are hard for 2Exptime by Theorem 6.16 and by Corollary 6.18. By
Theorem 6.1 the QCP is solvable in 2Exptime and therefore complete for 2Exptime.
Let A be the algorithm proposed by Theorem 6.1. Now, we solve the emptiness problem
on input Q by solving A(Q,Q∅) where Q∅ is an unsatisfiable query (c.f. Example 2.10)
and the equivalence problem on input (Q1, Q2) by solving the problem that asks: Hold
QCP ((Q1, Q2)) and QCP ((Q2, Q1))? Thus, all problems are solvable in 2Exptime and
in the end complete for 2Exptime.

The next step is to extend the result to ordered ranked trees. By the aforementioned
2Exptime-membership, Corollary 6.19, and the fact that τdescu ⊂ τ child,desco , we can
state

Corollary 6.20. Let τ be a schema with τ child,desco ⊆ τ ⊆ τ child,descGK .
The emptiness problem, the equivalence problem, and the query containment problem

for mDatalog(τ) on ranked labeled ordered trees is complete for 2Exptime. y

Unfortunately, this does not help for the considered problems for mDatalog(τdesco),
since for eliminating the child predicate, a rewriting similar to Gottlob and Koch (cf.
Corollary 4.13) is not possible in the presence of desc predicates.

118 Chapter 6. Dealing with the Descendant-Axis

6.5 On Hardness on Unranked Trees

In this section, we consider the hardness of datalog queries using the descendant axis on
unranked trees. For mDatalog on unordered trees, we prove the matching lower bound
regarding the query containment and the equivalence problem. For ordered trees using
the schema τdescGK , we additionally establish the matching lower bound for the emptiness
problem.

Theorem 6.21. The query containment problem for Boolean mDatalog(τdescu) on un-
ranked labeled unordered trees is 2Exptime-hard.

Proof. We prove the theorem by using and extending the proof of Theorem 6.16, so we
establish a reduction from the word acceptance problem of exponential space bounded
alternating Turing machines to the QCP for mDatalog(τdescu) on unranked labeled un-
ordered trees. More precisely, we give a polynomial time reduction to the complement
of this QCP. For a given ATM Aw that is normalized and composed of the original ATM
A and its input word w, we construct within polynomial time a finite unranked alphabet
Σur and two Boolean mDatalog(τdescu,Σur

)-queries Q1 and Q2, such that

w ∈ L(A) ⇐⇒ there is an accepting computation tree for Aw

⇐⇒ there exists an unordered Σur-labeled tree T such that

Q1(T) = yes and Q2(T) = no

⇐⇒ Q1 6⊆ Q2.

Recall the reduction from Theorem 6.16, the utilized ranked alphabet ΣT , and the ob-
tained program P in mDatalog(τdescu) on ranked trees. We choose the unranked alphabet
Σur as the unranked version of ΣT , to be precise we set Σur := {α|α ∈ ΣT}. Further-
more, we set Q1 := (P ,Ans), that is, the query constructed during the former reduction.
So, Q1 stands for the “necessary properties” of the encoded computation tree. Since the
alphabet is no longer ranked, we cannot avoid that a node has more than the planned
children, but we can forbid that the redundant children have other labels and falsify the
computation. Therefore, all that remains is to construct a query Q2 in mDatalog(τdescu)
such that Q2 describes “forbidden properties”. A tree with such properties does not de-
scribe an encoded computation tree. To this end, we check for forbidden labels on child
nodes, a child of an s-labeled node, for example, must not be labeled with CT∀, and we
have to test that there are no two paths encoding inconsistent information. Thus, the
query Q2 = (P2, reject) will yield to yes on an input tree if at least one of the following
facts are true.

(1) A non root node is labeled by >.

(2) The root has a child that is not labeled by a CT-label.

(3) A non halting existential configuration node has a child labeled with a symbol not
in {r,CT∀,Leaf-CT∀}.

(4) An non halting universal configuration node has a child labeled with a symbol not
in {r,CTright

∃ ,CTleft
∃ ,Leaf-CTright

∃ ,Leaf-CTleft
∃ }.

6.5 On Hardness on Unranked Trees 119

(5) A halting configuration node has a child labeled with a symbol that is not r.

(6) An r labeled node has a child labeled with a symbol that is not s.

(7) An s labeled node has a child labeled with a symbol not in {p, s, sleaf}.

(8) An sleaf labeled node has a child labeled with a symbol not in {p,m}.

(9) A p or m labeled node has a child labeled with a symbol not in {0, 1}.

(10) A 0 or 1 labeled node has a child labeled with a symbol not in {0, 1,⊥}.

(11) A ⊥ labeled node has a child.

(12) A p (or an m) labeled node has a descendant that is labeled ⊥ with distance not
equal to three (not equal to k + 1), or is not a prefix of a valid gadget.

(13) There exists a path in a configuration tree from the r labeled node to an sleaf of
length not equal to n.

(14) Any node has two children fulfilling the same role, but encoding different information.

Obviously, the conditions (1) – (13) reflect the underlying structure. Additionally,
an illustration to condition (12) is given with Figure 6.6 (a). Condition (14) reflects the
consistency of the encoding and enforces the following; if there are two configurations as
children of a node in the computation tree, both universal, both left – or right – exis-
tential, then they have to provide exactly the same information during the computation.
This includes the contained configuration trees, navigation gadgets, and so on, which
can have different copies or copies of prefixes. Intuitively, it is clear that it does not
matter if a node has additional children, but they must not provide wrong information;
since every rule uses a maximum distance of 3 + n + k, it suffices to have a fixed look
ahead inside the encoded configuration (cf. Figure 6.6 (b)). Now, it is comprehensible
that the query Q2 fulfilling condition (1)–(14) yields no on a tree T and Q1 yields yes
on the same tree if and only if T is an encoded accepting computation of Aw.

For the beginning, let P2 consist of all rules of P . We only consider trees T with
Q1(T) = yes, otherwise we have in any way Q1 ⊆ Q2, which is enough for the reduction.
To propagate any detected violation to the root node of the input tree, we propagate the
reject predicate from any node to the root by adding the following rule

reject(x)← child(x, x1), reject(x1)

to P2. We reflect condition (1) by adding the rule

reject(x)← child(x, x1), label>(x1).

Since Q1(T) = yes, we know the root is labeled with > and so, we mirror condition (2)
by the rule

reject(x)← label>(x), child(x, x1), labelα(x1)

for every α ∈ Σur \ {CT∀,CTleft
∃ ,CTright

∃ }.

120 Chapter 6. Dealing with the Descendant-Axis

(a) (b)
s

s
s

s
p

0 0

11

⊥ ⊥

p

0

1 1

CTleft
∃

CT∀CT∀
r

r
r

mk=i
mk=j

Figure 6.6: (a) An example of allowed “extentions” of the encoded computation tree,
considered at a navigation gadget that can exist multiple times where a copy also can
be reduced to a prefix. (b) If the nodes marked by mk=i and mk=j have the same path
through their configuration tree, that is, the same sequence of left and right children,
then i must be equal to j.

To verify condition (3) we add the rules

reject(x)← labelCTleft
∃

(x), child(x, x1), labelα(x1)

reject(x)← labelCTright
∃

(x), child(x, x1), labelα(x1)

for every α ∈ Σur \ {r,CT∀,Leaf-CT∀}.
To verify condition (4) we add the rule

reject(x)← labelCT∀(x), child(x, x1), labelα(x1)

for every α ∈ Σur \ {r,CTright
∃ ,CTleft

∃ ,Leaf-CTright
∃ ,Leaf-CTleft

∃ }.
To verify condition (5) we add the rules

reject(x)← labelLeaf-CT∀(x), child(x, x1), labelα(x1)

reject(x)← labelLeaf-CTleft
∃

(x), child(x, x1), labelα(x1)

reject(x)← labelLeaf-CTright
∃

(x), child(x, x1), labelα(x1)

for every α ∈ Σur \ {r}.
To verify condition (6) we add the rule

reject(x)← labelr(x), child(x, x1), labelα(x1)

for every α ∈ Σur \ {s}.
To verify condition (7) we add the rule

reject(x)← labels(x), child(x, x1), labelα(x1)

for every α ∈ Σur \ {p, s, sleaf}.
To verify condition (8) we add the rule

reject(x)← labelsleaf (x), child(x, x1), labelα(x1)

6.5 On Hardness on Unranked Trees 121

for every α ∈ Σur \ {p,m}.
To verify condition (9) we add the rules

reject(x)← labelp(x), child(x, x1), labelα(x1)

reject(x)← labelm(x), child(x, x1), labelα(x1)

for every α ∈ Σur \ {0, 1}.
To verify condition (10) we add the rules

reject(x)← label0(x), child(x, x1), labelα(x1)

reject(x)← label1(x), child(x, x1), labelα(x1)

for every α ∈ Σur \ {0, 1,⊥}.
To verify condition (11) we add the rule

reject(x)← label⊥(x), child(x, x1)

to P2.
To verify condition (12), we assume that conditions (9) and (10) are not fulfilled.

This implies, the only possible labels at nodes descending a node labeled with p or m are
0, 1, and ⊥. So, we add the following rules that ensure that no leaf labeled path exists
that is too short or too long, that is a path with a node labeled with 0 or 1 on position
three for a navigation gadget and on position k+ 1 for a ’me’ cell gadget. Thus, we add
for the navigation gadget the following rules

reject(x)← labelp(x), child(x, x1), label⊥(x1)

reject(x)← labelp(x), child2(x, x1), label⊥(x1)

reject(x)← labelp(x), child3(x, x1), label0(x1)

reject(x)← labelp(x), child3(x, x1), label1(x1)

and for the ’me’ gadget, we add

reject(x)← labelm(x), child(x, x1), label⊥(x1)

reject(x)← labelm(x), child2(x, x1), label⊥(x1)

...

reject(x)← labelm(x), childk(x, x1), label⊥(x1)

reject(x)← labelm(x), childk+1(x, x1), label0(x1)

reject(x)← labelm(x), childk+1(x, x1), label1(x1).

Recall that childi(x, y) is a short hand for the set of atoms denoting y as a descendant
of x in the i-th generation.

In the same way, we reflect condition (13) which says that there exists a path in a
configuration tree from the r labeled node to an sleaf of length not equal to n. We know
by conditions (6), (7), (9) – (11) that it suffices to test if there is a shorter path ending

122 Chapter 6. Dealing with the Descendant-Axis

on an sleaf labeled node, or if there exists a path of length n ending with an s labeled
node. Therefore, we add the rules

reject(x)← labelr(x), child(x, x1), labelsleaf (x1)

reject(x)← labelr(x), child2(x, x1), labelsleaf (x1)

...

reject(x)← labelr(x), childn−1(x, x1), labelsleaf (x1)

reject(x)← labelr(x), childn(x, x1), labels(x1)

to P2.

Finally, we consider condition (14) and we start by verifying all neighboring navi-
gation gadgets. By condition (12) we already know every navigation gadget is a valid
navigation gadget or the prefix thereof . By the following rules, we detect if they are in
conflict.

reject(xs)← child(xs, xp1), child(xs, xp2), labelp(xp1), labelp(xp2),

child(xp1 , x1), label1(x1), child(xp2 , x0), label0(x0)

reject(xs)← child(xs, xp1), child(xs, xp2), labelp(xp1), labelp(xp2),

child2(xp1 , x1), label1(x1), child2(xp2 , x0), label0(x0)

The same holds for the ’me’ cell configuration gadget and therefore, we add the rules

reject(xs)← child(xs, xm1), child(xs, xm2), labelm(xm1), labelm(xm2),

child(xm1 , x1), label1(x1), child(xm2 , x0), label0(x0)

reject(xs)← child(xs, xm1), child(xs, xm2), labelm(xm1), labelm(xm2),

child2(xm1 , x1), label1(x1), child2(xm2 , x0), label0(x0)

...

reject(xs)← child(xs, xm1), child(xs, xm2), labelm(xm1), labelm(xm2),

childk(xm1 , x1), label1(x1), childk(xm2 , x0), label0(x0)

Now, we compare the configurations; that is done analogously to the definition of the
short hand predicate SameCell in the previous proof, but without the offset that was
used to reach the successor configuration. So, we first define the predicates EquiLevel,
EquiLevelLR, and EquiCell, stating that two nodes are in the equivalent level, are both
a left or both a right child, and, by the latter, denote equivalent cells.

EquiLeveli(xs1 , xs2) :=
child2(x, xr1) ∪ child2(x, xr2) ∪ {r(xr1), r(xr2)}

∪ childi(xr1 , xs1) ∪ childi(xr2 , xs2) ∪ {s(xs1), s(xs2)}

The predicate EquiLevelLRi (xs1 , xs2) extends the predicate EquiLeveli(xs1 , xs2) by the fol-
lowing property: The nodes xs1 and xs2 have to be both the left or both the right child

6.5 On Hardness on Unranked Trees 123

of their parent.

EquiLevelLRi (xs1 , xs2) :=

EquiLeveli(xs1 , xs2)∪
{child(xs1 , xp1), p(xp1), child(xs2 , xp2), p(xp2),

desc(xp1 , xt1), 1(xt1),desc(xp2 , xt2), 1(xt2)}
∪ childi+4(z, xt1) ∪ childi+4(z, xt2)

And finally, we define EquiCell that is true for two nodes denoting configuration cells
that encode the same cell of the automaton. Note, that the predicate is reflexive.

EquiCell(xs1 , ys2) :=
⋃

16i6n−1

(
{child(xi, xi+1), child(yi, yi+1)} ∪ EquiLevelLRi (xi, yi)

)
∪{child(xn−1, xs1), child(yn−1, ys2)} ∪ EquiLevelLRn (xs1 , ys2)

To verify the value k, we utilize the predicate mk=i for every i ∈ {1, . . . , k} given by a
positive evaluation of query Q1, and compare them for all i, j ∈ {1, . . . , k} with i 6= j by
the following rules

reject(x)← child(x, xCT1), child(x, xCT2),

type(xCT1), type(xCT2), childn+1(xCT1 , xs1), childn+1(xCT2 , xs2),

EquiCell(xs1 , xs2), child(xs1 , xm1),m(xm1),mk=i(xm1),

child(xs2 , xm2),m(xm2),mk=j(xm2)

for every type ∈ {CT∀,Leaf-CT∀,CTleft
∃ ,Leaf-CTleft

∃ ,CTright
∃ ,Leaf-CTright

∃ }.
Now, it is ensured that two configurations in the same role, provide different infor-

mation, so the demanded query is defined by Q2 = (P2, reject).
Observe, by Q1 we evaluate the computation tree by starting in the halting config-

urations, so it does not matter if a configuration has a successor configuration twice or
if these successor configurations themselves have different successor configurations. In
this case it suffices if one subtree leads to accepting configurations on the leaves of an
appropriate subtree.

We use the result and a short reduction to extend the hardness of the query contain-
ment problem to the equivalence problem.

Corollary 6.22. The equivalence problem for Boolean mDatalog(τdescu) on unranked
labeled unordered trees is 2Exptime-hard.

Proof. The proof proceeds by a reduction from the query containment problem for
Boolean mDatalog(τdescu) on unranked labeled unordered trees which is shown to be
2Exptime-hard by Theorem 6.21.

The task is to decide for two given Boolean mDatalog(τdescu,Σ)-queries Q1 = (P1,Ans1)
and Q2 = (P2,Ans2) whether it holds that Q1 ⊆ Q2. This will be done by verifying
whether (Q1 ∪Q2) ≡ Q2 holds. To this end, we define the query

(Q1 ∪Q2) := (P1 ∪ P2 ∪ {Ans(x)← Ans1(x), Ans(x)← Ans2(x)},Ans)

Now, the following is true.

124 Chapter 6. Dealing with the Descendant-Axis

• If (Q1∪Q2) ≡ Q2 then there is no tree T such that Q1(T) = yes and Q2(T) = no.
This states Q1 ⊆ Q2.

• If (Q1 ∪ Q2) 6≡ Q2 then there is a tree T such that (Q1 ∪ Q2)(T) = yes and
Q2(T) = no. Thus, Q1(T) = yes and therefore Q1 6⊆ Q2.

The converse (Q1 ∪ Q2)(T) = no and Q2(T) = yes contradicts the fact that
Q2(T) = yes implies (Q1 ∪Q2)(T) = yes.

Finally, a suitable reduction within polynomial time in the size of Q1 and Q2 has been
presented finishing the proof of Corollary 6.22.

With reference to the monotonicity of datalog, it seems to be difficult to check if an
unordered tree respects the rank constraints. But for ordered trees and using the schema
τ child,descGK we prove the following result.

Proposition 6.23. The emptiness problem for Boolean mDatalog(τ child,descGK) on ordered
unranked labeled trees is 2Exptime-hard.

Proof. Again, we prove the theorem by using and extending the proof of Theorem 6.16;
so we establish a reduction from the word acceptance problem of exponential space
bounded alternating Turing machines to the complement of the emptiness problem for
mDatalog(τ child,descGK) on ordered unranked labeled trees. For a given ATM Aw that is nor-
malized and composed of the original ATM A and its input word w, we construct within
polynomial time a finite unranked alphabet Σur and a Boolean mDatalog(τ child,descGK)-
query Q such that

w ∈ L(A) ⇐⇒ Q 6= ∅.

Recall the reduction from Theorem 6.16, the utilized ranked alphabet ΣT , and the ob-
tained query Q′ = (P ,Ans′) in mDatalog(τdescu) on ranked trees. We choose the unranked
alphabet Σur := {α|α ∈ ΣT}.

Observe, it holds thatQ′ 6= ∅ if and only if there exists a ranked unordered tree T such
that T represents an encoded accepting computation tree of A. Since τdescu ⊂ τ child,descGK ,
it implies that Q′ is not empty on ordered ranked trees if and only if there exists a ranked
ordered tree T that represents an encoded accepting computation tree of Aw. Now, the
alphabet is no longer ranked. Lemma 3.22 provides a unary mDatalog(τGK,Σ)-query
Qrk = (Prk, Prk) such that for every unranked ordered σ-labeled tree T it holds that

Prk(v) ∈ T ωPrk
(T)

for every node v ∈ T ⇐⇒ there exists a ranked ordered Σ-labeled tree T ′

such that SMo (T) = SMo (T ′)
.

Moreover, we have for every node v in T that Prk(v) /∈ T ωPrk
(T) if such a tree T ′ does not

exists.
To this end, we define the query

Q := (P ∪ Prk ∪ { Ans(x)← Prk(x),Ans′(x) },Ans)

that yields yes, evaluated on a ordered unranked tree T labeled with symbols from Σ if
T respects the alphabet ΣT and it represents an encoded accepting computation tree for
Aw.

6.5 On Hardness on Unranked Trees 125

Unfortunately, this approach fails on unordered unranked trees, which is witnessed by
Lemma 3.27. For ordered trees in general, we can take over the results from unordered
trees since τdescu ⊂ τ child,desco . By using the membership results of Section 6.1, we close
this chapter by concluding the results for unranked trees in the following corollary.

Corollary 6.24. Let N be a set with {desc} ⊆ N ⊆ {root, leaf ,desc} and let M be a
set with {child,desc} ⊆M ⊆ {root, leaf , ls, child,desc}.

(a) The emptiness problem for Boolean mDatalog(τ child,descGK) on ordered unranked labeled
trees is 2Exptime-complete.

(b) The equivalence problem for Boolean mDatalog(τNu) on unordered unranked labeled
trees is 2Exptime-complete.

(c) The equivalence problem for Boolean mDatalog(τMo) on ordered unranked labeled trees
is 2Exptime-complete.

(d) The query containment problem for Boolean mDatalog(τNu) on unordered unranked
labeled trees is 2Exptime-complete.

(e) The query containment problem for Boolean mDatalog(τMo) on ordered unranked la-
beled trees is 2Exptime-complete. y

Chapter 7

Changing the Point of View:

Beyond Set Semantics

In the previous chapters, we considered structures under the so called set semantics .
That means conjunctive queries as well as datalog queries can be seen as functions from
sets into sets. The restriction to set semantics enables a lot of optimization – in particular
minimization – and complexity results on various database languages – specifically for
conjunctive queries – that are identified as important subclasses of SQL.

However, the practical use of SQL is defined as queries over multisets of tuples. Ac-
tually, in real-world databases, relations are viewed as multisets where a tuple may have
multiple occurrences in a relation and in a query’s result. These multiple occurrences
can give further information evaluable with SQL aggregate functions like Count or Sum.
Interpreting set semantics with SQL implies a permanent usage of the distinct operator
to eliminate duplicates in each query and subquery.

In this chapter, we consider the notation of structures and relations under bag se-
mantics . Afterwards, we propose a semantics for datalog in the bag theoretic context.
We investigate the emptiness problem and the query containment problem for datalog
under bag semantics in general as well as for monadic datalog on trees. To do this, we
recall the semantics of conjunctive queries under bag semantics in style of the definitions
used in [CV93], [IR95], and [JKV06]. We illustrate the examples in this chapter by
corresponding statements in SQL. As in SQL the components of every tuple in a relation
are addressed via attribute names, we identify the first column of any relation by the
attribute name A, the second column by B, and so on. Queries in SQL are simple or
composite statements in SQL; therefore, we usually denote a query in SQL by S, S1 or
likewise. The SQL statements are obtained from the SQL standard and they are tested
on PostgreSQL.1

To define multisets in relations of relational structures (or databases), each relation
RA of a structure A over the universe A is defined by a function fRA : Aar(R) → N. The
function fRA(a) denotes the frequency of a tuple a = (a1, . . . , aar(R)) ∈ Aar(R) contained
in the relation R of A. As a shortcut, we write (a)fRA (a) to denote a tuple and its
frequency. Furthermore, we write al ∈ RA to indicate that fRA(a) = l.

For the remainder of this chapter we will call such finite structures allowing multiple
tuples in the relations databases . The universe of a database is called domain and consists

1To be precise, the test suite was PostgreSQL in version 9.4 installed on Debian GNU/Linux 8.5

127

128 Chapter 7. Beyond Set Semantics

of all possible entries. We write dom(D) to denote the domain of the database D. The
subset of the domain that occurs in at least one tuple in the database D is called active
domain and denoted by adom(D).

The function fD : dom(D)→ N denotes the frequency of the atomic fact R(a) in D
and is defined by fD(R(a)) := fRD(a).

Example 7.1. We consider the database D with two relations R and S.

R

a
a

S

a c
c b
c b

Now, we write R(a)2 or (a)2 ∈ R to indicate that there are two rows in R containing
a. To describe S, we write {(a, c)1, (c, b)2} = S. To denote that the tuple (a, a) is not
contained in S, we write (a, a) /∈ S, (a, a)0 ∈ S, or S(a, a)0.

7.1 Conjunctive Queries under Bag Semantics

Before defining the semantics of datalog under bag semantics, we briefly recall the se-
mantics of conjunctive queries under bag semantics.

Let Q be the conjunctive query

Ans(u)← R1(u1) ∧ . . . ∧Rn(un)

of schema τ where n ∈ N>1, {R1, . . . , Rn} ⊆ τ (cf. Section 2.6). Furthermore, let D
be a database of schema τ that is a τ -structure over the universe A allowing multiple
occurrences of the same tuple in its relations.

The result of evaluating Q in database D under bag semantics is defined as follows
(cf. [JKV06]):

Q(D) =

af(a)

∣∣∣∣∣∣ a = (a1, . . . , aar(Q)) ∈ Aar(Q), where f(a) =
∑
β∈B

n∏
i=1

fRDi (β(ui))

and B =
{
β : var(Q)→ dom(D)

∣∣ β(u) = (a1, . . . , aar(Q))
}

Note that the result of Q in D defines a function fQ(D) : Aar(Q) → N indicating the
frequency of any tuple a = (a1, . . . , aar(Q)) in Q(D).

Example 7.2. Consider the database of Example 7.1 and the following queries.

Q1 : Ans(x)← R(x). There is only one valuation β from var(Q1) = {x} into the domain
of D such that the body atom has frequency bigger than zero. Therefore, the result
of evaluating Q1 in D under bag semantics is Q1(D) = {(a)2}.
The query Q1 translated into an SQL statement S1:

select R.A from R.

7.2 Datalog Queries under Bag Semantics 129

Q2 : Ans(x)← R(x) ∧R(x). Again, there is only one successful valuation β, but in con-
trast to set semantics, here the result differs from Q1: The result of evaluating Q2

in D under bag semantics is Q2(D) = {(a)4}.
The query Q2 translated into an SQL statement S2:

select R.A from R, R as R1 where R.A = R1.A

or the equivalent statement S2b:

select R.A from R join R as R1 on (R.A = R1.A).

In any way, it can be seen that we use a temporary table R1 to join the table R with
itself.

Q3 : Ans(x, y)← S(x, z) ∧ S(z, y) ∧ S(v, w). It can be easily verified that the result of
evaluating Q3 in D under bag semantics is Q3(D) = {(a, b)6}.
The query Q3 can be translated into the following SQL statement S3:

select S.A, S1.B from S, S as S1, S as S2 where S.B = S1.A

7.2 Datalog Queries under Bag Semantics

In this section, we propose a semantics for datalog queries under bag semantics by
extending the semantics of conjunctive queries and harmonizing it with the SQL statement
WITH RECURSIVE.

In a first step, we extend datalog programs to multisets, saying that a rule r of P
may have multiple occurrences. Similar to the definition of relations the frequency of a
rule r is defined by a function fP(r) : R→ N where R is the set consisting of all possible
rules. We write r ∈ P if fP(r) > 0 and Pset :=

⋃
{r | r ∈ P} is the set reduct of P .

It is possible, but not intuitive, to define the semantics by using the operator TP .
Thereby, we have to distinguish between the newly and previously added tuples and
their frequencies. To avoid this, we introduce the semantics by extending the proof trees
of Section 2.5.

Let P be a datalog program. Furthermore, let D be a database. For k, i ∈ N, i > 1,
and a1, . . . , ak ∈ dom(D), a proof tree TP,D of the fact P (a1, . . . , ak)

i from the datalog
program P and database D is a finite ordered labeled tree where

• each vertex of the tree is labeled by a symbol of the form ajr where a is an atomic
fact, j ∈ N>1 and r ∈ N,

• each leaf is labeled by aj0 where a is an atomic fact from atoms(D) with an super-
script of its frequency in the database fD(a) = j,

• the root is labeled by P (a1, . . . , ak)
i
fr

for some fr ∈ N, and

• for each non-leaf vertex v with children v1, . . . , vl with l ∈ N there exists a rule
r : h(x) ← b1(x1), . . . , bl(xl) in P , i0, i1, . . . , il, fr ∈ N>1, f1, . . . , fl ∈ N, and a
valuation β such that:

130 Chapter 7. Beyond Set Semantics

(1) v is labeled by h(β(x))i0fr with fP(r) > fr and

(2) the child vj is labeled by bj(β(xj))
ij
fj

for every 1 6 j 6 l, and

(3) i0 =
l∏

j=1

ij.

Note that in contrast to proof trees under set semantics, these proof trees are ordered
trees where the children are ordered in respect to the occurrence of their labeling in the
datalog rule. Therefore, the ordering of the atoms in the body of every datalog rule is
relevant under bag semantics. The subscript fr denotes which occurrence of the rule r
is used and the subscript is zero if the atomic fact occurs in the database. Furthermore
note, there exists potentially more than one proof tree of one fact P (a1, . . . , ak)

i from
the datalog program P and the database D.

Now, let Q = (P , P) be a k-ary datalog query. Furthermore, let the forest FQ,D(a)
for a = (a1, . . . , ak) ∈ dom(D)k be the following set

FQ,D(a) :=
{
T
∣∣T is a proof tree for the fact P (a)i for an i ∈ N>1

}
of all proof trees for the fact P (a1, . . . , ak) of any frequency (greater than zero) from P
and D.

Finally the result of a datalog query Q = (P , P) evaluated on D under bag semantics
is defined by

Q(D) =

{
(a)f(a)

∣∣∣∣∣ for a = (a1, . . . , aar(Q)) ∈ dom(D)ar(Q) and f(a) =
∑

T∈FQ,D(a)

jT

where T is a proof tree of the fact P (a1, . . . , aar(Q))
jT from P and D

}

Again, the result of Q in D defines a function fQ(D) : Aar(Q) → N indicating the frequency
of any tuple a = (a1, . . . , aar(Q)) in Q(D).

Example 7.3. Consider the database D of Example 7.1. Furthermore, let Q = (P , P)
the datalog query where the datalog program P consists of the following rules:

A(x)← R(x)

A(x)← R(x), R(x)

P (x, y)← A(x), S(x, y).

each of frequency one.
The forest F :=

⋃
a1,a2∈dom(D)

FQ,D(a1, a2) consists only of the two proof trees depicted

in Figure 7.1. Therefore, the result of Q in D is Q(D) = {(a, c)6}.
As the datalog query Q is not recursive, an equivalent SQL statement S is the following:

select R2.A, S.B from (S1 union all S2) as R2, S where R2.A = S.A,

where S1 and S2 are the SQL statements from Example 7.2. y

7.2 Datalog Queries under Bag Semantics 131

P (a, c)2
1

A(a)2
1

R(a)2
0

S(a, c)1
0

P (a, c)4
1

A(a)4
1

R(a)2
0 R(a)2

0

S(a, c)1
0

Figure 7.1: The forest F :=
⋃

a1,a2∈dom(D)

FQ,D(a1, a2)

Example 7.4. We consider the datalog query Q = (P , T) where the datalog program P
over {E} consists of the following rules:

T (x, y)← E(x, y)

T (x, z)← T (x, y), E(y, z)

each of frequency one. An equivalent SQL statement S is the following:

with recursive T(A, B) as (

select E.A, E.B from E

union all

select T.A, E.B from T, E where T.B = E.A

)

select T.A, T.B from T

The result of Q, and S respectively, evaluated on a database G representing a directed
graph yields under set semantics the transitive closure of the edge relation E. Under bag
semantics the frequency of a tuple (a, b) corresponds to the count of different paths from
a to b in the represented multigraph. Thus, for the result of Q in G with

EG :=

{
(s, v1)1, (s, v2)1, (s, v3)2, (v1, v2)1,

(v2, t)
1, (v3, v4)2, (v4, t)

1

}
we have (s, t)6 ∈ Q(G). The graph represented in the database G is depicted in Figure 7.2.

s
v2

v3 v4

t

v1

Figure 7.2: The graph represented in the database G of Example 7.4

Observe, adding an edge (v2, v1) makes the obtained directed graph G ′ cyclic. Now,
there are infinitely many different paths from v1 to v2. Therefore, the result relation

132 Chapter 7. Beyond Set Semantics

defined by Q in G ′ under bag semantics is infinite and for the fact E(v1, v2) of P and
G ′ there exists an infinite forest of pairwise different proof trees. So in contrast to set
semantics, we cannot be sure that the evaluation of the query Q, and the statement S

respectively, terminates. y

Now, let us consider an example of monadic datalog on trees under bag semantics. Since
trees are given as structures without duplicates, we can expect that the complexity of
our problems is located between the complexity of the problems under set semantics and
the problems under bag semantics. In [CV93], [IR95], and[JKV06] the authors call such
a setting bag-set semantics .

Example 7.5. Let Σ := {Black,White}. We consider the monadic datalog query Q =
(P , blacklabeled) over τu,Σ where P consists of the following rules (each of frequency one):

blacklabeled(x)← child(x, y), labelBlack(y)

blacklabeled(x)← child(x, y), blacklabeled(y)

Let T be the unordered Σ-labeled tree T presented in Example 2.1 and depicted in Fig-
ure 2.1, The result of Q evaluated on T under bag semantics is

Q(T) = {(v0)5, (v2)1, (v4)1}

as the query asks for all nodes having a descendant that is labeled by the symbol Black
and the node is contained in the result for every such an occurrence.

An equivalent SQL statement is the following:

with recursive blacklabeled(A) as (

select child.A from child, labelBlack where child.B = labelBlack.A

union all

select child.A from child, blacklabeled where child.B = blacklabeled.A

)

select blacklabeled.A from blacklabeled y

7.3 Static Analysis of Datalog under Bag Semantics

In this section, we consider the emptiness problem and the query containment problem
for (monadic) datalog under bag semantics on arbitrary databases.

A k-ary query Q is called unsatisfiable under bag semantics if for every database
D and every tuple a = (a1, . . . , ak) ∈ dom(D)k it holds that fQ(D)(a) = 0. We write
Q =B ∅ to indicate that Q is unsatisfiable under bag semantics and we write Q 6=B ∅
to indicate that Q =B ∅ does not hold.

Two k-ary queries Q1 and Q2 are called equivalent under bag semantics if for every
database D and every tuple a = (a1, . . . , ak) ∈ dom(D)k it holds that fQ1(D)(a) =
fQ2(D)(a). We write Q1 ≡B Q2 to indicate that Q1 and Q2 are equivalent under bag
semantics and we write Q1 6≡B Q2 to indicate that Q1 ≡B Q2 does not hold.

Let Q2 be a k-ary query. A k-ary query Q1 is called contained in Q2 under bag
semantics if for every database D and every tuple a = (a1, . . . , ak) ∈ dom(D)k it holds

7.3 Static Analysis of Datalog under Bag Semantics 133

that fQ1(D)(a) 6 fQ2(D)(a). We write Q1 ⊆B Q2 to indicate that Q1 is contained in Q2

under bag semantics and we write Q1 6⊆B Q2 to indicate that Q1 ⊆B Q2 does not hold.
The corresponding decision problems are defined in the usual way.

7.3.1 The Emptiness Problem of Datalog under Bag Semantics

In this subsection, we will see that the complexity of the emptiness problem under bag
semantics is the same as under set semantics.

Proposition 7.6. Let Q = (P , P) be a k-ary datalog query of schema τ . Then it is
equivalent to decide

(a) Q =B ∅, or

(b) Qset = ∅ for Qset := (Pset, P).

Proof. Assuming Q 6=B ∅. Then, there exist a database D, an i ∈ N>1, and a tuple
a = (a1, . . . , ak) ∈ dom(D)k such that fQ(D)(a) = i. This implies that there exists a
natural number i′ ∈ N>1 with 0 < i′ 6 i and a proof tree T for the fact P (a)i

′
from P

and D. Let Dset be the τ -structure obtained from D where all duplicates in the relations
are omitted. Now, it is easy to verify that Tset obtained from T by omitting the super-
and subscripts from the labels is a proof tree for the fact P (a) from Pset and Dset in the
set semantics. That implies that Q 6= ∅.

The converse direction is easy to verify, as we assume that Qset 6= ∅. Then there
exists a database D (without duplicates) from schema τ such that Qset(D) 6= ∅. It is
obvious, that Q(D) 6=B ∅ and therefore Q 6=B ∅.

By following the argumentation of Proposition 7.6, we immediately obtain the following
corollary.

Corollary 7.7. Let N be a set with N ⊆ {root, leaf} and let M be a set with M ⊆
{root, leaf , ls, child}.

(a) The emptiness problem for mDatalog(τNu) on finite unordered labeled trees under bag
semantics is complete for Exptime.

(b) The emptiness problem for mDatalog(τNo) on finite ordered labeled trees under bag
semantics is complete for Exptime.

(c) The emptiness problem for mDatalog(τ
(N∪desc)
u) on finite unordered unranked labeled

trees under bag semantics is hard for Exptime and solvable within 2-fold exponential
time.

(d) The emptiness problem for mDatalog(τ
(M∪{desc,child})
o) on finite ordered unranked

labeled trees under bag semantics is hard for Exptime and solvable within 2-fold
exponential time.

(e) The emptiness problem for mDatalog(τ
({desc,child})
GK) on finite ordered unranked labeled

trees under bag semantics is complete for 2Exptime.

134 Chapter 7. Beyond Set Semantics

(f) The emptiness problem for mDatalog(τ
(N∪desc)
u) on finite unordered ranked labeled

trees under bag semantics is complete for 2Exptime.

(g) The emptiness problem for mDatalog(τ
(M∪{desc,child})
o) on finite ordered ranked labeled

trees under bag semantics is complete for 2Exptime.

Proof. By Proposition 7.6, we can use the algorithms of the set semantics version of
the problems and the hardness follows from the observation that solving the emptiness
problems in bag semantics is at least as hard as solving the emptiness problems under
set semantics.

7.3.2 The Query Containment Problem
of Datalog under Bag Semantics

Now, we investigate the query containment problem for datalog under bag semantics.
Analogously to the argumentation of the proof for Proposition 7.6, we can see that
Q1 ⊆B Q2 implies Q1 ⊆ Q2 for two datalog queries Q1 and Q2, but as Example 7.8
demonstrates, the converse implication does not hold.

Example 7.8. We consider the monadic datalog queries Q1 = (P1, P) and Q2 = (P2, P)
where

P1 = {P (x)← R(x), S(x)} and P2 = {P (x)← R(x)} .

Clearly, we have Q1 ⊆ Q2 as the rule contained in P1 is a restriction of the rule contained
in P2.

Now, let D be the database consisting of the following relations:

R

a

S

a
a

It holds that Q1(D) = {(a)2} and Q2(D) = {(a)1} and therefore, we have Q1 6⊆B Q2. y

Now, it is clear that deciding Q1 ⊆B Q2 for (monadic) datalog on finite structures is
harder than to decide Q1 ⊆ Q2. Moreover, section’s main goal is to prove the following
theorem stating that in general the containment problem for monadic datalog under bag
semantics is undecidable.

Theorem 7.9. For every m ∈ N>1, let τm be the schema consisting of the unary relation
symbols X1, . . . , Xm.

There exists an m ∈ N>1 such that

(a) the query containment problem for datalog queries over the schema τm under bag
semantics, and

(b) the query containment problem for monadic datalog queries over the schema τm under
bag semantics

is undecidable.

7.3 Static Analysis of Datalog under Bag Semantics 135

As the queries of Example 7.8 can be rewritten into conjunctive queries, it is nearby to
consider at first the query containment problem for conjunctive queries. Unfortunately,
it is not known whether the problem for conjunctive queries is decidable. So, let us
mention two extensions of conjunctive queries for which the query containment problem
under bag semantics is known to be undecidable.

The first extension is to allow inequality atoms in the body of the rule. Such an
inequality atom forces any valuation to map the two variables of the inequality atom to
different elements of the domain.

In 2006, Jayram et al. [JKV06] showed that the query containment problem for
conjunctive queries with inequalities under bag semantics is undecidable.

The second extension under bag semantics is to allow a finite multiset of conjunctive
queries using the same head atom. Similar to the definition of datalog programs in bag
semantics, the frequency of a conjunctive query QCQ in a union Q of conjunctive queries
is defined by a function fQ(r) : CQ → N where CQ is the set consisting of all possible
conjunctive queries. We write QCQ ∈ Q if fQ(QCQ) > 0. Speaking about a union Q of
conjunctive queries Q1, Q2, . . . , Qn means a listing Q1, Q2, . . . , Qn of every occurrence of
a conjunctive query in Q, so two or more queries in the listing can be equal.

For an n ∈ N>1, the result of a unionQ of conjunctive queriesQ1, Q2, . . . , Qn evaluated
in a database D of schema τ under bag semantics is defined as follows:2

Q(D) =

(a1, . . . , aar(Q))
f

∣∣∣∣∣∣
for a1, . . . , aar(Q) ∈ dom(D), and

f =
n∑
i=1

j , for (a1, . . . , aar(Q))
j ∈ Qi(D)

The frequency fQ(D)(a) of a tuple a ∈ dom(D)ar(Q) in the result of a union Q of con-

junctive queries evaluated in a database D is defined similar to fQ′(D)(a) for a datalog
query Q′.

The SQL statement for bag union of two SQL statements S1 and S2 is given by:3

S1 UNION ALL S2

In 1993, Ioannidis and Ramakrishnan [IR95] investigated the query containment problem
for unions of conjunctive queries under bag semantics. A special labeling system was used
to obtain results for the query containment problem under several semantics. For the
sake of completeness and to obtain a formulation of the result usable for a later reduction
to (monadic) datalog, we reconstruct the proof of Ioannidis and Ramakrishnan and adopt
it to our notation and context.

Starting point is the m-variable Diophantine equation problem over the natural num-
bers and Yuri Matiyasevich’s Theorem.4 The problem is defined as follows.

2It is equivalent to define the result of a union Q of conjunctive queries evaluated in a database by

Q(D) =

{
(a1, . . . , aar(Q))

f

∣∣∣∣∣ for a1, . . . , aar(Q) ∈ dom(D), and
f =

∑
QCQ ∈Q

j · fQ(QCQ) , for (a1, . . . , aar(Q))
j ∈ QCQ(D)

}
.

3Note, the statements S1 and S2 have to be compatible, meaning of the same arity and the corre-
sponding attributes have to be type compatible.

4 Actually, Юрий Владимирович Матиясевич. Some authors use the alternative transcription Jurǐı
Matijasevič.

136 Chapter 7. Beyond Set Semantics

The m-variable Diophantine equation problem over the natural
numbers

Input: s ∈ N>1,
a1, . . . , as ∈ Z,
for every i ∈ {1, . . . , s} : ci,1, . . . , ci,m ∈ N

Question: Are there natural numbers z1, . . . , zm ∈ N such that for the
polynom

P (x1, . . . , xm) :=
s∑
i=1

aix
ci,1
1 · · · xci,mm

it holds that P (z1, . . . , zm) = 0 ?

In 1970, Matiyasevich proved the following theorem.5

Theorem 7.10 (Matiyasevich [Mat70]). There exists an m ∈ N>1 such that the m-
variable Diophantine equation problem over the natural numbers is undecidable. y

It is worth to say that the m-variable Diophantine equation problem over the natural
numbers is a variant of Hilbert’s tenth problem that asks for a general algorithm deciding
the solvability of Diophantine equations. Therefore, Matiyasevich’s Theorem implies a
negative solution of Hilbert’s tenth problem.

Now, we use Matiyasevich’s Theorem to show that the m-variable Diophantine 6
problem over N is undecidable. This problem is defined as follows.

The m-variable Diophantine 6 problem over N

Input: s1, s2 ∈ N>1,
a1, . . . , as1+s2 ∈ N>1,
for every i ∈ {1, . . . , s1 + s2} :

ci,1, . . . , ci,m ∈ N
with c > 0 for at least one c ∈ {ci,1, . . . , ci,m}

Question: Holds that

s1∑
i=1

aix
ci,1
1 · · · xci,mm 6

s2∑
i=s1+1

aix
ci,1
1 · · · xci,mm

for all natural numbers x1, . . . , xm ∈ N ?

Proposition 7.11 (implicit in [IR95]). There exists an m ∈ N>1 such that the m-variable
Diophantine 6 problem over N is undecidable.

5As the result is a conjunction of Matiyasevich’s ’Every computably enumerable set is Diophantine.’
and a previous work of Martin Davis, Hilary Putnam, and Julia Robinson [DPR61], the theorem is
also known as the DPRM-theorem (or the MRDP-theorem). It is an open problem to find the least
number of variables needed to obtain an unsolvable result. The currently best-known bound is nine
by Matiyasevich, presented in a publication of Jones [Jon82]. For further information, we refer to the
textbook by Smoryński [Smo91].

7.3 Static Analysis of Datalog under Bag Semantics 137

Proof. We assume the m-variable Diophantine 6 problem over N is decidable for every
m ∈ N>1 and show that this assumption contradicts Theorem 7.10.

Let s ∈ N>1, a1, . . . , as ∈ Z, and ci,1, . . . , ci,n ∈ N for every i ∈ {1, . . . , s} be the input
for the n-variable Diophantine equation problem over the natural numbers. This input
defines a polynom

P (x1, . . . , xn) :=
s∑
i=1

aix
ci,1
1 · · · xci,nn

and it is to decide whether there are natural numbers z1, . . . , zn ∈ N such that

P (z1, . . . , zn) = 0.

Obviously, the statement

there exist natural numbers z1, . . . , zn ∈ N such that P (z1, . . . , zn) = 0

is equivalent to the statement

not for all z1, . . . , zn ∈ N it holds that P (z1, . . . , zn) 6= 0.

As all parameters are integrals, it is equivalent to

not for all z1, . . . , zn ∈ N it holds that P (z1,zn) 6 −1 or P (z1, . . . , zn) > 1,

that is equivalent to the statement

not for all z1, . . . , zn ∈ N it holds that P (z1, . . . , zn)2 > 1

or even

not for all z1, . . . , zn ∈ N it holds that 1− P (z1, . . . , zn)2 6 0.

Now, let xn+1 be a new variable such that xn+1 /∈ {x1, . . . , xn} and consider the polynom
P ′(x1, . . . , xn, xn+1) := xn+1(1− P (x1, . . . , xn)2). Then the aforementioned statements
are equivalent to the statement

not for all z1, . . . , zn, zn+1 ∈ N it holds that P ′(z1, . . . , zn, zn+1) 6 0.

Note, the polynom P ′(z1, . . . , zn, zn+1) has no constant term. Therefore, there are s1, s2 ∈
N, a′1, . . . , a

′
s1+s2

∈ Z, and c′i,1, . . . , c
′
i,n+1 ∈ N for every i ∈ {1, . . . , s1 + s2} such that

P ′(x1, . . . , xn, xn+1) =

s1+s2∑
i=1

a′ix
c′i,1
1 · · · x

c′i,n+1

n+1

where a′i > 0 for all i ∈ {1, . . . , s1} and a′i < 0 for all i ∈ {s1 + 1, . . . , s2}. Now, the
statement

not for all z1, . . . , zn, zn+1 ∈ N it holds that

s1+s2∑
i=1

a′iz
c′i,1
1 · · · zc

′
i,n+1

n+1 6 0

138 Chapter 7. Beyond Set Semantics

is equivalent to

not for all z1, . . . , zn, zn+1 ∈ N it holds that
s1∑
i=1

a′iz
c′i,1
1 · · · zc

′
i,n+1

n+1 −
s2∑

i=s1+1

|a′i|z
c′i,1
1 · · · zc

′
i,n+1

n+1 6 0

that is equivalent to the statement

not for all z1, . . . , zn, zn+1 ∈ N it holds that
s1∑
i=1

a′iz
c′i,1
1 · · · zc

′
i,n+1

n+1 6
s2∑

i=s1+1

|a′i|z
c′i,1
1 · · · zc

′
i,n+1

n+1 .

Note, as P ′ has no constant term, there exists for every i ∈ {1, . . . , s1 + s2} a c ∈
{c′i,1, . . . , c′i,n+1} such that c > 0.

Now, an algorithm A that has to decide the n-variable Diophantine equation prob-
lem over the natural numbers can proceed as follows. By assumption there exists for
m = n + 1 an algorithm A6 to decide the m-variable Diophantine 6 problem over
N. A computes on input s ∈ N>1, a1, . . . , as ∈ Z, and ci,1, . . . , ci,n ∈ N for every
i ∈ {1, . . . , s} the values of s1, s2 ∈ N, a′1, . . . , a

′
s1+s2

∈ Z, and c′i,1, . . . , c
′
i,n+1 ∈ N for

every i ∈ {1, . . . , s1 + s2} of the polynom P ′.6 Then A returns yes if and only if A6

on input s1, s2, a
′
1, . . . , a

′
s1
, |a′s1+1|, . . . , |a′s1+s2

| ∈ N>1, and c′i,1, . . . , c
′
i,n+1 ∈ N for every

i ∈ {1, . . . , s1 + s2} returns no, and A returns no, otherwise. As seen above, this decides
the n-variable Diophantine equation problem over the natural numbers for every n ∈ N.
This contradicts Theorem 7.10. Therefore the assumption must be false; that finishes
the proof of Proposition 7.11.

Now, we are ready to adapt the result of Ioannidis and Ramakrishnan.

Theorem 7.12 (implicit in [IR95]). For every m ∈ N>1 let τm be the schema consisting
of the unary relation symbols X1, . . . , Xm.

There exists an m ∈ N>1 such that the query containment problem for union of unary
conjunctive queries over the schema τm under bag semantics is undecidable.

Proof. We assume the problem is decidable for every m ∈ N>1, hence there exists an
algorithm deciding the problem. On the input of the m-variable Diophantine 6 problem
over N defining two polynomials P1(x1, . . . , xm) and P2(x1, . . . , xm), we construct two
unions Q1 and Q2 of unary conjunctive queries of schema τm such that

Q1 ⊆B Q2 ⇐⇒ for all natural numbers z1, . . . , zm it holds that
P1(z1, . . . , zm) 6 P2(z1, . . . , zm).

Let s1, s2, a1, . . . , as1+s2 , c1,1 . . . cs1+s2,m be the input of the given problem instance of the
m-variable Diophantine 6 problem over N. Then P1(x1, . . . , xm) is defined as

P1(x1, . . . , xm) :=

s1∑
i=1

aix
ci,1
1 · · · xci,mm ,

6These are simple multiplication and addition operations and a subsequent sorting.

7.3 Static Analysis of Datalog under Bag Semantics 139

where for every i ∈ {1, . . . , s1} there is at least one c > 0 in {ci,1, . . . , ci,m}.
Now, we construct the union Q1 of unary conjunctive queries from P1 as follows.

Note, for every l ∈ {1, . . . ,m} and every variable xl there exists a unary relation Xl. For
each term aix

ci,1
1 · · · x

ci,m
m , we define the conjunctive query Q1,i by

Ans(x)← X1(x) ∧X1(x) ∧ . . . ∧X1(x)︸ ︷︷ ︸
ci,1 times

∧ . . . ∧Xm(x) ∧Xm(x) ∧ . . . ∧Xm(x)︸ ︷︷ ︸
ci,m times

that will occur with frequency ai in the union Q1. Recall, the polynom has no constant
term, saying we have c > 0 for at least one c ∈ {ci,1, . . . , ci,m}. This implies every query
Q1,i is well defined and no conjunctive query has an empty body. Furthermore, if one
exponent is zero, its factor can be dropped as for every natural number n it holds that

n0 = 1. Finally, the union Q1 consist of n1 =
s1∑
i=1

ai conjunctive queries.

The union Q2 of conjunctive queries is constructed from P2 in the same way.
For the correctness of the construction, we consider an arbitrary database D. Let

d ∈ adom(D) an arbitrary entry in the database. Then by construction of the union Q1

of conjunctive queries and the defined semantics, we have

fQ1(D)(d) =
∑

QCQ ∈Q1

fQCQ(D)(d) · fQ1(QCQ)

=

s1∑
i=1

fQ1,i(D)(d) · fQ1(Q1,i)

=

s1∑
i=1

fD(X1(d)) · . . . · fD(X1(d))︸ ︷︷ ︸
ci,1 times

· . . . · fD(Xm(d)) · . . . · fD(Xm(d))︸ ︷︷ ︸
ci,m times

·ai

=

s1∑
i=1

ai · fD(X1(d))ci,1 · · · fD(Xm(d))ci,m

= P1(fD(X1(d)), . . . , fD(Xm(d))).

Analogously, we obtain fQ2(D)(d) = P2(fD(X1(d)), . . . , fD(Xm(d))) for Q2.
We assume that for all natural numbers z1, . . . , zm it holds that

P1(z1, . . . , zm) 6 P2(z1, . . . , zm).

Then for every database D and for every element d ∈ adom(D) it holds that fQ1(D)(d) 6
fQ2(D)(d). This implies Q1(D) ⊆B Q2(D) and therefore Q1 ⊆B Q2.

If otherwise, we assume that not for all natural numbers z1, . . . , zm it holds that

P1(z1, . . . , zm) 6 P2(z1, . . . , zm)

then there exist natural numbers z1, . . . , zm ∈ N such that

P1(z1, . . . , zm) > P2(z1, . . . , zm).

Consider the database D with adom(D) = {d} and dzi ∈ XDi for every i ∈ {1, . . . ,m}.
Then fQ1(D)(d) > fQ2(D)(d). This implies Q1(D) 6⊆B Q2(D) and therefore, Q1 6⊆B Q2.

140 Chapter 7. Beyond Set Semantics

Now, we are ready to prove Theorem 7.9.

Theorem 7.9 (restated) For every m ∈ N>1 let τm be the schema consisting of the
unary relation symbols X1, . . . , Xm.

There exists an m ∈ N>1 such that

(a) the query containment problem for datalog queries over the schema τm under bag
semantics, and

(b) the query containment problem for monadic datalog queries over the schema τm under
bag semantics

is undecidable.

Proof. Note (b) implies (a), so it suffices to show that claim (b) is true.

We assume that for every m ∈ N the query containment problem for monadic datalog
over the schema τm under bag semantics is decidable. This implies an algorithm A that
decides for two given monadic datalog queries Q1 and Q2 from schema τm whether
Q1 ⊆B Q2.

Let m ∈ N and QCQ
1 and QCQ

2 be two unions of conjunctive queries of arity one over
the schema τm. By standard translation, we construct two monadic datalog queries Q1

andQ2 over τm such that for every databaseD of schema τ it holds thatQCQ
1 (D) = Q1(D)

and QCQ
2 (D) = Q2(D).

Now, we decide Q1 ⊆B Q2 by using algorithm A. As QCQ
1 ≡B Q1 and QCQ

2 ≡B Q2,
we decide QCQ

1 ⊆B QCQ
2 that contradicts Theorem 7.12. So the assumption must be

false.

Finally, we consider the query containment problem under bag semantics on trees and
we show that in general the problem is undecidable for monadic datalog.

Proposition 7.13. For every m ∈ N>1 let Σm be the alphabet Σm := {X1, . . . , Xm}.
There exists an m ∈ N>1 such that

(a) the query containment problem for mDatalog(τu) under bag-semantics on finite un-
ordered Σm-labeled trees is undecidable.

(b) the query containment problem for mDatalog(τo) under bag-semantics on finite or-
dered Σm-labeled trees is undecidable.

Proof. We assume that the claim (b) is false; this implies that for every m ∈ N the
query containment problem for mDatalog(τo) under bag semantics on finite ordered Σm-
labeled trees is decidable. Therefore, there exists an algorithm A that decides for a given
alphabet Σm and two given monadic datalog queries Q1 and Q2 from schema τo whether
for every ordered labeled tree T it holds that Q1(T) ⊆B Q2(T).

For anym ∈ N let τm be the schema consisting ofm unary relation symbolsX1, . . . , Xm.
Let Q1 = (P1, P) and Q2 = (P2, P) be two monadic datalog queries over τm. Now, we

7.3 Static Analysis of Datalog under Bag Semantics 141

set the alphabet Σm := {X1, . . . , Xm} and define the monadic datalog program PT using
schema τo,Σm consisting of a unique occurrence of the following rules for every 1 6 j 6 m.

PXj
(x)← labelXj

(x)

PXj
(x)← ns(x, y), PXj

(y)

Xj(x)← fc(x, y), PXj
(y)

Furthermore, let Q′1 and Q′2 be the monadic datalog queries Q′1 := (P1 ∪ PT , P) and
Q′2 := (P2 ∪ PT , P).

The result of evaluating the program PT on an ordered Σm-labeled tree is a database
instance DT over the unary idb-relations X1, . . . , Xm such that for every i, j ∈ N, 1 6
j 6 m and every non-leaf node v in T it holds:

(v)i ∈ Xj if and only if v has exactly i children labeled by Xj.

Therefore, it holds that if there is an ordered Σm-labeled tree T such that Q′1(T) 6⊆B
Q′2(T), then there exists a database D (defined through T) such that Q1(D) 6⊆B Q2(D).

If otherwise there exists a database D over τm such that Q1(D) 6⊆B Q2(D), then there
exists a tree TD such that Q′1(TD) 6⊆B Q′2(TD). This tree TD can be obtained from the
database D, for instance, in the following way. We order the active domain adom(D) in
any way. Let N be a set disjoint from adom(D). We start with a tree consisting only of
the root that is an element of N and labeled by any symbol of Σm. Now, to construct
TD we proceed recursively over the elements of adom(D) by following the order. Let a
be the actual element of adom(D). Then we choose any leaf of TD, replace it by a, and
label the new inserted node a with the label of the omitted one. Now, we add for every
occurrence of a in any relation Xi for 1 6 i 6 m an element of N as child of a ∈ TD
labeled by Xi. Then, we continue with the next element of adom(D). Note that after
every recursive step all leaf nodes are elements of N and all non-leaf nodes are elements
of adom(D). Furthermore, the children of every non leaf node represent its occurrence
and its frequency in every relation X1, . . . , Xm.

Finally, it holds that Q1 ⊆B Q2 if and only if for all ordered Σm-labeled trees T
it holds that Q′1(T) ⊆B Q′2(T) where Q′1 := (P1 ∪ PT , P) and Q′2 := (P2 ∪ PT , P).
This implies that deciding the containment of Q′1 in Q′2 over trees under bag semantics
by using algorithm A decides Q1 ⊆B Q2. This contradicts Theorem 7.9 stating that
Q1 ⊆B Q2 is undecidable.

The proof of claim (a) is similar to the proof of (b) but uses the monadic datalog
program

PT :=
{
Xj(x)← child(x, y), labelXj

(y)
}

16j6m
.

In the previous sections, we have investigated the emptiness problem and the query
containment problem of (monadic) datalog under bag semantics. The equivalence prob-
lem under bag semantics is left open.

Surprisingly, the equivalence problem for conjunctive queries under bag semantics
seems to be easier than under set semantics: Under set semantics equivalence for con-
junctive queries is known to be NP-complete [CM77]. But in 1993 Chaudhuri and Vardi
[CV93] stated that two conjunctive queries Q1 and Q2 are equivalent under bag semantics
if and only if they are isomorphic.7 This means that two queries are equivalent under bag

7The graph-isomorphism problem is known to be in NP but it is not known to be hard for NP.

142 Chapter 7. Beyond Set Semantics

semantics if and only if they are identical up to renaming and reordering. This would
imply minimization by replacing queries by equivalent conjunctive queries with a smaller
number of body atoms to find a minimally equivalent conjunctive query would fail.

However, to the best of the author’s knowledge it is not known whether the equiva-
lence problem under bag semantics for monadic datalog on finite labeled trees is decid-
able. So, it remains as an open question.

Chapter 8

Conclusion

In this thesis, we considered the emptiness problem, the equivalence problem, as well as
the query containment problem of monadic datalog for various representations of finite
labeled trees. These are fundamental problems of static analysis and thus, important
tasks during query optimization.

We distinguished ordered and unordered trees, each labeled with symbols from an
either ranked or unranked alphabet. As basic schema for unordered trees we employed
a representation that uses the child -axis and for ordered trees we basically utilized the
axes firstchild and nextsibling. Additionally, we considered schema extensions by the
predicates denoting the root, leaves, and descendants, as well as last sibling and child
on ordered trees. As seen in the first part of Chapter 3, the query languages using the
various schemas over the miscellaneous representations differ strongly according to their
expressive power. In the same chapter and by using results from logic, we established
the decidability of the considered problems for all representations. Regarding the ex-
pressiveness, widely diversified complexity results could be expected. Surprisingly, they
are relatively homogeneous.

In Chapter 4, we showed a lower bound for the aforementioned problems using the
basic schemas. To obtain Exptime-hardness, we presented a reduction from the two
person corridor tiling problem to the emptiness problem for Boolean monadic datalog
on unordered unranked labeled trees within polynomial time. We extended the proof
for ranked labeled trees and used the results to establish the lower bound even on or-
dered trees, as well as for the equivalence and the query containment problem on these
structures.

For schemas and their extensions not including the descendant predicate, a matching
upper bound is presented in Chapter 5. This chapter makes considerable use of automata
theory. In a first step, we reduced the problems to the corresponding problems over binary
trees. Then, we translated the given queries into two-way alternating tree automata whose
principle of operation is very similar to the evaluation of monadic datalog queries on trees
without descendant predicate. To decide the problems, we finally computed equivalent
nondeterministic bottom-up tree automata.

While in Chapter 3 we have seen that adding the descendant predicate does not
increase the expressive power, we realized in Chapter 6 that it enhances the complexity
of the considered problems enormously. In the first part of Chapter 6, we presented an
algorithm that solves our problems within 2-fold exponential time. This was achieved

143

144 Chapter 8. Conclusion

τNu τMo
5.19(b)/4.4 5.19(b)/4.10 unranked

Emptiness Exptime-compl.
5.19(b)/4.8

Exptime-compl.
5.19(b)/4.10 ranked

5.19(a)/4.9(a) 5.19(a)/4.14(a) unranked
Equivalence Exptime-compl.

5.19(a)/4.9(a)

Exptime-compl.
5.19(a)/4.14(a) ranked

5.2/4.9(b) 5.1/4.14(b) unranked
Containment Exptime-compl.

5.17(b)/4.9(b)

Exptime-compl.
5.17(a)/4.14(b) ranked

Table 8.1: Complexity results for monadic datalog on finite labeled trees not using desc
obtained in this thesis. Here, N is a set with N ⊆ {root, leaf} and M is a set with
M ⊆ {root, leaf , ls, child}. The pointers to the left refer to the membership results as
the right ones point to the hardness result.

τNd
u τMdc

o τMdc
GK

Exptime-hard 4.4 Exptime-hard 4.10 6.23 unranked
Emptiness

2Exptime-compl. 6.16 2Exptime-compl. 6.20 6.20 ranked

6.22 6.24(c) 6.24(c) unranked
Equivalence 2Exptime-compl.

6.18(a)

2Exptime-compl.
6.20 6.20 ranked

6.21 6.24(e) 6.14 unranked
Containment 2Exptime-compl.

6.18(b)

2Exptime-compl.
6.20

2
E
x
p
t
im

e
-c

om
p
l.

6.20 ranked

Table 8.2: Complexity results for monadic datalog on finite labeled trees using the
descendant-axis obtained in this thesis. 2Exptime-membership for all problems are
given by Theorem 6.1 and Corollary 6.6. So, the pointers refer to the corresponding
hardness results. Nd is a set with {desc} ⊆ Nd ⊆ {root, leaf ,desc} and Mdc is a set
with {child,desc} ⊆Mdc ⊆ {root, leaf , ls, child,desc}.

by rewriting the monadic datalog programs into equivalent programs in monadic datalog
without descendant predicates. However, this led to an exponential blow up in the case
of cyclic rules.

For ranked trees a matching lower bound on all ordered and unordered trees by a
reduction from the word problem of exponentially bounded alternating Turing machines
is presented. The results concerning the equivalence problem and the query containment
problem are transferred to unranked trees. The matching lower bound for the emptiness
problem on ranked trees is only established for ordered trees that use the whole schema.
As the presented reduction from the word problem of exponentially bounded alternating
Turing machines is technical, an alternative short and intuitive proof for the hardness
of the query containment problem of ordered unranked labeled trees using the maximal
schema is given. However, this proof cannot be extended to the other problems and
structures.

In Chapter 7, we shifted the focus from the set semantics to the bag semantics. Bag
semantics, reflects that real-world databases allow multiple occurrences of a tuple in a
relation and in a query’s result. We proposed a semantics for monadic datalog that

Chapter 8. Conclusion 145

extends the known bag semantics for conjunctive queries. This semantics bases on the
proof trees used in the set theoretic setting and agrees with the recursive evaluation
of the SQL standard. We have seen that the complexity of the emptiness problem for
monadic datalog under bag semantics on finite labeled trees complies with the complexity
of the same problem under set semantics. For the query containment problem of monadic
datalog under bag semantics on finite labeled trees we proved undecidability in general.
This was done by a reduction from a variant of Hilbert’s tenth problem. The complexity
of the equivalence problem for monadic datalog under bag semantics on finite labeled
trees remains as an open question.

Table 8.1 and Table 8.2 give an overview of the results under set semantics obtained
in the thesis and point to the respective theorems. In summary, we achieved a virtually
complete analysis of the problems entailed by static analysis of monadic datalog on finite
labeled trees.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[Abi01] Serge Abiteboul. Semistructured Data: from Practice to Theory. In 16th
Annual IEEE Symposium on Logic in Computer Science, Boston, Mas-
sachusetts, USA, June 16-19, 2001, Proceedings, pages 379–386. IEEE Com-
puter Society, 2001.

[ABMW13] Serge Abiteboul, Pierre Bourhis, Anca Muscholl, and Zhilin Wu. Recursive
queries on trees and data trees. In Proceedings of the 16th International
Conference on Database Theory, ICDT ’13, pages 93–104, 2013.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[BBS12] Michael Benedikt, Pierre Bourhis, and Pierre Senellart. Monadic Datalog
Containment. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and
Roger Wattenhofer, editors, Automata, Languages, and Programming - 39th
International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part II, volume 7392 of Lecture Notes in Computer Science,
pages 79–91. Springer, 2012.

[BDG90] José L. Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Complex-
ity II, volume 22 of EATCS Monographs on Theoretical Computer Science.
Springer, 1990.

[BMS08a] Henrik Björklund, Wim Martens, and Thomas Schwentick. Optimizing Con-
junctive Queries over Trees using Schema Information. In Edward Ochman-
ski and Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer
Science 2008, 33rd International Symposium, MFCS 2008, Torun, Poland,
August 25-29, 2008, Proceedings, volume 5162 of Lecture Notes in Computer
Science, pages 132–143. Springer, 2008.

[BMS08b] Henrik Björklund, Wim Martens, and Thomas Schwentick. Op-
timizing Conjunctive Queries over Trees using Schema Information
(full version). Available at http://www8.cs.umu.se/~henrikb/papers/

mfcs08full.pdf, 2008. Full Version of [BMS08a], Accessed: 2016-03-05.

147

http://www8.cs.umu.se/~henrikb/papers/mfcs08full.pdf
http://www8.cs.umu.se/~henrikb/papers/mfcs08full.pdf

148 Bibliography

[CDG+08] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Christof
Löding, Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree Au-
tomata Techniques and Applications. Available at http://www.grappa.

univ-lille3.fr/tata, 2008. Release November, 18th 2008.

[CGKV88] Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y.
Vardi. Decidable Optimization Problems for Database Logic Programs (Pre-
liminary Report). In Janos Simon, editor, Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illi-
nois, USA, pages 477–490. ACM, 1988.

[Chl86] Bogdan S. Chlebus. Domino-Tiling Games. Journal of Computer and Sys-
tem Sciences, 32(3):374–392, 1986.

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114–133, 1981.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Con-
junctive Queries in Relational Data Bases. In Proceedings of the Ninth
Annual ACM Symposium on Theory of Computing, STOC ’77, pages 77–90,
New York, NY, USA, 1977. ACM.

[CM01] James Clark and Makoto Murata. RELAX NG Specification. Available at
http://relaxng.org/spec-20011203.html, (2001). The Organization for
the Advancement of Structured Information Standards [OASIS].

[Cou90] Bruno Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In
Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics (B), pages 193–242. 1990.

[CS76] Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In 17th Annual
Symposium on Foundations of Computer Science, Houston, Texas, USA,
25-27 October 1976, pages 98–108. IEEE Computer Society, 1976.

[CV93] Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real Conjunctive
Queries. In Catriel Beeri, editor, Proceedings of the Twelfth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 25-
28, 1993, Washington, DC, USA, pages 59–70. ACM Press, 1993.

[Don70] John Doner. Tree Acceptors and Some of Their Applications. Journal of
Computer and System Sciences, 4(5):406–451, 1970.

[DPR61] Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for
exponential diophantine equations. Annals of Mathematics, 74(3):425–436,
1961.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://relaxng.org/spec-20011203.html

Bibliography 149

[EF95] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Perspectives
in Mathematical Logic. Springer, 1995.

[FFG01] Jörg Flum, Markus Frick, and Martin Grohe. Query Evaluation via Tree-
Decompositions. In Jan Van den Bussche and Victor Vianu, editors,
Database Theory - ICDT 2001, 8th International Conference, London, UK,
January 4-6, 2001, Proceedings., volume 1973 of Lecture Notes in Computer
Science, pages 22–38. Springer, 2001.

[FG02] Markus Frick and Martin Grohe. The complexity of first-order and monadic
second-order logic revisited. In 17th IEEE Symposium on Logic in Computer
Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings,
pages 215–224. IEEE Computer Society, 2002.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2006.

[FGS14] André Frochaux, Martin Grohe, and Nicole Schweikardt. Monadic Datalog
Containment on Trees. In Georg Gottlob and Jorge Pérez, editors, Pro-
ceedings of the 8th Alberto Mendelzon Workshop on Foundations of Data
Management, Cartagena de Indias, Colombia, June 4-6, 2014, volume 1189
of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[FS13] André Frochaux and Nicole Schweikardt. A note on monadic datalog on
unranked trees. Technical Report, available at CoRR, abs/1310.1316, 2013.

[FS16] André Frochaux and Nicole Schweikardt. Monadic Datalog Containment on
Trees Using the Descendant-Axis. In Reinhard Pichler and Altigran Soares
da Silva, editors, Proceedings of the 10th Alberto Mendelzon International
Workshop on Foundations of Data Management, Panama City, Panama,
May 8-10, 2016, volume 1644 of CEUR Workshop Proceedings. CEUR-
WS.org, 2016.

[GK04] Georg Gottlob and Christoph Koch. Monadic Datalog and the Expressive
Power of Languages for Web Information Extraction. Journal of the ACM,
51(1):74–113, 2004.

[GKS06] Georg Gottlob, Christoph Koch, and Klaus U. Schulz. Conjunctive Queries
over Trees. Journal of the ACM, 53(2):238–272, 2006.

[HS65] Juris Hartmanis and Richard E. Stearns. ON THE COMPUTATIONAL
COMPLEXITY OF ALGORITHMS. Transactions of the American Math-
ematical Society, 117:285–306, 1965.

[Imm86] Neil Immerman. Relational Queries Computable in Polynomial Time. In-
formation and Control, 68(1-3):86–104, 1986.

[IR95] Yannis E. Ioannidis and Raghu Ramakrishnan. Containment of Conjunctive
Queries: Beyond Relations as Sets. ACM Transactions on Database Systems
(TODS), 20(3):288–324, 1995.

150 Bibliography

[JKV06] T. S. Jayram, Phokion G. Kolaitis, and Erik Vee. The Containment Problem
for REAL Conjunctive Queries with Inequalities. In Stijn Vansummeren,
editor, Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 26-28, 2006, Chicago,
Illinois, USA, pages 80–89. ACM, 2006.

[Jon82] James P. Jones. Universal diophantine equation. The Journal of Symbolic
Logic, 47(3):549–571, 1982.

[Koz76] Dexter Kozen. ON PARALLELISM IN TURING MACHINES. In 17th
Annual Symposium on Foundations of Computer Science, Houston, Texas,
USA, 25-27 October 1976, pages 89–97. IEEE Computer Society, 1976.

[Koz06] Dexter Kozen. Theory of Computation. Texts in Computer Science.
Springer, 2006.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004.

[Lib06] Leonid Libkin. LOGICS FOR UNRANKED TREES: AN OVERVIEW.
Logical Methods in Computer Science, 2(3), 2006.

[Löd12] Christof Löding. Basics on Tree Automata. In Deepak D’Souza and Priti
Shankar, editors, Modern Applications of Automata Theory. World Scien-
tific, 2012.

[Mat70] Yuri Matiyasevich. Enumerable sets are diophantine. Doklady Akademii
Nauk SSSR, 191(2):279–282, 1970.

[MFS10] Sebastian Maneth, Sylvia Friese, and Helmut Seidl. Type-Checking Tree
Walking Transducers. In Deepak D’Souza and Priti Shankar, editors, Mod-
ern applications of automata theory, volume 2 of IISc Research Monographs.
World Scientific, 2010.

[Nev02] Frank Neven. Automata, Logic, and XML. In Julian C. Bradfield, editor,
Computer Science Logic, 16th International Workshop, CSL 2002, 11th An-
nual Conference of the EACSL, Edinburgh, Scotland, UK, September 22-25,
2002, Proceedings, volume 2471 of Lecture Notes in Computer Science, pages
2–26. Springer, 2002.

[NS02] Frank Neven and Thomas Schwentick. Query automata over finite trees.
Theoretical Computer Science, 275(1-2):633–674, 2002.

[Pap94] Christos H. Papadimitriou. COMPUTATIONAL COMPLEXITY. Addison-
Wesley, 1994.

[Sch07] Thomas Schwentick. Automata for XML - A survey. Journal of Computer
and System Sciences, 73(3):289–315, 2007.

[See91] Detlef Seese. The structure of the models of decidable monadic theories of
graphs. Annals of Pure and Applied Logic, 53(2):169–195, 1991.

Bibliography 151

[Shm87] Oded Shmueli. DECIDABILITY AND EXPRESSIVENESS ASPECTS OF
LOGIC QUERIES. In Moshe Y. Vardi, editor, Proceedings of the Sixth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, March 23-25, 1987, San Diego, California, USA, pages 237–249.
ACM, 1987.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. Thomson
Course Technology, second, international edition, 1997.

[Slu85] Giora Slutzki. Alternating tree automata. Theoretical Computer Science,
41:305 – 318, 1985.

[Smo91] Craig A. Smoryński. Logical Number Theory I. Universitext. Springer-
Verlag, Berlin, New York, 1991.

[SSS09] Nicole Schweikardt, Thomas Schwentick, and Luc Segoufin. Database the-
ory: Query languages. In Mikhail J. Atallah and Marina Blanton, editors,
Algorithms and Theory of Computation Handbook, volume 2: Special Topics
and Techniques, chapter 19. CRC Press, second edition, Nov 2009.

[Tar55] Alfred Tarski. A LATTICE-THEORETICAL FIXPOINT THEOREM AND
ITS APPLICATIONS. Pacific Journal of Mathematics, 5(2):285–309, 1955.

[Tho97] Wolfgang Thomas. Languages, Automata, and Logic. In Grzegorz Rozen-
berg and Arto Salomaa, editors, Handbook of Formal Languages: Volume 3
Beyond Words, pages 389–455. Springer Berlin Heidelberg, 1997.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized Finite Automata
Theory with an Application to a Decision Problem of Second-Order Logic.
Mathematical Systems Theory, 2(1):57–81, 1968.

[Var82] Moshe Y. Vardi. THE COMPLEXITY OF RELATIONAL QUERY LAN-
GUAGES (Extended Abstract). In Harry R. Lewis, Barbara B. Simons,
Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of
the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 137–146. ACM, 1982.

[Var98] Moshe Y. Vardi. Reasoning about The Past with Two-Way Automata.
In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors,
Automata, Languages and Programming, 25th International Colloquium,
ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, volume 1443
of Lecture Notes in Computer Science, pages 628–641. Springer, 1998.

[Via01] Victor Vianu. A Web Odyssey: from Codd to XML. In Peter Buneman, ed-
itor, Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, May 21-23, 2001, Santa Barbara,
California, USA. ACM, 2001.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999.

Erklärung

Ich erkläre hiermit, dass

• ich die vorliegende Dissertation Static Analysis of Monadic Datalog on Finite La-
beled Trees selbstständig und ohne unerlaubte Hilfe angefertigt habe;

• ich mich weder bereits anderwärts um einen Doktorgrad im mathematisch-natur-
wissenschaftlichen Bereich beworben habe, noch einen solchen besitze;

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät
der Humboldt-Universität zu Berlin vom 30. Juni 2014, veröffentlicht im Amtlichen
Mitteilungsblatt Nr. 126/2014, bekannt ist.

Berlin, den 13. September 2016

André Frochaux

	Acknowledgments
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Alphabets
	2.2 Complexity Classes
	2.3 Relational Structures
	2.4 Tree Structures
	2.4.1 Unordered Trees
	2.4.2 Ordered Trees

	2.5 Syntax and Semantics of Datalog
	2.6 A Note on Conjunctive Queries
	2.7 Considered Problems during a Static Analysis

	3 Expressive Power and Decidability
	3.1 Monadic Second-Order Logic (`39`42`"613A``45`47`"603AMSO)
	3.2 Expressive Power of `39`42`"613A``45`47`"603AmDatalog on Ordered Trees
	3.2.1 Expressive Power on Unranked Ordered Trees
	3.2.2 Expressive Power on Ranked Ordered Trees

	3.3 Expressive Power of `39`42`"613A``45`47`"603AmDatalog on Unordered Trees
	3.3.1 Expressive Power on Unranked Unordered Trees
	3.3.2 Expressive Power on Ranked Unordered Trees

	3.4 Decidability Results

	4 On Hardness
	4.1 The Hardness of the Emptiness Problem of `39`42`"613A``45`47`"603AmDatalog(u{`39`42`"613A``45`47`"603Aroot,`39`42`"613A``45`47`"603Aleaf}) on Unranked Unordered Trees
	4.2 The Hardness of the Emptiness Problem of `39`42`"613A``45`47`"603AmDatalog on Unranked Unordered Trees in General
	4.3 The Hardness of the Emptiness Problem of `39`42`"613A``45`47`"603AmDatalog on Ranked Unordered Trees
	4.4 Transferring the Hardness Results to the Corresponding Problems of `39`42`"613A``45`47`"603AmDatalog on Ordered Trees

	5 On Membership
	5.1 From Unary Queries to Boolean Queries
	5.2 From Ordered Unranked Trees to Binary Trees
	5.2.1 Binary trees
	5.2.2 Representing Ordered Unranked Trees by Binary Trees

	5.3 Nondeterministic Bottom-Up Tree Automata (NBTA)
	5.4 Two-Way Alternating Tree Automata (2ATA)
	5.5 Finishing the Proof of Theorem 5.1
	5.6 Consequences of Theorem 5.1

	6 Dealing with the Descendant-Axis
	6.1 On Membership
	6.2 Omitting the descendant-axis
	6.2.1 Easy Observations
	6.2.2 An Example
	6.2.3 Path Rules

	6.3 On Hardness of the QCP on Ordered Unranked Trees Using `39`42`"613A``45`47`"603Adesc
	6.4 On Hardness on Ranked Trees
	6.5 On Hardness on Unranked Trees

	7 Beyond Set Semantics
	7.1 Conjunctive Queries under Bag Semantics
	7.2 Datalog Queries under Bag Semantics
	7.3 Static Analysis of Datalog under Bag Semantics
	7.3.1 The Emptiness Problem of Datalog under Bag Semantics
	7.3.2 The Query Containment Problem of Datalog under Bag Semantics

	8 Conclusion
	Bibliography
	Index

