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GAK cyclin G-associated kinase 

GAPDH glyceraldehyde 3-phosphate dehydroge-

nase 

GFP green fluorescing protein 
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HRP horse radish perxoxidase  

HSP heat shock protein 

Icm intracellular multiplication 

IκB inhibitor of κB 

IKK IκB kinase 

IL interleukin 

ILK1 integrin-linked protein kinase 1 
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LubX Legionella U-box containing protein LubX 
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MAPK mitogen-activated protein kinase 

MEF mouse embryonic fibroblasts 

MEKK mitogen-activated protein/ERK kinase 

kinase 

MHCK A myosin heavy chain kinase a 

MIP-2 macrophage inflammatory protein 2 

MOI multiplicity of infection 

mRNA messenger RNA  

NOD nucleotide binding and oligomerization 

domain 

p100 NF-κB subunit p100 

p105 NF-κB subunit p105 
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p52 NF-κB subunit p52 

p65 NF-κB subunit p65 

PAA polyacrylamide 
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PAK1 p21 protein (CDC42/Rac)-activated kinase 
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PCR polymerase chain reaction 

PG peptidoglycan 

PLK1 polo-like kinase 1 

PRKACB cAMP-dependent protein kinase,  β-

catalytic subunit 

PRKCABP PRKCA-binding protein 

PRKD2 protein kinase C, D2 type 

PRR pattern recognition receptor 

PSKH1 serine/threonine-protein kinase H1 

PtsP Legionella phosphoenolpyruvate protein 

phosphotransferase PtsP 
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Abstract 

Infection with pathogens such as the carcinogenic bacterium Helicobacter pylori or the 

intracellular bacterium Legionella pneumophila leads to activation of the transcription 

factor nuclear factor kappa B (NF-κB). This contributes both to cytokine production, which 

triggers the immune response, and upregulation of anti-apoptotic genes. In infection with 

H. pylori, this dual function provides a mechanistic link between the chronic inflammation 

and cancer development. In infection with L. pneumophila, anti-apoptosis can be benefi-

cial for the bacterium by ensuring host cell survival. Therefore, NF-κB can set the course of 

disease and it is of central interest to understand mechanisms of NF-κB activation. How-

ever, dynamics of NF-κB activation and the signaling pathways leading to it are not well 

understood in these infections. Here, in order to investigate NF-κB activation induced by 

H. pylori or L. pneumophila, a new technique was developed ideal for detailed single cell 

analysis of NF-κB as well as high-throughput screening. Monoclonal cell lines were gener-

ated that stably express the NF-κB subunit p65 fused to green fluorescent protein (GFP). 

Nuclear translocation of p65-GFP can be visualized by fluorescence microscopy and quan-

tified by software-based picture analysis. Using this technology, inducer-specific temporal 

profiles of p65-GFP nuclear translocation could be observed including oscillations after 

H. pylori infection. To identify new factors important for NF-κB activation, the new assay 

was used to conduct an RNAi-based screen. In the screen, infection with H. pylori was 

compared to induction with the cytokines TNFα and IL-1β. In total, 24 key regulators for 

NF-κB were identified. Network analysis highlighted the impact of a group of proteins 

known for their functions in the cell cycle. This included the cell cycle regulator SKP2 

which was important for termination of NF-κB activation. Two further factors, ALPK1 and 

CRKRS were necessary for H. pylori-induced p65 translocation. The identification of these 

factors broadens our understanding of NF-κB signaling and could provide targets for fu-

ture therapies. Finally, detailed observation of NF-κB activation induced by L. pneumophila 

in single cells revealed a unique, biphasic NF-κB activation. During the first hours, bacterial 

flagellin induced strong but transient activation. Then, p65 translocated continuously to 

the nucleus over hours without oscillation. Testing an array of bacterial mutants, a tight 

link between bacterial replication and continuous NF-κB activation could be shown. Be-

cause this continuous nuclear localization is very unusual for a transcription factor of the 

NF-κB family, this indicates that L. pneumophila could manipulate NF-κB to ensure host 

cell survival. 
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Zusammenfassung 

Bakterielle Infektionen, beispielsweise mit dem karzinogenen Bakterium Helicobacter py-

lori oder dem intrazellulärem Bakterium Legionella pneumophila, aktivieren den Trans-

kriptionsfaktor Nuclear factor kappa B (NF-κB). Dies trägt einerseits zur Zytokinproduktion 

bei, wodurch die Immunantwort aktiviert wird, andererseits zur Hochregulation von anti-

apoptotischen Genen. In H. pylori-Infektionen stellt diese doppelte Funktion einen me-

chanistischen Link zwischen der chronischen Entzündung und der Krebsentstehung dar. 

Für L. pneumophila ist die Anti-Apoptose von Vorteil, da hierdurch das Überleben der 

Wirtszelle gesichert wird. NF-κB kann daher den Ausgang von Infektionen entscheidend 

beeinflussen und es ist von zentralem Interesse, Mechanismen der NF-κB-Aktivierung zu 

verstehen. Bisher sind jedoch sowohl die Dynamik der NF-κB-Aktivierung, als auch die 

Signalwege, die zu der Aktivierung führen, nicht ausreichend untersucht. Um NF-κB analy-

sieren zu können, wurde hier eine neue Technik entwickelt, die sowohl Beobachtung von 

NF-κB in einzelnen Zellen, als auch Anwendung im Hochdurchsatz erlaubt. Monoklonale 

Zelllinien wurden hergestellt, die ein Fusionsprotein der NF-κB-Untereinheit p65 mit dem 

grün fluoreszierenden Protein (GFP) stabil exprimieren. Die Kerntranslokation von p65-

GFP kann mit Fluoreszenz-Mikroskopie visualisiert und mit automatischer Bildanalyse 

quantifiziert werden. Mit dieser Methode konnten Stimulus-spezifische, zeitabhängige 

Profile der Kerntranslokation von p65-GFP gezeigt werden und zum ersten Mal eine durch 

ein Bakterium induzierte Oszillation von p65-GFP. In einem RNAi-basierten 

Hochdurchsatzscreen wurde diese Methode eingesetzt um neue Faktoren im NF-κB-

Signalweg zu identifizieren. Dabei wurde die Infektion mit H. pylori mit den Induktoren 

TNFα und IL-1β verglichen. Insgesamt wurden 24 Regulatoren identifiziert. Bei einer 

Netzwerkanalyse trat eine Gruppe von Proteinen hervor, die durch ihre Funktion im Zell-

zyklus bekannt ist. Hierzu gehörte auch das Protein SKP2, das für die Termination der 

NF-κB-Aktivierung wichtig war. Zwei weiteren Faktoren, ALPK1 und CRKRS waren notwen-

dig für die H. pylori-induzierte NF-κB-Aktivierung. Die Identifikation dieser Faktoren ver-

tieft nicht nur unser Verständnis des NF-κB-Signalweges, sondern bietet auch neue mole-

kulare Ziele für mögliche zukünftige Therapien. Bei der detaillierten Analyse der 

L. pneumophila-induzierten NF-κB-Aktivierung konnte ein einzigartiger, zwei-phasiger Ab-

lauf gezeigt werden. Zunächst verursachte bakterielles Flagellin eine starke, aber kurze 

Aktivierung. Später war p65 dauerhaft über Stunden im Kern lokalisiert, was eng an die 

Replikation der Bakterien gekoppelt war. Da die kontinuierliche Kernlokalisation für Trans-

kriptionsfaktoren der NF-κB Familie sehr ungewöhnlich ist, könnte dies ein Hinweis für 

eine Manipulation durch das Bakterium sein, um das Überleben der Wirtszelle zu sichern. 
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1 Introduction 

The tight interaction of pathogens such as bacteria, viruses and fungi and their hosts are 

marked by survival strategies on both sides. While pathogens have evolved to develop 

many strategies to manipulate their hosts, humans possess an effective defense system to 

counteract infections. Two immune systems facilitate the defense: The adaptive immune 

system adapts to the agent causing the infection and specifically targets this pathogen. 

The innate immune system uses general mechanisms common in infections to provide the 

initial and fast response. The latter is molecularly based on pattern recognition receptors 

(PRRs) of the host that recognize conserved microbe-associated molecular patterns 

(MAMPs). MAMPs encompass different structures such as lipids, glycans or nucleis acids, 

that are necessary for the bacteria but not present in host cells1. The best known PRRs are 

the Toll-like receptors named after the Toll receptor in the fruit fly Drosophila melanogas-

ter as well as the nucleotide-binding and oligomerization domain (NOD)-like receptors 

(NLRs)2,3. To trigger an immune response, every TLR and NLR activates the transcription 

factor family nuclear factor (NF)-κB4 which induces production of cytokines, chemokines 

and upregulation of costimulatory molecules important for immune cell activation5. In 

addition, NF-κB regulates cell division and survival6.  

Mediating such important responses, NF-κB activation needs to be limited and uncon-

trolled NF-κB signaling bears high damaging potential. Excess expression of NF-κB-induced 

cytokines can be fatal (i.e. in septic shock7). NF-κB regulated anti-apoptosis is important in 

tumorogenesis8 and permanent activation of the immune system drives chronic inflam-

matory diseases9. Especially in long-term infections such as the life-long colonization with 

the cancerogenic gastric pathogen Helicobacter pylori, a large part of the pathology can be 

attributed to the response of the host and NF-κB is believed to play a central role in the 

development of such chronic diseases10. Accordingly, deregulation of NF-κB is associated 

with chronic inflammatory diseases and many forms of cancer8,11.  

The NF-κB system is a target of manipulation by pathogens. For example, intracellular pa-

thogens that reside within a cell and are thus dependent on the life of this host cell, use 

the anti-apoptotic effect of NF-κB to prevent host cell death. Therefore, NF-κB plays two 

key roles in infection: First, it regulates the immune response to the pathogen and second, 

it controls survival of host cells. Because both functions determine disease outcome, it is 
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of central interest, to study NF-κB activation in infections. This thesis analyses signaling 

leading to NF-κB activation after the cancerogenic pathogen H. pylori and the intracellular 

pathogen Legionella pneumophila. Here, first, NF-κB signaling will be introduced, then the 

two pathogens and finally the technique of RNA interference screening.  

1.1 The transcription factor family NF-κB 

1.1.1 Function of NF-κB 

NF-κB was discovered in B cells where it binds to the enhancer region of the κ light-chain 

gene of immunoglobulin after stimulation with the bacterial cell wall component lipopoly-

saccharide (LPS)12. Soon after, NF-κB was shown to be inducible in all cell types and to 

date, NF-κB is known as transcriptional regulator of many genes. Two pathways of NF-κB 

activation are known. One, called the classical pathway, is induced by pro-inflammatory 

cytokines such as cytokines tumor necrosis factor α (TNFα), interleukin (IL)-1β as well as 

by engagement of TLRs. This is essential for rapid activation of the innate immune system 

in response to inflammatory stimuli. A second pathway, named the alternative or non-

classical NF-κB pathway depends on specific mediators and protein synthesis13,14 and re-

gulates lymphoid organogenesis and adaptive immunity in a slow response to B cell-

activating factor (BAFF), cluster of differentiation 40 (CD40)-ligand and lymphotoxin α 

(LTα)-LTβ heterotrimers15. This thesis concentrates on the classical pathway.  

Functions of NF-κB are based on the effects of the target genes transcribed upon NF-κB 

activation. When translocated into the nucleus, NF-κB subunits bind to discrete sequence 

in regulatory regions of about 150 genes16, some of which promote inflammations such as 

the potent neutrophil attractor IL-817 or the cytokines TNFα18,19 and IL-1β20. This has im-

portant functions in infection: Mice that lack the NF-κB subunit p65 suffer from impaired 

leukocyte recruitment to sites of infection21. Other genes induced by NF-κB promote proli-

feration including cyclin D122 and again others have anti-apoptotic function such as cellu-

lar inducer of apoptosis (c-IAPs) or FADD (FAS associated death domain)-like IL-1β-

converting enzyme (FLICE) -inhibitory protein (c-FLIP)6 [www.nf-kb.org]. Therefore, activa-

tion of NF-κB induces the immune response, proliferation and anti-apoptosis. 

1.1.2 Components of NF-κB signaling: subunits, inhibitors and kinases 

The family of NF-κB transcription factors comprises the five subunits p65 (RelA), RelB, 

c-Rel, p50/p105 (NF-κB1) and p52/p100 (NF-κB2). They can form any combination of ho-
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mo- and heterodimers but with different functionality. The classical proteins p50 and p65 

are ubiquitously expressed and form the dimer p65:p50 most prominently responsible for 

inflammation. RelB and p52 form the dimer of the alternative pathway and are therefore 

important for lymphoid organogenesis. Because p50 and p52 lack transcriptional activa-

tion domain but both bind DNA, homo- or heterodimers consisting only of these two pro-

teins act as transcriptional inhibitors. The dimers p65:RelB, cRel:RelB and RelB:RelB are 

not able to bind DNA. All other dimers act as functional transcriptional activators23.  

Activation of NF-κB was found not to require protein synthesis24 but dissociation from an 

inhibitor termed inhibitor of κB (IκB)25. Five inhibitors are known: IκBα, IκBβ, IκBε, p105 

and p100. The latter two are the precursor proteins of p50 and p52, respectively and their 

inhibitory C-terminal portions have been named alternatively IκBγ and IκBδ23. 

Degradation of the inhibitor depends on the proteasome26, which in turn depends on 

phosphorylation of the inhibitor27. A complex was identified that could catalyze this phos-

phorylation and the major kinases in this complex were named inhibitor κB kinase (IKK) 1 

and 2 (later renamed IKKα and IKKβ)28-30. IKKα was also identified in a two hybrid screen 

as a protein interacting with NF-κB inducing kinase (NIK), a kinase named for its induction 

of NF-κB when overexpressed31. A regulatory subunit of the IKK-complex was termed 

IKKγ32 or NF-κB essential modulator NEMO33. The trimer of IKKα, IKKβ and NEMO has a 

calculated molecular mass of 220 kDa but when the IKK complex is isolated from cells, it 

has a size of 700-900 kDa suggesting a possible oligomerization or additional compounds 

in the complex. The notion that IKKs can form dimers via their leucine zipper motifs and 

NEMO can form trimers or tetramers supports the hypothesis of a multimer-complex34. 

ELKS, a protein named for the relative abundance of its constitutive amino acids: glutamic 

acid (E), leucine (L), lysine (K), and serine (S), has been proposed to be a regulatory com-

ponent of the complex35 but this is not finally established36. Furthermore, additional com-

ponents such as the heat shock protein (HSP) 90 and cell division cycle (CDC) 37 have 

been shown to be recruited to the complex in a transitory manner37. Two additional IKK 

homologues have been identified: IKKε (also named IKK-i) and TBK1 (TNFR-associated 

factor (TRAF) family member-associated NF-κB activator (TANK) binding kinase 1, also 

known as NF-κB activating kinase NAK). These kinases are expressed in few cell types and 

their exact function remains to be established34. 
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1.1.3 Basic NF-κB signaling principle and NF-κB oscillation 

In non stimulated cells, NF-κB (most prominently p65:p50) resides sequestered by its inhi-

bitor in the cytoplasm25. Binding of IκBα masks the nuclear localization sequence (NLS) of 

p65 but the remaining NLS of p50 plus an exposed nuclear export sequence (NES) of IκBα 

leads to constant shuttling of the complex between the nucleus and the cytoplasm. Nev-

ertheless, the complex is predominantly present in the cytoplasm38. 

Upon stimulation, the IKK complex phosphorylates IκB proteins on two conserved serine 

residues (S32 and S36)39,40. This leads to recognition of the complex by the beta transdu-

cin repeat-containing protein (βTrCP) F-box-protein, the component facilitating substrate 

specificity in the S-phase kinase-associated protein 1 (SKP1), CDC53/Cullin1, F-box protein 

(SCF) E3 ubiquitin-protein ligase complex called SCFβTrCP, which polyubiquitinylates the 

inhibitor41,42. This leads to degradation of IκBα by the proteasome, freeing the NF-κB di-

mer to enter the nucleus and trigger transcription of target genes43. Phosphorylation of 

p65 influences DNA-binding and transcription38,44. One of its target genes is the inhibitor 

itself, which is rapidly synthesized, enters the nucleus and binds NF-κB. Subsequently, the 

newly formed complex translocates into the cytoplasm45,46.  

As long as the external signal remains, the process of inhibitor degradation and re-

synthesis will repeat itself leading to oscillations in translocations47. Additional silencing 

mechanisms which will be discussed in more detail below lead to dampening of the oscil-

lations and termination of the signal (Fig. 1). 

1.1.4 Signaling to IKK 

NF-κB pathway can be activated by various stimuli such as cytokines TNFα and IL-1β, TLR 

engagement by bacterial components like LPS, binding of ligand to T cell receptor (TCR) as 

well as chemical and physical stresses [www.nf-kb.org]. Signaling to the IKK complex is 

mediated through intracellular adaptor proteins (Fig. 1). Different inducers utilize similar 

adaptors, providing molecular modularity. Particularly the TNFR-associated factors (TRAFs) 

and receptor-interacting protein 1 (RIP1) are critical mediators. All TRAFs contain C-

terminal coiled coil domains that facilitate interactions with other proteins and (with the 

exception of TRAF1) N-terminal zinc-binding motifs including a really interesting new gene 

(RING) finger34. The latter can function as ubiquitin ligase, which has been shown for 

TRAF2 and TRAF636.  
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Fig. 1: Activation, oscillation and termination of NF-κB signaling. Engagement of receptors (TNF-RI, IL-1R or 

TLRs) leads to recruitment of adaptor proteins specific for the respective receptor. TRAFs are also recruited 

to this complex and facilitate Lys63-linked ubiquitinylation of further mediators (RIP in the case of TNF sig-

naling). This first complex recruits the IKK complex consisting of NEMO, IKKα and IKKβ. NEMO is Ub
Lys63

-

modified which probably stabilizes the interaction. The third complex consisting of TAK1, TAB2 and TAB3 is 

thought to be recruited via ubiquitin binding sites of TABs. TAK1 undergoes autophosphorylation and subse-

quently phosphorylates IKKs. IKKs phosphorylate IκBα which is then Ub
Lys48

-modified by SCF
βTrCP

 E3 ligase 

and degraded by the proteasome. This frees the NF-κB dimer (here p65:p50) to translocate into the nucleus 

and trigger transcription of target genes, some of which lead to negative-feedback. Re-synthesis of IκBα 

leads to oscillation of NF-κB dimers between the nucleus and the cytoplasm. In the termination phase, the 

de-ubiquitinylation enzymes CYLD and A20 remove activating Ub
Lys63

 chains and E3 ligases A20, c-IAP1 and 

TRIAD3A add Ub
Lys48

 chains to activators to mark them for degradation. IRAK1 is also degraded in the termi-

nation phase but ubiquitinylation is not yet demonstrated. 
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Much of the knowledge about NF-κB signaling is gained from research on the pathway 

induced by TNFα receptor 1 (TNF-R1). Binding of the ligand to this receptor leads to re-

cruitment of the adaptor molecule TNF receptor-associated death domain (TRADD) which 

in turn recruits TRAF2, TRAF5 and RIP1. TRAF2 facilitates Lys63-linked ubiquitinylation of 

RIP1, which is thought to stabilize further interaction with downstream mediators but this 

function is not yet clearly established48. Nevertheless, RIP1 binds to NEMO which is also 

UbLys63-modified. These two complexes (Receptor/TRAFs/RIP1 and NEMO/IKKα/IKKβ) now 

recruit the third complex consisting of transforming growth factor beta activated kinase 1 

(TAK1), TAK1-binding protein 2 (TAB2) and TAB3. This recruitment is thought to be facili-

tated by ubiquitin-dependent interactions: TABs as well as NEMO have been shown to 

possess ubiquitin binding domains with binding preference for UbLys63 chains49-51. There-

fore, TABs or NEMO could bind ubiquitinylated TRAFs, RIP or NEMO. Binding of the 

TAB2/TAB3/TAK1 complex to the other two complexes has two functions. First, TAK1 is 

activated, possibly via dimerization and trans-autophosphorylation52 and second, it brings 

TAK1 and the IKK complex in close proximity. IKKβ is then activated by phosphorylation, 

probably by TAK1. In addition, mitogen-activated protein (MAP)/extracellular signal-

regulated kinase (ERK) kinase kinase 3 (MEKK3 also known as MAP3K3) may play a role in 

activating IKKβ but the underlying mechanism remains to be clarified34. 

Induction of NF-κB by IL-1 receptor and TLRs is mechanistically similar to TNFα signaling 

but relies on different adaptor proteins. Both receptors signal through their intracellular 

Toll/IL-1 receptor (TIR) -homology domain. Binding of the ligand results in both cases in 

recruitment of the adaptor protein myeloid differentiation primary response gene 88 

(MyD88) which also contains a TIR domain. This process involves other TIR-containing 

adaptor proteins depending on the receptor engaged. MyD88 dimerizes and recruits inter-

leukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4, which in turn are necessary for 

recruitment of TRAF6. TRAF6 oligomerizes and undergoes Lys63-linked trans-auto-

ubiquitinylation which probably leads to recruitment of the complex TAB2/TAB3/TAK1. 

Similar as in the case of TRAF2, the importance of E3-ligase activity of TRAF6 is not finally 

established34,36,48. In spite of the remaining controversy about the importance of the E3- 

ligase activity of the TRAFs, the relevancy of UbLys63 is strengthened by the existence of 

several de-ubiquitinylation (DUB) enzymes that are important for termination14,48. 
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Pathways induced by TCR or DNA damage follow similar mechanisms with shared and ad-

ditional adaptor molecules34,48,53. However, as they are not part of this work they will not 

be discussed further.  

In infections, the activation of PRRs, such as TLRs by MAMPs is well known. However, not 

all NF-κB activation in infections can be attributed to PRR signaling and in some infections, 

such as in infections with L. pneumophila and H. pylori, the signaling leading to activation 

is enigmatic.  

1.1.5 Termination of NF-κB signaling 

Termination of NF-κB signaling still remains poorly understood. The first group of proteins 

silencing NF-κB is comprised of the three IκBs: IκBα in its direct feedback loop leads to 

nuclear export of NF-κB subunits, but until the upstream signal is terminated, NF-κB sub-

units will shuttle between nucleus and cytoplasm (Fig. 1). IκBε is also transcribed upon 

NF-κB activation but re-synthesis is delayed in comparison to IκBα. This kinetic effect leads 

to dampening of the oscillations54,55. The third inhibitor, IκBβ, also undergoes slow degra-

dation and re-synthesis like IκBε but its deletion has no dramatic effect on termination of 

NF-κB signaling54,55.  

Ubiquitinylation plays a dual role in termination of NF-κB: activating enzymes can be 

marked for degradation by UbLys48 modification or activating UbLys63 chains can be removed 

by DUB enzymes48,56 (Fig. 1). The first mechanism includes receptor degradation as well as 

degradation of downstream signal molecules. The E3 ubiquitin ligase triad domain con-

taining protein 3A (TRIAD3A, named for the triad domain consisting of two RING domains 

and a double RING finger linked (DRIL) domain and also known as ring finger protein 216 

(RFP216)) has been shown to ubiquitinylate TLR4 and TLR9 which leads to their degrada-

tion57. Similarly, the signaling adaptors RIP1 and TRAF2 are marked for degradation by 

ubiquitinylation by E3 ligases A20 (also known as TNFα-induced protein 3 TNFAIP3)58 and 

cellular inhibitor of apoptosis 1 (c-IAP1)59, respectively. IRAK1 is also degraded following 

activation but the E3 ligase remains to be identified34,60. Interestingly, both A20 as well as 

c-IAP1 are transcriptionally upregulated after induction of NF-κB inducing a negative 

feedback loop48. A20 plays a dualistic role as it serves not only as E3 ligase for Lys48-linked 

ubiquitinylation of RIP1, but its DUB domain removes activating UbLys63 chains from RIP1 

prior to degradation58. The second well known DUB enzyme is the protein of the cylin-
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dromatosis gene CYLD. A defect in this gene is responsible for the turban tumor syn-

drome, a familial cancer. CYLD protein binds to TRAF2, TRAF6 and NEMO and removes 

activating UbLys63 chains61-63. Two further DUB enzymes have been identified: cellular zinc 

finger anti NF-κB (Cezanne) which also removes UbLys63 chains from RIP164 and TRAF-

binding domain (TRABID) which was shown to interact with TRAF664.  

In addition, promoter-bound p65 may be degraded by the proteasome65. Suppressor of 

cytokine signaling 1 (SOCS1) might function as the E3-ligase for this reaction66. It seems 

likely that more mechanisms exist to terminate NF-κB signaling. 

1.1.6 NF-κB dynamics 

One major remaining question in the field of NF-κB research is how a system regulating 

such diverse functions can discriminate between different stimuli. Next to variations in 

post-translational modifications of NF-κB subunits, combination of different NF-κB sub-

units, selectivity toward certain binding sequences as well as combination with different 

co-activators, also the temporal control of NF-κB signaling may account for the cell-type 

and stimulus-specificity23. As stated above, the feedback loop of NF-κB-IκBα generates 

oscillations in nuclear translocations of NF-κB47,54. However, depending on the duration, 

the type and the concentration of the stimulus, different temporal profiles of the oscilla-

tions can be observed47,54,67,68. Importantly, specific profiles can lead to activation of sub-

sets of genes: Using short-term versus long-term activation of NF-κB with TNFα, Hoffmann 

and coworkers could show that some genes (such as chemokine (C-X-C motiv) ligand 10 

(CXCL10)) are transcribed upon NF-κB activation irrespective of the duration, while some 

genes (such as chemokine (C-C motif) ligand 5 (CCL5)) depend on long term NF-κB activa-

tion54. It is unclear, whether bacterial infections induce specific temporal profiles.  

1.1.7 Monitoring NF-κB dynamics 

Although there are several assays to measure NF-κB activation, studies investigating the 

dynamics of the transcriptional response are hampered by a lack of suitable methods. 

Commonly used tools for general NF-κB analysis are reporter plasmids, in which an NF-κB 

binding site drives the transcription of reporter genes like green fluorescent protein (GFP) 

or luciferase. Stable cell lines with these constructs are commercially available (i.e. from 

Invitrogen). However, these constructs as well as the cell lines are not suitable for real-

time analysis of dynamics because they measure transcriptional responses accumulated 
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hours after activation. Furthermore, they do not discriminate between activities of single 

NF-κB subunits but report the summarized transcriptional activity of NF-κB dimers. Bio-

chemical approaches like the electrophoretic mobility shift assay (EMSA) have been used 

successfully to detect oscillations in the temporal response of NF-κB54,55,67,68, but these 

strategies are time consuming and the protein extracts used for biochemical analysis av-

erage the potentially divergent responses of single cells.  

Since activation of NF-κB is marked by the translocation of NF-κB subunits from the cytop-

lasm to the nucleus, many studies have followed the dynamics of NF-κB activation using 

fluorescent protein fusions47,69-73. It was Nelson and co-workers47,69 who first showed 

NF-κB oscillations at a single-cell level, using live-cell microscopy of cells transiently trans-

fected with NF-κB proteins fused to fluorescent moieties; however, transient transfections 

entail important difficulties: inevitably, the amount of plasmid DNA varies from cell to cell, 

leading to variations in expression levels. Because the NF-κB system is to tightly regulated, 

changes in expression levels can lead to changes in dynamics of signaling and therefore 

altered synchrony of the nuclear translocations74. Therefore, asynchronous responses de-

tected in previous studies using transiently transfected cells47 may not reflect oscillations 

observed in untransfected cells74. A system that integrates GFP technology with clonal cell 

lines where expression level variations due to different amounts of DNA are excluded, 

may be more insightful74.  

1.2 The bacterium Helicobacter pylori 

Over a hundred years ago, the first bacteria were identified in patients with gastric can-

cer75 but the contribution of bacteria to gastric pathologies was not widely recognized 

until Marshall and Warren identified H. pylori in biopsies of gastric cancers in 198476. 

H. pylori are gram-negative, highly successful bacteria, colonizing the stomachs of about 

fifty percent of all humans worldwide77. Infection occurs mainly during childhood within 

families through close person-to-person contact, possibly fecal-orally or via vomitus78. 

Once established, the bacterium resides in the gastric mucosa over decades. The chronic 

inflammation can develop into three types of pathologies: (i) asymptomatic mild gastritis 

(majority of the infected individuals), (ii) antral predominant gastritis leading to duodenal 

ulcers (10-15%) or (iii) corpus-predominant gastritis with increased risk of cancer (about 

1%)78. H. pylori is causally related to two forms of gastric cancer: mucosa associated lym-

phoid tissue (MALT) lymphoma (a non-Hodgkin B cell lymphoma) and the more common 
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gastric adenocarcinoma79. The relationship is impressively demonstrated in MALT lym-

phoma, where, at an early stage, the lymphoma regresses upon antibiotic treatment that 

eradicates H. pylori
80. Consequently, H. pylori is recognized as a class I carcinogen by the 

World Health Organization (WHO)81. 60-90% of gastric cancers can be attributed to 

H. pylori infection82 and with 1.1 Mio estimated cases for 201083 as well as a poor progno-

sis of only 20% 5-year survival84, H. pylori is a major cause of cancer-related deaths. On 

the other hand, H. pylori infection can have a protective effect for reflux disease and ade-

nocarcinoma of the esophagus and it was proposed that the outcome of infection de-

pends on host-pathogen interplay85. 

To survive in the stomach, H. pylori uses the enzyme urease to buffer the pH86 and swims 

to the less acidic mucus layer87 where it adheres to host cells via adhesins88, a contact that 

is almost irreversible89. H. pylori secretes the vacuolating toxin A (VacA) which induces 

formation of large cytoplasmic vacuoles and is thus considered highly damaging for the 

epithelium78 (Fig. 2). At the epithelium, H. pylori strains that carry a 40 kilobase DNA 

fragment known as cytotoxin-associated gene pathogenicity island (cagPAI) can secrete at 

least one bacterial factor called CagA into the host cell cytoplasm via a type IV secretion 

system (T4SS)90 (Fig. 2). Both CagA and T4SS are encoded by cagPAI. It is the cagPAI-

positive strains that are associated with severe diseases91. Following injection into the 

host cell cytoplasma, CagA is phosphorylated by host cell kinases and interacts with vari-

ous host cell proteins, leading to activation of various signaling cascades such as the mito-

gen activated protein kinase (MAPK) pathway and a change of host cell morphology as 

well as loss of epithelial cell-cell adhesion92.  

On the host side, polymorphisms in human genes for IL-1β, IL-1β-receptor, TNFα, IL-10, 

IL-8, TLR4 and human leukocyte antigen (HLA) have been linked to H. pylori induced pa-

thology93-96. Remarkably, all of these genes produce factors of the immune system, under-

lining the importance of the host’s immune system in the development of severe diseases. 

This influence is thought to result from chronic inflammation: When neutrophils and mo-

nocytes are recruited to the site of infection, they release reactive oxygen intermediates 

which (together with the bacterial factors) damage the tissue. During the life-long course 

of inflammation, repeated damage and proliferation leads to a steady turnover of cells 

which increases the probability of genetic changes and thereby of malignancies97. There-

fore, the study of innate immune response is of crucial interest.  
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Fig. 2: Interaction between H. pylori and its host. Infecting the human gastric mucosa, H. pylori utilizes the 

enzyme urease to buffer pH and its flagella to reach the mucus layer. Secreted VacA induces vacuolization of 

the epithelial cells. Attaching to epithelial cells, H. pylori can translocate CagA via its T4SS into the host cell 

cytoplasm. Bacterial peptidoglycan and possibly other factors are also translocated into the host cell. This 

induces profound cellular changes as well as NF-κB activity which lead to secretion of the neutrophil attrac-

tor IL-8. Neutrophils and monocytes extravagate from the blood vessel and cause tissue damage by releas-

ing reactive oxygen intermediates (ROIs). Combined toxic activity of bacterial factors and ROIs lead to tissue 

damage enhanced by loss of the protective mucus layer. Neutrophils and monocytes also release further 

pro-inflammatory cytokines like TNFα and IL-1β which stimulate parietal cells to decrease acid production, 

causing a raise of gastric pH and hypochlorhydria. This increases the risk of atrophic gastritis and subsequent 

development of gastric cancer. Lower left: In gastric epithelial cells, multiple pathways activate NF-κB after 

infection with T4SS-positive H. pylori. Bacterial peptidoglycan activates NOD1. Other unknown factors are 

thought to activate MyD88, TRAF6 and TAK1 as well as PAK1 and NIK. Probably, additional so far unknown 

factors also activate NF-κB (adapted from
89,98

).  

A potent regulator of the H. pylori-induced immune response is NF-κB. NF-κB-induced 

cytokines and chemokines have been shown to play an important role which can be di-

vided into two distinct actions (Fig. 2). First, upon contact with H. pylori, the epithelium 

secretes IL-899 which recruits neutrophils and other immune cells to the site of infection. 

Second, the immune cells release TNFα and IL-1β98. These cytokines reduce acid secretion 

by parietal cells causing a decrease in gastric acidity which in turn increases the risk of 

atrophic gastritis, a pre-malignant condition98. In addition to these roles, the anti-
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apoptotic function of NF-κB is thought to enhance probability of survival of malignant 

cells that may have arisen in the process of cell proliferation10,100. 

The signaling pathways leading to NF-κB activation seem to be very specific for the cell 

type and many different mediators have been proposed (Fig. 2). Generally, responses dif-

fer in mice and humans: IL-8 secretion in mice is independent of bacterial cagPAI
101,102 

while in humans it depends on cagPAI
99,101. Human macrophages and monocytes can also 

be activated by cagPAI-independent factors, such as H. pylori urease103,104 and HSP60105. 

H. pylori LPS seems to play a minor role and only activates macrophages when applied in 

very high concentrations106,107. Human gastric epithelial cells (primary cells and cell lines) 

exclusively react to cagPAI positive strains102,108-111. To specify the H. pylori factors impor-

tant for NF-κB activation or IL-8 production in AGS cells, several groups analyzed isogenic 

mutants of H. pylori and showed that both, NF-κB activation and IL-8 secretion, depend on 

cagPAI but not on CagA112,113. Only during prolonged infections of 24-48 h, CagA influ-

enced IL-8 secretion109,114. Therefore, it is possible, that CagA could be necessary for a 

late-phase induction of IL-8. 

To identify cellular receptors for NF-κB activation by H. pylori in gastric epithelial cells, 

much interest has been focused on TLRs and NLRs101. TLR4 is not functionally expressed 

on gastric epithelial cells and can therefore not mediate NF-κB activation in these 

cells101,115. TLR9 does not recognize H. pylori DNA102,116. Ectopically expressed TLR5 and 

TLR2 is able to induce NF-κB activation in response to H. pylori
117, however, endogenous 

TLR5 is not activated by H. pylori flagellin118,119 and HEK293 that do not express TLR2 can 

still be activated by H. pylori
101,120,121. Therefore, TLR2, TLR4, TLR5 and TLR9 do not play a 

major role in innate recognition of H. pylori. Recently, the intracellular PRR NOD1 has 

been implicated in sensing H. pylori
121. NOD1 binds a specific motif of peptidoglycan (PG), 

a component of the gram-negative cell wall. It was proposed that bacterial PG could be 

transferred via the T4SS into the cell cytoplasm where it can trigger an NF-κB response via 

NOD1. However, in nod1 knockout mice, the secretion of macrophage inflammatory pro-

tein 2 (MIP-2), the murine homologue to IL-8, was only reduced, not abolished. Addition-

ally, the authors were not able to show NOD1-dependent p65 nuclear translocation in 

gastric epithelial cells121 and other studies showed that RNAi targeting NOD1 had no im-

pact on phosphorylation of IκBα in AGS cells102. Thus it seems unlikely that NOD1 is exclu-
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sively responsible for activation of NF-κB and further work is needed to elucidate recep-

tors leading to NF-κB activation.  

Several signaling pathways for NF-κB activation by H. pylori have been proposed. Activa-

tion of both IKKs, IKKα and IKKβ, has been shown repeatedly either by using dominant 

negative constructs or RNAi122-124. But upstream of IKKs, knowledge about the activating 

pathway remains fragmentary, especially because different groups have shown contradict-

ing results. A number of studies suggested the involvement of NIK upstream of IKKs as 

expression of dominant negative NIK reduced NF-κB promoter reporter activity in a range 

of gastric cell lines123-125. PAK1 was suggested to act upstream of NIK which was also 

shown with a dominant negative construct124. However, NIK is thought to activate homo-

dimers of IKKα in the alternative pathway and to be dispensable for the classical path-

way34. Although H. pylori has been implicated to be able to induce the alternative path-

way in B cells126, the transcriptional reporter construct used in the studies regarding NIK 

and PAK1 in epithelial cells is not specific for the alternative pathway but contains binding 

elements from the human immunodeficiency virus common for the classical p65:p50 di-

mer124,127. Thus, involvement of NIK and PAK1 is not clearly established. Involvement of 

TRAF2 was also demonstrated using expression of dominant negative TRAF2123. However, 

the same group showed in a later study that RNAi targeting TRAF2 had no effect on 

H. pylori-induced NF-κB signaling102. Also the results regarding TAK1 were controversial. 

Expression of a dominant negative construct of TAK1 did not inhibit activity of a transcrip-

tional NF-κB reporter125 while RNAi targeting the same gene inhibited H. pylori-induced 

phosphorylation of IκBα and IL-8 secretion102. It seems that usage of dominant negative 

constructs can lead to different results as downregulation of endogenous gene products 

with RNAi. Although TLR2, TLR4, TLR5 and TLR9 are unlikely to play a role in NF-κB activa-

tion in human epithelial cells, many of the mediators typical for TLR-signaling have been 

shown to be important in H. pylori-induced NF-κB activation: RNAi targeting MyD88 and 

TRAF6 had an effect on phosphorylation of IκBα and IL-8 secretion in AGS cells102. The 

same study showed no involvement of receptor-interacting serine-threonine kinase 2 

(RIP2 also known as RICK) downstream of NOD1102. 

In conclusion, knowledge about signaling pathways leading to NF-κB activation after 

H. pylori infection remains both fragmentary and controversial. More detailed analysis is 

needed to elucidate the pathways leading to activation of this important pathway.  
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1.3 The intracellular bacterium Legionella pneumophila 

Legionella pneumophila is an intracellular, gram-negative bacterium that causes severe 

pneumonia known as Legionnaires disease. It usually infects and resides within freshwater 

protozoa but when Legionella containing water droplets are inhaled, it can also infect hu-

man lungs128. The intracellular lifestyle of L. pneumophila probably evolved to evade kill-

ing by predatory amoebae and to provide a niche to evade host immune response129. 

However, to survive inside cells, L. pneumophila needs to prevent lysosomal degradation. 

To achieve this, the bacterium establishes an intracellular, membrane-bound compart-

ment, called Legionella containing vacuole (LCV), which is resistant to fusion with lyso-

somes129. During the replicative phase of its two-phased life cycle, L. pneumophila multip-

lies and recruits intracellular membranes from the endoplasmatic reticulum for constant 

membrane supply for a growing LCV129,130. After replication, L. pneumophila enters the 

transmissive, virulent phase which is marked by formation of a long flagellum131. Finally, it 

lyses the host cell, exits and finds the next host129,130.  

Essential for a successful infection, L. pneumophila employs a T4SS called Dot/Icm (defec-

tive in organelle trafficking/intracellular multiplication) to translocate effector proteins 

into the host cell. These effectors are pivotal for all steps of the infectious process, such as 

the establishment of the LCV, intracellular replication and release from the host cell132. 

Several studies have identified an array of Dot/Icm-translocated substrates which have 

been assigned different functions such as the recruitment of cellular organelles like mito-

chondria and membranes from the endoplasmatic reticulum. However, the functions of 

many of the effectors remain unknown129,133,134. 

In humans, L. pneumophila can infect alveolar macrophages135, but it is likely that infec-

tion spreads to lung epithelial cells, which in turn secrete cytokines, thereby promoting 

the disease136,137 (Fig. 3). In vitro it has been shown that Legionella infects human epi-

thelial cells138-141, leading to the secretion of cytokines and chemokines such as IL-8 in an 

NF-κB-dependent manner137,142,143. 
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Fig. 3: Interaction between L. pneumophila and its host. The airway epithelium serves as first barrier against 

the pathogen and epithelial cells line the bronchioles as well as the alveoli. In alveoli, epithelium is referred 

to as type I and type II cells. In vivo, L. pneumophila is known to infect alveolar macrophages, but infection 

of the epithelium is also likely as the bacterium has been shown to infect epithelial cells in vitro. This leads 

to secretion of cytokines like IL-8 via NF-κB which is thought to play an important role in the promotion of 

inflammation. In epithelial cells as well as in macrophages, Legionella secretes several effectors into the host 

cell cytoplasm via its T4SS which leads to the formation of the Legionella containing vacuole where the bac-

teria replicate. Lower left: In epithelial cells, bacterial flagellin is recognized by TLR5 which activates NF-κB 

via MyD88. In addition, other factors, possibly secreted by the T4SS of the bacteria, can also activate NF-κB. 

The ability of Legionella to replicate successfully in human cells relies upon evasion and/or 

manipulation of host cell defenses and survival of the host cell it resides in. A critical fac-

tor regulating relevant cellular processes like proliferation, apoptosis, innate immunity 

and inflammation responses is the NF-κB family of transcription factors. NF-κB activation 

by Legionella has been demonstrated in macrophages and also in epithelial cells, which in 

turn secrete cytokines and chemokines137,142,143. In this respect, NF-κB activation as part of 

the host defense mechanism is beneficial for the host by triggering an innate immune 

response. On the other hand, it is also known that NF-κB activation has anti-apoptotic 

effects, which is thought to be beneficial for intracellular pathogens that depend on host 

cell survival. Indeed, that was demonstrated for several pathogens including Legionella
144, 

Rickettsia rickettsii
145, Toxoplasma gondii

146,147 and Theileria parva
148.  
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Two bacterial factors, flagellin and the Dot/Icm system, have been implicated in NF-κB 

activation during L. pneumophila infection (Fig. 3). The structural component of the bac-

terial flagellum, flagellin, induces IL-8 secretion via NF-κB in epithelial cells137,143. Consis-

tently, flagellin of Legionella is recognized by TLR5149, and NF-κB signaling depends on the 

TLR adaptor protein MyD88150. The Dot/Icm system has also been shown as necessary for 

NF-κB activation and subsequent upregulation of anti-apoptotic genes in infections of 

human macrophages144,150. Losick and Isberg demonstrated an influence of the multiplici-

ty of infection (MOI) on NF-κB activation150: Low dose infections (MOI 1) led to Dot/Icm-

dependent and MyD88-independent NF-κB activation, whereas at an MOI 10 or higher 

signaling occurred via MyD88 and in a Dot/Icm-independent manner. The reason for this 

observation is not known.  

1.4 RNAi-based screens 

RNA interference (RNAi) is a mechanism that post-transcriptionally inhibits specific genes. 

The key to this process are double-stranded small interfering RNAs (siRNAs) that have 

complementary nucleotide sequence to the targeted mRNA sequence. One of the strands 

of the siRNA guides the RNA interference inducing silencing complex (RISC) to bind and 

then cleave complementary mRNA. Thus, the expression of this gene is inhibited151.  

Since the discovery of RNAi in Caenorhabditis elegans ten years ago152 and the subse-

quent demonstration, that RNAi is also effective in mammals153, RNAi became a powerful 

tool to unravel gene functions. It also opened new possibilities of straightforward loss-of-

function screens to identify novel components of any pathway. Due to the history of RNAi 

discoveries and the simplicity of RNAi delivery in D. melanogaster as well as in C. elegans, 

most screens have been conducted in these model organisms but recently, the number of 

screens conducted in the human system is growing. For example, recent screens in human 

cell lines have identified factors important for entry or propagation of pathogens such as 

human immunodeficiency virus (HIV)154-156, Salmonella typhimurium
157 and west nile vi-

rus158. Up to date, no screen has exploited the possibilities to understand a host cell sig-

naling response after infection. 
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1.5 Aims of this thesis 

Despite its crucial importance of NF-κB signaling in infections with H. pylori or 

L. pneumophila, the induction of NF-κB by these pathogens and the dynamics of the acti-

vations are not well understood. In H. pylori infection, many signaling mediators have 

been proposed but the picture remains fragmentary. Therefore, it is hypothesized here, 

that other, so far unknown factors regulate NF-κB activation induced by H. pylori. An aim 

of this thesis is, to identify these new factors with an RNAi-based screen. In 

L. pneumophila infection, two pathways are involved in NF-κB activation and it has been 

implicated, that the decision, which of the pathways is activated, depends on the multip-

licity of infection. However, the underlying mechanism is unclear. Here, analysis of dynam-

ics and signaling are used to clarify NF-κB activation induced by L. pneumophila.  

To study signaling and dynamics, first, a suitable technique needed to be developed. This 

method should be amenable for high throughput screening as well as detailed analysis on 

single-cell level. For this purpose, monoclonal, lentivirally transduced cell lines were gen-

erated stably expressing p65-GFP. Nuclear translocation of p65-GFP can be observed in 

fluorescence microscopy and quantified by software-based picture analysis. Using this 

new technique, temporal control of p65-GFP translocation specific for the inducer could 

be shown, including oscillations after H. pylori infection.  

This new method could then be utilized for an RNAi-based screen. To identify factors 

which might specifically act in infection, three inducers were compared: H. pylori, TNFα 

and IL-1β. Knowing the responses induced by each stimulus, different time points in the 

dynamic process of p65-GFP nuclear translocation were observed to identify not only fac-

tors important for activation, but also for termination of NF-κB signaling. The primary hits 

were then validated with additional siRNAs. The importance of single factors was further 

demonstrated by assessing the impact on upstream factors (IKK activity) and target genes 

(IL-8 secretion), functionality of bacterial T4SS, and induction of MAPK pathways. 

In L. pneumophila infection, time-resolved monitoring of p65-GFP dynamics showed two 

subsequent activations of NF-κB. Utilizing different mutant strains and RNAi, important 

bacterial and host cell factors could be identified. 
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2 Results and Discussion 

2.1 Part I: Imaging NF-κB activation using p65-GFP 

2.1.1 A high throughput assay for cell lines expressing p65-GFP 

To analyze p65 nuclear translocation within a large number of cells, an automated high-

throughput assay based on nuclear translocation of p65-GFP was developed. First, a lenti-

viral vector was constructed that carries the genetic information of the NF-κB subunit p65 

fused to GFP. With this vector, four cell lines were transduced: the human alveolar epi-

thelial cell line A549, human gastric epithelial cell line AGS, human cervical epithelial cell 

line HeLa and mouse fibroblasts cell line L929. From the lentivirally transduced cells, mo-

noclonal cell lines (A549 SIB01, AGS SIB02, HeLa SIB04 and L929 SIB01) were selected. The 

expression ratio compared to endogenously expressed p65 was quantified with western 

blot analysis and is 1fold in A549 SIB01, 7fold in AGS SIB02, 5fold in HeLa SIB01 and 7fold 

in L929 SIB01 (Fig. 4a). In non stimulated cells, p65-GFP is mainly localized in the cytop-

lasm and upon stimulation with TNFα 10 ng/ml, p65-GFP translocates into the nucleus 

(Fig. 4b). In contrast to the three other cell lines, HeLa SIB04 displayed high heterogenei-

tyand was therefore excluded from further analysis. 

 

Fig. 4: Expression and nuclear translocation of p65-GFP in monoclonal cell lines. a) Western blot analysis of 

cell lines expressing p65-GFP and their parental cell lines shows overexpression of p65-GFP. This experiment 

is representative of at least five independent experiments. b) Nuclear translocation of p65-GFP can be visua-

lized by fluorescence microscopy. Cell lines A549 SIB01, AGS SIB02, HeLa SIB04 and L929 SIB01 were seeded 

in 96-well-plates and either non activated or activated with TNFα 10 ng/ml. Cells were fixed after optimal 

activation time and pictures were taken with an automated microscope (Olympus Scan^R System). Shown 

are representative cell samples as depicted in the analysis software. 

For the high throughput assay, automated microscopy was coupled to software-based 

picture analysis of p65-GFP. For this, cells were seeded into 96-well-plates, stimulated for 

30 min with TNFα 10 ng/ml, fixed and nuclei stained with Hoechst. Images of cells were 
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acquired using automated microscopy. Cell nuclei were detected and the surrounding cy-

toplasmic area set using image analysis software (Fig. 5a).  

 

Fig. 5: Quantification of nuclear translocation of p65-GFP using automated microscopy and software-based 

picture analysis. a) Subcellular areas defined for the translocation assay in the Scan^R software. As an ex-

ample, A549 SIB01 cells are shown. Blue: Defined nuclear area, Red: Defined cytosolic area. Cells were fixed 

and stained with Hoechst 33342. Depicted are one activated and one non-activated cell. b) Translocation 

assay for A549 SIB01 using Scan^R Analysis. Cells were seeded on 96-well-plates and partially activated with 

TNFα 10 ng/ml in order to have mixed populations of activated and non-activated cells. Cells were fixed, 

stained with Hoechst 33342 and analyzed by automated microscopy. Dot plots as depicted in analysis soft-

ware are shown. Cells are gated for circularity and size (Region R01), intensity of GFP and standard variation 

of GFP intensity (Region R02) and the ratio of nuclear to cytoplasmic GFP intensity (Region R3 or R4). Cells 

are taken into account when they are in gates R01 and R02. They are defined “active” when they are also in 

gate R03 or “non-active” when they are also in gate R04. For graphs, the percentage of activated cells per 

well is calculated by the equation: Percentage of active cells = active cells / sum of active and non-active 

cells x 100. 

To provide quantitative analysis of the nuclear translocation of p65, cells were then de-

picted on dot plots and gated according to three definitions: (i) to gate for nuclear size, 

circularity and perimeter of Hoechst-stained objects was used. (ii) To gate for homogenei-

ty of GFP signal, standard deviation of GFP signal was used. (iii) To gate for cells with nuc-

lear p65-GFP, a ratio of intensity of nuclear and cytoplasmic GFP was used (Fig. 5b). Cells 

with nuclear GFP were defined as active (Fig. 5b). Individual assays for each of the three 
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cell lines were optimized (see Methods for details). After the assay was finally set, all ex-

periments were analyzed by the same assay.  

2.1.2 Comparison of reporter cell lines and parental cell lines 

It has been noted before that analysis of cells ectopically expressing proteins coupled to 

fluorescence moieties can alter the dynamics of the respective signaling module74. There-

fore, the parental, non-transduced cell lines were compared with the p65-GFP expressing 

cell lines. They show very similar patterns of IκBα degradation over a period of 90 minutes 

after stimulation with TNFα 10 ng/ml or 0.5 ng/ml (Fig. 6). Only L929 showed slightly pro-

longed IκBα degradation. The degradation of IκBα in the parental and the p65-GFP ex-

pressing cell lines corresponds to the percentages of activated cells calculated using the 

automated p65 translocation assay. 

 

Fig. 6: a) Reporter cell lines respond to NF-κB stimuli similarly as the parental lines. Cells were infected with 

the indicated inducer for the indicated time and the degradation of IκBα and actin control analyzed by west-

ern blot. b) The automated readout gives results corresponding to western blot results. The reporter cell 

lines were activated with the indicated inducer for the indicated time, fixed, stained with Hoechst 33342 

and analyzed by automated microscopy as shown in Fig. 5. Error bars = SD of experiment performed in trip-

licates. Results are representative of three independent experiments. 



Imaging NF-κB activation using p65-GFP – Results and Discussion 

 

 
28

2.1.3 Specific temporal control of p65-GFP translocations 

Using these cell lines, it became apparent very quickly that there is not a uniform re-

sponse to TNFα, but that each of the three cell lines has a distinctive pattern of NF-κB 

activation. To further characterize this specificity, the response of the three cell lines to 

different inducers was analyzed: the cytokines TNFα and IL-1β, the bacterial cell wall 

component LPS and the bacterium H. pylori (Fig. 7). Cells were seeded in 96-well-plates, 

activated by the respective inducer, fixed after the indicated time and p65 translocation 

was quantified by automated microscopy and software-based picture analysis. 

 

Fig. 7: Inducer specific activation profiles of cell lines A549 SIB01, AGS SIB02 and L929 SIB01. The cell lines 

were activated with the indicated inducer for 0 to 6 h: A549 SIB01 cells were activated for 0-345 min, 

AGS SIB02 cells and L929 SIB01 cells for 0-270 min, each in steps of 15 min. Cells were fixed, stained with 

Hoechst 33342 and analyzed by automated microscopy as described in Fig. 5. Mean percentages from dupli-

cate experiments are shown as bars (grey) and the calculated moving average of 2 is depicted as a line 

(black). Results are representative of at least 3 independent experiments. Standard deviations are not 

shown for graphical reasons. One data point is missing in AGS H. pylori MOI 10 due to technical issues. 

The resulting profiles were highly specific for cell lines and inducers (Fig. 7). The main cha-

racteristics were: 1) Human epithelial cell lines did not respond to LPS and mouse fibrob-
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lasts did not respond to H. pylori, pointing to general stimulus specificity, probably due to 

functional receptors and/or signaling pathways present on the respective cells. 2) Tem-

poral profiles were stimulus specific. A549 show damped oscillations after infection with 

H. pylori, but stable translocation after stimulation with TNFα or IL-1β. Stable transloca-

tions in A549 in response to TNFα were verified using live-cell imaging (data not shown). 

3) The amplitude, but not the temporal profile was variable to the dose of the inducer. 4) 

Thresholds were cell-line-specific. Low-dose challenge of AGS with IL-1β produced small 

amplitudes of response, while the same doses yielded a full response in A549 and L929 

cell lines. 5) The duration of the response varied between cell lines. A549 generally 

showed much longer responses, implying more amplification of the signal or less dampen-

ing mechanisms in this cell line. 6) The background level of p65 translocation which can be 

seen at time 0 (no stimulus) is very low in all cell lines. 

2.1.4 Bacterial infection induces oscillations of p65-GFP 

Damped oscillations of p65 translocation have been observed in response to H. pylori us-

ing the automated microscopy assay (Fig. 7); however, as this was the first time oscilla-

tions of NF-κB activation have been demonstrated using a bacterial infection model, ob-

servations were verified using live-cell imaging. For this, AGS SIB02 cells were infected 

with H. pylori stained with a live dye (Syto 61) at an MOI of 5. Attachment of a single bac-

terium to one cell led to translocation of p65-GFP (Fig. 8a).  

To analyze the properties of these oscillations, average GFP intensities of nine cells from 

one experiment were compared. Individual cells were activated at different time points, 

each roughly 20 min after the attachment of one or more bacteria (Fig. 8b). Mathematical 

alignment of the different oscillations for the first peak revealed remarkable features: 

While the first peak seems highly synchronous in all cells, the second peak and its interval 

are variable (Fig. 8c). Analysis of additional 33 cells under various experimental conditions 

(MOI and time), showed that while the majority of cells exhibited the expected damped 

oscillations (high first peak followed by smaller second peak), the opposite was also possi-

ble (lower first peak followed by higher second peak) (data not shown). Peak intervals 

measured in 18 cells ranged from 40 to 140 min, with the most frequent intervals be-

tween 80-100 min (Fig. 8d).  
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Fig. 8: H. pylori induces damped oscillations of p65 nuclear translocations. a) p65-GFP expressing AGS SIB02 

were infected with H. pylori stained with Syto 61 and analyzed by confocal live cell microscopy. The upper 

panel shows a single bacterium attaching to a cell shortly after beginning of acquisition (arrow indicates 

position of bacterium). Graph shows average intensity of GFP in a representative nuclear region of this cell 

measured with Metamorph software. b) Graph shows average intensities of GFP in other cells from the 

same experiment (to which one or more bacteria attached at different time points) c) Alignment of norma-

lized average intensities of GFP within representative nuclear regions of the nine single cells shown in (a) 

and (b). Mean GFP intensity of the nine cells is shown as a black line. d) Peak interval of oscillating cells 

ranges from 40-140 min and distribution follows a Gaussian curve. Cells were treated as in (a) and 18 oscil-

lating cells from four separate experiments were analyzed. e) At high MOIs, oscillations are synchronous on 

population level. AGS SIB02 cells were infected with H. pylori at the indicated MOI, fixed, then analyzed by 

automated microscopy and the percentage of active cells per well calculated as described in Fig. 5. Error 

bars = SD of experiment performed in triplicates. Results are representative of three independent experi-

ments. Mathematical peak alignment and identification of peak interval was performed in collaboration 

with Johannes Schuchhardt, Microdiscovery, Berlin, Germany.  
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Taken together, these observations demonstrate cell-to-cell variability in H. pylori-induced 

p65 nuclear translocation oscillations. Importantly, similar oscillation profiles were ob-

tained within single cells and at population level (Fig. 8e). However, for oscillations visible 

at population level, high MOIs of 10-100 were necessary. Only under these conditions can 

bacteria reach the majority of cells at the same time and induce synchronous activation. 

Using a low MOI, oscillations at a population level are masked by variations in the time 

required by individual bacteria to reach cells. This experiment demonstrates the ability of 

this system to unify population and single cell analysis (Fig. 8d).  
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2.1.5 Discussion 

Here, a simple and cost effective method amenable to high-throughput applications for 

NF-κB analysis is described. It combines the use of p65-GFP expressing monoclonal cell 

lines with automated microscopy and analysis to provide synchronous real-time analysis 

of NF-κB activation dynamics at a single-cell and population level. 

There are many different oscillatory systems, most of them regulated by positive and neg-

ative feedback loops159 and expression of fluorescent fusion proteins have been a useful 

tool to study dynamics of these and also non oscillatory signaling systems47,160-164. Availa-

ble methods to analyze NF-κB activation dynamics at a single-cell level have relied on 

transient expressions, but these bear some difficulties, as expression of the respective 

oscillator might influence the fine-tuning of the regulator system. For NF-κB, it has specifi-

cally been noted that ectopic expression of p65 can influence NF-κB oscillations74. Also, 

discrepancies have been observed in oscillation synchrony between population and sin-

gle-cell analysis with transient transfected cells, which have been attributed to varying 

expression levels within single cells74.  

The major advantage of the model presented here overcomes these limitations via the 

use of monoclonal cell lines: all cells have the same expression level and oscillations with-

in single cells and populations are synchronous. Second, comparison with parental cell 

lines showed that there is little influence of ectopic expression as IκBα-degradation occurs 

in p65-GFP expressing cell lines highly similarly as in their parental cell lines. A third ad-

vantage is that unlike other cell lines that need selection pressure (i.e. G418) to keep the 

transgen, the cell lines presented here are lentivirally transduced, thus the p65-GFP car-

ried by the virus has been integrated into the cellular genome and no selection pressure is 

needed. Fourth, an important advantage is that no additional material is needed, avoiding 

unnecessary addition of experimental variables and also making this system highly cost 

effective. Lastly, the method presented here provides high sensitivity as background activ-

ity levels are very low. 

The new cell lines were used here to compare the specificity and temporal nature of 

NF-κB activation dynamics within three different cell lines: two human epithelial cell lines, 

of lung and gastric origin, respectively, and one mouse fibroblast cell line. Signature NF-κB 

response profiles were found for every inducer and cell line. Translocation of p65-GFP was 
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found to oscillate or present stable activation; the amplitude of the activation varied with 

the dose of the inducer. Both observations are consistent with previous findings67,68,165.  

Oscillations of p65 have been shown using the cytokine TNFα47,54,55,68,69,166 and the topoi-

somerase II inhibitor etoposide47, but it remained an open question whether oscillations 

occur in infections. Data presented here show, for the first time, oscillations after infection 

with the bacterium H. pylori. With live-cell imaging, it could be shown here that the smal-

lest possible live unit, a single bacterium, is capable of inducing translocation of p65-GFP. 

Most importantly these data showed synchronization between activation responses at the 

single cell and population level. As with other inducers of NF-κB such as TNF47, H. pylori 

infection elicited a moderate cell- to-cell variability in p65 oscillations. Future experiments 

will clarify whether the observed variations of peak intervals in single cell oscillations are 

due to the strength of induction and/or repeated infection by individual bacteria, as likely 

found during bacterial infection in vivo. Also, oscillations after infections with Neisseria 

gonorrhoeae were observed on the single cell level but because oscillations were asyn-

chronous they could not be detected on population level (data not shown).  

Stimulus specific temporal control of NF-κB activation has also been observed in mouse 

embryonic fibroblasts (MEFs) using EMSAs: when stimulated with TNFα they displayed 

oscillatory behavior, when stimulated with LPS they displayed stable behavior. The stable 

activation could be designated to a positive feedback that leads through secretion of TNFα 

to an overlap of two signaling pathways both oscillatory when isolated, but leading to sta-

ble activation when overlapping67,68. Here, it is not addressed whether or not a similar 

mechanism lies beneath the observation here, but it should be pointed out that both 

TNFα and IL-1β lead to single translocations in A549 with the stimulus remaining in the 

medium, thus it seems unlikely that a potential feedback loop would involve these two 

cytokines. It might also be possible, that there is an intracellular trigger that decides be-

tween oscillations or stable activations.  

But why do cells have different p65 translocations? Why not a single way? One possible 

answer lies in the biological diverse functions of NF-κB signaling. This system needs to 

differentiate between a wide range of stimuli and provide the appropriate transcriptional 

response – temporal signatures provide a way to encode for different inducers. The work 

of Hoffmann and coworkers has demonstrated this elegantly54: Short peaks of NF-κB acti-
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vation induced transcription of one set of genes while oscillations induced transcription of 

a different set. It remains an interesting question for future research to analyze the impor-

tance of temporal control for physiological functions. 

Based on experimental data, a mathematical model of temporal regulation of NF-κB sig-

naling has been developed54. Data generated using the clonal cell presented here, could 

be used to refine and broaden this and similar models by providing further experimental 

details of population and single-cell level oscillations within different cell types.  

Next to the new cell lines presented here, the p65-GFP carrying lentivirus itself provides 

interesting new features for further research. Not only can it be used to generate any oth-

er cell line desired, but, as lentiviruses can also infect non-dividing cells, it can even be 

used to transduce difficult to reach primary cells. Remarkably, this system also enables the 

user to influence the expression level of p65-GFP by varying the copy number of viruses 

per cell, i.e. using higher virus titers would lead to high numbers of integrated copies per 

genome and thus to higher expression levels.  

Owing to the crucial roles that NF-κB plays in inflammation, immunity and cancer, both 

the pharmaceutical industry as well as research groups are actively pursuing the discovery 

of new compounds that modulate NF-κB167. The cell lines and the microscopic assay pre-

sented here could be of great benefit to these efforts; for instance, in combination with 

high-throughput analysis in compound or RNAi-based screens. Also, the assay is highly 

cost effective because no additional materials are required and promising newly identified 

factors can be further analyzed on a single-cell basis using the same system. Furthermore, 

this assay has the unique quality that a delay of activation or a sustained nuclear translo-

cation can also be observed; enabling for the first time to implement analysis of dynamics 

in screens which can identify factors that delay or prolong translocation, thereby opening 

new doors for therapeutic discovery and understanding of disease. 
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2.2 Part II: RNAi-based screen identified regulators of NF-κB signaling 

To identify new factors important in NF-κB signaling, an RNAi-based screen was performed 

using the p65-GFP translocation assay described in the first part of this thesis. To enable 

distinction of genes generally acting on NF-κB signaling from genes selectively acting in 

NF-κB signaling induced by H. pylori, the infection was compared to induction with the 

cytokines TNFα or IL-1β. Furthermore, using different time points of activation, not only 

factors important for activation, but also for termination of the signal were identified. The 

main goals of this part were: The establishment of RNAi-based screening procedures, 

identification of controls, performance of the high-throughput screen, statistical analysis, 

verification of identified genes, and further analysis of single, newly identified factors. 

2.2.1 Establishment of the RNAi-based screen 

For high-throughput performance, a semi-automated platform was established. AGS SIB02 

cells were seeded manually in 96-well-plates and automatically transfected the next day. 

After a minimum of 60 h allowing high probability of efficient reduction of target protein, 

cells were manually activated by one of three stimuli: infection with H. pylori MOI 100, 

addition of TNFα 1 ng/ml or addition of IL-1β 10 ng/ml. Induction was stopped by fixation 

and nuclei were stained with Hoechst. 96-well-plates were subjected to automated micro-

scopy and p65 translocation was quantified as described above (Fig. 9).  

 

Fig. 9: Workflow of RNAi-based screen for factors involved in translocation of p65. AGS SIB02 cells are 

seeded in 96-well-plates on day 1, automatically transfected with siRNAs on day 2. After a minimal transfec-

tion time of 60 h cells are manually activated with H. pylori, TNFα or IL-1β on day 5. Cells are fixed, stained 

with Hoechst 33342 and analyzed by automated microscopy as described in Fig. 5 

In a screen, controls are needed to establish suitable screening procedures, to verify per-

formance of the experiments during the screen and as references for data analysis. To 

identify control siRNAs for the screen, several known components of NF-κB signaling were 

tested (Fig. 10). Used siRNAs have been validated previously within the department and 

each siRNAs has been shown to reduce target mRNA levels by at least 70%. 
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Fig. 10: Identification of siRNA controls for H. pylori. AGS SIB02 cells were transfected with the indicated 

siRNAs, activated with H. pylori MOI 100 for 45 min, fixed and analyzed by automated microscopy. Bars 

represent results from experiment performed in single wells. Results are representative of three indepen-

dent experiments. 

In H. pylori infection, siRNAs targeting NIK and TRAF2 had no effect, siRNAs targeting 

MyD88, TRAF6 and IKKα had a moderate effect and siRNAs targeting NOD1 and IKKβ 

showed profound inhibitory effect on p65-GFP translocation (Fig. 10). Because siRNAs 

targeting IKKβ led to the strongest inhibition, they were used as control. For TNFα, siRNA 

against the receptor TNF-R1 completely abolished TNFα-induced p65 translocation and 

was used as control for this inducer. Similarly, MyD88 was used for IL-1β (Fig. 11). 

 

Fig. 11: Control siRNAs against known activators of NF-κB reduce translocation of p65-GFP. AGS SIB02 cells 

were infected with H. pylori MOI 100, activated with TNFα 1 ng/ml or IL-1β 10 ng/ml for the indicated time, 

fixed, analyzed by automated microscopy and image processing and percentages of activated cells per well 

were calculated. Inhibitory siRNA: IKKβ for H. pylori, TNF-R1 for TNFα, MyD88 for IL-1β. Results are shown as 

bars representing experiment performed in triplicates with standard deviation. Results are representative of 

at least three independent experiments. 

2.2.2 Performance of the screen  

The screen was conducted using a library of siRNAs targeting 646 kinases and associated 

proteins, with two siRNAs per gene. Because siRNAs were not validated, the library con-

tains an unknown number of non-functional siRNAs. To reduce sample size, two siRNAs 
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for each gene were pooled. Each pool of two siRNAs was tested for its influence on 

p65 translocation in at least three independent experiments. Two time points were 

tested: First, one time point at the top of the curve to screen for factors involved in activa-

tion of p65 translocation (this was 45 min for H. pylori and IL-1β, 30 min for TNFα). 

Second, one time point was selected at the pit of the curve to screen for factors involved 

in termination of p65 translocation (90 min for H. pylori and IL-1β, 75 min for TNFα). 

2.2.3 Quality control of the screen and identification of hits 

In depth description of statistical analysis is provided in the Statistic part of this thesis. In 

summary, robustness of the assay met the standard criteria for high throughput screens; 

quality control showed a normal distribution of results on a plate with a minor position 

effect (left-right shift). To compare results of different plates, raw data was normalized 

(either using plate-median or, in comparison, z-score) and significance was assessed with 

Welch’s t-test. In total, 160 primary hits were identified combining statistical significance 

(p-value ≤0.05) and the strength of the effect on p65 translocation. For each inducer, ap-

proximately 5% top candidates were taken into account for further analysis: the best 52-

56 genes were selected for inhibition of p65-GFP translocation and the best 13-18 genes 

for promotion of p65-GFP translocation. Primary hits include genes common for two or 

three inducers as well as targets specific for one of the inducers.  

An important result was the identification of known members of the NF-κB pathway: The 

primary hit list included IKKα, IKKβ, TAB1, TAB2 and IRAK1, highlighting the quality of the 

screen. Interestingly, IKKα was only identified for H. pylori and IKKβ was only identified for 

H. pylori and TNFα. This indicates a functional redundancy of the kinases which will be 

addressed more specifically below. 

2.2.4 Validation of identified genes 

Several reports demonstrated that an observed phenotype was not caused by the down-

regulation of the target gene168-170 but by two off-target effects: the interferon response 

which is unspecifically induced by siRNAs171,172 and the sequence-specific miRNA effect. 

miRNAs are naturally occurring RNAs that regulate gene expression similarly as externally 

delivers siRNAs173. Because for miRNA-mediated silencing, only seven bases are cru-

cial174,175, externally delivered siRNAs are bound to encompass the risk of silencing mul-

tiple mRNAs via this pathway. To date, it is not possible to eliminate these sequence-
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specific off-target effects by siRNA design176,177. Therefore, sequence specificity needs to 

be demonstrated with at least two siRNAs targeting the same gene using different se-

quences176,177. To verify the identified genes in p65 translocation, here, additional four 

siRNAs were tested. Of the 160 primary hits, 24 were confirmed with at least two siRNAs 

each with a z-score of ≤-1 or ≥1 (table 1). To visualize possible connections of these genes, 

a map was assembled with the program “String” (Search Tool for the Retrieval of Interact-

ing Genes/Proteins)178 (Fig. 12).  

Tab. 1: Genes identified by RNAi-based screen. Factors are necessary for activation or termination of p65 

translocation. Names of genes that were confirmed in the hit validation with at least two siRNAs with z-

scores of ≤-1 or ≥1 are listed alphabetically. To give indication of the strength of the effect, the sum of 

z-scores of all four siRNAs during hit validation in all conditions is listed (H1 = H. pylori 45 min; H2 = H pylori 

90 min; T1 = TNFα 30 min; T2 = TNFα 75 min; I1 = IL-1β 45 min; I2 = IL-1β 90 min). Negative z-scores indicate 

inhibition and positive z-scores indicate promotion of p65-translocation. For comparison with data from the 

primary screen, bold colored font marks the condition in which the hit validation confirmed the effect in the 

primary screen (red for inhibition, blue for promotion of p65-translocation). For example, IKKβ was selected 

for inhibition of H. pylori- and TNFα-induced activation, therefore only these z-scores are marked blue. 

However, during the hit validation, of which the z-scores are listed here, the inhibitory effect was also visible 

in IL-1β induction.  

Abbrevia-

tion 

Name H1 H2 T1 T2 I1 I2 

ALPK1 Α kinase 1 (= Lymphocyte α kinase (LAK) -8,1 2,4 -1,3 1,0 0,7 1,3 

AURKB Aurora/IPL1-related kinase 2  0,6 0,5 -2,8 -3,9 -1,1 -1,6 

CDC2 Cell division control protein 2  -0,9 1,7 -6,3 -5,2 -0,5 2,0 

CDC2L2 Cell division cycle 2-like protein kinase 2 (= CDK11) -1,8 4,3 -1,5 -1,4 0,0 2,2 

CRKRS CDC2-related kinase, arginine/serine rich  -4,0 -0,8 -0,1 1,0 -0,8 -0,6 

DYRK1B Dual-specificity tyrosine-phosphorylation regulated 

kinase 1B  1,1 1,8 -0,4 -0,8 -1,7 -0,4 

EGFR Epidermal growth factor receptor  2,1 3,6 -1,8 0,3 -0,2 0,9 

FASTK Fas-activated serine/threonine kinase -0,5 -0,3 1,5 1,4 2,2 0,1 

GAK Cyclin G-associated kinase -0,7 1,6 1,4 2,7 0,8 1,8 

IKKα Inhibitor of nuclear factor κ B kinase α subunit -4,2 -6,1 -2,0 -3,6 -0,8 -1,0 

IKKβ Inhibitor of nuclear factor κ B kinase β subunit -8,5 -5,8 -3,5 -2,3 -5,7 -2,4 

ILK Integrin-linked protein kinase 1 -0,6 4,3 7,9 4,0 2,4 3,0 

IRAK1 Interleukin-1 receptor-associated kinase 1 -2,2 -1,8 -0,2 0,0 -8,1 -9,9 

LTK Leukocyte tyrosine kinase 1,5 5,3 -2,4 1,9 0,4 4,8 

MAPK11 Mitogen-activated protein kinase 11 -0,3 1,6 -0,3 0,1 -4,8 -2,5 

NME2 Nucleoside diphosphate kinase B 0,7 0,7 -0,7 -0,3 -1,9 -1,3 

PLK1 Polo-like kinase 1 -4,0 2,6 -1,0 2,9 -1,1 4,4 

PRKACB cAMP-dependent protein kinase, β-catalytic subunit 3,0 4,4 2,8 3,2 2,8 2,9 

PRKCABP PRKCA-binding protein -0,5 3,5 -2,2 0,3 -3,0 0,5 

PRKD2 Protein kinase C D2 type -1,2 1,5 0,5 0,7 -3,9 -1,8 

PSKH1 Serine/threonine-protein kinase H1 -1,0 0,5 0,2 0,0 -2,3 -0,5 

SKP2 S-phase kinase-associated protein 2 0,9 2,0 -0,5 2,3 4,2 5,8 

TNIK TRAF2 and NCK interacting kinase -1,5 -2,2 -0,6 -0,3 -2,5 0,3 

WEE1 Wee1-like protein kinase 0,3 -2,1 -3,4 -2,7 -2,0 0,3 
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Fig. 12: Map of genes identified by the screen to be important in activation or termination of p65 transloca-

tion. Genes that were confirmed with at least two siRNAs with a z-score of ≤-1 or ≥1 are depicted in a net-

work with predicted interaction partners assembled by the program “String” (http://string.embl.de). Infor-

mation about the strength of the effect was added manually (color code and size of nodes). Networks are: 

NF-κB pathway (lower right), cell cycle (upper left) and EGF pathway (upper right). For each gene, the sum of 

z-score is depicted for the condition in which hit validation data confirmed screen data. Please refer to table 

1 for abbreviations and to identify which gene affects which inducer. 

String is a database of known and predicted protein-protein interactions which are de-

rived from different sources (text mining of literature, homology searches, high-

throughput experiments etc.). The resulting map was modified so that color and size 

would indicate the strength of the effects. In this map, three pathway connections are 

highlighted: first, the NF-κB pathway, connected via the F-box protein SKP2 to the second 

network which encompasses cell cycle proteins: CDC2, WEE1, PLK1, AURKB. Third, the 
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software showed a link of LTK and EGFR within EGF-network. All other genes were uncon-

nected (Fig. 12). Genes identified by the screen are listed in table 1 and predicted interac-

tion partners are listed in table 2. 

Tab. 2: Putative interaction partners of genes identified in the screen predicted by the program “String” 

http://string.embl.de. Associations can be based on text mining, databases, experiments or homologies. 

Abbreviation Name 

CCNB1 G2/mitotic-specific cyclin B1 

CCNB2 G2/mitotic-specific cyclin B2 

EGF Epidermal growth factor 

GRB2 Growth factor receptor-bound protein 2 

IκBα Inhibitor of NF-κB α 

NEMO NF-κB essential modulator (=IKKγ) 

p65 NF-κB subunit p65 (= RelA) 

SHC1 SHC transforming protein 1 

SKP1 S-phase kinase-associated protein 1 

 

2.2.5 Time resolved analysis of NF-κB regulators  

The effect of the identified siRNAs was evaluated in an expanded time course. First, genes 

known in NF-κB signaling were tested. In this experiment, two further questions were ad-

dressed that arose from the screen: (i) putative false negatives (such as IRAK4, TAK1 and 

TAB2) were re-tested. Because the library contained an unknown number of non-

functional siRNAs, these genes could have been false negatives and siRNAs for these 

genes were included in the experiment. (ii) Results from the screen suggested redundant 

functions of IKKα and IKKβ. To analyze this effect, siRNAs for IKKα and IKKβ were com-

bined in this experiment. Results were assembled as time courses normalized to Allstars 

siRNA control and show several interesting characteristics (Fig. 13): 1) if a siRNA induces 

reduction of p65 translocation it does so during the entire experiment. Other possibilities, 

i.e. a delay of activation were not observed with the tested genes. 2) Combination of siR-

NAs for IKKα and IKKβ greatly increases the effect of the single siRNAs. This combination 

nearly abolished p65 translocation with all three inducers. 3) siRNAs targeting TAK1 

showed strong effects after H. pylori infection. Therefore, TAK1 can be accounted as false 

negative in the screen, indicating that siRNAs used in the screen did not effectively reduce 

protein levels. 4) siRNAs against the associated proteins TAB1 and TAB2 did not show 

strong effects. Thus, the effect of TAB1 siRNA in the screen was not confirmed. 5) siRNAs 

targeting IRAK1 confirmed the screen results and were effective in IL-1β induction, whe-
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reas siRNAs against IRAK4 did not have an effect. 6) siRNAs targeting MAP3K3 (also known 

as MEKK3) had a weak effect on p65 translocation using all three inducers. 

 

Fig. 13: Specific effects of siRNAs targeting known members of NF-κB on different inducers over time. Three 

days post siRNA transfection, cells were activated with one of the three inducers H. pylori, TNFα or IL-1β. 

Cells were fixed without activation (0 min) or after 15, 30, 45, 60, 75, 90 and 105 min, stained and analyzed 

by automated microscopy as described in Fig. 5. Results are presented as mean of normalized data of at 

least four independent experiments. The control is Allstars siRNA. For better comparison, a line indicates the 

peak of the curve of the control. 

Next, the genes newly identified in the screen were analyzed (Fig. 14). Of the 24 genes 

confirmed in the validation, nine were taken into account for this experiment: ALPK1, 

CRKRS, TNIK, Wee1, and CDC2 for inhibition, SKP2, ILK, CDC2L1 for promotion of p65 

translocation. In addition, two genes were added because they showed strong effects, 

although they did not meet the requirement of at least two siRNAs with a z-score of ≤-1 or 

≥1. These genes were fibroblast growth factor receptor 4 (FGFR4) and cyclin dependent 

kinase 2 (CDK2). For each gene, two siRNAs were tested over a time course of 0-105 min 

and results were normalized to Allstars control (Fig. 14). RNAi targeting ALPK1 and CRKRS 

strongly reduced p65 translocation over the entire tested period of time (Fig. 14a). Both 

genes showed selective importance for H. pylori. Only one siRNA against ALPK1 had a 

slight effect on TNFα. Of the genes selected for more than one inducer, both siRNAs 

against FGFR4 showed a clear effect on all three inducers. Influence of TNIK was only 

weakly visible in H. pylori-infected cells. Of the two genes selected for their effect on 

TNFα-induced p65 translocation, CDC2 and WEE1, RNAi targeting CDC2 showed a reduc-

tion of p65 translocation over the entire time course and RNAi targeting WEE1 delayed 
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activation. Regarding genes that were important in termination of p65 translocation, SKP2 

had the strongest effect (Fig. 14b). Most pronounced in IL-1β induction, the effect was 

also visible in TNFα induction and to a lesser extent in infection with H. pylori. Further, 

siRNAs targeting ILK1 profoundly prolonged TNFα-induced p65 translocation. siRNAs 

against CDK2 did not confirm the upregulation observed in the screen and siRNAs against 

CDC2L1 showed adverse effects depending on siRNA and inducer with a prolonging effect 

in infection with H. pylori and induction with IL-1β, but with a rather inhibitory effect of 

one siRNA in induction with TNFα (Fig. 14b). 

 

Fig. 14: a) Specific effects of siRNAs targeting newly identified genes important for NF-κB signaling. b) Down-

regulation of WEE1 induces delay of p65 translocation after induction with TNFα (enlarged view of data 

presented in a). Three days post siRNA transfection, cells were activated with one of the three inducers 

H. pylori, TNFα or IL-1β. Cells were fixed without activation (0 min) or after 15, 30, 45, 60, 75, 90 and 

105 min, stained and analyzed by automated microscopy as described in Fig. 5. Results are presented as 

mean of normalized data of at least four independent experiments. The control is Allstars siRNA. For better 

comparison, a line indicates the peak of the curve of the control. 
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2.2.6 Combinatorial effects of identified siRNAs 

The clear combinatorial effects of siRNAs against IKKα and IKKβ led to the question 

whether possible effects of other combinations might reveal insights into parallel func-

tions. To investigate this, siRNAs targeting different genes were combined and tested for 

influence on p65 translocation. For clearer display, results are shown in two figures: fig-

ure 15 shows an excerpt of the data, and figure 16 shows full results. Analog to an addi-

tional effect of IKKα and IKKβ, also combination of siRNAs targeting CRKRS and ALPK1 had 

an additional effect and nearly abolished p65 translocation in H. pylori infection (Fig. 15). 

Similar but weaker effects were observed combining siRNAs targeting IKKα and TAK1 in 

TNFα induction and combining siRNAs targeting IRAK1 and IRAK4 IL-1β induction (Fig. 15). 

 

Fig. 15: Combination of siRNAs lead to enhanced inhibition of p65 translocation. AGS SIB02 cells were trans-

fected using a combination of siRNAs targeting the indicated genes. Cells were activated by H. pylori MOI 

100 45 min, TNFα 1 ng/ml 30 min, or IL-1β 10 ng/ml 45 min, fixed, analyzed by automated microscopy and 

image processing and percentages of activated cells per well were calculated. Results of individual experi-

ments were normalized to Allstars control and the mean of four independent experiments is shown. Error 

bars = standard deviation of four experiments. This figure shows an excerpt of the data underlying Fig. 16. 

Further effects are visible in figure 16: (i) Only the combination of IKKα and IKKβ in TNFα 

or IL-1β induction had a so called “synthetic” effect, meaning an effect where only the 

combination, not the single siRNAs, reveal a phenotype179. Synthetic effects are seen in 

genes that buffer each other’s function180. (ii) Many genes showed “additive effects” 

where combination of both siRNAs led to an addition of the phenotypes of single down-

regulations179. Here, combinations of ALPK1 and CRKRS H. pylori infection or IRAK1 and 

IRAK4 in IL-1β induction are examples. In most cases observed here, the phenotype of the 

combined downregulation equaled less than the sum of the single effects.  
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Fig. 16: Combination of siRNAs leads to enhanced inhibition of p65 translocation. AGS SIB02 cells were 

transfected using a combination of siRNAs targeting the indicated genes. Cells were activated by H. pylori 

MOI 100 45 min, TNFα 1 ng/ml 30 min, or IL-1β 10 ng/ml 45 min, fixed, analyzed by automated microscopy 

and image processing and percentages of activated cells per well were calculated. Results of individual expe-

riments were normalized to Allstars control and a mean normalized percent activated cells of four indepen-

dent experiments is shown. si1 = siRNA 1, si2 = siRNA 2. 
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2.2.7 ALPK1 and CRKRS are important for NF-κB activation 

Three highly interesting proteins emerged from the screen: ALPK1 and CRKRS with specific 

impact on H. pylori induced NF-κB activation and SKP2 which exerted strong effects on the 

termination of p65 translocation. Therefore, these genes were analyzed further. To ex-

clude a possible influence of the expression of p65-GFP, the parental cellline of AGS SIB02, 

AGS, was used for these experiments. 

Background information about ALPK1 and CRKRS is very limited. ALPK1 is one of six known 

alpha kinase which has been shown to function in apical protein transport by phosphory-

lating myosin 1a181. CRKRS belongs to the family of cyclin related kinases and was impli-

cated in alternative splicing182. Because both genes have not yet been connected to the 

NF-κB pathway, the next experiments targeted verification of their influence. First, to en-

sure functionality of the siRNAs used for detailed analysis, efficiency of mRNA reduction 

was analyzed by RT PCR (Fig. 17).  

 

Fig. 17: Evaluation with RT-PCR shows that the used siRNAs reduce target gene mRNA level by 60-95%. After 

transfection and three days of incubation, cells were lysed, mRNA levels measured with RT-PCR, normalized 

to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) housekeeping gene and referenced to target mRNA 

levels measured in Allstars siRNA treated controls. si1= siRNA 1, si2 = siRNA 2. 

To assess the effect on expression of NF-κB target genes, secretion of the cytokine IL-8 

was measured with an enzyme-linked immunosorbent assay (ELISA). Results showed a 

clear reduction of about 50% of IL-8 secretion after downregulation of ALPK1 or CRKRS in 

comparison to an Allstars siRNA control (Fig. 18). A second control combining siRNAs tar-

geting IKKα and IKKβ abolished IL-8 secretion (Fig. 18). Thus, ALPK1 and CRKRS are impor-

tant for IL-8 secretion after H. pylori infection. 
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Fig. 18: Downregulation of ALPK1 or CRKRS inhibits secretion of IL-8 after infection with H. pylori. AGS were 

transfected with the indicated siRNAs and after three days infected with H. pylori MOI 100. Supernatant was 

collected after the indicated time and IL-8 was measured by ELISA. Bars represent means of triplicates. Error 

bars = SD of triplicates. si1= siRNA 1, si2 = siRNA 2. ELISAs were performed in collaboration with Bianca Bau-

er, MPI for Infection Biology, Berlin, Germany. 

To analyze, whether ALPK1 and CRKRS act upstream or downstream of the IKK complex, 

kinase activity was measured in a kinase assay. Analogous to the results of the IL-8 mea-

surement, both siRNAs targeting ALPK1 as well as both siRNAs targeting CRKRS strongly 

reduced kinase activity (Fig. 19).  

 

Fig. 19: Downregulation of ALPK1 or CRKRS inhibits IKK kinase activity after infection with H. pylori. AGS 

were transfected with the indicated siRNAs and after three days infected with H. pylori MOI 100. Cells were 

lysed after 30 min and IKK-complexes were precipitated with antibodies against NEMO. The combined ki-

nase activity of IKKα and IKKβ was measured with kinase assay (KA). For this purpose, precipitates were 

incubated with a synthetic peptide harboring the phosphorylation site of IκBα in the presence of [32P]-γATP. 

Probes were subjected to SDS page and phosphorylated substrate detected with autoradiography. As con-

trols, samples were collected for western blot analysis and probed for IKKβ and actin. Results are represent-

ative of three independent experiments. si1= siRNA 1, si2 = siRNA 2. Kinase assay was performed in collabo-

ration with Michael Hinz, Max Delbrück Center, Berlin, Germany. 

To control equal protein contents, cell lysates were subjected to western blotting and 

probed for IKKβ or actin. Western blots also showed a clear reduction of IKKβ protein le-
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vels after IKKβ siRNA treatment whereas IKKβ protein levels were unaffected by other 

siRNAs (Fig. 19). These results indicate that ALPK1 and CRKRS act upstream of IKK.  

Because NF-κB signaling depends on the adherence of bacteria to the cells and a func-

tional T4SS, a reduction of NF-κB signaling could possibly be due to less bacteria adhering 

to the cells or to impaired T4SS function. To specifically address this question, transloca-

tion of bacterial CagA was assessed by western blot analysis with phosphor-tyrosine-

specific antibodies. Results indicated that translocation of CagA was not reduced after 

downregulation of ALPK1 or CRKRS (Fig. 20). Subsequent analysis of western blots with 

anti-CagA antibodies detecting intra- and extracellular CagA showed similar amounts of 

CagA in all samples, indicating that similar amounts of bacteria adhered to the cells 

(Fig. 20). Therefore, downregulation of ALPK1 and CRKRS does not inhibit binding of bac-

teria to the cells and translocation of CagA. 

 

Fig. 20: Downregulation of ALPK1 or CRKRS does not inhibit phosphorylation of CagA after infection with 

H. pylori. AGS were transfected with the indicated siRNA, split after 24 h and after a minimum of 60 h post 

transfection infected with H. pylori MOI 100 for 4 h. Cells were lysed and subjected to western blot analysis 

and probed with antibodies detecting phosphor-tyrosine (and phosphorylated CagA), CagA, or actin. Results 

are representative of at least three independent experiments. si1= siRNA 1, si2 = siRNA 2. 

Because the data showed the impact of ALPK1 and CRKRS on NF-κB signaling on three 

different levels, IKK activity, p65 translocation and expression of the NF-κB target gene 

IL-8, the question arose, whether other signaling pathways induced by H. pylori would be 

affected as well. To test this hypothesis, two pathways known to be induced by H. pylori 

were tested: activation of MAP kinases ERK and p38. Western blot analysis showed that 

both, phosphorylation of ERK1/ERK2 and p38 were not affected by downregulation of 

ALPK1 or CRKRS (Fig. 21).  
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Fig. 21: Downregulation of ALPK1 or CRKRS does not inhibit H. pylori-induced activation of ERK and p38. AGS 

were transfected with the indicated siRNA, split after 24 h and after a minimum of 60 h post transfection 

infected with H. pylori MOI 100 for 30 min. Cells were lysed and subjected to western blot analysis using the 

indicated antibodies. Results are representative of at least three independent experiments. si1= siRNA 1, si2 

= siRNA 2. 

For experiments shown in Fig. 17-21, a single batch of cells was transfected and split on 

the following day in separate wells for the individual experiments. Therefore, IL-8 secre-

tion, kinase activity, ERK- and p38-phosphorylation, CagA-phosphorylation and knock-

down efficiency have all been measured in cells of the same transfection and results 

shown in Fig. 17-21 are directly comparable. 

In conclusion, the results indicate that ALPK1 and CRKRS are important for NF-κB activa-

tion after H. pylori infection and act upstream of IKKs but both genes have no impact on 

ERK and p38 signaling induced by H. pylori and do not inhibit function of bacterial T4SS. 

2.2.8 SKP2 is necessary for termination of NF-κB activity 

SKP2 was identified in the screen as a gene important for termination of p65 translocation 

and its effect was visible most prominently in time courses where RNAi targeting SKP2 

lead to prolonged translocation of p65-GFP. In addition, network analysis displayed SKP2 

in the center of two networks of which many factors were identified in the screen: the cell 

cycle and NF-κB pathway. SKP2 connects these pathways mainly in two ways: first, skp2 is 

known to be a target gene of NF-κB183. Second, SKP2 is part of the SCF complex184. Interes-

tingly, also other F-box proteins such as βTrCP can be part of the SCF complex, providing 

molecular modularity. And while SCFSKP2 is most importantly known for its function in the 
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cell cycle ubiquitinylating cell cycle regulators, SCFβTrCP ubiquitinylates IκBs and plays a 

central role in NF-κB signaling184. Therefore, SKP2 might be an important link between cell 

cycle and NF-κB pathway but so far, no direct influence has been shown for SKP2 on NF-κB 

signaling.  

Previous experiments showed that upon downregulation of SKP2, the percentage of acti-

vated cells does not decrease within the analyzed time. To evaluate whether termination 

was delayed or completely blocked, a longer time course experiment was performed. Be-

cause the effect was most prominently visible with IL-1β, all following experiments were 

conducted with this inducer. After downregulation of SKP2, AGS SIB02 cells were stimu-

lated with IL-1β up to 3.5 h and p65 translocation was quantified by automated microsco-

py. Results indicated that downregulation of SKP2 led to a delay of termination: while in 

the controls, after 1.5 h, almost no cells with nuclear p65-GFP were detected, in the 

probes with SKP2 downregulation this was the case only after 3 h (Fig. 22). This prolonga-

tion of p65 translocation could also be observed on single cells using live cell microscopy. 

Again, in control cells, p65-GFP was visible in the nucleus for about 1.5 h while in cells 

transfected with SKP2 siRNA, p65-GFP remained in the nucleus for up to 3 h (Cindy Rech-

ner, MPI for Infection Biology, Berlin, Germany, unpublished data).  

 

Fig. 22: SKP2 is necessary for termination of p65 translocation. AGS SIB02 cells were transfected with the 

indicated siRNAs and after three days stimulated with IL-1β 10 ng/ml. Cells were fixed after the indicated 

time and p65 translocation was quantified by automated microscopy. Results are representative of three 

independent experiments. si1= siRNA 1, si2 = siRNA 2. 

To evaluate whether SKP2 affected NF-κB signaling upstream of p65 translocation, degra-

dation of IκBα after RNAi-mediated downregulation of SKP2 and subsequent induction 

with IL-1β was analyzed by western blot. Unexpectedly, results showed that levels of IκBα 

were generally slightly lower in cells treated with SKP2 siRNA compared to cells treated 

with control Allstars siRNA even without stimulus (Fig. 23 time point 0). Upon stimulation, 
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IκBα was degraded in both cases but in SKP2 knockdown, the degradation is slightly pro-

longed (Fig. 23). The latter effect was subtle and not visible in all experiments. 

 

Fig. 23: SKP2 influences degradation of IκBα. AGS SIB02 cells were transfected with the indicated siRNAs and 

after three days stimulated with IL-1β 10 ng/ml for the indicated time. Cells were lysed, subjected to west-

ern blot and levels of IκBα and actin control detected with antibodies. Results are representative of at least 

three independent experiments. si1= siRNA 1. 

To evaluate IKK kinase activity, a kinase assay was performed after downregulation of 

SKP2 and subsequent induction with IL-1β. To exclude a possible effect of p65-GFP, the 

parental cell line of AGS SIB02, AGS, was used. Results showed a prolonged activity of 

IKKα and IKKβ after downregulation of SKP2 (Fig. 24).  

 

Fig. 24: Downregulation of SKP2 prolongs activity of IKK kinases. AGS were transfected with indicated siRNAs 

and stimulated with IL-1β 10 ng/ml after three days. Cells were lysed after the indicated time and the IKK 

complex was immunoprecipitated using antibodies targeting NEMO. Kinase activity was measured by kinase 

assay (KA). As controls, lysates were analyzed by western blot for IKKβ and actin. Results are representative 

of three independent experiments. si1= siRNA 1. Kinase assay was performed in collaboration with Michael 

Hinz, Max Delbrück Center Berlin, Germany. 

In summary, SKP2 is important for termination of NF-κB signaling. When SKP2 is downre-

gulated, IKK activity, IκBα and translocation of p65 are prolonged. Interestingly, even 

without stimulation, levels of IκBα were slightly influenced by SKP2 downregulation, indi-

cating that SKP2 might also play a role not only in the termination of signaling but also in 

general stabilization of IκBα.  
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2.2.9 Discussion 

Here, an RNAi-based screen is presented that identified 24 factors important in NF-κB 

signaling after H. pylori infection or stimulation with TNFα or IL-1β. Within this, the screen 

identified a connection between the cell cycle and NF-κB. The relevance of the new NF-κB 

regulators was demonstrated by further analysis of three selected genes: ALPK1, CRKRS 

and SKP2, the first two important for NF-κB activation after H. pylori infection and the 

latter important for termination of the activation.  

Important limitations of RNAi-based screens are false positives and false negatives176,177. 

Here, to eliminate false positives, primary hits were validated with four siRNAs and 24 hits 

were confirmed with at least two siRNAs. In addition, three of these factors were also con-

firmed in other assays. Therefore, it can be concluded that the screen identified true key 

regulators. Although the number of false positives is within the range of other 

screens185,186, two effects might have increased the number of false positives in this 

screen: (i) pooling of two siRNAs as used here in the primary screen can increase off-

target effects [http://www.ambion.com/techlib/tn/121/11.html] and (ii) the NF-κB pathway might 

be prone to off-target effects, because it is influenced by broad signaling networks, i.e. the 

cell cycle as the results in this work implicate. Therefore, off-target effects affecting con-

nected networks could also alter NF-κB activation. Regarding false negatives, here, two 

types have been observed. First, genes such as TAK1 that could in principle be detected by 

RNAi but the used siRNAs have failed to score in the primary screen. This was due to an 

unknown number of non-functional siRNAs in the library. The second type of false nega-

tives observed did not meet threshold criteria although the gene might be involved. An 

example is FGFR4 which did not meet the criteria of the hit validation but the effect could 

be shown clearly in time course experiments. This type of false negatives may be caused 

by dose-dependency or redundant functions. As RNAi only reduces protein levels and sel-

dom eliminates the protein completely, the remaining protein might be sufficient to dis-

play a phenotype that is not strong enough to meet the threshold set. In addition, com-

plementing actions of other proteins can further reduce the phenotype.  

Combinatorial downregulation of genes mediated by siRNAs can be a powerful tool to 

identify redundant proteins187,188. Redundancy of proteins has evolved to buffer gene 

function and in humans, genetic buffering is achieved by the presence of two alleles of 

each gene, by duplicated genes with conserved functions, and by genes that have differ-
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ent functions but still influence the same phenotype180. Here, single knockdown of IKKα or 

IKKβ did not induce a phenotype in TNFα or IL-1β-induced signaling, whereas double 

knockdown abolished p65 translocation, indicating that IKKα and IKKβ buffer each other’s 

function. Apart from this, conclusions about functions and positions in a pathway that can 

be drawn from combinatorial effects are rather limited. Combinatorial downregulation of 

both, factors acting in parallel (such as IKKα and IKKβ) as well as factors acting subse-

quently (such as IKKα and TAK1) can have additive effects. Therefore, other observed ef-

fects, for example the additive effect of ALPK1 and CRKRS cannot determine whether 

these two proteins act in parallel or subsequently. Future research is needed to clarify 

why some genes in the same pathway display buffering interactions, but not others, how 

much weakening of a process can be buffered, and how many buffering principles under-

lie such a complex network as NF-κB signaling180. 

Here, evidence is presented that links the cell cycle to NF-κB activation. A map of genes 

identified in this screen highlighted a network of cell cycle regulators consisting of WEE1, 

CDC2, AURKB, PLK1 and SKP2. Downregulation of the first four genes inhibited or delayed 

translocation of p65-GFP while downregulation of SKP2 promoted it (Fig 25a). It is possi-

ble that WEE1, CDC2, AURKB and PLK1 exclusively act in TNFα signaling but this should be 

confirmed using other assays. Although several reports demonstrated the impact of NF-κB 

on proliferation189 and cell cycle regulators such as Cyclin D122,190 or SKP2183,191, only few 

studies have addressed the question whether there is an influence vice versa. While G0 

phase arrest was shown not to influence NF-κB192, S phase arrest elevates NF-κB activi-

ty193, but p100 processing is inhibited during S-phase183. To my knowledge, a clear study, 

analyzing NF-κB responses to various stimuli in the different cell cycle phases has not been 

conducted.  

The cell cycle-regulating functions of the five genes identified here are known. CDC2 is 

alternatively named CDK1 and is the key kinase that promotes entry into mitosis. WEE1 is 

the kinase that phosphorylates CDC2. Activation of CDC2 depends on dephosphorylation 

by the phosphatase CDC25C. PLK1 in turn is important in activating CDC25C and may 

downregulate WEE1. In addition, PLK1 cooperates with CDC2 to initiate formation of the 

anaphase promoting complex/cyclosome (APC/C). Also, PLK1 and AURKB have been impli-

cated in control of cytokinesis194. SKP2 is a part of the SCF complex and can activate CDC2 

by ubiquitinylating its inhibitor p27 that is subsequently degraded184 (Fig. 25b).  
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Fig. 25: Influence of cell cycle regulators on NF-κB: a model for G2/M arrest-induced NF-κB inhibition. a) 

Data presented in this work showed WEE1, CDC2, AURKB and PLK1 are important for activation of NF-κB 

and SKP2 is important for termination of NF-κB signaling. b) The four factors important for activation act in 

closely related positions in the cell cycle and are important for G2/M transition and mitosis
194

. Please see 

discussion for details. c) RNAi-mediated downregulation of the four factors led to G2/M arrest in a published 

RNAi based screen in HeLa cells
195

. HeLa cells were transfected with esiRNAs (endonuclease-prepared siR-

NAs), fixed, and stained with propidium iodide and DNA content was measured using automated picture 

analysis. Cell numbers and percentages of cells with G1, S, G2/M phase was quantified, normalized to nega-

tive controls and the mean of two independent experiments is shown here. d) Expression of SKP2 during the 

cell cycle (adapted from 
196

). Freshly isolated mouse lymphocytes in G0 phase were stimulated with phorbol 

ester and calcium ionophore for the indicated times. Cell lysates were subjected to western blot analysis 

with antibodies to SKP2. SKP2 is not expressed in G0 and G1 phase but is abundant during S and G2 phase. 

e) Model for G2/M arrest-induced NF-κB inhibition. While NF-κB is activated normally in G1 and S phase, 

NF-κB activation is inhibited or delayed by elevated protein levels of SKP2 in G2/M phase. 
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To better understand possible phenotypes that are associated with RNAi-mediated knock-

down of the four genes important for NF-κB activation, the information available from a 

published RNAi-based screen analyzing the cell cycle in HeLa cells195 was assessed. In this 

screen, knockdown of SKP2 did not have an effect, while all four genes important for 

NF-κB activation led to highly increased percentages of cells in the G2/M phase, indicating 

G2 arrest or cell division defect (Fig. 25c). Out of 13 closely related genes (CDKs, PLKs, 

AURKs) only AURKA (=STK6) showed a similar but weaker phenotype195. Downregulation 

of AURKA also had a highly reproducible inhibitory effect on p65 translocation in the pri-

mary screen, but this effect was below the threshold for primary hits. It seems unlikely to 

be a coincidence that the exact same genes out of a pool of related genes have an effect 

on NF-κB activation as well as on the cell cycle. It might be possible that a G2 arrest gen-

erally leads to inhibition or delay of NF-κB activation. Interestingly, SKP2 (which was iden-

tified here as important for NF-κB termination) is highly upregulated in G2 phase196. 

Therefore, as a working hypothesis for future experiments, it is possible that the inhibitory 

effects of CDC2, WEE1, PLK1 or AURKB knockdown could be due to G2 arrest, upregula-

tion of SKP2 and eventually NF-κB inhibition by SKP2 (Fig. 25).  

The mechanism, by which SKP2 functions as negative regulator of NF-κB so far, can only 

be subject to speculation. Here, downregulation of SKP2 had two effects: (i) NF-κB activa-

tion was prolonged, which affected IKK activity, IκBα degradation and translocation of 

p65-GFP on population level as well as on single cell level. (ii) Levels of IκBα were general-

ly slightly reduced. This suggests two inhibitory actions of SKP2: a negative feedback up-

stream of the IKK complex and a general one downstream of it. The first seems to be a 

delayed response after activation and implies a negative feedback whereas the second 

might be rather general and independent of activation. Previous studies have shown that 

RelB regulates skp2 during the cell cycle and p65 also binds the promoter183,191, suggesting 

a possible negative feedback. SKP2 can be part of the SCF complex, in which different F-

box proteins confer substrate specificity. F-box proteins are named for an F-box motif first 

identified in Cyclin F197. Currently, 69 F-box proteins have been identified in humans but 

only six have proposed substrates, two of which are SKP2 and βTrCP184. While SCFβTrCP is 

well known to ubiquitinylate IκBs and is therefore an important part of NF-κB signaling, 

SCFSKP2 degrades p27184. In skp2
-/- mice, p27 accumulates which leads to impaired growth 

of these mice198. Double knockout of skp2
 and p27

 abolishes this phenotype, indicating 
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that p27 is the most important target of SKP2199,200. Based on this, two working hypothes-

es are feasible. (i) Similarly as A20 or c-IAP158,59, SCFSKP2 could ubiquitinylate an activator 

of NF-κB upstream of the IKK complex which is subsequently degraded. (ii) SKP2 could be 

a competitor for βTrCP in the SCF complex. Given the assumption that the “stable” com-

ponents of the SCF complex (SKP1, Cul1 and RING protein) remain on the same protein 

level while protein levels of one F-box protein dramatically increase, this F-box protein 

could replace others. In a knockdown situation, a lack of SKP2 could lead to increased 

numbers of SCF-complexes containing βTrCP. This unbalanced situation could even confer 

increased IκBα degradation without stimulus. Nevertheless, a competitor hypothesis 

would not explain the prolonged IKK activity. Future work has to investigate whether SKP2 

acts via one or both mechanisms: activator degradation as well as competition – or possi-

bly a third, so far not predicted process (Fig. 26).  

 

Fig. 26: Model of NF-κB inhibition by SKP2. Activation of NF-κB could possibly induce skp2 gene transcrip-

tion, leading to upregulated SKP2 protein levels to induce negative feedback. SKP2 may act on two levels: 

ubiquitinylation of an activator upstream of IKK could lead to degradation of the activator which would 

terminate IKK activity. Ubiquitinylation and degradation is for example known from TLRs, TRAF2 and IRAK1. 

In addition, competition with βTrCP for SCF complex could lead to reduced levels of SCF
βTrCP

 available for 

degradation of IκBα. Other mechanisms are also possible. 
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The connection between SKP2, the cell cycle and NF-κB probably plays a role in cells 

where NF-κB signaling induced in resting cells leads to a different response than in cycling 

cells. An example for this could be T cells: resting T cells are activated by TCR engagement; 

while repeated encounter with TCR ligand can induce cell death (activation induced cell 

death AICD). AICD plays a major role in downregulating an immune response. Interesting-

ly, previous studies showed an influence of NF-κB signaling in AICD201, including a correlat-

ing loss of nuclear p65 with induction of AICD202. If future experiments would verify the 

connection via the cell cycle, it would deepen our understanding of an important immu-

nological function. Furthermore, because both, SKP2 as well as NF-κB play a role in cancer 

development and have been implicated as targets for cancer therapy59,184 it might be im-

portant for therapeutic approaches to further analyze this relationship.  

Here, ALPK1 and CRKRS have been shown to be necessary for H. pylori-induced p65-

translocation, IKK activity and IL-8 secretion. Both factors specifically act in NF-κB signaling 

and do not play a role in adhesion of bacteria, function of T4SS and ERK or p38 signaling. 

Both acted exclusively on p65 translocation induced after H. pylori infection but not after 

TNFα or IL-1β stimulation. However, recent and preliminary experiments using a transcrip-

tional reporter assay indicate that both genes might also have an impact on TNFα and 

IL-1β-induced NF-κB activation (Cindy Rechner, unpublished data). Functions of both fac-

tors, ALPK1 and CRKRS are not well understood. ALPK1 is a member of an atypical kinase 

family called alphakinases. Up to date, six alphakinases are known203. In contrast to the 

tyrosine- and serin/threonine-kinases, together known as conventional kinases, which 

recognize phosphorylation sites within loops, turns or irregular structures204, alphakinases 

recognize phosphorylation sites within alphahelices205. A recent publication showed that 

ALPK1-mediated phosphorylation of myosin 1a is necessary for apical delivery of raft-

carrying vesicles181. Therefore, a feasible hypothesis would be that ALPK1 is important in 

apical transport of a receptor or receptor-interacting proteins important in recognizing 

H. pylori. If ALPK1 would be involved in general transport to the membrane, also other 

signaling, such as TNFα- or IL-1β-induced NF-κB activation could be affected. It is also 

known that further but so far unidentified substrates of ALPK1 exist181. Therefore, it is also 

possible that ALPK1 phosphorylates other mediators of NF-κB signaling. 

CRKRS was first identified as a member of the cyclin related kinases206, a family of kinases 

that in their kinase domain share a high sequence homology with CDC2 but do not de-
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pend on cyclins. Within the family of CRKs, CRKRS shares the highest homology with cho-

linesterase-related cell division controller (CHED, alternatively named CDC2-like5)206. 

CHED has been suggested to be involved in hematopoesis207 and a related protein, CHED-

like kinase, is involved in insect immunity208. CRKRS was shown to be localized in the nuc-

leus in speckled structures that colocalize in part with splicosome components, specifically 

the phosphorylated form of the major subunit of RNA polymerase II206. Therefore, it was 

suggested, that CRKRS might be involved in regulation of RNAse polymerase II activity206. 

A second study has implicated CRKRS in alternative splicing182. Taken together, a connec-

tion to the NF-κB pathway does not seem obvious but it can be envisioned that the func-

tion of NF-κB mediators may depend on alternative splicing. However, new and so far un-

identified functions of CRKRS could also cause the phenotype observed here. 

Although the main focus of this work has been the identification of novel factors such as 

SKP2, ALPK1 and CRKRS, signaling components previously known in H. pylori-induced 

NF-κB signaling have also been tested. The key role of IKKα and IKKβ, both well known 

from literature102,123,124 was not only confirmed but it was also shown, that a combination 

of siRNAs targeting IKKα and IKKβ abolished H. pylori-induced NF-κB activation. Therefore, 

the IKK complex is indispensible for the activation. Involvement of TAK1 in H. pylori-

induced NF-κB activation has been questioned, because only RNAi targeting TAK1102, but 

not expression of a dominant negative construct 125 inhibited NF-κB signaling. The data 

provided in this work clearly confirms the involvement of TAK1 after H. pylori infection: 

two independent siRNAs led to strong reduction of p65 translocation. Furthermore, the 

role of TRAF6, MyD88 and NOD1102,121 was confirmed, whereas involvement of TRAF2 and 

NIK, which has been shown using dominant negative constructs120,123-125, was not con-

firmed. This supports the previous finding that RNAi targeting TRAF2 also showed no in-

volvement of TRAF2 in H. pylori induced NF-κB activation102. Because the siRNAs used in 

this experiment were only validated in previous experiments [Nikolaus Machuy, unpub-

lished] but not in the specific experiments, it is possible that the remaining protein levels 

were sufficient to prevent expression of a phenotype and based on the data presented 

here, involvement of TRAF2, NIK and TAB2 cannot be excluded. However, this study has 

focused on identification of new regulators and has therefore not elucidated effects of 

previously published factors in detail. 
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In summary, it seems probable, that H. pylori triggers multiple pathways. While peptidog-

lycan may stimulate NOD1121, in parallel, a so far not tested TLR could be activated to in-

duce MyD88/TRAF6/TAK1 dependent signaling. In addition, further so far unknown path-

ways are likely to play a role. ALPK1 and CRKRS could either act directly or indirectly by 

influencing other mediators on NF-κB signaling. The bottleneck leading to p65 transloca-

tion is activation of IKKα and IKKβ (Fig. 27).  

 

Fig. 27: Multiple pathways may lead to NF-κB activation after H. pylori infection in human epithelial cells. 

Screening a library of 646 kinases, in this work, four genes were identified to be important in NF-κB activa-

tion: IKKα, IKKβ, CRKRS, and ALPK1 (red). In addition, other known regulators were tested and either con-

firmed (MyD88, TRAF6, TAK1, and NOD1 (orange)) or not confirmed (NIK, TRAF2, and TAB2 (blue)). Because 

downregulation of a single gene did not lead to more than approximately 50% reduction, it seems probable, 

that multiple pathways act in parallel. The mechanisms of ALPK1 and CRKRS interaction with the NF-κB 

pathway have not yet been identified. It is possible that they act as new mediators in the NF-κB pathway or 

that they influence other (known) mediators or receptors. 
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2.3 Part III: Two tracks of NF-κB activation induced by L. pneumophila 

2.3.1 Biphasic p65 translocation during L. pneumophila infection  

To investigate NF-κB activation induced by L. pneumophila A549 SIB01 cells were infected 

with L. pneumophila at an MOI of 100 and translocation of p65-GFP was monitored by live 

cell microscopy. Upon bacterial entry, a short and transient translocation of p65 to the 

nucleus could be detected. This was later followed by a continuous p65-translocation to 

the nucleus (Fig. 28).  

 

Fig. 28: Biphasic nuclear translocation of p65-GFP after infection with L. pneumophila. A549 SIB01 cells stab-

ly expressing p65-GFP were infected with L. pneumophila strain Philadelphia-1 (MOI 100) without centrifu-

gation and monitored with life cell confocal microscopy. White arrow indicates the nucleus. Intensity of GFP 

was measured by Metamorph software in a representative nuclear region. 

The continuous nuclear localization of the p65-GFP could be seen until the cells rounded 

up and detached from the matrix, about 30 hours after infection. Phase contrast during 

life cell microscopy revealed that the activated cells contained a vacuole in the cytoplasm 

that increased in size over time. After fixation and staining with anti-Legionella antibodies, 

confocal microscopy confirmed that this vacuole contained L. pneumophila (Fig. 29). Con-

tinued life cell microscopy showed motile bacteria leaving a cell after two days of infection 

which had included 30 h of continued nuclear localization of p65-GFP (data not shown).  
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Fig. 29: L. pneumophila replicates in cells with permanent nuclear localization of p65-GFP. A549 SIB01 cells 

were infected with L. pneumophila strain Philadelphia-1 (MOI 100). After 24 h of infection, nuclear localiza-

tion of p65-GFP was observed with confocal live cell microscopy over 6.5 h. One cell was permanently acti-

vated while neighboring cells were not. Subsequently, cells were fixed, stained with anti-Legionella antibo-

dies and analyzed by confocal microscopy. a) Overview b) Zoom-in. White arrows indicate the nucleus; grey 

arrows indicate the Legionella containing vacuole. p.i. = post infection. 

2.3.2 NF-κB activation profiles of L. pneumophila wild-type strains 

To analyze possible strain specific differences of L. pneumophila wild type strains, a variety 

of strains were tested for their ability to induce p65 translocation in A549 SIB01 cells. Both 

activation phases of NF-κB were observed in all four wild type strains tested (JR32, Phila-

delphia-1, Paris, Corby), but the second activation was shortened in the Corby srain. The 

strongest effect on long-term NF-κB activation was observed in the Paris strain (Fig. 30a).  

2.3.3 Transient p65 translocation depends on intact flagella 

To identify bacterial factors involved in short and long term activation events, respectively, 

several Legionella mutant strains were tested for their capacity to activate NF-κB. Because 

flagellin has previously been shown to activate NF-κB137,143, several mutants deficient in 

flagellin were tested. Corby∆flaA is defective in flagellin production (flaA encodes flagel-

lin), Paris∆fliA does not produce the sigma factor 28 (FliA), which directly controls FlaA 

synthesis and some other genes131. Paris∆letA does not produce the response regulator 

LetA, which is part of the two-component system LetS/LetA. This system is needed to 

counteract the carbon storage regulator CsrA, a pivotal regulator of the replicative phase 

of the Legionella life cycle. Accordingly, LetS/LetA is indispensable for entry into the 

transmissive, virulent phase, the phase in which L. pneumophila becomes motile. There-
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fore, letA/letS mutants are non-motile, and lack flagellin209. All three mutants did not in-

duce the first activation (Fig. 30b). Therefore, flagellin only causes the first, transient acti-

vation. 

 

Fig. 30: Transient NF-κB activation by L. pneumophila depends on flagellin, continuous NF-κB activation on 

Dot/Icm system. A549 SIB01 cells were infected with wild type strains (a), mutant strains lacking flagellin (b) 

or mutant strains lacking the Dot/Icm system (c). Cells were infected with the indicated strains (MOI 100) 

without centrifugation (a, b, c) or with centrifugation (d). Cells were fixed after the indicated time, stained 

with Hoechst 33342 and analyzed by automated microscopy as in Fig. 5. Results are presented as bars of 

duplicates (grey) and moving average of 2 (black line) (a, b, c) or as bars of duplicates with standard devia-

tion (d). The heat inactivated strain is Philadelphia-1 MOI 100. 
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2.3.4 Continuous p65 translocation depends on the Dot/Icm system. 

Because previous work has implied the bacterial Dot/Icm system in NF-κB activation144,150, 

mutants deficient in this system were tested next: JR32∆dotA and Philadel-

phia-1∆icmB/dotO. Both mutants failed to induce continuous activation of NF-κB 

(Fig. 30c), indicating that either one or several effectors released by the Dot/Icm secretion 

system were necessary for this long-term effect. Furthermore, heat killed bacteria also 

induced the first transient activation but not a continuous activation. Notably, bacteria 

were not removed from the cells in this experiment. Therefore, the first, transient activa-

tion was terminated in spite of a remaining stimulus, while the second activation is not.  

To enhance the strain- and mutation-specific differences in the late activation, the contact 

between bacteria and cells was promoted by centrifugation, thereby increasing probabili-

ty of successful infection and the rate of activated cells. Results confirmed that the late 

activation does not depend on flagellin, but on the Dot/Icm system of bacteria (Fig. 30d). 

2.3.5 Involvement of single Dot/Icm secreted effectors 

To investigate whether specific effectors secreted by the Dot/Icm system were involved in 

continuous activation, mutants of single effectors were tested (Fig. 31).  

 

Fig. 31: SdbA and LubX are important for permanent p65 translocation. A549 SIB01 cells were infected with 

the indicated strains at an MOI of 100 either without centrifugation for 1 h to analyze the first activation 

(upper panel) or with centrifugation for 8 h to analyze the permanent p65 translocation (lower panel). Cells 

were fixed and p65 translocation was analyzed by automated microscopy. Error bars = SD of duplicates. 

Results are representative of at least three independent experiments. 



Two tracks of NF-κB activation induced by L. pneumophila – Results and Discussion 

 

 
63

Since NF-κB signaling is well known to be strongly dependent on ubiquitin signaling, it was 

hypothesized here that Legionella U-box protein LubX, which has been shown to act as 

ubiquitin ligase (E3) and to mediate polyubiquitinylation of the host cell protein CDC-like 

kinase 1 (Clk1)133, could interfere with NF-κB signaling. To compare with other Dot/Icm 

effectors, mutants lacking sdbA, sdhA, sdhB or sidC were chosen. These genes have been 

reported to have roles in protection from host cell death (sdhA)210, ER-recruitment 

(sidC)211,212, and replication within macrophages (sdbA)
213. Of the tested mutants defec-

tive in sdbA, sdhA, sdhB, sidC or lubX, only mutants defective in sdbA and lubX showed no 

continuous activation albeit a normal flagellin-dependent transient activation (Fig. 31). 

2.3.6 Bacterial replication and continuous p65 translocation are tightly linked 

Results from above experiments indicated a possible link between long-term p65 translo-

cation and intracellular replication. Hence, the replication efficiency of L. pneumophila 

mutants, ∆sdbA, ∆lubX and ΔsdhA in was evaluated A549 cells: In contrast to the wild type 

strains, but similar to the ΔdotA mutants known to be deficient in growth, both ∆sdbA and 

∆lubX did not replicate. ΔsdhA replicated, but less well than the wild type (Fig. 32 for lubX 

and Cecilia Engels, MPI for Infection Biology, Berlin, Germany, unpublished data for sdbA 

and sdhA). Thus, so far, all genes identified as important for long-term p65 translocation, 

were also found to be important for intracellular growth in A549.  

 

Fig. 32: LubX is important for intracellular growth in A549 cells. Cells were infected with the indicated strains 

at an MOI of 100 with centrifugation. After 1.5 h, extracellular bacteria were removed by washing, remain-

ing extracellular bacteria were killed by gentamicin, and multiplication of Legionella was assessed by CFU 

counting. Error bars = SD of triplicates. Results are representative of three independent experiments. 

To further test the hypothesis that continuous NF-κB activation is linked to intracellular 

growth, additional mutants with known growth defects were tested (Fig. 33).  
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Fig. 33: Bacteria with known growth-defects do not induce permanent p65 translocation. A549 SIB01 cells 

were infected with the indicated strains (MOI 100) either without centrifugation for 1 h to analyze the first 

activation (upper panel) or with centrifugation for 8 h to analyze the permanent p65 translocation (lower 

panel). Cells were fixed and p65 translocation was analyzed by automated microscopy. Error bars = SD of 

duplicates. 

The mutant ∆enhC was originally identified as being defective for uptake into host cells214, 

and recently described as defective in efficient intracellular growth in TNFα-stimulated 

macrophages215. Mutants deficient in the gene ptsP, which encodes a phosphoenolpyru-

vate-protein phosphotransferase, a component of the phosphoenolpyruvate-dependent 

nitrogen-metabolic phosphotransferase system, have been shown to be growth deficient 

in A549 cells, and in both lung and spleen of guinea pigs216. Here, the ∆enhC and ∆ptsP 

mutants induced a normal first, transient p65 translocation, consistent with the fact that 

they possess a functional flagellum, but no second long-term activation.  

2.3.7 IκBα is degraded during continuous activation 

To exclude a possible effect of p65-GFP expression on the continuous nature of the NF-κB 

activation, degradation of IκBα was observed in the parental cell line. For comparison, 

both cell lines were infected in parallel over 8 hours, p65 translocation was quantified in 

A549 SIB01 and IκBα degradation was analyzed by western blot in A549. IκBα degradation 

in A549 corresponded well to long-term p65 translocation (Fig. 34). Therefore, permanent 

NF-κB activation by L. pneumophila is not specific to the p65-overexpressing cell line and 

involves IκBα degradation. To further exclude a possible effect specific to the A549 cell 

line, results were confirmed in a second cell line, AGS SIB02 (data not shown). 
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Fig. 34: Degradation of IκBα after infection with L. pneumophila. The p65 indicator cell line A549 SIB01 (for 

the analysis of p65 translocation) or the parental cell line A549 (for monitoring IκBα degradation) were si-

multaneously infected with the indicated strains at MOI 100 with centrifugation. After 8 h of infection, 

A549 SIB01 cells were fixed and analyzed by automated microscopy. Results are shown as graph (upper 

panel). A549 were lysed and subjected to western blot analysis. Error bars = SD of duplicates. Results are 

representative of at least three independent experiments. 

2.3.8 TLR5 and MyD88 are only important for early activation 

To identify possible host cell signaling mediators, involvement of different factors was ana-

lyzed by RNAi. As expected, the first, transient activation was partly dependent on TLR5 

and strongly dependent on MyD88, but not on NOD1. None of the tested siRNAs showed 

an influence on long-term p65 translocation (Fig. 35).  

 

Fig. 35: Early, transient p65 translocation depends on MyD88 and TLR5. A549 SIB01 cells were transfected 

with the indicated siRNAs and after three days infected with JR32 MOI 100 without centrifugation for 1 h 

(upper panel), with JR32 MOI 100 with centrifugation for 8 h (middle panel) or as control activated with 

TNFα 10 ng/ml for 1 h (lower panel). Cells were fixed and p65 translocation analyzed by automated micro-

scopy. Error bars = SD of duplicates. Results are representative of at least four independent experiments. 
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2.3.9 Discussion 

Here it is shown that infection with L. pneumophila induces a biphasic activation of NF-κB: 

early in infection, bacterial flagellin induces transient NF-κB activation via TLR5 signaling 

and at later time points, an unknown factor that depends on bacterial replication and a 

functional Dot/Icm system induces continuous nuclear localization of p65. This time-

resolved activation provides new insights into the two apparently opposing effects of 

NF-κB activation upon Legionella infection, one beneficial for the host (the activation of 

the innate immune response), and one beneficial for the pathogen (anti-apoptosis). 

The importance of flagellin, TLR5 and MyD88 in L. pneumophila infection is well known. 

Alveolar macrophages isolated from wild type mice secrete TNFα in response to purified 

L. pneumophila flagellin while those of TLR5-/- knockout mice do not217. Early IL-8 secre-

tion in L. pneumophila-infected A549 cells depends on bacterial flagellin137,143. This study 

corroborates these findings by demonstrating the early nuclear translocation of p65 is 

dependent on bacterial flagellin and the host cell proteins TLR5 and MyD88. TLR signaling 

is a central part of the innate immune system218. TLRs recognize a variety of conserved 

MAMPs, such as flagellin, and subsequently trigger a signaling cascade culminating in acti-

vation of NF-κB, which induces the production of cytokines, chemokines and upregulation 

of co-stimulatory molecules important for immune cell activation4. Accordingly, it has 

been demonstrated that TLR5-mediated recognition of L. pneumophila flagellin has an 

important function in host defense. Human genetic studies have found that a common 

stop codon polymorphism in TLR5 alters susceptibility to Legionnaires’ disease149. TLR5-/- 

knockout mice showed an impaired immune response to L. pneumophila during the first 

four hours of infection217 and mice deficient in the TLR adaptor protein MyD88 were high-

ly susceptible to infection with L. pneumophila
219. Therefore, it can be concluded that the 

first wave of NF-κB activation upon L. pneumophila infection is a normal and necessary 

part of the host’s defense.  

In contrast to the first, transient activation, the second NF-κB activation demonstrated 

here lasted for many hours and even days. This permanent nuclear translocation of p65 is 

highly unusual, but in agreement with previous work reporting a sustained and Dot/Icm-

dependent activation of NF-κB in response to Legionella infection in macrophages144,150. 

Both previous studies reported a strong nuclear association of the NF-κB subunit p65 in 

macrophages for up to 12 or 14 h post infection, however, the dynamics of NF-κB nuclear 
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translocation remained enigmatic due to the use of fixed and immune-stained cells at a 

few selected time points after infection. Therefore, it was expected initially that p65 

would oscillate between the nucleus and the cytoplasm, a well described phenotype that 

is a direct consequence of the NF-κB-IκBα negative feedback loop47,54 and has been dem-

onstrated in response to H. pylori in the first part of this thesis. However, surprisingly, live-

cell experiments here could show here that NF-κB activation induced by L. pneumophila 

involves permanent nuclear translocation of p65 without oscillations.  

Usually, NF-κB activation is tightly controlled and soon terminated. This is also visible in 

signaling induced by L. pneumophila flagellin: despite excess flagellin in the medium (i.e. 

after heat killing of bacteria), TLR signaling is terminated. This tolerance to a MAMP is well 

known from LPS; in addition, termination of MAMP-PRR induced signaling is known to be 

essential to a functional immune system: A continuous response to invading bacterial or-

ganisms can be dangerous because of the autotoxic effect of the overproduction of in-

flammatory mediators, which can lead to local or even systemic damages, i.e. septic 

shock7. Therefore, an extensive regulatory machinery controls the termination of TLR sig-

naling and NF-κB activation9,23,57. Accordingly, constitutive NF-κB activation absent from 

most normal cells (known only from mature B-cells12,220, some T cells221, Sertoli cells222, 

and a small subset of neural cells223,224) but a hallmark of many cancers8. Therefore, the 

failure of the cell to terminate the continuous NF-κB activation induced by L. pneumophila 

indicates that this is not the usual NF-κB activation induced by PRRs. In summary, the lack 

of oscillations in combination with the unnatural duration of the activation suggests that 

L. pneumophila may be actively interfering with NF-κB signaling. 

Many pathogens have evolved means to exploit the anti-apoptotic effects of NF-κB in or-

der to ensure the integrity of the infected cell. This particularly applies for intracellular 

pathogens including L. pneumophila
144-148,211. The parasite Theileria parva, which infects 

lymphocytes of cattle, sheep and goat, recruit the IKK complex to the surface of the schi-

zont and permanently activate it, which leads to cancerogenic transformation of cells. 

These cells become independent of growth factors, form tumors in immunosuppressed 

mice and even form metastatic phenotypes225. Remarkably, if the parasite is killed, the 

transformation is reversed. In infections with an apicomplexa parasite related to T. parva, 

T. gondii, phosphorylated IκBα can be stained around the parasitophorous vacuole mem-

brane147 and it was shown that the parasite has its own IKK kinase activity226,227. In 
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L. pneumophila infection, two factors have been implicated in anti-apoptotic activity: SidF 

and SdhA (and homologs of the latter)210,228. SidF directly neutralizes the activity of pro-

death members of the Bcl-2-family, the mechanism by which SdhA functions is not 

known210,228. Both SidF and SdhA do not activate NF-κB, suggesting alternative factors that 

provide the stimulus129. 

Here, testing an array of bacterial factors for their importance in NF-κB activation, it could 

be shown that permanent activation of NF-κB depends on a functional Dot/Icm system 

and intracellular growth. L. pneumophila carrying mutations in genes known to be impor-

tant for Dot/Icm system or intracellular growth did not cause permanent activation of 

NF-κB, i.e. ∆dotA, ∆icmB/dotO, ∆enhC and ∆ptsP. From the mutants tested lacking single 

effector proteins, only ∆sdbA and ∆lubX failed to elicit constitutive NF-κB activation, and 

also exhibited severe growth defects. A mutant lacking sdbA also had a defect in intracel-

lular growth in bone marrow-derived macrophages213 and in a yeast model of infection129. 

LubX is a U-box protein that has been shown to act as ubiqiuitin ligase (E3) and to mediate 

polyubiquitinylation of the host cell protein CDC-like kinase 1 (Clk1)133. While deletion of 

lubX did not have an impact on intracellular growth in macrophages133, it was shown here 

to cause severe growth defects in A549 cells.  

Previous studies have shown that inhibition of the NF-κB pathway at specific levels had 

different outcomes: inhibition of phosphorylation of IκBα or of the proteasome by the 

chemical compounds CAPE and MG132, respectively, impaired intracellular growth in ma-

crophages150,229. In contrast, inhibition of the IKK complex using NBD peptide or by muta-

tion of IKKα and β did not affect intracellular replication144. It will be interesting in the 

future to elucidate whether this is an effect of different experimental settings or if indeed 

L. pneumophila replication depends on IκBα but not on IKKs. This would indicate that L. 

pneumophila interferes with NF-κB signaling to induce activation downstream of IKK.  

Taken together, this work shows a biphasic NF-κB activation pattern induced by L. pneu-

mophila infection. The first, transient activation is mediated by flagellin, TLR5 and MyD88 

and is rapidly silenced. The second activation leads to permanent nuclear translocation of 

p65, which is dependent on the replication of bacteria and a functional Dot/Icm system. 

The unusual pattern of continuous nuclear localization of p65 over hours and days with-
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out oscillation hints at an active interference of the NF-κB system by this bacterium to 

ensure survival of the host cell (Fig. 36). 

 

Fig. 36: Model of two tracks of NF-κB activation by L. pneumophila. First, possibly during entry into the cells, 

bacterial flagellin activates TLR5 which signals via MyD88 (red). The signal is probably transduced via the 

known TLR-NF-κB mediators (grey). This activation is transient and terminated probably due to normal nega-

tive feedback. Later during the infection, while the Legionella containing vacuole (LCV) is established, NF-κB 

becomes permanently activated. This depends on bacterial replication and Dot/Icm secretion system. Un-

known (cellular and/or bacterial) activators lead to IκBα degradation and permanent nuclear localization of 

p65. Due to the anti-apoptotic effects of activated NF-κB L. pneumophila ensures the survival of its host. 
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3 Conclusions and Outlook 

In infections, the interplay between the host and the infecting agent determines the out-

come of disease. NF-κB signaling is a lynchpin in this process because once engaged by 

PRRs, it activates the immune response5 and upregulates anti-apoptotic genes6. This dual 

function is thought to promote cancerogenesis induced by H. pylori
10 and anti-apoptosis is 

necessary for host cell survival in L. pneumophila infection144. Despite this central relev-

ance, the dynamics of NF-κB activation and the signaling pathways leading to it are not 

well understood. In order to study NF-κB, here, a new model was established enabling 

high-throughput as well as single cell analysis of p65-GFP nuclear translocation. Time re-

solved analysis of p65-GFP translocation showed temporal profiles with remarkable speci-

ficity for the cell line, the stimulus and the dose of the inducer. While activation of NF-κB 

by the cytokines TNFα and IL-1β led to single translocation peaks, the response to 

H. pylori was marked by synchronous, damped oscillations and L. pneumophila induced a 

biphasic nuclear translocation. The specific profiles are likely to fulfill a function and may 

have consequences for the induction of genes. This would be in accordance to previous 

studies showing that different temporal profiles lead to transcription of specific subsets of 

genes54 and the resulting theory that dynamics confer inducer-specificity23.  

Previous studies have tested known PRRs and their signaling mediators for their influence 

in H. pylori-induced NF-κB activation and some, such as NOD1121, MyD88, TRAF6 and 

TAK1102, have been shown to play a role. However, the picture is far from being com-

plete230. Therefore, a goal of this thesis was to identify new key regulators of this signaling 

pathway using the unbiased, systemic approach of RNAi-based screens. Indeed, this led to 

the discovery of 24 factors influencing NF-κB signaling. Further analysis of three of these 

factors clearly demonstrated that ALPK1 and CRKRS are necessary for NF-κB activation by 

H. pylori whereas SKP2 is important in termination of NF-κB signaling. Although the exact 

functions of these factors remain to be elucidated, their identification deepens our under-

standing of this important pathway and provides possible new targets for future thera-

peutic intervention. Further, results from the screen highlighted a link between the cell 

cycle network and NF-κB via SKP2, harmonizing with the systematic view that signaling 

pathways do not exist in isolation but are highly interconnected231,232. I expect that this 

has physiological consequences because the concerted action of other pathways have 

been shown to influence outcome of NF-κB signaling232.  
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In L. pneumophila infection, two opposing functions of NF-κB activation have been shown: 

On one hand, signaling via TLR5 is important for the innate immune response and suscep-

tibility to disease149,217,219; on the other hand, NF-κB signaling induced by the bacterial 

Dot/Icm secretion system prevents premature host cell death150. It was indicated that the 

decision, which pathway is activated, depends on the MOI of infection, but the underlying 

mechanism was not clear150. Here, detailed analysis of NF-κB dynamics could clarify this 

effect, demonstrating biphasic nuclear translocation composed of (i) a strong but tran-

sient activation resulting from TLR5-mediated sensing of bacterial flagellin and (ii) 

Dot/Icm-dependent activation that included permanent nuclear localization of p65 with-

out oscillations over days. Because permanent nuclear localization is highly unusual for 

NF-κB, I speculate that L. pneumophila actively interferes with NF-κB signaling. The two 

tracks of NF-κB activation observed in this infection demonstrate both sides of the classic-

al “battle” for survival between host and pathogen: While the TLR5-mediated track is a 

typical defense-strategy of the host, the Dot/Icm-induced manipulation of NF-κB ensures 

maintenance of the niche that the pathogen needs for replication.  

Insights gained from the study of host-pathogen interplay have already been highly useful 

in understanding cellular functions. In the future, we need to further elucidate important 

questions: Why is the body tolerant to some bacteria while other bacteria induce chronic 

inflammations that can even promote cancer? How can certain pathogens evade the im-

mune system? How does chronic inflammation promote cancerogenesis? Why are certain 

individuals more prone to pathologies associated with chronic inflammations? The study 

of both, activation and termination of the NF-κB pathway as well as the induction and 

manipulation by pathogens will contribute parts of the answers to these questions. 

In respect to the here identified factors important in NF-κB signaling, future experiments 

will have to examine the mechanisms of actions and the in vivo roles. In the case of SKP2, 

the phenotype of skp2
-/- knockout mice seems to largely depend on p27199,200. However, 

functions depending on NF-κB may not have been investigated thoroughly. I hypothesize 

that the connection between SKP2, the cell cycle and NF-κB plays a role in a setting where 

NF-κB signaling induced in resting cells leads to a different response than in cycling cells. A 

possible example for this could be AICD in T cells201. Previous experiments have indicated 

an influence of NF-κB in AICD202, but the underlying mechanism remains to be elucidated. 

If future research could establish a role of the cell cycle and SKP2, this would be a signifi-
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cant contribution to understanding AICD which has important functions in termination of 

immune response. Furthermore, the connection of SKP2 with NF-κB may prove of signific-

ance for therapeutic approaches, because SKP2 and NF-κB both play a role in develop-

ment of various types of cancer184. It could be valuable to consider this connection when 

cancer therapies target one of the two and thereby also influence the other. In the case of 

CRKRS and ALPK1, it should be verified in other experimental systems, whether these fac-

tors act specifically in H. pylori infection or in NF-κB signaling in general. If the first holds 

true, this may be useful in therapeutic interventions targeting specifically the NF-κB re-

sponse to this infection. In both cases, the in vivo significance ought to be assessed. To my 

knowledge, crkrs
-/- knockout mice do not exist. alpk1

-/- knockout mice have been generat-

ed, but so far, no phenotype has been identified (Alexey Ryazanov, personal communica-

tion). It will be of key relevance to study the impact of ALPK1 on the progression of 

H. pylori-induced pathology. To assess the influence on human disease, genetic polymor-

phisms could be analyzed. Single nucleotide polymorphisms (SNPs) in alpk1 or crkrs could 

be detected with genomic techniques like deep sequencing and polymorphisms from in-

fected and uninfected individuals could be compared. This may give insights why certain 

individuals develop more severe disease phenotypes while others are asymptomatic.  

Future research also needs to be undertaken to understand the mechanism underlying 

the permanent nuclear localization of p65 induced by L. pneumophila. This might not only 

deepen our knowledge about infection, but also about constitutive NF-κB activation in 

general, which is a critical feature of many cancers. Studying this new model for induction 

of continuous active NF-κB may lead to further insights into possible interventions that 

can reverse this phenotype. In addition, utilizing the association of continuous NF-κB acti-

vation with bacterial replication, this model can be used to identify new factors that con-

tribute to bacterial replication. 

In summary, this thesis offers a new model to study NF-κB, identified new key regulators 

of this important pathway in infection with H. pylori and demonstrated continuous NF-κB 

activation induced by L. pneumophila. This will hopefully engage future efforts to under-

stand NF-κB signaling which will deepen our knowledge about host-pathogen interplay, 

may provide new insights into cancer development and possibly prove useful in develop-

ment of therapies.  
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4 Material and Methods 

4.1 General suppliers 

If not specified otherwise, chemicals were purchased from Roth, Merck or Sigma. 

4.2 DNA-constructs and molecular biology techniques 

4.2.1 Construction of lentiviral vector containing p65-GFP 

p65-GFP was a kind gift from Johannes A. Schmid72 and was cloned into pWPXL (kindly 

provided by Didier Trono, Ecole Polytechnique Fédérale de Lausanne, Switzerland) using 

the primers 5’-AATAATCGACGCGTCGATGGTGAGCAAGGGCGA-3’ and 

5’-ACCACCCACTAGTGTTAGGAGCTGATCTGACTCAG-3’and MluI and SpeI sites. The resulting 

construct pSIB02 has been verified by sequencing. The GFP is the enhanced variant EGFP 

(Clontech). The lentivirus contains the following elements: WPRE, a post-transcriptional 

regulatory element of woodchuck hepatitis virus (enhances transgene expression); cPPT 

(central polypurine tract), a cis-acting element that improves the efficiency of gene trans-

fer in many targets; EF1α, the elongation factor 1-α promoter. 

4.2.2 Polymerase Chain Reaction (PCR) 

Standard polymerase chain reaction was used to amplify DNA fragments for cloning. PCR 

reaction was mixed on ice (600 ng Template; 50 pmol forward primer; 50 pmol reverse 

primer; 5 µl 10 x Pfu-buffer (Stratagene); 0.5 µl dNTP Mix 25 mM; 1.5 U Pfu-Turbo DNA 

polymerase (Stratagene); ad. 50 µl ddH2O) and PCR was conducted using Gene Amp 2400 

maschine (Perkin Elmer). The following program was used: first denaturation 2 min 94°C, 

followed by 35 cycles of 30 sec denaturation at 94°C, 30 sec of annealing at 55°C, 3 min of 

polymerization at 68°C and a final polymerization step of 7 min at 68°C.  

4.2.3 Enzymatic DNA digestion 

Restriction enzymes SpeI and MluI were used for cloning and enzymes SalI, ApaI and XhoI 

were used for testing resulting clones (all NEB). Enzymes were diluted in restriction buf-

fers (NEB) and digestion was allowed to proceed overnight at 37°C.  
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4.2.4 Agarose-gelelectrophoration 

Nucleic acids were separated by gelectrophoration using 1% (w/v) agarose (Seakem) dis-

solved in TBE buffer (89 mM Tris base; 89 mM Borat; 2 mM EDTA; pH 8.0) supplemented 

with 5 μl Ethidiumbromide 10 mg/ml (Sigma-Aldrich). Prior to loading, DNA probes were 

mixed with loading buffer (0.25% Bromphenol blue; 0.25% Xylencyanol; 30% Glycerine; 

1 mM EDTA). To identify size of nucleic acids, standard markers (Fermentas) were used.  

4.2.5 Elution of DNA from agarosegels 

DNA fragments of interest were eluted from agarose gels using Qiaquick gel extraction kit 

(Qiagen) according to manufacturer’s recommendation. 

4.2.6 Ligation of DNA fragments 

DNA fragments were ligated using T4 ligase (NEB) according to manufacturer’s recom-

mendation and 1:10 ratio of plasmid DNA to insert DNA. 

4.2.7 Generation of competent bacteria for chemical transformation 

E. coli Top10F (Invitrogen) were cultured in 5 ml Luria Bertani Medium (LB-Medium; 10 g/l 

Bacto tryptone (Difco), 5 g/l Bacto yeast extract (Difco), 5 g/l NaCl) overnight and subse-

quently grown in 400 ml LB-Medium until an OD595 of 0.45-0.55 was reached. Cultures 

were cooled on ice for 15 min and all following steps were performed on ice or at 4°C. 

Bacteria were centrifuged for 10 min at 2000 g and the pellet resuspended in 200 ml 

chilled 0.1 M CaCl2. Bacteria were incubated on ice for 30 min, again centrifuged and pel-

let was resuspended in 5 ml of 0.1 M CaCl2 with 10% glycerine. Aliquots of competent 

cells were frozen at -80°C.  

4.2.8 Transformation of bacteria 

For uptake of plasmid DNA by bacteria, competent bacteria were thawed on ice and 1 µg 

DNA was added. After 10 min incubation, bacteria were subjected to 42°C for 90 sec. 

500 µl of SOC medium (2% Bacto tryptone; 0.5% Bacto yeast extract; 10 mM NaCl, pH 7; 

2.5 mM KCl, pH 7; 10 mM MgCl2; 10 mM MgSO4; 20 mM Glucose) was added and bacteria 

were grown at 37°C for 1h. Subsequently, bacteria were plated on LB-agar plates (LB-

medium with 15 g/l agar) supplemented with the appropriate antibiotics.  

 



Material and Methods 

 

 
75

4.2.9 Preparation of plasmid DNA 

Bacteria carrying a plasmid of interest were grown in 50 ml LB medium with the appropri-

ate antibiotics. Plasmids were isolated using the Plasmid Midi-Kit (Qiagen) according to 

the manufacturer’s recommendation. DNA was eluted with ddH2O and concentration was 

measured using NanoDrop Spectrophotometer (Thermo scientific). The concentration was 

adjusted to 1 µg/ml and DNA was stored at –20°C. 

4.3 Eukaryotic cell culture 

Cell lines AGS (ATCC CRL 1739, human gastric adenocarcinoma epithelial cell line), A549 

(ATCC CCL-185, human lung carcinoma epithelial cell line), HeLa (ATCC CCL-2, human cer-

vical adenocarcinoma) and L929 (ATCC CCL-1, mouse fibroblast cell line) and their p65-

GFP expressing derivates as well as 293T cells (Invitrogen 10938-025) were grown in RPMI 

(AGS, HeLa and L929) or DMEM (A549 and 293T) supplemented with 10% fetal calf serum 

(FCS), 2 mM L–glutamate (Invitrogen) and for DMEM additional 1 mM Na-Pyruvate. Cells 

were subcultured every 2-3 days.  

4.4 Lentiviral transduction and generation of monoclonal cell lines 

Lentiviral particles were generated by transient transfection of envelope and packaging 

vectors pMD2.G and psPAX2 (kindly provided by Didier Trono, Ecole Polytechnique 

Fédérale de Lausanne, Switzerland) together with lentiviral vector pSIB02 carrying p65-

GFP. For transfection by calcium chloride complexes, 500,000 293T cells were seeded in 

2 ml medium in a well of a 6-well-plate and grown overnight. Subsequently, 2 µl of chlo-

roquine 25 mM were added and 4 µg of plasmid DNA was mixed with 250 µl of CaCl2 

0.5 M. 250 µl of 2x HBS (27 mM HEPES, pH 7; 137 mM NaCl; 1.5 mM Na2HPO4) were slow-

ly added while medium was agitated. After 30 min incubation, precipitate was slowly add-

ed to the cells. Virus particles were harvested 48 h after transfection and concentrated by 

ultracentrifugation at 25,000 rpm. Cell lines AGS, A549, HeLa and L929 were infected with 

lentiviral particles. Three days after infection, single cells were obtained by serial dilutions, 

separation was confirmed by eye and monoclonal cell lines AGS SIB02, A549 SIB01, 

HeLa SIB04 and L929 SIB01 were propagated. The number and position of lentiviral inser-

tion was not analyzed. 
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4.5 Transient transfection of siRNA 

To inhibit expression of genes by RNA interference in cells for subsequent protein analysis, 

siRNAs were transfected into eukaryotic cells in 12-well-plates. For this, 100,000 cells/well 

were seeded in a 12-well-plate at least 20 h prior to transfection to allow cells to grow to 

70% confluency. Short interfering RNAs designed for the inhibition of the genes under 

investigation were transfected using the RNAiFect Transfection Kit (Qiagen). 4 µl siRNA 

20 µM were mixed with 96 µl serum free RPMI. After 5 min incubation, 6 µl RNAiFect 

transfection reagent was added; the solution was mixed and incubated for additional 

15 min. In the meantime, medium was aspirated from cells and replaced with 600 µl RPMI 

with FCS. Finally, 100 µl of transfection complex mixture was added to the cells. One day 

after transfection, cells were split into new wells (96-well-plate or 12-well-plate according 

to experimental setting). Experiments were conducted after a minimum of 60 h to allow 

reduction of target protein levels. Sequences of used siRNAs are listed in the appendix. 

Control siRNA was Allstars (Qiagen, catalog number 1027281). 

4.6 Automated transient transfection of siRNA 

To inhibit expression of genes by RNA interference in a high-throughput manner, siRNAs 

were transfected into eukaryotic cells in 96-well-plates using HiPerFect (Qiagen). One day 

prior to transfection 2000 AGS SIB02 cells/well were seeded. Transfection was performed 

on a BioRobot 8000 system (Qiagen) using a final volume of 0.5 µl HiPerFect transfection 

reagent (Qiagen), a siRNA concentration of 10 nM each, in 100 µl final volume per well. In 

a mixing plate, 0.5 µl transfection reagent in 19.5 µl RPMI were mixed with 5 µl of 200 nM 

siRNA solution and incubated for 10 min. Medium was aspirated from cells and 25 µl of 

fresh RPMI with 10% FCS was added. 50 µl RPMI with FCS was added to transfection com-

plexes and 75 µl of the mixture were added to the cells leading to a final volume of 100 µl. 

Outer wells of the 96-well-plates have been omitted from the screen because previous 

experiments showed unequal distribution of cells in the outer wells. In cases where two 

siRNAs where combined, both siRNAs were used at half concentration causing the same 

total siRNA concentration as with single siRNAs. 

The primary screen was conducted using the library “Human Kinase siRNA Set” from Qia-

gen, containing 1292 siRNAs targeting 646 kinase and kinase-associated genes, two siR-

NAs per gene (catalog number 1027091). All other siRNAs were purchased from Qiagen. 
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4.7 Bacterial culture 

Tab. 3: Bacterial strains used in this study. Bacteria were obtained from the departmental strain collection 

(H. pylori) or Holger Brüggeman and Antje Flieger (L. pneumophila). H. pylori gene number according to 
233

, 

L. pneumophila gene number according to 
234

. 

Bacterium Strain Number 

in MPIIB 

strain 

collec-

tion 

Mutation in 

gene (wild 

type = wt) 

Resis-

tance 

Literature 

H. pylori P1 P1 

(HP1101) 

Wt  
235

 

H. pylori P1DcagA P211 Hp0547 Cam 
113

 

H. pylori P1DvirB11 P208 Hp0525 Cam 
113

 

H. pylori P12 P12 

(HP8880) 

Wt  
236

 

H. pylori P12DPAI P246 Hp0519-

Hp0547 

Km 
113

 

L. pneumophila Philadelphia-1 X465 Wt  
237

 

L. pneumophila Philadelphia-1 

ΔicmB 

X483 lpg0456 Km P. Aurass et al., submitted  

L. pneumophila Philadelphia-1 

ΔptsP 

X484 lpg2871 Km P. Aurass et al., submitted 

L. pneumophila Philadelphia-1 

ΔenhC 

X485 lpg2639 Km P. Aurass et al., submitted 

L. pneumophila Philadelphia-1 

ΔdotA 

X499 lpg2686 Km P. Aurass et al., submitted 

L. pneumophila Philadelphia-1 

ΔsdbA 

X486 lpg0275 Km E. Siegbrecht, A. Flieger 

unpublished 

L. pneumophila Philadelphia-1 

ΔsdhA 

X487 lpg0376 Km E. Siegbrecht, A. Flieger 

unpublished 

L. pneumophila Philadelphia-1 

ΔsdhB 

X488 lpg0135 Km E. Siegbrecht, A. Flieger 

unpublished 

L. pneumophila Philadelphia-1 

ΔsidC 

X489 lpg2511 Km E. Siegbrecht, A. Flieger 

unpublished 

L. pneumophila JR32 X213 Wt, NaCl sen-

sitive isolate 

of Philadel-

phia-1 

 
238

 

L. pneumophila JR32ΔdotA X490 lpg2686 

(Lela3118) 

Km 
238

 

L. pneumophila JR32ΔlubX X491 lpg2830 Km P. Aurass, A. Flieger (unpublished) 

L. pneumophila Paris X492 Wt  
239

 

L. pneumophila ParisΔfliA X493 lpp1746  
131

 

L. pneumophila ParisΔletA X494 lpp2699  Sahr, Brüggemann, Jules et al 

(unpublished). 

L. pneumophila Corby X463 Wt  
240

 

L. pneumophila CorbyΔflaA X495  Km 
241

 

 

H. pylori clinical isolates and mutants thereof were described before (see table 3 for refer-

ences) and routinely cultured on horse serum agar plates supplemented with 10 µg/ml 
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vancomycin, 1 µg/ml nystatin and 5 µg/ml trimethoprim at 37°C under microaerophilic 

conditions using campygen gas mix (Oxoid). If necessary for cultivation of mutants, 

5 mg/ml chloramphenicol or 20 µg/ml kanamycin was added to agar plates. H. pylori were 

thawed from stock, replated after 3 days and used for infection after 24 h.  

L. pneumophila clinical isolates and mutants thereof were described before or obtained 

within collaborations (see table 3 for references). Bacteria were grown on N-(2-

acetamido)-2-aminoethanesulphonic acid (ACES)-buffered charcoal-yeast extract (BCYE) 

agar plates242 (Heipha) at 37°C. L. pneumophila were thawed from stock and used for in-

fection after 3 days. 

4.8 Infections 

For infection, bacteria were resuspended in medium (RPMI or DMEM according to the cell 

line) and multiplicity of infection (MOI) was calculated by optical density measured with a 

spectrometer (OD550 for H. pylori and OD660 for L. pneumophila) and a previously estab-

lished standard curve. In the case of L. pneumophila, calculation was based on the as-

sumption that OD660 of 0.3 corresponds to 1x108 CFU/ml. When indicated, infections were 

synchronized by centrifugation at 800 g for 5 min at 37°C. 

4.9 Intracellular growth of L. pneumophila 

To estimate intracellular infection, A549 were infected with bacteria at an MOI of 100 and 

infection was synchronized by centrifugation at 800 g for 5 min at 37°C. After 1.5 h of in-

fection, extracellular bacteria were removed by gentle washing and remaining extracellu-

lar bacteria were killed by addition of gentamicin 100 µg/ml for 1 h. The cells were 

washed three times with plain medium to remove unbound bacteria and treated with 

10% (w/v) saponin (Sigma) to lyse the host cells. Serial dilutions were plated on BCYE-agar 

and CFU were counted after 2 days. Time point 0 represents the sample taken directly 

after removal of gentamicin. 

4.10 Automated microscopy and software-based picture analysis 

Cells were transfected with siRNAs and infected or activated at least 60 h later. For other 

experiments, cells were seeded in 96-well-plates 1 or 2 days prior to activation. In all cas-

es, cells at a confluency of approximately 80% were used. Before activation, medium was 

replaced with fresh medium (50 µl per well). For activation, another 50 µl of medium con-
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taining recombinant human TNFα (BD Pharmingen, 4-12 x 108 units/mg), recombinant IL–

1β (Strathmann Biotech, 1x107 units/mg), LPS from Salmonella typhosa (Sigma), or bacte-

ria in the appropriate concentration was added. In the case of L. pneumophila, 50 µl bac-

terial solutions were added directly onto the cells without 50 µl fresh medium. After the 

respective incubation time, cells were fixed with 100% ice-cold methanol, stained with 

Hoechst 33342 (2 µg/ml) and stored in phosphate buffered saline (PBS (Gibco)) with 0.1% 

NaN3. In each well, four pictures were taken by the automated microscopy system Scan^R 

(Olympus) using autofocus on nuclei. Pictures were subsequently analyzed by Scan^R 

software (Olympus) and quantification of p65-translocation was carried out using a mod-

ified existing protocol243. Here, nuclear areas were identified by Hoechst staining and 

around every nucleus a 1 pixel wide cytoplasmic area was set. To define compartments as 

accurately as possible, the nuclear area was eroded by 2 pixels and the cytoplasmic area 

was distanced by 1 pixel from the nucleus (see Fig. 5). In the case of L929, the nuclear 

region was eroded by 3 pixels and the distance from the cytosol was 2 pixels. While the 

setting of subcellular regions was similar to an assay described previously for cells stained 

with anti-p65 antibodies243, the analysis of p65-translocation was based on a different 

strategy. Here, the software depicts the cells in dot plots - a method well established for 

fluorescence activated cell sorting (FACS) analysis. Regions were set as shown in Fig. 38.  

Subsequently, gates were defined: cells located in regions R01 and R02 were analyzed and 

were termed active, when located in region R03 and termed non-active when located in 

region R04. Numbers of active and non-active cells in every well were counted by the 

software. The percentage of activated cells per well were calculated using Microsoft Excel 

(percentage of active cells = active cells / sum of active and non-active cells x 100). Defini-

tion of regions and gating was optimized for every cell line and the same assay was used 

for every experiment. Graphs were compiled using Microsoft Excel. 

Each assay was adjusted to the respective cell line. Specificities are: (i) sizes of nuclei differ 

(i.e. AGS SIB02 cells are quite large). (ii) Homogeneity of the GFP signal is cell line specific. 

While AGS SIB02 and A549 SIB01 cells export p65-GFP after activation quite evenly to the 

cytoplasm, L929 show slight accumulations close to the nucleus. If these accumulations 

are located above the nucleus, pictures acquired in epifluorescence microscopes (as used 

here), can lead to high mean intensities in the nuclear area. Therefore, in this cell line, 

nuclear regions with median fluorescence but high standard deviation of GFP signal are 
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excluded. (iii) Regions for nuclear translocation are either set in a direct comparison of 

nuclear and cytosolic mean GFP or by the ratio of the two (assay for AGS was developed 

first and when assays for A549 and L929 were developed, they were simplified). 

 

Fig. 37: Comparison of software-based picture analysis of the three p65-GFP overexpressing cell lines. Cells 

were seeded on 96-well-plates and partly activated with TNFα 10 ng/ml in order to have mixed populations 

of activated and non activated cells on the same plate. Cells were fixed, stained with Hoechst 33342 and 

analyzed by automated microscopy. Dot plots as depicted in analysis software are shown. Cells are gated for 

circularity and size (Region R01), intensity of GFP and standard variation of GFP intensity (Region R02) and 

the ratio of nuclear to cytoplasmic GFP intensity (Region R03 or R04). 

4.11 Live cell microscopy 

Cells were grown in 3.5 cm2 glass bottom dishes (MatTek). Before infection, medium was 

changed to medium without phenolred (Invitrogen). Bacteria were harvested in the same 

medium, stained with Syto 61 (Molecular Probes) according to the manufacturer’s rec-

ommendations and washed three times. Staining of this dye fades after a few minutes but 
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allows initial identification of bacteria. Images were acquired every two minutes. Micro-

scopy was carried out in a humidified incubator (37°C, 5% CO2) using the VT-Infinity sys-

tem (Visitron Systems). The system is compiled of an Olympus IX81 (Olympus, Japan), VT-

Infinity galvo scanner confocal head (Visitron Systems) and a Hamamatsu C9100-02 CCD 

camera (Hamamatsu Photonics K.K.). Images were acquired and processed using Meta-

Morph (Universal Imaging Corporation) software. 

4.12 Immunofluorescence after live cell microscopy 

To detect Legionella pneumophila after live cell microscopy, live cell microscopy was dis-

continued and the position of cells was documented at lower magnifications in order to 

find the exact cells again. Subsequently, cells were fixed in 4% paraformaldehyde for 

20 min and permeabilized with 0,2% Triton X-100 in PBS for 20 min. Unspecific binding 

sites were blocked using blocking buffer (1% BSA; 0.05% Tween 20 in PBS) for 20 min. Le-

gionella pneumophila were stained using rabbit anti-Legionella pneumophila primary an-

tibodies (20943 Abcam) and Cy3-labeled, goat anti-rabbit secondary antibodies (111-165-

144 Dianova). Unbound antibodies were removed by gentle washing with PBS and con-

focal microscopy was performed using the same system as for live cell microscopy. 

4.13 SDS-PAGE 

Proteins were solubilized in Laemmli buffer (125 mM Tris/HCl, pH 6.8; 200 mM SDS; 40% 

(v/v) glycerol; 10% (v/v) β-mercaptoethanol; bromephenolblue), denatured for 5 min at 

95°C and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE). For this, an SDS gel was prepared (10% separation gel: 3.33 ml H2O; 2 ml separa-

tion buffer (1.5 M Tris base, pH 8.8; 0.4% SDS); 2.33 ml 30 % polyacrylamide (PAA)  8 µl 

tetramethylethylenediamine (TEMED); 40 µl 10% Ammonium peroxodisulfate (APS) . 

Stacking gel: 1.63 ml H2O, 0.63 ml stacking buffer (0.5 M Tris base, pH 6.8; 0.4% SDS); 

0.38 ml 30% PAA; 10 µl TEMED; 17.5 µl 10% APS), probes were loaded on the gel along-

side with 10 µl of a prestained protein marker (NEB). The gel was placed into an electro-

phoresis tank (BioRad) filled with running buffer (192 mM glycine, 25 mM Tris base and 

3.5 mM SDS) and proteins were electrophoretically separated.  

4.14 Immunoblotting 

Proteins were transferred from an SDS-PAGE to Polyvinylidene Fluoride (PVDF) (Amer-

sham) membranes by western blotting. For this purpose, the gel was placed on PVDF, 
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both placed between filter paper (Whatman) and fibre layers (BioRad) and proteins were 

electrophoretically blotted overnight at 4°C in a tank filled with transfer buffer (20% me-

thanol, 190 mM glycine and 25 mM Tris base). After dissembly of western blot, unspecific 

binding sites on the membrane were blocked by incubation in blocking buffer (3% bovine 

serum albomin (BSA) in TBST (14 mM NaCl; 2.5 mM Tris base, pH 7.4; 0.1% Tween 20) and 

PVDF was subsequently probed with primary antibodies (see list below) and HRP-

conjugated secondary antibodies (Amersham). Signals were detected with enhanced 

chemoluminescence (ECL) reagent (ICN Biomedicals) and visualized either on film (Hyper-

film GE Healthcare) or on a phosphorimager (PhosphorImager, FLA-3000 Series; Fuji). 

Band intensities were quantified by 1D evaluation using AIDA software (Raytest). Overex-

pression of p65–GFP levels were calculated as the mean of five independent experiments 

visualized on phosphorimager and quantified by software. If necessary, bound antibodies 

were stripped from the membrane using stripping buffer (62.5 mM Tris base, pH 6.7; 

100 mM β-mercaptoethanol; 2 % SDS) 20 min at 60°C and membranes were subsequently 

probed for another protein following the above procedure. 

Tab. 4: Primary antibodies used for immunoblotting. 

Antibody Supplier Catalog number or clonename 

mouse anti-actin Sigma A5441 

mouse anti-ERK1/2 Cell Signaling Technology 9107 

mouse anti-pERK1/2 Sigma 9692 

mouse anti-phospho-tyrosine Santa Cruz pY99 

rabbit anti-CagA Santa Cruz Biotechnology sc-25766 

rabbit anti-IKKβ Cell Signaling Technology 2370 

rabbit anti-IκBα Cell Signaling Technology 9242 

rabbit anti-p38 Cell Signaling Technology 9212 

rabbit anti-p65 Santa Cruz Biotechnology sc-109 

rabbit anti-p-p38 Cell Signaling Technology 9215 

 

4.15 Kinase assay 

To assay IκB kinase activity cells were either untreated or infected with H. pylori at an MOI 

of 100 for 30 min. After PBS (Gibco) washing, cells were lysed for 20 min at 4°C with gen-

tle agitation in lysis buffer (50 mM HEPES pH 7.5; 150 mM NaCl; 1.5 mM MgCl2; 1 mM 

EDTA; 1% Triton X–100; 10% glycerol; complete protease inhibitor (Roche); 10 mM NaF; 

8 mM β-glycerophosphate; 100 µM sodium orthovanadate; 1 mM DTT). Lysates were cen-

trifuged for 10 min at 20,000 g, protein concentration was determined using bicinchoninic 
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acid assay (BCA, Pierce) according to the manufacturer’s recommendations and 200 µg of 

each extract was used for immunoprecipitation performed in 800 µl lysis buffer. Extracts 

were precleared with protein A agarose beads (Calbiochem) for 1 h at 4°C. Immunopreci-

pitation using 1 µg rabbit anti-IKKγ antibody (FL-419, Santa Cruz) was carried out over-

night at 4°C. The protein A agarose was washed five times with lysis buffer and once with 

kinase buffer (20 mM HEPES, pH 7.5, 10 mM MgCl2, 20 µM ATP, 20 mM β-

glycerophosphate, 50 µM sodium orthovanadate, 1 mM DTT). 20 µl of kinase buffer in-

cluding 1 µg purified recombinant IκBα and 3 µCi [γ-32P]ATP were added to the protein A 

agarose immune-complex and the kinase reaction was incubated for 20 min at 37°C. Reac-

tion mixtures were then subjected to SDS–PAGE and autoradiography. 

4.16 ELISA 

For quantification of IL–8 in the supernatant of adherent cells, an enzyme linked immuno-

sorbent assay (ELISA) was performed. For this purpose, the Cytoset System (BioSource 

International) was used according to manufacturer’s recommendations. Measurements 

were performed in triplicates using Spectra Max 190 (Molecular Devices). 

4.17 qRT-PCR 

Quantification of mRNA levels was conducted by quantitative real time (qRT) PCR. RNA 

was isolated using RNeasy Mini Kit (Qiagen) according to manufacturer’s recommenda-

tions. RT-PCR was performed using QuantiFast Sybr Green PCR Kit (Qiagen). PCR reactions 

(10 µl template RNA 10 ng/µl; 0.5 µl of each primer 10 µM; 10 µl Sybr Mix (Qiagen); 

0.25 µl RT-Mix (Qiagen); 4.25 µl H2O) were prepared in triplicate and PCR was performed 

using the Applied Biosystems 7500 fast real-time PCR system. The following program was 

used: an initial 30 min at 50°C allowing reverse transcription of mRNA into cDNA by re-

verse transcriptase, then denaturation for 15 min 95°C, followed by 40 cycles of 20 sec at 

94°C, 40 sec at 60°C and 40 sec at 72°C. For comparison, house-keeping gene glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) was used and relative quantification was per-

formed using a previously described model including efficiency correction for the pri-

mers244. Data was analyzed using software SDS 2.2.2 (Applied Biosystems) and Excel 

(Microsoft).  
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Tab. 5: RT-PCR primers used. Names of genes are listed alphabetically with gene identification number 

(Gene ID), accession numbers (Accession #), and primer sequence 5’ to 3’. 

Symbol Gene ID Accession # Primer Sequence 

ALPK1 80216 NM_025144 Forward GGTATGTGGTACGAAGCAGCA 

ALPK1 80216 NM_025144 Reverse AGCAAATGGTGGTCAAACTCC 

CRKRS 51755 NM_016507 Forward CTAACAGCAGAGAGCGTCACC 

CRKRS 51755 NM_016507 Reverse AAAGGTTTGATAACTGTGCCCA 

MYD88 4615 U70451 Forward GGCATCACCACACTTGATGAC 

MYD88 4615 U70451 Reverse ATAGACCAGACACAGGTGCCAG 

NOD1 10392 AF126484 Forward TCAGAGCAAAGTCGTGGTCAA 

NOD1 10392 AF126484 Reverse AAGCCAACCAGCTCCATGAT 

SKP2 6502 NM_005983 Forward TGCCCTGCAGACTTTGCTAAG 

SKP2 6502 NM_005983 Reverse TCTCTGACACATGCGCAACAG 

TLR5 7100 AB060695.1 Forward GTATGTGAACATGAGCTCGAG 

TLR5 7100 AB060695.1 Reverse AGAATCAAAGAGAAGGCCTGG 

TNF-RI 7132 NM_001065.2 Forward ACAGGGAGAAGAGAGATAGTG 

TNF-RI 7132 NM_001065.2 Backward AAGAAGAGATCTCCACCTGAC 
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5 Statistics 

5.1 Statistical analysis of live cell microscopy 

5.1.1 Peak alignment 

Data was sampled from 9 different cells monitored in one experiment with live cell micro-

scopy using Metamorph software (Universal Imaging Corporation). Peak alignment was 

performed using R statistics software. All time series signals were normalized to the unit 

interval as defined by their respective minimum and maximum value. A 3 step algorithm 

was designed to perform automatic alignment. Step 1: smoothing by applying a moving 

median of 9. Step 2: detection of ascending flanks by smooth step filter (tanh(-6:6/3)). 

Step 3: identification of highest peak corresponding to the strongest ascending flank in 

time series. For final alignment position of ascending flank was shifted to zero. Finally, 

graphs were assembled in Excel (Microsoft). 

5.1.2 Peak interval histogram and normal approximation 

Using a data set of 33 cells, a subset of 18 curves with strong multi-modal shape was se-

lected to determine the peak intervals. Pairs of successive maxima where identified by 

median smoothing and peak finding: a median of length 9 was used and a set of maximal 

peaks is found by iteratively first identifying the current maximal peak, then applying an 

exclusion region of size 30 steps around the peak. The two highest maxima where used for 

peak interval determination. Peak intervals where defined from pairs of successive max-

ima as identified by the method described above. A corresponding histogram of peak in-

tervals was constructed. Statistics of peak intervals can be summarized by parameters 

mean 93.78 min, standard deviation 22.99 min. These values were employed for parame-

terization of a gaussian curve. All calculations were performed in R statistics software. 

5.2 Statistical analysis of screen and hit validation 

5.2.1 Z-Prime factor 

The Z-Prime-Factor (Z’) factor evaluates the robustness of an assay245. This factor is based 

on the average and standard deviations of controls on a plate. To gain data for the calcula-

tion, cells were seeded in 96-well-plates, transfected with the control siRNAs, activated 

and analyzed by the same conditions used for the screening format. Data shows very ro-

bust results of single wells of the control transfections (Fig. 38).  
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Fig. 38: Robustness of the p65 translocation assay. AGS SIB02 cells were seeded in 96-well-plates, trans-

fected with the indicated siRNAs, activated with H. pylori MOI 100 for 45 min, TNFα 1 ng/ml for 30 min or 

IL-1β 10 ng/ml for 45 min, fixed, stained and analyzed by automated microscopy as shown in Fig. 5. Results 

are presented as dot plots with each dot representing the result of a single well on the same plate. Data is 

representative of at least three independent experiments. 

Z’ is calculated using the following formula: 

 

The results for Z’ can range from negative values (unreliable assay) to 1 (very reliable as-

say) and recommended acceptance criterion is Z’ > 0.4 (NIH website). The Z’ calculated for 

the p65 translocation assay with the individual inducers and controls are: H. pylori: 0.4; 

TNFα: 0.6; IL-1β:  0.7. These values are average of at least three independent experiments 

with each six samples of both controls.  

5.2.2 Position effects 

In high-throughput screens, an important quality control is the assessment of possible 

position effects. Previous work in the department has identified so called “edge effects” in 

96-well-plates. This effect describes the phenomenon that the cells in the outer wells of a 

96-well-plate will migrate towards the outer rim of the plate which leads to unequal dis-

tribution of cells in the well. Therefore, in this screen, the outer wells were not used. The 

remaining 60 inner wells were transfected with siRNAs according to the scheme shown in 

Fig. 39a. The controls (activating, neutral and inhibitory siRNA) were transfected in four 

replicates, of which three were activated by the inducer and one was not activated. The 

remaining 48 inner wells were used to test the samples each in single wells.  

To examine whether a possible position effect is visible in the data of the screen, all plates 

of the screen were averaged regardless of inducer and time point tested (all wells B2 av-



Statistics 

 

 
87

eraged, all wells B3 averaged et cetera). For this purpose, all raw data of the screen was 

used which results in a total of 336 plates (14 plates x 3 inducers x 2 time points x 4 re-

peats). Results were displayed as a color coded plate (Fig. 39b), in which a slight left-right 

effect is visible. As the controls were placed on the far left and far right wells, this effect is 

most clear in the neutral control: neutral controls on the left of the plate have an average 

of 45% while the neutral control on the right of the plate has only 39% active cells.  

 

Fig. 39: Plate layout and position effect in the screen. a) siRNAs were positioned according to this scheme. 

Outer wells were discarded because of a previously discovered edge effect. b) Distribution of screen results 

on the plates. The screen was conducted as described above and the results were averaged: for each posi-

tion on the plate, a mean of all plates was calculated, regardless of inducer and time tested. Results are 

presented as a color-coded plate displaying the mean of a total of 336 plates. 

5.2.3 Normalization 

In high throughput screens, data from different plates have inevitable variations. To be 

able to compare results from different plates and also different screens, data need to be 

normalized within one plate. For this normalization, there are two major possibilities: data 

can either be normalized to controls, or to the samples. Because in this screen a slight 

position effect was observed, it was decided to normalize to the samples. For this norma-

lization, either the median or the mean can be used. The median is more robust to out-

liers and would therefore be the first choice. However, to normalize to the median of the 

samples, the data distribution on a single plate should follow a Gaussian curve. To test 

whether this is the case for the screen data, results of single plates of all inducers were 
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analyzed. The number of wells which contain a certain percentage of activated cells was 

determined and plotted against the percentage of active cells (Fig. 40). The resulting 

curves follow Gaussian curves. It was concluded that data were normally distributed and 

median normalization could be used. 

 

Fig. 40: Distribution of results of single plates follows Gaussian curves. The screen was conducted as de-

scribed above. Briefly, AGS SIB02 cells in 96-well-plates were activated with the indicated inducer for indi-

cated time. All wells of one plate received the same treatment. From each plate, the amount of wells with a 

certain percentage of activated cells was determined. Shown are results of a representative plate. 

Normalization to the median was calculated using the following formula: 

 

5.2.4 Evaluation of the statistical significance  

To estimate significance of changes in p65 translocation, normalized data were subjected 

to Welch’s t-test which is an adaptation of Student’s t-test. The main difference is that 

Welch’s test takes into account the possibility of different variations of the sample groups.  
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Welch’s t-test was calculated using the following formula: 

 

5.2.5 Selection of hits 

An often used statistical tool for selection of hits is the z-score (also called standard score). 

The z-score is generated by subtracting the population mean from an individual raw score 

and then dividing the difference by the population standard deviation. This is a normaliza-

tion which incorporates the standard deviation of the population.  

Z-score was calculated using the following formula 

 

The most widely used criteria for selection of hits in a screen is a z-score of ≤-2 or ≥2. In 

other words, samples with normalized values that are 2 times the standard variation 

greater or smaller than the mean of all values, are understood to be statistically signifi-

cant. However, the means and the standard variations of the 3 inducers used in this 

screen were different. Briefly, H. pylori and IL-1β had high percentages of activated cells 

(about 70%) with low standard deviation (about 15%) and TNFα had much lower percen-

tages of activated cells (33%) but with a similar standard deviation (16%). This difference 

is due to the concentration of TNFα used and for possible future screens it would be ad-

visable to use a higher concentration of TNFα (i.e. 10 ng/ml) to yield higher percentages 

of activated cells per well. Nevertheless, due to this difference in levels of activation, the 

number of hits identified with the z-score differs between the 3 inducers (table 6).  
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Tab. 6: Comparison of means, standard deviations and hits selected according to z-score definition in induc-

tions with the 3 inducers. AGS SIB02 cells were transfected with a library of siRNAs, activated with the re-

spective stimulus and translocation of p65-GFP was analyzed by automated microscopy. Mean and standard 

deviation of all samples on all plates were calculated and z-scores were calculated for every sample. 

Inducer and time Mean raw data of 

all samples (active 

cells (%)) 

Standard deviation 

of all samples 

Number of sam-

ples with z-score 

≤-2 

Number of sam-

ples with z-score 

≥2 

H. pylori 45 min 69 14 24 2 

H. pylori 90 min 29 18 2 12 

TNFα 30 min 33 16 3 14 

TNFα 75 min 15 11 0 12 

IL-1β 45 min 74 16 25 2 

IL-1β 90 min 35 20 0 19 

 

In conclusion, the selection of hits based on z-score would have caused an underrepresen-

tation of hits for TNFα. Therefore, hits were selected using a different method. For this 

purpose, the strength of the inhibitory or activating effect was ranked. For each inducer, 

approximately the best 50 targets which also had a p-value of ≤0.05 were selected for 

inhibition and approximately the best 15 genes for promoting p65 translocation. For se-

lecting the inhibitory siRNAs, only the inhibition of p65 translocation at the early time 

point was taken into account. This time point was at the top of the activation curve and it 

was expected to find the best inhibitory effect at this time. In regards to the siRNAs that 

upregulated p65 translocation, both time points were taken into account. For this pur-

pose, the difference between activation at time point 1 and activation at time point 2 was 

calculated, indicating the slope of the curve (t2-t1). Again, these values were ranked, 

combined with a p-value of ≤0.05 and best hits selected. In total, 122 genes were selected 

for inhibition and 38 genes for promotion of p65 translocation.  

5.2.6 Validation of hits 

To validate the identified primary hits, four independent siRNAs were tested for each 

gene. The results were again subjected to z-score normalization and for comparison also 

normalized to the plate median. The fact that one plate harbored many siRNAs that each 

targeted genes selected as hit may have influenced the normalization outcome. If strin-

gent criteria of z-score ≤-2 or ≥2 were applied, many weaker effects of interesting genes 

were below this threshold and therefore would have been overlooked. For example, in 

H. pylori infection for 45 min, of the 4 siRNAs used for IKKα, 3 had a z-score of -1.3 to -1.5. 
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Therefore, it was decided to apply less stringent criteria. If the criteria of z-score � �1 or 

� 1 was applied, in total 24 out of 160 genes could be confirmed with at least two siRNAs. 

5.2.7 Hit validation time courses and detailes of standardization 

For time course experiments, cells were transfected with siRNAs in the workflow of the 

screen shown in Fig. 9. Cells were infected with H. pylori (MOI 100), activated with TNFα 

(1 ng/ml, 5 ng/ml or 10 ng/ml), or activated with IL-1β 10 ng/ml. Different concentrations 

of TNFα were used because the activation with 1 ng/ml was unusually low at the time. 

However, effects of siRNAs were comparable in low or high concentrations. Cells were 

either fixed without activation (0 min) or after 15, 30, 45, 60, 75, 90, and 105 min of acti-

vation, Hoechst stained and analyzed by automated microscopy. To normalize experi-

ments, first, a control curve was generated, by taking the means of percentage of acti-

vated cells of samples transfected with Allstars siRNA of at least 28 experiments for every 

single time point for each inducer. All time courses for the candidate genes were put in 

relation to this control curve in the following steps: in each experiment, the percentage of 

cells activated at a specific time point, inducer and siRNA were divided by the percentage 

of cells activated using Allstars siRNA control on the same plate with the same time point 

and inducer. From resulting normalization factor (i.e. TAK1-knockdown cells at time point 

x are 0.2 times as many activated cells as Allstars control at time point x on the same 

plate) a mean of at least four individual experiments was taken (in CDK2 only two experi-

ments). This average (for time x) was then multiplied by the percentage of activated cells 

of Allstars standard curve (for time x). 
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