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Abstract 

The implication of natural killer (NK) cells and neutrophils in autoimmune disorders of the 

central nervous system (CNS) remains elusive, and therefore was investigated in a mouse 

model for multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), 

and in patients with MS and neuromyelitis optica (NMO), respectively. 

In MS, a decreased frequency of circulating CX3CR1
+
NK cells correlating with the patient 

disease activity has been reported. Therefore, the pattern of NK cell mobilization and the 

contribution of CX3CR1 to NK cell dynamics in response to neuroinflammatory insult 

were investigated in the EAE model. Here, NK cells similarly mobilized from the 

periphery and accumulated in the CNS in both wild-type (WT) and CX3CR1-deficient 

mice during EAE. However, in mice lacking CX3CR1 the infiltrated NK cells displayed an 

immature phenotype contrasting with the mature infiltrates in the WT counterparts, 

apparently contributing to EAE exacerbation in those animals since transfer of mature WT 

NK cells prior to immunization of CX3CR1-deficient mice exerted a protective effect. 

Together, these data suggest that the CX3CR1-mediated recruitment of mature 

CX3CR1
+
NK cells limits EAE neuroinflammation.  

Due to clinical similarities, the discrimination between MS and NMO is still challenging. 

In contrast to MS, neutrophil accumulations were found in CNS lesions and the 

cerebrospinal fluid (CSF) of NMO patients wherefore a comparative analysis of peripheral 

blood neutrophils in NMO and MS patients was performed. The results revealed an 

activated neutrophil phenotype in NMO and MS when compared to healthy individuals. In 

contrast, analysis of neutrophil migration, oxidative burst activity and degranulation 

showed a compromised neutrophil functionality in NMO compared to MS, which was not 

influenced by the treatment regime and clinical parameters of the patients. Thus, neutrophil 

functionality may represent a new diagnostic tool to discriminate between NMO and MS. 

Keywords: CNS autoimmune diseases, multiple sclerosis, neuromyelitis optica, innate 

immunity, natural killer cells, neutrophils 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung  

Die genaue Implikation natürlicher Killer(NK)-zellen und Neutrophile in 

Autoimmunerkrankungen des zentralen Nervensystems (ZNS) ist nach wie vor ungeklärt 

und wurde daher im Mausmodell der multiplen Sklerose (MS), der experimentellen 

Autoimmunenzephalomyelitis (EAE), sowie bei MS und Neuromyelitis optica (NMO) 

Patienten untersucht.  

Bei MS Patienten konnte eine mit der Krankheitsaktivität korrelierende, reduzierte Zahl 

zirkulierender CX3CR1
+
NK Zellen festgestellt werden. Daher wurden die NK Zell-

Dynamiken und der Einfluss von CX3CR1 auf diese im EAE Mausmodell untersucht. 

Hierbei konnte in Wildtyp(WT) sowie auch CX3CR1-defizienten EAE Mäusen eine 

Rekrutierung peripherer NK Zellen in das ZNS beobachtet werden. Anders als bei WT 

EAE Mäusen wiesen die NK Zellen bei CX3CR1-defizienten Mäusen einen primär 

unreifen Phänotyp auf, der möglicherweise als ursächlich für die erhöhte 

Krankheitsaktivität dieser Tiere gemutmaßt werden kann. Der Transfer reifer NK Zellen 

vor Immunisierung CX3CR1-defizienter Tiere zeigte folglich protektive Effekte und lässt 

schlussfolgern, dass die CX3CR1-vermittelte Rekrutierung reifer NK Zellen die EAE 

Neuroinflammation limitiert. 

Die Diskriminierung der MS von der klinisch ähnlichen NMO stellt nach wie vor eine 

Herausforderung dar. Neutrophile in ZNS-Läsionen und der Cerebrospinalflüssigkeit(CSF) 

können bei NMO, nicht aber MS Patienten nachgewiesen werden, weshalb Neutrophile aus 

dem Blut von NMO und MS Patienten hier vergleichend untersucht wurden. Die 

Neutrophile beider Patientengruppen wiesen einen aktivierten Phänotyp im Vergleich zu 

gesunden Kontrollen auf. Im Gegensatz dazu zeigte sich eine von Medikation und 

neurologischen Defiziten der Patienten unabhängige, kompromittierte Funktionalität der 

NMO verglichen mit MS Neutrophilen im Hinblick auf Migration, oxidativen Burst und 

Degranulierung. Die Neutrophilenfunktionalität könnte entsprechend potentiell als 

diagnostisches Diskriminierungskriterium zwischen der MS und der NMO dienen.   

Schlagwörter: ZNS Autoimmunerkrankungen, Multiple sklerose, Neuromyelitis optica, 

angeborene Immunzellen, Natürliche Killerzellen, Neutrophile 
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1 

1. Introduction 

1.1 Autoimmune disorders of the central nervous system (CNS) 

Autoimmune diseases define a group of pathologies in which an abnormal immune 

response of the body results in the attack and destruction of self-structures. These 

responses can be systemic or restricted to specific organs and tissues. Immunologic 

malfunctions specifically directed against the central nervous system (CNS) are often 

characterized by local inflammations, neuronal demyelination and cell death resulting in 

diverse clinical symptoms from motoric to mental disabilities. Thereunder, multiple 

sclerosis (MS) represents the most prominent autoimmune disorder of the CNS affecting 

around 2.5 million people worldwide 
16, 17

. In contrast, neuromyelitis optica (NMO) is a 

relatively new defined and rare but not less severe CNS demyelinating syndrome with a 

prevalence of 1 to 4 affections per 100 000 people worldwide 
18

 and sharing many 

similarities with MS. 

1.1.1 Multiple sclerosis (MS) 

Being a self-sustaining autoimmune disease that results in chronic immune attacks on the 

CNS, MS was first characterized in 1868 by the French physician Jean-Martin Charcot 

(1825-1893) 
19

. Since then, an enormous progress in the investigation of the disease has 

been made to the present. 

MS has a median prevalence of 30/100 000 people worldwide and around 150 000 people 

are affected in Germany only 
17, 20

. The incidence of MS is higher in colder climates and 

the farther away from the equator with a ratio of women to men of approximately 2-3 to 1. 

Principally, MS can occur at any age whereby the most people are diagnosed between the 

age of 20 and 40 
21, 22

 developing common symptoms such as fatigue, motoric disabilities, 

including muscles weakness and spasms, as well as impaired vision or disturbances in 

balance and coordination 
21

. So far, it exist no cure for MS, but – to date – several disease-

modifying medications (e.g. Copaxone, Avonex, Novantrone etc.) have been developed 
23

.  
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1.1.1.1 Etiology 

MS is a multifactorial disease whose origin remains not fully understood, but is believed to 

arise from immunological dysfunction due to environmental trigger(s) in a genetically 

susceptible individual 
17, 21

.  

A number of systematic genetic epidemiological and molecular genetic studies have 

provided important insights into the genetics of MS. These studies excluded a major gene 

locus to be the cause of MS but revealed a number of genes which predispose to the 

disease 
17

. The earliest associations between MS and genetics were described in the 1970s 

and were found in the human leukocyte antigen (HLA; also termed as major 

histocompatibility complex, MHC) locus 
24, 25

. Polymorphisms of these genes of the HLA, 

DR alpha (HLA-DRA) locus display a strong genetic risk factor in MS, presumably due to 

their role as antigen-presenting molecules to the disease associated pathogenic T cells. 

In such genetically predisposed individuals diverse environmental factors have been 

proposed to represent a disease-triggering element. Risk factors such as industrial toxins, 

smoking or metal exposures are debated but a definite association with the disease could 

not be yielded so far 
18, 21

. In contrast, vitamin D is an environmental factor which is 

believed to impact on MS. Low level of vitamin D are a common characteristic in MS 

patients correlating with patient’s disease activity. Importantly, therapeutic approaches with 

high doses of vitamin D supplementation appeared to reduce relapses 
26

.    

As well, infections due to bacteria or viruses, such as the Epstein-Barr virus (EBV) or 

measles, have also been proposed to play a role as triggering factors in MS 
27

, possibly 

through the mechanisms of “molecular mimicry” (cross-reactivity between CNS-derived 

self-antigens and foreign agents causes activation of autoreactive T cells) or the so-called 

“bystander activation” (non-specific inflammatory events occurring during infections cause 

the activation of autoreactive T cells) 
28, 29

. 

Just recently, the microbiome and its putative role in the etiology of MS have acquired 

major attention. Some studies point towards an adverse composition of the gut flora in MS 

patients and it is speculated that the lack of specific gut bacteria-derived metabolites could 

be associated with the development of MS 
30, 31

.  

Altogether, genetic predispositions in combination with heterogeneous environmental 

triggers may induce the MS-typical autoimmune response which is classically considered 
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as a response of autoreactive pathogenic cluster of differentiation (CD) 4
+ 

T cells to a CNS-

antigen mediating demyelination and leading to the formation of acute inflammatory 

lesions, scar tissues, and sclerosis 
16, 17

. 

This complex background of the disease is also reflected by different forms of disease 

courses (Figure 1): relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS), 

primary progressive MS (PPMS), and progressive-relapsing MS (PRMS). RRMS is the 

most common form of MS accounting for around 85% of the patients. It is characterized by 

clearly defined attacks of worsening neurological function followed by periods of 

remission in which patients show clinical improvement or do not have any symptoms. It is 

estimated that more than half of these patients later develop secondary-progressive MS 

(SPMS). In these cases, after an initial period of relapsing-remitting MS, the disease begins 

to worsen steadily, with or without periods of remission. Approximately 10% of the MS 

patients are diagnosed with primary progressive MS (PPMS) which is characterized by 

continuous worsening of neurologic function from the onset of the disease with no periods 

of remission. Finally, progressive-relapsing MS (PRMS) represents the rarest form of MS 

affecting about 5% of patients. The disease course is characterized by a progressive 

worsening from the start with intermittent exacerbations present along the way 
32

. 

 

Figure 1. Clinical MS disease courses. Relapsing-remitting MS (black line) is the most common form of 

MS that later can develop into a secondary progressive MS (green line). Only few patients develop primary 

progressive MS (blue line) and even less patients are affected of progressive-relapsing MS (red line). 
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1.1.1.2 Immunopathogenesis 

In MS patients, the heterogeneity of clinical manifestations correlates with the 

spatiotemporal occurrence and dissemination of inflammatory lesions within the CNS 

(Figure 2A). These inflammatory sites are characteristic for the disease and present at all 

disease stages but more pronounced during acute phases. They result from CNS infiltrating 

autoreactive immune cells which – after crossing the blood brain barrier (BBB) or the 

blood cerebrospinal fluid (CSF) barrier – promote inflammation, local activation and 

proliferation of micro- and astroglia (gliosis) and demyelination in the white and grey 

matter track ending in severe neuronal damages and losses (Figure 2B) 
16

.  

So far, there are different immunological models regarding the development and 

progression of MS, but many aspects remain controversial, among others whether the 

disease is triggered inside the CNS or in the periphery. Assuming the latter, it is estimated 

that autoreactive T cells become activated at peripheral sites by CNS-derived antigen(s) 

such as myelin basic protein (MBP) or myelin oligodendrocyte glycoprotein (MOG) 
33

, by 

molecular mimicry or bystander activation 
28, 29

. The CNS-intrinsic model suggests that 

events inside the CNS (e.g. inflammatory responses or infection) initiate the disease 

whereby the infiltration of lymphocytes and other immune cells takes place as a secondary 

process 
16

. Commonly hypothesized by both paradigms and supported by histopathological 

data and results from experimental animal models, autoreactive T cells are believed to 

represent the key immune cell type in disease development. Early inflammatory lesions are 

dominated by CD8
+
 T cells and macrophages, lower numbers of CD4

+
 T cells as well as B 

cells and plasma cells. With the progression of the disease, microglia and astrocytes are 

chronically activated and predominantly diffuse T and B cell infiltrates can be                    

detected 
34, 35

.  

The principal events of immune dysregulation in MS are schematically represented in    

figure 2B involving both innate and adaptive immunity. Antigen presenting cells (APC) 

such as dendritic cells (DC) are speculated to be involved in the activation of autoreactive 

CD4
+
 T cells in the periphery as well as in their differentiation through secretion of 

cytokines as for instance IL-12 (promotes differentiation of naïve CD4
+
 T cell into IFN-γ 

producing T helper 1, Th1, cells) or interleukin (IL)-23 (promotes differentiation of naïve 

CD4
+
 T cell into IL-17-producing T helper 17, Th17, cells) 

35, 36
. In turn, these autoreactive 

helper T cells can produce matrix metalloproteinases and reactive oxygen species (ROS) 



5 

through which the BBB permeability could be increased 
37, 38

. Once they have infiltrated 

the CNS their re-activation by local APCs in response to CNS antigens results in the 

secretion of pro-inflammatory cytokines and [interferon γ (IFN-γ), tumor necrosis factor α 

(TNF-α), interleukin (IL)-23, IL-8 etc.] activating CNS-resident cells (microglia, 

astrocytes), recruiting other immune cells (monocytes, natural killer (NK) cells etc.) and 

chronically orchestrating the formation of inflammatory lesions and demyelination 
1, 16

. 

Importantly, Th17 cells are also involved in the formation of ectopic lymphoid follicles in 

the CNS and therewith create a direct link to B cell pathology 
39

. B cells themselves can act 

as APCs and recruit autoreactive T cells. Additionally, they have been found to be present, 

along with plasma cells and myelin-specific antibody, in MS plaques and areas of active 

demyelination, whereby antibody-mediated mechanisms can directly contribute to axonal 

demyelination 
40

. Found in higher frequencies in inflammatory lesions than CD4
+
 T cells, 

CD8
+
 T cells represent another critical “player” in the MS disease pathogenesis 

16, 34
. 

Whereas CD4
+
 T cells are activated by APC-presented major histocompatibility complex 

(MHC) class II antigens, CD8
+
 T cells recognize MHC class I antigens which are highly 

expressed within MS lesions, and also on neurons and glia 
41, 42

. As well, granzyme B (as 

marker for cytotoxic activation)-expressing CD8
+
 T cells could be found in close proximity 

to oligodendrocytes (ODC) and demyelinating axons supporting the common believe that 

CD8
+
 T cells, in contrast to CD4

+
 T cells, are able to directly lyse neurons.                                 

In line with this, their numbers are closely correlated with acute axonal damage in the brain 

and CSF 
43, 44

. 
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Figure 2. MS pathology and immunopathogenesis. A) Exemplary coronal brain views are shown for 

healthy individuals and MS in relapsing-remitting and progressive disease phase. MS pathology is 

characterized by demyelinated areas in the white and grey matter of the CNS. Consequently, continuous 

neuroaxonal loss leads to the atrophy of the brain accompanied by ventricular enlargement. B) Autoreactive T 

and B cells are activated in the periphery by CNS autoantigen presentation, molecular mimicry or bystander 

activation. Subsequently, CD8+ T cells, differentiated CD4+ T helper 1 (Th1) and Th17 cells, and B cells 

infiltrate the CNS by crossing the BBB or blood-CSF barrier, leading to inflammation, demyelination and 

tissue damage along with the recruitment of other (innate) immune cells such as NK cells, 

monocytes/macrophages or dendritic cells (DC). Hereby, soluble mediators and secreted pro-inflammatory 

cytokines (e.g. IFNy, IL-17, GM-CSF etc.) promote CNS inflammation and demyelination in the course of 

which CNS resident cells such as microglia and astrocytes are chronically activated as well. Abbreviations: 

BBB = blood brain barrier, CNS = central nervous system, DC = dendritic cell, GM-CSF = granulocyte 

macrophage colony stimulating factor, IFN-γ = interferon γ, IL = interleukin, NK cell = natural killer cell, 

O2• = oxygen radical, ROS = reactive oxygen species, Th cell = T helper cell. Figure 2A adapted from 

Dendrou et al. (2015); Figure 2B conceptually adapted and modified from Dendrou et al. (2015) 16. 
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1.1.1.3 Experimental autoimmune encephalomyelitis (EAE) 

Experimental autoimmune encephalomyelitis (EAE) is the commonest model used to 

investigate MS. In this model, an immune response against myelin proteins/ peptides is 

generated in laboratory animals evoking an ascending paralysis that correlates with 

inflammatory lesions in the spinal cord, whereas – depending on the experimental design - 

the brain and optic nerves can also be affected 
45, 46

. 

Since T. M. Rivers, D. H. Sprunt and G. P. Berry first published their observations on the 

induction of acute disseminated encephalomyelitis in monkeys in 1933 
47

, the development 

and refinement of EAE has proceeded steadily. EAE can be induced in different species, 

such as rats, guinea pigs or monkeys, but over time, mice became the preferred animal for 

EAE research. This is presumably due to their genetic background (99% of the about 

30,000 genes in mouse have direct counterparts in humans) and due to genetic 

advantageous resources as for instance transgenics or knockouts 
48

. Classically, myelin 

proteins (or peptides) as the MBP, myelin proteolipid protein (PLP) or MOG, are used to 

induce EAE resulting in distinct disease forms with different disease characteristics with 

respect to both immunology and pathology. Likewise, these parameters are influenced by 

the genetic background of the mouse strain 
45, 49, 50

. 

Most studies are presently performed on C57BL/6 mice immunized with MOG peptide 

(e.g. representing residues 35-55). Therefore, the MOG peptide is emulsified in complete 

Freund's adjuvant supplemented with Mycobacterium tuberculosis. Additionally, mice 

usually receive an injection of Bordetella pertussis toxin the day of immunization and 

repeated 48 hours later to support the breakdown of the BBB 
48

. Approximately 10-12 days 

after immunization, mice develop a monophasic, chronic form of EAE without relapses in 

which they experience one acute paralytic disease exacerbation and then recover. 

Pathologically, this acute phase of neurological worsening is characterized by the 

activation of autoreactive CD4
+ 

T cells mediating CNS inflammation and demyelination, 

oligodendrocyte and neuronal death. By using a different mouse, e.g. the SJL/J strain, 

immunization with MBP or PLP emulsified in adjuvant induces the development and 

allows the investigation of a relapsing-remitting form of EAE disease, representative for 

the most common course of MS 
49

. However, these models rather represent isolated 

immunological and histopathological aspects of the human MS; pathological events are 

largely restricted to the spinal cord in these models, whereas MS is predominantly a brain 
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disease showing prominent demyelination in the cortical brain   regions 
49, 51

. Therefore, 

several transgenic mouse models, as for example transgenic T cell receptor (TCR)-based 

animals characterized by spontaneous EAE development, have been generated so far. And 

even though their application is still not widely common due to several reasons (e.g. 

heterogeneous disease onset time and varying incidences), these mice allow deeper insights 

in the clinical and pathological disease complexity 
52

.  

With exception of the spontaneous EAE models, EAE can generally be induced in two 

different ways. Active immunization is recommended if the initial phase of the immune 

response is of interest, in which an autoimmune response against the CNS is induced by 

activation of T cells 
53

. Here, EAE induction with a myelin immunogen along with an 

adjuvant is performed directly and subcutaneously. In contrast, when interested in the 

effector phase in which activated T cells encounter and attack cells they take for 

pathogenic, EAE induction is rather performed passively, a process called adoptive 

transfer. Therefore, encephalitogenic CD4
+
 T cells are generated in vitro and intravenously 

injected into the recipient mice 
54

.  

1.1.2 Neuromyelitis optica (NMO) 

Neuromyelitis optica (NMO), also known as Devic’s disease, is an inflammatory CNS 

syndrome in which autoimmune attacks predominantly affect the optic nerves and the 

spinal cord 
8, 9

. NMO was long believed to be a rare variant of MS, but is now considered a 

primarily anti-aquaporin-4 (AQP4) autoantibody-driven astrocytopathy with a 

pathogenesis that is distinct from MS 
10, 11

. However, the pathogenic features that may help 

to differentiate these two diseases are so far limited. The discovery that only around 80% 

of the NMO patients are seropositive for the AQP4-immunoglobulin G (IgG), and further 

that a more restricted or more extensive CNS involvement – than optic neuritis and 

transversal myelitis – also may occur, prompted to the latest disease nomenclature defining 

the unifying term NMO spectrum disorders (NMOSD), which is stratified further by 

serologic testing (NMOSD with or without AQP4-IgG) 
55

. 

1.1.2.1 Epidemiology and clinical features 

In 1894, the French physician Eugène Devic first reported on a case of acute transverse 

myelitis and bilateral optic neuritis caused by extensive demyelination and necrosis in the 
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spinal cord and optic nerves of the patient. Initially considered a monophasic disease, 

studies revealed a relapsing-remitting disease course similar to MS in most of the patients. 

Therefore, and due to some other pathological similarities, it was long-standing 

controversial whether NMO is a variant of MS or not 
56, 57

. In 2006, the revision of the 

diagnostic criteria for NMO distinguished NMO from MS as distinct disease entity 
58

. The 

major discovery to which this distinction is affiliated was the finding of a NMO-IgG in the 

patient’s sera. This disease-specific autoantibody was identified as anti-AQP4 autoantibody 

which induces astrocytic damage through binding to AQP4, the major water channel in the 

CNS, on astrocytic endfeet and simultaneously activating the complement 
10, 59, 60

. 

The worldwide prevalence of NMO ranges from 1 to 4.4/100 000 
18

. However, it is 

estimated that the real number of NMO cases may be higher due to NMO patients 

misdiagnosed with MS (some studies reported 30-40% misdiagnosis) 
61

. The median age 

of onset lies between 35-45 years 
62

. Notably, the female ratio in NMO is very high (> 

90%) with an approximate female to male ratio of 9:1 in seropositive patients and 2:1 in 

seronegative ones 
11, 63

. Even though rare familial NMO cases have been reported, an 

inheritance pattern is not known so far. The majority of NMO cases are sporadic displaying 

a relapsing disease course (~80-90%) and, in contrast to MS, are more frequently 

associated with coexisting autoimmune diseases such as systemic lupus erythematosus 

(SLE), Sjögren syndrome (SS) or myasthenia gravis (MG) 
57

.  

The clinical presentation is unpredictable in relapsing NMO and patients suffer from 

severe autoimmune attacks which are often more disabling than in MS with poor remission 

and fast accruement of irreversible neurological disabilities. According to the international 

consensus diagnostic criteria for NMOSD, core clinical characteristics include optic 

neuritis, acute myelitis, area postrema syndrome, acute brainstem syndrome, symptomatic 

narcolepsy or acute diencephalic clinical syndrome and symptomatic cerebral syndrome 

with NMOSD-typical brain lesions 
55

.  

NMO-related deaths are often caused by severe ascending cervical myelitis or brainstem 

involvement resulting in respiratory failure. NMO is still incurable, but treatment options 

such as plasmapheresis or long-term immunosuppression (e.g. prednisolone, azathioprine, 

rituximab) to prevent relapses, to improve clinical symptoms and to restore neurological 

disabilities could be developed in the last years increasing NMO survival rates 
8
.  
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1.1.2.2 Immunopathogenesis 

The precise etiology of NMO remains not fully understood. It is widespread hypothesized 

that anti-AQP4 enter the CNS, bind to astrocytic AQP4 water channels and therewith 

activate the classical cascade of the complement system. In turn, an inflammatory response 

is initiated recruiting granulocytes and macrophages from the periphery into the CNS and 

finally resulting in astrocytic and oligodendrocytic damage, demyelination, and neuronal 

loss, presumably through the mechanisms of complement-dependent cytotoxicity (CDCC) 

and antibody-dependent cellular cytotoxicity (ADCC) (Figure 3) 
64

. 

Evidence for a crucial role of the pathogenic AQP4-IgG in the immunopathogenesis of 

NMO has been provided by several studies. For example, AQP4-IgG is highly specific for 

NMO and its serum levels correlate with the patient’s disease activity 
65, 66

. Consistently, 

treatment approaches targeting B cells have been shown to be the most effective and are 

associated with the decline of AQP4-IgG in serum 
67, 68

. Moreover, the highest expression 

of AQP4 can be found in opticospinal tissues and apart from massive complement and 

granulocytic infiltrations, NMO lesions are characterized by their marked loss of astrocytic 

AQP4 and increased deposits of IgG and IgM 
69-71

. Furthermore, AQP4-IgG has been 

shown to have complement-activating attributes 
72

.  

However, it remains unclear which events initiate AQP4-IgG production, how these 

autoantibodies enter the CNS and by which mechanisms equivalent pathological events are 

initiated and promoted in the proportion of 10-20% AQP4 seronegative NMO patients. 

Speculations on these questions for example include the mechanisms of molecular 

mimicry, as for example the AQP4-specific T cell response has been shown to be increased 

in NMO and to display cross-reactivity to an intestinal bacteria-derived protein 
73

. Another 

hypothesis involves circulating BBB permeabilizing factors, more precisely autoantibodies 

other than anti-AQP4 antibodies which may disrupt the BBB through upregulation of 

vascular endothelial growth factor in brain microvascular endothelial cells 
74, 75

.  

Apart from AQP4-IgG, the involvement of other immunological player is strongly 

supported by experimental data even though their precise contribution and the molecular 

mechanisms behind need further investigations to understand the whole picture of NMO 

pathology. Especially macrophages, eosinophils and neutrophils, and potentially some T 

cell subsets appear to play a major role. All these cell subsets have been found to be 
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accumulated in acute NMO lesions 12, 76. Additionally, AQP4-IgG can function on 

macrophages, neutrophils and eosinophils by binding to their Fc receptors. Analysis of the 

CSF revealed increased level of pro-inflammatory cytokines and factors in NMO patients. 

Thereunder the B cell recruiting and activating factor (BAFF), the proliferation-inducing 

ligand (APRIL), the C-X-C motif chemokine 13 (CXCL13) and IL-6 77-79. Interestingly, 

the latter has been shown to be increased in peripheral blood and is hypothesized to 

promote the maintenance of AQP4 antibody positive plasmablasts in NMO 80. Moreover, 

IL-6 also induces the development and the maintaining of Th17 cells, the producers of the 

cytokine IL-17, which has been found in increased amounts during acute attacks and – 

together with the chemokine IL-8 – is involved in the recruitment of neutrophils 81.  

 

Figure 3. Current concept of NMO immunopathogenesis. Both AQP4-IgG and AQP4-IgG producing 
plasma cells infiltrate the CNS where AQP4-IgG bind to their epitope AQP4 on astrocytic endfeet. This 
binding induces the activation of the complement system and further the recruitment of peripheral immune 
cells, specifically granulocytes and macrophages. The resulting lesion formation through inflammation, 
oligodendrocyte injury, demyelination and neuronal loss are mediated by the mechanisms of CDCC and 
ADCC. Abbreviation: ADCC = antibody-dependent cellular cytotoxicity, AQP4-IgG = aquaporin 4 
immunoglobulin G, BBB = blood brain barrier, CDCC = complement-dependent cytotoxicity, CNS = central 
nervous system. Figure conceptually adapted and modified from Papadopoulos et al. (2014) 64. 
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1.2 Innate leukocytes in autoimmunity 

The innate immune system provides an immediate defense against invading pathogens and 

is composed of both components of the humoral and cellular immunity including 

anatomical barriers (e.g. skin), the complement system, antibodies and a number of 

myeloid and lymphoid cells which are granulocytes, mast cells, NK cells, γδ T cells, DCs 

and macrophages.  

1.2.1 Natural killer (NK) cells 

Natural killer (NK) cells are bone-marrow derived granular lymphocytes which are 

involved in the instant immune defense against microbial infections and malignancies. 

They were discovered in the early 1970s and first described as a lymphocyte subtype able 

to kill tumor and virally-infected cells by “natural” or spontaneous cytotoxicity without 

prior sensitization 
82-84

. Today, NK cells are classified into the group 1 of innate lymphoid 

cells (ILC) 
85

 and known not only for their effector but also their immunoregulatory 

functions such as editing of DCs or modulating Th responses 
86, 87

. Moreover, even if they 

are traditionally considered as cells of the innate immune system, there is accumulating 

evidence that NK cells combine hallmarks of innate and also adaptive immunity by acting 

unspecific against foreign antigens first but being able to develop long-lived memory of 

these antigens thereafter as it is known for B and T lymphocytes 
88, 89

. 

1.2.1.1 NK cell homeostasis 

NK cells develop from hematopoietic stem cell (HSC)-derived common lymphoid 

progenitors (CLP) in the bone marrow. Alternatively, recent studies suggest that NK cells 

also can develop in lymph nodes, thymus and the liver 
90

. Several transcription, soluble and 

membrane factors have been identified to be involved the generation of NK cells as for 

example the transcription factors inhibitor of DNA binding 2 (Id-2), avian erythroblastosis 

virus E26 oncogene homolog 1 (Ets-1) or interleukin 3 regulated nuclear factor (Nfil3) and 

the hematopoietic growth factor IL-7 
91-94

. Phenotypic and functional NK cell maturation is 

predominantly regulated by the T-box transcription factor (T-bet) and eomesodermin 

(Eomes) 
95

 as well as the interleukins IL-12, IL-15 and IL-18 and the transforming growth 

factor (TGF)-β, in- and outside the bone marrow 
87, 96

. 
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Once NK cells – that have gained phenotypical and functional competence – are released 

from the bone marrow, a process positively regulated by the bioreactive lipid sphingosine-

1-phosphate receptor 5 (S1P5), they reside in various lymphoid and non-lymphoid organs 

during basal homeostasis, predominantly in blood, spleen, liver, lung, but can also be 

found for example in lymph nodes, thymus or uterus at lower frequencies 
97, 98

. Roughly, 

0.1-0.4 NK cells/ ml are continuously present in circulation in human corresponding to up 

to 15% of the circulating lymphocyte population 
99

. However, NK cell traffic between 

circulation and other organs remains not fully characterized even though many chemokines 

[e.g. CC-chemokine ligands (CCL) 3-5 and 19, CXC-chemokine ligands (CXCL) 12, 

CX3C-chemokine ligand (CX3CL) 1], chemokine receptors [e.g. CC-chemokine receptors 

(CCR) 1, 5, 7, CXC-chemokine receptors (CXCR) 3, 4, 6, and CX3C-chemokine              

receptor 1 (CX3CR1)] and adhesion molecules [e.g. α2 integrin, α4 integrin and DNAX 

accessory molecule 1 (DNAM1)] have already been shown to be implicated in NK cell 

localization 
97, 100

, which appears to be tightly regulated during NK cell development and 

homeostasis in mice and humans. 

At steady-state, the majority of peripheral NK cells is localized to the red pulp of the 

spleen and the sinusoidal regions of the liver 
101

. During viral infection, this homeostasis is 

disturbed. NK cells become activated, proliferate robustly and clonal-like expansions have 

been described in spleen and liver where the NK cells infiltrate the white pulp and 

parenchyma, respectively, further leading to their recruitment into lymphoid/ non-

lymphoid tissues near the infected foci 
102, 103

. 

1.2.1.2 NK cell receptors and acquisition of function 

The recognition of non-self and “altered self” cells and therewith NK cell function are 

based on a system of numerous receptors whose engagement decides on quality and 

intensity of the NK cell response. This system is composed of two types of receptors which 

are of either inhibitory or activating nature 
104

. 

According to the “missing-self hypothesis”, NK cells use inhibitory receptors to fathom the 

presence or absence of self-molecules – i.e. MHC class I molecules – which are 

constitutively expressed on healthy self-cells but not or at very low levels on susceptible 

target cells 
105

. This capacity is enabled by previous “NK cell licensing” during which NK 
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cells are educated by detecting host MHC class I molecules and further adapt to their 

environment through “priming” by cytokines (e.g. IL-12, IL-15 and IL-18) 
106

. Thereafter, 

the integration of inhibitory and activating receptor signaling with surrounding cells in 

circulation maintains a dynamic balance regulating NK cell activation and therewith 

determining NK cell function i.e. killing target cells and/ or the production of cytokines 

within the scope of immunomodulation 
107, 108

. 

 

Figure 4. NK cell activation. The integration of inhibitory and activating receptors dictates the activation of 

NK cells. Ligation of inhibitory receptors to MHC class I on a healthy cell results in NK cell tolerance (left) 

whereas the NK cell becomes activated to kill a target cell as soon as MHC class I molecules are absent as 

for example on tumor cells (middle) or present at reduced levels (as it is typical for stressed cells) together 

with an overwhelming ligation of activating receptors. (Adapted and modified in arrangement from Vivier et 

al., 2012 105) 

Within a high number and diversity in both human and mouse, prominent inhibitory 

receptors are most of the killer-cell immunoglobulin like receptors (KIRs) representing the 

main receptors for MCH class I molecule recognition, the co-inhibitory receptor killer-cell 

lectin like receptor G1 (KLRG1) or the killer cell lectin-like receptor subfamily K,    

member A (NKG2A). The receptor Ly49 exists in both inhibitory and activating isoforms 

and typical activating receptors are CD16 (FcγIIIA), the natural killer cell p46-related 

protein (NKp46), NKG2C   and –D or DNAM1 
107

.  

As soon as the ligation and signaling of activating receptors overcomes the one of 

inhibitory receptors, NK cells deploy their killing activity inducing target cell apoptosis 

either by sectreting cytolytic granule (e.g. release of granzymes and perforins) or by 

ligating so-called death ligands on the target cell surface forming death ligand/ receptor 
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signaling complexes (e.g. apoptosis antigen 1 receptor and ligand FasR/ FasL) 
109

. Another 

mechanism of action used by NK cells is the antibody-dependent cellular cytotoxicity 

(ADCC). Here, antibodies which have bound to target antigens are recognized by CD16 

(FcγRIII) receptors on the NK cell surface inducing the release of cytotoxic granules to kill 

the respective target cell 
110

. 

1.2.1.3 NK cell subtypes and migration to target organs 

Classically, human NK cells are subdivided according to their expression of the neural cell 

adhesion molecule CD56 into CD56
bright

 and CD56
dim

 NK cells (Figure 5). Approximately 

90% of the peripheral NK cells in circulation are CD56
dim

 NK cells whereas CD56
bright

 NK 

cells are more abundant in secondary lymphoid tissues (e.g. lymph nodes, tonsils) 
101, 111

. 

This distribution is related to several phenotypic differences. For example, CD56
bright

 NK 

cells but not CD56
dim

 NK cells express high levels of the chemokine receptor CCR7 and 

the adhesion molecule CD62L which are both involved in the homing to secondary 

lymphoid tissues pointing towards distinct trafficking patterns of these NK cell subsets 

during the immune response 
112

. Moreover, NK cell effector function depends on the NK 

cell phenotype. Cytokine receptors for cytokines such as   IL-1, IL-10, IL-12, IL-15 or     

IL-18 are constitutively expressed on all NK cell subsets, but show the highest expression 

on CD56
bright

 NK cells. Therefore, CD56
bright

 NK cells are designated as regulatory NK 

cells producing high amounts of immunoregulatory cytokines (e.g. IFN-γ, TNF-β,         

GM-CSF, IL-10 or IL-13) 
113-117

. The IL-2 receptor is also highly expressed on this 

CD56
bright

 population explaining their high proliferative capacity 
118

. In contrast, CD56
bright

 

NK cells do not express CD16 
119

 and only low levels of KIRs 
120

, all important for target 

recognition and effector function whereas these receptors are strongly expressed on 

CD56
dim

 NK cells wherefore they are termed cytotoxic NK cells 
99, 121

.  

Mouse NK cells share some phenotypic similarities with human NK cells (predominantly 

regarding cytokine receptors and some KIRs) but there are also several differences. Since 

murine NK cells do not express CD56, they are conventionally subdivided according to the 

maturation markers CD27 and CD11b (Figure 5) 
122, 123

. Furthermore, depending on the 

mouse strain, murine NK cells constitutively express the activating receptors NK1.1 and/ 

or NKp46 but lack NKp30 which is present in human. In line with this, all mouse but not 

human NK cell subsets display cytotoxic effector functions. As well, mouse NK cells differ 
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in the expression of chemokine receptors and adhesion molecules from their human 

counterparts (e.g. CD62L is constitutively expressed on murine NK cells) suggesting 

distinct tissue distributions and unique trafficking patterns during immune                    

responses 100, 122, 123. 

 

Figure 5. NK cell subsets in human and mouse. Human NK cells are classically defined as CD56bright and 
CD56dim NK cells phenotypically – and therewith also functionally – differing in their expression profiles of 
activating and inhibitory receptors, cytokine and chemokine receptors as well as adhesion molecules. Murine 
NK cells are subdivided according to their expression levels of CD27 and CD11b and share some 
phenotypical and functional similarities with human NK cell subsets. Main differences between human and 
mouse NK cells can be found in the expression of chemokine receptors and adhesion molecules.   

The homing of NK cells to target organs is determined by their NK cell chemokine 

receptor and adhesion molecule expression profile as well as organ-specific determinants. 

Whereas data on human NK cell trafficking and recirculation are difficult to obtain, many 

studies in mice have been performed under healthy and various pathological conditions. As 

described in section 1.2.1.1., the majority of NK cells are located in liver and spleen during 

basal homeostasis 101. While the chemokine receptors CCR1-3, 5 and CXCR6 were shown 



17 

to be involved for the NK cell recruitment into the liver 
100

, several receptors have been 

discussed (e.g. CCR5, CXCR3) but no precise receptor has been identified so far to be 

responsible for the NK cell homing into the spleen, wherefore it is speculated if NK cells 

might simply be pushed into the spleen by the blood flow 
124

. NK cell homing to the lung, 

skin and gut involves the ligation of diverse chemokine receptors such as CCR2, CXCR3, 

CX3CR1 (lung) or CCR5, CXCR3, CXCR1 and CCR6 (skin). CXCR4 is required for the 

NK cell migration into the uterus and CCR5 and CXCR3 might participate to their 

trafficking into the pancreas. NK cells have further been reported to infiltrate the CNS 

through ligation of the chemokines CX3CL1, CXCL10 and CCL2 
101

. 

A comparison of these findings with the phenotypes of the defined NK cell subsets reveals 

that homing and recirculation at steady-state and under inflammatory conditions appear to 

be NK cell subset specific and to depend on the organ-specific microenvironments. 

1.2.1.4 NK cells in autoimmunity 

Apart from their role in the early hots defense and the shaping of innate and adaptive 

immune responses, NK cells have also been implicated in the initiation and/ or 

maintenance of autoimmune diseases 
125

. In hemophagocytic lymphohistiocytosis, a failure 

of the cytolytic NK cell function in immunoregulation is reported 
126

. Such an impaired 

NK cell function has also been described in several other autoimmune disorders. 

Decreased peripheral NK cell numbers or impaired NK cell cytotoxic activity were 

observed in patients with MS, systemic lupus erythematosus (SLE), rheumatoid           

arthritis (RA) or type 1 diabetes mellitus 
127

.  

In RA, NK cell infiltrations were found in the synovial fluid of the affected joints 

displaying a predominantly CD56
bright

 phenotype with decreased expression of KIRs and 

CD16b. These NK cells were further shown to produce highly increased levels of the pro-

inflammatory cytokines IFN-γ and TNF-α resulting in a dysregulated immunoregulation at 

the inflammatory sites. In contrast, CD56
bright

 NK cell numbers in peripheral blood of RA 

patients are decreased 
127

. However, animal studies showed that NK cell depletion results 

in an earlier disease onset and increased generation of Th17 cells and neutrophil 

recruitment to the inflamed joints 
127, 128

. Therefore, it remains conflicting whether NK 

cells have disease controlling or rather disease enhancing effects in RA. 
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Several deficits in peripheral NK cells have also been reported in SLE patients correlating 

with their clinical manifestations. Circulating NK cells are decreased in numbers and 

display low cytotoxicity 
127

. However, apart from these findings, the implication of NK 

cells in the SLE disease development remains not fully understood yet. 

The contribution of NK cells to autoimmune neuroinflammation remains controversial. In 

MS, several studies presented evidence for a decreased number of NK cells in peripheral 

blood, an enrichment of CD56
bright

 NK cells in the CSF and a spatiotemporal correlation 

between NK cell cytotoxic activity and diseases relapses 
2, 3, 5, 129

. These evidences for 

deficient NK cell activity in MS patients suggest that NK cells may have a protective, 

disease-limiting role in neuroinflammation 
6, 130-133

.  However, data from the EAE animal 

model are contradictory reporting  both a protective 
134

 as well as a pathogenic 
135

 role for 

NK cells in disease pathogenesis. Due to the hererogeneity and versatility of NK cells with 

respect to their phenotype, function and organ distribution 
101, 112, 122, 136

, one could 

hypothesize that while a certain subtype may contribute to pathology, another subset may 

be protective in the appropriate environment 
137

. In this context , our group previously 

showed a reduced gene expression of CX3CR1 – the receptor for the chemokine CX3CL1 

(fractalkine) – exclusively on NK cells but no other immune cells in MS patients, and a 

correlation of the frequency of circulating CX3CR1-expressing NK cells with disease 

activity 
6
. We also found that the expression of CX3CR1 serves to discriminate fully 

mature from immature human NK cells 
138

. Thus, diminished levels of CX3CR1-

expressing NK cells may be associated with a decreased frequency of mature NK cells in 

MS. Consistently, mice deficient for CX3CR1, develop a more severe EAE associated with 

a reduced recruitment of NK cells into the inflamed CNS 
7
. This suggests that CX3CR1-

expression may be related to the migration or effector function of “protective” NK cells.  

1.2.2 Neutrophils 

Neutrophils are the most abundant leukocytes in circulation playing a crucial role in the 

first line of immunological defense against bacterial and fungal infections. They have first 

been described by P. Ehrlich in 1880 as cells characterized by a “polymorphous nucleus” 

retaining neutral dyes wherefore he named them “neutrophils”. Due to their unique 

lobulated nucleus, neutrophils are also often designated as polymorphonucelear           

leukocytes (PMNs). Like the developmentally related basophils and eosinophils, 
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neutrophils belong to the granulocytes-family of white blood cells which are characterized 

by a storage of granules with antimicrobial functions 
139

.  

1.2.2.1 Neutrophil homeostasis 

Neutrophils only have a relatively short circulating half-life of 6-8 hours and are produced 

in the bone marrow at a basal rate of 5-10 x 10
10

 cells per day. Since these effector cells 

possess highly destructive capacities, neutrophil homeostasis is critically regulated to 

prevent the damage of healthy tissues by preserving an equilibrium between granulopoiesis 

(genesis of neutrophils), bone marrow storage and release, margination (prolonged organ-

specific transit) and clearance 
140

.  

In the bone marrow, granulopoiesis is primarily shaped by the granulocyte colony 

stimulating factor (G-CSF) which stimulates neutrophil production, proliferation and 

release into circulation 
141, 142

. The latter is further regulated by the chemokine receptor 

CXCR4 
143

 and the α4 integrin very late antigen-4 (VLA-4) 
144

 whose absence and 

expression are important for the release and retention of neutrophils, respectively. Once 

released from the bone marrow, one distinguishes between a circulating pool and a 

marginated pool of neutrophils, i.e. neutrophils which are temporarily stored in specific 

organs (termed as prolonged transit) but can quickly be recovered into circulation 
140

. Both 

neutrophil pools approximately cover 50% of the bone marrow released neutrophils under 

healthy conditions. The marginated neutrophils can predominantly be found in the liver, 

spleen and bone marrow where, in the absence of infection or injury, apoptotic neutrophils 

are cleared by macrophages. This clearance, in turn, leads to G-CSF generation and 

therewith stimulation of granulopoiesis in the bone marrow to maintain neutrophil 

homeostasis 
140

.  

Under systemic stress or inflammation, neutrophilia is induced in the circulation. Here, the 

release of multiple pro-inflammatory mediators (e.g. TNF-α, IL-1β, IL-17 or IL-8) results 

in the priming of resting neutrophils and their subsequent recruitment to the sites of 

infection or inflammation. At these sites, neutrophils become fully activated by 

encountering infectious or host-derived inflammatory signals (e.g. N-formylmethionyl-

leucyl-phenylalanine, fMLP, or other pathogenic particles), deploy their antimicrobial 
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arsenal and finally undergo apoptosis, necrosis or are lost following trans-epithelial 

migration 139, 145. 

1.2.2.2 Mechanisms of pathogen killing 

Neutrophils possess various mechanisms of action to effectively clear infections or resolve 

inflammation. A summary of them is shown is figure 6.  

Once neutrophils have been primed, they are guided through chemotactic signals to the site 

of infection or inflammation where they leave the circulation, cross endothelium and enter 

the inflammatory site. Here, neutrophils can use different mechanisms to combat 

pathogens. These primarily include degranulation, oxidative burst, phagocytosis and 

NETosis 146.  

 

Figure 6. Neutrophil mechanisms of action. A) Subsequent to extravasation into sites of infection or inflammation, 
neutrophils deploy their antimicrobial arsenal by initiating degranulation, oxidative burst, phagocytosis and/ or NETosis. 
With the exception of “NETotic” neutrophils, neutrophils undergo apoptosis after the clearance process and are ingested 
by macrophages. Cellular components (neutrophil cells) were adapted and modified from Kolaczkowska and Kubes 
(2013) 145. B) Schematic representation of important surface receptors and molecules through which neutrophil operate in 
the course of antimicrobial defense. Abbreviations: ROS = reactive oxygen species, TLR = toll-like receptor. Figure 2B 
adapted from Eyles et al. (2006) 147. 
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Degranulation involves the release of antimicrobial peptides and enzymes to fight an 

infection/ inflammation. These molecules are stored in specific organelles – the granules – 

which fuse with the plasma membrane (or phagosome during pathogen uptake) upon 

neutrophil activation causing extracellular release (or intracellularly into the phagosome) 

of contents 
146

.  There are three different types of neutrophil granules. Azurophilic granules 

represent the most prominent granules in neutrophils. They contain cationic molecules (e.g. 

myeloperoxidase (MPO), PMN elastase, defensins, cathepsin G) which interact with the 

negatively charged membrane components of pathogens resulting in membrane 

permeabilization and further inhibition of DNA/ RNA synthesis. Moreover, neutrophils 

possess specific granules (e.g. lysozyme, lactoferrin), gelatinase granules [e.g. gelatinase, 

matrix metalloproteinases (MMP) 8, 9 and 25] and secretory vesicles that predominantly 

contain adhesion and chemotactic receptors important for neutrophil recruitment during 

inflammation 
139

.  

In the course of antimicrobial defense, neutrophils increase their production of reactive 

oxygen species (ROS) directly after their activation in a process called oxidative burst (or 

respiratory burst). These ROS are highly aggressive molecules that can modify and damage 

cells by oxidation of DNA/ RNA, proteins and lipids 
139

. Their production is initiated by 

the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase complex after 

its assemblage on the plasma and/ or phagosomal membrane. In the first step, oxygen is 

reduced to superoxide which then gives rise to various ROS in the course of a reactive 

oxygen cascade (e.g. hyperoxide, hydroxyl radical, hydrogen peroxide or                             

nitric oxide) 
139, 148

. 

For the removal of pathogens and cell debris, neutrophils use the mechanism of 

phagocytosis 
149

. This process involves the receptor-mediated internalization of pathogenic 

particles. Phagocytosis can occur directly through the recognition of particles by pattern-

recognition receptors (e.g. Toll-like receptors, TLRs), or indirectly after particle 

opsonization and recognition through neutrophilic Fc or complement receptors 
139

            

(Figure 6B). After particle engulfment, internal granules containing hydrolytic enzymes, 

and also NADPH oxidase subunits to further induce/ amplify killing mechanisms like the 

oxidative burst, fuse to the phagocytic vacuole and deliver their antimicrobial molecules 

into the lumen of the phagosome 
139, 149

. 
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Distinct from apoptosis, neutrophil extracellular trap (NET)-osis is a relatively new 

discovered, programmed cell death mechanism by which neutrophils can kill pathogens 
150

. 

This mechanism allows to expose pathogens to high concentrations of antimicrobials – 

NETs – released by the neutrophils. NETs are composed of decondensed chromatin DNA 

associated with histones, granular proteins, and a few cytoplasmic proteins 
150-153

 and 

formation of these pro-inflammatory structures seems to depend on the generation of ROS 

by the NADPH oxidase complex 
154

. However, the whole mechanism of NET formation is 

not completely understood yet. 

1.2.2.3 Neutrophils in autoimmunity 

Neutrophils are highly relevant for the protection against bacterial and fungal infections as 

well as against intracellular pathogens such as viruses. Moreover, they are important 

regulators of not only the innate but also the adaptive immune responses shaping them at 

various levels 
155

. However, due to their plethora of highly toxic, antimicrobial weapons, 

neutrophils also can have self-detrimental effects when improperly regulated. Apart from 

commonly known neutrophil disorders (e.g. severe congenital neutropenia or chronic 

granulomatous disease), several studies indicate that neutrophils are involved in different 

pathological autoimmune disorders such as type 1 diabetes mellitus or SLE. Here they 

display abnormalities in phenotype and function and are suggested to play a central role in 

both the initiation and the effector phase of the diseases 
156, 157

. 

In SLE, neutropenia, an impaired neutrophil phagocytic capacity and alterations in the 

oxidative metabolism have been reported. Most importantly, anti-double-stranded (ds) 

DNA antibody-containing immune complexes have been found to be crucial pathogenic 

features of this autoimmune disease and NETs have been proposed to be the source of 

these complexes. Consistently, NETosis levels in the periphery as well as in tissues were 

shown to correlate with circulating anti-dsDNA titers. As well, enzymatic NET degradation 

by DNase I was found to be impaired in approximately one-third of SLE cases correlating 

with increased levels of antinuclear and anti-NET antibodies and with higher prevalence of 

lupus nephritis. Moreover, this aberrant formation and simultaneously impaired clearance 

of NETs were shown to activate the complement and plasmacytoid dendritic cells leading 

to disease exacerbation and endothelial dysfunctions 
156, 157

.  

http://www.jimmunol.org/content/188/7/3522.short
http://www.jimmunol.org/content/188/7/3522.short
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Considering autoimmune disorders of the CNS, peripheral neutrophils have been shown to 

display a primed phenotype and further to show increased degranulation and respiratory 

burst activity in RRMS. Moreover, serum levels of NETs were found to be increased in 

these patients 
158

. Studies performed in the EAE mouse model further highlighted that 

neutrophils appear to play a crucial role in the preclinical disease phase by CXCL2 

chemokine induced and IL-17 mediated neutrophil recruitment to the CNS contributing to 

the disruption of the BBB and formation of inflammatory lesions 
159-161

. In addition, 

neutrophils were suggested to participate in the processes of demyelination and axonal 

degeneration. In the acute but not remission phase of EAE, neutrophils were observed in 

increased numbers in the CNS providing local factors for the maturation of professional 

APCs which, in turn, (re-)stimulate myelin-specific T cells and therewith promote 

progression and reactivation of inflammatory responses 
162

. In line with these data, it was 

reported that the effector phase of EAE mice treated with anti-granulocytes antibodies 

could be inhibited 
163

.            

In contrast to MS, NMO lesions are characterized by extensive complement deposits and 

neutrophil infiltrates 
12, 13, 164, 165

. Moreover, neutrophil counts and levels of neutrophil-

related cytokines such as IL-8 or G-CSF were shown to be increased in the CSF of NMO 

patients during acute relapses 
14, 15, 166

. In NMO mice, which were generated by 

intracerebral injection of serum IgG from NMO patients together with human complement, 

increased severity of NMO lesions could be observed when neutrophilia was induced by 

G-CSF injection(s). In contrast, depletion of neutrophils led to a significant reduction of 

neuroinflammation and demyelination, indicating a direct involvement of neutrophils in 

NMO lesion formation. However, the precise implication of neutrophils in CNS 

autoimmune disorders such as NMO and MS remains not fully understood and needs 

further investigations 
167

. 

 

 

 

 

 



24 

2. Aim and purpose 

The present thesis work includes two projects aiming to investigate the role of innate 

immune cell types, precisely NK cells and neutrophils, in autoimmune diseases of the 

CNS. 

(1) Implication of NK cells and the contribution of the chemokine receptor CX3CR1 to 

NK cell dynamics in the EAE mouse model  

The expression of the chemokine receptor CX3CR1 serves to discriminate fully mature 

from immature human NK cells 
138

. Both, gene and protein expression of CX3CR1 have 

been shown to be reduced in NK cells of MS patients and MS flares appear to correlate 

with the frequency of circulating CX3CR1-positive NK cells 
6
. Moreover CX3CR1-

deficient mice develop a more severe EAE disease course than their WT counterparts, 

apparently associated with an impaired recruitment of NK cells into the inflamed CNS 
7
. 

These findings suggest that CX3CR1 is involved in the recruitment or effector function of 

“protective” NK cells, but it remains unclear whether a particular NK cell subtype confers 

protection, how and where protective NK cells exert their function and how they are 

mobilized during the course of neuroinflammation. Therefore, the follwing aspects were 

aimed to be worked on: 

 How are NK cells distributed during EAE-related neuroinflammation? 

 How does the expression of CX3CR1 affect NK cell dynamics in EAE mice? 

 Is CX3CR1 important for NK cell recruitment into the CNS? 

 Do NK cells exert a protective or rather detrimental effect in EAE? 

 Are different NK cells subsets responsible for this protection or neuronal damage? 

(2) Phenotypic and functional characterization of neutrophils in NMO and MS 

Serum AQP4-IgG represents the most important marker for NMO diagnosis 
10, 59

. 

However, up to 20% of NMO patients are seronegative 
55

 for AQP4-IgG or become 

seronegative during the disease course elucidating the need for additional prognostic and 

diagnostic marker. In this context, neutrophils or neutrophil-derived molecular components 

could display potential targets since extensive neutrophil deposits are characteristic for 
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NMO lesions and neutrophil counts and levels of neutrophil-related cytokines such as IL-8 

or G-CSF were further shown to be increased in the CSF of NMO patients during acute          

relapses 
14, 15, 166

. Therefore, it was investigated if activity and/ or phenotype of peripheral 

blood-derived neutrophils may help to better diagnose NMO and help with the distinction 

from other conditions such as MS by considering the following questions: 

 Does neutrophil phenotype differ between NMO and MS patients compared to 

healthy controls (HC)?  

 Are neutrophil effector functions intact in NMO and MS when compared to HC 

with respect to migration, ROS production, degranulation and phagocytosis? 

 Do neutrophil phenotypic and functional characteristics correlate with clinical 

parameters of NMO and/ or MS patients? 

 Does medical treatment of the patients affect the neutrophil phenotype and 

functionality in NMO or MS? 
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3. Materials and methods 

3.1 Laboratory materials 

3.1.1 Devices 

Device Company 

ABI PRISM 7000 Sequence Detection System Applied Biosystems, Darmstadt, Germany 

Balance, Kern EW 820-2NM Kern&Sohn GmbH, Balingen, Germany 

Benchtop Centrifuge  NeoLab, Heidelberg, Germany 

Cell Incubator Binder GmbH, Tuttlingen, Germany 

Eppendorf Centrifuge 5417R Eppendorf AG, Hamburg, Germany 

Eppendorf Centrifuge 5810R Eppendorf AG, Hamburg, Germany 

Eppendorf MasterCycler Gradient Eppendorf AG, Hamburg, Germany 

Eppendorf Thermomixer Compact Eppendorf AG, Hamburg, Germany 

FACSCantoTM  BD PharmingenTM, Heidelberg, Germany 

GFL WaterBath GFL, Burgwedel, Germany 

GlomaxMulti Detection System Promega, Mannheim, Germany 

HeraCell Incubator Heraeus, Hanau, Germany 

Laminar flow hood HeraSafe Heraeus, Hanau, Germany 

Liquid nitrogen tank Messer, Bad Soden, Germany 

LSR FortessaTM  BD PharmingenTM, Heidelberg, Germany 

Magnetic stirrer  MLW RH3, Germany 

Megafuge 1.0 Thermo Fisher Scientific, Waltham, USA 

NanoDropTM NanoDrop Technologies Inc., Delaware, USA 

Neubauer counting chamber  Brand GmbH & Co KG, Wertheim, Deutschland 

pH Meter Schott Instruments GmbH, Mainz, Germany 

PIPETMAN® Multichannel Gilson Inc., Middleton, USA 

Pipettes (10 µl, 20 µl, 200 µl and 1000 µl) Eppendorf AG, Hamburg, Germany 

Pipetus® Hirschmann Laborgeräte, Eberstadt, Germany 

PrimoVert Inverted Microscope Zeiss, Oberkochen, Germany 

Rotamax 120 Orbital Shaker 

 

Heidolph Instruments GmbH & Co. KG,  

Schwabach, Germany 

Timer Eppendorf AG, Hamburg, Germany 

Transferpette® Multichannel Pipette  BrandTech® Scientific, Essex, USA 

Vacuum Pump KNF Neuberger, Inc., Trenton, USA 

Vortex Genie 2 Scientific Industries Inc., Bohemia, New York, USA 

Wallac Victor2 1420 Multilabel Spectrofluorimeter  Perkin Elmer, Waltham, USA 

  

http://www.gilson.com/en/Pipette/Products/47.288/Default.aspx
https://us.vwr.com/store/jump/product/4787557US/Heidolph%C2%AE+Rotamax+120+Orbital+Shaker,+Brinkmann%C2%AE
http://www.brandtech.com/prodpage.asp?prodid=TransferpetteSMultichannel
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3.1.2 General consumables and materials 

Consumable/ material Company 

BD Falcon Conical Tubes (15 and 50 ml) BD BioscienceTM, Heidelberg, Germany 

BD Falcon Pipets and Pipetters BD BioscienceTM, Heidelberg, Germany 

BD FalconTM Round-Bottom Tubes (5 ml) (for FACS) BD BioscienceTM, Heidelberg, Germany 

BD Vacutainer® Blood Collection Tubes BD PharmingenTM, Heidelberg, Germany 

BD Vacutainer® Eclipse™ Blood Collection Needle BD PharmingenTM, Heidelberg, Germany 

BD Vacutainer® One-Use Holder BD PharmingenTM, Heidelberg, Germany 

BD Vacutainer® Push Button Blood Collection Set BD PharmingenTM, Heidelberg, Germany 

BD Vacutainer® Safety-Lok™ Blood Collection Set BD PharmingenTM, Heidelberg, Germany 

Biosphere® Tips (all sizes) Sarstedt AG & Co, Nümbrecht, Germany 

Blood lancets Feather Safety Razor Co., Ltd., Osaka, Japan 

Cell strainer (100 and 70 μm) BD BioscienceTM, Heidelberg, Germany 

Corning®  96-well microtiter plates Sigma-Aldrich, Schnelldorf, Germany 

Corning® Plastic Culture Dishes, Petri Style Sigma-Aldrich, Schnelldorf, Germany 

Dumont Medical dissection instruments 

(forceps, scissors etc.) 

Fine Science Tools GmbH, Heidelberg, Germany 

 

Eppendorf tubes (0,5 ml, 1,5 ml, 2 ml) Eppendorf AG, Hamburg, Germany 

FORTUNA® OPTIMA® glass syringes Poulten & Graf GmbH, Wertheim, Germany 

Hemacytometer Cover Glasses VWR International, Radnor, USA 

Nunc® Cooling & Cryogenics Sigma-Aldrich, Schnelldorf, Germany 

LS-Columns Miltenyi Biotec, Bergisch Gladbach, Germany 

Magnetic stirring staffs Handelskontor Freitag, Minden, Germany 

Mr. FrostyTM Freezing container Thermo Fisher Scientific Inc., Waltham, Germany 

Parafilm American Can Company, Greenwich, USA 

Pipettes Eppendorf AG, Hamburg, Germany 

Reaction vessels (glassware) 

 

 

Schott AG and DURAN Group GmbH 

(Mainz, Germany) and 

VWR International (Radnor, USA) 

Reaction vessels (plasticware) 

 

Vitlab (Großostheim, Germany) and 

Kartell Labware (Noviglio, Italy) 

Safety-Multifly® 21G 200 mm Sarstedt AG & Co, Nümbrecht, Germany 

S-Monovette® 1.6ml K3 EDTA Sarstedt AG & Co, Nümbrecht, Germany 

S-Monovette® 7.5ml NH (Heparin) Sarstedt AG & Co, Nümbrecht, Germany 

S-Monovette® 7.5ml Z (Serum) Sarstedt AG & Co, Nümbrecht, Germany 

Storage racks 

 

TPP (Trasadingen, Switzerland) and 

Brand GmbH & Co KG (Wertheim, Deutschland) 

Syringes and cannula BD MedicalTM, Heidelberg, Germany 

Tourniquets for venipuncture Medka Medizinprodukte 

TrueCountTM Tubes BD BioscienceTM, Heidelberg, Germany 



28 

3.1.3 Buffers, solutions and cell culture media 

Buffer/ solution Compounds Company 

Phosphate buffered saline  

(PBS) 

137,0 mM NaCl 

 

Merck Millipore KGaA, Darmstadt, Germany 

 2,7 mM KCl 

 

Carl Roth GmbH + Co. KG, 

Karlsruhe, Germany 

 1,5 mM KH2PO4 Merck Millipore KGaA, Darmstadt, Germany 

 8,1 mM Na2HPO4 Sigma-Aldrich, Schnelldorf, Germany 

  pH 7,2   

Cell culture medium   

(mouse) 

RPMI-1640 Seromed Biochrom GmbH, Berlin, Germany * 

 10% Fetal calf serum (FCS) Sigma-Aldrich, Schnelldorf, Germany 

 50 μM β-mercaptoethanol Sigma-Aldrich, Schnelldorf, Germany 

 100 U/ ml penicillin Seromed Biochrom GmbH, Berlin, Germany * 

  100 μg/ ml streptomycin Seromed Biochrom GmbH, Berlin, Germany * 

Cell culture wash medium  

(mouse) 

RPMI-1640 

 

Seromed Biochrom GmbH, Berlin, Germany * 

  15% FCS Sigma-Aldrich, Schnelldorf, Germany 

 100 U/ ml penicillin Seromed Biochrom GmbH, Berlin, Germany * 

  100 μg/ ml streptomycin Seromed Biochrom GmbH, Berlin, Germany * 

Cell fixing solution 4% paraformaldehyde (PFA) Merck Millipore KGaA, Darmstadt, Germany 

  PBS   

Complete growth medium RPMI-1640 Seromed Biochrom GmbH, Berlin, Germany * 

 10% Fetal calf serum (FCS) Sigma-Aldrich, Schnelldorf, Germany 

 1% HEPES 

 

Gibco®, Thermo Fisher Scientific Inc.,  

Waltham, Germany 

 2 mM L-glutamine Sigma-Aldrich, Schnelldorf, Germany 

 100 U/ ml penicillin Seromed Biochrom GmbH, Berlin, Germany * 

 100 μg/ ml streptomycin Seromed Biochrom GmbH, Berlin, Germany * 

Defrosting medium RPMI-1640 Seromed Biochrom GmbH, Berlin, Germany * 

 5% HEPES 

 

Gibco®, Thermo Fisher Scientific Inc.,  

Waltham, Germany 

 10% FCS Sigma-Aldrich, Schnelldorf, Germany 

  1% penicillin-streptomyin Seromed Biochrom GmbH, Berlin, Germany * 

Dimethyl sulfoxide (DMSO) 

medium solution 

RPMI-1640 

 

Seromed Biochrom GmbH, Berlin, Germany * 

 1% HEPES 

 

Gibco®, Thermo Fisher Scientific Inc., 

Waltham, Germany 

  20% DMSO Sigma-Aldrich, Schnelldorf, Germany 

Erythrocyte lysis buffer 

 

 

10 mM Tris-HCl   

(Trizma® hydrochloride HCL,  

pH 8,0) 

Sigma-Aldrich, Schnelldorf, Germany 

 

 

 320 mM sucrose Sigma-Aldrich, Schnelldorf, Germany 
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Buffer/ solution Compounds Company 

 5 mM magnesium chloride 

(MgCl2)  

Sigma-Aldrich, Schnelldorf, Germany 

 

  1% Triton X-100 Sigma-Aldrich, Schnelldorf, Germany 

FACS-buffer  

 

1% (w/v) bovine serum albumin  

(BSA) 

SERVA Electrophoresis GmbH, Germany 

 0,5% sodium azide (NaN3) Sigma-Aldrich, Schnelldorf, Germany 

  PBS   

FCS-Medium RPMI-1640  Seromed Biochrom GmbH, Berlin, Germany * 

 5% HEPES 

 

Gibco®, Thermo Fisher Scientific Inc.,  

Waltham, Germany 

 10% FCS Sigma-Aldrich, Schnelldorf, Germany 

 1% L-glutamin Sigma-Aldrich, Schnelldorf, Germany 

  1% penicillin-streptomycin 

 

Seromed Biochrom GmbH, Berlin, Germany * 

Freezing medium  RPMI-1640 Seromed Biochrom GmbH, Berlin, Germany * 

 5% HEPES 

 

Gibco®, Thermo Fisher Scientific Inc.,  

Waltham, Germany 

 20% FCS Sigma-Aldrich, Schnelldorf, Germany 

  10% DMSO   Sigma-Aldrich, Schnelldorf, Germany 

MACS buffer 2 mM EDTA Sigma-Aldrich, Schnelldorf, Germany 

 0,5% BSA SERVA Electrophoresis GmbH, Germany 

  PBS   

Trypan blue solution 0,4% (w/v) trypan blue Sigma-Aldrich, Schnelldorf, Germany 

  PBS   

* now division of Merck Millipore KGaA, Darmstadt, Germany 

Buffers and solutions within the scope of commercially available kits ready for use 

(ELISAs, Migratest
TM

, Phagotest
TM

, RNA isolation etc.) were prepared with the provided 

reagents according to the manufacturer’s instructions. 

3.1.4 Other chemicals and reagents 

Chemical/ reagent Company 

BD Lysis buffer BD BioscienceTM, Heidelberg, Germany 

Calcein-acetoxymethyl (AM)-ester MoBiTec, Göttingen, Deutschland 

Complete Freund’s Adjuvans (CFA)  Difco Laboratories, Detroit, USA 

Double-distilled (dd) H2O  

 

Gibco®, Thermo Fisher Scientific Inc.,  

Waltham, Germany 

Dihydrorhodamine (DHR) 123 Sigma-Aldrich, Schnelldorf, Germany 

Deoxyribonuclease (DNase) Sigma-Aldrich, Schnelldorf, Germany 

Ethanol (EtOH) Merck Millipore KGaA, Darmstadt, Germany 
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Chemical/ reagent Company 

Fc block mouse and human BD PharmingenTM, Heidelberg, Germany 

Histopaque® Sigma-Aldrich, Schnelldorf, Germany 

Ionomycin Sigma-Aldrich, Schnelldorf, Germany 

Isopropanol J. T. Baker Chemicals, Deventer, Netherlands  

Ketamine Actavis GmbH & Co. KG, Munich, Germany 

Mycobacterium tuberculosis H37 RA Difco Microbiology, Lawrence, USA 

Myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) Pepceuticals Ltd., Leicester, UK 

(Y R S P F S R V V H L Y R N G), purity > 95 %  

 N-formyl-methionyl-leucyl-phenylalanine (fMLP) Sigma-Aldrich, Schnelldorf, Germany 

Phosphate buffered saline (PBS) 

 

Gibco®, Thermo Fisher Scientific Inc.,  

Waltham, Germany 

peqGOLD Trifast™  

 

peqLAB Biotechnologie GmbH,  

Erlangen, Germany 

Percoll® Sigma-Aldrich, Schnelldorf, Germany 

Pertussis-toxin (PTX)  Sigma-Aldrich, Schnelldorf, Germany 

Phorbol-12-myristate-13-acetate (PMA) Sigma-Aldrich, Schnelldorf, Germany 

qPCR™ Mastermix Plus Eurogentec, Seraing, Belgium 

Triton X-100  Sigma-Aldrich, Schnelldorf, Germany 

TrueCountTM Tubes BD BioscienceTM, Heidelberg, Germany 

Xylazine Bayer Vital GmbH, Leverkrusen, Germany  

3.1.5 Kits  

Kit Company 

E.Z.N.A.® Total RNA Kit 1  Omega, Bio-Tek, Norcross, USA 

Human G-CSF ELISA  R&D Systems, Abingdon, UK  

Human IL-8 ELISA Invitrogen, Darmstadt, Germany 

Human MPO ELISA Biolegend, London, UK 

Human PMN Elastase ELISA eBioscience, Frankfurt am Main, Germany 

MigratestTM  Glycotope, Berlin, Germany 

Mouse NK Cell Isolation Kit II Miltenyi Biotec, Bergisch Gladbach, Germany 

PhagotestTM  Glycotope, Berlin, Germany 

RNeasy® Mini Kit (QIAGEN, Germany)  QIAGEN, Hilden, Germany 

3.1.6 Antibodies 

Antibody Host/isotype Conjugate Clone Company Dilution  

anti-human            

CD16  mouse IgG1, k Bio MEM-154 Antikörper Online, Aachen, Germany  1:500 

CD43  mouse IgG1, k PE 1G10 BD PharmingenTM, Heidelberg, Germany  1:100 

CD46  mouse IgG1, k PE 8E2 eBioscience, San Diego, CA  1:500 

CD55  mouse IgG1, k PE 143-30 eBioscience, San Diego, CA  1:20 

CD59  mouse IgG2a, k PE p282 (H19) Biolegend, London, UK  1:10 

CD62L  mouse IgG1, k PE DREG-56 eBioscience, San Diego, USA  1:100 
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Antibody Host/isotype Conjugate Clone Company Dilution  

anti-human            

CD63  mouse IgG1, k PE H5C6 BD PharmingenTM, Heidelberg, Germany  1:20 

CXCR1 mouse IgG2b, k PE 5A12 BD PharmingenTM, Heidelberg, Germany  1:20 

fMLPR mouse IgG1, k PE 5F1 BD PharmingenTM, Heidelberg, Germany  1:5 

TLR2 mouse IgG2a, k PE TL2.1 eBioscience, San Diego, USA  1:10 

SA  mouse IgG2b, k PacBlue  - eBioscience, San Diego, USA  1:600 

isotype 

controls: 
          

IgG1 K  mouse PE MOPC-21 BD PharmingenTM, Heidelberg, Germany  1:1 - 1:100 

IgG2a K  mouse PE G155-178 BD PharmingenTM, Heidelberg, Germany  1:1  

IgG2b K  mouse PE eBM2a eBioscience, San Diego, USA  1:1 - 1:10 

anti-mouse           

CD3  hamster IgG2, k PacBlue 500A2 BD PharmingenTM, Heidelberg, Germany  1:500 

CD4 rat IgG2a, k Per CP RM4-5 BD PharmingenTM, Heidelberg, Germany  1:100 

CD8 rat IgG2a, k PE 53-6.7 BD PharmingenTM, Heidelberg, Germany  1:100 

CD11b  rat IgG2b, k PE M1/70 BD PharmingenTM, Heidelberg, Germany  1:600 

CD27 hamster IgG PE Cy7 LG.7F9 eBioscience, San Diego, USA  1:50 

CD45 rat IgG2b, k FITC 30-F11 eBioscience, San Diego, USA  1:20 

CD45.1 mouse IgG2a, k PerCP Cy5.5  A20 eBioscience, San Diego, USA  1:10 

CD45.2 rat IgG2b, k APC Cy7 104 Biolegend, San Diego, USA  1:10 

CX3CR1 polyclonal goat IgG FITC polyclonal R&D Systems, Minneapolis, USA  1:20 

CX3CR1 mouse IgG2a, k PerCP Cy5 SA011F11 Biolegend, San Diego, USA  1:50 

GFP rat IgG2a, k Biotin 5F12.4 eBioscience, San Diego, USA  1:50 

NK1.1  mouse IgG2a, k APC PK136 Miltenyi Biotec, Bergisch Gladbach, Germany  1:50 

SA  - PE Cy5  -  BD PharmingenTM, Heidelberg, Germany  1:50 

3.1.7 Primers 

Name Primer Sequence 5'  3' 

mouse-18S Forward TTC GAA CGT CTG CCC TAT CAA 

 Reverse TCC CCG TCA CCC ATG GT 

  Probe CGA TGG TAG TCG CCG TGC CTA CCA 

mouse-IL10 Forward TCG GCC AGA GCC ACA TG 

 Reverse AGG TAA AAC TGG ATC ATT TCC GAT A 

mouse-IL10 Probe TGC AGG ACT TTA AGG GTT ACT TGG GTT GC 

mouse-IL13 Forward AGC CTG TGG CCT GGT CC 

 Reverse TCA AGA AGA AAT GTG CTC AAG CTG 

  Probe CAC AGG GCA ACT GAG GCA GGC A  

mouse-GM-CSF Forward GCC ATC AAA GAA GCC CTG AA 

 Reverse GCG GGT CTG CAC ACA TGT TA 

  Probe  ACA TGC CTG TCA CAT TGA ATG AAG AAG TAG AAG 

mouse-IFN-γ Forward CAG CAA CAG CAA GGC GAA A 

 Reverse CTG GAC CTG TGG GTT GTT GAC 

  Probe AGG ATG CAT TCA TGA GTA TTG CCA AGT TTG A 

mouse-TNF-α Forward CCA AAT GGC CTC CCT CTC AT 

 Reverse TCC TCC ACT TGG TGG TTT GC 
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Name Primer Sequence 5'  3' 

mouse-TNF-α Probe* CTC ACA CTC AGA TCA T 

All probes were bought from Eurofins MWG GmbH, Germany.  

*Probe for m-TNF-α is labelled with minor groove binder (MGB); all other probes are 6-

carboxyfluorescein (FAM)- and tetramethylrhodamine (TAMRA) labelled. 

3.1.8 Software programs 

Software Company 

BD FACSDIVATm BD BioscienceTM, Heidelberg, Germany 

EndNote X7 EndNote Inc., Thomson Reuters, New York, USA 

FlowJo 7.5 FlowJo Enterprise, Ashland, USA 

Microsoft Office 2013 Microsoft Corporation, Redmond, USA 

Primer Express® 2.0  Applied Biosystems, New York, USA 

Prism 5.01  GraphPad, San Diego, USA 

3.2 Animals 

WT C57BL/6 mice were received from the Research Institute for Experimental Medicine 

(FEM) of the Charite (Berlin, Germany). Breeding of homozygote and heterozygote 

CX3CR1 deficient (CX3CR1
GFP/GFP

) mice was conducted at the FEM under specific 

pathogen-free conditions. All animal experiments were approved by the regional animal 

study committee of Berlin (LAGeSo) and performed in accordance to national guidelines. 

3.3 Patients 

Two independent cohorts of HC and patients were recruited at the Clinical and 

Experimental MS Research Center, Charité – University Medicine Berlin. The first cohort 

included 10 HC, 12 MS and 12 NMO patients. 12 HC, 10 MS as well as 10 NMO patients 

participated in the second cohort. All study participants signed a written informed consent 

and the study was approved by the local ethics committee. MS and NMO patients were all 

in a remission state and were neurologically stable for at least one month. NMO diagnosis 

followed the revised criteria for NMO in 2006 
58

 and 2007 
168

. 17 out of the 22 NMO 

patients were seropositive for AQP4-IgG (Euroimmun, Lübeck, Germany). All MS patients 
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included were RRMS patients and diagnosis was performed according to the 2010 revised 

McDonald criteria 
169

. The Kurtzke Expanded Disability Status Scale (EDSS) 
170

 was used 

to evaluate neurological disability. Untreated patients were treatment-free at least for three 

months prior to recruitment. 22 Gender-matched volunteers without acute/ chronic 

infections or autoimmune diseases were included as healthy controls (HC). Demographic 

and clinical characteristics of all study participants are listed in table 1.  

Table 1. Patient demographic and clinical characteristics 171. 

Group N Female:Male 

ratio 

Mean age  

± SD 

Treatment (N) N seropositive 

for AQP4 

Median EDSS 

(score - range) 

HC 22 18:4 39 ± 10.5 - - - 

NMO 22 19:3 42 ± 12.5 Untreated (6)  6/6 3.7 (1 – 7.5) 

    Azathioprin (7)  3/7  

    Rituximab (7)  7/7  

    (Methyl)Prednisolone (1)  1/1  

    Glatiramer acetate (1)  0/1  

MS 22 18:4 43 ± 12.1 Untreated (9) - 2.6 (0 – 5.5) 

    Beta-Interferon (4)   

    Fingolimod (2)   

    Boswellic acid (2)   

    Glatiramer acetate (1)   

    Diazoxide (2)   

        Dimethyl fumarate (2)     

3.4 Cell-biological methods 

3.4.1 Isolation of immune cells  

3.4.1.1 Isolation of lymphocytes from murine peripheral blood 

Murine peripheral blood was collected in 2 ml Eppendorf tubes containing 0.5 ml of 2 mM 

EDTA. Erythrocytes were eliminated by adding 10 ml erythrocyte lysis buffer per 1 ml 

blood for 10 minutes (min) at room temperature (RT) and subsequent centrifugation for 5 

min at 550 x g and RT. Thereafter, the cell pellet was washed once in 10 ml mouse wash 

medium and centrifuged for 5 min at 550 x g and RT. The supernatant was discarded and 

lymphocyte cells were resuspended in 2 ml mouse medium and kept at 4°C until use. 
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3.4.1.2 Isolation of lymphocytes from murine lymph nodes and spleen 

Spleens and lymph nodes were mashed using 100 µm cell strainers placed onto 50 ml 

falcon tubes. After mashing, cell strainers were washed twice and cell suspensions were 

filled up to 50 ml, both with mouse wash medium. Subsequent to centrifugation (5 min, 

550 x g, RT), cell pellets were resuspended and incubated in 10 ml erythrocyte lysis buffer 

plus 5 ml mouse medium for 10 min at RT. Falcon tubes were centrifuged (5 min at        

550 x g, RT) and pellets were washed twice with 30 ml mouse wash medium (5 min at   

550 x g, RT). Lymphocyte cell pellets were finally resuspended in 2 ml (lymph nodes) or 

10 ml (spleen) mouse medium and kept at 4°C until use. 

3.4.1.3 Isolation of lymphocytes from murine CNS 

Mouse brain and spinal cord were mashed together in mouse medium using a 70 µm cell 

strainer placed into a 55 mm petri dish. The cell strainer was washed with mouse medium 

until the cell strainer cleaned up. The cell suspension was transferred into a 15 ml falcon 

tube and filled up to 15 ml with mouse medium. After centrifugation for 10 min at 400 x g 

and 4°C, the supernatant was aspirated und the pellet was vortexed before adding 6 ml of 

37% Percoll solution (tempered to RT). The mixture was spun down (20 min at 2800 x g, 

RT) and the Percoll solution as well as myelin components were aspirated up to a left-over 

of 500 µl. 6 ml mouse wash medium were added and the cell suspension was centrifuged 

10 min at 400 x g and 4°C. The washing step was repeated using 10 ml mouse wash 

medium. After centrifugation, the pellet was resuspended in 1 ml mouse medium and 

stored at 4°C until use. 

3.4.2 Serum separation from venous human blood  

After venipuncture, serum separator tubes were sit for 30 min at RT (until clot-formation) 

and subsequently centrifuged at 2000 revolutions per minute (rpm) for 10 min at RT. 

Serum phase was transferred into cryo-tubes and stored at -80°C until use. 

3.4.3 Cell freezing and thawing 

Always 1-5 x 10
6
 cells were taken up in 0.5 ml freezing medium and mixed with 0.5 ml of 

freshly prepared 20% DMSO medium solution. The cell suspension was transferred into a 

cryo-tube and stored in a Mr. Frosty
TM

 freezing container at -80°C overnight. The next day, 
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the sample was transferred into a liquid nitrogen tank. All working steps were performed 

on ice. 

To defrost frozen cells, cryo-tubes were taken out from the liquid nitrogen storage and 

placed as fast as possible into a 37°C water bath. Cells were quickly thawed by gently 

swirling the vial in the 37°C water bath until there was just a small bit of ice left in the vial. 

Under the laminar flow hood, pre-warmed complete growth medium was added dropwise, 

the cell suspension was transferred into a 15 ml falcon tube, filled up to 15 ml with pre-

warmed medium and centrifuged (on average 10 min at 300 x g, RT, depending on the 

actual cell type). The supernatant was discarded and the cell pellet was resuspended in an 

appropriate volume of complete growth medium (1-10 ml) for further cell culturing or 

functional assays. 

3.4.4 Cell culture 

All experiments involving cell culturing were performed under sterile conditions in a 

laminar flow hood. Cells were cultured in respective aseptic incubators with 37°C and     

5% CO2. Before use, dissection instruments were boiled for 5 min followed by a short 

flaming and sterilization with 70% EtOH. Single-use consumables and materials were 

sterilized with 70% EtOH. All materials and waste were autoclaved at 120°C and 1 bar 

after use. 

3.4.4.1 Cell culturing of murine NK cells with PMA and ionomycin 

NK cells were negatively selected from splenocytes of unmanipulated WT or 

CX3CR1
GFP/GFP

 mice using the NK Isolation kit II according to the manufacturer’s 

instructions (see 3.6.2.). Purity of NK cells was verified by flow cytometry (see 3.6.1.) and 

was consistently >85%. Thereafter, NK cells were diluted in mouse medium to a 

concentration of 2 x 10
6
 cells/ ml and stimulated with 100 µg/ ml phorbol 12-myristate    

13-acetate (PMA) and 1 µg/ ml ionomycin for 4h at 37°C. After stimulation, NK cells were 

washed twice with PBS (5 min, 550 x g, RT). 
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3.4.4.2 Cell culturing of murine YAC-1 lymphoma cells 

Frozen murine YAC-1 lymphoma cells were defrosted as described in section 3.4.3. and 

long-term cultured in complete growth medium. Passages of the cells were performed 

twice per week diluting the cells 1:2 in fresh medium. Cells generally showed a viability  

of >80%. 

3.4.5 Determination of cell numbers and viability  

3.4.5.1 Detection of absolute cell numbers 

Neutrophil cell counting was performed by Labor Berlin – Charité Vivantes GmbH. 

Absolute numbers of NK cells were evaluated using TrueCount
TM

 Tubes according to the 

manufacturer’s instructions. Therefore, one unit beads was diluted in 1 ml fluorescence-

activated cell sorting (FACS) buffer and 100 µl of this solution were added to each sample 

before measuring it at the flow cytometer. Absolute numbers were calculated according to 

the formula: 

counting beads (total) ∗ NK cells (acquired)

counting beads (acquired)
 

3.4.5.2 Trypan blue staining 

To determine the number of cells in a suspension, a sample of cells was diluted 1:10 in 

trypan blue solution. 10 µl of the dilution was then transferred into a Neubauer counting 

chamber and cells in the 16 fields of one quadrant (n) were counted manually under a light 

microscope. Death cells were excluded by their blue coloration which they classically 

show through uptake of the trypan blue dye. The total number of cells in suspension was 

finally calculated by the following formula: 

Total number of cells in suspension =  

n x dilution (trypan blue) x volume of total cell suspension (ml) x 10
4
 (Neubauer-factor) 
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3.4.6 NK cell cytotoxicity measurement: Calcein-acetyoxymethyl release assay 

NK cell cytotoxicity was determined using the calcein-acetyoxymethyl release assay (in 

collaboration with Dr. Isabell Hamann, former PhD-student and postdoctoral researcher in 

the group of PD Dr. Carmen Infante Duarte). Therefore, NK effector cells were prepared as 

described in section 5.4.4.1. whereby PMA/ ionomycin stimulation was only applied for 

the positive control. YAC-1 target cells (see 3.4.4.2.) were harvested, washed 3 times with 

10 ml PBS (5 min, 550 x g, RT) and incubated with 15 μM calcein-AM (30 min at 37°C). 

After 3 times washing with complete growth medium, cell were adjusted to 4 x 10
5
 cells/ 

ml for the cytotoxicity assay. 100 µl of target cells and 100 μl of various effector cell 

dilutions were placed into a flat bottom 96-well microtiter plate  (effector: target cell ratios 

ranging from 40:1 to 5:1) and incubated for 4 h at 37°C in 5% CO2. 40 μl of each 

supernatant were harvested, diluted in 60 μl of complete medium and placed into a fresh 

flat-bottom plate. Samples were measured in quadruplicate using a Wallac Victor2 1420 

Multilabel spectrofluorimeter (excitation filter: 485 nm; emission filter: 535 nm).  

Specific lysis (percentage of calcein-AM release) was calculated according to the formula:  

Specific lysis = 
(test release−spontaneous release)

(maximum release−spontaneous release)
 * 100 

The spontaneous release corresponds to the calcein-AM released from target cells in 

complete medium alone. The maximum release conforms to calcein-AM released from 

target cells lysed in complete medium containing 1.8% Triton X-100. 

3.4.7 Neutrophil functional assays 

3.4.7.1 Oxidative burst assay 

Whole blood samples (100 µl) were stimulated for 15 min at 37°C with and without        

100 nM of the chemoattractant fMLP. Thereafter, 10 µM of cell-permeable fluorogenic 

dihydrorhodamine 123 (DHR 123) were added for 5 min at 37°C. Erythrocytes were lysed 

with BD lysing buffer (1 ml lysis buffer per 100 µl blood) for 10 min at RT and the 

oxidative burst capacity (OBC) was analyzed by flow cytometry subsequently. 

Granulocytes were gated as described in section 3.6.1. and FlowJo 7.5 was used to evaluate 
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the mean fluorescence of rhodamine 123 resulting from oxidation of DHR 123 by 

neutrophil-derived reactive oxygen species (ROS). 

3.4.7.2 Migration assay 

Neutrophil chemotactic function was quantified with Migratest
TM

. Per individual tested, 

leukocyte-rich plasma from 2 ml heparinized whole blood was isolated by spontaneous 

sedimentation (40 min, RT) and 2 x 100 µl of this leukocyte-rich phase were then placed 

into cell culture inserts, preloaded in two wells of a 24-well dish. Chemotaxis was 

conducted for 30 min at 37°C towards a gradient of fMLP peptide in Migratest
TM 

incubation buffer (5 µl of 10 µM fMLP per 1 ml buffer) in comparison to a control without 

fMLP gradient (Migratest
TM 

incubation buffer only). Both supernatants and flow-throughs 

were collected and placed on ice. 20 µl counting beads and 20 µl DNA vitality staining dye 

were added for 10 min and samples were measured at the flow cytometer. 

3.4.7.3 Phagocytosis assay 

Neutrophil phagocytosis was assessed using the commercially available Phagotest
TM

. In 

this assay, 100 µl heparinized whole blood were incubated with 20 µl opsonized FITC-

labelled E.coli-bacteria for 10 min at 37°C, a negative control sample remained on ice. 

Phagocytosis was stopped by adding 100 µl ice-cold Phagotest
TM

 quenching solution and 

samples were washed twice with 3 ml Phagotest
TM 

wash solution for 5 min at 250 x g and 

4°C. Thereafter, erythrocytes were lysed with 2 ml Phagotest
TM

 lysing solution for 20 min 

at RT, centrifuged for 5 min at 250 x g and 4°C and washed again. 200 µl DNA vitality 

staining dye were added to each sample just prior to the analysis by flow cytometry. 

3.5 Molecular-biological methods 

Molecular-biological methods were performed in collaboration with Dr. Isabell Hamann, 

former PhD-student and postdoctoral researcher in the group of PD Dr. Carmen Infante 

Duarte. 
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3.5.1 Isolation of lymphocyte RNA and reverse transcription 

Lymphocyte ribonucleic acid (RNA) was isolated using the RNeasy® Mini Kit or the 

E.Z.N.A.
®

 Total RNA Kit 1. Total RNA was then reversely transcribed to complentary 

deoxyribonucleic acid (cDNA) with random hexamers using the TaqMan Reverse 

Transcription Reagents, according to the manufacturer’s instructions.  

Splenic lymphocytes were prepared as described in 5.4.1.2. excluding resuspension of the 

obtained cell pellet in mouse medium. Instead, cell pellet was resuspended in kit-provided 

lysis buffer for not only disrupting cell walls but further inactivating RNases. The cell 

suspension was thereafter homogenized manually by passing the lysate at least 5 times 

through a blunt 20-gauge (G) needle fitted to an RNase-free syringe. Next, 70% EtOH was 

added, mixed by pipetting and placed into a collection tube for centrifugation (15-60 sec, 

10 000 rpm, RT) during which RNA was bound in the column. Flow-through was 

discarded and the column was washed 2-3 times with RNA washing buffer (15-60 sec,     

10 000 rpm, RT). The column was transferred into a new 1.5 ml centrifuge tube and RNA 

was eluted by adding RNase-free water (centrifugation for 1 min at maximum speed, RT). 

RNA concentration and purity was measured in a NanoDrop spectrophotometer at 260 nm 

and 280 nm. Only RNA samples with a purity ratio 260/ 280nm between 1.8 and 2.0 were 

used for reverse transcription. RNA samples were kept on ice when used directly or were 

stored at -80° until use. 

For the RNA quantification of target genes, quantitative real-time polymerase chain 

reaction (PCR) was performed. Therefore, RNA was reversely transcribed into 

complementary DNA (cDNA) first, using retrovirus-associated enzymes named reverse 

transcriptases. These enzymes use RNA templates and short random hexamer primers 

complementary to the 3' end of the RNA to direct the synthesis of first strand cDNA. All 

working steps were performed on ice. Tables 2 and 3 list pipetting schema and program for 

reverse transcription, respectively, using a thermocycler. 
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Table 2.  Pipetting schema for reverse transcription. 

Reagent Volume (µl) 

Buffer (10x) 2 

MgCl2 (25 mM) 4.4 

dNTPs (10 mM) 4 

Random Hexamer (50 µM) 1 

RNase Inhibitor (20 U/µl) 0.4 

Reverse Transcriptase (50 U/µl) 0,5 

RNA X  

H2O ad 20 

Table 3.  Reverse transcription program. 

  Temperature Duration Cycles 

Annealing 25°C 10 min 1 x 

Reverse Transcription 48°C 30 min 1 x 

Enzyme activation 95°C 5 min 1 x 

Cooling period   4°C 30 min 1 x 

3.5.2 Quantitative real-time PCR 

Quantitative real-time PCR allows the determination and quantification of the expression 

of a target gene. The method combines specific oligonucleotide probes, which hybridize to 

the target sequence, and the 5' exonuclease activity of the Taq DNA polymerase. This 

enzyme cleaves the oligonucleotide probes during the PCR process, thereby generating a 

detectable signal. Precisely, the oligonucleotide probes are labeled at their 5' end with the 

fluorescent reporter dye 6-carboxyfluorescein (FAM) and with the quencher 

tetramethylrhodamine (TAMRA) at their 3' end whereby detection of the probe’s 

fluorescence is prevented by the close proximity of the reporter to the quencher.              

The 5' to 3' exonuclease activity of the Taq polymerase breaks down this proximity 

allowing unquenched emission of fluorescence being directly proportional to the amount of 

gene product in each single PCR cycle, and thus enabling the retroactive/ retrograde 

quantification of the initial target gene expression 
172

. 

Quantitative real-time PCR was performed on an ABI Prism 7000 Sequence Detection 

System. Primers and probes are listed in section 3.1.7. 18S rRNA, used as the endogenous 

reference, was constantly expressed across all of the samples analysed, which were run in 

duplicates. Results obtained by real-time PCR were quantified using the comparative 

https://en.wikipedia.org/wiki/Exonuclease
https://en.wikipedia.org/wiki/Taq_polymerase
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threshold method (∆∆Ct) 
173, 174

 and target gene expression was normalized to the 

endogenous reference for each sample. 

All working steps were performed on ice in 96-well microtiter plates. Pipetting layout and 

PCR cycle programm are listed in Table 4 and 5 below. 

Table 4. Pipetting layout for quantitative real-time PCR.  

Reagent Volume  (µl) 

PCR-Mastermix (2x) 12.5 

Forward-Primer (10 µM) 1 

Reverse-Primer (10 µM) 1 

Oligonucleotide probe (5 µM) 1 

H2O 4.5 

cDNA 5 

Total volume 25 

Table 5. Quantitative real-time PCR cycle program. 

  Temperature Duration Cycles 

Activation of Uracil-DNA glycosylase 50°C 2 min 1 x 

Activation of Taq-polymerase 95°C 10 min 1 x 

Strand-denaturation 95°C 15 s 
 40 - 45 x 

Primer annealing and elongation 60°C 1 min 

3.6 Immunological methods 

3.6.1 Flow cytometry 

Flow cytometry represents a biotechnological, laser-based method which allows the 

multiparametric analysis of cells and particles in solution. Hereby, physical, chemical and/ 

or biological characteristics of the target cells or particles such as morphology and size, 

DNA/ RNA content, intra-/ extracellular cytokines, proliferation, apoptosis etc. are 

determined by channeling the suspension though a micro-cuvette (flow cell) ensuring the 

screening of each single cell/ particle by a laser-filter-system (optic system). The resulting 

light signals, dependent on the cell/ particle’s specific properties (size, granularity, internal 

complexity) or previous fluorescent labelling, are converted into electrical signals (optical-

to-electronic coupling system), amplified and the cell/ particle’s characteristics can be 

derived using respective software programs 
175, 176

. 
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For the analysis of extracellular surface markers by flow cytometry, 10
6
 cells per staining 

(prepared as described in the sections 3.4.1-3) were centrifuged for 5 min at 550 x g and 

4°C and the cell pellet was incubated subsequently for 15 min at 4°C with mouse Fc block 

(diluted 1:50 in FACS buffer) to block unspecific binding sites. Thereafter, primary 

fluorescent-labelled antibody (or a mixture of such primary antibodies) diluted in FACS 

buffer was directly added to the cells and incubated for 30 min at 4°C in the dark. Cells 

were washed with 1 ml FACS buffer (5 min at 550 x g, 4°C). In case that biotinylated 

primary antibodies were used, cells were incubated with a respective fluorescent-labelled 

secondary antibody diluted in FACS buffer for another 20 min at 4°C in the dark (all 

primary and secondary antibodies used are listed in section 3.1.6.). The washing step was 

repeated and after resuspension in 100-200 µl FACS buffer, cells were measured in the 

flow cytometer. If measurements were not instantly possible, cells were washed in 1 ml 

PBS and incubated in cell fixing solution (PBS + 2% PFA) for 20 min at RT. Cells were 

washed twice with PBS, resuspended in 100-200 µl FACS buffer and kept at 4°C in the 

dark until measurement. 

Using BD FACS DIVA
TM

 for initial analysis directly at the flow cytometer and FlowJo 7.5 

for detailed data analysis, lymphocytes were identified by their characteristic size and 

granularity in the sideward to forward scatter graph. NK cells were distinguished from 

other lymphocytes by their lack of CD3 and expression of NK1.1. NK cells were further 

sub-classified according to the expression of the maturation markers CD11b and CD27 in 

pre-mature (CD11b
-
CD27

-
), immature (CD11b

neg/low
CD27

+
), mature (CD11b

+
CD27

+
) and 

fully differentiated NK cells (CD11b
high

CD27
-
). Granulocytes were identified by their 

characteristic size and granularity in the sideward to forward scatter graph. Neutrophils 

were distinguished from eosinophils by their lower autofluorescence in the FITC- and PE-

channel and by expression of CD16b. Median fluorescence intensity (MedFl) was 

determined to assess surface marker expression, and data were normalized using the 

formula: 

  
MedFl (Marker)∗100

MedFl (respective isotype control)
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3.6.2 Magnetic cell sorting (MACS) of murine NK cells 

For NK cell isolation and purification from target organs, the NK Cell Isolation Kit II was 

used according to the manufacturer’s instructions. In summary, the kit is based on magnetic 

cell sorting (MACS) negatively selecting NK cells from a cell suspension by depleting 

non-target cells which are labelled with a cocktail of biotin-conjugated monoclonal 

antibodies and anti-biotin monoclonal antibodies conjugated to magnetic micro-breads. 

Therefore, organ extracted cells were first resuspended in MACS buffer (40 µl buffer/    

10
7
 cells) and incubated for 5 min at 4°C with a NK cell biotin-antibody cocktail (10 µl/ 

10
7
 cells). Cells were washed in 2 ml MACS buffer per 10

7
 cells and centrifuged at 4°C 

and 300 x g for 10 min. 80 µl buffer per 10
7
 cells and 20 µl anti-biotin micro-beads were 

added and incubated for another 10 min at 4°C. The cell suspension was subsequently 

applied onto a MACS column (at a max 2 x 10
9
 cells per column) equilibrated beforehand 

with 3 ml MACS buffer and placed in the magnetic field of a respective MACS separator. 

The flow-through containing the enriched NK cells was collected and the column was 

washed with additional 3 ml of MACS buffer to collect remaining NK cells. A sample of 

100 µl before and after MACS separation was saved to verify the NK cell purity by flow 

cytometry (see 3.6.1.). 

3.6.3 Enzyme-linked immunosorbent assay (ELISA) 

Concentrations of cytokines and soluble factors in human serum or cell culture medium 

were determined by enzyme-linked immunosorbent assay (ELISA). All ELISAs used were 

conventional sandwich-ELISAs and were commercially acquired. ELISAs were performed 

according to the specific manufacturer’s instructions. Generally, 100-200 µl of the required 

standard and sample diluents were applied into the 96-well ELISA plate, already pre-

coated with a target-specific capture antibody. The plate was covered with an adhesive film 

and incubated at RT for 1-2 h on a microplate shaker (200 rpm). After incubation, the 

adhesive film was removed and wells were washed with 200-400 µl kit-provided wash 

buffer (3-4 times). 100-200 µl substrate conjugate (corresponding to a target specific, 

enzyme-conjugated antibody) were added per well, the plate was covered with adhesive 

film and incubated for 1 h at RT and 200 rpm. Washing steps were repeated and 100-200 µl 

substrate solution (corresponding to a solution of a chromophore which becomes 

enzymatically converted into a colored product) were added in each well for 20-30 min at 
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RT and in the dark. Enzymatic reaction was stopped by adding 50 µl stop solution per well. 

ELISA plates were read at 450 nm in the Glomax Multi Detection plate reader. 

3.6.4 Degranulation assay 

Conventional sandwich ELISAs (section 3.6.3.) were performed to evaluate serum levels 

of neutrophil MPO and PMN elastase. Assays were conducted as indicated in the 

manufacturer’s instructions, and ELISA plates were read at 450 nm in the Glomax Multi 

Detection plate reader. The expression of CD63 on the outer cell membrane due to 

azurophilic granules exocytosis 
177

 was analyzed by surface staining for flow cytometry 

(section 3.6.1.) using PE-conjugated human monoclonal anti-CD63 (listed in             

section 3.1.6.). 

3.7 In vivo methods 

3.7.1 Induction and assessment of an active experimental autoimmune 

encephalomyelitis (EAE) 

To induce active EAE, C57/BL6 WT or CX3CR1
GFP/GFP 

mice were immunized 

subcutaneously with 250 µg myelin oligodendrocyte glycoprotein peptide 35-55    

(MOG35-55) emulsified in complete Freund's adjuvant containing 800 µg Mycobacterium 

tuberculosis H37Ra. Pertussis toxin (PTX, 200 ng) was injected intraperitoneally the day 

of immunization and repeated 48 hours later. Mice were weighed and examined daily for 

EAE symptoms and scored as follows: 0, no signs of neurologic disease; 1, lack of tail 

tone; 2, abnormal gait, hind-limb weakness; 2.5, partial hind-limb paralysis; 3, complete 

hind-limb paralysis; 3.5, ascending paralysis; 4, tetraplegia; and 5, moribund or death. 

Mice were sacrificed when they reached a score of > 3.0. To determine the cumulative 

disease activity, the area under the curve (AUC) from the clinical score plot for each 

individual mouse was calculated using GraphPad Prism 5.01. 

3.7.2 Transfer of NK cells prior to EAE induction 

WT and CX3CR1
GFP/GFP

 mice were killed by cervical dislocation to collect the spleens. 

Splenocytes were isolated as described in section 3.4.1.2. and purified NK cells were 

obtained using negative cell separation (MACS NK Cell Isolation Kit II, section 3.6.2.). 
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One day prior to EAE immunization, 0.5-1 x 10
6
 WT or CX3CR1

GFP/GFP
 NK cells or      

200 µl PBS as control were injected intravenously into CX3CR1
GFP/GFP

 recipient mice. 

Active EAE was induced as described above.  

3.7.3 Mouse perfusion 

Mice were lethally anaesthetized with a mixture of ketamine (415 mg/ kg) and xylazine 

(9.7 mg/ kg). As soon as reflexes between the toes were not present any longer, the 

peritoneum was opened and the aorta was cut above the diaphragm. Blood was collected in 

2 ml tubes prepared with 0.5 ml 2 mM EDTA, inverted twice and kept at RT until use. The 

needle of a 25-G butterfly was adjusted on a 12-cc syringe that has been filled with PBS 

was carefully inserted into the left ventricle of the heart. Correct placement of the needle 

was confirmed by minimal resistance and dark red blood beginning to flow from the right 

atrium. The animal was then perfused with the entire 12 cc syringe of PBS (20 ml). 

Thereafter, organs of interest were taken out into 1.5 ml tubes prepared with 1 ml mouse 

wash medium and kept on ice until use. 

3.8 Statistics  

GraphPad Prism 5.01 was used for all statistical analyses. 

Statistical analysis of animal experiments and resulting data 

Two-tailed, non-parametric Mann-Whitney test was used for all two-group comparisons. 

EAE clinical scores were analysed using the non-parametric Mann-Whitney test for two-

grop comparisons or the Kruskal-Wallis test (with Dunn’s post-hoc test) for three-group 

comparisons. EAE onset curves were analysed using the log-rank (Mantel-Cox) test. 

Statistical analysis of patient data 

Non-parametric Kruskal-Wallis test (with the Dunn’s post-hoc-test) was used for multiple-

group comparisons. Since the multiple comparisons analysis of each cohort separately only 

revealed similar trends but did not achieve similar significant values – due to the 

limitations in sample size – the final analysis was performed in the combined cohort of  22 
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HC, 22 NMO and 22 MS patients. For correlation analyses the non-parametric Spearman 

test was applied. 

For all statistical analyses, probability (p)-values < 0.05 were considered significant (* p < 

0.05, ** p < 0.01, *** p < 0.001). Data and statistics includes in text passages are indicated 

as means ± SEM. Figures show bars or dots indicating mean ± SEM. 
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4. Results 

4.1 NK cell mobilization and contribution of CX3CR1 to NK cell dynamics during 

EAE neuroinflammation 

Data from our research group previously emphasized the role of NK cells in the 

pathogenesis of MS and further highlighted an involvement of the chemokine receptor 

CX3CR1 on NK cells in MS. Reduced expression of this receptor on circulating NK cells 

and a correlation between CX3CR1-positive NK cells and the patient’s disease activity 

were found. Precisely, patients in stable, non-acute disease phase exhibited significantly 

low levels of CX3CR1
+
 NK cells in contrast to patients suffering from acute relapses 

6
 

whose frequencies resembled more to those in HC. Moreover, expression of CX3CR1 on 

NK cells in human could be related to the NK cell maturation status und therewith to NK 

cell cytotoxicity 
138

 which has been shown to be impaired in MS in numerous            

studies 
2-5, 129

. In addition, EAE mouse data suggested that the recruitment of NK cells into 

the inflamed CNS depends on CX3CR1 
7
. However, the implication of NK cells and NK 

cell subtypes as well as the precise contribution of CX3CR1 on NK cells in MS/ EAE 

remain not fully understood and therefore have been further investigated in extended 

animal experiments in the present work. 

4.1.1 Decline of NK cells in the periphery and migration into the CNS in WT EAE 

mice 

To examine NK cell dynamics in vivo during neuroinflammation, NK cell frequencies were 

longitudinally monitored in peripheral blood of C57BL/6 WT mice during the course of 

EAE disease (Figure 7C). Here, frequencies of peripheral blood NK cells were found to 

decrease directly after the peak of disease (day 16) reaching a minimum 20 days after 

immunization [from 5.01 ± 1.43 % (day 0) to 2.67 ± 0.95% (day 20)].  

This observation may point to a neuroinflammation-related mobilization of NK cells 

wherefore the distribution of NK cells in the CNS and the immune tissues spleen and 

lymph nodes was investigated next in non-immunized (n.i.) mice, at disease onset (day 10), 

and at time of the observed decrease of NK cells in blood (day 20) in C57BL/6 WT  

(Figure 7D). It could be observed that already at day 10 post immunization (p.i.), NK cells 
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infiltrated into the CNS  [413.6 ± 83.8 cells (day 0) to 831.0 ± 302.5 cells (day 10)] and 

decreased in lymph nodes [7695.0 ± 827.3 cells/ million (Mio.) (day 0) to                            

5189.0 ± 469.1 cells/ Mio. (day 10)] and spleen [28820.0 ± 1731.0 cells/ Mio. (day 0) to 

9385.0 ± 1173.0 cells/ Mio. (day 10)]. At day 20, increased numbers of NK cells were 

found in the CNS (701.9 ± 235.6 cells) associated with a significant decrease of the 

number of circulating NK cells in blood [11395.0 ± 2108.0 cells/ Mio. (day 0) to                 

2133.0 ± 826.3 cells/ Mio. (day 20)] and to a lower extend also in lymph nodes               

(4396.0 ± 275.4 cells/ Mio.).  
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Figure 7. NK cell dynamics in WT EAE mice. C57/BL6 mice (n = 24) were immunized with MOG33-35 and 

scored daily. A) General gating strategy for the analysis of NK cells by flow cytometry in C) peripheral 

blood, lymph nodes, spleen and B) CNS by selecting the CD3- NK1.1+ cells from the lymphocyte and 

infiltrating cell population, respectively. C) Peripheral blood was taken every other day to analyse NK cell 

frequencies by flow cytometry. Clinical EAE disease course (lower graph) and corresponding NK cell 

frequencies (upper graph) are shown. D) Transversal monitoring of absolute NK cell counts in peripheral 

blood, lymph nodes, spleen and CNS assessed by flow cytometry at day 0 [non-immunized (n.i.) mice,                

n = 10], day 10 (n = 5) and day 20 (n = 10) after MOG35-55 immunization. NK cell numbers in blood, lymph 

nodes and spleen are indicated as cells/ Mio., NK cell numbers in the CNS are indicated as absolute numbers. 

One-way ANOVA was used for statistical analyses. Data are presented as mean ± SEM. * P < 0.05,              

** p < 0.01, *** p < 0.001. (Hertwig et al., Eur J Immunol, in revision)  
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4.1.2 Similar NK cell migration patterns in CX3CR1-deficient mice compared to 

WT mice during EAE 

To assess the contribution of the chemokine receptor CX3CR1 to NK cell dynamics during 

neuroinflammation, EAE was induced in CX3CR1-deficient mice (precisely 

CX3CR1GFP/GFP mice) and NK cell migration patterns were monitored as described in 

4.1.1. and figure 7. Huang et al. (2006) previously reported a more severe EAE course in 

CX3CR1-deficient animals, apparently associated with a diminished migration of NK cells 

into the inflamed  CNS 7. These observations could experimentally be confirmed                

(Figure 8).  

 

Figure 8: Comparison of the clinical parameters of CX3CR1-deficient and WT EAE mice. EAE was 
induced in CX3CR1-deficient (CX3CR1GFP/GFP) and WT mice with MOG33-35 and mice were scored daily. A) 
Clinical EAE disease scores are shown as mean ± SEM. B) Disease activities with horizontal lines as       
mean ± SEM were evaluated by calculating the area under the curve (AUC) of the clinical disease course of 
each single mouse. C) EAE disease onset. * P < 0.05, ** p < 0.01, *** p < 0.001. 

Although EAE disease was generally very mild in both mice types, CX3CR1-deficient 

mice were more susceptible to EAE than WT mice, showing a significant increase in the 

disease severity (Figure 8A), a higher disease activity (4.7 ± 1.1% in CX3CR1-deficient 

mice versus 1.7 ± 0.8% in WT mice) and earlier disease onset (Figure 8B and C). The 

clinical EAE data are summarized in Table 6. 

Table 6. Clinical disease data of CX3CR1-deficient and WT EAE mice*.  

Group N Incidence Mean disease 
onset ± SD 

Mean maximum 
clinical score ± SD 

CX3CR1GFP/GFP  10  8 / 10 16.0 ± 2.7 1.9 ± 0.6 
WT 10  6 / 10 18.4 ± 2.6 1.4 ± 0.7 

* Hertwig et al., Eur J Immunol, in revision 
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The analysis of NK cell numbers in blood, spleen, draining lymph nodes and the CNS at 

day 20 p.i. revealed an increase of the NK cell fraction in the CNS of CX3CR1-deficient 

mice from day 0 to day 20 p.i. (168.3 ± 35.2 cells to 773.5 ± 279.1 cells) (Figure 9A) as it 

has previously been observed in WT EAE mice (Figure 7C and D). However, no 

differences were observed in the peripheral blood. Additionally, NK cell numbers were 

diminished in the spleen at day 10 after immunization [24540.0 ± 407.3 cells/ Mio. (day 0) 

to 7496.0 ± 505.5 cells/ Mio. (day 10)], whereas an only low reduction was observed in the 

draining lymph nodes [3735.0 ± 633.4 cells/ Mio. (day 0) to 1905.0 ± 484.7 cells/ Mio. 

(day 20)]  (Figure 9A). 

 

Figure 9. Tissue distribution of NK cells in healthy and EAE CX3CR1-deficient and WT mice. EAE 

was induced in WT and CX3CR1-deficient mice. A) CX3CR1GFP/GFP mice were sacrificed at day 0 (n.i., 

healthy controls; n = 10), day 10 (n = 5) and day 20 (established EAE, n = 10). Flow cytometry was 

performed to analyse NK cell numbers in blood, lymph nodes, spleen and the CNS. NK cell numbers in 

blood, lymph nodes and spleen are indicated as cells/ Mio., NK cell numbers in the CNS are indicated as 

absolute numbers. B) Absolute NK cell counts and frequencies from EAE WT (n = 10) and CX3CR1GFP/GFP 

(n = 8) mice were compared at day 20 p.i.. C) in n.i. healthy mice (WT: n = 10 and CX3CR1GFP/GFP: n = 10). 

NK cell numbers and frequencies are shown as mean ± SEM. * P < 0.05, ** p < 0.01, *** p < 0.001. 

(Hertwig et al., Eur J Immunol, in revision) 
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Comparing the NK cell numbers and frequencies between WT and CX3CR1-deficient 

mice at day 20 p.i., no differences between both mice types were found in the spleen and 

CNS [Figure 9B, showing the NK cell frequencies (left) and absolute numbers (right)]. 

However, NK cell numbers and frequencies in blood were significantly higher in 

CX3CR1-deficient (4.1 ± 0.7% ~ 5985.0 ± 957.7 cells/ Mio.) compared to WT mice            

(1.9 ± 0.4% ~ 2133.0 ± 826.3 cells/ Mio.), but lower in the draining lymph nodes                  

(0.2 ± 0.1% ~ 1905.0 ± 484.7 cells/ Mio. versus 0.5 ± 0.03% ~ 4396.0 ± 275.4 cells/ Mio., 

respectively) (Figure 9B). The latter observation was true for n.i. mice too (Figure 9C). In 

contrast to day 20 p.i., both frequency and absolute numbers of NK cells were extremely 

reduced in the CNS of n.i. CX3CR1-deficient mice (0.3 ± 0.03% ~ 168.3 ± 35.2 cells) 

compared to WT animals (3.7 ± 0.4% ~ 413.6 ± 83.8 cells) (Figure 9C). No significant 

differences in number or frequencies were detected in peripheral blood and spleen. 

4.1.3 CX3CR1-deficient NK cells do not exhibit intrinsic deficits 

Our group previously reported that human NK cell cytokine expression, activation status, 

maturation, cytotoxic activity, and proliferative responses 
138

 are influenced by the 

expression of CX3CR1. For this reason, the general cytotoxic activity and the cytokine 

profile from spleen-derived NK cells of unmanipulated WT and CX3CR1-deficient mice 

using calcein-acetyoxymethyl release assay and quantitative real-time PCR, respectively, 

were examined to exclude that CX3CR1-deficient NK cells may have intrinsic deficits in 

their functionality that could influence the experimental data. Here, the cytotoxicity assay 

revealed the same NK-cell-effector-/YAC-1-target-cell ratio-dependent lysis capacity of 

CX3CR1-deficient NK cells compared to WT NK cells (Figure 10A). As well, CX3CR1
+/+

 

and CX3CR1-deficient murine NK cells expressed similar levels of the effector cytokines 

IFN-gamma, GM-CSF, TNF-alpha, IL-10 and IL-13 (Figure 10B).  
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Figure 10. Functional properties of splenic WT and CX3CR1-deficient NK cells. WT and 

CX3CR1GFP/GFP NK cells were analysed for their cytotoxic activity and cytokine profiles. A) Cytotoxicity 

measurement of CX3CR1+/+ (n = 5) compared to CX3CR1GFP/GFP (n = 7) NK cells at different effector (NK 

cells) to target (YAC-1 cells) cell ratios, using calcein-acetyoxymethyl release assay. B) Relative expression 

of pro- and anti-inflammatory cytokines in CX3CR1+/+ (n = 10) and CX3CR1GFP/GFP (n = 10) NK cells 

assessed by quantitative real-time PCR. (Data were generated in collaboration with Dr. I. Hamann; Hertwig 

et al., Eur J Immunol, in revision). 

In addition to the testing of funcionality, NK cell maturation phenotypes were compared by 

flow cytometry. The lack of CX3CR1 did not influenced the NK cell maturation according 

to the expression of the conventional maturation marker CD11b and CD27. All different 

CD3
-
NK1.1

+
 NK cell fractions of the i.e. immature (CD11b

neg/low 
CD27

+
), mature              

(CD11b
+ 

CD27
+
) and terminal differentiated NK cells (CD11b

high 
CD27

-
) (Figure 11, right 

panels) were present in peripheral blood (Figure 11A) and spleen (Figure 11B) of 

CX3CR1-deficient mice. Moreover, it could be observed that the fractions of fully 

differentiated cells were even larger in CX3CR1-deficient mice than in WT                          

(36.7 ± 3.4% compared to 23.9 ± 3.5% cells in blood and 50.9 ± 2.3% compared to               

34.7 ± 1.4% cells in spleen), while the fractions of immature and early mature cells were 

smaller (19.8 ± 2.4% compared to 29.1 ± 2.2% early mature cells in blood;                               

15.3 ± 1.0% compared to 24.8 ± 0.8% immature cells and 22.4 ± 1.8% compared to                  

32.4 ± 0.8% early mature cells in spleen). 
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Figure 11. NK cell subsets in blood and spleen of n.i. WT and CX3CR1-deficient mice. NK cells subsets 
were defined according to the expression of CD27 and CD11b in immature CD3- NK1.1+ CD11bneg/low 

CD27+, mature NK cells as CD3- NK1.1+ CD11b+ CD27+ and fully differentiated NK cells as CD3- NK1.1+ 

CD11bhigh CD27-. Frequencies of the different NK cell subsets are shown as mean ± SEM in A) peripheral 
blood and B) spleen of WT (n = 10) and CX3CR1-deficient (n = 10) mice. * P < 0.05, ** p < 0.01,                         
*** p < 0.001. Representative flow cytometry contour plots illustrating the different NK cell subsets in WT 
and CX3CR1-deficient (CX3CR1GFP/GFP) mice are shown alongside. (Hertwig et al., Eur J Immunol, in 
revision). 

4.1.4 Impaired recruitment of mature NK cells into the inflamed CNS in CX3CR1-

deficient EAE mice 

Since CX3CR1 appeared to not be involved in the overall migration of NK cells in EAE, it 

was next investigated whether CX3CR1 may rather be involved in the recruitment of a 

particular NK cell subtype into the inflamed CNS, as has been postulated for human NK 

cells 137, 178.  

In n.i. healthy WT animals, CX3CR1 was found to be predominantly expressed on pre-

mature/ tolerant CD11b-CD27- (NK cells with predominantly inhibitory signals) and fully 

differentiated mature CD11b+ CD27- NK cells (Figure 12). Thus, it could be speculated 

that the lack of CX3CR1 may affect circulation of these distinct fractions during EAE.  
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Figure 12. CX3CR1 expression on splenic NK cells. According to their maturational status, splenic NK cell 
subsets from healthy and immunized WT mice were analyzed for their expression of CX3CR1 (n = 10 and        
n = 5, respectively). Mean fluorescence intensities (right graph) and percentages of CX3CR1-positive cells 
(left graph) within the immature (CD11bneg/low CD27+), mature (CD11b+ CD27+), terminally differentiated 
(CD11bhigh CD27-) and pre-mature (tolerant, CD11b- CD27-) NK cell populations are shown as bars ± SEM.  
* P < 0.05, ** p < 0.01, *** p < 0.001. 

To verify this hypothesis, NK cells were isolated from peripheral blood, lymph nodes, 

spleen and the CNS of WT and CX3CR1 deficient mice with EAE at day 20 p.i. and 

analysed by flow cytometry to asses their maturation phenotype. The proportions of mature 

CD11bhigh CD27+ and fully differentiated CD11bhigh CD27- NK cells were significantly 

reduced in the CNS of CX3CR1-deficient mice (14.2 ± 2.9% compared to 25.5 ± 2.9% 

mature cells and 9.7 ± 4.9% compared to 15.2 ± 3.7% fully differentiated cells), but 

increased in spleen when compared to WT mice (54.5 ± 2.5% compared to 43.1 ± 4.5% 

fully differentiated cells) (Figure 13A). These shifts in the mature versus immature NK cell 

fractions observed under CX3CR1-deficiency in spleen and CNS were also reflected in a 

diminished (spleen) and elevated (CNS) immature to mature NK cell ratio compared to 

WT animals (1.1 ± 0.2 compared to 2.3 ± 0.5 in spleen and 5.1 ± 0.9 compared to 2.5 ± 0.4 

in the CNS) (Figure 13B, right graph). In comparison, immature to mature NK cell ratios 

were not significantly different between healthy n.i. WT and CX3CR1-deficient mice 

(Figure 13B, left graph). 
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Figure 13. Proportioned distribution of NK cell subsets in WT and CX3CR1-deficient EAE mice. 
According to their maturation status, NK cell subsets were analysed by flow cytometry in MOG33-35 
immunized WT and CX3CR1-deficient mice at day 20 (n = 10 and n = 8, respectively, per group) p.i. in          
A) peripheral blood, the draining lymph nodes, the spleen and the CNS. Representative contour plots are 
shown right beside. B) Ratios of immature to mature NK cells from n.i. mice (left graph) and mice at d20 
after immunization (right graph) are shown. Graphs show mean ± SEM. * P < 0.05, ** p < 0.01,                          
*** p < 0.001. (Hertwig et al., Eur J Immunol, in revision). 
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Due to these observations, the expression of another chemokine receptor – CCR7 – that 

could facilitate the migration of immature NK cells into the inflamed brain was aimed to 

be investigated. Contrary to CX3CR1 expression in circulating NK cells, CCR7 was found 

to be expressed primarily on the immature CD11bneg/low CD27+ fraction (Figure 14). 

However, CCR7 expression analysis on NK cells from WT and CX3CR1-deficient EAE 

mice did not revealed evaluable data so far. 

 

Figure 14. Chemokine receptor expressions on blood-derived NK cells. NK cells were isolated from 
peripheral blood of healthy WT mice (n = 5) and A) CCR7 and B) CX3CR1 expression on the NK cell 
subsets according to the maturation marker CD11b and CD27 were analyzed by flow cytometry. Data are 
shown as bars representing means ± SEM. * P < 0.05, ** p < 0.01, *** p < 0.001. 

4.1.5 Disease-ameliorating effects of mature WT NK cells transferred prior to EAE 

induction into CX3CR1-deficient mice  

As described above, it could be observed that the frequency of mature NK cells migrating 

into the CNS during EAE was reduced in CX3CR1-deficient mice compared to WT mice, 

although the total amounts of NK cells in the CNS were comparable (Figure 9B and 13A). 

Therewith associated deficient NK cell activity inside the CNS may contribute to the 

increased EAE severity observed in CX3CR1 deficient mice. To investigate whether 

mature spleen-derived NK cells from WT mice may restrict EAE development, splenic NK 

cells from WT and CX3CR1-deficient mice (or PBS as control) were transferred into 

CX3CR1-deficient recipient mice one day prior EAE induction.  
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Table 7. Clinical EAE disease parameter of CX3CR1-deficient mice transferred with NK cells or control 

PBS injection prior immunization.*   

Genotype of 
transferred NK cells 

N Incidence Mean disease 
onset ± SD 

Mean maximum 
clinical score ± SD 

CX3CR1GFP/GFP 24  17 / 24 13.7 ± 1.6 1.7 ± 1.4 

CX3CR1+/+  24  15 / 24 13.9 ± 1.9 1.2 ± 1.3 
PBS 24  21 / 24 11.6 ± 1.7 2.3 ± 1.1 

* Hertwig et al., Eur J Immunol, in revision  

In these experiments it could be observed that transfer of WT NK cells reduced EAE 

incidence (Table 7), ameliorated clinical severity (Figure 15A) and cumulative disease 

activity (12.9 ± 3.1% in CX3CR1-deficient mice receiving WT NK cells compared to             

23.8 ± 2.9% in control mice) (Figure 15B), and delayed disease onset (Figure 15C and 

Table 7). Mice transferred with NK cells from CX3CR1-deficient donors also appeared to 

benefit from the transfer, although the effects were not statistically significant. 

 

Figure 15. NK cell transfer into CX3CR1-deficient recipients prior to EAE induction. NK cells, isolated 
from WT and CX3CR1-deficient (CX3CR1GFP/GFP) mice or PBS as control, were transferred intravenously 
into CX3CR1GFP/GFP mice one day before EAE induction. A) Daily clinical scores with mean ± SEM.           
B) Cumulative disease activity including mean values (horizontal bars) ± SEM. C) Percentual representation 
of disease onsets. * P < 0.05, ** p < 0.01, *** p < 0.001 (Hertwig et al., Eur J Immunol, in revision).  

In six of the mice receiving WT CX3CR1+/+ NK cells, it was next examined whether this 

single NK cell injection prior to immunization might affect NK cell distribution inside the 

CNS compared to the PBS control mice. Frequencies and absolute numbers of CNS NK 

cells were assessed at day 20 p.i., and the maturation phenotype was defined by the 

expression of CD27 and CD11b as described above. In mice receiving a transfer of WT-
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NK cells an increased number of NK cells in the spleen and CNS (11714.0 ± 2271.0 cells/ 

Mio. compared to  9016.0 ± 1329.0 cells/ Mio. in spleen; 727.0 ± 134.2 cells/ Mio. 

compared to  300.6 ± 121.1 cells/ Mio. in the CNS) (Figure 16A), an enhanced proportion 

of early mature CD11b+ CD27+ NK cells inside the CNS (35.5 ± 10.4% compared to      

20.2 ± 4.8%) (Figure 16B) and an overall smaller immature to mature NK cell ratio in this 

organ (2.0 ± 1.1 compared to 3.5 ± 1.1) (Figure 16C) could be detected.  

 

Figure 16. Effects of splenic CX3CR1+/+ NK cells after transfer into CX3CR1-deficient recipients prior 
to EAE induction. To quantify and investigate the phenotype of NK cells in transferred EAE mice, a group 
of PBS-injected controls (n = 6) and WT (n = 6) NK cell transferred mice were sacrificed at day 20 p.i. A) 
Absolute numbers of NK cells (left graph) and NK cell frequencies (right graph) were determined in 
peripheral blood, spleen (spl) and the CNS. B) Frequencies of the different NK cell maturation subsets in the 
CNS of animals injected with PBS or WT NK cells prior immunization, and representative contour plots. D) 
Ratios of immature to mature NK cells in the CNS.  * P < 0.05, ** p < 0.01, *** p < 0.001 (Hertwig et al., 
Eur J Immunol, in revision). 

Frequencies and numbers of CD4 or CD8 T cells in peripheral blood, lymph nodes, spleen 

and the CNS remained unaltered in mice injected with WT NK cells with respect to the 

control mice injected with PBS (Figure 17).  
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Figure 17: Distribution of T cells in NK cell transferred EAE mice. CX3CR1-deficient mice received a 
single injection of WT NK cells (n = 6) or PBS (n = 6) prior to immunization with MOG33-35. At day 20 p.i., 
numbers of T cells were investigated by flow cytometry in various organs. A) Gating strategy for T cells 
(exemplarly shown for lymph node-derived T cells in n.i. mice). Numbers of B) CD3+ CD4+ and C) CD3+ 

CD8+ T cells in peripheral blood, lymph nodes, spleen and the CNS. Data are shown as bars indicating mean 
values  ± SEM. 

In parallel, peripheral blood, splenic and CNS NK cells of all three recipient groups were 

stained for GFP to differentiate between the CX3CR1GFP/GFP NK cells of the CX3CR1-

deficient recipient mice and the transferred WT NK cells and therewith to investigate the 

exact migration pattern of the transferred NK cells and whether EAE disease amelioration 

of the CX3CR1+/+ → CX3CR1GFP/GFP group (Figure 15) really was due to the migration of 

the transferred mature WT NK cells into the inflamed CNS. 

Indeed, a higher proportion of GFP-negative NK cells could be detected in the CNS of 

mice receiving WT NK cells prior to immunization compared to the PBS control group and 

mice receiving CX3CR1-deficient NK cells (1384.0 ± 590.1 cells compared to                      

687.9 ± 309.7 and 318.7 ± 143.4 cells, respectively) (Figure 18). In contrast, no major 

differences could be observed in peripheral blood and spleen between the groups. 

Furthermore, the increased fraction of GFP-negative NK cells in the CNS of WT NK cell-
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recipients displayed an highly mature phenotype consisting of CD11b
high 

CD27
+
 NK cells 

(57.1 ± 3.1% fully mature cells compared to 19.3 ± 5.4% in the control group and                  

21.9 ± 5.4% in the group receiving CX3CR1-deficient NK cells) ( Figure 18). 

 

Figure 18. Tracking of NK cells 20 days after transfer into recipient mice. CX3CR1-deficient mice 

received a single injection of WT NK cells (n = 6), CX3CR1GFP/GFP NK cells (n = 6) or PBS (n = 6) one day 

prior to EAE immunization. When mice were sacrified 20 days p.i., tracking of the transferred NK cells was 

performed by GFP-staining for flow cytometry. A) Frequencies (left graph) and absolute numbers (right 

graph) of GFP-negative NK cells in peripheral blood, spleen and the CNS. B) Analysis of the GFP-negative 

NK cells in the CNS according to the maturation markers CD11b and CD27. Frequency-values are shown in 

the left graph, absolute numbers in the right graph. All data are shown as bars indicating mean values ± SEM. 

Data from other markers for tracking the transferred NK cells (anti-CD45.1 in combination 

with anti-CD45.2 antibody, or anti-CX3CR1 antibody) were worked out to not be 

convenient or reliable. 
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4.2 Neutrophil characteristics in MS and NMO patients compared to healthy 

individuals 

Although neutrophils represent a major feature of NMO lesions, and moreover are 

increased in patient’s CSF during acute relapses 
12-15

, the implication of these cells in the 

pathogenesis of NMO is still unclear. Therefore, a basic phenotypic and functional 

examination of NMO neutrophils has been performed. Additionally, the same analyses 

were performed simultaneously on MS patients to evaluate putative differences in this cell 

type between the two diseases that could potentially be applied as diagnostic marker for 

discrimination. 

To note, two independent cohorts of patients and HC were recruited for this study (see 

section 5.3.). After investigating the phenotypic and functional neutrophil characteristics in 

the first cohort, assays in which no differences between the groups were detected, were 

excluded in the following analysis of the second cohort. On this account, n-numbers vary 

between the performed assays. 

4.2.1 Similar absolute numbers of peripheral blood neutrophils in MS, NMO and 

HC 

Absolute numbers of circulating neutrophils were determined and compared in peripheral 

blood of MS, NMO and HC. Total counts lay within the reference range of 1.8 to 7.7 

neutrophils per nanoliter (nl) without significant differences between the groups               

(Figure 19A). As well, concentrations of serum G-CSF as major regulator of neutrophil 

proliferation, maturation and survival 
142

 did not differ between HC, NMO and MS    

(Figure 19B). 
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Figure 19. Neutrophil counts and G-CSF regulator concentrations. A) EDTA whole blood samples were 

analyzed for neutrophil absolute numbers in HC, NMO and MS (n = 9-11 in all groups). Results are shown as 

Tukey box and whiskers diagrams (mean ± SEM).  B) Serum concentrations of the neutrophil regulator 

glycoprotein G-CSF in HC, NMO and MS are shown as aligned dot plots. Horizontal lines indicate             

means ± SEM. 

4.2.2 Comparable expression of complement regulator proteins on neutrophils in 

MS, NMO and HC 

Apart from granulocyte accumulations, complement deposits represent another major 

component of NMO lesions. Neutrophils possess the ability to directly activate the 

complement system, which itself can act as positive feedback for amplification of 

neutrophil activation. In peripheral blood, the activation of the complement system is kept 

under the control of several fluid phase and cell membrane regulators 
179

.  

Therefore, the surface expression of the complement regulators CD46, CD55 and CD59 on 

neutrophils was monitored in HC, NMO and MS (Figure 20) by flow cytometry. No 

differences in the surface expression of these membrane regulators between the three 

groups were detected (Figure 20C). 
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Figure 20. Expression of neutrophil complement regulator proteins. A) For all analyses of surface marker 

expression, granulocytes were identified by their characteristic size and granularity in the sideward to 

forward scatter graph. Neutrophils were distinguished from eosinophils by their lower autofluorescence in the 

FITC- and PE-channel and their expression of CD16b. Neutrophil PE median fluorescence (MedFl) was 

evaluated to assess expression of the respective surface marker and normalized to its isotype control value 

calculating MedFl (Marker) x 100 / MedFl (respective isotype control). B) Representative histograms for the 

complement regulators CD46, CD55 and CD59. C) Distinct surface expression of CD46, CD55 and CD59 in 

HC, NMO and MS patients (n = 9-11 in all groups). Mean values of each group are represented by                  

bars ± SEM and Dunn’s multiple comparison post-hoc-test p-values < 0.05 are considered significant                     

(p < 0.05, ** p < 0.01, *** p < 0.001). 

4.2.3 Activated neutrophil phenotype in MS and NMO patients 

Priming of resting neutrophils in circulation takes place as soon as the cells encounter 

pathogenic stimuli. The latter trigger the up-regulation of surface receptors involved in 

neutrophil recruitment to sites of infection and inflammation, such as fMLPR, TLR2 and 

CXCR1.  
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Figure 21.  Expression of neutrophil marker for activation, immune response, chemotaxis and 

migration 
171. Analyses of surface marker expression were performed as described before. A) Representative 

dot plots and histograms for TLR2, fMLPR, as indicators for a response to pathogenic and bacterial agents, 

respectively, the chemokine receptor CXCR1 and the adhesion molecules CD62L and CD43 (from top to 

bottom). B) Distinct surface expression of TLR2, fMLPR, CXCR1, CD62L, CD43 (from top to bottom) in 

HC, NMO and MS patients. Mean values of each group are represented by horizontal bars ± SEM and 

Dunn’s multiple comparison post-hoc-test p-values < 0.05 are considered significant (p < 0.05, ** p < 0.01,  

*** p < 0.001). 

Expression analysis of these surface markers (Figure 21) by flow cytometry revealed a 

significant upregulation of TLR2 and fMLPR mean median fluorescence (MedFl) on 
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neutrophils in NMO (253.3 ± 15.3 and 210.8 ± 15.7 MedFl, respectively) and MS                

(242.2 ± 16.5 and 220.1 ± 22.5 MedFl, respectively) as compared to HC (176.7 ± 11.3 and 

155.0 ± 7.3 MedFl, respectively) (Figure 21B). 

The mean expression of the chemokine receptor CXCR1 was increased only in MS           

(3490.0 ± 297.2 MedFl) as compared to HC (2348.0 ± 221.2 MedFl) (Figure 21B). In this 

line, serum concentrations of IL-8, the ligand of CXCR1, showed a trend towards higher 

concentrations in MS compared to HC (Figure 22).  

 

Figure 22. IL-8 serum concentration. Conventional ELISA was used to analyze IL-8 serum concentrations 

in HC, NMO and MS. Means values are shown as bars ± SEM. 

4.2.4 Reduced neutrophil adhesion and migratory capacity in NMO compared to 

MS patients 

In order to access sites of infection or inflammation, neutrophils undergo a selectin-

mediated process called extravasation which includes the cell’s adhesion, rolling, and 

transmigration through a respective endothelium 
139

. To investigate the neutrophil 

extravasatory capacity in NMO and MS, the surface expression of CD62L (L-selectin) and 

CD43 (E-selectin ligand), which are both involved in leukocyte primary and firm adhesion 

to endothelium (Figure 21), was analyzed next by flow cytometry. Here, it could be 

observed that the mean expression of the homing receptor CD62L was significantly 

increased in NMO (5580.0 ± 607.1 MedFl) but not MS (4173.0 ± 452.1 MedFl) as 

compared to HC (3315.0 ± 265.6 MedFl). In contrast, the adhesion molecule CD43 was 

down-regulated in NMO (1936.0 ± 240.0 MedFl) when compared to MS (3331.0 ± 271.8 

MedFl), but not when related to HC (1968.0 ± 211.3 MedFl) (Figure 21B).  
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In the last step of extravasation, neutrophils transmigrate through the endothelium and 

access the site of infection and inflammation, where they deploy their antimicrobial 

arsenal. To evaluate neutrophil transmigration in NMO, MS and HC, their migratory 

capacity towards a concentration gradient of the chemoattractant fMLP was assessed using 

the commercially available Migratest
TM

 (Figure 23).  

 

Figure 23. Neutrophil mirgation in response to fMLP 
171

. A) Using MigratestTM, the neutrophil migration 

capacity towards a concentration gradient of fMLP was evaluated. Granulocytes and counting beads were 

identified in the PerCP to SSC scatter, excluded from dead and other cells and depicted in the FSC to SSC 

scatter. The difference between migrated granulocytes with and without fMLP stimulation was calculated to 

assess the migratory capacity. B) Differences (Δ) in the mean migratory capacity of blood neutrophils 

stimulated with fMLP or left untreated in HC, NMO and MS patients. Mean values of each group are 

represented by horizontal bars ± SEM and Dunn’s multiple comparison post-hoc-test p-values < 0.05 are 

considered significant (p < 0.05, ** p < 0.01, *** p < 0.001). C) Correlation between the neutrophil surface 

expression of fMLPR and their migratory capacity is shown. The non-parametric Spearman correlation test 

was used to calculate statistical significance. P-values < 0.05 are considered significant and r2 indicates linear 

regression. 
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Here, NMO neutrophils displayed a trend towards decreased mean migratory capacity in 

response to fMLP (27.8 ± 3.9%) when compared to HC (35.3 ± 3.9%) and a diminished 

migration compared to MS (56.1 ± 4.2%) (Figure 23B). Contradictorily, NMO and MS 

neutrophils express comparable levels of fMLPR, which in both groups of patients was 

increased compared to HC (Figure 21B). This discrepancy was also reflected in the lack of 

correlation observed between migratory capacity and the expression of fMLPR in NMO. 

On the contrary, a positive correlation between the receptor and migration toward the 

ligand was detected in MS (Figure 23C). 

4.2.5 Decreased production of ROS by NMO neutrophils compared to MS 

neutrophils 

Reactive oxygen species (ROS) represent a major weapon of the neutrophil antimicrobial 

activity and are produced upon neutrophil activation in a reaction cascade initiated by the 

NADPH oxidase complex 
139

. On this account, the capacity of NMO, MS and HC 

neutrophils to produce ROS upon stimulation with fMLP was investigated (Figure 24).  
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Abbildung 24: Neutrophil oxidative burst capacity 171. A) The oxidative burst capacity of blood-derived 

neutrophils was evaluated by determining the difference in mean fluorescence intensity (MFl) of oxidized 

dihydrorhodamine 123 between fMLP-stimulated and unstimulated neutrophils. Neutrophils were identified 

as described before. B) Differences (Δ) in the MFl of the cell-permeable dye DHR 123 oxidized to 

rhodamine 123 by peripheral blood neutrophils in dependence of fMLP stimulation in HC, NMO and MS 

patients. Mean values of each group are represented by horizontal bars ± SEM and p-values < 0.05 are 

considered significant (p < 0.05, ** p < 0.01, *** p < 0.001). 

In line with the data on migratory capacity, a trend towards decreased mean respiratory 

burst, i.e. mean fluorescent intensity (MFl) of DHR 123 oxidized by neutrophils, in 

response to the chemoattractant fMLP was observed in NMO neutrophils (18.9 ± 6.3 MFl) 

when compared to HC (21.9 ± 5.3 MFl), and a significant reduction when compared to MS 

(57.4 ± 12.7 MFl). As well, MS neutrophils displayed an enhanced respiratory burst 

compared to HC (Figure 24B), confirming a previous report by Naegele et al. (2012) 
158

. 

4.2.6 Comparable neutrophil phagocytosis but decreased degranulation in NMO 

compared to MS patients 

Apart from the production of ROS, phagocytosis and degranulation are additional crucial 

processes in the neutrophil spectrum of efficacy.   
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Data from Phagotest
TM

 analysis to determine the mean percentage of phagocytic 

granulocytes and the number of ingested bacteria per granulocyte did not show differences 

between HC, NMO and MS (Figure 25B and C).  

 

Figure 25. Neutrophil phagocytic capacity 
171

. Using PhagotestTM, the phagocytic capacity of peripheral 

blood neutrophils was determined in HC, NMO and MS patients evaluating the difference of phagocytized 

FITC-labelled, opsonized E.coli-bacteria at 0°C or 37°C. A) As indicated in the PhagotestTM manufacturer’s 

instructions, bacteria aggregates were excluded from the leukocyte population in the PE-histogram and 

granulocytes were identified through their specific size and granularity in the SSC to FSC plot. The fraction 

of neutrophil phagocytized bacteria was thereafter depicted in the FITC to SSC plot. B) Difference (Δ) in the 

percentage of neutrophils phagocytizing FITC-labelled E.coli-bacteria at 0°C and 37°C in HC, NMO and MS 

patients. C) FITC Geometric Mean Fluorescence (GeoMean Fl) representing the number of ingested bacteria 

per granulocyte in HC, NMO and MS. Mean values of each group are represented by horizontal bars ± SEM 

and p-values < 0.05 are considered significant (p < 0.05, ** p < 0.01, *** p < 0.001). 
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In contrast, the flow cytometric assessment of the mean expression of the surface marker 

CD63 – due to exocytosis of azurophilic granules –, and ELISA determination of MPO 

serum concentrations revealed a significant decrease of these two degranulation markers in 

NMO (195.5 ± 10.9 MedFl and 10.6 ± 1.2 ng/ ml, respectively) compared to MS                     

(284.8 ± 27.5 MedFl and 16.8 ± 1.2 ng/ ml, respectively) (Figure 26B and C). CD63 

expression on NMO neutrophils and MPO levels in NMO serum were comparable to the 

values in HC (186.7 ± 11.1 MedFl and 8.7 ± 0.5 ng/ ml, respectively) (Figure 26B and C). 

Serum levels on the neutrophil polymorphonucler (PMN) elastase only showed trends 

toward higher concentrations in MS patients compared to NMO and were not different in 

NMO and MS as compared to HC (Figure 26D).  

 

Figure 26. Neutrophil degranulation 171. To compare neutrophil degranulation between HC, NMO and MS 
patients, CD63 surface expression and MPO levels were determined. A) Representative dot plots for CD63 
expression on neutrophils. B) The expression of CD63 on the outer cell membrane due to azurophilic granule 
exocytosis was evaluated as described before. Serum levels of C) MPO and D) the PMN elastase were 
determined by conventional sandwich ELISA. Data are shown as Tukey box and whiskers diagrams              
(mean ± SEM). Dunn’s multiple comparison post-hoc-test p-values < 0.05 are considered significant 
(p < 0.05, ** p < 0.01, *** p < 0.001). 
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4.2.7 No influence of the patients treatment status and neurological deficits on the 

neutrophil profile 

In addition to the results described in sections 4.2.1-6, untreated NMO and MS patients 

included in the study were analyzed separately to examine potential effects of 

pharmacological treatment (Figure 27) on the neutrophil phenotype and functionality. 

Generally, it could be observed that these untreated patients showed the same neutrophil 

profile as the whole cohorts (Figures 21, 23-25). Although the number of patients was 

limited, group differences were identical in untreated cohorts, when data were analyzed 

using a two-group comparison test. However, due to the small sample size, differences 

were no longer significant after correction for multiple comparisons (Figure 27). 
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Figure 27. Treatment effects on the neutrophil phenotype and functionality 171. To examine the influence 
of medical treatment on the results shown in figures 21-26 all data were validated on untreated NMO and MS 
patients. A) Neutrophil immune response (TLR2-, left graph and fMLPR expression, right graph). B) 
Expression of migratory and chemotactic molecules on neutrophils (CX3CR1, left graph; CD62L, middle 
graph; CD43, right graph). C) Neutrophil degranulation through CD63 surface expression (left graph), MPO 
serum (middle graph) and PMN elastase serum concentrations (right graph). D) Neutrophil migration (left 
graph), oxidative burst (middle graph) and phagocytic capacity (right graph). Bars indicate mean                    
values ± SEM and p-values < 0.05 are considered significant (p < 0.05, ** p < 0.01, *** p < 0.001). 

As well, all neutrophil data were analyzed for potential correlations with relevant clinical 

aspect of the patients. Analyses of individual EDSS with the phenotypic and functional 

neutrophil data did not reveal any significant correlations. Furthermore, no association 

between AQP4-IgG seropositivity and neutrophil profile were found (Figure 28). 
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Figure 28. Correlation analyses between patient’s EDSS and neutrophil characteristics. Correlation 
analyses of individual EDSS with neutrophil phenotypic and functional data were evaluated A) in NMO 
patients including consideration of AQP4-IgG seropositivity and B) in MS patients. Data are shown as dots 
representing single patients. Lines show linear regression. 

The representation of the neutrophil data on a per patient basis further indicated that indeed 

the different neutrophil features exhibit an abnormal profile in single NMO individuals that 

differ from both HC and MS. As shown in table 8, 72.7% of NMO patients display a 

diminished neutrophil functionality with regards to both migratory and oxidative burst 



75 

capacity when compared to the respective average values of MS. 93.8% of these NMO 

patients additionally show reduced expression of the adhesion molecule CD43, 81.3% 

show reduced expression of the degranulation marker CD63 as well as reduced MPO 

serum levels (Table 8). Treatment effects were not identifiable. 

Table 8. Comparison of neutrophil phenotypic and functional characteristics between NMO and MS on a per 

patient basis 171. 

 

 Oxidative Burst Migration CD43 CD62L CD63 MPO 

 

 ∆ DHR MFI 123 ∆ migrating cells 

(%) 
MedFl MedFl MedFl c (ng/ ml) 

 

compared to 

average value 

for MS 

Patients 

57.4 53.5 3123.7 4727.4 269,9 13.5 

        

tr
ea

te
d

  

NMO 1 ↓ ↑ ↓ ↑ ↓ ↓ 
NMO 2 ↓ ↓ ↓ ↓ ↓ ↓ 
NMO 3 ↓ ↓ ↓ ↓ ↓ ↓ 
NMO 4 ↓ ↓ ↓ ↓ ↓ ↑ 
NMO 5 ↓ ↓ ↓ ↓ ↓ ↓ 
NMO 6 ↓ ↓ ↓ ↑ ↓ ↓ 
NMO 7 ↑ ↓ ↑ ↑ ↓ ↓ 
NMO 8 ↓ ↑ - ↑ ↓ ↓ 
NMO 9 ↓ ↓ ↓ ↓ ↑ ↓ 

NMO 10 ↓ ↓ ↓ ↑ ↓ ↓ 
NMO 11 ↑ ↓ ↓ ↑ ↓ - 
NMO 12 ↓ ↓ ↓ ↑ - ↓ 
NMO 13 ↓ ↓ ↓ ↓ ↓ - 
NMO 14 ↓ ↓ ↓ ↓ ↓ ↓ 
NMO 15 ↓ ↓ ↓ ↓ ↓ ↓ 
NMO 16 ↓ ↓ ↑ - ↓ ↓ 

                

u
n

tr
ea

te
d
 NMO 17 ↓ ↓ ↓ ↑ ↓ ↓ 

NMO 18 ↓ ↓ ↓ ↑ ↓ ↓ 
NMO 19 ↑ ↓ ↑ ↑ ↓ ↓ 
NMO 20 ↓ ↑ ↑ ↑ ↑ ↓ 
NMO 21 ↓ ↓ ↓ ↓ ↓ ↑ 

 
NMO 22 ↓ ↓ ↓ ↑ ↓ ↓ 

 

Comparing single NMO patients to HC similar observations could be made (Table 9.). 

Comparisons of single MS patients to HC revealed augmented oxidative burst and 

migration in 81.8%, of which around 72.7% additionally showed enhanced TLR2, fMLPR, 

CXCR1, CD43 and/ or CD63 surface expression and MPO serum levels (Table 10).  
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Table 9. Comparison of neutrophil phenotypic and functional characteristics between NMO and HC on a per patient basis. 

 

  
Oxidative Burst 

 
Migration 

 
TLR2 

 
fMLPR 

 
CXCR1 

 
CD43 

 
CD62L 

 
CD63 

 
MPO 

 
PMN 

 
Phagocytosis 

 
  

∆ DHR MFI 123 ∆ migrating cells 
(%) MedFl MedFl MedFl MedFl MedFl MedFl c (ng/ ml) c (ng/ ml) Δ phagocytic 

granulocytes (%) 

 

compared to 
average value 

for HC 
13.7 35.2 179.6 155.7 2397.7 2062.1 3335.6 191.9 7.8 1.9 86.9 

 
            

tr
ea

te
d 

 

NMO 1 ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↓ 
NMO 2 ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ 
NMO 3 ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↑ 
NMO 4 ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓ - 
NMO 5 ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ 
NMO 6 ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ - ↑ 
NMO 7 ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

  NMO 8 ↓ ↑ - - - - - - - 
  NMO 9 ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ 
  NMO 10 ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↑ 
  NMO 11 ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ 
  NMO 12 ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ 
  NMO 13 ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↓ ↓ 
  NMO 14 ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 
  NMO 15 ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↓ ↓ 
  NMO 16 ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ - 
  

 
            

un
tr

ea
te

d 
 

NMO 17 ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↑ 
NMO 18 ↓ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↓ ↑ 
NMO 19 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ 
NMO 20 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ 
NMO 21 ↑ ↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ 

  NMO 22 ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↓ 
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Table 10. Comparison of neutrophil phenotypic and functional characteristics between MS and HC on a per patient basis. 

  Oxidative Burst Migration TLR2 fMLPR CXCR1 CD43 CD62L CD63 MPO PMN Phagocytosis 

  ∆ DHR MFL 123 ∆ migrating cells 

(%) 
MedFl MedFl MedFl MedFl MedFl MedFl c (ng/ml) c (ng/ml) ∆ phagocytic 

granulocytes 

 

compared to 

average value for 

HC 

13.7 35.2 179.6 155.7 2397.7 2062.1 3335.6 191.9 7.8 1.9 86.9 

 

            

tr
ea

te
d

 

MS 1 ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↑ 

MS 2 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ 

MS 3 ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ 

MS 4 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

MS 5 ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↑ 

MS 6 ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↑   

MS 7 ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓   

MS 8 ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑   

MS 9 ↑ - ↑ ↑ ↑ ↑ ↑ ↓ -   

MS 10 ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑   

MS 11 ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↓   

MS 12 ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↑   

MS 13 ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓   

 

            

u
n

tr
ea

te
d
 

MS 14 ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ 

MS 15 ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ 

MS 16 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

MS 17 ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

MS 18 ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↑   

MS 19 ↑ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↑   

MS 20 ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↑   

MS 21 ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↑   

MS 22 ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↑ ↑   
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4.2.8 Inter-assay variations 

Finally, to exclude inter assay variations, 4 randomly selected HCs were tested twice for all 

the performed assays. Despite a large time interval of approximately 2 years between 

analyses, it could be observed that all parameters showed results which lay within the 

standard deviations of each respective assay (Figure 29). 

 

Figure 29. Inter-assay variations 
171

. Four healthy donors were tested twice (with timepoint 2 two years 

after timepoint 1) for all parameters where significant differences between HC, NMO and MS could be 

detected. Left panel: oxidative burst capacity, TLRs, CXCR1 and CD62L surface expression and MPO serum 

concentration (top to bottom). Right panel: neutrophil migration capacity and expression of CD43 and CD63 

(top to bottom). ns: no statistically significant difference between timepoint 1 and timepoint 2. 
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5. Discussion 

Extensive research on autoimmune disorders of the CNS has been and is performed to 

better understand their etiopathogenic characteristics, whereby an emerging role of the 

innate immune system in CNS autoimmunity evolved in the last years. However, – and 

although enormous progress has been made – many innate cellular aspects are still elusive. 

Therefore, in the present thesis, the implication of innate immune cells – precisely NK 

cells and neutrophils – was investigated in the neuroinflammatory diseases MS and NMO. 

Here, the mouse model for MS, EAE, was used to investigate the role of natural killer cells 

and both, patients with MS and NMO were recruited to comparatively examine neutrophil 

characteristics in these disorders. 

5.1 NK cell dynamics and the implication of the chemokine receptor CX3CR1 on 

NK cell migration and effector function during the course of EAE 

NK cells belong the the group 1 of ILCs 
85

 and are involved in the immunological defense 

against viruses and tumor cells. Representing an interface between innate and adaptive 

immunity, NK cells possess immunomodulatory functionality in addition to their classical 

cytotoxic effector functions 
86, 87

.  

In MS, decreased NK cell numbers and effector functions in the circulation correlating 

with the patients disease activity were shown 
2-5, 129

. In this context, our group previously 

demonstrated that NK cell cytotoxicity can be associated with the expression of the 

chemokine receptor CX3CR1 
138

 whose gene and protein expression are reduced in MS 

patients 
6
. Moreover, patients in stable disease phase exhibit significantly low level of 

circulating CX3CR1
+
 NK cells 

6
 and according to data from animal studies, CX3CR1-

deficient NK cells do not adequately enter the inflamed CNS during EAE, resulting in 

disease exacerbation 
7
. 

Based on these findings and therewith related open questions, in the present thesis work it 

was aimed to investigate the overall distribution of NK cells in the EAE mouse model 

compared to healthy mice, and the contibution of CX3CR1 to these dynamics. It should 

further be examined whether CX3CR1 is important for the NK cell recruitment into the 

inflamed CNS in general or rather involved in the migration of specific NK cell subtypes 
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to this organ during autoimmune inflammation. As well, it was of interest if NK cells exert 

a protective or rather detrimental effect in EAE and if different NK cells subsets are 

responsible for this protection or neuronal damage. 

The obtained experimental data showed that NK cells are recruited from the periphery into 

the CNS during neuroinflammation and further that CX3CR1-mediated migration of 

mature CD11b
high

 NK cells contributes to limit EAE.  

The investigation of NK cell dynamics im WT EAE mice revealed that during the course 

of EAE disease, more precisely from the day of immunization until EAE was established 

by reaching the peak of disease, the frequency and absolute numbers of NK cells decreased 

in peripheral blood, lymph nodes and spleen, but increased inside the CNS, pointing 

towards a selective NK cell migration from the periphery into the CNS during 

inflammation (Figure 7).  

In association with alterations in numbers and function of circulating NK cells, NK cell 

mobilization to specific target organs has been reported in the course of autoimmune 
180, 181

 

and CNS pathology 
137

. Here, it is assumed that the targeted migration of NK cells may 

either contribute to, or restrict the pathologic process. For example, NK cells appear to 

have a disease controlling role in patients with SLE in which primary regulatory CD56
bright

 

NK cell migrate and accumulate into the synovial fluid. In contrast, NK cells were shown 

to be disease enhancing in patients with type 1 diabetes by being involved in the 

destruction of pancreatic β-cells 
181

. In MS patients, previous reports from our group on 

NK cells suggested that abnormal NK cell differentiation and activity may support chronic 

inflammation 
6, 178, 182, 183

. Specifically, disease activity-associated expression of the 

chemokine receptor CX3CR1 on NK cells appeared to contibute to an altered function and 

migration of NK cells displaying an immature phenotype with bright expression of CD56 

in the CSF 
6, 178

 as hypothetical intermediary compartment for NK cell trafficking into the 

inflamed CNS. Therefore, it was speculated that CX3CR1
+
 NK cell might have a 

protective, disease-restricting impact in MS and, with regard to the EAE mouse as model 

for MS, that migration of this NK cell subset into the CNS after peak of disease could 

contribute to EAE amelioration. 

To test this hypothesis the well-described CX3CR1-deficient (CX3CR1
GFP/GFP

) mouse was 

used in comparison to WT mice. CX3CR1-deficient mice were shown to develop severe 
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EAE, with deficient NK cell migration into the CNS. Importantly, CX3CR1-deficiency 

was shown to not affect the migration of T cells, NKT cells and monocytes/ macrophages 
7
. 

Here, it could be confirmed that CX3CR1-deficient mice are more susceptible to EAE than 

WT mice, showing a more severe disease course, a higher disease activity and an earlier 

onset of the disease, although EAE disease was generally rather mildly pronounced in both 

mice types (Figure 8). In addition, in previous experiments performed in the group (Dr. 

Isabell Hamann) it could be confirmed that this increased susceptibility relies on the lack 

of the CX3CR1 receptor on peripheral immune cells rather than CNS-cells as demonstrated 

in bone marrow chimeric experiments, which complemented the recent proofs reported by 

Garcia et al. 
184

. The transversal analysis of NK cell migration patterns in the CX3CR1-

deficient EAE mice showed a NK cell mobilization similar to the WT counterparts    

(Figure 9). With the exception of peripheral blood, NK cell numbers decreased in the 

spleen and showed smaller reductions in the draining lymph nodes. However, in contrast to 

the previous report from Huang et al. (2006) 
7
, a mobilization of NK cells into the inflamed 

CNS in the CX3CR1-deficient EAE mice was observed. Precisely, the direct comparison 

of healthy WT and CX3CR1-deficient mice (Figure 9) revealed a generally lower number 

and frequency of NK cells in the CX3CR1-deficient mice in the periphery as well as 

significantly less NK cells in the CNS. In contrast, the latter observation is abrogated in 

CX3CR1-deficient mice with established EAE showing similar level of CNS infiltrated 

NK cells. This discrepancy in the migration of NK cells into the inflamed CNS in 

CX3CR1-deficient EAE mice may result from differences in the experimental approaches 

used in the two studies. In the present study, CNS infiltrating NK cells were assessed 

during the earlier EAE phases, i.e. from the day of immunization until disease peak/ 

established EAE. In contrast, Huang et al. (2006) 
7
 analyzed NK cells at the time of 

remission, approximately 60 days after immunization. Consistently, transient alterations in 

NK cell frequencies and cytotoxic activity have been described in MS patients during 

periods of disease activity 
6
.  

In EAE, the dynamics of NK cells and disease activity may also be interrelated. Moreover, 

taking into account that the magnitude of CX3CR1 expression discriminates between 

different NK cell subsets in human 
138

, Huang et al. (2006) only analyzed the            

NK.1.1
+ 

GFP
+
 NK cells, i.e. only the proportion of NK cells expressing CX3CR1 without 
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consideration of the CX3CR1
-
 NK cell subpopulations, whereas the whole CD3

-
 NK1.1

+
 

NK cell population was investigated here 
7
.          

Together, these data suggest that CX3CR1 is not involved in the overall migration of NK 

cell under inflammatory conditions, but rather related to the recruitment of a specific NK 

cell subtype. 

In human, CX3CR1 has been shown to influence NK cell functionality with regard to 

cytokine expression, activation status, proliferation and cytotoxicity 
138

. Therefore, 

CX3CR1
+
 versus CX3CR1

- 
NK cells were investigated in view of their cytokine 

production, cytotoxicity and maturational status. These ex vivo experiments did not show 

evidence of intrinsic alteration in NK cell phenotype or function in CX3CR1-deficient 

mice that could possibly influence the experimental EAE data. Peripheral blood and 

splenic CX3CR1-deficient NK cells were found to display the same distinct maturation 

stages as WT cells (Figure 11). As well, the comparison of CX3CR1-deficient and WT NK 

cells revealed similar cytotoxic capacities and cytokine productions (Figure 10). However, 

the obtained data on the cytolytic capacity of CX3CR1-deficient and WT cells are in 

disagreement with a report by Ponzetta et al. (2013), which showed an enhanced 

cytotoxicity of splenic NK cells from CX3CR1-deficient mice 
185

. While Ponzetta et al. 

(2013) used whole splenocytes activated with IL-15 for their cytotoxic assay 
185

, sorted NK 

cells were utilized in the present study to avoid contamination of cytotoxic CD8
+
 T cells. 

Moreover, the sorted NK cells were not pre-activate with IL-15. In this context, other 

studies reported minimal deficits in cytotoxic activity of CX3CR1-deficient NK cells as 

compared to CX3CR1
+ 

NK cells after pretreatment with polyinosinic–polycytidylic       

acid 
186

, and anti-CX3CR1 antibody was shown to neutralize the cytotoxicity of NK cells 

against human K562 tumor cells 
187

. Thus, experimental differences may explain divergent 

results on NK cell effector functionality. Altogether, these data indicate that CX3CR1-

signalling is not essential for NK cell activation or differentiation in the here used mice and 

experimental settings and strengthen the hypothesis that CX3CR1 may rather be involved 

in the recruitment of a particular NK cell subtype into the inflamed CNS, as it has been 

postulated for human NK cells as well 
137, 178

. 

According to the expression of surface CD11b and CD27, NK cell maturation is 

conventionally defined as a 4-stage developemental pathway in mouse, differentiating 

premature NK cells as CD3
-
 NK1.1

+
 CD11b

-
 CD27

-
, immature NK cells as                              
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CD3
- 
NK1.1

+
 CD11b

neg/low 
CD27

+
, mature NK cells as CD3

- 
NK1.1

+ 
CD11b

+ 
CD27

+
 and 

fully differentiated NK cells as CD3
- 

NK1.1
+ 

CD11b
high 

CD27
- 188

. As shown for human 

NK cells 
138

, CX3CR1 was found to be predominantly expressed on fully differentiated 

CD11b
high 

CD27
-
 NK cells (Figure 12), confirming a previous report on CX3CR1 

expression within the late differentiated fraction of CD11b
+ 

KLRG1
+
 NK cells 

185
. 

Fractalkine (CX3CL1), the ligand of CX3CR1 which occurs as membrane-anchored and 

soluble form functioning as adhesion molecule and chemokine, respectively, has been 

reported to be expressed by many cell types including epithelial cells or lymphocytes and 

abundantly by neurons in the CNS 
189

. In the latter, CX3CL1 controls and regulates the 

activity and communication between neurons, glia and microglia cells under physiological 

conditions and respectively appears to direct the activity of CX3CR1-expressing microglia 

in various pathological scenarios in the brain 
190-196

. For instance, CX3CL1 has been shown 

to reduce neurotoxicity and microglial activation in a rat model of Parkinson's disease 
193

 

while CX3CR1-deficiency was reported to result in the reduction of microglial activity and 

neurotoxic Aβ accumulations in a mouse model for Alzheimer’s disease 
196

. 

Based on this background and the experimental evaluation of CX3CR1 expression on 

maturational NK cell subsets (Figure 12), increased neuron-derived fractalkine may 

contribute to the recruitment of mature NK cells to inflamed sites during EAE. 

Accordingly, it could be observed that at day 20 p.i., the CX3CR1-deficient mice displayed 

a diminished frequency of mature CD11b
high

 CD27
+
 and cells, and an elevated frequency 

of immature CD11b
neg/low 

CD27
+
 NK cells in the CNS, whereas the proportion of 

CD11b
high

 CD27
-
 NK cells was elevated in spleen, compared to WT animals (Figure 13). 

Interestingly, in non-immunized CX3CR1-deficient mice the proportion of mature fully 

differentiated CD11b
high

 CD27
-
 NK cells was generally higher in peripheral blood and 

spleen compared to WT
 
mice, while the proportions of immature CD11b

neg/low 
CD27

+
 and 

mature CD11b
high

 CD27
+
 were diminished (Figure 11). As well,  previously described data 

of Poli et al. (2013) showing a predominant presence of immature NK cells in the brains of 

healthy mice 
137

 could be confirmed (Figure 13B). Thus, these data suggest a specific 

involvement of CX3CL1/ CX3CR1 in the recruitment of mature NK cells into CNS during 

inflammation and moreover indicate that the distinct maturational NK cell subsets are 

recruited through different chemotactic signals during EAE-mediated neuroinflammation.  
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Recently, our group showed that NK cells in the human CSF display an immature 

phenotype (CD56
bright 

CD27
+ 

CX3CR1
low

), suggesting that CSF may represent an 

intermediary compartment for NK cell trafficking and differentiation before entering the 

CNS parenchyma as postulated for CCR7
+
 central memory T cells 

197
. While human 

CD56
bright

 NK cells express high levels of the chemokine receptor CCR7 
198

, it could be 

verified that only a small fraction of circulating mouse NK cells express CCR7 
199

 and that 

its expression is diametrically opposite to the expression of CX3CR1 in peripheral blood of 

healthy WT mice (Figure 14). Consequently, CCR7 may contribute to the recruitment of 

immature NK cells into the CNS during EAE. In human, CCR7 has been shown to be 

expressed in MS lesions and the CCR7 ligands CCL19 and CCL21 are expresses at the 

choroid plexus and meninges 
197, 200

. In mouse, however, the ligands are also expressed in 

cerebral venules surrounded by inflammatory cuffs 
201, 202

 and their expression has been 

shown to be upregulatd during experimental neuroinflammation, while CCR7 expression 

on blood mononuclear cells was reduced 
203

. Interestingly, murine CCL21 is also a ligand 

for CXCR3, a homing receptor of NK cells 
204

 that is expressed primarily on immature NK 

cells 
199

. This could be confirmed in preliminary data from our goup showing that CXCR3 

is expressed inversely to CX3CR1 suggesting this receptor a potential candidate for the 

recruitment of immature NK cells into the inflamed CNS (S. Romero-Suarez, unpublished 

data). However, further experiments are needed to delineate the chemotactic tools and 

route of entry of immature NK cells into the CNS during inflammation.  

So far, the increased EAE severity observed in CX3CR1 deficient mice appears to be 

associated with an impaired recruitment of mature CD11b
+
 NK cells into the CNS 

suggesting a protective, disease-limiting role of this NK cell population. Therefore, splenic 

NK cells from WT and CX3CR1-deficient mice (or PBS as control) were transferred into 

CX3CR1-deficient recipient mice one day prior EAE induction to investigate whether 

mature NK cells from WT mice may restrict EAE development. Indeed, it could be 

demonstrated that transfer of CX3CR1
+/+

 NK cells, but not of CX3CR1-deficient NK cells 

prior to EAE induction, led to a significant disease amelioration, delayed disease onset and 

reduced EAE incidence in CX3CR1-deficient mice when compared to the PBS control 

group (Figure 15). A small number of mice from the PBS control group and mice receiving 

an injection of CX3CR1
+/+

 NK cells was investigated with regard to NK cell and T cell 

distribution and organ-specific NK cell maturation profiles. Hereby, numbers and 

frequencies of CD4
+
 and CD8

+
 T cells remained unaffected in the periphery as well as in 
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the CNS and did not show differences between the groups according to the injection 

received, although cell functionalities were not validated at this point (Figure 17). In 

contrast, while numbers and frequencies of NK cells were similar in the periphery of both 

mice groups, enhanced NK cell numbers were detected in mice after transfer of 

CX3CR1
+/+

 NK cells. In addition, this transfer of WT NK cells appeared to restore the 

balance of immature and mature NK cell in the CNS during EAE (Figure 16) and analysis 

of GFP expression further revealed a increased number GFP
-
 NK cells of a predominantly 

fully differentiated CD11b
high 

CD27
-
 phenotype in the CNS of the recipient mice                

(Figure 18). 

Together, these data point to a protective role of mature CD11b
+
 NK cells into the EAE. 

However, also the transfer of CX3CR1
GFP/GFP

 NK cells showed minor disease-ameliorating 

effects supporting the idea that not a single NK cell subset confers neuroprotection but 

rather the balance between the different and well functionning NK cells subsets. In this 

line, it was reported in MS patients that the susceptibility for the development of active 

lesions on magnetic resonance imaging (MRI) and clinical attacks result from valleys/ 

transient deficits in NK cell killing activity that are associated with a NK phenotype being 

unable to deliver a “lethal” hit to targets 
129

, while other studies supported the existence of 

an immunoregulatory pathway wherein expansion of regulatory CD16
- 
CD56

bright
 NK cells 

inhibits T cell survival through disease-modifying therapies such as IFN-β 
205

 or 

daclizumab 
130

. Therefore, to use single sorted NK cell subsets in the here performed 

transfer experiments, to perform these transfers at distinct EAE disease stages and 

simultaneously to accurately track the transferred NK cells may help to better understand 

their precise implication in, and contribution to EAE/ MS disease pathogenesis, and to 

answer open questions as for example why mature CX3CR1
+
 CD11b

+
 NK cells limit EAE 

while in an experimental stroke model they seem to contribute to exacerbation of brain 

infarction through increased cytotoxicity that resulted in enhanced neuronal death 
206

. 

Deficient CX3CR1 expression on NK cells might further influence NK cell-mediated 

immuregulation as for instance interactions of NK cells with other immune cells, such as 

DCs. Although with the here performed experiments it cannot be ruled out so far whether 

the beneficial effects of transferred, mature NK cells were exerted in the periphery, 

preliminary in vitro experiments using bone marrow derived DCs co-cultured with either 

CX3CR1-deficient or WT NK cells did not show evidence of different effects of these NK 
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cells on DC differentiation and activation. Thus, the present data rather point to modulatory 

effects inside the CNS, as postulated by Hao et al. (2010) who showed that CNS-resident 

but not peripheral NK cells surpress Th17 cell responses and CNS pathology in the EAE 

mouse model by modulating the cytokine microinvironement in the CNS as well as 

microglial activity 
134

. 

Cardona et al. (2006) reported that CX3CR1 deficiency dysregulates microglial responses, 

resulting in enhanced neurotoxicity 
191

. Moreover, Garcia et al. (2013) recently provided 

evidence that CX3CR1 deficiency resulted in an enhanced recruitment of                            

CD115
+ 

Ly6C
- 

CD11c
+
 DCs into the inflamed EAE brain, correlating with increased 

severity of CNS pathology, i.e. enhanced demyelination and neuronal damage. As well, 

peripheral DCs in these mice were shown to induce T cell proliferation to a higher extent 

during the initial phases of EAE disease corresponding with increased IFN-γ and IL-17 

producing T cells in lymphoid tissues 
184

. In this line, the present data showed that NK 

cells also contribute to disease aggravation in the CX3CR1-deficient mice. Therfore, it 

could be speculated that in CX3CR1-deficent mice, the presence of CX3CR1-negative, 

immature NK cells may lead to an altered immunomodulatory interactions between NK 

cells and myeloid cells, such as DCs 
184

 and/ or microglia 
134, 207

, contributing to an 

enhanced pathogenic T cell response, and hence increased EAE disease severity in 

CX3CR1-deficient mice.  

In summary, the present study revealed that NK cells are recruited from the periphery into 

the CNS during neuroinflammation and that CX3CR1 deficiency results in an impaired 

migration of mature CD11b
+
 NK cells into the CNS during EAE. This demonstrates for the 

first time that mature and immature NK cells are recruited into the CNS by distinct 

chemotactic signals and further suggests that recruitment of fully matured                     

CX3CR1
+
 CD11b

+
 NK cells may contribute to limit neuroinflammation. Control of the 

EAE severity was recovered by transfer of mature NK cells suggesting an interesting 

therapeutic option. 
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5.1.1 Outlook 1 

The contradictory functions of NK cells are reflected in the pathology of CNS diseases by 

being implicated in either neuroprotection 
134

 or neurotoxicity 
135

. The here presented 

experimental data indicate that in the EAE mouse as model for MS, NK cells limit CNS 

inflammation, more precisely the CX3CR1
+
 CD11b

+
 NK cell subset appears to confer this 

neuroprotection, and therewith may represent a valuable target/ tool in NK-cell based 

therapeutical approaches for MS. However, many questions remain to be addressed and 

further investigations are essential to delineate the mechanisms of NK cell involvement in 

autoimmune neuroinflammation.  

With regard to the obtained data and since the pleiotropic functions of NK cells are likely 

to be related to their phenotypic heterogeneity, an analysis in more depth of mouse NK cell 

subsets and their so far understudied organ-specific phenotype and function in health 

compared to EAE disease is indispensable. A very simple panel of surface markers was 

used in the present study, only permitting to differentiate between immature, mature and 

fully differentiated CD3
- 

NK1.1
+
 NK cells according to the expression of CD11b and 

CD27 
188

. Considering the latest classification of NK cells into the group 1 of innate 

lymphoid cells 
85

, the analysis should include the transcription factors Eomes and T-Bet 
95

. 

Moreover, the expression of activating and inhibitory receptors as well as of a range of 

chemokine receptors known to be expressed at different stages of NK cell differentiation 

needs to be integrated. In this line and in order to investigate the precise routes of entry 

into the inflamed CNS, CCR7 and CXCR3 
199

 may represent potential candidate 

chemokine receptors for the mobilization of immature and early mature NK cells in 

comparison to the here analyzed fractalkine receptor CX3CR1, which is primary expressed 

on mature NK cells in both mouse and human 
138

.  

The cytotoxic activity of circulating NK cell has been shown to be decreased during acute 

relapses in MS while restored during remission phases. These transient deficits in NK cell 

killing activity were related to phenotypic alterations 
129

. In contrast, rare NKp46
+
 NK cells 

were detected in MS lesions of post morten brain tissues 
208

 and, although CX3CR1 is 

emphasized in NK cell homing into the CNS 
7
, NK cells were shown to display an 

immature CD56
bright

 phenotype with negative/ low CX3CR1 expression and associated 

with primary regulatory functions in the CSF of MS patients 
178

. These                           

CX3CR1
-
 CD56

bright
 NK cells have further been demonstrated to be expanded after 
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medical treatment with IFN-β 
205

 or daclizumab 
130

 in association with diminished disease 

flares. Since frequencies of circulating CX3CR1
+
 NK cells were also shown to correlate 

with MS disease activity 
6
, it could be of interest how CX3CR1 expression is modulated by 

IFN-β or daclizumab treatment. Moreover, to investigate the influence of the inflammatory 

CNS microenvironment on systemic NK cell phenotypic and functional alterations as well 

as the characterization of CNS-resident NK cells needs to be performed in order to better 

understand the presence and contribution of specific NK cell subtypes in the CNS and CSF 

during neuroinflammation.  

In this line, the here performed transfer EAE experiments need to be optimized and 

extended. After precise evaluation of the distinct NK cell subsets, they should be separately 

transferred into respective mice strains (such as CX3CR1-, CXCR3- or CCR7-deficient 

compared to WT mice) before EAE induction and at distinct stages of EAE disease to 

address several open questions. First, what are the NK cell routes of entry into the CNS? 

Do distinct NK cell subsets use different trafficking routes? The BBB has been considered 

the obvious place of entry for peripheral immune cells into the CNS. However, the choroid 

plexus evolved as an alternative entry site for circulating lymphocytes 
209

 and distinct 

molecular requirements have been identified for the entry of T cell subsets, suggesting that 

the choroid plexus is involved in the immune surveillance of the CNS 
210

.  Accordingly, is 

has to be clarified if the CSF may represent an intermediary compartment for trafficking 

and differentiation of distinct NK cell subsets before entering the CNS parenchyma as it 

has been shown for T cells 
197

. In a second approach, these transfer experiments could be 

used to evaluate if all NK cell subsets exert a neuroprotective role, and moreover to 

investigate how/ by which mechanisms distinct NK cell subsets control/ limit EAE 

neuroinflammation. Are they involved in the killing of autoreactive or pro-inflammatory 

microglia? Do and how do they contribute to the modulation of DC and/ or 

encephalitogenic T cells? 
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5.2 Contribution of neutrophils to MS and NMO disease pathogenesis 

As part of the innate immune system, neutrophil granulocytes represent the most abundant 

type of white blood cells and participate in the first line of host defense and inflammation, 

and further in shaping the adaptive immune response 
155

. However, neutrophils were not 

only shown to be involved in physiological but also pathological processes and many 

studies revealed evidence for detrimental effects of neutrophils in the pathogeneses of 

various diseases and autoimmune disorders 
156, 157

.  

In MS, patients exhibit activated neutrophils in circulation and increased levels of NETs in 

serum 
158

. Moreover, findings from animal studies indicate a disease-promoting 

involvement of neutrophils during all phases of the disease, e.g. by contributing to the 

disruption of the BBB and formation of inflammatory lesions in preclinical phases or by 

stimulation and promotion of innate and adaptive immune responses in the effector   

phases 
160-162

. Although increased neutrophil numbers were detected in the acute EAE 

mouse brain 
159

, neutrophils were not found to be a (major) component of cellular deposits 

in MS/ EAE inflammatory lesions. In contrast, lesions of NMO patients contain 

accumulated numbers of neutrophils 
12, 70, 76, 165

. Furthermore, these patients display 

increased neutrophil counts and levels of neutrophil-related cytokines in the CSF 
14, 15

 and 

depletion of neutrophils in the NMO mouse model was associated with a reduction in 

neuroinflammation, myelin and AQP4 loss 
163, 167

. 

To better understand the potential contribution of neutrophils to the NMO and MS 

pathology, a detailed analysis of the neutrophil phenotype and function in both conditions 

compared to HC was performed. The main aspects of this study were to, first, analyse the 

surface expression of peripheral blood neutrophils in patients and HC taking into 

consideration markers which are involved in the neutrophilic immune response, 

complement regulation, chemotaxis, adhesion and migration processes. Second, to evaluate 

neutrophil effector functions with respect to migration, ROS production, degranulation and 

phagocytosis. Third, to correlate the neutrophil phenotypic and functional data with clinical 

parameters of the NMO and MS patients. And fourth, to examine the influence of the 

patient’s medical treatment on the neutrophil phenotype and functionality. 

The resulting data showed that, independently of the patient’s medical treatment or 

influence of clinical parameters, neutrophils exhibited a primed phenotype in both NMO 
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and MS when compared to HC. However, neutrophil functionality was compromised in 

NMO as compared to MS with respect to adhesion and (trans-) migration, oxidative burst 

and degranulation. 

No differences in the neutrophil absolute counts between the patient groups and also when 

compared to HC were observed. Naegele et al. (2012) found increased neutrophil counts in 

their RRMS patient cohort compared to HC, associating it with delayed neutrophil 

apoptosis what they verified in vitro 
158

. In contrast – but in line with the data presented 

here (Figure 19B) – they did not find higher serum concentrations of G-CSF, a major 

regulator of neutrophil granulopoiesis that further is known to delay apoptosis when 

present in elevated concentrations 
147

. These discrepancies might be due to the clinical and 

demographic characteristics (specifically with regard to gender and medical treatment) 

between the patients recruited for the present study and the one’s investigated by Naegele 

et al. (2012) 
158

. Moreover, the here observed similar neutrophils counts and serum G-CSF 

levels were determined in a cohort including as few as 12 NMO, 12 MS and 10 HC (see 

section 3.3). 

In view of the fact that NMO is a rare disease and patient recruitment is highly limited, 

neutrophil phenotype and function was first investigated in this preliminary cohort of 10 

HC, 12 NMO and 12 MS patients, and subsequently extended by analyzing a second 

cohort of 12 HC, 10 NMO and 10 MS patients. Similar results were obtained in both 

cohorts. However, due to limited sample size, the multiple comparison testing showed only 

a trend for some of the parameters when each cohort was analyzed separately, although the 

two-group comparisons did reach statistical significance. Therefore, the final data analysis 

was performed in the combined cohort of 22 HC, 22 MS and 22 NMO. 

As well, four randomly selected HC were tested twice for all experimental protocols to 

monitor the precision of results in the combined analysis of the two cohorts showing that 

the applied methodology was reliable and inter-assay variations for the repeated 

measurements were acceptable (Figure 29). 

Under systemic stress or inflammation, circulating neutrophils are primed by classical or 

bacterial/ fungal-derived pro-inflammatory mediators to be subsequently recruited to the 

sites of infection or inflammation 
139

. Therefore, the neutrophil surface markers essential 

for efficient response to infectious agents (fMLP receptor, TLR2), chemotaxis (CXCR1) 
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and extravasation (CD62L, CD43) as well as complement regulation (CD46, CD55, CD59) 

were investigated for the purposes of comparative phenotypical characterization in NMO, 

MS and HC.  

NMO is thought to be primary driven by humoral processes. In this line, inflammatory 

feedback-loops between neutrophils and the complement system might promote and 

sustain NMO disease progression since intense complement deposits associated with 

granulocyte infiltrations were found in post mortem NMO brains 
12, 70, 76, 165

 and neutrophil-

derived components were shown to activate the complement system in other autoimmune 

disease and vice versa 
14, 15

. In contrast, MS is considered a T cell-mediated disease and the 

roles of the classical and terminal complement pathways are less clear. However, the 

complement alternative pathway has been shown to be involved in the pathogenesis in    

MS 
211

. Therefore, the investigation of the neutrophil ability to regulate complement 

activation was included in the present study. Here, it could be observed that the 

complement regulator proteins CD46, CD55 and CD59 were expressed at similar levels on 

neutrophils from HC, NMO and MS patients (Figure 20) indicating that no major 

alterations in the regulation of complement activation via these regulators during the 

remission phase in NMO and MS patients contribute to the disease pathogenesis.  

As part of activation and recruitment to sites of infection and inflammation, the neutrophil 

surface receptors TLR2 and fMLPR, which are involved in the response to infection, and 

the chemokine receptor CXCR1 are up-regulated by respective priming agents 
212, 213

. In 

accordance, the analysis of these markers showed an increase in the MedFl of fMLPR and 

TLR2 in both, NMO and MS compared to HC (Figure 21), presumably due to the chronic 

inflammatory milieu characteristic for the two disease conditions. CXCR1, whose 

expression can enhance the neutrophil adhesive and migratory capacities as well as effector 

functionality 
214, 215

, was significantly up-regulated in MS compared to HC and showed 

slightly enhanced expression in NMO (Figure 21). These findings resonate with previously 

published data on RRMS patients 
158

. In contrast, while Naegele et al. (2012) observed 

increased serum IL-8, the ligand of CXCR1 
158

, only a trend towards higher concentrations 

in MS could be detected in the present study participants (Figure 22), though stimulated 

neutrophils themselves produce IL-8 in an autocrine mechanism through TLR2       

signaling 
213

. As for the G-CSF serum concentrations, IL-8 levels were determined in only 

12 NMO and 12 MS patients. To verify whether these apparently inconsistent data result 
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from the limited number of patients or rather are due to clinical or demographic patient 

characteristics or neutrophil functional deficits needs to be investigated. 

Primed neutrophils enter the sites of infection or inflammation by migrating from the 

circulation through endothelium. This extravasation process is mediated by a range of 

selectins and integrins on the neutrophil and endothelial cell surface 
139

. Therefore, the 

neutrophil surface expression of the L-selectin CD62L and the E-selectin ligand CD43 

were analyzed. The expression of CD62L was significantly increased in NMO compared to 

HC and enhanced compared to MS. In contrast, the adhesion molecule CD43 expression 

was significantly down-regulated on NMO neutrophils compared to MS (Figure 21). The 

initial adhesion of circulating neutrophils to the endothelium takes place through CD62L 

mediating the interaction with other endothelial cell ligands important for transendothelial 

migration to the target tissue. After binding, CD62L is rapidly shed from the neutrophil 

surface releasing an extracellular, functionally active fragment which – in respective 

amounts – can inhibit further leukocyte attachment to the endothelium 
216

. CD43 has been 

shown to have dual-adhesive/ anti-adhesive functions, depending on the cell type, cell 

developmental stage, glycosylation and sialylation of CD43 and importantly also 

depending on the presence or absence of E-selectin 
217, 218

. Since CD62L has been reported 

to mediate E-selectin binding in human 
219

, neutrophils may have a pro-adhesive function 

of CD43 in the context of neutrophil extravasation. In consideration of these findings, the 

here obtained CD62L and CD43 expression data might point towards a dysfunctional 

ability of NMO neutrophils to effectively adhere to endothelium compared to HC and MS. 

In fact, such a failure of neutrophil extravasation has already been described for other 

systemic and chronic inflammatory conditions such as sepsis or RA 
216, 220-222

. In septic 

patients, it has been shown that over-activation of the TLR2-signalling is involved in the 

neutrophil migration defects resulting in the down-regulation of chemotactic receptors 
221

 

and the production of high amounts of nitric oxides (NO) which in turn lead to inhibited 

expression of adhesion molecules on endothelial cells 
221, 223

. In this line, significantly 

higher TLR2 expression on NMO neutrophils compared to HC were also detected in the 

present study (Figure 21) further supporting an impaired extravasation of NMO 

neutrophils. Moreover, a decreased migration of NMO, but not MS neutrophils towards a 

gradient of fMLP was observed (Figure 23B). Here, a positive correlation between the 

neutrophil migratory capacity and the surface expression of fMLPR could be evaluated 

only in MS and, unexpectedly, not in NMO (Figure 23C), although both NMO and MS 
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patients displayed increased fMLPR expression (Figure 21). Thus, it could be speculated 

that adhesion failure through disequilibrated expression of molecules such as CD62L or 

CD43, and neutrophil exhaustion (e.g. through enhanced signaling via TLR2) may 

contribute to an impaired migration of neutrophils in NMO. However, further 

investigations are needed to prove this conjecture. 

As neutrophil migration, the oxidative burst capacity of peripheral blood neutrophils was 

analyzed in response to fMLP stimulation (Figure 24A). Here, an increased mean oxidative 

burst capacity was detected in MS patients compared to HC and NMO, whereas NMO 

neutrophils further showed a trend towards lower oxidative activity when compared to HC 

(Figure 24B). Alterations in the oxidative burst metabolism were previously described in 

other autoimmune disorders. For example, inappropriate release of ROS was found in RA 

joints and also the synovial fluid of SLE patients. However, data are controversial and 

reduced as well as increased oxidative burst activities were described 
224-226

. As a result 

from the obtained data on MS and NMO patients, altered oxidative burst metabolism in 

these disease conditions can be hypothesized. As well, an involvement of ROS in the 

formation of inflammatory lesions and/ or promoting disease chronicity appears reasonable 

in both MS and NMO but even more in the latter with regard to histological                     

findings 
12, 70, 76, 165

. However, the presented data result from neutrophils after in vitro 

stimulation with fMLP while oxidative burst can be induced intra- and extracellularly 

involving signaling through various receptors (e.g. FcγR, TLRs or complement             

receptors) 
227

. Thus, the data indicate increased oxidative burst in MS via fMLP/ fMLPR-

mediated NADPH oxidase activation what is in line with the increased expression of 

fMLPR detected on MS neutrophils (Figure 21). In NMO, on the other hand, the received 

data do not indicate a generally impaired ROS metabolism but rather support a speculation 

of an altered fMLP signaling since fMLP-mediated migration of NMO neutrophils was 

reduced as well (Figure 23B), although fMLPR expression was increased (Figure 21). 

Therefore, patient serum level could further be investigated for ROS components and 

derivates, and other stimuli inducing oxidative burst should be tested on NMO neutrophils.  

Neutrophils have previously been shown to incur functional exhaustion displaying 

inhibited chemotaxis and migration 
220-223, 228

, reduced oxidative burst activity, but a 

phagocytic activity comparable to HC 
229-232

. In this line, similar proportions of phagocytic 

neutrophils and comparable phagocytic activities were found in NMO as compared to HC 



94 

and also MS (Figure 25). As one of the final effector mechanisms in the neutrophil life-

cycle, phagocytosis is induced after neutrophil extravasation into infected/ inflamed tissue 

while oxidative burst or degranulation already can occur directly after priming. Since 

phagocytic activity of peripheral blood neutrophils was tested in vitro using opsonized 

E.coli bacteria, the obtained data show that neutrophils in NMO and MS are generally able 

to exert phagocytic activity through complement receptor-mediated internalization. 

However, if and how phagocytosis might be affected by the diminished adhesion and 

migratory capacities observed in NMO patients remains to be evaluated. 

Another effector function of neutrophils is represented by the process of degranulation, 

which is induced in part through fMLP signaling 
233

. Neutrophil degranulation was 

investigated by evaluating the expression level of CD63 due to exocytosis of azurophilic 

granules and assessing serum concentrations of the azurophilic granule-derived enzymes 

MPO and PMN elastase. The mean expression of CD63 as well as MPO level were 

significantly reduced in NMO compared to MS. PMN serum concentration was diminished 

in NMO compared to MS as well (Figure 26). However, no differences between NMO and 

HC were observed although a higher degranulation of NMO neutrophils is likely due to the 

inflammatory environment and the fact that circulating NMO neutrophils were found to be 

primed (Figure 21). Considering the results obtained from the migration and oxidative 

burst assays discussed above, it appears that functional processes mediated by the fMLPR 

are defective in NMO. Whether an overall dysfunction in fMLP-fMLPR-signaling 

underlies these effects remains unknown and it has to be clarified if such a potential 

dysfunction in fMLP-fMLPR-signaling or in other signaling cascades important for the 

neutrophil functionality possibly contributes to the increased neutrophil accumulation in 

inflammatory lesions reported for NMO but not observed in MS. Assuming a leaky BBB 

mediated by autoantibodies such as AQP4 and/ or complement components, primed NMO 

neutrophils could immigrate into the CNS even though showing reduced migratory 

capacities (Figure 21 and 23). It could further be speculated that – once neutrophils have 

entered the CNS – altered signaling mechanisms promote a prolonged neutrophil survival 

by inhibiting spontaneous apoptosis and therewith promoting neutrophil accumulation at 

the sites of inflammation, as it has already been described for other diseases such as 

chronic obstructive pulmonary disease (COPD) or sepsis 
234, 235

. 
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In summary, the phenotypical and functional analyses showed that MS neutrophils are 

primed and display significantly enhanced effector activities when compared to HC. These 

findings are in agreement with a study performed by Naegele et al. (2012) 
158

. In contrast, 

although the disease-related inflammatory environment resulted in their priming, NMO 

neutrophils showed a compromised functionality with regard to migration, oxidative burst 

and degranulation as compared to MS. However, these neutrophils have been found to be 

accumulated in the CSF 
14, 15

 and inflammatory lesions 
12, 70, 76, 165

 of NMO patients and, 

interestingly, have been shown also in another common autoimmune disorder, RA, to 

intensely accumulate in the target organ, i.e. the synovial fluid of the disease-affected    

joints 
236

. These neutrophils show a primed phenotype releasing inflammatory mediators 

such as IL-1β or IL-8 
237

. In addition, functional abnormalities in neutrophil phagocytosis 

and the production of ROS have been demonstrated in RA 
238, 239

 and further that these 

neutrophils are more prone to form NETs 
240

. Accordingly, anti-neutrophil cytoplasmic and 

anti-granulocyte antibodies have been described in RA patients and it has been suggested 

that inflammatory feedback-loops initiated by NET-components may be key in arthritis 

development 
241

. 

Finally, all data generated on the neutrophil profile in NMO and MS were validated for 

potential influences of clinical parameters and medical treatments. 

Correlation analyses excluded that the phenotypical and functional characteristics of 

neutrophils are influenced by the patient’s EDSS in MS and NMO. Presence or absence of 

the AQP4 autoantibody also appears to not directly influence the neutrophil hallmarks in 

NMO (Figure 28). 

Analysis of potential effects of immunosuppressive or immunomodulatory medications on 

the neutrophil phenotype and functionality (Figure 27) revealed that medical treatment 

does not seem to influence the specific properties of neutrophils observed in MS and NMO 

patients. However, due to the limited number of untreated patients, results between groups 

were only significant when applying a two-group test (non-parametric Mann-Whitney U-

test). In line with this, a previous report showed similar data in an extended cohort of 

untreated MS patients 
158

 suggesting that the results presented here may truly reflect the 

limitations of a small sample size of untreated patients. In addition, the analysis based on 

individual patient responses showed that 89% of untreated MS patients displayed increased 

neutrophil oxidative burst capacity and MPO serum levels, 75-78% showed increased 
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migration capacity and PMN serum concentrations, 67% exhibited increased surface 

expression of TLR2, fMLPR and CXCR1 and 56% increased CD43 as compared to HC 

(Table 10). Similarly, 67-100% of untreated NMO patients showed increased TLR2, 

fMLPR, CXCR1 and CD62L expression whereby around 67% showed decreased CD63, 

CD43, oxidative burst and migration compared to HC (Table 9). As well, monitoring 

neutrophil alterations on a per patient basis independently of treatment revealed an NMO 

neutrophil profile that differs from MS. In 93% of the untreated NMO patients neutrophils 

showed decreased migratory and oxidative burst abilities compared to MS and 67-93% 

showed reduced CD43, CD63 despite similar levels of TLR2 and fMLPR expression 

(Table 8).  

In conclusion, the present study shows that peripheral blood neutrophils are primed in 

NMO and MS but, point to functional differences between these two conditions. 

Importantly, these findings were independent of the patient’s clinical data and medication. 

Thus, neutrophil functionality with respect to neutrophil adhesion, migration, oxidative 

burst and degranulation in response to fMLP may represent a tool – in addition to the 

AQP4 autoantibody – to discriminate between NMO and MS. 
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5.2.1 Outlook 2 

The present study provides the first comparative, basic analysis of the neutrophil 

phenotype and functionality after in vitro stimulation in NMO and MS patients in 

remission. It revealed several interesting aspects highlighting not only the involvement of 

these cells in the pathogenesis of both disease conditions, but further presenting them as a 

potential marker for discrimination what could be of interest especially for the 

differentiation between MS and the up to 20% of AQP4 seronegative NMO patients. In this 

line, a more extended investigation of neutrophilic characteristics, including a major range 

of phenotypic markers and also genetic analyses, in both conditions needs to be performed. 

Importantly, a larger number of patients has to be recruited taking into account clinical and 

demographic characteristics although they were not found to influence the neutrophil 

profile in the small cohorts investigated here. Furthermore, it needs to be clarified if and 

how neutrophils and neutrophil-related factors in the peripheral blood differ from those in 

the CSF, as representative for the CNS, from which only few data on the neutrophil 

phenotype, activation status and neutrophil-derived cytokines and products are available so 

far 
14, 15, 166, 242

. 

Supported by EAE animal studies 
159-163

, it seems likely that in MS neutrophils occur as a 

secondary phenomenon, become primed and highly activated by the inflammatory 

environment and primary contribute to the disease pathogenesis by damaging tissues (e.g. 

damage of the BBB through azurophilic granules or demyelination of neurons through 

ROS components) and/ or modulating the encephalitogenic T cell responses. Thus, 

targeting neutrophil priming, activation and functionality could reveal interesting 

approaches of therapeutic strategies for MS.  

In contrast to MS, neutrophils are accumulated in the CSF 
14, 15

 and inflammatory                

lesions 
12, 70, 76, 165

 of NMO patients, presumably contributing to the disease pathogenesis in 

a more prominent way and by pathways distinct from those in MS. Based on the 

experimental data presented in this thesis work 
171

 and in context of the current knowledge 

of neutrophils in other inflammatory diseases 
151, 234, 235, 243, 244

, it could be hypothesized 

that neutrophils might display functional dysregulations in NMO such as altered signaling 

pathways (e.g. the fMLP/ fMLPR-signaling pathway) resulting in apoptosis abnormalities, 

and finally leading to the observed accumulation in inflammatory lesions. Furthermore, 

these accumulated neutrophils might sustain disease chronicity and severity by influencing 
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the CNS immune response and environment. In this line, defective neutrophil apoptosis 

accompanied by neutrophil deposits have been shown for several inflammatory diseases 

such as sepsis or chronic obstructive pulmonary disease 
234, 235

. Similarly, in patients with 

chronic granulomatous disease impaired neutrophil apoptosis has been reported in vitro 

resulting from neutrophil hypoxia due to a defective NADPH oxidase activity 
243

. 

Accordingly, examination of neutrophil apoptosis in NMO, e.g. by determining the gene 

expression of NADPH oxidase, fMLP receptor and TNFR1, molecules that are all involved 

in the signaling process of reactive oxygen species (ROS) production 
245

, would further 

illuminate the implication of neutrophils in NMO. 

Another form of neutrophil cell death is the recently discovered NETosis 
150

, i. e formation 

of neutrophil extracellular traps composed of decondensed chromatin DNA in association 

with histones, granular proteins, and a few cytoplasmic proteins 
151, 152, 246

. NETosis seems 

to depend on the generation of ROS by the NADPH oxidase complex. Moreover, 

neutrophils from patients with chronic granulomatous disease, who have mutations in 

NADPH oxidase, fail to make NETs 
154

. These patients are severely immunodeficient, 

suffer from recurrent infections and have poor prognosis. Moreover, Villanueva et al. 

(2011) showed that tissue NETosis is associated with increased anti-dsDNA in sera of 

lupus erythematosus (SLE) patients, suggesting that dysregulation of NET formation and 

its subsequent responses may play a prominent deleterious role in SLE 
244

. It has further 

been reported that NETs, which are not degraded in SLE, activate the complement and 

plasmacytoid dendritic cells leading to disease exacerbation 
247-249

. In this line, 

complement activation and intense complement deposits associated with granulocyte 

infiltrations found in post mortem NMO brains 
12, 70, 76, 165

 might suggest a role of NETs in 

NMO as well. However, no precise data on NETosis and NETs are available in NMO so far 

and it remains to investigate whether NETosis is dysregulated in NMO and if this 

dysregulation of neutrophil extracellular trap (NET) formation contributes to disease 

progression in NMO. 
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