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Abstract

 

The current focus of research efforts in the area of the biomechanics of traumatic

brain injury is the development of numerical (finite element) models of the human head. A val-

idated numerical model of the human head may lead to better head injury criteria than those

used currently in crashworthiness studies. A critical step in constructing a validated finite ele-

ment model of the head is determining the mechanical threshold, should it exist, for various

types of injury to brain tissue.

This thesis describes a biomechanical study of axonal injury in the anaesthetised

sheep. The study used the measurements of the mechanics of an impact to the living sheep, and

a finite element model of the sheep skull and brain, to investigate the mechanics of the resulting

axonal injury. Sheep were subjected to an impact to the left lateral region of the skull and were

allowed to survive for four hours after the impact. The experiments were designed specifically

with the numerical model in mind; sufficient data were collected to allow the mechanics of the

impact to be faithfully reproduced in the numerical model. The axonal injury was identified us-

ing immunohistological methods and the injury was mapped and quantified. Axonal injury was

produced consistently in all animals. Commonly injured regions included the sub-cortical and

deep white matter, the hippocampi and the margins of the lateral ventricles. The degree of injury

was closely related to the peak impact force and to kinematic measurements, particularly the

peak change in linear and angular velocity. There was significantly more injury in animals re-

ceiving fractures.

A three-dimensional finite element model of the sheep skull and brain was con-

structed to simulate the dynamics of the brain during the impact. The model was used to inves-

tigate different regimes of material properties and boundary conditions, in an effort to produce
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a realistic model of the skull and brain. Model validation was attempted by comparing pressure

measurements in the experiment with those calculated by the model. The distribution of axonal

injury was then compared with the output of the finite element model. The finite element model

was able to account for approximately thirty per cent of the variation in the distribution and ex-

tent of axonal injury, using von Mises stress as the predictive variable. Logistic regression tech-

niques were used to construct sets of curves which related the extent of injury, to the predictions

of the finite element model, on a regional basis.

The amount of observable axonal injury in the brains of the sheep was clearly re-

lated to the severity of the impact, and was related to the predictions of a finite element model

of the impact. Future improvements to the fidelity of the finite element model may improve the

degree to which the model can explain the variation in injury throughout the brain of the animal

and variations between animals.

This thesis presents results, and a methodological framework, that may be used

to further our understanding of the limits of human endurance, in the tolerance of the brain to

head impact.

All experiments reported herein conformed with the Australian Code of Practice

for the Care and Use of Animals for Scientific Purposes.
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