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ZUSAMMENFASSUNG 

Sowohl in Süßwasserseen als auch in marinen Gewässern kommt es in den Sommermonaten 

immer wieder zu Massenentwicklungen von Cyanobakterien, sogenannten “Blüten”. In Seen 

werden diese oftmals von Cyanobakterien der Gattung Microcystis dominiert, deren Arten 

häufig Toxine bilden und somit eine Gefahr für Menschen und Tiere darstellen. Die verbreitesten 

dieser Toxine sind die leberschädigen Microcystine, die eine Klasse nichtribosomal 

synthetisierter Peptide darstellen. Nachdem die toxische Wirkung der Microcystine bisher als 

deren Hauptfunktion angesehen wurde, deuten neuere Forschungsergebnisse darauf hin, dass 

Microcystine eine andere Primärfunktion für die Produzenten besitzen. Es wird unter anderem 

angenommen, dass Mircocystine eine Rolle in der Antwort auf oxidativen Stress, wie er z.B. 

durch Starklicht ausgelöst wird, spielen. 

Im Rahmen dieser Studie wurde Microvirin (Mvn), ein putatives Lektin aus Microcystis 

aeruginosa PCC 7806, von dem angnommen wurde, dass es funktional mit Microcystin 

assoziiert ist, charakterisiert. Zunächst konnte gezeigt werden, dass Mvn tatsächlich 

zuckerbindende Aktivität besitzt und spezifisch Mannan, ein Oligosaccharid aus 

Mannoseuntereinheiten, erkennt. Bindestudien mit fluoreszenzmarkiertem Mvn und Antikörpern 

zeigten, dass Zucker dieses Typs auf der Zelloberfläche von M. aeruginosa PCC 7806 lokalisiert 

sind und eine Bindestelle für das sekretierte Mvn darstellen. 

Mit Hilfe fluoreszenzmikroskopiebasierender Methoden wurde gezeigt, dass sowohl Mvn als 

auch das korrespondierende Mannanoligosaccharid stammspezifisch sind. Weiterhin konnte 

durch PCR gezeigt werden, dass das mvn-Gen in allen getesteten Microcystis-Stämmen 

vorkommt, die auch Gene für die Microcystinbiosynthese besitzen. 

Eine direkte Interaktion von Microcystin und Mvn konnte in vitro bestätigt werden. Microcystin 

bindet dabei über seinen N-Methyl-Dehydroalaninrest kovalent an die reduzierten Cysteinreste 

des Proteins. Ein Einfluss auf die Oligomerisierung des Proteins wurde festgestellt. Microcystin 

scheint unspezifisch Cysteinreste von Proteinen zu binden, und es konnte gezeigt werden, dass 

dies besonders unter oxidativen Stressbedingungen wie Eisenmangel und Starklichtexposition 

verstärkt geschieht. Die Daten liefern somit weitere Indizien für eine Rolle von Microcystin in der 

Stressadaptation.  



Abstract 

ABSTRACT 

Cyanobacteria frequently appear as so-called “water-blooms” during summer months. 

Cyanobacteria of the genus Microcystis, whose species often dominate freshwater lakes, 

produce toxins that represent a potential threat for humans and animals. The most prominent 

toxins are the non-ribosomally synthesised hepatotoxic microcystins. Toxicity has been 

considered the main function of these peptides, but recent studies propose different primary 

functions of microcystins for their producers. The involvement of microcystins in the response to 

oxidative stress was proposed recently. 

Within this study the putative lectin microvirin (Mvn), which was suggested to be functionally 

related to microcystin, was characterised. Initially it was shown that Mvn does indeed possess a 

carbohydrate binding activity, and specificity for mannan, an oligosaccharide made of mannose 

subunits, was proven. Binding studies using fluorescence-labelled Mvn and antibodies identified 

carbohydrates of this type at the cell surface of M. aeruginosa being a binding site for the 

secreted Mvn.  

Fluorescence microscopy techniques were employed to show that Mvn as well as the 

corresponding mannan oligosaccharide are strain-specific. Additionally it was shown by PCR 

that the mvn gene is present in all tested Microcystis strains possessing microcystin 

biosynthesis genes. 

A direct interaction of microcystin and Mvn was confirmed in vitro. Microcystin covalently binds 

to the reduced cysteine residues of the protein via its N-methyl-dehydroalanine moiety. An 

impact on the oligomerisation state of Mvn was observed. Microcystin seems to bind cysteine 

residues in an unspecific manner in vivo, and it was shown that this occurs especially under 

conditions of oxidative stress such as iron depletion and exposition to high light. Hence, the 

data provide further evidence for an involvement of microcystins in stress adaptation. 
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1  INTRODUCTION 

1.1  Cyanobacteria 

Cyanobacteria, also referred to as blue-green algae, are oxygenic photolithotrophic prokaryotes 

capable of CO2 assimilation through photosynthesis using the reducing power derived from the 

light-driven water cleavage (Lengeler et al., 1999). They are the only group among bacteria that 

perform an oxygenic photosynthesis and they have contributed essentially to the formation of 

the oxygen atmosphere of the earth (Dismukes et al., 2001). Fossil cyanobacteria findings have 

been dated to 2.5 to 3.5 billion years (Schopf and Packer, 1987). Due to their photosynthesis 

activity cyanobacteria are important primary producers (Liu et al., 1998). They occupy a wide 

range of habitats reaching from aquatic – both marine and freshwater – to terrestrial. These 

include extreme habitats like hot springs and deserts (Whitton and Potts, 2000). Other species 

are able to fix molecular nitrogen in heterocysts - specialised cells that are impervious for 

oxygen, which is toxic for the nitrogenase enzyme (Rippka, 1988). Other species can live in 

symbiosis with plants or fungi (DePriest, 2004). The progenitor of today’s chloroplasts was an 

ancient cyanobacterium-like endosymbiont that was engulfed by a heterotrophic eukaryote 

(McFadden, 1999).  

Cyanobacteria show considerable morphological diversity and have been classified into five 

sections based on morphological features (Rippka et al., 1979). Representatives of section I and 

section II are unicellular and divide by binary fission or multiple fission, respectively. Section III 

comprises filamentous nonhetercystous cyanobacteria. Members of section IV and V are also 

filamentous but are capable of cell differentiation. The strains of section V can be distinguished 

from section IV members by their ability to form branched filaments. 

Cyanobacteria are a rich source of secondary metabolites, in particular non-ribosomal peptides 

(NRPS) and polyketides (PKS) (Welker and von Döhren, 2006). By using degenerate primers 

Christiansen et al. have demonstrated that NRPS genes are present in 75% of 146 axenic 

strains of the Pasteur Culture Collection, which included members of all cyanobacterial sections 

(Christiansen et al., 2001).  

 

1.1.1  MICROCYSTIS AERUGINOSA 

The genus Microcystis is a member of the Chroococcaceae in the order Chroococcales and 

belongs to section I of the cyanobacterial classification (Rippka, 1988). Microcystis is a colony 
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forming genus and its different species are determined by distinct colony morphology (FFig . 1). 

However, this taxonomy is not supported by phylogenetic analyses. Comparisons of 16S to 

23S ribosomal DNA internal transcribed spacer sequences from five morphospecies revealed a 

high degree of sequence similarity. Clusters in a phylogenetic tree generated from this data did 

not correspond to morphological characteristics of the examined strains (Otsuka et al., 1999). 

Therefore, these strains should be considered as one species regarding them as morphological 

variants (Otsuka et al., 2001). 

Microcystis species produce a variety of secondary metabolites, mainly NRPS (Welker et al., 

2004). Because of its toxic impact on eukaryotes the hepatotoxic heptapeptide microcystin (see 

1.1.2) is the most prominent.  

 

 

Fig. 1: A select ion of common Microcyst is colony morphotypes (pictures from:  
http://research.kahaku.go.jp/botany/aoko/aokokids/mycro-pictures.html). 

 

 

1.1.1.1 HABITAT 

Microcystis inhabits freshwater lakes all over the world. In contrast to e.g. Planktothrix species 

that are mainly found in shallow lakes, Microcystis commonly occupies deep lakes with a stable 

stratification, because it performs an extensive buoyancy regulation. During warm summers 
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Microcystis occurs in so called “blooms“ - mass developments of cyanobacteria. Bloom 

formation is promoted by eutrophication of lakes.  

 

1.1.1.2 COLONY FORMATION AND BUOYANCY REGULATION 

A key feature of Microcystis spp. is the ability to form characteristic colonies, which seems to 

play an important role in buoyancy regulation. In stratified lakes Microcystis is able to perform 

vertical migration in the water body. The buoyancy is regulated through gas vesicles and 

carbohydrate content of the cells. Microcystis continues to form gas vesicles at high irradiance 

(150 μmol m-2s-1), but buoyancy is reduced due to the accumulation of carbohydrates (Thomas 

and Walsby, 1985). Field studies have confirmed that the relative gas vesicle volume does not 

change significantly during the day. The loss of buoyancy is mainly driven by the accumulation 

of carbohydrate and protein ballast (Ibelings et al., 1991). The cell density increases as a result 

of enhanced photosynthesis activity at the lake surface and the cells become less buoyant. The 

carbohydrate ballast is reduced as a consequence of respiration in deeper layers of the lake 

and the cell density decreases again. Under light–limited conditions M. aeruginosa was shown 

to be always buoyant. A loss of buoyancy was only observed when energy was generated 

faster than it could be utilised for growth (Kromkamp et al., 1988). Furthermore, the gas vesicle 

volume decreased during phosphorus-limited and nitrogen-limited growth, whereby the role of 

carbohydrate accumulation was emphasised (Chu et al., 2007). Since nutrient limitation in 

stratified lakes often occurs in the surface layer, the cells might migrate to deeper layers to meet 

their nutrient requirements. A further parameter of vertical migration is the colony size. Though it 

does not influence the buoyancy itself colony size contributes by modulating velocity of the 

sinking and rising, respectively. Several models of the vertical migration (FF ig. 2) were computed 

and showed that, according to Stoke’s law, large colonies migrate faster than smaller ones 

(Rabouille et al., 2005). Hence, colony diameter determines the time the cells are exposed to 

light or nutrition rich dark layers (Rabouille et al., 2003). The influence of colony size has been 

verified by field observations where small colonies were most abundant in deeper water (Ibelings 

et al., 1991).  
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Fig. 2: A model describ ing the  correlat ion between colony size  and vert ical  migrat ion.  
According to Stoke’s law an increase in colony diameter results in an accelerated movement. 
Therefore bigger colonies can adjust their position in the water column far more rapidly than smaller 
ones. From Chorus & Bartram, 1999. 

 

1.1.1.3 CHEMOTYPES OF MICROCYSTIS 

Numerous Microcystis strains produce a variety of secondary metabolites and the chemotype is 

defined as the entirety of peptides produced by a particular strain. Although the morphotype of 

Microcystis cannot be deduced from the genotype (Otsuka et al., 2000; Otsuka et al., 1999), 

several studies tried to find a correlation between the morphotype and the chemotype. A study 

conducted by Fastner et al. (2001) in Lake Wannsee (Berlin, Germany) revealed a correlation 

between certain peptide combinations and morphotypes (Fastner et al., 2001). Microcystins 

were chiefly found in M. aeruginosa, while colonies of M. ichtyoblabe and M. wesenbergii did 

not contain microcystins but anabaenopeptins, microginins and cyanopeptolins. Additionally, 

the occurrence of microcystin in combination with anabaenopeptins and microginins was 

mutually exclusive. A second study in lakes around Berlin could not find a clear correlation of 

morphotype and chemotype, although the production of microcystins was mainly attributed to 

M. aeruginosa while M. ichtyoblabe did not produce microcystins (Welker et al., 2004). A survey 

on distribution of microcystin-producing Microcystis in European freshwater bodies revealed 

that M. aeruginosa and M. botrys morphospecies have a higher proportion of mc-producers 

(<70%) than M. flos-aquae and M. ichtyoblabe, while M. wesenbergii did not contain 
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microcystin at all (Via-Ordorika et al., 2004). In 2000 a PCR-based study on the distribution of 

microcystin genotypes in Lake Wannsee led to similar results (Kurmayer et al., 2002).  

  

1.1.2  MICROCYSTIN 

Microcystins (FFig . 3) are a group of hepatotoxic heptapeptides that are predominantly 

produced by strains of the genera Anabaena, Microcystis and Planktothrix. In addition, 

occurence of microcystins has been reported for single strains of Anabaenopsis, Hapalosiphon 

and Nostoc (Sivonen and Jones, 1999). Microcystins (mc) share the common structure of 

cyclo(-Adda-D-Glu-Mdha-D-Ala-L-X-D-MeAsp-L-Z) where X and Z are variable L-amino acids, 

Adda is 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid, D-MeAsp is 3-

methylaspartic acid and Mdha is N-methyl-dehydroalanine (Botes et al., 1984; Sivonen and 

Jones, 1999). Modifications occur at all seven amino acid residues and over 70 variants have 

been described to date.  

 

 

Fig. 3: Mic rocyst in-LR 

 

The toxicity of microcystins originates from their ability to bind eukaryotic protein phosphatases 

of type 1 and 2A (MacKintosh et al., 1990; Runnegar et al., 1995; Runnegar et al., 1993; 

Toivola et al., 1994). Protein phosphatases are the antagonists of protein kinases and their 

inhibition causes a hyper-phosphorylation of their target proteins. Microcystin is taken up by the 

organic anion transport system of hepatocytes and induces excessive phosphorylation of 

cytoskeletal filaments in the liver, which can lead to a hemorrhagic shock (Falconer and Yeung, 

1992). Microcystins were implicated in animal poisonings and even adverse effects on human 
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health were reported. In Brazil, unsufficient treatment of water contaminated with microcystin-

LR caused the death of 40 dialysis patients (Carmichael et al., 2001; Jochimsen et al., 1998).  

 

1.1.2.1 MICROCYSTIN BIOSYNTHESIS  

Microcystin is synthesised by a large multienzyme complex (Dittmann et al., 1997; Tillett et al., 

2000) comprising nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS) and 

additional modifying enzymes (FF ig . 4). This enables the incorporation of non-proteinogenous 

amino acids and the introduction of modification like epimerisations and methylations.  

NRPS incorporate each single amino acid by the “multiple-carrier-thio-template”-mechanism 

into the growing peptide chain. The NRPS comprise a linear order of modules and each module 

performs the recognition and the activation of a single amino acid and the subsequent linkage 

to the peptide chain. The sequence of the peptide is directly determined by the arrangement of 

the modules (Finking and Marahiel, 2004; Schwarzer et al., 2003).  

The Adda moiety in microcystin is synthesised by PKS. PKS catalyse the sequential 

condensation of short chain carbonic acids. Similar to NRPS, PKS are modular and the 

structure of the product can be deduced from the number and the arrangement of the modules. 
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Fig. 4: Mode l for the format ion of mic rocyst in and predicted domain structures of the  
six mult ienzymes (McyA-E, G) involved in microcyst in biosynthes is. White rectangles 
represent peptide synthetase domains (NRPS). The NRPS thiolation motif is shown as a black bar. 
Grey circles represent polyketide synthase domains (PKS). The stepwise incorporation of the individual 
microcystin moieties is indicated in red. KS, h-ketoacyl synthase; AT, acyltransferase; ACP, acyl 
carrier protein; KR, ketoacyl reductase; DH, dehydratase; CM, C-methyltransferase; OM; O-
methyltransferase, A, aminoacyl adenylation; C, condensation; AMT, aminotransferase. Precursors are 
indicated below the arrows. From Dittmann & Börner, 2005.  

 

The genes encoding the microcystin biosynthesis are organised in a bidirectional operon with 

mcyABC transcribed in one direction and mcyD-J in the opposite direction. In addition to the 

biosynthesis genes a putative ABC-transporter McyH is encoded, which may facilitate the 

proposed export of microcystin (Pearson et al., 2004).  

 

1.1.2.2 FUNCTION OF MICROCYSTINS 

The synthesis of microcystin involves the expression of a large enzyme complex and 48 single 

reaction steps (Tillett et al., 2000), which implies that it is of significant benefit to the orgnanism 

justifying this great effort. Several studies tried to answer the question of microcystin function, 

but no primary function could be assigned beyond doubt so far. A variety of studies have 

analysed the factors that stimulate the production of microcystin. Multiple impact like nutrients 

in particular phosphorus, nitrogen and inorganic carbon and environmental factors like light and 

pH were shown to influence the microcystin production (Downing et al., 2005; Downing et al., 
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2005; Hesse and Kohl, 2001; Kaebernick et al., 2000; Lee et al., 2000; Long et al., 2001; Lyck 

et al., 1996; Song et al., 1998; Watanabe and Oishi, 1985; Wiedner et al., 2003). However, 

none of these parameters could be identified as the dominating criterion. Nevertheless, most 

studies found an influence of the growth phase and microcystin production was highest during 

exponential growth. Thus the function could not be inferred from the knowledge of parameters 

driving microcystin production.  

In the following the most discussed hypotheses shall be introduced. Different modes of 

microcystin action were suggested which can be classified as interspecies, intraspecies or 

intracellular function.  

 

1.1.2.2.1 INTERSPECIES FUNCTION 

Due to its toxicity microcystin was considered a protection against ingestion by Daphnia galeata 

(Christoffersen, 1996). Nevertheless, other studies contradict by pointing out that Daphnia 

cannot distinguish between toxic and nontoxic strains (Rohrlack et al., 2001) and beyond this 

they are not able to ingest the large colonies usually formed by microcystin producers. 

Additionally, the feeding inhibition observed on Daphnia fed with toxic and non-toxic Microcystis 

strains could not be attributed to microcystin (Kaebernick et al., 2001). It was inferred that 

reduced growth of Daphnia fed with non-toxic strains compared to a Scenedesmus diet can be 

attributed to general avoidance of Microcystis (Lurling, 2003).  

Furthermore, allelopathic interactions among cyanobacteria and other lake species such as 

Daphnia, green algae or dinoflagellates are discussed. However, the significance of these 

laboratory experiments is unclear, because the microcystin concentrations used exceeded 

those that can be found in the natural environment. Allelopathic interactions between toxic and 

non-toxic strains were disproven by competition experiments (Kardinaal et al., 2007; Takeya et 

al., 2004)  

 

1.1.2.2.2 INTRASPECIES FUNCTION 

Some reports propose a role of microcystin as an infochemical, similar to that of homoserine 

lactones in quorum sensing. Two proteins, MrpA and MrpB (mmicrocystin-rrelated pprotein), that 

exhibit significant similarity to the quorum-sensing regulated proteins RhiA and RhiB from 

Rhizobium leguminosarum were shown to be less expressed in the mcyB mutant. Thus 
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accumulation of microcystin in the surrounding media might trigger a coordinated response of 

the whole M. aeruginosa community (Dittmann et al., 2001). Others report that microcystin 

released by cell lysis stimulates expression of the microcystin synthesis proteins and propose 

that the enhanced production of microcystin enhances the fitness of the remaining cells (Schatz 

et al., 2007). 

 

1.1.2.2.3 INTRACELLULAR FUNCTIONS 

The major part of microcystin is usually cell-bound and not released to the medium. Some 

studies showed that microcystin is located at distinct sites within the cell. Immunogold 

localisation experiments (Gerbersdorf, 2006; Young et al., 2005) found microcystin to be bound 

to thylakoids, phosphate bodies and carboxysomes. A thylakoid localisation was further 

supported by the isolation of these (Jüttner and Luthi, 2008).  

Zilliges compared the proteome of M. aeruginosa PCC 7806 wild type and microcystin-deficient 

mcyB mutant by 2D gel electrophoresis and could show that differences are often found in 

proteins related to CO2 fixation (Zilliges et al., 2008). Most proteins of the Calvin cycle including 

RubisCO were differentially expressed. Furthermore, the direct binding of microcystin to 

RubisCO was proposed and confirmed in vitro. The author postulated a role of microcystin in 

redox-regulated processes similar to that of thioredoxins. The influence of carbon availability on 

microcystin production was previously described (Jähnichen et al., 2001). As mentioned above, 

carbon fixation and accumulation of intracellular carbohydrates are key factors of buoyancy 

regulation, as is the colony size. Two extraccellular proteins were identified that might contribute 

to colony formation, which both seemed to be affected by microcystin. These proteins – 

microvirin (Mvn) and MrpC – will be introduced in the following.  

 

1.2  Microvir in 

Microvirin  (Mvn) was identified during the analysis of the partial genome sequence of M. 

aeruginosa PCC 7806 available at that time (Kehr, 2003). The aim was to identify genes that 

might be related to microcystin. The microvirin gene (mvn) was chosen because it is located 

downstream of a 84 bp sequence (mcy-Box, FFig. 5 ), which displayed 84% identity to a 

nucleotide region that overlaps one of the transcriptional start points of the mcyA gene 

(Kaebernick et al., 2002). The deduced protein sequence was used as query in a BLAST search 
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(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) and the only protein exhibiting significant similarity 

(above 20%) in 2003 was cyanovirin-N (see chapter 1.4.8). Thus the protein was named 

microvirin. Cyanovirin-N (CV-N) is a oligomannose-binding lectin. Lectins bind oligosaccharides 

and are usually involved in cell-cell recognition and attachment (see chapter 1.4).  

In order to analyse the expression of Mvn in M. aerugiosa PCC 7806 and its microcystin-

deficient mutants, the protein was expressed heterologously and an antibody was raised 

against the purified recombinant protein. It was shown that the expression increased at higher 

culture densities. Additionally, the expression was delayed in the mcyB mutant providing first 

evidence of an influence of microcystin on Mvn.  

 

 

Fig. 5: Schematic representat ion of the conserved nucleot ide box (mcy-box ) upst ream 
of A)  the microvi rin (mvn )  gene and of  B)  mic rocyst in biosynthesis genes (mcy ) .  Arrows 
indicate distances from translational and transcriptional start sites. C) Sequence comparision of the 
nucleotide regions adjacent to the mvn and mcy genes, respectively. 

 

It was proposed that Mvn might play a role in microcystin modulated colony formation in M. 

aeruginosa. A mutant was generated by insertional mutagenesis, but initial investigations did not 

reveal a peculiar phenotype. However, the laboratory cultured strain M. aerugniosa PCC 7806 is 

unable to form colonies anymore and therefore the hypothesis could not be proven by a 

knockout phenotype. 
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1.3  MrpC 

In addition to Mvn a second extracellular protein called MrpC that is strongly affected by 

microcystin was found. The MrpC protein was identified by Zilliges et al. and characterised as 

the most abundant extracellular protein from the supernatant of a M. aeruginosa PCC 7806 

culture (Zilliges et al., 2008). The expression of MrpC was strongly increased in the microcystin-

deficient mcyB mutant compared to the wild type under all conditions tested. The distribution 

of the MrpC encoding gene showed a correlation with a microcystin genotype and together with 

the expression studies the results implied a strong relation to microcystin. Further biochemical 

characterisation proved MrpC to be the target of O-glycosylation, presumably by a 

glycosyltransferase encoded downstream of the mrpC. Presence of a transit peptide indicated a 

transmembrane localisation via the Sec pathway. Immunofluorescence microscopy confirmed 

the increased abundance of the protein in the mcyB mutant and showed that MrpC covers the 

whole cell surface of M. aeruginosa (FFig . 6). Additionally, MrpC was shown to form 

connections between individual cells of the mcyB mutant. Therefore, the protein was 

implicated in microcystin dependent colony formation in M. aeruginosa PCC 7806. 

 

 

Fig. 6: IImmunofluorescence micrographs of the  mcyB mutant and WT st rains of M. 
aeruginosa  PCC 7806 obtained by using the  ant ibody against MrpC and a FITC-
coupled secondary ant ibod y. The green fluorescence represents the MrpC protein, which is 
distributed over the cell surface of M. aerugiosa in a sphere-like manner. The protein is much more 
abundant in the mutant and seems to establish connection between individual cells. Images were 
recorded showing only the antibody fluorescence (528 nm) or additionally the chlorophyll 
autofluorescence (528/617 nm). From Zilliges et al., 2008.  
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1.4  Lectins 

Lectins are a heterogeneous group of proteins that reversibly and with high specificity bind to 

carbohydrates. Lectins are found in virtually all organisms ranging from bacteria to fungi and to 

plants and animals. The first description of a lectin refers to Stillmark (1888) who observed the 

erythrocyte-agglutinating effect of a protein isolated from the castor tree (Ricinus communis) 

which he named ricin. Until the second half of the 20th century lectins were called 

hemagglutinins. Various lectins showed different hemagglutinating activity on red blood cells 

from different animals, an observation that led Karl Landsteiner to discover the human A, B, 0 

blood type system in 1900. In 1954 Boyd and Shapleigh introduced the term “lectin“ derived 

form the Latin word “legere“ (to choose) to summarise plant agglutinins. This concept was later 

extended to embrace all sugar-specific agglutinins of nonimmune origin, irrespective of source 

and blood type specificity (Sharon and Lis, 1972).  

Although lectins from different organisms display no or only little similarity on the sequence level, 

they share some important structural features. A striking feature shared by many lectins is the 

proportion of -sheets in the tertiary structure (Sharon and Lis, 1990). 

Lectins mediate biological recognition by detecting specific carbohydrate moieties inside cells, 

on cell surfaces and physiological fluids (Sharon and Lis, 1989). High specificity is achieved by 

storing information in carbohydrates. In contrast to amino acids or nucleotides, carbohydrates 

bear a high coding capacity. Monosaccharides contain several approximately chemically 

equivalent sites for chain elongation. Chemically distinct compounds can be generated by 

linking one unit at the reducing end to different hydroxy groups of the second unit, also allowing 

branched structures. Furthermore, the occurrence of different anomeric variants at each linkage 

has to be taken into account. With a set of 20 different monosaccharide building blocks as 

many as 1.44x1015 hexasaccharides are possible regarding the considerations mentioned 

above. The number of possible permutations for a hexapeptide from a set of 20 amino acids is 

only 6.4x107 (Gabius et al., 2004). The level of diversity can be further extended by the 

introduction of substituents like sulfation and epimerisation of D- to L-forms. 

It was estimated that over the half of all proteins occuring in nature is glycosylated (Apweiler et 

al., 1999) and additionally cell membranes are decorated with glycolipids. This emphasises the 

importance of glycoproteins and lectins that are involved in numerous and diverse biological 

processes (Gabius et al., 2002). Indeed glycosylation is very common in bacteria (Hitchen and 

Dell, 2006) and defects in glycosylation led to impaired pathogenicity and attachment of 
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mucosal pathogens to host cells (Szymanski and Wren, 2005). The majority of glycosylated 

bacterial proteins identified in pathogens are implicated in interactions with the host (Benz and 

Schmidt, 2002). 

 

1.4.1  MECHANISM OF CARBOHYDRATE BINDING 

The carbohydrate binding sites of lectins exhibit a relatively low affinity to monosaccharides with 

dissociation constants in the millimolar range, whereas the oligosaccharides are bound with 

nanomolar affinity. This arises from the structure of the binding pocket which is a rather shallow 

depression on the protein surface in contrast to e.g. the sugar-binding bacterial periplasmic 

receptors for glucose or galactose that bind the ligand in the interior of the protein (Lis and 

Sharon, 1998). Lectins interact with carbohydrates primarily through hydrogen bonds and 

hydrophobic interactions. Charge-charge interactions are not relevant because most 

saccharides are uncharged. The hydrogen bonds are formed between hydroxyl groups of the 

carbohydrate which interact with amino and hydroxyl groups and oxygen atoms of the protein. 

The hydroxyl groups of sugars enable cooperative hydrogen bonding where an OH group can 

act as a donor of one hydrogen bond and an acceptor of two hydrogen bonds simultaneously 

(Weis and Drickamer, 1996).  

Although carbohydrates are highly polar, they have significant nonpolar patches formed by 

aliphatic protons and carbons at the epimeric centers. These patches interact with aromatic 

residues like tryptophan or phenylalanine in the protein. In addition, several classes of lectins 

require divalent cations like Ca2+ or Mn2+ to be functional. Two modes of interaction, direct and 

indirect, were described. Direct interactions occur in C-type lectins where a Ca2+ is required to 

form direct coordination bonds with the sugar ligand. However, indirect interactions are given if 

a cation interacts only with amino acid side chains to stabilise the interaction with the ligand.  

Most lectins contain two or more carbohydrate binding sites, which is the reason for their 

hemagglutinating activity. One lectin can bind to at least two carbohydrate moieties on different 

cells, which results in the precipitation of the cells. Additionally, many lectins form multimers, 

which further increases the number of binding sites compared to the monomer. The resulting 

multivalency employed by many if not all lectins is considered to substantially enhance the 

selectivity and affinity of lectin interactions (Rini, 1995). 
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1.4.2  FUNCTIONS OF LECTINS 

Lectins are involved in many processes in and between organisms and although they play 

diverse roles the recognition of specific carbohydrates is a common prerequisite to accomplish 

their function. Biological processes that require a specific targeting are e.g. defense, innate 

immunity, symbiosis or glycoprotein trafficking (TTab. 1, (Sharon and Lis, 2004)). In addition to 

the examples listed in TTab. 1  some well-characterised lectins from plants, animals and bacteria 

are introduced in the following and known cyanobacterial lectins are described. 

Tab. 1: Funct ion of lect ins. Adapted from Sharon and Lis, 2004.  

 LLectin Role in 

Microorganisms Amoeba 

Bacteria 

Infuenza virus 

Infection 

Infection 

Infection 

Plants Various 

Legumes 

Defence 

Symbiosis 

Animals Calnexin, calreticulin, ERGIC-53 

Collectins 

Dectin-1 

Galectins 

 

 

Macrophage mannose receptor 

 

Man-6-P receptors 

L-selectin 

E- and P-selectin 

Siglecs 

 

Spermadhesin 

Control of glycoprotein biosynthesis 

Innate immunity 

Innate immunity 

Regulation of cell growth and apoptosis; 

regulation of the cell cycle; modulation of cell-

cell and cell-substratum interactions 

Innate immunity; clearance of sulfated 

glycoprotein hormones 

Targeting of lysosomal enzymes 

Lymphocyte homing 

Leukocyte trafficking to sites of inflammation 

Cell-cell interactions in the immune and 

neural system 

Sperm-egg interaction 

 

1.4.3  ANIMAL LECTINS 

The examples listed in TTab. 1 show that lectins have manifold functions in mammals, but the 

majority are innate immune molecules. Many lectin-like innate immune proteins and receptors 

that interact with bacteria are known today (Palaniyar et al., 2002). The pulmanory surfactant 

proteins SP-A and SP-D are C-type (Ca2+-dependent) lectins that maintain surfactant 
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homeostasis were additionally shown to be important host defense components (Holmskov et 

al., 2003; Wright, 2005). Both proteins bind to bacteria causing agglutination and thus hinder 

their entrance into the host cell and dissemination. In addition they enhance the phagocytosis 

by macrophages. Several pathogens, among them Staphylococcus aureus, Pseudomonas 

aeruginosa, Escherichia coli, Mycobacterium tuberculosis, Haemophilus influenzae and yeast 

and fungi are recognised (Kishore et al., 2006). Another important lectin in the innate immunity is 

the mannose-binding lectin (MBL), which binds to a large number of pathogens. MBL was 

shown to activate a novel pathway of complements (lectin pathway) that is independent from 

antibodies or C1 protease (Dommett et al., 2006).  

The lectins calnexin and calreticulin localised in the endoplasmic reticulum (ER) are involved in 

glycoprotein folding. They serve as molecular chaperones, recognising newly synthesised and 

glycosylated polypeptide chains and preventing aggregation and export of incompletely folded 

proteins from the ER (Helenius and Aebi, 2004). 

Lectins can also play a role in symbioses between animals and bacteria. The marine nematode 

Laxus oneistus secretes a mannose-specific lectin onto the posterior region of its cuticle to 

facilitate attachment of its sulfur-oxidising bacterial symbiont (Bulgheresi et al., 2006). 

 

1.4.4  PLANT LECTINS 

Legume lectins that are involved in Rhizobia-legume symbiosis are the best-investigated plant 

lectins. According to the lectin recognition hypothesis proposed by Hamblin and Kent (1973), 

Bohlool and Schmidt (1974), Dazzo and Hubbell (1975) and reviewed by Hirsch (Hirsch, 1999), 

legume lectins mediate the specificity between the legume host and the Rhizobium symbiont. 

The bacteria expose carbohydrates on their cell surface, e.g. lipopolysaccharides, capsular 

polysaccharides or acidic exopolysaccharides that can be bound by plant lectins. Several 

studies showed that mutants in the production of these polysaccharides are often unable to 

establish symbiosis. 

Another function frequently described for plant lectins is the defense against pathogens like 

fungi, insects, and bacteria. Several chitin-binding lectins (chitin is a long-chain polymer of N-

acetylglucosamine) and chimeric proteins comprising a chitin-binding domain as well as a 

chitinase domain exhibit a protective activity against fungi (Peumans and Van Damme, 1995). 
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Many plant lectins are toxic to insects and mammals and are stored in vacuoles in plant seeds 

or adult plants. Upon ingestion of the plant by herbivores they are released and deploy their 

toxicity. The wheat germ agglutinin (WGA) from wheat (Triticum aestivum) e.g. is toxic to 

weevils, and the common bean’s phytohemagglutinin (PHA) is toxic to mammals (Chrispeels 

and Raikhel, 1991). It was shown that PHA causes lesions in the intestinal mucosa. 

 

1.4.5  BACTERIAL LECTINS 

Bacterial lectins are often involved in infection and mediate the initial step of host-cell-

recognition and attachment. The human pathogen Helicobacter pylori attaches to human 

salvary glycoproteins (Prakobphol et al., 2005) and expresses several lectins and lectin-like 

proteins (Hynes et al., 2003).  

A group of chimeric proteins carrying a lectin domain includes the AB–toxins of Enterobacteria. 

These toxins comprise two domains, the A and B domain, which are made of two polypeptide 

chains usually linked by two disulphide bonds. The B domain (binding domain) is a lectin and 

responsible for receptor recognition, whereas the A domain (activity domain) causes the 

cytotoxic effects. One group of AB-toxins are the Shiga and Shiga-like toxins from Shigella sp. 

and E. coli. They bind to the glycolipid Gb3 on the host-cell-surface and are then internalised by 

endocytosis (Sandvig, 2001). Glycolipids are also the attachment site for a Porphyromonas 

gingivalis adhesin (Hellstrom et al., 2004). 

Bacterial lectins also play an important role in communal behaviour. The dental pathogen 

Streptococcus mutans expresses several secreted glucan-binding proteins (Gbp) during biofilm 

formation. Deletion of the respective genes significantly altered the physical properties of the 

biofilm produced. Especially a reduction in thickness of the biofilm and an impaired ability of 

cell-aggregation was observed (Banas et al., 2007; Lynch et al., 2007). 

The involvement of lectins in biofilm formation was also described for the biofilm model 

organism Pseudomonas aeruginosa. The quorum-sensing regulated LecA lectin was detected 

and the mutants showed a reduced surface coverage and no evidence of microcolony 

formation. Furthermore, the biofilm development was impaired by the preincubation with 

hydrophobic galactosides, which are the type of sugars specifically recognised by LecA (Diggle 

et al., 2006). 
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1.4.6  CYANOBACTERIAL LECTINS 

Very little is known about lectins and their role in cyanobacteria. In recent years few lectins from 

cyanobacteria were isolated starting with the anti-HIV protein cyanovirin-N from Nostoc 

ellipsosporum (Gustafson et al., 1997) (see chapter 1.4.8). The developmental potential of 

cyanovirin-N as anti-HIV drug led to screenings for substances with similar activity in 

cyanobacteria. Hence, lectins have been isolated from different cyanobacterial genera that all 

exhibit a more or less strong affinity to oligomannose, the same oligosaccharide that is 

recognised by cyanovirin-N (Zió kowska and Wlodawer, 2006). Namely these are the Oscillatoria 

agardhii agglutinin (OAA) and scytovirin from Scytonema varium (Bokesch et al., 2003; 

McFeeters et al., 2007; Sato et al., 2007). Both proteins comprise two domains that show 

sequence homology to each other and contain internal disulphide bonds. Nevertheless, 

information about their in vivo function is lacking so far. 

 

1.4.7  MICROCYSTIS LECTINS 

Two lectins, MAL and MVL, were isolated from Microcystis strains. The Microcystis viridis lectin 

(MVL) agglutinates rabbit erythrocytes and hemagglutinating activity could be inhibited by yeast 

mannan. It consists of 113 aa and is composed of two tandemly repeated homologous 

domains of 54 aa. There are currently no homologous sequences to be found in the databases. 

Expression studies revealed that the MVL is expressed in cultures cultivated without aeration at 

the stationary phase. Therefore the authors consider MVL a stress protein that may be involved 

in adaptation to an unfavourable growing environment (Yamaguchi et al., 1999). MAL has been 

isolated from M. aeruginosa M228. The 55.2 kDa protein comprises three tandemly repeated 

homologous domains of 61 aa which show partial similarity to the -amylase from Clostridium 

beijerinckii. The genes adjacent to the mal gene display homology to a cytochrome P-450 and a 

polyketide synthase. The hemagglutinating activity of MAL could be inhibited by N-acetyl-D-

galactoseamine and lactose. The expression of the protein was highest at low temperature 

(15°C) and low light (12 μEm-2) (Jimbo et al., 2000; Yamaguchi et al., 1998; Yamaguchi et al., 

2000). 
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1.4.8  CYANOVIRIN-N 

Cyanovirin-N (CV-N) is a lectin isolated from the filamtenous cyanobacterium Nostoc 

ellipsosporum during a screening for compounds with anti-HIV activity. It is a small 11 kDa lectin 

with specifity for 1,2-mannan. The protein was found to bind to such carbohydrate epitopes 

present in the gp120 envelope protein of the HI-virus. Through binding to gp120 CV-N disturbs 

the interaction with the cell surface receptor CD4 and thus prevents the virus from infecting the 

host cell (Bewley and Otero-Quintero, 2001; Boyd et al., 1997; Chang and Bewley, 2002; Dey 

et al., 2000; Esser et al., 1999; Mori and Boyd, 2001; O'Keefe et al., 2000; Shenoy et al., 2001). 

Due to its potential use as an HIV therapeutic detailed analysis focussed on the biochemical and 

structural properties of CV-N are available in the literature, but yet no information on the role of 

this lectin in Nostoc ellipsosporum exists. The most important features will be outlined in the 

following.  

CV-N comprises two domains that share 32% sequence identity to each other and that may 

result from a duplication event during evolution. Several structures were obtained from 

cyanovirin-N (FFig . 7) by NMR as well as by X-ray crystallography (Bewley, 2001; Bewley et al., 

2002; Bewley and Otero-Quintero, 2001; Botos et al., 2002; Botos et al., 2002; Fromme et al., 

2007; Sandstrom et al., 2004; Shenoy et al., 2002; Yang et al.). The protein exists as a 

monomer in solution and is made of two distinct symmetric domains A and B that are formed 

by strand exchange of the sequence repeats. This means that domain A is made of residues 1-

39 and 90-101 and domain B is formed by residues 39-90. The protein contains four cysteine 

residues and an intra-domain disulphide bond is present in each domain. The whole structure is 

dominated by anti-parallel -sheets (Bewley et al., 1998). The crystallised protein was shown to 

form domain-swapped dimers (FFig. 7A-C), in which domain A of one monomer interacts with 

domain B of the second monomer and vice versa (Yang et al., 1999). Mutants were created that 

formed stable dimers in solution (Han et al., 2002). 
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Fig. 7: Crystal structure  on CV-N: A-C) Different views of the domain swapped dimer of CV-N. 
Individual monomers are shown in green and red. The yellow dashed line indicates the symmetry. D) 
Structure of a CV-N monomer. The high proportion of anti-parallel -sheets and the pronounced 
symmetry of multimers are frequently found in lectins. From Yang et al., 1999. 

 

1.4.8.1 CYANOVIRIN-N DOMAINS 

In recent years several cyanovirin-N-like proteins have been identified, mostly in filamentous 

ascomycetes. The European Bioinformatics Instiute (EBI) contains an entry in its InterPro 

database under the accesion number IPR011058 

(http://www.ebi.ac.uk/interpro/IEntry?ac=IPR011058) that lists all proteins containing a CV-N 

domain. Apparently some of these proteins contain two CV-N domains, while very few only 

contain half a domain that represents just one of the internal repeats of cyanovirin-N. Percudani 

and coworkers analysed the CV-N homologues concerning their secondary structure and their 

evolutionary relationship. The major findings will be summarised in the following (Percudani et 

al., 2005). Several representatives of the CV-N domain family proteins contain additional 

conserved domains. Some members of this group possess a peptidogycan and chitin-binding 



Introduction 

 26 

LysM domain that is inserted into the hinge region between the two CV-N repeats. Furthermore, 

signal-peptides for membrane translocation were identified in the CV-N homologues of the fern 

Ceratopteris richardii indicating an extracellular function. The cysteine residues involved in 

disulphide bond formation in cyanovirin-N are conserved among the homologues that posses a 

signal peptide while they are replaced in most of the intracellular proteins.  

The overall tertiary structure of the CV-N domain family members seems to be conserved 

across the whole family, because hydrophobic residues crucial for protein folding are 

conserved, while e.g. the amino acids that form the carbohydrate binding pocket are rather 

variable. 

The rather patchy organism distribution of the CV-N domain implies that the organisms 

acquirred the protein after the separation of the lineages by horizontal gene transfer (HGT) 

events. However, the internally repeated structure of cyanovirin-N arose from a unique ancient 

duplication. 

 

1.5  Aim of this Work 

Many reports published recently suggest functions for microcystin that do not focus on its 

toxicity but rather postulate a physiological relevance of the peptide. Proteomic studies have 

shown a major impact of the absence of microcystin on the abundance of a number of proteins. 

Among these, the extracellular glycoprotein MrpC as well as glycosyltransferases were 

identified, which proposed an influence of microcystin on cell surface composition.  

The objective of this study is the characterisation of microvirin (Mvn), which previously was 

shown to be influenced by the presence of microcystin. Homology based prediction implied the 

secretion of Mvn and a carbohydrate binding capability. Thus the subcellular localisation should 

be examined and the carbohydrate binding activity and specificity should be elucidated. In order 

to confirm the proposed functional relationship of microvirin and microcystin further, the 

distribution of the mvn gene among laboratory and field strains of Microcystis should be 

examined. 

Several publications have shown the ability of microcystin to bind to proteins. Therefore, it has 

to be tested if the relationship of Mvn and microcytin becomes manifested in an interaction of 

both. Thus, binding of microcystin to the heterologously expressed Mvn should be tested. If a 
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binding of microcystin is observed the conditions that promote the binding as well as the 

mechanism should be investigated.  
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2  MATERIALS AND METHODS 

2.1  Materials 

2.1.1  BACTERIAL STRAINS 

2.1.1.1 MICROCYSTIS AERUGINOSA 

The strain Microcystis aeruginosa PCC 7806 used in this study was obtained from the “Pasteur 

Culture Collection“ (Paris, France). The mutants used in this study were derived from this strain. 

M. aeruginosa mcyB (Dittmann et al., 1997) and mcyH mutants (Pearson et al., 2004) 

generated by insertional mutagenses are deficient in microcystin production. The mvn mutant 

was produced by disruption of the mvn gene (Kehr, 2003). All mutants were selected on 

chloramphenicol. 

Additionally, a set of M. aeruginosa strains was used to investigate the distribution of the mvn 

gene within the species (TTab. 2). 
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Tab. 2: List  of M. aeruginosa  st rains used to invest igate the d istr ibut ion of the mvn 
gene. 

M. aeruginosa 

strain 

Source  

PCC 7005 

PCC 7820 

PCC 7941 

PCC 9354 

PCC 9355 

PCC 9432 

PCC 9622 

PCC 9624 

PCC 9701 

PCC 9717 

PCC 9804 

PCC 9805 

PCC 9806 

PCC 9807 

PCC 9808 

PCC 9809 

PCC 9812 

PCC 9905 

PCC 100-24 

PCC 100-25 

“Pasteur Culture Collection”, 

Paris, France 

 

HUB 5.3 Humboldt University, 

Berlin, Germany 

NIES 44 

NIES 89 

NIES 100 

NIES 104 

NIES 299 

National Institute for Envrionmental Studies, 

Tsukuba, Japan 

UWOCC CBS 

UWOCC MRC 

UWOCC MRD 

University of Wisconsin at OshKosh Culture Collection, 

Madison, USA 
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2.1.1.2 OTHER CYANOBACTERIA 

Nostoc punctiforme ATCC 29133 from the “American Tissue and Culture Collection” and 

Synechocystis PCC 6803 from the “Pasteur Culture Collection” were used as controls in 

immunofluorescence microscopy. 

 

2.1.1.3 ESCHERICHIA COLI 

For cloning purposes the strain E. coli XL-1 blue (Stratagene) was used, heterologous 

expression was performed in the strain E. coli BL21 (DE3) (Novagen). 

 

2.1.2  KITS 

Bio-Rad Protein Assay Biorad 

FluoroTag FITC Conjugation Kit Sigma-Aldrich 

Jetsorb „Gel Extraction Kit“ Genomed 

Nickel-NTA-Superflow Qiagen 

PCR Purification Kit Qiagen 

Plasmid Mini Prep Qiagen 

Taq DNA-Polymerase PCR Kit Qiagen 

SuperSignal West Pico Pierce 

 

2.1.3  CHEMICALS 

2-mercaptoethanol C. Roth 

Acetone C. Roth 

Acrylamide/Bisacrylamide (37.5:1) C. Roth 

Acetonitril “HPLC Gradient Grade“ C. Roth 

Agar, washed Difco 

Agarose Biozym Diagnostik 

Ampicillin Roche Diagnostics 

APS C. Roth 

Bacto-Agar Difco 
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Bacto-Trypton Difco 

Boric acid C. Roth 

Bovine serum albumin, fraction V C. Roth 

Bromphenol blue SERVA Feinbiochemika 

Chloramphenicol Roche Diagnostics 

Coomassie staining “Roti-Blue” C. Roth 

Dithiothreitol C. Roth 

dNTP MBI Fermentas 

DTNB C. Roth 

EDTA C. Roth 

Ethanol C. Roth 

Ethidium bromide C. Roth 

Formaldehyde 37% C. Roth 

GelCode Blue Stain Reagent Pierce 

Glycerol C. Roth 

Glycine C. Roth 

HEPES Amersham Pharmacia 

Hydrochloric acid C. Roth 

IPTG C. Roth 

Isopropanol C. Roth 

Magnesium chloride C. Roth 

Methanol C. Roth 

PMSF Serva 

Potassium chloride C. Roth 

N-Propylgallate C. Roth 

Sodium acetate C. Roth 

Sodium chloride C. Roth 

Sodium dihydrogenphosphate C. Roth 

Sodium dodecylsulfate (SDS) SERVA Feinbiochemika 

Sodium hydrogenphosphate C. Roth 

Sodium hydroxide C. Roth 

TEMED C. Roth 
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Tris C. Roth 

Tween 20 Sigma 

Urea ICN Biochemicals 

X-Gal C. Roth 

Yeast extract Difco 

 

2.1.4  ENZYMES 

Lysozyme GERMED 

Restriction Endonucleases MBI Fermentas 

 New England Biolabs 

T4-DNA-Ligase MBI Fermentas 

Taq-Polymerase Qiagen 

 

2.1.5  ANTIBODIES 

The following antibodies were used in this study (The used titer is given for all antibodies. In 

some cases antibodies were applied in a different titer for immunoblotting and 

immunofluorescence microscopy (IFM). 
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Tab. 3: Ant ibodies used in this stud y.  

Ant ibody Ant igen Source T iter Reference 

Primary  antibodies 

Anti-Microcystin Adda moiety of 
microcystin from 
M. aeruginosa 

Mouse, 

polyclonal 

1:10,000 Alexis 

Anti-MrpC MrpC from 
M.aeruginosa 

Guinea pig, 

polyclonal 

1:5000 or 
1:500 

Zilliges et al., 
2008 

Anti-Mvn Microvirin from 
M.aeruginosa 

Rabbit, 

polyclonal 

1:10,000 or 
1:500 (IFM) 

Kehr, 2003 

Anti-Poly-Histidin Poly-Histidin Mouse, 

monoclonal 

1:10,000 Sigma 

Secondary  ant ibodies 

Anti-Guinea Pig IgG FITC 
conjugate 

Mouse IgG Goat 1:100 (IFM) Sigma 

Anti-Mouse IgG 
Horseradish Peroxidase 
conjugate 

Mouse IgG Sheep 1:10,000 Amersham 
Pharmacia  

Anti-Rabbit IgG FITC 
conjugate 

Rabbit IgG Goat 1:100 (IFM) Sigma 

Anti-Rabbit IgG 
Horseradish Peroxidase 
conjugate 

Rabbit IgG Goat 1:10,000 Sigma 

 

2.1.6  NUCLEIC ACIDS 

2.1.6.1 PLASMIDS 

pDrive Qiagen 

pet15b Novagen 
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2.1.6.2 PRIMER 

Name Sequence Comment 

mvn_fw ATGCCTAATTTTTCGCACACTTGTAG 

mvn_rv TCCAATTTCCAGTTGGCTGTCGTT 

Screening, amplification and sequencing of mvn 
genes from various Microcystis strains 

mcyE_fw TTCCCCTTAACTCGACATGG 

mcyE_rv TAAAGTCGCCAATCCAGCAA 

Detection of mcy genotypes among Microcystis 
strains. The primers were deduced from 
conserved regions in the mcyE gene. 

 

2.1.7  FILTERS AND MEMBRANES 

3MM Filter-Paper Whatman 

Hyperfilm MP X-ray detection film Amersham Pharmacia 

PVDF-Blotting-Membrane Hybond C Amersham Pharmacia 

 

2.1.8  LIST OF MANUFACTURERS 

Company Based in 

 

Agilent Technologies 

 

Darmstadt, Germany 

Ambion, Inc. Austin, USA 

Amersham Biosciences Europe GmbH Freiburg, Germany 

Applied Biosystems Weiterstadt, Germany 

Applied Precision Issaquah, USA 

Biolabs Frankfurt am Main, Germany 

Bio-Rad Laboratories Richmond, USA 

Boehringer GmbH Mannheim, Germany 

C. Roth GmbH & Co. KG Karlsruhe, Germany 

Difco Detroit, USA 

DuPont de Nemours GmbH  Bad Homburg, Germany 

Eppendorf  Hamburg, Germany 

Eurogentech  Seraing, Belgien 

Fluka-Biochemika  Steinheim, Germany 

GERMED Berlin, Germany 
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Gibco/ BRL Life Technologies New York, USA 

Heraeus  Hanau, Germany 

ICN Biochemicals/ MP Biomedicals  Irvine, USA 

Invitrogen GmbH  Karlsruhe, Germany 

MBI Fermentas GmbH  St. Leon-Rot, Germany 

Merck  Darmstadt, Germany 

Millipore Cooperation  Bedford, USA 

New England Biolabs Schwalbach, Germany 

Novagen  Nottingham, UK 

PerkinElmer Instruments  Shelton, USA 

Philips Instruments  Eindhoven, Netherlands 

Promega Cooperation  Madison, USA 

Qiagen  Hilden, Germany 

Roche Diagnostics GmbH  Mannheim, Germany 

Schleicher & Schüll  Dassel, Germany 

Serva Feinbiochemika & Co. KG  Heidelberg, Germany 

Shimadzu  Kyoto, Japan 

Sigma Chemical Company  St. Louis, USA 

Waters  Eschborn, Germany 

Whatman Paper Ldt.  Maidstone, UK 

Zeiss  Jena, Germany 
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2.2  Methods 

2.2.1  MICROBIOLOGICAL METHODS 

2.2.1.1 CULTIVATION OF CYANOBACTERIA 

Cyanobacteria were cultivated in BG11-medium in Erlenmeyer flasks or on plates containing 

BG11-medium and 0.7% agar (Rippka et al., 1979). Stock cultures were grown in liquid at 23°C 

and continuous illumination (~20-30 μEm-2s-1). Exposure experiments were conducted using 

aliquots of a preculture grown at 16 μEm-2s-1 and constant aeration in a batch vessel. The 

culture aliquots were transferred to sterile batch vessels and subjected to the desired light 

conditions under constant aeration for two hours. The following light conditions were applied: 

High light (70 μEm-2s-1), low light (16 μEm-2s-1) and darkness. External microcystin was added in 

some case (for details refer to the results section). 

 

2.2.1.2 CULTIVATION OF ESCHERICHIA COLI 

Escherichia coli cells were cultivated under standard conditions either in liquid LB medium or on 

LB agar in petri dishes (Sambrook and Russel, 2001). Cultures for preparation of plasmid vector 

DNA were incubated in 3-4 ml liquid LB medium at 37°C and shaking at 220 rpm. Proper 

antibiotics were added in the appropiate concentrations.  

 

2.2.2  MOLECULAR BIOLOGICAL METHODS 

2.2.2.1 PREPARATION OF GENOMIC DNA FROM MICROCYSTIS AERUGINOSA 

The isolation of genomic DNA from Microcystis aeruginosa was performed as described 

previously (Hisbergues et al., 2003). Cyanobacterial cells were harvested by centrifugation (4000 

x g, 10 min) and the pellet was washed twice in TE-buffer. The pellet was resuspended in 0.5 ml 

TES-buffer and incubated on ice for 1 h. Afterwards lysozyme was added to a final 

concentration of 2 mg/ml and the cells were incubated at 37°C in a waterbath for 1 h. Then 

SDS (2% final concentration) and ProteinaseK (50 μg/ml final concentration) were added and 

the mixture was incubated at 50°C for 2-3 h. Following one volume of phenole/chloroform (1:1) 

was added, the tubes were shaken and centrifuged at 13,000 rpm for 10 min. The supernatant 

was transferred to a fresh tube and the extraction step was repeated. After centrifugation the 
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supernatant was mixed with chloroform/isoamylalcohol (24:1) and centrifuged as before. The 

upper aqueous phase was mixed with 0.7 vol isopropanol to precipitate the DNA and 

centrifuged at 13,000 rpm for 30 min. The resulting pellet was washed with 70% ethanol and 

air-dried after centrifugation. The DNA was resuspended in water or TE-buffer. Finally, 1 μl of an 

RNase-Mix was added and the tubes were incubated at 37°C for 1h.  

TE buffer  10 mM Tris-HCl, 1 mM EDTA 

TES buffer  25% w/v Saccharose, 50 mM Tris-HCl, 100 mM EDTA, pH 8.0 

 

 

2.2.2.2 PREPARATION OF PLASMID DNA FROM ESCHERICHIA COLI 

Plasmid DNA from E. coli was isolated according to the method of alkaline lysis (Sambrook and 

Russel, 2001). Cells from a 3 ml culture grown overnight in LB medium supplemented with the 

appropriate antibiotic were harvested by centrifugation and resuspended in 300 μl buffer P1. An 

equal volume of buffer P2 was added after incubation at RT for 5 min and the tubes were 

flipped 4-6 times. The cells were incubated at RT for 5 min before 300 μl of buffer P3 were 

added. The tubes were flipped again and kept on ice for at least 5 min. Cellular debris were 

pelleted by centrifugation in a table centrifuge (13,000 rpm, 4°C, 30 min). The supernatant was 

transferred to a fresh tube and the DNA was precipitated with 0.7 vol 2-propanol. After 

centrifugation (13,000 rpm, 4°C, 30 min) the pellet was washed with 70% ethanol and 

centrifuged again. The pellet was air-dried and resuspended in water or TE-buffer. 

 

P1  50 mM Tris-HCl pH 8.0; 10 mM EDTA 

P2  200 mM NaOH; 1% SDS  

P3  3 M Potassium acetate, pH 5.0  

 

2.2.2.3 QUANTIFICATION OF DNA 

DNA concentrations were determined by measuring the absorption at 260 nm in a photometer. 

The absorption of one arbitrary unit corresponds to 50 μg/μl double-stranded DNA. 
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2.2.2.4 AGAROSE GEL ELECTROPHORESIS OF DNA 

DNA fragments were separated on 0.5%-1.2% (w/v) agarose gels by electrophoresis 

(Sambrook and Russel, 2001). Ethidium bromide was added to the gels in final concentration of 

0.05 μg/ml to visualise the DNA under UV illumination. The gels were run in TBE running buffer 

at a constant voltage of 100 V. DNA samples were mixed with DNA loading dye prior to 

application onto the gel. An aliquot from a PstI digest of phage  DNA was applied as size 

marker on each gel.  

 

TBE running buffer     45 mM Tris-Borate, pH 8.5; 1.8 mM EDTA  

5 x DNA loading dye 50 % Ficoll; 1 mM EDTA, pH 8.0; 0.05 % (w/v) 

Bromophenole blue; 0.05 % (w/v) Xylene cyanol  

 

2.2.2.5 ELUTION OF DNA FRAGMENTS FROM AGAROSE GELS 

DNA fragments were eluted from agarose gels using the Jetsorb “Gel Extraction Kit” (Genomed) 

according to the manufacturer’s manual. 

 

2.2.2.6 POLYMERASE CHAIN REACTION 

Amplification of DNA fragments was performed using the Taq DNA-Polymerase PCR Kit 

(Qiagen). The web-based software “Primer3” (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) was used to design primers. Reactions were carried out in a 

volume of 20 μl containing the Taq-buffer, 2 μl MgCl2, 10 μmol of each primer, 10 μmol dNTPs, 

1 U Taq-polymerase and 1 μl template DNA. The reaction was run in a thermocycler using a 

suitable amplification program. Common steps were the initial denaturation at 95°C for 5 min 

followed by 35 cycles of denaturation at 95°C for 30 s, a primer annealing step at the primer 

specific temperature for 30 s and the sequence elongation at 72°C. The time of elongation was 

chosen depending on the expected length of the PCR product assuming an amplification speed 

of 1 kb/min. The PCR reaction was completed with a final elongation step at 72°C for 10 min. 

Different template DNA was used depending on the particular analysis. Purified genomic DNA 

was applied in a final concentration of 50-200 ng while plasmid DNA was used in a 

concentration of ~10 ng. Colony PCR was performed for quick analysis of a large set of 



Materials and Methods 

 39 

bacteria or clones. A bacterial suspension was diluted 20-100fold and boiled for 10 min for this 

before 1μl was applied to the PCR reaction mix.  

 

2.2.2.7 PURIFICATION OF DNA 

Primers, nucleotides and other impurities were removed from PCR reactions by purification with 

the Qiaquick PCR Purification Kit (Qiagen) following the manufacturer’s instructions.  

 

2.2.2.8 DIGESTION OF DNA WITH RESTRICTION ENDONUCLEASES 

DNA was cleaved with the restriction endonuclease of choice in a reaction volume of 20-50 μl 

according to manufacturer’s instructions. 

 

2.2.2.9 LIGATION OF DNA FRAGMENT IN PLASMID VECTORS 

Purified PCR products were directly ligated into the pDrive vector (Qiagen) following the 

company’s protocol.  

Directed cloning of DNA fragments into the pet15b expression vector was achieved by 

digesting the vector with NdeI and BamHI restriction endonucleases. Afterwards, the DNA 

fragment of choice was cut out from the pDrive cloning vector using the same enzymes, purified 

by gel extraction (see 2.2.2.5) and subsequently ligated into the linearised pet15 vector using 

the T4 DNA ligase (Fermentas) in the recommended buffer. The ligation mix was incubated at 

4°C overnight. 

 

2.2.2.10 SEQUENCING OF DNA 

DNA was cloned into the pDrive vector and the column purified (Qiagen) vector DNA was 

delivered for automatic sequencing to “SMB Service in Molecular Biology” (Berlin). Raw 

sequence files were viewed and edited with “4Peaks” software (http://mekentosj.com/4peaks) 

on a Macintosh computer running MacOS X.  
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2.2.2.11 TRANSFORMATION OF ESCHERICHIA COLI 

Cells of E. coli were transformed utilising the CaCl2-chemically induced competence (Sambrook 

and Russel, 2001) of the XL-1 strain (Stratagene). A volume of 200 μl of XL-1 cell culture was 

mixed with the respective ligated plasmid vector and kept on ice for 20 min. The mixture was 

then subjected to a heat shock in a water bath at 42°C for 1 min. Afterwards, 500 μl of SOC 

medium were added and cells were incubated for 1 hour at 37°C and shaking at 220 rpm. Cells 

were spread on LB agar plates containing the appropriate antibiotic. In case of cloning into the 

pDrive vector (Qiagen) 40 μl X-Gal solution (20 mg/ml in DMF) and 40 μl of IPTG solution (0.1 M) 

were added to the agar to facilitate blue-white selection of positive clones. The plates were 

incubated at 37°C overnight.  

Positive clones were picked and used to inoculate 3-4 ml LB medium containing the proper 

antibiotic. The cells were grown shaking at 220 rpm and 37°C overnight and plasmids were 

isolated (see chapter 2.2.2.2). 

 

2.2.3  PROTEIN BIOCHEMICAL METHODS 

2.2.3.1 HETEROLOGOUS EXPRESSION 

For the expression of recombinant His-Mvn 25 ml of LB-Medium supplemented with 100 μg/ml 

Ampicillin were inoculated with E. coli cells containing the expression construct and grown 

overnight at 37°C on a shaker (220 rpm). The following day, the overnight culture was used to 

inoculate the large-scale expression culture in a dilution of 1/50. The culture was grown under 

conditions mentioned above until an OD600=0.6 was reached. The expression was induced by 

addition of IPTG to a final concentration of 1 mM and the cells were grown for 3 h. Finally the 

cells were harvested by centrifugation at 4000 x g for 20 min. The pellets were either frozen or 

stored at -20°C or subsequently subjected to protein extraction. 

  

2.2.3.2 PURIFICATION OF HIS-MVN FROM E. COLI 

The recombinant His-Mvn was purified from the periplasmic fraction. The pellet from an 

expression culture was resuspended in 40 ml osmotic shock buffer (30 mM Tris-HCl, 20% 

sucrose, pH 8.0) supplemented with EDTA to a final concentration of 1 mM and incubated on 

ice for 10 min with gentle shaking. The cells were centrifuged (6000 x g, 20 min, 4°C), the 
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supernatant was removed and the pellet was resuspended in the same volume of an ice-cold 5 

mM MgSO4 solution and shaken for 10 min on ice. The cells were centrifuged again as 

described above and the supernatant was retained and extensively dialysed against lysis buffer 

(50 mM NaH2PO4, 300 mM NaCl, pH 8.0) with three exchanges of the buffer at 4°C. 

Afterwards, the lysate was transferred to a fresh 50 ml tube and imidazol was added to a final 

concentration of 10 mM followed by the addition of 4 ml Ni-NTA slurry (Qiagen). Then the tube 

was mounted on a rotary shaker and incubated for 1 h at 4°C. Subsequently the mixture was 

applied to the column with the bottom outlet capped and the Ni-NTA was allowed to settle 

before the bottom cap was removed. The column flow-through was discarded and the column 

was washed with 40 ml wash buffer (lysis buffer containing 30 mM imidazol). Finally the column 

was eluted with 8 x 0.5 ml elution buffer (lysis buffer containing 250 mM imidazol). The purity 

was estimated from SDS-PAGE gel and highly concentrated fractions were pooled. 

 

2.2.3.3 DETERMINATION OF PROTEIN CONCENTRATION 

Protein concentrations were determined using the Bio-Rad Protein Assay according to the 

manufacturer’s instructions. Briefly, 1-5 μl of protein solution was added to a mixture of 0.2 ml 

dye reagent and 0.8 ml H2O, mixed and incubated for 10 min at RT. Absorbance was measured 

at 595 nm and the concentrations were calculated using standard curve generated by dilutions 

of BSA. 

 

2.2.3.4 SDS-POLYACRYAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 

Proteins were separated by the method of discontinuous gel electrophoresis (Laemmli, 1970). 

The gels consisted of a separating gel containing 10-15% acrylamide depending on the protein 

size range that was to be examined and a stacking gel of 4% acrylamide. Samples were mixed 

with 5x loading buffer and heated at 95°C for 10 min. Depending on the application a reductant 

was added to the loading buffer or not (see results). The gels were run at a constant current of 

25 mA per gel in the Mini Protean II system (Bio-Rad). Afterwards the gels were washed in 

distilled water for 15 min and stained with GelCode Blue Stain Reagent (Pierce).  

 

Separating gel 10-15% (v/v) acrylamide/bisacrylamide 37.5:1 (v/v); 375 mM Tris-HCl, pH 

8.8; 0.1% (w/v) SDS 
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Stacking gel 4% (v/v) acrylamide/bisacrylamide 37.5:1 (v/v); 125 mM Tris-HCl, pH 6.8; 

0.1% (w/v) SDS 

Running buffer 192 mM Glycin; 25 mM Tris; 0.1% (w/v) SDS 

5x Loading buffer 250 mM Tris, pH 6.8; 0.5% bromophenole blue; 10% (w/v) SDS; 50% 

(v/v) Glycerol; (500 mM 2-mercaptoethanol) 

 

2.2.3.5 IMMUNOBLOTS 

Protein samples were diluted in 5x loading buffer containing 5 mM -mercaptoethanol, heated 

for 10 min at 95°C and subsequently separated by SDS-PAGE on gels (Laemmli, 1970) and 

immobilised on nylon membranes (Amersham). The membranes were blocked with 5% w/v milk 

powder in PBS-T (phosphate buffered saline containing 0.3% v/v Tween20) for 1 h at 4°C. An 

antibody was applied in PBS-T in the appropriate dilution. After incubation for 1 h, the 

membranes were washed three times with 25 ml of PBS-T. Subsequently, a second antibody 

(anti-mouse or -goat horseradish peroxidase conjugate, Sigma) was added (1:10,000) for 1 h 

followed by three further washing steps with 25 ml of PBS-T. Immunoblots were developed with 

the SuperSignal West Pico Chemiluminescent Kit (Pierce) and exposed to X-ray film 

(Amersham). 

 

2.2.3.6 STRIPPING OF WESTERNBLOTS 

Antibodies were removed from westernblot membranes using the Restore Western Blot 

Stripping Buffer (Pierce). The membranes were covered with the stripping buffer and incubated 

for 15 min at 37°C. Afterwards the membranes were washed in PBS three times. 

 

2.2.3.7 GEL FILTRATION FPLC  

2.2.3.7.1 GEL FILTRATION OF M. AERUGINOSA CYTOSOLIC EXTRACTS 

Aliquots (1.0 ml) of whole cell extracts of PCC 7806 (WT) and the mcyB mutant were applied 

to a Superdex 75 prep grade HiLoad 16/60 column (GE Healthcare). Isocratic elution was 

performed at 10°C with a flow rate of 1 ml min-1, and 1.0 ml fractions were collected. Fractions 

(0.5 ml per sample) were analysed in immunoblots (dot blot unit; Schleicher and Schüll) with the 
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antibody against Mvn. Sizes of multimeric Mvn isoforms were determined using the retention 

times of standard proteins (thyroglobulin, bovine -globulin, chicken ovalbumin, equine 

myoglobin, vitamin B12; BioRad).  

 

2.2.3.7.2 GEL FILTRATION OF RECOMBINANT HIS-MVN 

Aliquots (100 μl of a 1 μg/μl solution) of Mvn samples from the microcystin binding assay (see 

2.2.3.11) were applied to a Superdex 75 10/300 GL column (GE Healthcare). Isocratic elution 

was performed at 10°C with a flow rate of 0.5 ml min-1, and 0.5 ml fractions were collected. 

Sizes were determined using the retention times of standard proteins (thyroglobulin, bovine -

globulin, chicken ovalbumin, equine myoglobin, vitamin B12; BioRad).  

 

2.2.3.8 MASS SPECTROMETRY 

The FTICR MS used was a Finnigan LTQ FTMS (Thermo Electron). To assign the sequence, a 

tryptic digest of Mvn was reduced by DTT (DL-Dithiothreitol, 10 μmol/l in solution) for two hours 

at 50°C. For separation, the same mass spectrometer was coupled to an Agilent 1100 Nano LC 

system (Agilent Technologies). To obtain information about the occurrence of S-S bonds, a 

non-reduced tryptic digest was analysed as well. Sequence coverage of 100% was reached. 

The position of one of the two occurring S-S bonds could be assigned. Mass accuracy of the 

protein and the tryptic peptides was far below instrument specifications (all below 2 ppm, 

specifications for external calibration: 4 ppm). 

 

2.2.3.9 OLIGOSACCHARIDE MICROARRAY 

The oligosaccharide microarray was done in cooperation with Matthew D. Disney and Peter H. 

Seeberger at the ETH (Zurich, Switzerland). The carbohydrate array containing a series of 

sugars that resemble the high mannose structure displayed by gp120 was constructed as 

described (Adams et al., 2004). Carbohydrate structures with a thiol-terminated polyethylene 

glycol chain on their reducing ends were synthesised as described (Ratner et al., 2004; Ratner 

et al., 2004; Ratner et al., 2003).  

The FITC-labeled Mvn (see 2.2.3.12) was placed into a solution containing 50 mM HEPES 

buffer (pH 7.5), 0.1 M NaCl, 1% w/v BSA and 1 mM CaCl2. Each slide was incubated with 
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about 5 μg Mvn in a solution of 20 μl that was distributed over the surface of the slide using a 

small sheet of Parafilm.  After incubating at RT for 1 h, the Parafilm was removed and the slide 

was washed twice in a 50 ml solution 50 mM HEPES (pH 7.5), 1% v/v Tween 20, 0.1% w/v 

BSA and then a final rinse with 50 ml of distilled water was used.  Slides were then centrifuged 

to dry and scanned using a Scan Array 500 scanner from GSI Lumonics. 

 

2.2.3.10 DIALYSIS OF PROTEINS 

Proteins were dialysed to change the buffer or to remove unbound microcystin during the 

microcystin binding assay (see 2.2.3.11). Dialysis tubings (Serva) with an exclusion size of 12 

kDa were pretreated according to the manufacturer’s recommendations and loaded with the 

samples. Dialysis was performed in 1 L of the buffer of choice at 4°C under constant stirring 

over night. The buffer was changed three times. 

 

2.2.3.11 MICROCYSTIN BINIDING ASSAYS 

The binding of microcystin to microvirin was assayed as follows: The binding was tested under 

reducing and non-reducing conditions in PBS buffer pH 7.4. Reducing conditions were 

established by adding 10 mM DTT (final concentration) to the Mvn samples. These were 

incubated 30 min at 37°C before microcystin was added to a final concentration of 10 ng/μl and 

incubation was continued for 30 min. A second assay was performed almost identically, but 

after the reduction step dithio-bis(2-nitrobenzoic acid) (DTNB) was added to the samples to 

block the thiol groups of the reduced protein. The samples were incubated for 30 min at 37°C 

and microcystin was added as described above. To remove the unbound microcystin the 

samples were dialysed against PBS buffer. Finally the samples were mixed with SDS-PAGE 

loading buffer without a reducing agent and SDS-PAGE was conducted as described (see 

chapter 2.2.3.4). Following SDS-PAGE the samples were immobilised by westernblotting and 

microcystin bound to Mvn was detected using an anti-microcystin antibody (Alexis). The 

membranes were stripped after detection (see chapter 2.2.3.6) and reprobed with an anti-Mvn 

antibody to confirm the identity of the protein. 

The same assay was performed using a microcystin variant that was modified at its N-methyl-

dehydroalanine residue. The methyl-group of said moiety was linked with a cysteamin molecule 

via a thioether bond. Dr. K. Ishida (Jena) provided the modified microcystin.  
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2.2.3.12 FLUORESCENCE LABELLING OF HIS-MICROVIRIN 

Purified recombinant His-Mvn was labelled with the FluoroTag FITC Conjugation Kit (Sigma) 

according to the manufacturer’s instructions. The labelled protein was purified by gel filtration on 

Sephadex G-25M columns and eluted with PBS. For prolonged storage 0.1% w/v sodium azide 

and 1% w/v BSA were added to the labelled protein and the samples were kept at 4°C in the 

dark. 

 

2.2.3.13 LECTIN BINDING ANALYSIS 

The lectin binding analysis (LBA) was performed using the His-Mvn labelled with fluorescence. 

Aliquots of a cyanobacterial culture (20-30 μl) were applied onto glass slides and fixed by drying 

at RT. The cells were covered with 50 μl of a FITC-microvirin solution (0.1 μg/μl) and incubated 

at RT for 60 min. The solution was removed with filter paper. The samples were washed three 

times with PBS. The remaining PBS buffer was drawn off with filter paper. The cells were 

viewed under a fluorescence microscope (Zeiss Axioscope) using the filter set 13 (Zeiss) and 

pictures were taken with a digital microscope camera (Zeiss).  

 

2.2.3.14 ISOLATION OF LPS 

Lipopolysaccharides were isolated from M. aeruginosa PCC 7806 using a hot-phenol method 

as described previously (Westphal and Jann, 1965). Harvested cells were washed three times 

with distilled water, freeze dried and 1 g of cell powder was subjected to hot-phenol-water 

extraction. The crude LPS extract was dialysed against water overnight, freeze dried and 

dissolved in 100 μl distilled water. 

 

2.2.3.15 IMMUNOFLUORESCENCE MICROSCOPY 

Cells of mid-logarithmic growth phase (OD750 0.5) were harvested by centrifugation at 4000xg, 

at RT for 5 min, washed once in PBS and resuspended in PBS. Cells were fixed in 3.7 % (v/v) 

formaldehyde in PBS on ice for 1 h. After three PBS washing steps, cells were resuspended in 

GTE buffer and spread-to-dry on poly-L-lysine coated glass slides. Glass slides with 

immobilised cells were dipped into methanol for 5 min at -20°C and subsequently into -20°C 

acetone for 30 s. Preparations were blocked in 2 % BSA (w/v in PBS) and incubated with the 
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primary antibody at a dilution of 1:500 in 2 % BSA (w/v in PBS) at RT for 1 h. After two PBS 

washes preparations were incubated with a FITC-labelled secondary antibody (at a dilution of 

1:100 in 2% BSA [w/v in PBS]; Sigma-Aldrich) for 1 h. Cells were mounted in a drop of 4% (v/v) 

n-propylgallate dissolved in 87% (v/v) glycerol and stored at -20°C for up to 4 weeks.  

The preparation of field samples for immunofluorescence microscopy was identical to the 

preparations of laboratory batch cultures, except for the fixation step. Field samples were 

already fixed with formaldehyde directly after the sampling.  

Sample observation, image acquisition and processing were carried out using the DeltaVision 

spectris system (Applied Precision) with the pre-installed default softWorx software package. 

Two sets of excitation and emission filters were used for visualisation: the “RD-TR-PE” filter pair 

(555 nm/617 nm) to visualise red/orange autofluorescence of cyanobacteria and the “FITC” filter 

pair (490 nm/528 nm) to visualise FITC-coupled green immunostaining. Acquired raw images 

were deconvolved by iterative constrained deconvolution to enhance image quality and contrast 

using the algorithms implemented in the softWorx software package. 

 

PBS  140 mM NaCl, 2.7 mM KCl; 8 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4 

GTE  50 mM glucose, 20 mM Tris-HCl, pH 7.5, 10 mM EDTA, pH 8.0 

 

2.2.3.16 MICROCYSTIN QUANTIFICATION 

Quantification of cell-bound and supernatant microcystin was done by HPLC. 10 ml samples 

were taken from cultures of M. aeruginosa wild type and mutant at culture densities of OD750 

0.5 and 1.0. The cells were harvested by centrifugation; the supernatant was filtered (0.2 micron 

filters), transferred to a fresh tube and evaporated (Savant SC210A Vacuum Concentrator). The 

cell pellet was dissolved in 1 ml methanol (HPLC grade) and cells were broken by sonication (12 

x 15 s, highest power settings). After centrifugation (13000 x g, 10 min, 4°C) the supernatant 

was filtered and evaporated as described above. The successive treatment was identical for 

both cell pellet and supernatant samples. The extracts were dissolved in 50% methanol and 

subjected to HPLC analysis. A calibration curve was made using a microcystin-LR standard 

(Calbiochem). 

 



Materials and Methods 

 47 

2.2.3.17 HPLC ANALYSIS 

The HPLC separation of cell-extract and supernatant samples was conducted on a Shimadzu 

HPLC unit comprising the system controller SCL-10AVP, the pump LC-10Ai, the autosampler 

SIL-10A, the fraction collector FRC-10A and the Photodiode-array-detector (PDA-detector) 

SPD-M-10AVP. Separation was carried out on a “SymmetryShield RP18“ column (Waters) with 

a particle size of 3.5 μm, 4.6 mm inner diameter and 100 mm length and a precolumn (3.9 mm 

x 20 mm) with an identical sorbent. The column was eluted with gradient of water and 

acetonitrile with a flow rate of 1 ml/min. Both solutions contained 0.05 % TFA.  

Gradient program: 

Retention time [min]     0 10 40 42 

% Water 70 65 30 0 

% acetonitrile 30 35 70 100 

 

2.2.3.18 PHYLOGENETIC ANALYSIS 

2.2.3.18.1 SEQUENCE RETRIEVAL 

Sequence data was obtained from the Interpro database hosted at the EBI which contains an 

entry (http://www.ebi.ac.uk/interpro/IEntry?ac=IPR011058) listing all known proteins 

possessing cyanovirin-N domains. Screening various M. aeruginosa strains for microvirin 

homologues via PCR and sequencing the respective PCR products obtained additional 

sequences. Amino acid sequences were aligned using the multiple alignment algorithms 

implemented in the ClustalX program version 1.83 (Thompson et al., 1997). While BLOSUM 62 

(Henikoff and Henikoff, 1993) was chosen as the protein weight matrix, all other parameters 

were left at default settings. The alignment was manually edited to remove gaps with the Bioedit 

v7.0.5.3 software (Hall, 1999). The alignment file was converted into the proper format that 

served as input for the phylogenetic analysis programs (see below). 

 

2.2.3.18.2 RECONSTRUCTION OF PHYLOGENETIC TREES 

The phylogenetic trees topologies were calculated by using the methods of Bayesian inference 

of phylogeny and the distance matrix method. 
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2.2.3.18.2.1 BAYESIAN INFERENCE OF PHYLOGENY USING MRBAYES 

For the Bayesian method (Larget and Simon, 1999) the software MrBayes v3.1.2 (Huelsenbeck 

and Ronquist, 2001) was utilised. After the aligned sequence files stored in nexus file format 

were provided as input for the program, the following parameters were applied: To determine 

the required likelihood function it was assumed that a portion of the sites in a given sequence 

was practically invariable while substitution rates for others were drawn from a  distribution. 

MrBayes then required the setting of a prior probability distribution for the parameters of the 

likelihood function set before. Here, the Jones-Taylor-Thornton matrix (Jones et al., 1992) was 

chosen to model substitution rates. The algorithm was started with the instruction to calculate 

1,000,000 generations with 4 chains, while sampling every 100th generation to create a tree 

whose branch length was to be recorded by the program. The analysis was continued until a 

probability value <0.1 was reached. 

At the end of the run, after a reasonable burn-in was chosen (usually 50% of all tree data), trees 

were summed up in a consensus tree, which was to include all compatible groups. 

 

2.2.3.18.2.2 PHYLOGENY BASED ON THE NEIGHBOUR-JOINING METHODS USING PHYLIP 

Phylogenetic analysis according to the neighbour-joining method was carried out using the 

PHYLIP package in version 3.65 (Felsenstein, 2005). First 1000 pseudoreplicates were 

generated with the Seqboot module. These were used as input for the PROTDIST program, 

which calculated the distance matrices using the JTT model. The NEIGHBOR program 

evaluated these distance matrices and the resulting trees served as input for the CONSENSE 

module, which produced a majority-rule consensus tree.  

   

2.2.3.19 IN SILICO RESOURCES 

2.2.3.19.1 SOFTWARE 

Agarose gel documentation “Quanitity One v4.6.3” 

BioRad 

Alignments and Phylogeny “Bioedit v7.0.5.3” 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html 

“ClustalX v1.83” 
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http://www.embl.de/~chenna/clustal/darwin/ 

“MEGA 3.1” 

http://www.megasoftware.net 

“MrBayes 3.1.2” 

http://mrbayes.csit.fsu.edu/download.php 

“PHYLIP v3.65” 

http://evolution.genetics.washington.edu/phylip/get

me.html 

“TreeView 1.6.6” 

http://taxonomy.zoology.gla.ac.uk/rod/treeview.html 

Illustrations “Adobe Illustrator CS2” 

Image processing “Adobe Photoshop CS2” 

Sequence editor “4Peaks” 

http://mekentosj.com/4peaks 

Spreadsheet calculations “Microsoft Excel:Mac 2004” 

Word processing “Microsoft Word:Mac 2004” 

 

2.2.3.19.2 ONLINE RESOURCES 

Web applications:  

Primer Design “Primer3” 

(http://frodo.wi.mit.edu/cgi/bin/primer3/primer3_www.cgi 

Protein Secrection prediction http://www.cbs.dtu.dk/services/SignalP/  

http://www.psort.org/psortb/  

Databases:  

Genomic resources http://www.ncbi.nlm.nih.gov 

http://genopole.pasteur.fr/maeru; login required 

http://www.kazusa.or.jp/cyano 

Protein families http://www.ebi.ac.uk/interpro 
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3  RESULTS 

The gene encoding Mvn was initially identified within the scope of elucidating the physiological 

function of microcystin. Early analyses of the protein were focused on its expression in the M. 

aeruginosa PCC 7806 wild type and the microcystin-deficient mcyB mutant. It was shown that 

the absence of microcystin resulted in a significant alteration in microvirin expression. The 

protein was detected on westernblots at a molecular weight that was far above the deduced 

size of 12 kDa  (FFig . 8). Two bands were visible at 50 kDa and 54 kDa in the wild type. It was 

concluded that the bands might represent a heteromultimer constituted of Mvn and an 

unknown binding partner. It was further inferred regarding the homology to the lectin cyanovirin-

N that the binding partner of Mvn might carry oligosaccharide moieties and that Mvn exhibits a 

strong sugar binding capability. Microvirin was considered an extracellular protein although no 

experiments were conducted to prove this hypothesis, but the literature on bacterial lectins 

described extracellular roles for this kind of proteins in most instances.  

 

 

Fig. 8: Immunoblot  analyses of Mvn in soluble extracts of M. aeruginosa  wi ld t ype and 
mvn mutant. Cells were grown to culture densities of OD750 0.5 and 1.0 and exposed to low light 

(LL), darkness (D), blue light (BL), red light (RL) and high light (HL) for 2 h. The right panel shows the 
mvn mutant that confirms the specificity of the antibody. From Kehr et al., 2006. 
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These initial results implied that microvirin might be involved in extracellular carbohydrate 

recognition and cell-cell interaction. This process might be affected by the production of 

microcystin.  

 

3.1  Characterisation of microvir in 

3.1.1  CHARACTERISATION OF HETEROLOGOUSLY EXPRESSED HIS-MVN 

Microvirin exhibits remarkable overall resemblance to cyanovirin-N. Several features such as the 

ability to form dimers and the formation of intramolecular disulphides bonds are crucial for the 

function of the protein and highly affect the carbohydrate binding properties and the 

extraordinary stability of CV-N.  

For further characterisation of MVN the protein was heterologously expressed in E. coli BL21 

and purified by Ni2+-affinity chromatography. FFig.  9 shows an SDS-PAGE gel loaded with the 

purified protein. Depending on the presence of reducing agents in the loading buffer Mvn either 

ran as dimer (reducing conditions) or monomer (non-reducing conditions).  

 

 

Fig. 9: SDS- PAGE of His-Mvn. The heterologously expressed His-Mvn was purified under native 
and denaturing conditions and separated under reducing (red) and non-reducing (ox) conditions. 
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3.1.2  MASS SPECTROMETRIC ANALYSIS OF HIS-MVN 

The whole His-Mvn molecule was subjected to NSI FTICR mass spectrometric anaylsis under 

non-reducing conditions. The determined m/z (FFig. 10) complied the simulated value for a 

monomer of His-Mvn without the N-terminal methionine and and two internal disulphide bonds. 

The excision of the N-terminal methionine is a common posttranslational modification occuring 

in bacterial proteins, which is catalysed by the methionyl-aminopeptidase (MAP) and depends 

on the nature of the second amino acid residue in the peptide chain. The highest MAP activity is 

described for a glycine residue at this particular position (Hirel et al., 1989), so the loss of the N-

terminal methionine of His-MVN may be attributed to MAP activity. 

 

 

Fig. 10: Mass spect romet ric analysis of recombinant His-Mvn using FTICR MS. The first 
graph shows the measured spectrum, whereas the second and third graph show simulated spectra 
for His-Mvn containing either no or two disulphide bonds, respectively. 

 

3.1.3  ASSIGMENT OF DISULPHIDE BONDS IN HIS-MVN 

To gain further information on the exact localisation of the disulphide bonds a mass 

spectrometic analysis of trypsin-cleaved His-MVN was performed under reducing (see 

supplementary data) and non-reducing conditions. Under non-reducing conditions peptides 

covering 87% percent of the entire Mvn could be identified, while the sequence coverage of the 

reduced sample was 100%. The N-terminal peptide as well as the fragment aa 84-107 could 
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not be detected in the non-reducing sample and in addition the predicted peptide covering aa 

57-83 gave only a weak signal. Nevertheless, a peptide representing the residues aa 57-107 

was identified and contained at least one disulphide bond or a mixture of one and two 

disulphide bonds. The peptide representing the residues aa 17-48 produced a peak, which 

complies with the calculated m/z of a disulphide bond between cysteines C28 and C44 (see 

Fig . 11 and TTab. 4). This was confirmed by data obtained under reducing conditions. The 

disulphide bond between C28 and C44 could be clearly identified and two disulphide bonds 

were identified in the whole protein, thus only one disulphide bond must be present in the 

fragment aa 57-107. This peptide contains four cysteines and the close neighbourhood of the 

cysteines impeded a further assignment, as no suitable protease cleavage site was present 

between cysteines 79 and 87.  

 

 

 

Fig. 11: Mass spect romet ric analysis of recombinant His-Mvn using FTICR MS afte r  
t rypsin digest ion.  The first graph shows the measured spectrum of the tryptic fragment aa 17-46, 
whereas the second and third graph show simulated spectra for His-Mvn containing either no or one 
disulphide bond, respectively. 
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Tab. 4: Summary of a l l  fragments ident i f ied af ter t rypsin digest ion using FTICR MS.  
The sequence of each fragment and its position in the whole molecule as well as the detected 
corresponding ions are given.  

Sequence Pos. aa 

in prote in 

Ion m/zobs m/zsim mass 

accuracy 

GSSHHHHHHSSGLVP
R 

1-16 [M+nH]n+ 

[M+O+nH]n+ 

n.d. 

n.d. 

 

 

- 

- 

GSHMPNFSHTCSSIN
YDPDSTILSAECQAR 

17-46 [M(-2H)+2H]2+ 

[M(-2H)+3H]3+ 

[M(-2H)+4H]4+ 

(  1 S-S: AA 
27(Cys)-43(Cys)) 

1634.2036 

1089.8032 

817.6043 

1634.2021 

1089.8038 

817.6047 

0.9 ppm 

0.6 ppm 

0.5 ppm 

DGEWLPTELR 47-56 [M+2H]2+ 

[M+H]+ 

608.3031 

1215.6003 

608.3039 

1215.6004 

1.3 ppm 

0.1 ppm 

LSDHIGNIDGELQFGD
QNFQETCQDCR 

57-83 [M(-2H)+3H]3+ 

(  1 S-S: AA 
79(Cys)-82(Cys)) 

1027.7754 1027.7763 0.9 ppm 

LEFGDGEQSVWLVCT
CQTMDGEWK 

84-107 [M+nH]n+ 

[M+O+nH]n+ 

[M(-2H)+nH]n+ 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

- 

- 

- 

STQILLDSQIDNNDSQ
LEIG 

108-127 [M+2H]2+ 1102.0412 1102.0399 1.2 ppm 

Missed cleavage: 

LSDHIGNIDGELQFGD
QNFQETCQDCRLEFG
DGEQSVWLVCTCQT
MDGEWK 

57-107 [M(-4H)+4H]4+ 

(two S-S bonds) 

[M(-2H)+4H]4+ 

(one S-S-bond) 

1456.3772 

 

1456.8783 

1456.3750 

 

1456.8790 

1.5 ppm 

 

0.5 ppm 

 

 

3.1.4  SIZE DETERMINATION OF NATIVE MVN FROM M. AERUGINOSA 

During a previous study (Kehr, 2003), Mvn was detected as two bands of approximately 50 and 

54 kDa on immunoblots of M. aeruginosa PCC 7806. This is far above the calculated size of a 

monomer (12 kDa) or dimer and was discussed as the result of multimerisation or the strong 

interaction with a binding partner of unknown kind. Nevertheless, the proteins were separated 

by denaturing SDS-PAGE and thus no definite conclusion of the oligomerisation state of Mvn in 

vivo can be drawn. To address the question of oligomerisation in vivo, cell extracts of M. 
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aeruginosa wild type and mcyB mutant were subjected to gel filtration (see chapter 2.2.3.7.1) 

and the eluted fractions were probed for Mvn on a dot blot. The protein eluted in both, wild type 

and mcyB mutant, after 55-57 min which corresponds to 55-64 kDa according to the 

calibration with a molecular weight standard (FF ig .  12). This agrees with the size observed in 

previous immunoblots of protein extracts of cytosolic fractions. No signals were obtained for 

higher molecular weight forms of the protein. Thus it can be concluded that the multimeric 

forms detected by immunoblotting after denaturing and reducing SDS-PAGE represent the 

native oligmerisation state of Mvn. 

 

Fig. 12: Size determinat ion of Mvn in M. aeruginosa  cel l  extracts. Cell extracts were 
subjected to gel filtration and Mvn (red squares) eluted after 55-57 min, which corresponds to a 
molecular weight of 55-64 kDa.  

 

 

3.1.5  CARBOHYDRATE SPECIFICITY OF MVN 

Microvirin shows significant similarity to cyanovirin-N, which specifically recognises (1,2)-linked 

mannose residues like the ones present in the carbohydrate moieties of the HIV envelope 

protein gp120 (Boyd et al., 1997). Therefore, similar carbohydrate specificity should be 
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expected for Mvn. A carbohydrate microarray (Ratner et al., 2004) spotted with different 

oligomannose derivates was already used to test the carbohydrate specificity of cyanovirin-N 

(Ratner et al., 2004). The very same array was hybridised with FITC-labelled Mvn (see chapter 

2.2.3.9) to verify this assumption.  

Fig . 13 shows the carbohydrate microarray probed with FITC-labelled Mvn. Eight different 

carbohydrates (strucures are displayed in the lower part of FFig . 13) were spotted in replicates 

(horizontal squares) in four different concentrations for each 

(oligo-)saccharide (vertical squares).  
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Fig. 13: Carbohydrate mi rc roarra y.  Image of the carbohydrate microarray incubated with 
fluorescently labelled Mvn (upper panel). Synthetic mannans 2-8 and galactose 1 as negative control 
(lower panel) were spotted on the glass slide at concentrations of 1000, 500, 250 and 125 mM. The 
D1 and D3 arms of mannoside 8 that are separately represented by mannosides 4 and 6 are 
indicated. Carbohydrates were synthesized as described in Ratner et al. (2002). 
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The results unambiguously show that Mvn binds to oligomannose that carries a terminal (1,2)-

linked mannose unit. The lectin binds best to a mannan9 (structure 8 in FFig . 13) that comprises 

three oligosaccharide arms possessing terminal (1,2)-linked mannose units. Structures 4 and 6 

represent the D3 and D1 arms of the mannan9 and each alone is sufficient to achieve a binding 

of Mvn (FF ig. 13, lane 4 and 6). The importance of the terminal (1,2)-linked mannose residue is 

emphasised by the fact that no binding was observed to structure 3, which is the same as 

structure 4 but without the terminal mannose unit. The same applies for structure 7, which is 

identical to structure 8, but lacks the terminal mannose units at all three branches of the 

oligosaccharide. Nevertheless, a faint fluorescence signal could be detected at the highest 

carbohydrate concentration applied. The D1 arm of structure 7 still contains a terminal (1,2)-

linked mannose unit but is only made of two sugar units. This implies that a minimum chain 

length of three carbohydrate units is required to facilitate optimal binding. This agrees with the 

fact that lectins usually recognise oligosaccharides but not monosaccharides. The same applies 

for Mvn, which fails to bind to mannose monosaccharide (structure and lane 2). 

 

3.1.6  ANTI-HIV ACTIVITY OF MVN 

Mvn exhibits almost the same sugar binding specificity as CV-N and the anti-HIV activity of CV-

N results from the recognition of the respective carbohydrates on the viral cell envelope protein 

GP120. The binding of CV-N to these glycoepitopes prevents the virus from entering the host 

cell (Bolmstedt et al., 2001; Botos et al., 2002; Esser et al., 1999; O'Keefe et al., 2000). 

Therefore, intensive studies were conducted to test eligibility of CV-N as a drug to prevent HIV 

transmission. The results presented above suggested that Mvn might possess a similar 

potential. A previous study already found evidence that Mvn can indeed bind to components of 

HI virus lysates in vitro (Kehr, 2003). In order to assess the in vivo activity of Mvn the purified 

His-Mvn was tested in the group of Dominique Schols (Rega Institute for Medical Research, 

Katholieke Universiteit Leuven, Belgium). 

The assays were perfomed on three different HI virus strains including one strain (IIIB HHA-res) 

that was resistant to inhibition by the mannose-binding lectin HHA (Balzarini et al., 2005; 

Balzarini et al., 2004). Apart from Mvn additional mannose-binding lectins were tested as a 

reference. These included CV-N, HHA (Hippeastrum hybrid agglutinin) and GNA (Galanthus 

nivalis agglutinin) and the inhibitory activity of these was demonstrated earlier (Balzarini et al., 
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2004). In addition to the 50% inhibitory concentration (IC50) the 50% cellular toxicity (CC50) was 

determined to evaluate possible cytotoxic effects caused by the lectin treatment. 

Tab. 5: HIV inhibitory act ivit y and cytotoxic effects of Mvn in comparison to other 
mannose-specif ic lect ins. The activity against three different HIV strains was tested, including one 
strain (IIIB HHA-res) resistant to inactivation by HHA.  

   IC50 (μg/ml)   CC50 (μg/ml)  

  HIV-1 NL4.3 HIV-1 I I IB I I IB HHA-res  

lectin     

HHA 0.27 0.19 >100 >100 

GNA 0.056 0.17 >100 >100 

CV-N 0.19 0.06 >4 2.1 

Mvn 0.07 0.054 >20 >20 

 

The results presented in TTab. 5 show that Mvn indeed exhibits an anti-HIV activity that is 

similar to that of CV-N and exceeds those determined for other lectins. Interestingly, the 

cytotoxicity is an order of magnitude lower compared to CV-N. Furthermore, the results confirm 

the data obtained by the carbohydrate microarray. The specificity of CV-N was assayed using 

the same carbohydrate array. In contrast to Mvn the former was less specific recognising a 

broder spectrum of mannose derivates (Ratner et al., 2004). Thus the higher cytotoxic impact of 

CV-N might result from addtional interactions of the lectin.  

  

3.1.7  DETECTION OF MANNAN MOIETIES ON THE M. AERUGINOSA  CELL SURFACE 

Complex carbohydrates are presented by bacteria on their cell surface to accomplish a role e.g. 

in attachment or recognition (Karlyshev et al., 2004; Sherlock et al., 2005; Wu et al., 2007). 

Such carbohydrates can be part of glycoproteins (Hitchen and Dell, 2006; Schaffer and 

Messner, 2004) or lipopolysaccharides (Rocchetta et al., 1999). Most bacterial glycoproteins 

were found to be associated with the cell surface (Upreti et al., 2003). As mentioned in the 

introduction (see chapter 1.4.2) lectins serve as recognition molecules of sugar signals exposed 

on cell surfaces. In order to test whether a mannan type oligosaccharide is present on the M. 

aeruginosa PCC 7806 cell surface a lectin binding analysis (LBA) was carried out. The lectin 

binding analysis is a technique commonly used to determine the composition of carbohydrate 

structures on cell surfaces. Lectins with known sugar specificity are linked to fluorescence dyes 

and used as probes (Hedemann et al., 2007; Robitaille et al., 2006). The use of a set of lectins 
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each coupled with a diffierent fluorescene dye can be employed to study complex samples 

containing a number of species e.g. pathogenic bacteria from clinical isolates (Greiner et al., 

2005) or bacteria from environmental samples (Boeckelmann et al., 2002; Neu et al., 2002; Neu 

et al., 2004).  

In this study this technique was applied to identify M. aeruginosa strains, which express the 

particular sugar that is recognised by Mvn. The expressed His-Mvn was coupled with the green 

fluorescent dye FITC and used as probe against cells that were immobilised on glass slides. In 

order to obtain reliable results proper controls were needed. A common way to confirm specific 

binding of a certain lectin used in LBA is to preincubate the lectin with the corresponding 

oligosaccharide. The carbohydrate binding sites should be occupied by the sugar rendering the 

lectin unable to bind further carbohydrate. The mannan oligosaccharide that is specifically 

recognised by Mvn was not available from any supplier and thus a different set of controls was 

choosen. At first, strains from different cyanobacterial genera, namely Synechocystis PCC 6803 

and Nostoc punctiforme ATCC 29133 were used. Both strains were available in the laboratory 

and do not contain genes encoding for Mvn homologues. Furthermore both strains can be 

easily distinguished from Microcystis by size (Synechocystis) or morphology (filamentous 

Nostoc). Therefore, the assay could also be performed with cell mixtures and the general 

possibility to use the Mvn LBA approach on complex samples was evaluated.  

 

Fig . 14 shows fluorescence micrographs from representative samples of the LBA. The two 

upper images show the same region of M. aeruginosa PCC 7806 cells incubated with FITC-

labelled His-Mvn. The right image shows the red autofluorescence of the cells, whereas the left 

image displays the merge of the red autofluorescence and the green FITC fluorescence. The 

green fluorescence clearly outshines the autofluorescence of the cells indicating an extensive 

binding of the labelled Mvn to the cell surface of the bacteria. The specificity of the interaction is 

confirmed by the controls presented in the lower fluorescence micrographs. The first image in 

the middle row shows the merged channel recording of M. aeruginosa PCC 7806 cells without 

any Mvn applied. Green fluorescence is completely absent from this sample. The same is valid 

for the following micrographs in the middle row that show samples of Synechocystis and 

Nostoc incubated with the FITC-labelled His-Mvn. These results unambigously show that the 

strong green fluorescence observed in the M. aeruginosa PCC 7806 sample (upper left) can 

only originate from the binding of Mvn. The complete absence of green fluorescence in the 

controls corroborates the specificity of the binding. Unspecific signals might have occured by 
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FITC-labelled His-Mvn retained in the mucilage of the cells due to insufficient washing after 

incubation, but these were not observed. Thus it can be finally concluded that oligomannose 

type carbohydrates identical or at least very similar to that successfully used in the carbohydrate 

microarray (see chapter 3.1.5) are present on the cell surface of M. aeruginosa PCC 7806. 

Obviously the next step was to evaluate whether the FITC-labelled His-Mvn can also be used to 

discriminate between cells in complex samples that do possess mannan cell surface 

carbohydrates and those that do not contain this particular sugar. The lower row of images 

shows the results obtained with mixtures of cells. The lower left image displays the merged 

channel recording of a sample containing M. aeruginosa PCC 7806 and Synechocystis PCC 

6803. The green fluorescence is only visible on the smaller cells that represent the Microcystis 

cells, while the larger Synechocystis cells only exhibit the red autofluorescence. The 

fluorescence micrograph in the lower right showing a mixture of Microcystis and Nostoc cells 

displays a similar and even more obvious pattern since the Nostoc filaments can be easily 

distinguished from the unicellular Microcystis. 
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Fig. 14: Lect in bind ing analys is us ing FITC-label led Mvn. The green fluorescence 
represents the bound FITC-labelled Mvn in contrast to the red fluorescence that originates from the 
excitation of chlorophyll. Images either show a merge of red and green fluorescence (merge) or just 
the red fluorescence (autofluorescence). Synechocystis PCC 6803 and Nostoc punctiforme ATCC 
29133 were used as negative controls. 
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3.1.8  IN SITU DETECTION OF MVN IN M. AERUGINOSA  PCC 7806 

Mvn recognises oligosaccharide moieties on the cell surface of M. aeruginosa, but this does not 

necessarily mean that the protein itself is bound to the cell surface in vivo. Microvirin is a lectin 

and in bacteria these types of proteins are ususally involved in processes of cell-cell recognition. 

They mediate attachment of cells in either an inter- or intraspecies manner. Therefore, lectins 

have to be released from the cell to the cell surface or the culture medium. This is indeed the 

case for most bacterial lectins characterised so far (see chapter 1.4). Apart from this, further 

evidence points to an extracellular function of Mvn. The ability of the protein to form intracellular 

disulphide bonds has been demonstrated (chapter 3.1.3) and poses a strong argument for a 

translocation through the cytoplasmic membrane since disulphide bonds in bacterial proteins 

are established in the periplasm (Collet and Bardwell, 2002). The presence of disulphide bonds 

in the heterologously expressed His-Mvn suggests that the protein is translocated into the 

periplasm in E. coli. Disulphide bonds in E. coli are established in the periplasm by the DsbA 

thiol-disulphide oxidoreductase (Sevier and Kaiser, 2002). On the other hand, in silico analyses 

using common prediction tools like signalP (http://protfun.net/services/SignalP/) or PSORT 

(http://psort.ims.u-tokyo.ac.jp/) support a cytosolic localisation of Microvirin. 

In order to address the question of in vivo localisation of microvirin immunofluorescence 

microscopy (IFM) studies were conducted on fixed cells of M. aeruginosa PCC 7806. The IFM 

technique was already used successfully in the PCC 7806 strain (Guljamow et al., 2007). An 

Mvn mutant that could serve as control was available and therefore, this method was chosen. 

The cells were incubated with an anti-Mvn antibody and afterwards hybridised with a FITC-

labelled secondary antibody. After each antibody hybridisation step the cells were washed in 

PBS buffer and finally the samples were observed under a fluorescence microscope. In contrast 

to the protocol used by Guljamow et al. the lysozyme incubation step that resulted in the 

permeabilisation of the cells was omitted because an extracellular localisation of microvirin was 

expected.  

Fig . 15 shows a set of representative fluorescence micrographs summarising the results. The 

upper part of FFig. 15 displays images taken of control experiments. Micrographs were 

recorded at 617 nm (autofluorescence), 528 nm (FITC fluorescence) and a merged image 

shows an overlay of both wavelengths. Several controls were used. The upper row of images 

shows wild type cells hybridised only with the secondary fluorescently labelled antibody and 

only the fixed cells without any antibody applied. The images acquired from both experiments 

virtually look the same indicating no unspecific reaction of the secondary antibody. Also the 
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experimental procedure was sophisticated and particularly the washing steps after antibody 

treatment were sufficient to remove unbound antibodies. Apparently there is little green 

fluorescence visible in both samples on the images acquired with the FITC filter set (528 nm), 

but since no fluorescent antibody was applied in one of the experiments, the weak green 

fluorescence must be endogenous of the bacteria. The second row of FFig. 15 displays images 

of control experiments performed with primary and secondary antibodies using the mvn 

mutant and Synechocystis PCC 6803. Apart from the endogenous green fluorescent of the 

cells that was also visible in the topmost images there is no strong green fluorescence 

associated with the cells itself, but a rather bright green fluorescence signal could be observed 

surrounding the mvn mutant cells. It turned out that this fluorescence does not correspond to 

bound antibodies, but results from the excitation of the mucilage or compounds embedded in 

the mucilage. The amount of mucilage increased with prolonged culturing of the laboratory 

strains and thus the phenomenon was regularly observed at higher culture densities. This effect 

was even stronger in field samples that usually produce considerably higher amounts of 

mucilage (see chapter 3.5). 

However, the wild type cells display a bright green fluorescence tightly associated with the cell 

surface (FFig . 15, lower left images) that was not observed in any control experiment. In 

contrast to the endogenous green fluorescence the specific signal was also visible on the merge 

of both wavelengths. Obviously the green fluorescence signal had a greater diameter compared 

to the red autofluorescence, which is visible where two cells are in close proximity. Since the 

antibodies cannot enter the cells the results clearly show that microvirin is indeed secreted and 

located at the cell surface in the wild type. This is also valid for the mcyB mutant (FFig. 15, 

lower right images).  
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Fig. 15: Immunofluorescence microscopy using an ant i-Mvn ant ibod y. Cells were fixed, 
hybridised with an anti-Mvn antibody and a FITC-labelled secondary antibody. Images show both the 
green or red fluorescence and a merge of both channels. The mvn mutant and Synechocystis PCC 
6803 as well as the wild type hybridised with only the secondary antibody or without any antibody 
served as controls. 

 

3.1.9  MICROVIRIN BINDS TO LPS 

In the previous chapter it was unambigously shown that oligosaccharides recognised by Mvn 

are present on the cell surface of M. aeruginosa PCC 7806. Bacterial surface-exposed 

carbohydrates are linked to membrane-associated glycoproteins or glycosylated extracellular 

proteins like e.g. S-layer proteins (Schaffer and Messner, 2004; Smarda et al., 2002). 

Lipopolysaccharides of the outer membrane contain carbohydrate moieties that reach out into 

the surrounding medium and make a major contribution to the extracellular glycome 

(Papageorgiou et al., 2004; Weckesser et al., 1979). Thus extracellular glycosylated compounds 

might be potential targets of Mvn binding.  

To test whether LPS are binding partners of Mvn a gel shift assay was performed using purified 

LPS isolated from M. aeruginosa PCC 7806 according to the hot phenol method (Westphal and 

Jann, 1965).  The protein was incubated with LPS and separated by SDS-PAGE. The following 

immunoblot (FFig . 16A) showed that the amount of monomeric Mvn decreased in the presence 

of LPS and an additional band appeared running slightly above the dimer of Mvn at 28 kDa 
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(FFig . 16A, lane 3). However, neither of the two bands of 50 kDa or 54 kDa that were detected 

in whole cell protein extracts was observed. Given the homology to CV-N, Mvn might harbour 

to carbohydrate binding and thus a second binding partner absent from the LPS extract might 

be needed to achieve a shift to 50 kDa or 54 kDa (see FFig . 8). 

 

 

Fig. 16: Mic rov irin binds to LPS. A) Immunoblot of a gel-shift experiment with His-Mvn and 
purified LPS isolated from M. aeruginosa PCC 7806 wild type. The gel was loaded with purified LPS 
(lane 1), purified His-Mvn (lane 2) and His-Mvn incubated with the isolated LPS (lane3). B) Lectin 
binding analysis of an LPS mutant of M. aeruginosa PCC 7806. No Mvn binding to the mutant cells 
was observed. Mvn was detected using the anti-Mvn antibody in both experiments. 

 

An M. aeruginosa PCC 7806 knockout mutant of a gene encoding a glycosyltransferase that is 

involved in the synthesis of lipopolysaccharides was available (kindly provided by K. Goeldner) 

and could be used for further analysis. The said gene showed similarity to the rfaQ/waaQ gene 

(both gene names refer to the same gene, where rfaQ is used in older literature). The RfaQ 

protein is involved in the synthesis of the inner LPS core in E. coli (Klena et al., 1992). Typically, 

LPS consist of a lipid, the inner core oligosaccharide and the variable O-antigen. The knockout 

of the WaaQ protein in Pasteurella multocida led to severely truncated LPS missing the O-

antigen (Harper et al., 2004). The M. aeruginosa PCC 7806 LPS mutant generated by 

insertional mutagenesis (FFig . 17A) of the rfaQ homologue also showed (FFig. 17B, arrow 1) a 

drastic reduction of O-antigen attached to LPS (Göldner, 2007). In addition, the LPS containing 

only the core oligosaccharide migrated faster on SDS-PAGE gels (FFig. 17B, arrow 2), which 

was also described for other RfaQ mutants. This results from the absence of a heptose unit that 

is transferred to the LPS core by RfaQ (Klena et al., 1992). 
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Fig. 17: M. aeruginosa  LPS mutant. A) Schematic display of the mutagenesis of the rfaQ 
homologue of M. aeruginosa PCC 7806 by insertion of a chloramphenicol resistance gene. The 
numbers of the adjacent genes refer to the IPF numbers of the M. aeruginosa PCC 7806 genome 
annotation. B) SDS-PAGE of isolated LPS from M. aeruginosa PCC 7806 wild type and LPS mutant. 
The LPS isolated from the mutant show a strong reduction of the O-antigen portion (1) and a slightly 
smaller core LPS (2). Adapted from Göldner, 2007. 

 

The LPS mutant was subjected to a lectin binding analysis and no binding of the lectin was 

observed on any micrograph (FF ig. 16B). Obviously the mutation led to a complete loss of the 

Mvn-specific oligosaccharide exposed at the cell surface. However, the glycosyltransferase 

might be involved in other pathways and therefore it cannot be excluded that other putative 

binding partners are also affected by the mutation. Furthermore, the LPS mutant seemed to 

produce more extracellular mucilage, which can be seen on the images as green background 

fluorescence. However, no effort was spend to quantify the mucilage, but an enhanced 

mucilage production was already reported for LPS mutants of E. coli (Parker et al., 1992). 

 

3.1.10  THE LOSS OF MVN LEADS TO A REDUCED PRODUCTION OF MICROCYSTIN 

The altered expression of Mvn (FFig. 8) in the mcyB mutant implies a functional correlation of 

microcystin and microvirin. The absence of microcystin results in a delayed onset of Mvn 

expression. To further investigate the relationship of microcystin biosynthesis and Mvn, the 

microcystin content of the mvn mutant was compared to that of the wild type. Methanolic 

extracts were prepared from 10 ml aliquots of triplicate cultures at an OD750 of 0.5 and 1.0, 

respectively. HPLC analysis allowed the identification of microcystins based on specific 

retention times and the spectrum of the characteristic Adda moiety. Wild type extracts 



Results 

 68 

contained the previously described major peaks for microcystin-LR and D-Asp-microcystin-LR 

and several undescribed peaks. 

 

 

Fig. 18: M ic rocyst in content of M. aeruginosa  PCC 7806 wild t ype and mvn mutant.  
The cultures were grown in triplicates and samples were taken at culture densities of OD750 0.5 and 
1.0. Microcystin was quantified from the cell-bound (CB) and culture supernatant (SN) fractions. 

 

The results are summarised in FFig . 18 and broken down into fractions of cell-bound (CB) and 

culture supernatant microcystin fractions. In both wild type and mutant the amount of 

microcystin increases with the culture density but the mvn mutant produces less than 50% of 

the wild type microcystin level. Furthermore, the ratio of cell-bound to released microcystin 

differs between wild type and mutant at higher cell densities. At OD750 0.5 approximately 70% of 

total microcystin is cell-bound in the wild type and mutant, while at OD750 0.5 this ratio is shifted 

towards the released microcystin in the mvn mutant which accounts up to 50% of total 

microcystin. However, in the wild type the ratio remained unaffected during growth.  
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3.2  Direct interaction of microcystin and microvir in 

3.2.1  BINDING OF MICROCYSTIN TO MVN 

Several reports describe the interaction of microcystin with cellular components - in particular 

with proteins. Immunogold staining of Microcystis cross sections showed microcystin to be 

associated with thylakoids and phosphate bodies (Young et al., 2005). Others who found 

microcystins to be associated with phycobilisomes (Jüttner and Luthi, 2008) also support 

thylakoid localisation of microcystin. Binding of microcystin to proteins was shown to be very 

tight even enduring denaturing separation on SDS-PAGE (Zilliges, 2007). Zilliges also showed 

that microcystin binds to the large subunit (RbcL) of RubisCO and that binding can be 

suppressed by pre-treatment of the enzyme with DTNB. DTNB reacts with free sulfhydryl 

groups and hence microcystin must bind covalently to reduced thiol moieties of cysteines since 

these are rendered inaccessible due to DTNB modification. Besides RbcL where microcystin 

binding was investigated in vitro, several other proteins were identified as putative mc binding 

partners. These include the phycobilisome subunits CpcA and CpcB, phosphoribulokinase (Prk) 

and gluthathione reductase. Additionally, most of them (CpcA, CpcB, Prk, RbcL) showed a 

differential expression in the mcyB mutant. A role of mc in the regulation of enzyme activity 

and stability similar to thioredoxin was proposed in the same study.  

Like the proteins listed above Mvn shows an altered expression pattern in the mcyB mutant. 

Furthermore, Mvn contains six cysteine residues that may be a potential target of microcystin 

binding and the oxidation state of the cysteine residues seems to be crucial for the 

oligomerisation of Mvn.    

Binding assays were accomplished with His-Mvn under reducing (10 mM DTT) and non-

reducing conditions. The protein solutions were incubated with microcystin and subsequently 

dialysed against PBS buffer to remove unbound microcystin. The samples were separated by 

non-reducing denaturing SDS-PAGE, immobilised by western blotting and hybridised with an 

anti-mc antibody. The same blot was stripped and then re-hybridised with an anti-Mvn antibody 

to confirm the identity of the protein. 
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Fig. 19: Binding of mic rocyst in to microvir in.  Reduced (10 mM DTT) and non-reduced Mvn 
was incubated with microcystin and bound microcystin was detected by immunoblotting (anti-MC).  

 

The first two lanes in FFig . 19 contain the Mvn that was not reduced prior the assay, and three 

distinct bands that react with the anti-Mvn antibody are visible (Mvn1 and Mvn2 refers to the 

two upper bands running very close, Mvn3 refers to the lower band). No microcystin signal was 

obtained for the first two lanes. The third and forth lane contain the reduced protein. Upon 

reduction the two upper bands (Mvn1 + 2) vanished and were replaced by a more diffuse band 

in both lanes of the reduced Mvn. Obviously the absence of disulphide bonds resulted in a 

looser and flexible protein structure. The diffuse band in the lane with microcystin addition gave 

a stronger signal with the anti-Mvn antibody and a very strong signal with the anti-mc antibody. 

The results show that microcystin is capable of binding to Mvn under reducing conditions. 

 

3.2.2  MICROCYSTIN BINDING CAN BE SUPPRESSED BY BLOCKING OF THIOL GROUPS 

The experiment described in the previous section shows that a reducing environment is a 

prerequisite for the binding of microcystin to microvirin. This supports the hypothesis that 

microcystin reacts with the reduced thiol moieties of cysteine residues. However, other modes 

of binding that depend on e.g. structural changes occurring after the reduction of disulphide 

bonds might be possible. To exclude this possibility and to prove the initial hypothesis further 

the following assay was developed. Microvirin was reduced as described before and then 

dithio-bis(2-nitrobenzoic acid) (DTNB) was added to the protein mix. DTNB reacts with free thiol 

groups releasing one molecule of 2-nitro-5-thiobenzoate (TNB), while the second TNB forms a 

thioether with the free thiol group (FF ig.  20). By this treatment the reformation of disulphide 

bonds was prevented and the protein remained in a state that mimics complete reduction. On 
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the other hand, no free thiols that could react with microcystin were accessible. Afterwards, the 

Mvn treated with DTNB was used to test microcystin as described in the previous section.  

 

 

Fig. 20: 5-5 ’-Dithio-bis (2-nit robenzoic ac id ) (DTNB or Ellman’s reagent) reacts with the free 
sulfhydryl side chain of cysteine to form an S-S bond between the protein and a thionitrobenzoic acid 
(TNB) residue. 

 

Fig . 21 shows the results of the assay. Binding of microcystin was observed in one single lane 

loaded with the reduced Mvn that was not treated with DTNB. In the following lane containing 

the Mvn, which was treated with DTNB after reduction, binding of microcystin did not occur. 

Again the binding was detected only at the upper bands (Mvn 1) like it was shown in the 

previous chapter. DTNB selectively reacts with the SH groups of cysteines and thus the 

inhibition of microcystin-binding after DTNB treatment proved that microcystin binds to cysteine 

residues.  
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Fig. 21: Binding of mic rocyst in requi res reduced cysteine residues. Mvn was reduced 
with DTT  following blocking of the free thiol groups with DTNB, before microcystin was added. Bound 
microcystin was detected by immunoblotting (anti-MC). 

 

Apparently, microcystin was not able to replace the TNB from the cysteine residues. The 

binding of TNB is stable under oxidative conditions, but the TNB group can be released from 

the protein by reducing agents that are routinely used to reduce disulphide bonds (Tawfik, 

2002). Thus microcystin cannot act as a reductant itself, but it is dependent on reducing 

conditions to facilitate binding to cysteine residues.  

 

3.2.3  MICROCYSTIN BINDS TO CYSTEINES VIA N-METHYL-DEHYDROALANINE 

The results described above unambiguously show that microcystin binds to free thiol groups of 

Mvn. Nevertheless the question remains, which part of the mc molecule interacts with these 

moieties. It was demonstrated (MacKintosh et al., 1995) that microcystin binds to Cys273 of 

human protein phosphatase 1 (PP1) via the vinyl group of the N-methyl-dehydroalanine moiety 

of microcystin (FFig . 22A). The mechanism of microcystin binding to Mvn might be similar. To 

verify this hypothesis microcystin was covalently modified at the particular vinyl group by linking 

it to the thiol group of cysteamin (FF ig. 22B). The cysteamin-modified microcystin was kindly 

provided by Dr. K. Ishida (Hans-Knöll-Institute, Jena). 
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Fig. 22: Which part of mic rocyst in is respons ible for  protein b inding? A) Scheme of 
microcystin bound to a cysteine residue of a protein phophatase via the N-methyl-dehydroalanine 
moiety (from MacKintosh, 1995). B) Microcystin-LR (I.) and a modified variant with an cysteamin 
moiety attached to the vinyl group of the N-methyl-dehydroalanine residue. 

 

The assay of microcystin binding was performed as described in the previous chapter, but only 

reduced Mvn was tested this time. Equal amounts of reduced microvirin were mixed with 

microcystin and the modified microcystin, separated by SDS-PAGE and an immunoblot was 

developed using the anti-mc antibody. The only signals could be observed in the lane 

containing the mixture of microcystin and Mvn, while the negative control without microcystin 

and the lane containing the modified microcystin did not show a reaction (FF ig.  23). The identity 

of Microvirin was confirmed after stripping the blot and rehybridising it with the anti-Mvn 

antibody (data not shown). The anti-mc antibody is directed against the Adda-moiety of the 

molecule, so the recognition of microcystin should be unaffected by the cysteamin modification. 

The reactivtiy of the antibody against the modified microcystin was tested in an additional assay 

(data not shown). 

 

 

Fig. 23: Mic rocyst in binds to cysteines via  N-methyl-dehydroalanine. Binding of 
microcystin (+) and cysteamin-modified microcystin (+*) to microvirin. 
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3.2.4  INFLUENCE OF MICROCYSTIN BINDING ON THE OLIGOMERISATION OF MVN 

The purified His-Mvn showed a different migration behaviour on SDS-PAGE depending on the 

presence or absence of reductive agents in the loading buffer and dimers or monomers were 

observed, respectively. The tendency to form dimers was also described for the homologous 

cyanovirin-N (Barrientos et al., 2002) and little sequence alteration resulted in stable dimeric 

variants of the protein (Botos et al., 2002; Han et al., 2002; Kelley et al., 2002). It seemed 

reasonable to analyse the state of oligomerisation of Mvn with microcystin bound to the protein. 

Usually, internal disulphide bonds enhance the stability of proteins, but on the other hand 

flexibility of the molecule is reduced. The binding of microcystin to the cysteine residues of Mvn 

might prevent or reduce disulphide bond formation of the protein and thus change the structural 

properties of the protein.  

Gel filtration was conducted using aliquots of the samples from the microcystin binding assay 

(see chapter 3.2). FFig. 24 shows the results of the experiment. The flow rate was set to 0.5 ml 

per min and the run was monitored measuring the absorption at 220 nm and 280 nm. The 

retention profile of each sample is shown in the graphs. Additionally, the collected fractions 

covering the size range above 2 kDa were dotblotted and probed with anti-Mvn and anti-

microcystin antibodies. Images of the developed blots are aligned to the graphs showing the 

signals of the respective fractions. In all cases identical amounts of protein were applied to the 

FPLC column. 

A major peak was detected after 24.5 min in all samples corresponding to a molecular weight of 

~30 kDa, which agrees with a His-Mvn dimer (FFig.  24). Interestingly, the peak intensity as well 

as the Mvn signal observed in the westernblots of the particular fractions of each sinlge run 

varied and higher molecular weight forms were detected by western blots although no 

significant absorption was measured during gel filtration. The column used for the gel filtration 

was chosen with regard to the size of Mvn to provide a good resolution in the lower molecular 

weight range. Therefore, the retention profile for higher molecular weight compounds is rather 

steep. Thus the higher molecular weight forms of Mvn that were detected by westernblot (FFig.  

24A+D) might be explained by these fractions being mixtures of multiple oligomeric forms of the 

protein consisting of varying numbers of monomers. The high molecular weight forms detected 

by the immunoblot covered the size range of ~90 kDa to ~240 kDa (FFig . 24A). These would 

have passed the detector one by another resulting in a low constant rather than a strong 

distinct signal. However, all forms were collected in a single fraction giving a strong signal on the 

immunoblot. A different affinity of the Mvn antibody to conformational variants of Mvn would be 
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a second explanation for the discrepancies between photodetection and immunoblot. Similar 

ambigous observations were made in aforementioned experiments (FFig . 19) where the 

antibody reacted in a stronger way with protein bands hardly visible on the stained SDS-PAGE 

gel, while bands highly abundant on the same gel displayed weak antibody reaction. 

The appearance of higher molecular weight forms of Mvn was influenced by multiple factors. A 

direct comparison of the non-reduced protein with and without microcystin (FFig . 24A+B) 

showed that the presence of microcystin influenced the multimerisation of the protein. 

Nevertheless, microcystin was not bound to the protein as confirmed by immunoblot. With the 

presence of microcystin the protein was biased towards the dimer. Contrary observations were 

made using the reduced protein. Here the addition of microcystin led to the appearance of 

multimeric forms of the protein of approximately 240 kDa besides the dimer. The high molecular 

weight forms as well as the dimer could be shown to contain microcystin (FFig. 24D). Although 

the peaks in the FPLC chromatogram showed similar intensities compared to the non-reduced 

samples, the reduced protein showed a reduced reactivity with the anti-Mvn antibody. 
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Fig. 24:  Inf luence of mic rocyst in b inding and oxidat ion state on the o l igomerisat ion of  
Mvn. Reduced or oxidised Mvn incubated with and without microcystin was subjected to gel filtration. 
The collected fractions were dotblotted and probed with anti-Mvn and anti-mc antibodies. The respective 
dotblots are projected on the coressponding elution profile. 



Results 

 77 

3.3  Inf luence of oxidative stress condit ions on microcystin-

protein interactions 

The binding of microcystin to cytosolic proteins of M. aeruginosa PCC 7806 in vivo was shown 

previously (Zilliges, 2007). The binding of microcystin to the large subunit of RubisCO (RbcL) 

was confirmed in vitro in the same study. In addition, the differential abundance of known and 

putative microcystin-binding proteins between wild type and microcystin-deficient mutant was 

reported. It was proposed that microcystin might influence protein stability. The putative 

function of microcystin was discussed to be similar to that of thioredoxins and other redox 

controlling molecules. However, the mechanistic details and the conditions that promote the 

binding of microcystin to its targets have not been addressed in the respective study. An 

involvement of microcystin in the response to redox stress conditions should alter the degree of 

microcystin binding to proteins compared to ambient conditions. To test the microcystin binding 

under oxidative stress conditions M. aeruginosa PCC 7806 was grown under low light 

conditions (16 μEm-2s-1) and was exposed to very high light (500 μEm-2s-1) at different culture 

densities for two hours. The same experiment was performed with M. aeruginosa PCC 7806 

cultures, which were grown under iron starvation. Iron limitation also results in oxidative stress. 

Iron depletion was confirmed by monitoring the blue shift of the chlorophyll absorption peak at 

~680 nm that is typical for cells expressing the iron stress induced protein IsiA (Dühring et al., 

2006). After exposure, the cells were harvested and proteins were isloated. Equal amounts of 

protein from each condition were separated by SDS-PAGE and transferred to PVDF-

membranes. The blots were hybridised with antibodies against microcystin and microvirin.  
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Fig. 25: Detect ion of protein-associated microcyst in under oxidat ive st ress 
condit ions. M. aeruginosa cells were subjected to low (LL) and very high light (VHL) conditions for 2 
h in culture medium with (+) and without (-) iron and sampled at different culture densities. The soluble 
protein fraction was probed with an anti-microcystin antibody. 

 

The results summarised in FF ig.  25 show that the binding of microcystin to proteins is 

enhanced under oxidative stress conditions. Generally the cells grown under iron limited 

conditions exhibit much more microcystin binding compared to the cells grown in standard 

BG11 medium. The binding of microcystin was further enhanced when the cells were subjected 

to light stress by applying very high light. Microcystin binding was significantly lower in cells 

grown in standard BG11 medium, but an increased binding of microcystin to proteins was 

observed when the cells were transferred to very high light. This phenomen became more 

apparent with increasing culture densities and was hardly visible at the lowest culture density 

tested.  

Microvirin was also affected by oxidative stress, but the effects were less pronounced. Under 

iron depletion two bands were deteced for microvirin (FFig. 26). It was shown in Chapter 3.2.4 

that the presence as well as the binding of microcystin could alter the oligomerisation of Mvn. 

Furthermore, the gel filtrations of M. aeruginosa cell extracts (see chapter 3.1.4) confirmed that 

the high molecular weight bands observed on immunoblots represent the native state of the 

protein.  
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Fig. 26:  Detect ion of Mvn under oxidat ive st ress condit ions in M. aeruginosa  PCC 
7806 wild type and mcyB mutant. M. aeruginosa cells were subjected to low and very high 
light conditions for 2 h in culture medium with and without iron and sampled at different culture 
densities. The soluble protein fraction was probed with anti-Mvn antibody. 

 

Fig . 26 shows that under iron rich as well as iron limited conditions no or only little alterations 

in the appearance of alternative forms of Mvn in the microcystin-deficient mutant could be 

detected. While significant differences can be observed between presence and absence of iron 

in the wild type, the pattern of Mvn expression is almost identical between these two conditions 

in the mcyB mutant. 

The first study on the expression of Mvn comparing wild type and mcyB mutant (Kehr, 2003) 

not only revealed differences in the abundance of Mvn, but also it was also inferred that the 

putative binding partner must be differentially expressed. A conditionally changing expression of 

surface carbohydrates could be easily verified experimentally by a lectin binding analysis. An 

increased or decreased exposition of surface carbohydrates which represent binding sites for 

Mvn should result in a significantly altered green fluorescence signal.  

A lectin binding analysis (see 2.2.3.13) was performed using culture aliquots sampled at OD750 

1.2 from the aforementioned experiment. A strong increase of green fluorescence could be 

observed in the wild type after the culture was subjected to either light or iron stress (FFig. 27). 

Interestingly, the cells were embedded in higher amounts of mucilage. As mentioned previously 

the green fluorescence coming from the mucilage does not correspond to bound FITC-Mvn, 

because it also appears in the controls (data not shown). In contrast to the wild type the mcyB 

mutant did not show such a distinct response to the applied stress conditions. This held true for 

light stress as well as iron stress. Nevertheless, an enhanced binding of FITC-labelled Mvn to 
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the cell surface was observed in the wild type under VHL conditions only resulting in a bright 

green signal of the cell. The mcyB mutant did not show such a response. 

 

 

 

Fig. 27:  Lect in binding analysis of M. aeruginosa  PCC 7806 wild t ype and mcyB 
mutant under oxidat ive st ress condit ions. M. aeruginosa cells were subjected to low and very 
high light conditions in culture medium with or without iron for 2 h and sampled at different culture 
densities. 

 

These data suggest that microcystin affects the expression or activtiy of enzymes responsible 

for the synthesis of surface and extracellular carbohydrates. Since the binding of Mvn to LPS 

was shown, it must be assumed that the PCC 7806 wild type reacts to the stress conditions 

applied here by altering its LPS composition, while the microcystin-deficient mutant is unable to 

do so.   
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3.4  Occurence and Evolution of Mvn 

3.4.1  DISTRIBUTION OF MVN  AMONG DIFFERENT MICROCYSTIS  SPECIES 

The above results, especially the binding of microcystin to Mvn raised the question whether the 

occurence or certain sequence features of the protein correlated with microcystin production. It 

was already mentioned (see chapter 1.4.8.1) that proteins possessing the cyanovirin-N domains 

were also found in fungi and in a very small number of bacteria. However, the overall sequence 

identity of M. aeruginosa PCC 7806 to the fungal CV-N domain-like proteins is rather low and 

even the similarity to the cyanobacterial cyanovirin-N at the amino acid level is only 52%. This 

raised the question whether an adaptation of the protein to Microcystis strains producing 

microcystin occured. This might be represented by a predominat distribution in toxic strains or – 

in the case of an equal distribution among the genus – by the conservation of special sequence 

features. At the time this study was conducted genes encoding similar proteins in cyanobacteria 

were not found in the databases. Therefore, a PCR screening of Microcystis DNAs was 

performed using primers derived from the mvn gene sequence of M. aeruginosa PCC 7806. 

The DNAs used were obtained from strains of the Pasteur Culture Collection (PCC, France), the 

Microbial Culture Collection at the National Institute for Environmental Studies (NIES, Japan) and 

one strain from the Humboldt-University (HUB, Berlin). 

The results of the PCR screening are summarised in TTab. 6 and additional information on the 

presence of microcystins is given for the PCC strains (personal communication, M. Welker, 

Technical University, Berlin). The primers for the detection of the microcystin synthetase were 

derived from the conserved regions in the mcyE gene. The data on the toxicity of the NIES, 

CBS, MRC and MRD strains were obtained from the literature (Kaebernick et al., 2001; Kaneko 

et al., 2007; Kondo et al., 2000; Nishizawa et al., 2007; Tillett et al., 2001). 

The results do not show a complete correlation of microvirin and microcystin. Microvirin is not 

generally present in all strains of Microcystis aeruginosa and the gene was detected in a 

number of strains that do not produce microcystin. However, there seems to be a bias of 

cooccurence of microcystin and microvirin, because in almost all strains - with PCC 9806 being 

the one exception by giving ambiguous results in MALDI and PCR - mvn genes are present if 

microcystin biosynthesis genes are present. In other words, no microcystin-producing strain 

was found that does not contain mvn genes.  
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Tab. 6: Distribut ion of the mvn gene and mcy genes in M. aeruginosa  st rains as 
detected by PCR. Additionally the production of microcystin was assessed by MALDI-TOF 
(personal communication, M. Welker, Technical University Berlin). Some information was obtained 
from the literature (1Kondo et al., 2008 and Nishizawa et al., 2007; 2Tillet et al., 2001 and Kaebernick 
et al., 2001; 3Kaneko et al., 2007). 

strain MALDI  PCR  

 microcystin microcystin mvn 

PCC 7005 - - - 

PCC 7806 + + + 

PCC 7820 + + + 

PCC 7941 + + + 

PCC 9354 + + + 

PCC 9355 + + + 

PCC 9432 - - + 

PCC 9622 - - + 

PCC 9624 - - - 

PCC 9701 - - + 

PCC 9717 - - - 

PCC 9804 - - + 

PCC 9805 - - - 

PCC 9806 + - - 

PCC 9807 + + + 

PCC 9808 - - - 

PCC 9809 + + + 

PCC 9812 + + + 

PCC 9905 - - - 

PCC 100-24 - - - 

PCC 100-25 - - + 

    

HUB 5.3 n.d. - + 

    

NIES 44 n.d. -1 + 

NIES 89 n.d. +1 + 

NIES 100 n.d. -1 + 

NIES 104 n.d. -1 + 

NIES 299 n.d. -1 + 

    

CBS -2 +2 + 

MRC -2 +2 + 

MRD +2 +2 + 

    

NIES 843 n.d. +3 - 
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3.4.2  EVIDENCE FOR THE LOSS OF MVN IN M. AERUGINOSA  NIES 843 

The whole genome sequences of the two toxic M. aeruginosa strains PCC 7806 and NIES 843 

were published recently (Frangeul et al., 2008; Kaneko et al., 2007). Both strains are very similar 

to each other and can be regarded as the same chemotype. Genes for the production of 

microcystin and cyanopeptolin were identified in both strains. Furthermore, the genes encoding 

gas vesicle proteins are highly conserved between both. Interestingly, the NIES 843 strain does 

not contain an mvn gene in contrast to all other toxic Microcystis strains evaluated in 

conjunction with this study. The availability of the whole genome sequences of said strains 

made it possible to compare the genomic region of mvn from PCC7806 to the corresponding 

region in the NIES 843 genome.  

A sequence stretch of ~5600 nt of the PCC 7806 mvn region was used as query in a BLAST 

search on the NIES 843 genome sequence deposited in the Cyanobase database 

(http://bacteria.kazusa.or.jp/cyanobase/cgi-bin/blastform.cgi?target=Microcystis).  

The results of the BLAST search are visualised in FF ig. 28. The organisation of the genes in the 

PCC 7806 strain is displayed schematically on the top and it is projected on the graphical 

representation of the BLASTN results using this very sequence as query. The BLASTN was 

performed on the whole genome sequence as well as on the annotated ORF database. 

Apparently, the whole sequence stretch shows some striking difference when compared to the 

NIES 843 strain. First of all, the entire query sequence is not clustered in one region of the NIES 

843 but it is distributed over two distinct loci (blue and green overlay in FF ig . 28) of its genome. 

Furthermore, for some positions no homologous sequence was identified in the NIES 843 

genome (yellow overlay in FFig . 28), including the mvn gene sequence. Interestingly, these 

deletions (as compared to the PCC 7806 genome) are close to highly repetitive sequences (red 

overlay in FF ig.  28). One of these repeated sequences was identified previously in PCC 7806 

and resides upstream of the mvn gene and within the microcystin synthetase promoter region. 

In total this element occurs nine times in the PCC 7806 strain and was also found nine times in 

the NIES 843 genome. Rearrangements between the two Microcystis genomes were described 

previously and it was proposed that repeat elements play a role in those processes (Frangeul et 

al., 2008). As to the comparison shown here it is striking that putative deletions and 

rearrangements took place close to highly repetitive loci, which is agrees with the proposal of 

Frangeul et al. (2008).  
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Fig. 28: PPro ject ion of the mvn-encoding genomic region of M. aeruginosa  PCC 7806 
on the  genome of the NIES 843 strain. The homologous sequence is not clustered in the NIES 
843 genome, but is scattered at two loci (blue and green). These two sequence stretches are flanked 
by highly repetetive sequences (red). Sequence stretches absent from NIES 843 (yellow) are in direct 
proximity to repetetive elements. 

  

3.4.3  COMPARISON OF MVN SEQUENCES FROM VARIOUS M. AERUGINOSA  STRAINS 

The mvn gene was present in all microcystin-producing strains investigated. Nevertheless, it 

was also present in many strains that do not produce microcystin. The observation that 

microcystin binds to microvirin implies that the microvirin of the microcystin-producing strains 

might have evolved towards microcystin-binding and thus considerable differences should exist 

in the primary sequence of microvirins from toxic and non-toxic strains. In contrast to 

cyanovirin-N, the M. aeruginosa PCC 7806 protein for instance contains six instead of four 

cysteine residues. As shown in chapter 3.2 the thiol groups of the cysteine residues are the 

targets of microcystin. Therefore, additional cysteine residues may have evolved for this special 

function and occur only in microvirin from toxic strains. In order to test this hypothesis the PCR 

products from the strains analysed for the presence of mvn genes (previous chapter) were 

cloned and sequenced.  

The alignment in FFig . 29 shows the deduced amino acid sequences from the sequenced PCR 

products. The names of the toxic strains are highlighted in yellow and a grey background at the 

particular positions indicates differences to the sequence of PCC 7806.  
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Fig. 29: Al ignment of mvn gene sequences f rom various M. aeruginosa  stra ins. Grey 
boxes indicate differences in the amino acid sequences. The names of toxic strains are underlaid in 
yellow, non-toxic strains in orange. 

 

The overall similarity of the Mvn sequences from the different Microcystis strains is very high. 

Only up to 7 amino acids are exchanged among the homologous sequences compared to the 

PCC 7806 protein and these are mostly conservative exchanges like glutamate to aspartate or 

aspartate to asparagine. A cysteine to serine exchange was found in four of five NIES strains, 

but this did not correlate with the presence of mcy genes.  

 

3.4.4  PHYLOGENY OF CV-N DOMAINS 

The alignment of Mvn protein sequences (FFig . 29) shows that the protein is highly conserved in 

M. aeruginosa strains. However, the database entries with highest similarities are hypothetical 

proteins from ascomycetes, while the only cyanobacterial homologue cyanovirin-N exhibits less 

overall similarity to Mvn. As noted in the introduction (see chapter 1.4.8.1) the CV-N family 

proteins have undergone an evolution that involved horizontal gene transfer events, duplications 

and the acquisition of additional domains. Hence, it seemed worthwhile to elucidate how the 

Microcystis homologues are positioned within the CV-N domain family. 

The study of Percudani et al. (2005) already showed the CV-N domain to be an evolutionary 

conserved protein module and it represents a distinct protein familiy listed at the Pfam as well 

as the Interpro database. The similarity across this family is not sufficient to identify all of its 
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members by using a BLAST approach, but a hidden Markov model profile was succesfully used 

in the quoted study to find additional homologues. The following analysis was done using the 

protein sequences listed in the Pfam database entry PF08881 and the Mvn sequences obtained 

during this study and introduced in the previous chapter. An aligment was created with clustalX 

and used as input for the phylogeny programmes. Both methods used (see chapter 2.2.3.18) 

produced very similar trees, thus only the Bayesian phylogenetic tree of the respective 

sequences is shown in FFig . 30. Some CV-N domain family proteins contain additional 

conserved domains. Such members of the CV-N family are highlighted in the tree by pictograms 

showing the domain organisation of these proteins.  

All Microcystis sequences cluster closely together as it was expected considering the high 

degree of sequence identity between them. Furthermore, the Mvn proteins from toxic and non-

toxic strains do not form separate branches. The only exception is the Mvn from the non-toxic 

M. aeruginosa PCC 9701 that forms a branch relatively distant from the other Microcystis 

proteins. The Microcystis sequences are included in a main branch together with ascomycetes 

sequences. Detailed analyses of this branch revealed features shared by the Microcystis 

proteins and the fungi proteins of this clade. All sequences are rich in cysteine residues (number 

of cysteine residues are given in yellow squares), which is a common feature of secreted 

proteins. Thus, sequences were analysed for the presence of signals responsible for membrane 

translocation using signalP (http://www.cbs.dtu.dk/services/SignalP/). It turned out that all 

fungal proteins forming a branch with the Microcystis proteins were predicted to be secreted 

proteins. The only exception is the protein Q7S4I2 from N. crassa, but that contains an 

oligopeptide transporter domain with trans-membrane helices and shows cell membrane 

localisation. 

A second branch only contains non-secreted proteins, which possess significantly smaller 

numbers of cysteine residues. A sub-branch of the non-secreted proteins contains CV-N 

domain family proteins that carry additional conserved domains. All of them bear a domain that 

at first was identified in Rickettsia as a surface exposed antigen. A further sub-branch contains 

proteins that additionally carry a peptidoglycan- and chitin-binding LysM domain. Interestingly, 

these proteins were predicted to be intracellularly localised. 

Some sequences do not cluster with either of the main branches and are situated in-between 

them, which is reflected by the rather low clade probability values at the respective nodes. All 

other bacterial sequences, in partciular the sequence from the cyanobacterium Nostoc 

ellipsosporum belong to this group. The results for the subcellular localisation were ambiguous, 
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too. Some proteins clearly showed membrane translocation (Q2KGK0, M. grisea; Q0M6G4, 

Caulobacter sp.), while others showed no evidence for secretion (Q0LGR1, H. aurantiacus; 

Q2HHW1, C. globosum). The localisation of cyanovirin-N (CVN, N. ellipsosporum) could not be 

predicted with certainty, because there is no information on the gene sequence available. The 

protein sequence was determined experimentally and hence, a putative signal peptide was not 

captured (Gustafson et al., 1997). On the other hand, Mvn from M. aeruginosa PCC 7806 does 

not contain a known translocation signal, but it is secreted in a so far unknown manner. 

Likewise, information on putative translocation signals in the other Microcystis homologues is 

missing, because sequences were obtained by using the M. aeruginosa PCC 7806 derived 

primer set. But obviously in all secreted sequences four cysteine residues are conserved at 

corresponding positions. These cysteines are also conserved in the N. ellipsosporum sequence 

and in all M. aeruginosa sequences (see alignment in the supplement). 
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Fig. 30: Bayesian phylogenet ic t ree of CV-N domain proteins. Clade probability values are 
given at each node. Blue-green boxes highlight cyanobacterial sequences. Yellow boxes indicate the 
number of cysteine residues per molecule. Additional domains present in the respective protein are 
displayed. For two major branches the prediction of the subcellular localisation was consistent with 
the topology of the tree as indicated (secreted and non-secreted). 

 

The question of the evolutionary origin of Mvn cannot be answered with certainty, but several 

issues are evident from the phylogenetic tree. First of all, the sequences are highly diverse, 

which is reflected by the occurence of additional domains, different localisation and the little 
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overall similarity of distant members of the familiy. For the same reasons, there seem to be 

diverse functions of the different proteins. Several fungi contain multiple CV-N domain proteins, 

like e.g. A. oryzae, which possesses 14 of these proteins spread over the whole tree occurring 

in almost all branches. This indicates that duplication and the acquisition of additional domains 

already took place in an early ascomycetes ancestor. The rare presence of CV-N domain 

proteins in bacteria suggests that Mvn and CV-N were acquirred by a horizontal gene transfer 

event. However, it cannot be judged from the data whether this happened independently in 

Nostoc and Microcystis or if both proteins share a common cyanobacterial ancestor. Additional 

homologues were not found in the complete genome sequences of cyanobacteria. During this 

study the screening for mvn sequences was limited to Microcystis aeruginosa strains, but a 

broader screening approach might yield sequences from other cyanobacterial genera. 

 

3.5  Field studies 

3.5.1  MORPHOTYPE DIVERSITY AND SAMPLE QUALITY 

The immunofluorescence microscopy analyses of laboratory strains revealed the association of 

microvirin with the cell surface of M. aeruginosa PCC 7806. In addition, the results showed that 

microvirin is a strain specific protein and the lectin binding analyses demonstrated that the 

associated cell surface carbohydrate was present in a limited number of Microcystis strains. All 

laboratory Microcystis strains used in this study have lost their characteristic morphological 

features throughout prolonged cultivation. This is a commonly observed phenomenon (Reynolds 

et al., 1981) that is not understood yet. The apparent changes in the colony morphology of 

laboratory strains - in particular the complete loss of colony formation - imply that especially 

factors involved in cell-cell attachment and extrallular matrix formation have changed during 

cultivation. Indeed, a significant loss of total carbohydrate per cell and a rather rough than 

smooth cell surface were observed in dispersed M. aeruginosa compared to colonial field 

samples (Zhang et al., 2007). Therefore, the results obtained with the laboratory strains have to 

be interpreted carefully with regard to cell surface structures and cell-cell interactions. To 

overcome these limitations the immunofluorescence analyses were conducted using field 

samples that were collected at the Braakman Reservoir (Netherlands; kind gift of Dr. L. Tonk, 

University of Amsterdam).   

Besides Mvn MrpC was included in the analysis. This extracellular glycoprotein was shown to 

be highly abundant in the mcyB mutant and a role in cell-cell attachment was proposed (see 
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Chapter 1.3). Immunofluorescence detection of MrpC was done with laboratory strains and thus 

the detection of this protein seems to be reasonable with regard to the same arguments that 

also apply for Mvn. 

The samples from the Braakman Reservoir contained only a small number of different 

morphotypes, which might be attributed to the time of sampling (mid of September 2007) in late 

summer. Usually a small number of cyanobacterial species dominates a certain lake later in the 

year (Znachor et al., 2006). Moreover, some morphotypes of the sampled colonies could be 

hardly assigned to a certain Microcystis species, because the morphological characteristics 

were ambiguous. FFig. 31 shows light micrographs of the most abundant morphotypes. Some 

morphotypes like M. wesenbergii (FFig. 31A+E) and M. aeruginosa (FF ig . 31B+F) were identified 

with high certainty. Typical M. aeruginosa colonies were lowly abundant in the sample. Others 

were highly abundant like the types shown in FFig . 31C+G and FF ig. 31D-H, but it was not 

possible to determine the species. Although both look relatively different, the determination of 

the species was difficult because several colonies were found that represented smooth 

transition between those two.  
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Fig. 31: Dominant morphotypes in samples f rom the Braakman reservoi r. A+E) M. 
wesenbergii, B+F) M. aeruginosa, C, D, G + H) Microcystis with ambiguous morphology. 
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The next to be mentioned is the strong green autofluorescence that was observed in almost all 

colonies evaluated. FFig . 32 shows a selection of images taken of control experiments. The 

excitation wavelengths are given for each image column where 617 nm were used for 

chlorophyll fluorescence and 528 nm excitated the FITC-labelled antibodies. The first columns 

show a merge of both wavelengths. Since representatives of all colony morphologies of the 

sample behaved more or less identically in the controls only a small selection is shown here. 

The two upper rows show colonies that were fixed and mounted on slides without any antibody 

added. A strong green fluorescence is visible that must result from compounds present in the 

cells. Such an intensive green autofluorescence was never observed when laboratory strains 

were examined under the fluorescence microscope.  

The lower rows of pictures show cells that were only hybridised with a FITC-labelled secondary 

antibody against guinea pig IgG, which is used in combination with the anti-MrpC antibody. The 

green fluorescence is visible again, but does not differ from the green fluorescence of the 

controls in the upper pictures. Obviously an unspecific binding of the secondary antibody could 

be excluded. The control pictures obtained with the FITC-labelled secondary anti-rabbit IgG 

antibody that is used for detection of the anti-Mvn primary antibody looked very similar and are 

not shown here.  

The green fluorescence visible in the control samples made it difficult to judge the obtained 

signals. The Mvn IFM in laboratary strains showed that positive signals clearly outshined the red 

autofluorescence in merged images and thus this was also considered as a criterium for a 

positive signal in the field isolates. The results for MrpC obtained from the laboratory strains (see 

Chapter 1.3) clearly showed a distinct localisation of the proteins at the cell surface resulting in a 

strong ring-like green fluorescence. Hence, only ring-like signals were considered to be a real 

signal in the following.  

Initially it was tried to perform PCR on single colonies to confirm the immunofluorescence 

microscopy results by detecting the genes for the respective genes. Several attempts were 

undertaken, but the sample qualitiy was not sufficient to amplify DNA from single colonies (data 

not shown). 
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Fig. 32: Immunofluorescence microscopy on samples f rom the Braakman reservo i r.  
The images show a representative selection of controls where either no antibody or only the 
secondary antibody was applied. A considerable green endogenous fluorescence is visible that did 
not originate from the FITC-labelled antibody. 
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3.5.2  IMMUNOFLUORESCENCE DETECTION OF MVN 

Fig . 33 shows a selection of images of the immunofluorescence detection of Mvn in 

Microcystis colonies from the Braakman Reservoir. The rows A and B show examples of 

colonies that apparently do not express Mvn. The images displayed in FF ig. 33B show a M. 

wesenbergii colony, which did never contain any Mvn. FFig. 33C+D show examples of cells 

expressing Mvn on their cell surfaces. In contrast to the laboratory strains analysed previously 

the green fluorescence is much more pronounced. Interestingly, the fluorescence signal 

appeared as a ring similar to that observed during the IFM analyses performed with the anti-

MrpC antibody (see chapter 1.3). This corroborates a higher abundance of the protein at the 

cell surface compared to the laboratory strains. On the other hand one could speculate that 

higher amounts of the specific high mannose oligosaccharide are exposed, which would offer a 

higher number of attachment sites for Mvn.  

Similar to the analyses performed on cultured Microcystis strains by PCR and fluorescence 

techniques (see chapter 3.4.1) the strain specificity of Mvn was ascertained. Furthermore, all 

cells of a particular colony equally expressed the protein. This indicates that the colonies are 

constituted of cells from the same or at least closely related Microcystis strains. However, it 

cannot be judged from this data whether a colony is clonal or is constituted from individual cells 

that belong to the same species. In the latter case the formation of colonies could be the result 

of cell-cell recognition mediated by surface exposed specificity factors such as carbohydrates 

and lectins. 
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Fig. 33: Detect ion of Mvn by immunofluorescence microscopy on samples f rom the  
Braakman reservoi r.  The images show a representative selection of colonies probed with an anti-
Mvn anti-body and a secondary FITC-labelled antibody. A specific signal in addition to the 
endogenous fluorescence is visible in colonies of panel C and D. 
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3.5.3  LBA ON FIELD SAMPLES 

The LBA show that exposure of oligomannose at the cell surface is a strain specific feature and 

said carbohydrate was detected in certain colonies (FFig. 34). Similar to the detection of Mvn 

the presence of oligomannose could not be clearly assigned to a particular morphotype. The 

colonies of M. wesenbergii that were easily recognised did never show a specific reaction with 

the FITC-labelled Mvn. The results strongly support that 1,2-linked mannan occurs in 

conjunction with microvirin in certain Microcystis strains.   
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Fig. 34: Lect in binding anayls is of samples f rom the Braakman reservoi r.  A strong signal 
is visible in the cells of panel A where the green fluorescence of the labelled Mvn by far exceeded the 
red autofluorescence in the merged image. 
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3.5.4  IMMUNOFLUORESCENCE DETECTION OF MRPC 

The results for the detection of MrpC were rather similar to those of Mvn in terms of distribution 

among the isolated colonies. M. wesenbergii colonies did never contain the protein as shown in 

Fig . 35C where a M. wesenbergii colony is shown close to a cell of a different Microcystis 

species that did express MrpC. Cells that were positive for MrpC displayed a strong green ring-

shaped fluorescence meaning that the whole cell surface was covered with MrpC proteins. 

Interestingly, the expression of MrpC showed a gradient through the colonies examined. This 

means that especially in larger colonies the cells in the center expressed little or even no MrpC, 

while the protein was highly abundant at the periphery of the colony (FFig . 35A+B). It can be 

excluded that this was an effect of unequal antibody labelling, because with the anti-Mvn 

antibody no trans-colony gradient was visible using the same sample.  
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Fig. 35: Detect ion of MrpC by immunofluorescence mic roscopy on samples f rom the  
Braakman reservoi r.  The images show a representative selection of colonies probed with an anti-
MrpC anti-body and a secondary FITC-labelled antibody. A specific signal in addition to the 
endogenous fluorescence is visible in colonies of panel A, B and the lower left colony of panel C.  
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3.5.5  THE MRPC ANTIBODY RECOGNISES ACCOMPANYING BACTERIA 

An unexpected observation was made using the MrpC antibody for IFM studies on the field 

samples. Obviously the antibody cross-reacted with proteins on the cell surface of heterotrophic 

bacteria embedded in the mucilage of Microcystis colonies (FFig. 36A+B). Such bacteria were 

only detected in Microcystis colonies that expressed MrpC. The MrpC protein aliquot that was 

used to raise the antibody in guinea pigs was isolated from the supernatant of a M. aeruginosa 

PCC 7806 culture, because heterologous expression of the protein in E. coli was not 

satisfactory (Zilliges et al., 2008). Thus, the protein was fully glycosylated with specific sugars. 

The polyclonal antibody might therefore not only recognise protein epitopes but also glyco-

epitopes.  

Probably the accompanying bacteria express carbohydrates on their cell surfaces that highly 

resemble those present in M. aeruginosa. The association with Microcystis colonies might be of 

substantial benefit for these bacteria, because it can provide a stable environment and the 

supply of nutritions. It was reported earlier that the axcenisation of cyanobacteria is difficult due 

to the bacteria present in their mucilage (Rippka, 1988). Here evidence is provided that these 

associations depend on specific interactions rather than accidental attachment. However, no 

effort was spent to investigate this in detail, but the observations made here may encourage 

future studies.  
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Fig. 36: Detect ion of MrpC by immunofluorescence microscopy on samples f rom the  
Braakman reservoi r.  In some colonies that expressed MrpC the antibody also recognised 
heterotrophic bacteria associated with the Microcystis colonies. Possibly the antibody recognised 
carbohydrate structures that are similar between the Microcystis cells and the associated bacteria. 
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4  DISCUSSION 

Over the last twenty years much attention was drawn to research on toxic cyanobacteria. The 

occurence of toxic waterblooms of Microcystis is a worldwide phenomenon and being a feeding 

deterrent seemed to be the main function of microcystins for a long time. In recent years the 

idea that microcystins might be primarily of considerable physiological benefit for the producing 

strain, rather than being a toxin first and foremost has become widely accepted. A function 

apart from the toxicity of microcystin seems to be reasonable for different reasons. First of all, it 

was shown that the biosynthesis genes and the progenitor of today´s microcystin are older than 

the eukaryotic predators of Microcystis (Rantala et al., 2004). Some studies found evidence for 

microcystin to be an intercellular signal molecule (Dittmann et al., 2001; Schatz et al., 2007), 

while others reported an implication of adaptation to low carbon concentrations (Jähnichen et 

al., 2007). The most comprehensive study so far compared the proteomic differences of M. 

aeruginosa PCC 7806 wild type and the microcystin-deficient mutant mcyB (Zilliges, 2007). In 

this study up to 20 % of the proteins showed a differential abundance. One of the heavily 

affected proteins was the extracellular glycoprotein MrpC. Morphological colony characteristics 

were already correlated with peptide production (Fastner et al., 2001; Kurmayer et al., 2002; 

Via-Ordorika et al., 2004; Welker et al., 2004). The formation of distinctly shaped colonies 

necessarily implies the presence of strain specific extracellular matrix compounds such as 

oligisaccharides, glycoproteins and lectins that were shown to play substantial roles in bacterial 

cell-cell attachment. The identification of the putative lectin Mvn (Kehr, 2003) and the 

glycoprotein MrpC (Zilliges et al., 2008), both affected by microcystin in their expression, urged 

to focus on the function of these proteins to extend the understanding of the function of 

microcystin. 

 

4.1  Limitat ions 

Before the results will be discussed in detail a brief comment has to be made on the drawbacks 

that arose from the work with the strain M. aeruginosa PCC 7806 and other strains cultivated in 

the laboratory in general. This study was focused on the characterisation of the putative lectin 

Mvn for which an extracellular localisation and function seemed obvious. As already mentioned, 

the PCC 7806 strain has lost the ability to form colonies, a phenomenon observed in virtually all 

Microcystis strains that have undergone a continuous culturing in the laboratory. This might 

explain why the disruption of the mvn gene did not result in a macroscopically noticeable 
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phenotype. Thus an extensive biochemical charaterisation was carried out and first attempts 

were made to study Mvn in field samples. The data will be discussed in the following sections 

and a function of microvirin will be suggested. 

 

4.2  General characterisation of microv ir in 

The characterisation of microvirin was mainly done using the heterologously expressed protein 

from E. coli. According to the homology to cyanovirin-N, initial assumptions were made and 

verified experimentally. Cyanovirin-N possesses internal disulphide bonds, forms dimers and is a 

mannan-specific lectin (Barrientos and Gronenborn, 2002; Barrientos et al., 2002; Bewley, 

2001; Bewley and Otero-Quintero, 2001; Botos et al., 2002; Gustafson et al., 1997; Shenoy et 

al., 2002; Yang et al., 1999). It was shown that all members of the CV-N domain family – 

despite the differences on the level of the primary sequence – bear a high level of tertiary 

structure conservation (Koharudin et al., 2008). In the study of Koharudin et al. the CV-N 

homologues formed three phylogenetic groups and NMR as well as crystal structures were 

obtained from one member of each group. Mvn clustered with CV-N in this analysis. Therefore, 

it can be assumed that Mvn also shares many of the features of CV-N. 

Microvirin was analysed by mass spectrometry and the presence of two intramolecular 

disulphide bonds was confirmed. Carbohydrate binding was proven and specificity for mannan, 

an oligosaccharide composed of (1,2)-linked mannose units, was corroborated. The outer cell 

surface localisation of Mvn was strongly suggested by phylogenetic analysis and proven by 

immunofluorescence microscopy. However, a translocation signal could not be identified whitin 

the protein sequence. Since all known prokaryotic protein secretion machineries depend on 

such a signal - whether cleaved from the precursor protein upon secretion or not - the 

mechanism of Mvn export remains elusive. However, the membrane translocation of the large 

subunit of the hydrogenase 2 devoid of a signal peptide was shown to be co-translocated with 

the small subunit possessing a twin-arginine motif (Rodrigue et al., 1999). Therefore, it might be 

speculated that Mvn is translocated in a similar manner e.g. associated with a glycoprotein. 

Mannan oligosaccharides were detected on the cell surface of M. aeruginosa by lectin binding 

analysis. Further analysis identified lipopolysaccharides as an interaction partner of Mvn. The 

protein did not bind to mutant cells defective in O-antigen production and a gel-shift was 

observed after incubation of Mvn with isolated LPS. However, the shifted 28 kDa band did not 
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fit to the 50 kDa and 54 kDa bands detected when cell extracts of M. aeruginosa PCC 7806 

were analysed and also have been confirmed by gel filtration (see chapter 3.1.4).  

Mvn most likely contains two carbohydrate-binding sites as inferred from homology to 

cyanovirin-N and thus an additional binding partner may exist in vivo. One possible canditate 

could be the glycoprotein MrpC that is attached to the cell surface of M. aeruginosa PCC 7806. 

Gel filtration analysis of M. aeruginosa extracts showed that the protein appears in high 

molecular weight forms between 120 and 170 kDa (Zilliges et al., 2008). A corresponding gel 

filtration was also performed in this study and Mvn was detected in a size range between 55 

kDa and 65 kDa agreeing with the bands observed on immunoblots of M. aeruginosa extracts. 

Hence, a tight interaction of MrpC and Mvn in vivo seems unlikely.  

 

4.3  Microcystin binds to proteins 

4.3.1  MICROCYSTIN BINDS COVALENTLY TO CYSTEINE SH-GROUPS OF MVN  

The results presented in chapter 3.2 unambiguously show that microcystin is capable of binding 

to microvirin. The attachment of microcystin to a number of proteins in the cells of M. 

aeruginosa was proposed in several reports previously and was corroborated using diverse 

strategies. Immunogold electron microscopy was used to locate microcystin at distinct sites of 

the cell (Gerbersdorf, 2006; Young et al., 2005), while others co-isolated microcystin together 

with thylakoids and phycobilisomes (Jüttner and Luthi, 2008). Zilliges (2007) identified 

microcystin to be bound to proteins that were separated by 2D electrophoresis. Furthermore 

the binding of microcystin to RubisCO was confirmed in vitro. For the first time, this study 

proposes a detailed mechanism of how microcystin binds to proteins and will suggest an 

expanded model of the function of microcystins in Microcystis aeruginosa based on the findings 

of Zilliges (2007). 

Based on the rich data on the relation of microvirin and microcystin, such as the differential 

expression of microvirin in the M. aeruginosa PCC 7806 wild type and microcystin-deficient 

mutants, the microcystin phenotype of the mvn mutant and the above mentioned literature 

about microcystin binding to proteins, the possibility that microvirin might also be a direct target 

of microcystin was considered. It was further assumed that binding of microcystin might occur 

by interaction with the thiol groups of cysteine residues which was described for the interaction 

of the toxin with eukaryotic protein phosphatases before (MacKintosh et al., 1995; Runnegar et 

al., 1993).  
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The presence of internal disulphide bonds in the heterologously expressed Mvn was confirmed 

by MALDI-TOF analysis (see chapter 3.1.3) and showed the general ability of Mvn to form 

disulphide bonds. However, the exact number and positions of disulphide bonds formed in the 

native protein in M. aeruginosa may differ from those in the recombinant protein. At least the 

presence of disulphide bonds within the molecule had to be taken into account before 

designing the microcystin binding experiments, because the basic prerequisites are different if 

thiols are freely accessible or involved in disulphide formation. The results of the initial binding 

assay summarised in FF ig. 19 (p. 70) clearly indicate that free thiols are a precondition for the 

binding of microcystin. This result supported the initial hypothesis that microcystin binds to 

cysteine residues and the fact that the attachment of microcystin endured the SDS-PAGE is a 

strong evidence for a covalent bond. However, an additional assay was designed to finally 

prove the hypothesis. It was shown that the binding of microcystin could be prevented if the 

free thiol groups of the reduced Mvn were blocked by a treatment with DTNB. As a 

consequence of DTNB treatment the establishment of disulphide bonds was impaired leaving 

the protein in a “quasi-reduced” state, but without free thiol groups. The absence of microcystin 

binding in this case showed beyond doubt that microcystin interacts with reduced cysteine 

residues.  

It was further proven that the vinyl group of the N-methyl-dehydroalanine residue is the 

particular group that reacts with thiols of cysteine residues forming a thioether. Interestingly, 

microcystin remained bound to proteins under reducing conditions as it was shown for M. 

aeruginosa PCC 7806 wild type protein extracts separated by reducing SDS-PAGE (see FFig .  

25). Generally, two cysteine residues can form a reversible disulphide bond, but the apparently 

irreversible attachment of a microcystin molecule to a free thiol group of a cysteine residue 

would lead to a dead end regarding all processes that depend on conditional disulphide bond 

formation.  

 

4.3.2  GENERAL CONSIDERATIONS ON  IN VIVO MICROCYSTIN BINDING 

The binding of microcystin to cysteine-thiols strongly implies a role in redox regulation. It is 

widely known that many proteins in cyanobacteria are subjected to a tight redox regulation. 

These proteins contain conserved cysteine residues and regulation occurs through changes in 

the oxidation states of the proteins. RubisCO is the best investigated protein that is regulated by 

redox modulation. Oxidative conditions lead to the inactivation of RubisCO. This is achieved by 

oxidative cross-linking of RubisCO subunits by disulphide bonds (Garcia-Ferris and Moreno, 
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1994) and conformational changes render the enzyme sensitive to proteolytic degradation 

(Marcus et al., 2003). Usually the oxidation of cysteine-thiols is reversible and depends on the 

ratio of reduced/oxidised redox-carriers such as thioredoxin (Trost et al., 2006). TTab. 7  

summarises redox-regulated proteins that were identified by proteomic studies (Florencio et al., 

2006). In addition, it is indicated which proteins were shown to be differentially expressed in M. 

aeruginosa PCC 7806 wild type and mcyB mutant (Zilliges, 2007). In the study of Zilliges 

around 500 proteins were identified and thus complete coverage of the proteome is not given. 

Therefore it might be expected that more compliance with thioredoxin targets will be gained if 

higher resolution proteomics are employed. The membrane fraction was excluded from this 

study in particular. This fraction includes all transmembrane proteins and proteins that are only 

partially inserted in the membrane whereas parts of them are exposed on either side of the 

membrane.  
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Tab. 7: Redox- regulated cyanobacteria l proteins (1(Lindahl and Florencio, 2003) and 2(Pèrez-
Pèrez et al., 2006). Those proteins that were differentially expressed in the microcystin-deficient mutant 
(Zilliges, 2007) are indicated (+). Additionally differentially expressed proteins that are involved in known 
redox-redgulated pathways are listed (e.g. CcmK). 

ORF Protein name Refe rences mic rocyst in 

Carbon dioxide fixat ion 

slr0009 Rubisco large subunit (RbcL) 1 + 
sll1031 Carboxysomal protein (CcmM) 1 CcmK 

sll1525 Phosphoribulokinase 2 + 

Glycolys is and pentose phosphate pathway 

sll0018 Fructose-1,6-bisphosphate aldolase, class II 2 + 

sll1342 Glyceraldehyde-3-phosphate dehydrogenase (Gap2) 2 + 

slr0394 Phosphoglycerate kinase 2  
sll1841 Pyruvate dehydrogenase subunit E2 2  

sll1070 Transketolase 2 + 

Glycogen metabol ism 

sll0726 Phosphoglucomutase 1  

slr1176 ADP-glucose pyrophosphorylase 1 + 
sll1393 Glycogen synthase (Glg2) 1  

sll0158 Glucan branching enzyme (GlgB) 1  

slr1367 Glycogen phosphorylase 2  

Sugar-nucleot ide metabol ism 

sll1212 GDP-mannose dehydratase 1  

sll0576 Sugar-nucleotide epimerase 1  

Sulphur metabol ism 

slr1165 Sulphate adenylyltransferase 1  

slr0963 Ferrredoxin-sulphite reductase 1  

Nit rogen metabol ism 

sll1499 Ferredoxin-GOGAT (GlsF) 1 GlnA 

sll1502 NADH-GOGAT (GltB) 1  
slr0585 Argininosuccinate synthetase 1  

slr1133 Argininosuccinate lyase 2  

Te trapyr role biosynthesis 

sll1994 Porphobilinogen synthase 1  

Oxidat ive stress response 

slr1198 1-Cys peroxiredoxin (1-Cys-Prx) 1 + 
sll1621 YLR109-homologue (Type II Prx) 1  

sll1987 Catalase-peroxidase (KatG) 2  

Light harvest ing 

ssr3383 Phycobilisome core linker (LC) 1  

slr0335 Phycobilisome core-membrane linker (LCM) 1  

sll1577 Phycocyanin -subunit 2  

RNA metabol ism 

sll1789 RNA polymerase ’-subunit 1  

sll1787 RNA polymerase -subunit 1  

sll1043 Polyribonucleotide nucleotidyl transferase 2  

Protein synthesis and folding 

slr0557 Valyl-tRNA synthetase 1  

slr1550 Lysyl-tRNA synthetase 2  
slr1463 Translation elongation factor EF-G 1  

sll1099 Translation elongation factor EF-Tu 1 1 

sll1804 30S ribosomal protein S3 1  
slr2076 60-kDa chaperonin 1 (GroEL) 1  

Redox regulat ion 

slr0623 Thioredoxin (TrxA) 2  

Unknown 

slr1855 Hypothetical protein 2  
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The finding that microcystin might interfere with thioredoxin-dependent redox regulation results 

in fundamental consequences. Apparently, microcystin itself is not a redox active compound 

since microcystin binding requires reductive conditions and binding of microcystin to oxidated 

cysteine residues was never observed in any in vitro assay. The attachment of DTNB is 

reversible if a reductive agent is present, but microcystin was not able to displace the bound 

DTNB. Hence, the binding in vivo occurs under the same conditions as thioredoxin interacts 

with its targets. Reductive conditions exist under light when thioredoxins are reduced using the 

reducing power available from NADPH through NADPH-linked thioredoxin reductases (Florencio 

et al., 1988) or via ferredoxin through ferrodoxin-thioredoxin reductase (Jacquot et al., 1997).  

 

 

Fig. 37: Schematic representat ion of redox cont rol through the oxdidat ion state of  
cysteine residues. Microcystin bound to cysteine residues might prevent the oxidative disulphide 
bond formation that renders enzymes inactive. 

 

As mentioned above, microcystin established a rather stable thioether bond with targeted 

cysteine-thiols that endured the harsh treatment of reducing SDS-PAGE conditions. Thus, once 

bound to the target protein, microcystin remains attached and will circumvent the establishment 

of disulphide bonds (see FFig . 37). This might be beneficial under enhanced oxidative stress 

conditions or conditions where not enough reducing power is available to completely maintain 

active enzymes. In the case of RubisCO, bound microcystin could inhibit the cross-linking of 

subunits and prevent proteolytic degradation of the enzyme.  

The results of the in vitro binding assays imply an irreversible binding of microcystin to target 

proteins. However, the in vivo situation might be different and reversibility of microcystin binding 

could be achieved by factors absent from the in vitro assays. Given the stable attachment of 

microcystin to Mvn it can be speculated whether such an antagonist could be an enzyme 

specifically cleaving the thioether. On the other hand microcystin-free proteins might simply be 

generated by de novo synthesis. This question has to be addressed in future studies. 
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4.4  Impact of microcystin on microvir in 

The impact of microcystin on microvirin might be similar to what has been discussed about the 

general function of microcystin, but additional and more detailed information could be included 

here. The alteration of the oxidation state of the cysteine-thiols can influence the structure of a 

protein as it was shown for the example of RubisCO before. Information was gathered that this 

also applies for Mvn. The gel filtration experiments (see chapter 3.2.4) clearly demonstrated that 

microcystin bound to Mvn partially results in different multimeric isoforms of the protein. The 

anti-Mvn antibody exhibited a decreased reactivity against Mvn under these conditions 

indicating that the protein had undergone extensive structural changes. In addition, the 

immunoblots of the oxidative stress experiment (see chapter 3.3) confirmed that additional Mvn 

signals appear under conditions that also facilitate an enhanced binding of microcystins to 

proteins in general. Since lectins usually do not exhibit any enzymatic activity the question 

arises, which functional relevance these structural changes have.  

 

4.4.1  MICROCYSTIN COULD AFFECT THE CARBOHYDRATE BINDING PROPERTIES OF 

MVN IN MULTIPLE WAYS 

Earlier studies (Kehr, 2003) showed that the differences in the abundance of Mvn in wild type 

and mcyB mutant cannot be related to differences on the level of transcription, which implies 

that regulation occurs posttranslationally in a way that microcystin affects the stability of the 

protein. This might happen in manner similar to the mechanisms discussed above. 

Structural changes as a result of microcystin binding might also alter the carbohydrate binding 

properties of microvirin. Aromatic residues like tryptophan and phenylalanine are often present 

in carbohydrate binding pockets of lectins, because they can interact with nonpolar patches 

formed by protons and carbons at the epimeric centers of sugars. The introduction of a 

tryptophan residue into the rat serum mannose-binding protein by site-directed mutagenesis 

changed the specificity towards galactose (Iobst and Drickamer, 1994). The tryptophan residue 

packed with the apolar face of the galactose, whereas it was incompatible with the mannose 

(Kolatkar and Weis, 1996). Microcystin, which contains the aromatic Adda residue, might have a 

similar effect on the carbohydrate binding properties of Mvn by binding to the protein.  

A second influence on the carbohydrate binding properties might result from changes in the 

oligomerisation of Mvn upon microcystin binding. The gel filtration experiments performed with 
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Mvn associated with and without microcystin showed that microcystin influences the 

oligomerisation of the protein (see chapter 3.2.4). The number of monomers that make up a 

multimeric lectin determines the number of carbohydrate binding sites in such a multimer. 

Hence, an influence of microcystin on the multimerisation would have direct influence on the 

sugar binding capabilities of Mvn. It can be assumed that an increasing number of binding sites 

results in multiple interactions and thus in a stronger binding or a stronger cross-linking of 

multiple binding partners. It was shown that multivalent carbohydrate binding and crosslinking is 

responsible for the HIV-inactivating activtity of CV-N (Barrientos et al., 2006). Mutants of CV-N 

unable to undergo domain swapped dimerisation were devoid of crosslinking activity (Matei et 

al., 2008). 

Domain swapping as in CV-N (Barrientos and Gronenborn, 2002; Kelley et al., 2002) might also 

be the mechanism that drives the multimerisation of Mvn. Domain swapping describes a 

process in which a structural element or domain of one peptide chain is interchanged with the 

corresponding element of a second identical peptide chain, resulting in an intertwined 

homooligomer (Bennett et al., 1995). Domain-swapped dimers or open-ended fibrils are formed 

upon the destabilisation of the monomer via an intermediate open monomer conformation 

(Bennett and Eisenberg, 2004; Nagradova, 2002). The energy barrier stabilising the monomer 

can be overcome by changes in physiological conditions (Liu and Eisenberg, 2002) like pH 

(Zegers et al., 1999) or the reduction state of the protein (Lee and Eisenberg, 2003). In the case 

of microvirin, the binding of microcystin to the protein might help to overcome the energy barrier 

by disrupting the ordered structure of the monomer. Indeed, preliminary small-angle X-ray 

scattering (SAXS) measurements – a method used to determine the shape of macromolecules 

in solution (Forster et al., 2005) – strongly suggested an influence of microcystin on the 

oligomerisation of Mvn (data not shown; Prof. Dr. A. Thünemann, Bundesamt für 

Materialforschung und -prüfung, personal communication).  

 

4.4.2  INFLUENCE OF MICROCYSTIN-BINDING ON DISULPHIDE BOND FORMATION  

Microcystin binds to free thiols of cysteine residues and normally the cysteine residues of 

cytoplasmic proteins are in a reduced state. The situation is entirely different for extracellular 

proteins that are commonly released to an oxidative environment. Gram-negative bacteria 

possess the DsbAB oxidoreductases located in the periplasmic space that facilitates the 

formation of disulphide bonds prior to the secretion of proteins (Collet and Bardwell, 2002). Just 

very recently such a system was identified in cyanobacteria (Singh et al., 2008) and it can be 
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speculated whether the binding of microcystin disturbs the correct formation of disulphide 

bonds. Indeed, differently migrating forms of Mvn were oberved on immunoblots of samples 

from the wild type under oxidative stress conditions. In particular the ratio of the 54 kDa and 50 

kDa forms of Mvn was shifted towards the 50 kDa form (see FF ig. 26). This effect was not 

observed in the mcyB mutant and thus has to be attributed to the absence of microcystin. 

Interestingly, the majority of DsbA mutants, which are unable to establish disulphide bonds, 

showed defects in the secretion of extracellular proteins (Coulthurst et al., 2008; Ha et al., 2003) 

and led to the alteration of colony morphology (Mavrodi et al., 2006). In some species the 

biofilm formation and attachment was impaired in a dsbA background (Genevaux et al., 1999; 

Lee et al., 2008). An impaired secretion of Mvn due to the binding of microcystin might therefore 

modulate Mvn-mediated cell-cell interactions.  

 

4.5  Impl ications on microcystin detect ion and r isk assessment 

Apart from the physiological function of microcystin discussed here it is a matter of fact that 

dissolved microcystin in water bodies represents a serious health threat (Christoffersen, 1996; 

Codd et al., 2003; Codd et al., 2005; Falconer et al., 1983; Falconer and Runnegar, 1987; 

Runnegar et al., 1988; Runnegar et al., 1993). A reliable quantification is necessary to ensure 

the employment of a lake as e.g. drinking water supply or for recreational purposes without 

harm. The binding of microcystin raises fundamental questions on the detection of microcystins 

in the environment. Here it was shown that the degree of microcystin binding depends on the 

conditions of culturing. Proteins isolated from cells that were subjected to oxidative stress 

conditions due to iron depletion or high light exposure were associated with microcystin to a 

higher degree than the controls. The outcome of this work and previous studies (Gerbersdorf, 

2006; Jüttner and Luthi, 2008; Young et al., 2005; Zilliges, 2007) defined new prerequisites for 

the detection of microcystins. Common methods for the monitoring of microcystin 

contamination include enzyme linked immunosorbent assays (ELISA), protein phosphatase 

inhibition assays (PPIA) and HPLC (McElhiney and Lawton, 2005; Msagati et al., 2006; Sivonen, 

2008). Depending on the method used, different amounts of microcystin might be detected. In 

this work the microcystin bound to proteins was detected using an antibody that is also used 

for the detection of microcystins by ELISA and thus samples evaluated by ELISA include bound 

and free microcystin. Contrarily HPLC would only recognise free microcystin, which most likely 

applies for PPIA, too. In order to evaluate the toxicity of a given sample the latter methods are 

more suitable, whereas ELISA would overestimate it. On the other hand, ELISA would give a 
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more reliable estimation of the total microcystin content. The ratio of free and bound microcystin 

might change over time depending on the physiological state of the cells. Therefore, a long term 

monitoring is recommended. The quantification of the total microcystin by ELISA should be 

used for samples taken over a period of time to assess changes in the net production in a 

monitored lake. The results of this work imply that the attachment of microcystin to proteins is 

irreversible, but most experiments were performed using an in vitro system and even the whole 

cell extracts of M. aeruginosa investigated represent only a snapshot. It cannot be excluded 

that microcystin is released from the proteins upon changes in the physiological state of the cell. 

Thus the conclusions made in this study must be confirmed by further culture experiments and 

field studies. 

In previous experiments where the effect of an external microcystin addition on M. aeruginosa 

was studied, a drop of the microcystin level below the concentration of added microcystin was 

observed (E. Dittmann, Humboldt-University Berlin, unpublished results). The recent results 

shed new light on those experiments, which may now serve as starting point for future 

research. It would be worthwhile to compare the microcystin content determined with ELISA 

and HPLC before and after cultures were subjected to oxidative stress conditions. 

 

4.6  Impl ications from f ield studies 

The analysis of cyanobacterial field samples using fluorescence microscopy techniques has not 

been done previously. This study showed that this technique might be used to achieve a better 

understanding of Microcystis´ ecostrategy and its communal behaviour for reasons discussed in 

the following. It is widely known that Microcystis strains differ in their morphological 

characteristics and here it was unambigously shown that the molecular basis for these 

differences is to be found in the presence of strain-specific proteins and carbohydrates released 

to the proximate environment of the cell. Both Mvn (see chapter 3.4.1) and MrpC (Zilliges et al., 

2008) were shown to be strain specific, which also applied for the high mannan recognised by 

Mvn. Although no proof was given in this study it seems that Mvn and the specific mannan only 

occur in combination. 

The analysis emphasised that there are considerable differences between strains that have 

been cultivated in laboratory for a long time and those strains freshly isolated from the lake. The 

loss of colony formation after prolonged cultivation is a widely described phenomenon and 

easily recognised macroscopically, but the here-introduced methods provide tools to track 
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down the molecular mechanisms. Furthermore, the detailed investigation of cell surface 

carbohydrates and the associated proteins as well as the carbohydrate composition of the 

extracellular mucilage might elucidate the molecular mechanisms that are the basis for the 

different morphotypes of Microcystis. 

Dynamics were observed in the expression of cell surface oligosaccharides in response to 

oxidative stress in the laboratory strain as it was shown by the LBA technique (see chapter 3.3). 

This might be one factor contributing to the stress adaptation in the lake. The gradient of MrpC 

abundance in single colonies that was observed suggests that there might be a “division of 

labour” between cells of a colony. A gradient similar to the MrpC expression pattern was 

described previously for the fixation of CO2 by Microcystis colonies. A partitioning of CO2 fixation 

between peripheral and internal cells (FFig . 38) was shown using 14C-labelling (Paerl, 1983). 

Moreover, a correlation between carbon availabilty and microcystin production was described 

(Jähnichen et al., 2007) that connects both phenomena. Jähnichen et al. showed that the 

microcystin net production was low upon high Ci availability whereas Zilliges et al. showed that 

MrpC abundance was drastically increased in the mcyB mutant and hence in the absence of 

microcystin. It may thus be assumed that the gradient of carbon availabilty in FFig . 38 might 

cause a microcystin gradient, which in turn would perfectly explain the MrpC gradient observed 

in the field samples (see FF ig.  35). 
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Fig. 38: Gradients of A) CO2- f ixat ion act ivi t iy and B) MrpC expression in M. 
aeruginosa  colonies. The fixation of CO2 was followed using radiactively-labelled CO2 and the 
highest activtiy was observed at the periphery of the colonies (Paerl, 1983). MrpC was detected by 
IFM (see chapter 3.5.4). 

 

However, these observations need to be verified by a systematic approach. Such an 

experiment could involve lake sampling and the isolation of colonies of varying diameter from 

different water layers during a longer time period. It would be interesting to establish an in situ 

method for the detection of microcystin in colonies to elucidate the distribution of micocystin 

within these.  

 

4.7  Hypothesis for the function of microvir in 

4.7.1  MVN IN INTRASPECIES INTERACTIONS AND MORPHOTYPE DETERMINATION 

The rich data provided on the biochemical properties and the expression of microvirin in M. 

aeruginosa PCC 7806 wild type and microcystin-deficient mutant allows drawing a model of 

Mvn function in vivo. Referring to the current knowledge of the roles of bacterial lectins 

presented in the literature, it becomes obvious that the focus lies on the interaction of 

pathogens with their respective hosts mediated by lectin-carbohydrate interactions (Cambi et 

al., 2005; Davies et al., 2001). However, the mechanisms described for these interactions 

certainly apply for lectins of non-pathogenic bacteria. A well-investigated example is the 

initiation of symbiosis between Rhizobia and legumes (Hirsch, 1999; Karr et al., 2000; Sharon 

and Lis, 2002). What are the fundamental mechanisms of these interactions? Generally, 
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attachment of bacteria to host cells is facilitated by lectins provided by one partner, which 

recognise carbohydrate structures on the other partner. In the case of host defence, immune 

lectins bind to capsular polysaccharides or LPS on the bacterial cell surface (Kurata et al., 2006; 

Lloyd et al., 2007; Moran et al., 2005; Sahly et al., 2008). The same mechanism drives the initial 

recognition of symbionts by the legume host (Bolanos et al., 2004; Garcia-Pino et al., 2007; 

Hirsch, 1999). Apart from interspecies interactions bacterial lectins play an important role in the 

intraspecies recognition and attachment like those occuring during the formation of biofilms 

(Banas et al., 2007; Diggle et al., 2006; Greiner et al., 2005; Lynch et al., 2007; Tielker et al., 

2005). 

Here, the presence of a lectin and the corresponding carbohydrate was shown in the same 

organism, which implies that this pair is implicated in intraspecies rather than interspecies 

interactions. It was already mentioned that Microcystis assembles to complex cell communities 

that show characteristic colony morphology for distinct species. These morphological 

differences between the species must have their origin in an individual set of molecular factors, 

most likely polysaccharides, glycoproteins and lectins. A few reports deal with these factors in 

Microcystis (Jürgens et al., 1989; Papageorgiou et al., 2004; Raziuddin et al., 1983; Weckesser 

et al., 1979), but to date no broader study was conducted that has systematically compared 

the extracellular proteome and glycome of different Microcystis species. Here, the lectin 

microvirin was characterised and it was shown that this protein is strain specific. The mvn gene 

was detected in a subset of Microcystis strains from culture collections. The protein and the 

corresponding polysaccharide were shown to be present in few colonies isolated from field 

samples. Although the morphotypes present in the environmental samples could not be 

determined without doubt, the absence of Mvn in cleary assigned M. wesenbergii colonies was 

demonstrated in all cases. Further investigations have to be done to identify lectins and 

determine carbohydrate structures of different Microcystis species. Such analysis might reveal 

factors, which are unique characteristics of a certain species. Indeed, lectins were isolated from 

various Microcystis strains previously, but the function of these has not been revealed yet 

(Jimbo et al., 2000; Yamaguchi et al., 1998; Yamaguchi et al., 2000; Yamaguchi et al., 1999). 

Especially the lectin binding analysis introduced here for the use on cyanobacteria provides a 

sophisticated way to characterise surface carbohydrates. Many lectins with a broad range of 

carbohydrate specificities are readily available as fluorescence conjugates (Roberts et al., 2006; 

Tien et al., 2005) and could be used to characterise Microcystis samples. Fluorescently labelled 

lectins were already used successfully to characterise biofilms (Johnsen et al., 2000; Neu et al., 

2002; Neu et al., 2004; Wigglesworth-Cooksey and Cooksey, 2005). 
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4.7.2  MVN AND BUOYANCY REGULATION 

Buoyancy regulation was shown to be a key factor for the adaptation to changing environmental 

conditions in the habitat of Microcystis (Brookes and Ganf, 2001; Chu et al., 2007; Ibelings et 

al., 1991; Konopka et al., 1987; Rabouille et al., 2003). Apart from the accumulation of fixed 

carbon and thus the increasing cell density, the colony size has impact on the buoyancy. This 

study provides evidence that microvirin might be involved in the control of buoyancy for several 

reasons. First of all, it is localised at the cell surface and therefore it can interact with multiple 

cells contributing to the formation of colonies. Its function is obviously affected by microcystin in 

a way that it binds to microvirin under certain conditions. Initial experiments showed that the 

binding of microcystin to proteins is promoted by oxidative stress conditions that occur upon 

the limitation of iron or the exposition to light stress. The lectin binding analysis showed that 

these conditions also increased the release of extracellular carbohydrates that are recognised 

by Mvn. All these factors might accelerate the attachement of Microcystis cells and contribute 

to an adaptation of Microcystis in case of e.g. light stress enabling the colonies to rapidly move 

to deeper water layers. Due to the limitations discussed at the beginning such a behaviour 

could not be observed in the PCC 7806 strain. 

 

4.7.3  MICROCYSTIN AND MVN IN STRESS ADAPTATION 

The investigation of culture collection strains was limited to M. aeruginosa species and it 

became obvious that Mvn is not a general feature of M. aeruginosa strains. The interaction of 

Mvn and microcystin examined in this study support a functional correlation of the lectin and the 

peptide. Indeed, a strong bias to the presence of Mvn in microcystin producers was observed 

(see TTab. 6). Only one microcystin-producing strain (NIES-843) was found not to contain the 

mvn gene. However, the gene might have got lost during cultivation of the strain. Evidence for 

this was found by the direct comparison of the mvn encoding genomic region of the PCC 7806 

strain with the corresponding locus of the NIES 843 genome (see chapter 3.4.2). Indeed, it was 

revealed that rearrangement occurred around this locus and repetetive sequences could be 

identified that might have served as hotspots for recombination events. Several reports describe 

spontaneous mutants of Microcystis and other cyanobacteria. A gas vesicle mutant of M. 

aeruginosa PCC 7806 generated by the insertion of IS elements resulting in the rearrangement 

of the gas vesicle gene cluster lost its buoyancy (Mlouka et al., 2004; Mlouka et al., 2004). 

Another mutation that occurred during prolonged laboratory cultivation affected the M. 

aeruginosa MRC strain in its ability to produce microcystin. This strain does not produce 
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microcystin anymore, but still contains the full set of genes required for the synthesis of 

microcystin (Kaebernick et al., 2001; Tillett et al., 2001). The loss of colony formation and the 

reduced production of extracellular carbohydrates have been addressed previously in this work 

and most likely result from mutations. 

Apparently, all mutations and alterations described in Microcystis laboratory strains so far seem 

to be related to processes that are needed for the adaptation in their natural environment, 

especially the buoyancy regulation. Buoyancy regulation is useless for cultivated Microcystis 

strains for several reasons. First of all the size of culture vessels is too small for the colonies to 

perform a true vertical migration that would result in changes of light conditions for the cells. 

Furthermore, the bacteria are usually kept under ambient light conditions and supplied with 

optimal nutrition. Therefore it is plausible that the mvn gene got lost in some strains of culture 

collections. This is further supported by the recent findings that the genomes of Microcystis 

strains PCC 7806 and NIES 843 exhibit a remarkable degree of plasticity (Frangeul et al., 2008; 

Kaneko et al., 2007). Both genomes contain a high number of both insertion sequences and 

miniature inverted-repeat transposable elements that contribute to around 12% of the whole 

genome sequence. Recombination events were further detected in the adenylation domains of 

the microcystin biosynthesis genes (Fewer et al., 2007; Tooming-Klunderud et al., 2008; 

Tooming-Klunderud et al., 2008). Hence, the absence or the inactivation of genes from 

cultivated Microcystis strains reflects the adaptation to the ambient laboratory conditions. 

Indeed, it was shown in competition experiments that microcystin production does not provide 

an advantage under light limited conditions and the non-toxic strain even outcompeted the toxic 

strain (Kardinaal et al., 2007). The in vivo as well as the in vitro results presented here 

corroborate that microcystin serves the adaptation to oxidative stress conditions, which are 

characterised by very high light or iron depletion. Iron depletion was already shown to stimulate 

microcystin production (Sevilla et al., 2008). Therefore, an advantage of the M. aeruginosa wild 

type over the microcystin-deficient mcyB mutant might become manifest under stress 

conditions. 

 

4.8  Phylogenetic aspects of Mvn 

From an evolutionary perspective the occurrence of microvirin in M. aeruginosa gives rise to 

interesting considerations. Mvn belongs to the CV-N domain family 

(http://www.ebi.ac.uk/interpro/IEntry?ac=IPR011058) whose members are predominantly 
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present in filamentous ascomycetes of the subphylum Pezizomycotina and rarely occur in other 

taxa. To date (September, 2008), 1270 fully sequenced bacterial genomes from 896 species 

are listed in the ENTREZ database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome) and 

only six CV-N family proteins including Mvn from M. aeruginosa are known in prokaryotes. In 

eukaryotes the only known non-fungal member of this family was found in the fern Ceratopteris 

richardii. This patchy distribution implies that some organisms acquired the CV-N domain by 

horizontal gene transfer (HGT) events. The total genome sequences of 33 cyanobacteria were 

available at the time of this study and only the genome of M. aeruginosa PCC7806 contains the 

mvn gene sequence. Horizontal gene transfer (or “lateral gene transfer”) is widely accepted as a 

force in genome shaping and considered a significant factor in evolution (Doolittle, 1999; 

Gogarten and Townsend, 2005; Tepfer et al., 2003). Comparative genome analyses confirmed 

that these mechanisms also act in cyanobacteria (Zhaxybayeva et al., 2006). 

It was estimated that individual cyanobacterial genomes have acquired between 9.5% and 

16.6% of their genes by HGT (Nakamura et al., 2004; Ochman et al., 2000). HGT events from 

eukaryotes to cyanobacteria have been described in detail in previous studies and it was also 

demonstrated that the genes are expressed. Some marine Synechococcus and 

Prochlorococcus strains carry a gene encoding the plastid-targeted fructose bisphosphate 

aldolase that has been transferred from red algae. This gene resides close to its functional 

analogue in the genome and in some cases it has even replaced the original version (Rogers et 

al., 2007). Other examples are the eukaryotic cytoskeletal elements actin and profilin present 

and expressed in M. aeruginosa PCC 7806 that obviously originate from a marine invertebrate 

(Guljamow et al., 2007). 

Interestingly, Nakamura and co-workers (2004) found that the biological functions of transferred 

genes are biased towards three categories: cell surface, DNA binding and pathogenicity-related 

functions. Mvn can be considered to belong to two of these categories regarding the implication 

of lectins in pathogenicity in general. Another survey analysed the distribution of horizontally 

transferred genes in functional categories according to the classification of the KEGG database. 

The two categories “cell envelope” and “transport and binding proteins” that describe the Mvn 

function best together accounted to 30% of the horizontally transferred genes (Shi et al., 2005). 
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Tab. 8: Dist ribut ion of CV-N domains in ful l y sequenced genomes.  

Taxon Ful ly  sequenced genomes1 Mvn or thologues2 

Ascomycetes 
(Pezizomycotina) 

10 50 

Chloroflexi 0 1 

Cyanobacteria 33 2 

-Proteobacteria 85 

2 Caulobacter 

1 

1 http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome 
2 http://pfam.sanger.ac.uk/family?acc=PF08881 
 

 

The almost exclusive occurrence of CV-N domain proteins in ascomycetes (see Tab. 8) poses 

the question whether Mvn is of fungal origin. All ascomycetes species possessing CV-N domain 

proteins belong to the subphylum of Pezizomycotina and this phylum includes all lichen-forming 

ascomycetes (Liu and Hall, 2004). This is extremely interesting because members of the genus 

Nostoc are known to be symbiotic partners of fungi in the formation of lichens. Examples are 

fungi of the genus Nephroma or Peltigera which both belong to the Lecanoromycetes, a 

subphylum of the Pezizomycotina (Paulsrud and Lindblad, 1998; Paulsrud et al., 1998; Paulsrud 

et al., 2000). Unfortunately little sequence information is available from members of the 

Lecanoromycetes and nothing is known aabout the presence of CV-N domain proteins in these 

fungi. However, the ascomycetes species containing CV-N domain proteins – although they are 

not lichen-forming fungi – are closely related to the Lecanoromycetes (Liu and Hall, 2004) and 

therefore it can be speculated that CV-N was transferred from a fungus to a symbiotic Nostoc 

or one of its ancestors. While Nostoc clearly shares a habitat with filamentous fungi this is not 

the case for Microcystis. But phylogenetic analyses of 16S rRNA genes of cyanobacteria 

corroborated that Nostoc and Microcystis share a common ancestor (Lyra et al., 2001). Thus 

this common ancestor of Microcystis and Nostoc might have acquired mvn-encoding genes 

and then the gene was lost in some of its descendants. Interestingly, this study has shown that 

there is a strong bias for the presence of Mvn in microcystin-producing strains. Taking into 

account that microcystin interacts with microvirin, it can be speculated that in particular the 

binding of microcystin to Mvn contributed to the preservation of the gene in Microcystis. 

It was inferred from phylogenetic analysis (see FFig. 39) that found a high degree of congruence 

between the phylogeny of microcystin synthetase genes and housekeeping genes (16S rRNA 
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and rpoC1) of the genera Planktothrix, Microcystis, Anabaena and Nostoc, that microcystin 

synthetase genes were present in the last common ancestor of said species (Jungblut and 

Neilan, 2006; Rantala et al., 2004). It was further discussed that the microcystin synthetase 

genes have been lost through the proceeding divergence of the lineage. 

 

 

Fig. 39: Congruence between the  16S rRNA and rpoC1 data set and the microcyst i n 
synthetase gene data set. A) A maximum-likelihood tree based on the 16S rRNA and rpoC1 data 
set. B) A maximum-likelihood tree based on the mcyA, mcyD, and mcyE data set. From (Rantala et 
al., 2004). 

 

Although this study did not provide data on the presence and distribution of mvn genes in other 

microcystin-producing genera it seems that at least in Microcystis Mvn has evolved with 

microcystin and the loss of the microcystin synthetase genes also led to the loss of Mvn in non-

toxic strains. It would be interesting to screen for mvn encoding genes in Planktothrix, 

Anabaena and Nostoc to test whether mvn is present in these genera and a bias towards toxic 

strains can be observed. The toxic Planktothrix argardhii CYA 126 was shown to contain the 

mvn gene and the expression was proven by immunoblotting (Kehr, 2003). 

 

4.9  Concluding remarks and outlook 

Recent studies have suggested new functions of microcystins in the primary metabolism of its 

producers. This study showed that microcystin impact might result from its immediate 

interaction with proteins. The conditions that promote these interactions as well as the 

consequences arising from the binding of microcystin were elucidated for the first time. The 

results strongly suggest microcystin being a redox-sensitive molecule that is involved in the 

adaptation to oxidative stress conditions. These findings provide a basis for a detailed 

investigation of microcystin targets and function. 
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Several questions result from this study that have to be addressed in the future. It needs to be 

analysed if additional factors are present in vivo that allow a reversible binding of microcystin to 

its targets. In addition the stability and halflife of proteins such as RubisCO that are targets of 

microcystin have to be compared in the M. aeruginosa wild type and microcystin-deficient 

mutant under oxidative stress conditions. Competition experiments under the respective 

condtions might prove this hypothesis further and reveal phenotypic differences between the 

wild type and mutant. 

Furthermore this study has revealed that the adaptation to oxidative stress conditions involves 

changes of the cell surface composition of M. aeruginosa cells. The extracellular lectin Mvn was 

shown to be directly involved in these processes. Techniques such as the lectin binding analysis 

and immunofluorescence microscopy were developed to investigate morphological changes in 

situ, which provide a toolkit to follow stress adaptation in the field. Field studies have to be 

conducted to overcome the restrictions imposed upon the work with laboratory strains. 

Furthermore, the presence of certain extracellular factors was shown to be strain-specific. It 

might be proposed that a broad survey of Microcystis surface characteristics leads to the 

identification of markers suitable to discriminate toxic and non-toxic strains. 
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SUPPLEMENT 

Alignment of CV-N family sequence used to calculate the phylogenetic tree in chapter 3.4.4. 

Additional C- and N-terminal domains present in some members were not included in the 

alignment. 
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Abbreviations 

ABBREVIATIONS 

aa amino acid 

ACP acyl carrier protein 

Adda 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-

decadienoic acid 

Amp ampicilin 

AMT aminotransferase 

APS ammonium persulphate 

AT acyltransferase 

bp base pair(s) 

BSA bovine serum albumin 

CM C-methyltransferase 

Cm chloramphenicol 

DH dehydratase 

DTT 1,4-dithiothreitole 

DNA deoxyribonucleic acid 

dNTP any desoxyribonucleotide 

EDTA ethylene diamine tetra-acetic acid 

FITC fluorescein isothiocyanate 

FPLC fast protein liquid chromatography 

FTICR MS Fourier transform ion cyclotron resonance mass spectrometry 

HEPES [4(2-hydroxyethyl)-1-piperazino]-ethanesulphonic acid 

HGT horizontal gene transfer 

HPLC high performance liquid chromatography 

IFM immunofluorescence microscopy 

IPTG isopropyl-thio-galactoside 

JTT Jones-Taylor-Thornton model for evolutionary rates 

kb kilo base pair(s) 

kDa kilo Dalton 

KR ketoacyl reductase 
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KS ketoacyl synthase 

LPS lipopolysaccharide 

MALDI matrix-assisted laser desorption ionisation 

mc microcystin 

NADH nicotinamide adenine dinucleotide 

NADPH nicotinamide adenine dinucleotide phosphate 

NCBI The National Center for Biotechnology Information 

NIES National Institute for Environmental Studies 

NJ neighbor joining algorithm 

NRPS non-ribosomal peptide synthase 

nt nucleotide(s) 

OD optical density 

OM O-methyltransferase 

ORF open reading frame 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCC Pasteur Culture Collection 

PCR polymerase chain reaction 

PMSF phenyl-methyl-sulphonyl-fluoride 

RNA ribonucleic acid 

rpm round per minute 

RT room temperature 

SAXS small-angle X-ray scattering 

SDS sodium dodecyl sulphate 

TBE tris-borate-EDTA buffer 

TEMED N’,N’,N’,N’-tetramethyl-ethylene-diamine 

TOF time of flight 

Tris-HCl tris-(hydroxymethyl)-aminomethane-hydrochloride 

UV ultraviolet light 

UWOCC University of Wisconsin at Oshkosh Culture Collection 
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WT wild type 

X-Gal 5-bromo-4-chloro-3-indolyl- -D-galactopyranoside 
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