# Aufnahme von Fettsäuren in Spermatozoenlipide von Sus scrofa domestica und physiologische Auswirkungen

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat)

im Fach Biophysik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät I

der Humboldt-Universität zu Berlin

von

Dipl.-Biol. Valentin Svetlichnyy

Präsident der Humboldt-Universität zu Berlin Prof. Dr. J.-H. Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. A. Herrmann

Gutachter:

Prof. Dr. T. Pomorski
 PD. Dr. J. Schiller
 Prof. Dr. K. Jewgenow

Tag der mündlichen Prüfung: 28.03.2012

## ABSTRACT

This study examines the metabolic incorporation of selected fatty acids into the lipids of porcine spermatozoa and evaluates the physiological state of spermatozoa subsequent to low temperature storage supplementation with selected free fatty acids. Solutions containing lipids and fatty acids have been empirically tested and used as putative cryoprotectants to preserve spermatozoa but the rationale behind this is not yet clear. Thus, the aim of this thesis was to understand the role of fatty acids in relation to the (cryo-)preservation of spermatozoa and successful reproduction in more detail. Preserving spermatozoa between 4 and 6°C leads to a reduction in bacterial contamination and therefore could minimise the need of antibiotic supplements and reduce the development of antibiotic resistance. Nevertheless, for the very cold-sensitive porcine spermatozoa, storage at 6°C leads to a considerable loss of vitality.

In the first part of this study, all lipids and fatty acids present in porcine spermatozoa were analysed using gas chromatography (GC), matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and a detailed lipid databank was created. The main representatives of the polar lipid classes are glycerophospholipids (in particular glycerophosphorylcholine (GPC) and glycerophosphorylethanolamine (GPE)), normally with mainly unsaturated middle and long chained fatty acids and fatty aldehydes. The main representatives of the neutral lipid classes are diacylglycerols (DAG) with middle chain lengths that are usually completely saturated. It was shown, for example, that in the whole GPC class of the porcine spermatozoa, octadecadienoic acid was endogenously present at ca. 15 mol %. Metabolic incorporation of fatty acids into lipids was radiochemically monitored using [<sup>14</sup>C]-octadecadienoic acid in the supplied spermatozoa-preservation medium. These experiments showed that the temperature and the incubation time are particularly important determinants of the metabolic incorporation of this radiochemical in the lipids of spermatozoa. The added fatty acids were incorporated into both the spermatozoas' neutral (1,2-DAG) and the polar lipids (*diacyl-GPC*).

In the second part of this study, the affected lipids were characterised by means of MALDI-TOF-MS and Q-TOF-MS subsequent to the supplementation of uniformly

<sup>13</sup>C-labelled octadecadienoic acid. DAG (18:2 / 18:2), GPC (16:0 / 18:2) and GPC (18:2 / 18:2) could be unequivocally identifed. It could be also proven, that a *de-novo* biosynthesis of DAG (18:2 / 18:2) took place. The same results were obtained when spermatozoa were supplemented with hexadecenoic, octadecenoic and octadecatrienoic acids. In contrast, no metabolic incorporation could be monitored when eicosapentaenoic acid (20:5), not endogenously present in the spermatozoa, was supplemented. Finally, it was shown that the physiological state of the spermatozoa, especially those supplemented with endogeneously present fatty acids, led to an enhanced vitality and motility in spermatozoa subsequent to low temperature storage. It was also observed that acrosomal damage was reduced and that hexadecenoic acid significantly stabilised all the vitality parameters. In conclusion, supplementing spermatozoa with selected fatty acids is an effective solution for the storage of spermatozoa at 4 to 6°C and enables antibiotic additives to be reduced.

# INHALTSVERZEICHNIS

| •                                                                                                                                                                                          | EINLEITUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1.1                                                                                                                                                                                        | Morphologie des Säugetierspermatozoons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                       |
| 1.2                                                                                                                                                                                        | Erwerb der Befruchtungskompetenz von Spermatozoen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                       |
| 1.3                                                                                                                                                                                        | Kapazitation und Akrosomreaktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                       |
| 1.4                                                                                                                                                                                        | Die Lipid- und Fettsäurezusammensetzung der Säugetierspermatozoen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                       |
| 1.5                                                                                                                                                                                        | Phospholipidmetabolismus in Säugerspermatozoen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                      |
| 1.6                                                                                                                                                                                        | Phospholipasen und die zelluläre Signaltransduktion im Spermatozoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                      |
| 1.7                                                                                                                                                                                        | Zusammensetzung der Flüssigkonservierungsmedien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                      |
| 1.8                                                                                                                                                                                        | Bakterielle Kontamination der porcinen Ejakulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                      |
| 2                                                                                                                                                                                          | PROBLEME, ZIELSTELLUNG UND STRATEGIE DER ARBEIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                      |
| 3                                                                                                                                                                                          | MATERIAL UND METHODEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22                                                                                                      |
| 3.1                                                                                                                                                                                        | Geräte, Verbrauchsmaterialien und Chemikalien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                      |
| 3.2                                                                                                                                                                                        | Software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23                                                                                                      |
| 3.3                                                                                                                                                                                        | Statistische Auswertungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                                      |
| 3.4                                                                                                                                                                                        | Gewinnung, Flüssigkonservierung und Supplementierung von Spermatozoen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                      |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |
| 3.5                                                                                                                                                                                        | Spermatologische Untersuchungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                      |
| <b>3.5</b><br>3.5.2<br>3.5.2<br>3.5.2<br>3.5.3<br>3.5.3<br>3.5.4<br>3.5.5<br>3.5.5<br>3.5.5<br>3.5.5                                                                                       | Spermatologische Untersuchungen         Zellzahlbestimmung         Plasmamembranintegrität und akrosomaler Status der Zellen         Plasmamembranintegrität         Akrosomaler Status         Computerunterstützte Motilitätsanalyse (CASA) und Thermoresistenztest         Bestimmung der Mitochondrienaktivität und Spermatozoenvitalität         Zytotoxizitätsassay         Inkubation mit Ethanol         Inkubation mit fettsäurefreiem Rinderserumalbumin         Inkubation mit freien Fettsäuren                                                                                                                                                                                                                                                                                                                                                                   | 24<br>25<br>25<br>25<br>26<br>26<br>27<br>28<br>28<br>28<br>28<br>28                                    |
| <b>3.5</b><br>3.5.1<br>3.5.2<br>3.5.2<br>3.5.3<br>3.5.3<br>3.5.4<br>3.5.5<br>3.5.5<br>3.5.5<br>3.5.5<br>3.5.5<br>3.5.5                                                                     | Spermatologische Untersuchungen         Zellzahlbestimmung         Plasmamembranintegrität und akrosomaler Status der Zellen         Plasmamembranintegrität         Akrosomaler Status         Computerunterstützte Motilitätsanalyse (CASA) und Thermoresistenztest         Bestimmung der Mitochondrienaktivität und Spermatozoenvitalität         Zytotoxizitätsassay         Inkubation mit Ethanol         Inkubation mit freien Fettsäuren         Lipidanalytik                                                                                                                                                                                                                                                                                                                                                                                                       | 24<br>25<br>25<br>26<br>26<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>29            |
| <b>3.5</b><br>3.5.1<br>3.5.2<br>3.5.2<br>3.5.2<br>3.5.3<br>3.5.4<br>3.5.5<br>3.5.5<br>3.5.5<br>3.5.5<br><b>3.6</b><br>3.6.1<br>3.6.1<br>3.6.1<br>3.6.1<br>3.6.1<br>3.6.1<br>3.6.1<br>3.6.1 | Spermatologische Untersuchungen         Zellzahlbestimmung         Plasmamembranintegrität und akrosomaler Status der Zellen         1 Plasmamembranintegrität         2 Akrosomaler Status         Computerunterstützte Motilitätsanalyse (CASA) und Thermoresistenztest         Bestimmung der Mitochondrienaktivität und Spermatozoenvitalität         Zytotoxizitätsassay         1 Inkubation mit Ethanol         2 Inkubation mit fettsäurefreiem Rinderserumalbumin         3 Inkubation mit freien Fettsäuren         Lipidanalytik         Gesamtlipidextraktion         1 Lipidextraktion aus Spermatozoen und aus Bakterien         2 Lipidextraktion aus Kieselgel         Trennung, Visualisierung und Identifizierung einzelner Lipidklassen mittels         Schichtchromatographie         Ermittlung der Trenneigenschaften des Lipidgesamtextraktes porciner | 24<br>25<br>25<br>26<br>26<br>27<br>28<br>28<br>28<br>28<br>28<br>29<br>29<br>29<br>29<br>30<br>5<br>30 |

| 3.7                                                         | Massenspektrometrie                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33                                           |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 3.7.1<br>Masse<br>3.7.2<br>3.7.2.2                          | Matrix unterstützte Laserdesorptions-Ionisations-Time-of-Flight-<br>enspektrometrie (MALDI-TOF-MS)<br>Quadrupol-Time-of-Flight-Massenspektrometrie (Q-TOF-MS)<br>1 Auswertung der Spektren und Identifizierung und Quantifizierung der                                                                                                                                                                                                              | 33<br>34                                     |
| Substa                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                           |
| 3.8                                                         | Fettsäurequantifizierung mittels Gaschromatographie                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                           |
| 3.8.1<br>3.8.2<br>3.8.2.<br>3.8.2.2                         | Transmethylierung von Fettsäuren<br>Gaschromatographische Auftrennung von Fettsäuren<br>Gaschromatographie<br>Gaschromatographie                                                                                                                                                                                                                                                                                                                    | 36<br>36<br>36<br>37                         |
| 3.9                                                         | Radiochemische Untersuchungen                                                                                                                                                                                                                                                                                                                                                                                                                       | 37                                           |
| 3.9.1<br>3.9.2<br>3.9.3<br>3.9.4<br>3.9.5<br>3.9.6<br>3.9.7 | Markierungen der Spermatozoen mit [1- <sup>14</sup> C]-Octadecadiensäure<br>Markierungen des Seminalplasmas mit [1- <sup>14</sup> C]-Octadecadiensäure<br>Markierungen der bakteriellen Kulturen<br>Visualisierung radioaktiv markierter Verbindungen<br>Identifizierung radioaktiv-markierter Verbindungen<br>Puls-Chase-Markierungen mit [1- <sup>14</sup> C]-Octadecadiensäure<br>Bestimmung der Stoffmenge von radioaktiv markierten Substraten | 37<br>38<br>38<br>39<br>39<br>39<br>39<br>40 |
| 3.10                                                        | Untersuchungen mit stabilen Isotopen                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                           |
| 3.10.1<br>3.10.2                                            | Supplementierung mit [ <sup>12</sup> C]-Fettsäuren<br>Supplementierung mit [U- <sup>13</sup> C]-Octadecadiensäure                                                                                                                                                                                                                                                                                                                                   | 41<br>41                                     |
| 3.11                                                        | Mikrobiologische Untersuchungen                                                                                                                                                                                                                                                                                                                                                                                                                     | 41                                           |
| 3.11.1<br>3.11.2                                            | Anzucht und Lagerung von Bakterien<br>Bakterieller Kontaminationsstatus                                                                                                                                                                                                                                                                                                                                                                             | 42<br>42                                     |
| 4                                                           | ERGEBNISSE UND DISKUSSION                                                                                                                                                                                                                                                                                                                                                                                                                           | 43                                           |
| 4.1                                                         | Lipidzusammensetzung von porcinen Spermatozoen                                                                                                                                                                                                                                                                                                                                                                                                      | 43                                           |
| 4.2                                                         | Vorkommen von Octadecadiensäure in den Lipiden von porcinen<br>Spermatozoen                                                                                                                                                                                                                                                                                                                                                                         | 53                                           |
| 4.3                                                         | Auswirkung der Fettsäuresupplementierung auf die<br>Lipidzusammensetzung der Spermatozoen                                                                                                                                                                                                                                                                                                                                                           | 57                                           |
| 4.3.1<br>4.3.1.2<br>4.3.1.2<br>4.3.1.3<br>4.3.1.4           | <ul> <li>Analyse der Supplementierungsbedingungen für Octadecadiensäure</li> <li>Zytotoxizität von Ethanol</li> <li>Zytotoxizität von Rinderserumalbumin</li> <li>Zytotoxizität von Octadecadiensäure</li> <li>Zytotoxizität von Octadecadiensäure unter Bedingungen einer Protein-</li> </ul>                                                                                                                                                      | 58<br>58<br>60<br>62                         |
| vermit<br>4.3.2                                             | telten Verabreichung<br>Untersuchungen der bakteriellen Metabolisierung von [1- <sup>14</sup> C]-<br>ecadiensäure                                                                                                                                                                                                                                                                                                                                   | 63<br>64                                     |
| 4.3.3<br>4.3.4<br>mittels                                   | Einbau der [1- <sup>14</sup> C]-Octadecadiensäure in porcine Spermatozoenlipide<br>Untersuchung des Einbaus von [ <sup>12</sup> C]-, [U- <sup>13</sup> C]-Octadecadiensäure in DAG<br>MALDI-TOF-MS                                                                                                                                                                                                                                                  | 70<br>75                                     |
| 4.3.5<br>GPC r                                              | Analyse des Einbaus von [ <sup>12</sup> C]-, [U- <sup>13</sup> C]-Octadecadiensäure in DRG und nittels Q-TOF-MS                                                                                                                                                                                                                                                                                                                                     | 83                                           |

| 4.3.5.<br>Q-TO                                     | 1 Analyse des Einbaus von [ <sup>12</sup> C]-, [U- <sup>13</sup> C]-Octadecadiensäure in GPC mittels<br>F-MS                                                                                                                                                                       |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.3.5.2<br>Q-TO                                    | <ul> <li>Analyse des Einbaus von [U-<sup>13</sup>C]-Octadecadiensäure in DRG mittels</li> <li>F-MS / MS</li></ul>                                                                                                                                                                  |
| 4.3.6<br>MALD                                      | Analyse der Spezifität für den Einbau von Fettsäuren in 1,2-DAG mittels<br>93                                                                                                                                                                                                      |
| 4.4                                                | Temperatur-, individuums- und seminalplasmaspezifische Einflüsse der metabolischen Aufnahme von Octadecadiensäure                                                                                                                                                                  |
| 4.4.1<br>GPC /                                     | Nachweis der metabolischen Aufnahme von Octadecadiensäure in <i>diacyl</i> -<br>7 1,2-DAG mittels [1- <sup>14</sup> C]-Kurzzeitmarkierung                                                                                                                                          |
| 4.4.2<br>Octad                                     | <i>"Pulse-Chase"</i> - Untersuchungen der metabolischen Aufnahme von ecadiensäure                                                                                                                                                                                                  |
| 4.4.3<br>Aufna                                     | Temperatur- und individuumsspezifische Einflüsse auf die metabolische<br>hme von Octadecadiensäure                                                                                                                                                                                 |
| 4.4.4<br>Octad                                     | Seminalplasmaspezifische Einflüsse auf die metabolische Aufnahme von ecadiensäure in die Lipide                                                                                                                                                                                    |
| 4.5                                                | Physiologische Auswirkungen der chemischen Supplementierung mit<br>Fettsäuren auf porcine Spermatozoen 110                                                                                                                                                                         |
| 4.5.1<br>Bestin<br>4.5.2                           | Festlegung der Stichprobengröße für Supplementierungsvarianten,<br>nmung der physiologischen Kriterien                                                                                                                                                                             |
| Fettsä<br>4.5.4                                    | Vitalitätsanalyse flüssigkonservierter, porciner <i>Spermatozoen</i> nach                                                                                                                                                                                                          |
| Fettsa<br>4.5.5<br>Spern                           | Untersuchung des akrosomalen Status flüssigkonservierter porciner<br>natozoen nach Fettsäuresupplementierung                                                                                                                                                                       |
| 4.5.6<br>physic                                    | blogischen Auswirkungen 127                                                                                                                                                                                                                                                        |
| 4.6                                                | Abschließender Überblick 129                                                                                                                                                                                                                                                       |
| 5                                                  | ZUSAMMENFASSUNG 134                                                                                                                                                                                                                                                                |
| 6                                                  | AUSBLICK                                                                                                                                                                                                                                                                           |
| 7                                                  | LITERATURVERZEICHNIS                                                                                                                                                                                                                                                               |
| 8                                                  | ANHANG 150                                                                                                                                                                                                                                                                         |
| 8.1.1<br>GPC 0<br>8.1.2<br>8.1.3<br>8.1.4<br>8.1.5 | Auszug aus der Datenbank, die Atommassen der Quasimolekülionen von<br>und DRG.150<br>Deskriptive StatistikenDeskriptive Statistiken167<br>Ausführliche Darstellung der TestergebnisseDarstellung eines Boxplot-Diagramms180<br>Anzahl von zu erhebenden physiologischen Parametern |

| Verzeichnis der Tabellen    | I     |
|-----------------------------|-------|
| Verzeichnis der Abbildungen | II-IV |
| Verzeichnis der Abkürzungen | V-VI  |

# VERZEICHNIS DER TABELLEN

| Tabelle 1: Phospholipidzusammensetzung von porcinen Spermatozoen nachEjakulation, nach In-utero und nach In-vitro-Inkubation11                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabelle 2: Vergleichende Zusammensetzung von Konservierungsmedien für porcineSpermatozoen.17                                                         |
| Tabelle 3: Reagenzien für den Nachweis von bestimmten Lipidklasssen auf DC-<br>Platten                                                               |
| Tabelle 4: Laufmittel für die chromatographische Auftrennung von Lipidgemischen. 31                                                                  |
| Tabelle 5: Inkubationsvarianten. Puls-Chase-Markierungen mit [1-14C]-         Octadecadiensäure         40                                           |
| Tabelle 6: MALDI-TOF-Identifizierung der neutralen Lipide von flüssigkonserviertenporcinen Spermatozoen                                              |
| Tabelle 7: MALDI-TOF-Identifizierung der polaren Lipide von flüssigkonserviertenporcinen Spermatozoen                                                |
| Tabelle 8: Gesamtfettsäurezusammensetzung der neutralen Lipide mittels MALDI-TOF-Massenspektrometrie77                                               |
| Tabelle 9: Berechnete m/z-Werte der Quasimolekülionen von theoretischvorkommenden GPC im Massenbereich von 818,5 bis 818,880                         |
| Tabelle 10: Berechnete <i>m/z</i> -Werte der Quasimolekülionen von theoretisch vorkommenden Lipiden im Massenbereich von 612,4 bis 612,8             |
| Tabelle 11: Ergebnisse des Post-Hoc-Tests. Vergleich der<br>Supplementierungsvarianten untereinander bezüglich ihrer physiologischen<br>Auswirkungen |
| Tabelle 12: Stichprobengröße, Anzahl der zu erhebenden physiologischen Parametern                                                                    |

# VERZEICHNIS DER ABBILDUNGEN

| Abbildung 1: Schematische Darstellung eines Säugerspermatozoons                                                                                               | . 2       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Abbildung 2: Hypothetisches Modell zum Erwerb der Befruchtungsfähigkeit von Säugerspermatozoen - Passage vom Hoden durch den weiblichen Genitaltrakt          | . 3       |
| Abbildung 3: Schematische Darstellung der Akrosomreaktion                                                                                                     | . 5       |
| Abbildung 4: Signaltransduktion während der <i>In-vitro</i> -Kapazitation von Säugerspermatozoen                                                              | . 6       |
| Abbildung 5: Struktur von <i>diacyl-</i> , <i>plasmenyl-</i> , und <i>plasmanyl-</i> Glycerophosphocholir der Säugetierspermatozoen, schematische Darstellung | า<br>. 9  |
| Abbildung 6: Fettsäurezusammensetzung der Phospholipide aus der Plasmamembran von porcinen <i>Spermatozoen</i> (Rassen: Landrasse und Duroc)                  | 10        |
| Abbildung 7: Modell der Signaltransduktion während der Akrosomreaktion von Säugerspermatozoen.                                                                | 14        |
| Abbildung 8: 1D-dünnschichtchromatographische Auftrennung einer Lipidfraktion vor porcinen <i>Spermatozoen</i> . Eine schematische Darstellung.               | on<br>32  |
| Abbildung 9: MALDI-TOF-Massenspektrum von einem Gemisch präparativ gereinigter neutraler Lipide, positive Ionendetektion.                                     | 34        |
| Abbildung 10: Dünnschichtchromatographische Auftrennung neutraler Lipide eines Gesamtlipidextraktes flüssigkonservierter porciner <i>Spermatozoen</i>         | 44        |
| Abbildung 11: Identifizierung der neutralen Lipide porciner <i>Spermatozoen</i> mittels MALDI-TOF-Massenspektrometrie                                         | 47        |
| Abbildung 12: Dünnschichtchromatographische Auftrennung polarer Lipide eines Gesamtlipidextraktes flüssigkonservierter porciner <i>Spermatozoen</i>           | 49        |
| Abbildung 13: Identifizierung der polaren Lipide porciner <i>Spermatozoen</i> mittels MALDI-TOF-Massenspektrometrie                                           | 51        |
| Abbildung 14: Fettsäurezusammensetzung der Hauptlipidklassen flüssigkonserviert porciner Spermatozoen der Rasse Piétrain                                      | ter<br>55 |
| Abbildung 15: Zytotoxizitätsassay nach Inkubation porciner Spermatozoen mit Ethanol                                                                           | 59        |
| Abbildung 16: Zytotoxizitätsassay nach Inkubation porciner <i>Spermatozoen</i> mit fettsäurefreiem Rinderserumalbumin                                         | 61        |
| Abbildung 17: Zytotoxizitätsassay nach Inkubation porciner Spermatozoen mit Octadecadiensäure                                                                 | 62        |

| Abbildung 18: Zytotoxizität von Octadecadiensäure unter einer Protein-vermittelten Verabreichung                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abbildung 19: Chemische Struktur der [1- <sup>14</sup> C]-Octadecadiensäure und β-oxidativer<br>Abbau von Fettsäuren                                                                                       |
| Abbildung 20: Metabolischer Einbau der [1- <sup>14</sup> C]-Octadecadiensäure in die Lipide vitaler porciner <i>Spermatozoen</i> und bakterielle Metabolisierung in Glukose-freiem Medium                  |
| Abbildung 21: Metabolischer Einbau der [1- <sup>14</sup> C]-Octadecadiensäure in die Lipide vitaler porciner <i>Spermatozoen</i> und bakterielle Metabolisierung in Glukose-haltigem Medium                |
| Abbildung 22: Dünnschichtchromatographische Auftrennung porciner<br>Spermatozoenlipide und densitometrische Quantifizierung der Radiosignale nach<br>Markierung mit [1- <sup>14</sup> C]-Octadecadiensäure |
| Abbildung 23: 2D-dünnschichtchromatographische Auftrennung polarer Lipide porciner <i>Spermatozoen</i> nach Markierung mit [1- <sup>14</sup> C]-Octadecadiensäure                                          |
| Abbildung 24: Identifizierung der Diacylglycerol-Spezies von flüssigkonservierten, porcinen <i>Spermatozoen</i> mittels MALDI-TOF-Massenspektrometrie                                                      |
| Abbildung 25: Analyse von Glycerophosphocholinen porciner <i>Spermatozoen</i> mittels MALDI-TOF-Massenspektrometrie                                                                                        |
| Abbildung 26: MALDI-TOF-Massenspektrum, Massenbereich <i>m</i> /z=818 bis <i>m</i> /z=81981                                                                                                                |
| Abbildung 27: Analyse von Glycerophosphocholin porciner <i>Spermatozoen</i> mittels Q-TOF-Massenspektrometrie                                                                                              |
| Abbildung 28: MS / MS-Spektrum und Fragmentierungschema des [M+NH <sub>4</sub> ] <sup>+</sup> -Quasimolekülions mit <i>m/z</i> =670                                                                        |
| Abbildung 29: MS/MS-Spektren und Fragmentierungsschemata des [M+NH <sub>4</sub> ] <sup>+</sup> -Quasimolekülions mit <i>m/z</i> =61291                                                                     |
| Abbildung 30: Identifizierung verschiedener Diacylglycerol-Spezies von flüssigkonservierten, porcinen <i>Spermatozoen</i> mittels MALDI-TOF-<br>Massenspektrometrie                                        |
| Abbildung 31: Einbau von [1- <sup>14</sup> C]-Octadecadiensäure in die Lipide porciner <i>Spermatozoen</i> nach Kurzzeitmarkierung                                                                         |
| Abbildung 32: Auswirkungen unterschiedlicher <i>Chase</i> -Zeiträume auf den Einbau von [1- <sup>14</sup> <i>C</i> ]-Octadecadiensäure in die Lipide porciner <i>Spermatozoen</i>                          |
| Abbildung 33: Einbau von [1- <sup>14</sup> C]-Octadecadiensäure in die Lipide porciner<br><i>Spermatozoen</i> nach Langzeitzeitmarkierung bei 6°C und 17°C                                                 |

| Abbildung 34: Einbau von [1- <sup>14</sup> C]-Octadecadiensäure in bakterielles GPE und GPI nach Langzeitzeitmarkierung bei 6°C und bei 17°C                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abbildung 35: Vergleich des metabolischen Einbaus von [1- <sup>14</sup> C]-Octadecadiensäure in die Lipide flüssigkonservierter, porciner <i>Spermatozoen</i> und in natives porcines Ejakulat |
| Abbildung 36: Übersicht der angewendeten statistischen Testverfahren 112                                                                                                                       |
| Abbildung 37: Untersuchung der Gesamtmotilität porciner <i>Spermatozoen</i> mittels TRT-30                                                                                                     |
| Abbildung 38: Untersuchung der Gesamtmotilität porciner <i>Spermatozoen</i> mittels<br>TRT-300                                                                                                 |
| Abbildung 39: Untersuchung der Vitalität porciner <i>Spermatozoen</i> mittels Rh123/PI-<br>Markierung                                                                                          |
| Abbildung 40: Mikroskopische Untersuchung akrosomdefekter porciner<br>Spermatozoen                                                                                                             |
| Abbildung 41: Aufnahme von Fettsäuren in die Lipide porciner Spermatozoen und physiologische Auswirkungen                                                                                      |
| Abbildung 42: Aufbau eines Boxplot-Diagramms                                                                                                                                                   |

# ABKÜRZUNGEN

Allgemein gebräuchliche Abkürzungen sowie Maßeinheiten nach dem Internationalen Einheitensystem (SI) wurden nicht in das Verzeichnis aufgenommen.

| 2D-DC          | zweidimensionale Dünnschichtchromatographie         |
|----------------|-----------------------------------------------------|
| amu            | Atomare Masseneinheit                               |
| ATP            | Adenosintriphosphat                                 |
| Aqua bidest.   | zweifach destilliertes (bidestilliertes) Wasser     |
| äAM / iAM      | äußere / innere Akrosommembran                      |
| BSA            | Rinderserumalbumin (bovine serum albumin, BSA)      |
| BTS            | Beltsville-Thawing-Solution                         |
| cAMP           | cyclisches Adenosinmonophosphat                     |
| CID            | kollisionsinduzierte Fragmentierung                 |
| CoA            | Coenzym A                                           |
| DC             | Dünnschichtchromatographie                          |
| DMSO           | Dimethylsulfoxid                                    |
| EDTA           | Ethylen-Diamin-Tetra-Azetat                         |
| ESI            | Elektrospray-Ionisation                             |
| et al.         | et alteri                                           |
| FAME           | Fettsäuremethylester                                |
| FID            | Flammenionisationsdetektor                          |
| GC             | Gaschromatographie                                  |
| GC / MS        | gekoppelte Gaschromatographie / Massenspektrometrie |
| gen            | Gentamycin                                          |
| HPLC           | Hochleistungsflüssigkeitschromatographie            |
| LC / MS        | Flüssigkeitschromatographie / Massenspektrometrie   |
| MALDI          | Matrix-unterstützte Laserdesorptions-Ionisation     |
| MS             | Massenspektrometrie                                 |
| MW             | Molekulargewicht                                    |
| m/z            | Masse-Ladungs-Verhältnis                            |
| $\Delta m$     | Massendifferenz                                     |
| NAR            | normaler akrosomaler Rand                           |
| PI             | Propidiumiodid                                      |
| PKA / PKC      | Proteinkinase-A / Proteinkinase-C                   |
| PLase          | Phospholipase                                       |
| PM             | Plasmamembran                                       |
| <i>p-</i> NaCl | Phosphat-gepufferte Salzlösung                      |
| PUFA           | mehrfach ungesättigte Fettsäure                     |
| Rh123          | Rhodamine 123                                       |
|                |                                                     |

| RT                         | Raumtemperatur                                |
|----------------------------|-----------------------------------------------|
| <i>R<sub>f</sub></i> -Wert | Retentionsfaktor                              |
| TOF                        | Flugzeit                                      |
| TRT                        | Thermoresistenztest                           |
| VL-PUFA                    | langkettige, mehrfach ungesättigte Fettsäuren |
| v/v                        | Volumen pro Volumen                           |
| v/v/v                      | Volumen pro Volumen pro Volumen               |
| w/v                        | Gewicht pro Volumen                           |
| [U- <sup>13</sup> C]       | einheitlich <sup>13</sup> C markiert          |

### Abkürzung für Lipide

GΡΔ

Die Bezeichnung der Lipide erfolgt in Anlehnung an die Nomenklatur von Gunstone et al. (2007) sowie dem Lipidklassifikation-System LIPID MAPS (Lipid Metabolites and Pathways Strategy, www.lipidmaps.org). Die Fettsäurereste werden ihrer Kohlenstoffatome und der in der als Anzahl Kette enthaltenden Doppelbindungen angegeben. Eine Lipidklasse mit unterschiedlichen Fettsäureresten wird in dieser Arbeit vereinfacht als "Lipidspezies" bezeichnet. Die plasmenyl-, und plasmanyl-Lipide einer Lipidklasse werden vereinfacht Ether-Lipide beispielweise plasmenyl-Glycerophosphocholin genannt. So werden sowie plasmanyl-Glycerophosphocholin zusammenfassend als Ether-(Ether-GPC) Glycerophosphocholine bezeichnet. Diacylglycerophosphat (Phosphatidsäure) wird vereinfacht als Glycerophosphat gekennzeichnet.

| GPA | Glycerophosphat (Diacylglycerophosphat, Phosphatidsäure) |
|-----|----------------------------------------------------------|
| GPL | Glycerophospholipid                                      |
| GPC | Glycerophosphocholin                                     |
| GPE | Glycerophosphoethanolamin                                |
| GPS | Glycerophosphoserin                                      |
| GPI | Glycerophosphoinositol                                   |
| GPG | Glycerophosphoglycerol                                   |
| SGG | Sulfogalactosyglycerolipid (Seminolipid)                 |
| DRG | Diradylglycerol                                          |
| DAG | Diacylglycerol                                           |
| Cho | Cholesterol                                              |
| SM  | Ceramidphosphocholin (Sphingomyelin)                     |
|     |                                                          |

Die Flüssigkonservierung ist für die künstliche Besamung von landwirtschaftlichen Nutztieren und für den Erhalt von bedrohten Tierarten von entscheidender Bedeutung. Für eine erfolgreiche Befruchtung der Eizelle müssen die Spermatozoen über eine gute Motilität, eine funktionsfähige Plasmamembran, sowie ein intaktes Akrosom verfügen. Die porcinen Spermatozoen reagieren aufgrund ihrer spezifischen Membraneigenschaften wesentlich empfindlicher als die Spermatozoen anderer Tierarten auf eine Niedrigtemperaturlagerung und Kryokonservierung (Parks and Lynch, 1992). Aktuell gilt die Flüssigkonservierung von porcinen Spermatozoen mit Lagerungstemperatur 17°C als Standartmethode. einer von Das Konservierungsmedium enthält als essentielle Energiequelle unter anderem Glukose, die in diesem Temperaturbereich auch Bakterien günstige Wachstumsbedingungen bietet (Okazaki et al., 2010). Zur Hemmung des Keimwachstums sind daher im Medium Antibiotika enthalten, was jedoch die Entstehung multiresistenter Erreger begünstigen kann. Trotz der Anwendung optimierter Konservierungsprotokolle werden die physiologischen Parameter von porcinen Spermatozoen (Motilität, Membranzusammensetzung) bei niedrigen Temperaturen Vitalität. negativ beeinflusst. Die Entwicklung eines zuverlässigen Flüssigkonservierungsverfahrens bei 6°C könnte eine Verbesserung der hygienischen Verhältnisse bei der künstlichen Besamung ermöglichen.

# 1.1 Morphologie des Säugetierspermatozoons

Das Spermium (*Spermatozoon*) ist eine motile männliche Keimzelle, die bei der zweigeschlechtlichen Fortpflanzung mit der weiblichen Eizelle (*Oocyte*) verschmilzt. Im Allgemeinen lässt sich das *Spermatozoon* in Kopf, Mittelstück und Geißel unterteilen (Abb. 1). Der Kopf enthält vor allem den dicht gepackten Zellkern mit einem haploiden Chromosomensatz und das Akrosom, das den vorderen Teil des Zellkerns überdeckt (Rüsse and Sinowatz, 1998). Das Akrosom ist von der akrosomalen Membran umgeben und enthält mehrere Enzyme (u.a. Hyaluronidase, Glycohydrolasen, Proteinasen, Esterasen, Sulfatasen, Phosphatasen und Ca<sup>2+</sup>- abhängige Phospholipasen-C und -A<sub>2</sub>), die bei der Interaktion mit der Eizelle freigesetzt werden (Abou-haila and Tulsiani, 2009). So wird dem *Spermatozoon* die Penetration der *Zona pellucida* der Eizelle ermöglicht. Der Halsbereich ist eine

bewegliche Verbindung zwischen Kopf und Geißel des *Spermatozoons*. Die für die Motilität notwendige Energieversorgung wird durch die im Mittelstück spiralförmig angeordnete Schicht von Mitochondrien gewährleistet. Alle Bereiche eines *Spermatozoons* sind von einer Plasmamembran umgeben.



Abbildung 1: Schematische Darstellung eines Säugerspermatozoons Frontal-, Lateralansicht und Detaildarstellung.

Die Fertilität von Spermien ist generell von ihrer Fähigkeit abhängig, zur Eizelle zu gelangen, mit dieser zu interagieren und sie zu penetrieren (Medeiros *et al.*, 2002). Ein befruchtungskompetentes *Spermatozoon* sollte daher die Motilität und eine auf die Befruchtung vorbereitete Plasma- sowie Akrosommembran aufweisen.

## 1.2 Erwerb der Befruchtungskompetenz von Spermatozoen

Die Spermatogenese der Säugetiere beginnt unter hormoneller Steuerung nach dem Erlangen der Geschlechtsreife. Wenn die *Spermatozoen* den Hoden verlassen, sind sie noch nicht befruchtungskompetent. Diese Fähigkeit wird in der Regel erst nach einem komplexen, mehrphasigen Reifungsprozess während der Nebenhodenpassage erworben. Im Verlauf der Nebenhodenpassage während der post-testikulären Reifung kommt es zu einer Veränderung der Membranen der *Spermatozoen*.

Das betrifft sowohl die Proteine als auch die, in die Membran integrierte Lipide (Yanagimachi, 1994). Es finden Umbauprozesse der Plasmamembran und Lokalisationsänderungen von integralen oder peripheren Membranproteinen statt (Hammerstedt *et al.*, 1982; Lenzi *et al.*, 2002; Lenzi *et al.*, 2000). Eine wichtige Rolle spielt auch das im Nebenhoden synthetisierte Cholesterol (Cho) (Lindenthal *et al.*, 2001). Dies wird für den Schutz der *Spermatozoen* vor mechanischer Schädigung vom Epithel des Nebenhodens sezerniert und in die Plasmamembran des *Spermatozoons* eingebaut (Seki *et al.*, 1992). Nach der Nebenhodenpassage besitzen die *Spermatozoen* die Fähigkeit, sich an die *Zona pellucida* der Eizelle zu binden. Auch die Fähigkeit sich gerichtet vorwärts zu bewegen wird dabei erworben (Cooper, 1996).



# Abbildung 2: Hypothetisches Modell zum Erwerb der Befruchtungsfähigkeit von Säugerspermatozoen - Passage vom Hoden durch den weiblichen Genitaltrakt

**A.** Post-testikuläre Reifung: Stadium der *"silent fertilization competence"*. **B.** Ejakulation: Kontakt mit sekretorischen Proteinen, Lipoproteinen aus dem männlichen Genitaltrakt (Nebenhoden, Samenleiter, Ampulle, Samenblase, Prostata, Bulbourethraldrüse) **C.** Migration zum Eileiter. **D.** Vor der Ovulation wird der Kapazitationsvorgang bei den *Spermatozoen* induziert. In der Folge werden sie hyperaktiv und lösen sich vom Eileiterepithel. Im Verlauf der Migration vollenden die *Spermatozoen* schrittweise die Kapazitation. So wird die *active fertilization competence*, die sie zur Befruchtung der Eizelle befähigt, erreicht. Ejakulierte (grün), kapazitierte (gelb) und akrosomreagierte (rot) *Spermatozoen* sind markiert. Nach Ekhlasi-Hundrieser (2010), modifiziert.

Erst in diesem Moment spricht man von der sogenannten "silent fertilization competence", der stillen Befruchtungskompetenz (Petrunkina et al., 2007). Ausgereifte Spermatozoen bleiben im Nebenhoden bis zur Ejakulation in einem Ruhezustand gespeichert. Somit besteht ein Ejakulat aus Spermatozoen und aus weiteren Komponenten, die entweder aus den Hoden und Nebenhoden oder aber aus den akzessorischen Geschlechtsdrüsen (Ampulle, Samenblasendrüse, Prostata, Bulbourethraldrüse) stammen (Abb. 2, A). Während der Ejakulation werden die Spermatozoen mit dem Sekret der akzessorischen Geschlechtsdrüsen, dem Seminalplasma, vermischt und in den weiblichen Genitaltrakt transportiert (Abb. 2, A, B). Versuche, bei denen man die Geschlechtsdrüsen entfernte, um die Notwendigkeit ihres Vorhandenseins für den gesamten Reproduktionsprozess zu überprüfen, reichten von keinerlei Effekt auf die Fertilität (künstliche Befruchtung) bis zu vollständiger Unfruchtbarkeit beim natürlichen Deckakt (Peitz and Olds-Clarke, 1986; Queen et al., 1981). Der Kontakt zum Seminalplasma ist somit ein entscheidender Schritt im Reproduktionprozess. Das Seminalplasma dient als Transportmedium und als Quelle wichtiger an die Spermatozoenmembran assoziierte Substanzen. Es enthält neben essentiellen lonen und Energiesubstraten auch Proteine sowie Lipide (Gupta et al., 2011). Die im Seminalplasma enthaltenen Lipide und Fettsäuren sind aufgrund ihrer lipophilen Eigenschaften mit Proteinen assoziiert (Tannert et al., 2007a; Tannert et al., 2007b). Die hormonell wirksamen Bestandteile des Seminalplasmas sind unter anderem Prostaglandin F2a (PGF2a) und das Östrogen. Das PGF2a kommt im Prostatasekret vor und wirkt kontraktil auf die glatte Muskulatur. Es ist davon auszugehen, dass es auch in der Uterusmuskulatur seine Wirkung entfaltet und somit am passiven Spermatozoentransport im weiblichen Genitaltrakt beteiligt ist (Storey, 1995). Das Seminalplasma vermittelt auch die Bindung an das Eileiterepithel. Dies ist essentiell für das Überleben und die Vorbereitung auf den Befruchtungsvorgang (Kapazitation) der Spermatozoen im weiblichen Genitaltrakt (Abb. 2, C, D). Bei der In-vitro-Inkubation von porcinen Spermatozoen mit Eileiterepithelzellen, waren diese Spermatozoen nach der Inkubation länger befruchtungskompetent als die unbehandelten Kontrollproben, die ohne Eileiterepithelzellen inkubiert wurden (Suarez et al., 1991).

Die genaueren Funktionen der Bestandteile des Seminalplasmas in den unterschiedlichen Phasen des Reproduktionsgeschehens sind bislang nicht vollständig aufgeklärt. Bekannt ist jedoch, dass sich die Anwesenheit des Seminalplasmas auch bei porcinen *Spermatozoen* positiv auf die Lebensfähigkeit der Zellen auswirkt (Cooper, 1996, 2011; Kraus et al., 2005). Die Bedeutung der lipidhaltigen Substanzen und der relevanten zellulären Prozesse sind daher zu einem wichtigen Gegenstand der reproduktionsmedizinischen Forschung geworden (Gulaya *et al.*, 2001; Vriese and Christophe, 2003).

## 1.3 Kapazitation und Akrosomreaktion

Als Kapazitation wird die physiologische und biochemische Veränderung des *Spermatozoons* im weiblichen Genitaltrakt bezeichnet. Ohne diesen Schritt sind die Akrosomreaktion und die anschließende Befruchtung nicht möglich. Schon in den fünfziger Jahren hat Austin (1952) die Bedeutung der Kapazitation beschrieben. Nach heutigem Kenntnisstand wird diese als ein Destabilisierungsprozess der Zelle angesehen, der für die Akrosomreaktion (Abb. 3 B) essentiell ist (Yanagimachi, 1994).



### Abbildung 3: Schematische Darstellung der Akrosomreaktion

**A.** Intaktes Akrosom **B.** Fortschreitende Akrosomreaktion: Fusion von Plasma- und Akrosommembran, Freisetzung der lytischen Enzyme **C.** Akrosomreagiertes *Spermatozoon*, modifiziert nach Baldi *et al.* (1996).

Die Veränderungen während der Kapazitation betreffen vor allem die Membranen der Spermatozoen, sowie die intrazellulären Ionenkonzentrationen (Bedford and während Hoskins, 1990). Wichtige Veränderungen der Kapazitation sind: Modifikationen der Spermatozoenmembran, erhöhter Ca<sup>2+</sup>-Ionen-Einstrom und Veränderungen der Spermatozoenmotilität (Sidhu and Guraya, 1989). Diese sind reversibel (Zaneveld *et al.*, 1991). Die Änderungen Vorgänge der Membranzusammensetzung sowie die Signalmolekülkaskaden (second messenger pathways) während der Kapazitation sind bis jetzt noch nicht vollständig beschrieben. Abbildung 4 gibt einen Überblick über die wichtigsten biochemischen Prozesse während der In-vitro-Kapazitation in einem Kapazitationsmedium. Dieses Medium enthält in der Regel Hydrogencarbonat (HCO<sub>3</sub><sup>-</sup>), einen Cholesterolakzeptor und Ca<sup>2+</sup>-Ionen (Dapino et al., 2006). Als Cholesterolakzeptoren bei der In-vitro-Kapazitation können Rinderserumalbumin (bovine serum albumin, BSA), Lipoproteine (z.B. high density lipoproteins, HDLs) sowie  $\beta$ -Cyclodextrine fungieren (Choi and Toyoda, 1998; Shadan et al., 2004; Visconti et al., 1999a; Visconti et al., 1999b).



Abbildung 4: Signaltransduktion während der In-vitro-Kapazitation von Säugerspermatozoen **BSA**: Rinderserumalbumin albumin), AC: Ca<sup>2+</sup>-abhängige (bovine serum Adenvlatcyclase. **ATP**: Adenosintriphosphat, cAMP: cyclisches Adenosinmonophosphat, AMP: Adenosinmonophosphat, PDE: Phosphodiesterase, PKA: Proteinkinase-A, PKC: Proteinkinase-C Einstrom von Hydrogencarbonat über den HCO<sub>3</sub>/CI-Antiporter und Ca<sup>2+</sup>-Ionen aus dem extrazellulären Raum führt zur Aktivierung der Ca<sup>2+</sup>-abhängigen Adenylatcyclase, wobei der intrazelluläre zyklische Adenosinmonophosphat-(cAMP)-Spiegel steigt und Proteinkinase A (PKA) aktiviert wird. Die Aktivierung der Proteinkinase-C (PKC) durch die PKA kann zur Kapazitation und anschließend zur akrosomalen Exocytose führen. Die Signaltransduktion während der Akrosomreaktion von Säugerspermatozoen ist im Kapitel 1.3 dargestellt.

Durch den Ausstrom von Cho an den Cho-Akzeptor bei der In-vitro-Kapazitation werden die Membranen destabilisiert. Ein Einstrom von Hydrogencarbonat über den HCO<sub>3</sub><sup>-</sup>/Cl<sup>-</sup>-Antiporter und Ca<sup>2+</sup>-Ionen aus dem extrazellulären Raum führt zur Aktivierung der Ca<sup>2+</sup>-abhängigen Adenylatcyclase, wobei der intrazelluläre zyklische Adenosinmonophosphat-(cAMP)-Spiegel steigt und Proteinkinase-A (PKA) aktiviert wird (Jin et al., 2009). Die Konzentration des intrazellulär vorliegenden cAMP wird durch Phosphodiesterase reguliert. Die Aktivierung der Proteinkinase-C (PKC) durch die PKA bzw. durch die Signalmoleküle ("Second Messenger") kann zur Kapazitation und anschließend zur akrosomalen Exocytose, die sogenannte Akrosomreaktion, führen (Baldi et al., 1996; Baldi et al., 2000; Chen et al., 2009; Visconti et al., 1998; Visconti and Kopf, 1998; Visconti et al., 1999c). Bei dieser Reaktion fusioniert die äußere akrosomale Membran mit der darüber liegenden Plasmamembran (Abb. 3 B). Die lytischen Enzyme, die für die Penetration der Zona pellucida nötig sind, werden freigesetzt (Yanagimachi, 1994). Zum Auslösen der Akrosomreaktion in vitro wird bei porcinen Spermatozoen oft ein Calcium-Ionophor oder Lysophosphatidylcholin verwendet (Fazeli et al., 1999; Maxwell and Johnson, 1997).

Neben der Destabilisierung der Membranen von Spermatozoen während der Kapazitation, vor dem Beginn der Akrosomreaktion, kommt es zu einer Hyperaktivierung der Zellen am Ende des Kapazitationsvorganges. Eine ist Besonderheit der Kapazitation die Änderung der Bewegungsform (Hyperflagellation) der Spermatozoen. Da die Kapazitation in-vivo erst im weiblichen Genitaltrakt ausgelöst wird, sind im Seminalplasma "Akrosom stabilisierende Faktoren", auch Dekapazitationsfaktoren genannt, enthalten (Sidhu and Guraya, 1989). Sie tragen entscheidend zum Schutz und zur Stabilisierung der Spermatozoenmembran bei und verhindern die vorzeitige Akrosomreaktion. Der erste Schritt der Kapazitation besteht somit in einer Inaktivierung, oder chemischen Veränderung dieser inhibitorischen Faktoren. An welchem Ort im weiblichen Genitaltrakt die Kapazitation beginnt, ist speziesabhängig. Bei Tierarten mit intrauteriner Ejakulatdeponierung erfolgt die Kapazitation fast ausschließlich im unteren Isthmusabschnitt des Eileiters (Yanagimachi, 1994). Die Dauer der In-vivo-Kapazitation ist sowohl spezies- als auch zyklusabhängig und beträgt einige Stunden.

Eileiterepithelzellen sind in der Lage, verschiedene Lipide zu synthetisieren. Die Fettsäuren und Lipide werden in den verschiedenen Abschnitten des weiblichen Genitaltraktes synthetisiert und sekretiert (Henault and Killian, 1993a, b, c). Die molekularen Wechselwirkungen zwischen *Spermatozoen*, den Sekreten der Eileiterepithelien sowie den lipophilen Komponenten des Seminalplasmas, sind bisher nicht vollständig erforscht (Abou-haila and Tulsiani, 2009; Feki *et al.*, 2004).

# 1.4 Die Lipid- und Fettsäurezusammensetzung der Säugetierspermatozoen

Die Membranen eines Spermatozoons liegen dicht beieinander (Abb. 1 A) und begrenzen unterschiedliche Kompartimente der Zelle: Akrosom, postakrosomaler Abschnitt, Mittelstück, Mitochondrien und Geißel. Dadurch sind die Untersuchungen der Zusammensetzung und Organisation einzelner Membranen erschwert (Kurz, 2005; Mackie et al., 2001). Daher wurden nur die Plasmamembran- sowie die Gesamtlipidzusammensetzung der Spermatozoen in der Literatur beschrieben. Es gibt Unterschiede in der Zusammensetzung und Organisation der Membranen zwischen Spezies, Individuen und Ejakulaten. Die Lipidzusammensetzung in Spermatozoen ist durch einige besondere, offenbar speziesübergreifende Merkmale gekennzeichnet (Fuchs et al., 2009; Mann and Lutwak-Mann, 1982). Erstens, kommen neutrale Lipide in für somatische Zellen ungewöhnlich hohen Mengen vor, vor allem Diradylglycerole (Nikolopoulou et al., 1985; Zanetti et al., 2010b). Zweitens, ist das Vorkommen von Sulfogalactosyglycerolipid (SGG), auch Seminolipid genannt, spezifisch für die Spermatozoen (Kongmanas et al., 2010). Drittens, es kommen am häufigsten die Phospholipide vor. Sie zeigen strukturelle Besonderheiten; neben den estergebundenen Fettsäureresten kommen Glycerophospholipide (GPL) mit ethergebundenen Alkanen und Alkenen vor. Bei den felinen Spermatozoen kommen Glycerophospholipide (GPL) überwiegend mit estergebundenen Fettsäureresten vor (Fuchs et al., 2009). Bei den anderen Tierarten machen die Ether-GPL bis zu 50 Prozent der GPL aus (Aveldano et al., 1992; Clegg and Foote, 1973; Evans et al., 1980; Lessig et al., 2004; Mann and Lutwak-Mann, 1981; Mann and Lutwak-Mann, 1982; Neill and Masters, 1973; Nikolopoulou et al., 1985; Schiller et al., 2003; Selivonchick et al., 1980). Bei Ether-GPL wird zwischen Molekülen mit einer einfachen Etherbindung (2-acyl-1-alkyl-Glycerophospholipide, plasmanyl lipid) und

Molekülen mit einer Enoletherbindung (*2-acyl-1-alkenyl-*Glycerophospholipide, *plasmenyl lipid*, dt. Plasmalogen) an der *C-1*-Position des Glycerols unterschieden. Der Fettsäurerest an den *C-2*-Positionen des Glycerols ist sowohl für *plasmanyl-* als auch für *plasmenyl-*Lipide über eine Esterbindung wie bei *diacyl-*GPL verknüpft (Gunstone *et al.*, 2007). Die Ether-Glycerophospholipide der Säugetierspermatozoen besitzen überwiegend als Kopfgruppe Cholin oder Ethanolamin (Evans *et al.*, 1980). Die Unterschiede zwischen Glycerophospholipiden und Ether-Glycerophospholipiden sind in Abbildung 5 beispielhaft für Glycerophosphocholin und Ether-CPC dargestellt.



1-0-alkyl-2-acyl-sn-glycero-3-phosphocholine - plasmanyl Glycerophosphocholin

# Abbildung 5: Struktur von *diacyl-*, *plasmenyl-*, und *plasmanyl-*Glycerophosphocholin der Säugetierspermatozoen, schematische Darstellung

Acylreste von Fettsäuren sind rot dargestellt (R); diese sind in der Regel durch die langkettige, mehrfach ungesättigte Fettsäuren gekennzeichnet.

Alkenyl- sowie Alkylreste sind blau markiert (R' und R''); diese sind in der Regel durch ein Alken (R': meist 16:1 oder 18:1) sowie ein Alkan (R'': meist 16:0 oder 18:0) gekennzeichnet. Die Glycerophospholipide unterscheiden sich im Aufbau ihrer Kopfgruppen (grün dargestellt).

Etherlipide sind Membran-Bestandteile der Säugetierspermatozoen und können als Signalmoleküle in der Neuro- sowie Spermatogenese eine wichtige Rolle ausüben. Durch die Untersuchungen von plasmalogendefizienten Mäusen konnten unter anderem eine Sterilität bei männlichen Tiere beobachtet werden (Rodemer *et al.*, 2003a; Rodemer *et al.*, 2003b).

Die Glycerophospholipide (GPL) sind durch einen großen Anteil an langkettigen, mehrfach ungesättigten Fettsäuren gekennzeichnet. Die *plasmenyl*-GPL sind in der Regel durch ein Alken (meist 16:1 oder 18:1) und die *plasmanyl*-GPL durch ein Alkan (meist 16:0 oder 18:0) an der *C-1*-Position und eine, mehrfach ungesättigte Fettsäure (20:4, 22:5, 22:6) an der *C-2*-Position des Glycerolgerüstes charakterisiert (Buhr *et al.*, 1994; Parks and Lynch, 1992).

Die Untersuchungen der Fettsäurezusammensetzung von GPL zeigten, dass in der Plasmamembran porciner *Spermatozoen* unterschiedlicher Rassen mehrfach ungesättigte Fettsäuren mit einer Kettenlänge von maximal 22 C-Atomen sowie Palmitin-, Stearin,- und Ölsäure dominieren (Abb. 6). Das Vorkommen von Palmitoleinsäure konnte hingegen nicht beobachtet werden (Waterhouse *et al.*, 2006).



# Abbildung 6: Fettsäurezusammensetzung der Phospholipide aus der Plasmamembran von porcinen *Spermatozoen* (Rassen: Landrasse und Duroc)

Die Werte wurden durch Transmethylierung von Fettsäuren und ihrer Auftrennung über Gaschromatographie ermittelt. Dargestellt ist der Mittelwert in [mol%] von zwölf unabhängigen Bestimmungen. Die Standardabweichung lag bei allen Proben unter 1 [mol%]. Die Fettaldehyde von Ether-GPL werden unter diesen Bedingungen nicht detektiert. Aus Waterhouse *et al.* (2006), modifiziert.

Das Vorkommen von langkettigen (bis hin zu 34:6), mehrfach ungesättigten Fettsäuren (*very long chain polyunsaturated or polyenoic fatty acids*, VLC-PUFA) in den Lipiden porciner sowie den anderen Säugetierspermatozoen wurde mehrfach beschrieben (Poulos et al., 1986; Robinson et al., 1992; Zanetti et al., 2010a; Zanetti et al., 2010b)

# 1.5 Phospholipidmetabolismus in Säugerspermatozoen

Die Fähigkeit der Säugetierspermatozoen Fettsäuren zu verwerten wurde bereits von (Hamilton and Olson, 1976; Neill and Masters, 1971, 1972, 1973; Terner and Korsh, 1962) beobachtet. Die Bedeutung der Lipidsynthese für den Metabolismus der *Spermatozoen* schien damals im Vergleich mit den somatischen Zellen eine untergeordnete Rolle zu spielen.

Bei den Untersuchungen der GPL von frisch ejakulierten sowie von über mehrere Tage *in-vitro* inkubierten porcinen *Spermatozoen* konnten keine nennenswerte Veränderungen der GPL-Zusammensetzung festgestellt werden. Während der Inkubation der *Spermatozoen* mit den oviduktalen Sekreten wurde hingegen eine signifikante Veränderung vor allem bei *diacyl*-GPC beobachtet (Evans *et al.*, 1980). Tabelle 1 gibt einen Überblick über das Vorkommen von unterschiedlichen GPL-Klassen in porcinen *Spermatozoen* sowie deren Veränderung während der *In-vitro*-Inkubation und der Inkubation zusammen mit den Sekreten der Gebärmutter (*In-utero*-Inkubation).

|                                      |                    |       | Inkubation      |       |                 |       |
|--------------------------------------|--------------------|-------|-----------------|-------|-----------------|-------|
| Phospholipidklassen                  | A. ( ejakulierte ) |       | B. ( in-utero ) |       | C. ( in-vitro ) |       |
| Glycerophosphocholin                 | 32.8               | (0.7) | 36.4            | (1.7) | 32.2            | (1.2) |
| diacyl-                              | 7.2                | (0.6) | 10.2            | (0.6) | 6.8             | (1.3) |
| plasmenyl-                           | 7.6                | (1.1) | 7.1             | (0.7) | 6.6             | (0.2) |
| plasmanyl-                           | 18.0               | (1.3) | 19.0            | (0.8) | 18.8            | (1.9) |
| Glycerophosphoethanolamin            | 18.5               | (0.6) | 19.2            | (1.2) | 17.5            | (0.9) |
| diacyl-                              | 2.0                | (0.3) | 2.5             | (0.2) | 1.6             | (0.2) |
| plasmenyl-                           | 7.4                | (0.8) | 7.5             | (0.6) | 6.4             | (0.5) |
| plasmanyl-                           | 9.1                | (0.4) | 9.2             | (0.7) | 9.4             | (1.1) |
| Phosphosphingolipid                  | 7.0                | (1.7) | 8.0             | (1.9) | 7.4             | (1.8) |
| Glycerophosphoglycerophosphoglycerol | 3.6                | (0.3) | 4.4             | (0.7) | 3.8             | (0.5) |
| Glycerophosphoinositol               | 1.5                | (0.2) | 1.9             | (0.5) | 1.5             | (0.1) |
| Diacylglycerophosphat                | 1.0                | (0.3) | 1.0             | (0.2) | 1.0             | (0.3) |
| Glycerophosphoserin                  | 0.8                | (0.2) | 1.0             | (0.4) | 0.5             | (0.1) |
| Glycerophosphoglycerol               | 0.5                | (0.1) | 0.5             | (0.2) | 0.4             | (0.2) |
| Phospholipid insgesamt               | 65.7               | (2.0) | 72.4            | (4.5) | 64.4            | (3.3) |

 Tabelle 1: Phospholipidzusammensetzung von porcinen Spermatozoen nach Ejakulation, nach

 In-utero und nach In-vitro-Inkubation

Die Werte sind in  $\mu$ g Lipid / 10<sup>9</sup> Spermatozoen für frisch ejakulierte (A), *in-utero-*inkubierte (B) sowie *in-vitro-*inkubierte Varianten (C) dargestellt;

Standardabweichungen in Klammern dargestellt, n=4;

Die Quantifizierung erfolgte über Dünnschichtchromatographie mit anschließender Phosphat-Bestimmung. Aus Evans *et al.* (1980), modifiziert. Ein *de-novo*-Biosyntheseweg von GPL wurde bereits mittels radioaktiv markierter GPL-Vorstufen (Fettsäuren, Glycerin und Cholin) beschrieben (Roldan and Harrison, 1992; Roldan and Murase, 1994; Vazquez and Roldan, 1997a, b). Der Einbau von Substraten fand zuerst in Diacylglycerophosphat (DGP) dann in 1,2-Diacylglycerol (1,2-DAG) und schließlich in Glycerophosphocholin (GPC) statt.

GPC Auffallend dass nicht alle markierten DAGdie war, in via Cholinphosphotransferase, welche GPC-Synthese über den Kennedy-Weg (Bishop and Bell, 1988; Hjelmstad and Bell, 1991) katalysiert, umgewandelt waren. In somatischen Zellen befinden sich Enzyme, die eine Verwertung von DAG für eine denovo GPC-Synthese ermöglichen. So sind z.B. Choline-Phosphate-Cytidylyl-Transferase und Choline-Phosphotransferase in den somatischen Zellen im Endoplasmatischen Retikulum (ER) lokalisiert. Da die Spermatozoen kein ER besitzen, ist die genauere Lokalisierung der Enzyme, welche am Lipidstoffwechsel beteiligt sind, unklar. Die Autoren vermuten, dass diese entweder im Cytosol des Spermatozoons, in der Plasmamembran oder in den Golgi-Derivaten der äußeren akrosomalen Membran lokalisiert sind (Roldan and Shi, 2007).

Durch radiochemische Supplementierungsuntersuchungen mit Palmitinsäure bei 37°C wurde gezeigt, dass zwei unterschiedliche DAG-Pools entstehen. Etwa 90% der DAG-Spezies enthielten sowohl in der C-1-Position als auch in der C-2-Position des Glycerols gesättigte Fettsäuren (double saturated DAG, DS-DAG). Die übrigen 10% der DAG-Spezies enthielten eine gesättigte FS in der C-1-Position und eine ungesättigte Fettsäure in der C-2-Position (single unsaturated DAG, SU-DAG). Beim Absenken der Inkubationstemperatur von 25°C auf 17°C bei unveränderter Inkubationsdauer, reduzierte sich das Verhältnis von DS-DAG auf 65%, und von SU-DAG erhöhte es sich entsprechend etwa auf 35% (Vazquez and Roldan, 1997b). Die Menge der metabolisch in die Lipide eingebauten Palmitinsäure war bei DS-DAG und bei GPC nahezu gleich. Dies stimmte mit der bekannten Substratpräferenz der Cholin-Phosphotransferase für SU-DAG überein (Ansell and Spanner, 1982). Diese Beobachtung zeigte auch, dass sich die Cholin-Phosphotransferase nahezu im befindet (Pelech 1984; Gleichgewicht and Vance. Shears. 1993). Die Markierungsexperimente mit einer ungesättigten 20:4-Fettäure zeigten sowohl bei 25°C, als auch bei 17°C eine viel schnellere Fettsäure-Aufnahme im Vergleich zur 16:0 in den freien Fettsäure-Pool (FFS-Pool). Es begann nahezu gleichzeitig der

metabolische Einbau der Fettsäure in GPA und in 1,2-DAG. Erst nach 24 Stunden Inkubation war das Signal von den markierten GPC ca. vierfach höher als das 1,2-DAG-Signal, wobei sich der Plateauwert nach 24 h bei 25°C und nach 48 h bei 17°C einstellte. Die Autoren vermuten, dass es sich um einen *de-novo* Syntheseweg von GPC durch einen direkten Einbau von 20:4 in der GPC via Lysophosphatid Acyltransferase handelte. Somit haben sowohl das Substrat, als auch die Dauer der Inkubation und die Temperatur einen wichtigen Einfluss auf die Erhaltung des Gleichgewichts zwischen den GPL- und DAG-Pools (Vazquez and Roldan, 1997b).

# 1.6 Phospholipasen und die zelluläre Signaltransduktion im Spermatozoon

Die Kapazitation, die Akrosomreaktion und die Hyperflagellation der Spermatozoen sind erst nach dem Einstrom von Ca<sup>2+</sup>-Ionen aus dem extrazellulären Raum oder aus intrazellulären Speichern möglich (Abb. 4, Abb. 7). Ca<sup>2+</sup>-Ionen besitzen eine Funktion als intrazelluläre Signalüberträger ("second messenger") und spielen neben der Aktivierung von Adenylatcyclase auch eine wichtige Rolle bei der Aktivierung von Phospholipasen. Die intrazellulare Ca<sup>2+</sup>-Konzentration wird in der Regel über eine Agonist-Rezeptor-Wechselwirkung in den Spermatozoen reguliert. Als Agonisten für die rezeptorvermittelte Ca<sup>2+</sup>-Aufnahme in Säugetierspermatozoen sind u.a. epidermal growth factor, atrial natriuretic peptide, Prolactin, Interleukin, y-Aminobuttersäure zu nennen. Bei Untersuchungen an in-vitro-kapazitierten Spermatozoen wurde gezeigt, dass die Synthese von DAG einen Einfluss auf die Kapazitation haben kann (Vazquez and Roldan, 1997a). Diese Untersuchungen an nicht kapazitierten Spermatozoen mit unterschiedlichen Agonisten zeigten einen Zusammenhang zwischen der Ca<sup>2+</sup>-Aufnahme, der Aktivität von Phospholipasen und der akrosomalen Exozytose (Abb. 7, A). Durch die Aktivierung von Ca<sup>2+-</sup>-abhängigen-Phospholipasen werden zahlreiche Signaltransduktionskaskaden in Gang gesetzt. Dies ermöglicht am Ende des Kapazitationvorganges die Fusion der Plasmamembran mit der äußeren akrosomalen Membran und somit die Freisetzung der akrosomalen Enzyme (Abb. 7, B-C).



# Abbildung 7: Modell der Signaltransduktion während der Akrosomreaktion von Säugerspermatozoen.

Zusammenhang: Phospholipasen und die Entstehung intrazellulärer Signalüberträger; Erläuterungen im Text.

**A.** Die genaue Lokalisierung der Enzyme, welche am Lipidstoffwechsel in Säugerspermatozoen beteiligt sind, ist unklar. Man vermutet jedoch die Plasmamembran (**PM**) bzw. Golgi-Derivate in der äußeren akrosomalen Membran (**äAM**). **Agonisten:** Progesteron, *epidermal growth factor* (EGF), *atrial natriuretic peptide* (ANP), Prolactin, Interleukin, γ-Aminobuttersäure (GABA).

**B.** Enzyme, Substrate und Produkte **AC**: Ca<sup>2+</sup>-abhängige Adenylatcyclase, **cAMP**: cyclisches Adenosinmonophosphat, **PKA**: Proteinkinase-A, **PKC**: Proteinkinase-C, **PIC**: glycerophosphoinositid-spezifische Phospholipase-C, **PLD**: Phospholipase-D, **PLA**<sub>2</sub>: Phospholipiase-A<sub>2</sub>, **LAT**: Lysophosphatid Acyltransferase, **GPC-PLC**: glycerophophosphatidylcholinspezifische Phospholipase-C, **PIP**<sub>2</sub>: Phosphatidylinositol-4,5-bisphosphat, **IP**<sub>3</sub>: 1,4,5-triphosphat, **DAG**: 1,2-Diacyglycerol, **GPC**: Glycerophosphocholin, **Iyso-GPC**: lyso-Glycerophosphocholin, **FFS**: freie Fettsäuren.

**C.** Angriffsorte der Phospholipasen an einem Beispiel für *diacyl*-Glycerophosphocholinmolekül, schematische Darstellung. Die Acylreste von Fettsäuren sind rot dargestellt ( $\mathbf{R}_1$  und  $\mathbf{R}_2$ ). Nach Roldan and Shi (2007), Vazquez and Roldan (1997b), modifiziert.

Diese molekularen Vorgänge bilden die Basis für die Befruchtungskompetenz des Spermatozoons. Zusammenfassend lässt sich ein Modell der Signaltransduktionsprozesse und der daran beteiligten intrazellulären Signalüberträger in Säugerspermatozoen während der Kapazitation erstellen (Roldan, 1998; Roldan and Shi, 2007). Nach dem Einstrom von Ca<sup>2+-</sup>-Ionen aus dem bzw. intrazellulären Speichern neben extrazellulären Raum werden der Adenylatcyclase auch Phospholipasen aktiviert (Abb. 7, B). So wurden für die Säugerspermatozoen phosphoinositidspezifische Phospholipase-C (PIC-PLC), glycerophosphatidylcholinspezifische PLC (GPC-PLC), Phospholipiase A<sub>2</sub> (PLA<sub>2</sub>) Phospholipiase D (PLD) beschrieben (Roldan and Shi, 2007). Die und Phospholipase-C (PLC) ist eine Hydrolase, deren Produkt 1,2-Diacyglycerol (1,2-DAG) ist (Abb. 7, C). Zwei Hauptgruppen sind durch ihre Substratspezifität gekennzeichnet: Glycerophosphoinositol (GPI) und Glycerophosphocholine (GPC). Sowohl PIC-PLC als auch GPC-PLC sind für die Entstehung von einer Vielzahl der Spermatozoen zuständig. **DAG-Spezies** in PIC-vermittelte Hydrolyse von Phosphatidylinositol-4,5-bisphosphat erzeugt 1,4,5-triphosphat (IP<sub>3</sub>) und DAG (Ribbes et al., 1987). Die Hydrolyse von Polyphosphoinositid findet nur in Anwesenheit von Ca<sup>2+-</sup>-Ionen statt. Die Untersuchungen von PIC an den Spermatozoen in Ca<sup>2+-</sup>-freien Medien, sowie die Studien mit Ca<sup>2+-</sup>-Ionenkanalblocker lassen einen intrazellulären Ca<sup>2+-</sup>-Speicher in den Spermatozoen vermuten. Die genauere Lokalisation ist jedoch unbekannt. Es wird das Akrosom vermutet. Durch die GPC-PLC wird das Phosphatidylcholin, in Cholin-Phosphat und DAG gespalten. Die GPC-PLC ist das wichtigste Enzym für die Entstehung von DAG aus GPC in somatischen Zellen. Auch die Untersuchungen an humanen Spermatozoen zeigten, dass sowohl während der In-vitro-Kapazitation als auch in Anwesenheit von den Agonisten für die Ca<sup>2+-</sup>-Kanäle eine Entstehung von DAG zu beobachten ist. Die intrazelluläre Lokalisation von GPC-PLC ist mit großer Wahrscheinlichkeit die akrosomale Region der Spermatozoen (Roldan and Shi, 2007). Auch das Vorkommen von GPC-PLC im Seminalplasma wurde berichtet. Die Phospholipase-D (PLD) mit Ausnahme von Seeigelspermatozoa, scheint bei der Entstehung von DAG in Säugerspermatozoen keine signifikante Rolle zu spielen (Roldan and Shi, 2007). Die Hydrolyse von GPL durch  $PLA_2$ erzeugt freie Fettsäuren und Lysoglycerophospholipide.

Diese fungieren wiederum als Substrate für die Erzeugung weiterer Metabolite oder führen zur Membranendestabilisierung und schließlich zur Fusion der Plasmamembran mit der äußeren akrosomalen Membran und somit zur Freisetzung der akrosomalen Enzyme.

Durch den Einsatz von DAG-Lipasen, DAG-Kinasen sowie von deren Inhibitoren konnten Roldan and Harrison (1992) die Bedeutung von DAG bei der Kapazitation sowie bei der Akrosomreaktion nachweisen. DAG aktivierte in Spermatozoen Proteinkinase-C und PLA<sub>2</sub> und hatte auch einen positiven Rückkopplungseffekt auf GPC-PLC (O'Toole et al., 1996; Roldan and Fragio, 1994; Roldan et al., 1994; Roldan and Shi, 2007). DAG fundieren, neben ihrer Funktion als "second messenger", auch als Substrat für die Erzeugung anderer aktiver Metabolite wie Diacylglycerophosphat oder Monoacylglycerol. Sowohl die Umwandlung von DAG in Diacylglycerophosphat über DAG-Kinase, als auch der DAG Katabolismus zu Monoacylglycerol über DAG-Lipase, spielten eine untergeordnete Rolle in der Signaltransduktionskaskade von Spermatozoen. Durch den Einsatz von Inhibitoren von DAG-Lipasen und DAG-Kinasen konnte gezeigt werden, dass DAG und nicht die abgeleiteten Metabolite wichtig für die Kapazitation und Akrosomreaktion sind. Desweiteren wurde gezeigt, dass während der akrosomalen Exocytose DAG als Vorstufe für die GPC Synthese fundiert. Dies war ein Beweis dafür, dass die porcinen Spermatozoen in der Lage sind, eine aktive de-novo-GPC-Synthese durchzuführen.

### 1.7 Zusammensetzung der Flüssigkonservierungsmedien

Bei der Flüssigkonservierung stellt jedes Medium den Spermatozoen bestimmte Komponenten zur Verfügung. Diese sind eine Energiequelle (Glukose), die den physiologischen pH-Wert (Bikarbonat) sowie den osmotischen Druck (NaCl, KCl sowie Glukose) regulieren. Die Bestandteile eines Flüssigkonservierungsmediums dürfen nicht die Befruchtungskompetenzkriterien der Spermatozoen wie Motilität, Membraneigenschaften, Akrosomstatus, Enzymausstattung, Fähigkeit zur Kapazitation und Akrosomreaktion negativ beeinflussen. Es wird allgemein zwischen Kurzzeitund Langzeitkonservierungsmedien unterschieden. Das Kurzzeitkonservierungsmedium ermöglicht, die Spermatozoen einer bestimmten Tierart, für einen Zeitraum von wenigen Tagen flüssig konservierbar zu machen.

Die typischen Inhaltsstoffe von Kurzkonservierungsmedien für porcine *Spermatozoen* (BTS, Kiev, IVT) sind exemplarisch in der Tabelle 2 dargestellt.

Diese Medien enthalten alle notwendigen Substanzen, die für das Überleben von Zellen erforderlich und an den Elektrolytgehalt der porcinen *Spermatozoen* angepasst sind. Stoffwechseluntersuchungen zufolge wird Glukose während der Langzeitkonservierung verbraucht und Laktat produziert. Dieser Prozess hat einen entscheidenden Einfluss auf die osmotischen Eigenschaften des Mediums. Daher ist eine weitere essentielle Komponente notwendig, um den physiologischen *pH*-Wert über den gesamten Lagerungszeitraum aufrechtzuerhalten. In der Regel werden dafür Bikarbonate verwendet.

Tabelle2:VergleichendeZusammensetzungvonKonservierungsmedienfürporcineSpermatozoen.

|                         | Kurzzeitmedium<br>bis 72 Std. |      |      | Langzeitmedium<br>bis 240 Std. |        |        |        |          |
|-------------------------|-------------------------------|------|------|--------------------------------|--------|--------|--------|----------|
| (g/l)                   | IVT                           | Kiew | BTS  | Zorleso                        | Zorpva | Readig | Modena | Androhep |
|                         |                               |      |      |                                |        |        |        |          |
| Glukose                 | 3                             | 60   | 37   | 11.5                           | 11.5   | 11.5   | 25     | 26       |
| Natriumcitrat           | 24.3                          | 3.7  | 6.0  | 11.7                           | 11.65  | 11.65  | 6.9    | 8.0      |
| EDTA                    |                               | 3.7  | 1.25 | 2.3                            | 2.35   | 2.35   | 2.25   | 2.4      |
| Natriumhydrogencarbonat | 2.4                           | 1.2  | 1.25 | 1.25                           | 1.75   | 1.75   | 1.0    | 1.2      |
| Kaliumchlorid           | 0.4                           |      | 0.75 |                                |        | 0.75   |        |          |
| Acetylcystein           | 0.05                          |      |      |                                |        |        |        |          |
| HEPES                   |                               |      |      |                                |        |        |        | 9.0      |
| BSA                     |                               |      |      | 5.0                            |        |        | 3.0    | 2.5      |
| TRIS                    |                               |      |      | 6.5                            | 5.5    | 5.5    | 5.65   |          |
| Zitronensäure           |                               |      |      | 4.1                            | 4.1    | 4.1    | 2.0    |          |
| Cystein                 |                               |      |      | 0.1                            | 0.7    | 0.7    | 0.05   |          |
| Trehalose               |                               |      |      |                                |        | 1      |        |          |
| PVA                     |                               |      |      |                                | 1      | 1      |        |          |
| mOSm                    | 290                           | 380  | 330  | 240                            | 275    | 300    | 282    | 309      |
| рН                      |                               | 7.2  | 7.2  |                                |        |        | 6.9    | 6.8      |

IVT (Du Mesnil du Buissson and Dauzier, 1959), BTS (Pursel and Johnson, 1975), Kiew (Plisko, 1965), Zorleso (Gottardi L., 1980), Zorpva (Cheng, 1985), Reading (Revell and Glossop, 1989), Modena (Morreti, 1981), Androhep (Weitze, 1990). Nach Gadea (2003), modifiziert.

Sollten die Zellen während eines längeren Zeitraums untersucht bzw. konserviert werden, greift man zu so genannten Langzeitflüssigkonservierungsprotokollen. Diese sind für den Einsatz bis zu zehn Tagen geeignet; die Verwendung von Antibiotika ist dabei unumgänglich. Am häufigsten werden Aminoglykoside benutzt.

#### Inkubationsmedien für Kryo- und Niedrigtemperaturkonservierung

Die unterschiedlichen Konservierungsmethoden (Kurzzeitflüssigkonservierung, Flüssigkonservierung bei Niedrigtemperaturen und Kryokonservierung) haben ein Einfluss auf den Stoffwechsel der Spermatozoen. Die Membraneigenschaften können durch Herabsetzung des Stoffwechsels sowie die Niedrigtemperaturlagerung beeinflusst werden (Buhr et al., 1994; Chakrabarty et al., 2007; Waterhouse et al., 2006). Um unerwünschte Einflüsse auf die Membranen zu minimieren, werden schon seit langem bei der Niedrigtemperaturlagerung und Kryokonservierung der Spermatozoen milchprotein- und eidotterhaltige Medien zugegeben (Amidi et al., 2010; Bathgate et al., 2006; Farstad, 2009; Maldjian et al., 2005; Trimeche et al., 1997). Eidotter- sowie Milchproteinextrakte enthalten vor allem Fettsäuren und Lipoproteine; der Anteil an GPC beträgt mehr als 70% der gesamten Phospholipide (Cherian, 2008; Fuchs et al., 2007; Yalcyn et al., 2007). Somit könnten die Eidotterextrakte auch als proteingebundenes Fettsäure- und Lipidreservoir angesehen werden. Die molekularen Wechselwirkungen der mit den Lipoproteinen assoziierten Substanzen und den Spermatozoen sind noch nicht aufgeklärt. Es wurde gezeigt, dass durch die Supplementierung der porcinen Ejakulate mit eidotterhaltigen Medien, nach der Kryokonservierung bei den GPL und ihrer Fettsäurezusammensetzung eine signifikante Veränderung zu verzeichnen war (Buhr 1994). Zahlreiche Arbeiten beschäftigen sich mit der et al.. dietären Supplementierung der Fettsäuren sowie lipidhaltigen Komponenten der Futtermittel und deren physiologischen Auswirkungen auf die Spermatozoen. Aus Platzgründen wird auf diese Thematik nicht näher eingegangen. Eine ausführliche Information ist (Castellano et al., 2010; Mourvaki et al., 2010; Strzezek et al., 2004) zu entnehmen.

### 1.8 Bakterielle Kontamination der porcinen Ejakulate

Die Spermatogenese im Hoden sowie der Reifungsprozess während der Nebenhodenpassage finden unter nahezu keimfreien Bedingungen statt (Schulze, 2010). Nach der Entnahme lassen sich in jedem Ejakulat Bakterien nachweisen. Faktoren, die die Keimzahl beeinflussen, sind die Methode der Entnahmetechnik, das Volumen der Präputialflüssigkeiten und die Gesundheit der Tiere. Das Präputialsekret des Ebers besteht aus Drüsensekreten, Epithelzellen, *Spermatozoen* und Harnresten. Dieses Sekret enthält eine grosse Anzahl von Keimen und ist für den Hauptteil der im Ejakulat gefundenen Bakterien verantwortlich (Schulze, 2010).

Wie aus Tabelle 2 zu entnehmen ist, enthält jedes Medium eine Energiequelle (z.B. Glukose). So befinden sich 60 g Glukose in einem Liter Kiev-Medium, aber nur 2 g reichen für ein E. coli-Nährmedium aus. Gerade die gramnegativen Bakterien E. coli, Salmonella oder Ps. aeruginosa haben Temperaturoptimum bei der empfohlenen Lagertemperatur von 15-20°C (Okazaki et al., 2010). Eine andere Temperatur der Konservierung ist ohne Kryoprotektiva nicht möglich, da die porcinen Spermatozoen sehr empfindlich auf niedrige Temperaturen reagieren (Rusu et al., 2011). Da hygienische Maßnahmen allein nicht völlig ausreichend sind, um eine Keimfreiheit zu gewährleisten, wird heute eine Keimhemmung in flüssigkonservierten Ejakulaten durch Antibiotikazusatz gewährleistet (Althouse, 2008). So wurde bei der assistierten Reproduktion zunächst eine Kombination von Penicillin-Streptomycin benutzt. Nachdem vermehrt Resistenzen beobachtet wurden, wechselte man zu den Aminoglykosiden, v.a. Gentamycin, Neomycin oder Kanamycin. Selbst bei Zugabe dieser Antibiotika traten zwischenzeitlich Resistenzen auf. Deshalb wird in den letzten Jahren vermehrt mit neueren Antibiotika gearbeitet, auch mit solchen, die in der Humanmedizin als letzte Therapiereserve angesehen werden (Leiding, 2005). Da bei niedrigen Temperaturen das Generationsintervall der Bakterien zunimmt (Althouse et al., 2008), könnte die Entwicklung eines zuverlässigen Flüssigkonservierungsverfahrens bei niedrigen Temperaturen zur Reduktion der Keimzahl führen.

## 2 PROBLEME, ZIELSTELLUNG UND STRATEGIE DER ARBEIT

Die Anwendung der Niedrigtemperaturlagerung und der Kryokonservierung von Spermatozoen führt zu einer Reduktion der bakteriellen Kontamination und kann Reduzierung von Antibiotikazusätzen ermöglichen. Da daher die porcine Spermatozoen sehr kältesensitiv sind, werden seit Mitte des 20. Jahrhunderts bei diesen Konservierungsmethoden dem Medium lipidhaltige Proteinextrakte wie Eidotter und Milchproteine zugefügt. Die Lipid- und Fettsäurezusammensetzung der Spermatozoen sowie ihre Lipidbiosynthese sind unter diesen Bedingungen jedoch nur unzureichend erforscht. Die Untersuchung des Fettsäuremetabolismus und der Lipidbiosynthese ist daher Gegenstand der vorliegenden Arbeit. Dazu sollen zuerst die in porcinen Spermatozoen vorkommenden Lipide und Fettsäuen analysiert werden. Unter der Annahme, dass endogen vorkommende Fettsäuren auch als Substrate für die Lipidbiosynthese akzeptiert werden, soll die Metabolisierung verschiedener Monocarbonsäuren untersucht werden. Diese sollten dem Flüssigkonservierungsmedium zugegeben und so den Spermatozoen zur Verfügung chemischen Supplementierung gestellt. Bei dieser müssen sowohl die Bioverfügbarkeit (Löslichkeitsvermittlung) als auch die Zytotoxizität beachtet werden. Dazu werden zunächst alle notwendigen Komponenten mittels Zytotoxizitätsassay untersucht um die maximalen nicht toxischen Konzentrationen zu definieren. Radiochemische Experimente liefern Informationen über eine mögliche metabolische Aufnahme von Fettsäuren in bestimmte Lipidklassen der Spermatozoen. Die so charakterisierten Lipidklassen sollen dann nach Supplementierung mit stabilen Isotopen der entsprechenden Fettsäuren anhand massenspektrometrischer Methoden (CG, MALDI-TOF-MS, Q-TOF-MS) genauer analysiert werden. Für die eindeutige Zuordnung und Identifizierung der verschiedenen Lipidspezies sollte eine Lipid-Datenbank erstellt werden. Diese enthält die Massen aller theoretisch möglichen Quasimolekülionen der betroffenen Lipidklassen. Der Einfluss von Temperatur und Inkubationsdauer auf die metabolische Aufnahme von Fettsäure in die entsprechenden Lipidklassen soll dann unter Berücksichtigung der Individuumspezifität anhand verschiedener Markierungsund Pulse-Chase-Experimente untersucht werden. Anschließend werden die physiologischen Veränderungen der mit Fettsäuren bei Niedrigtemperatur supplementierten porcinen Spermatozoen charakterisiert (Motilität, Vitalität und Akrosomzustand). Dies sollte

eine Aussage ermöglichen ob und welche Supplementierungsvarianten trotz Niedrigtemperaturlagerung zu einer Verbesserung des physiologischen Zustands der *Spermatozoen* führen. Da eine bakterielle Kontamination porciner Ejakulate trotz des Zusatzes von Antibiotika aufgrund von multiresistenten Stämmen nicht vollständig ausgeschlossen werden kann, muss auch die Möglichkeit der bakteriellen Verwertung von Fettsäuren untersucht werden, um Metabolisierungsprozesse gegebenenfalls genau zuordnen zu können.

# 3 MATERIAL UND METHODEN

Soweit nicht anders angegeben, wurden alle hier beschriebenen Experimente für die Überprüfung der Vergleichbarkeit und Genauigkeit mindestens dreimal wiederholt.

# 3.1 Geräte, Verbrauchsmaterialien und Chemikalien

## Chemikalien:

Die verwendeten Chemikalien, Lösungsmittel, Detergenzien, Antibiotika und Zusätze wurden, soweit nicht anders angegeben, von Sigma-Aldrich Chemie GmbH (Schnelldorf), AppliChem (Darmstadt), Merck (Darmstadt), Fluka (Neu-Ulm) und Carl Roth (Karlsruhe) in der höchsten Reinheitsstufe bezogen. Die synthetischen und natürlichen Lipidstandards wurden von Avanti Polar Lipids (Alabaster, USA) geliefert. Organische Lösungsmitteln für die massenspektrometrischen Untersuchungen wurden von Sigma-Aldrich Chemie GmbH in den dafür geeigneten Reinheitsgraden bezogen.

## Radiochemikalien:

| [1- <sup>14</sup> C]-Octadecadiensäure,<br>Spezifische Aktivität: 55 mCi / mmol (203,5 MBq / mmol)                                                   | Hartmann Analytic GmbH                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| $[U-^{13}C]$ -Octadecadiensäure, $^{13}C_{18}$ -99% der Atome, MW = 298.16                                                                           | Campro Scientific GmbH                           |
| <u>Geräte:</u>                                                                                                                                       |                                                  |
| Szintillationszähler 1600 TR<br>Kieselgel-Platten 10 × 20 und 20 × 20 cm:<br>Slore PA 7000-04, Slore PA 7003-04                                      | Packard                                          |
| Kieselgel 60 $F_{254}$ 10 × 10 und 20 × 20 cm:<br>Phosphorimager Analyser FLA3000<br>Imageplatten-Eraser BAS-IPE 2040                                | Merk<br>FujiFilm<br>FujiFilm                     |
| Imageplatte BAS-TR 2040<br>Expositionskassetten BAS-Standard 2040<br>Scankassette BAS-IP-Magazin 2040                                                | Fuj́iFilm<br>FujiFilm<br>FujiFilm                |
| Tischzentrifuge Biofuge Fresco bzw. Stratos<br>Kühlzentrifuge 5810<br>Heizplatte/Magnetrührer, Ikamag                                                | Heraeus<br>Eppendorf<br>IKA                      |
| MALDI-TOF, Autoflex I ( <i>matrix-assisted laser desorptior</i><br>und ionization time-of-flight mass spectrometer)                                  | Bruker Daltonics                                 |
| Q-TOF 6530 (quadrupole-time of flight mass spectrometer)<br>Gaschromatograph HP 6890 Plus GC<br>UV-Transilluminator NU-72<br>Vortexschüttler, VM-300 | Agilent<br>Agilent<br>Carl Roth<br>Gemmi, NeoLab |

Heizplatte CT 1815 Ultraschallbad Bransonic Durchflusszytometer PAS NucleoCounter SP-100 Waage, BP 211D Thermoblock Thermoblock DB2D Sterilfiltereinheit (0,2 µm) Wasserbad, GFL 1002 Photometer Spekol 1200 Magnetrührer MAG MS10 Rotationsschüttler Innova 4000 Kontaminationsmonitor LB 122 pH-Meter 511

## 3.2 Software

Analysensystem BAS 2000, software BAS Reader 3.01 AIDA Bildanalysensoftware, Ver. 3.11 oder 4.27 MassHunter Ver. 2.0.2 Flex analysis, Ver. 2.2 FloMax Ver. 2.0 SPSS Statistics 19 Professional StudySize 2.0 Microsoft Office 2010 Creative Suite 5 Chemstation 4.0.2 Carl Roth B. Braun Partec ChemoMetec Sartorius Liebisch Techne AG Nalgene, Rochester GFL Analytik Jena AG Carl Roth New Brunswick Sci. Berthold Technologies Knick

FujiFilm Raytest Agilent Bruker Daltonics Partec IBM CreoStat HB Microsoft Adobe Agilent

## 3.3 Statistische Auswertungen

Die Dateneingabe erfolgte mit dem Tabellenkalkulationsprogramm Excel (Microsoft Office 2010, Microsoft). Am Anfang der In-vitro-Untersuchungen wurde die erforderliche Stichprobengröße mittels Power-Analyse (pairwise analysis, StudySize 2.0) ermittelt. Die Auswertung der Daten und die Abbildungen wurden mit dem Programm SPSS Statistics 19 Professional (IBM) durchgeführt. Das Signifikanzniveau (a) wurde auf 0,05 festgelegt. Die Power der Fallzahlplanung wurde auf 75% festgelegt. Es wurde angenommen, dass bei 90% der jeweils untersuchten physiologischen Kriterien ein Unterschied zu beobachten ist. Unter Verwendung statistischer Tests (Wilcoxon-Vorzeichen-Rang-Test, Friedman-Test) wurden verschiedene Hypothesen bezüglich signifikanter Unterschiede getestet. Als Nullhypothese wurde angenommen, dass die Proben sich in ihrem untersuchten physiologischen Status nicht unterscheiden. Als Alternativhypothese wurde definiert, dass die Proben Unterschiede in ihrem physiologischen Status aufweisen.
Wenn im Friedman-Test p≤0,05 ermittelt wurde, erfolgte *a posteriori* ein Post-Hoc-Test mittels des Wilcoxon-Vorzeichen-Rang-Testferfahrens und die Signifikanzen wurden hierbei mit der Bonferroni-Holm-Methode adjustiert. Wenn es nicht anders angegeben ist, wurde der "p-Wert" stets zweiseitig und exakt berechnet angegeben. Die Ergebnisse sind als Boxplot-Diagramme mit dem höchsten bzw. niedrigsten gemessenen Wert (Whisker), dem Interquartilbereich zwischen dem 1. und 3. Quartil (Box) und dem Medianwert dargestellt (8.1.4).

# 3.4 Gewinnung, Flüssigkonservierung und Supplementierung von Spermatozoen

Für die Untersuchung wurden sowohl native als auch in BTS-Medium (Tab. 3) ohne Antibiotikazusatz flüssigkonservierte Ejakulate des Hausschweins (*Sus scrofa domestica*; Rasse Piétrain, Duroc) von einer Besamungsstation zur Verfügung gestellt. Soweit nicht anders angegeben, wiesen sämtliche Ejakulate Motilitätswerte von mindestens 75% auf. Die Zellkonzentration der flüssigkonservierten Proben wurde auf  $2 \times 10^9$  motile *Spermatozoen* in 90 ml auf  $34^{\circ}$ C vorgewärmtem BTS-Medium eingestellt (3.5.1). Gleichzeitig erfolgte die Supplementierung der Zellen mit den in Rahmen dieser Arbeit zu untersuchenden Substanzen (3.5.5, 3.9.1, 3.10). Die Zellen wurden bei 6°C (Niedrigtemperaturlagerung) bzw. 17°C (Flüssigkonservierung) gelagert.

## 3.5 Spermatologische Untersuchungen

Vor jedem Versuch wurden die verwendeten *Spermatozoen* hinsichtlich ihrer Motilität und Morphologie beurteilt. Unter pathologischen Bedingungen können unreife Zellen (*Spermatogonien*) oder deformierte Spermatozoen (Kopf- oder Geiselteilung, abnorm großer Kopf) vorkommen. Als Mindestanforderung galten 75% motile und morphologisch intakte *Spermatozoen* am Anfang der Untersuchungen. Entsprach die Probe nicht den oben genannten Kriterien, so wurde diese nicht für die Untersuchungen zugelassen bzw. von den weiteren Untersuchungen ausgeschlossen.

24

## 3.5.1 Zellzahlbestimmung

Die Erfassung der Zellzahl von nativen sowie flüssigkonservierten *Spermatozoen* wurde mittels NucleoCounter<sup>®</sup> SP-100<sup>™</sup> (ChemoMetec A/S, Dänemark) nach Angaben des Herstellers durchgeführt. Ausführlichere Erläuterungen zu Erfassung der Zellzahl von nativen sowie flüssigkonservierten *Spermatozoen* sind Hansen *et al.* (2006) zu entnehmen.

## 3.5.2 Plasmamembranintegrität und akrosomaler Status der Zellen

#### 3.5.2.1 Plasmamembranintegrität

Propidiumjodid (PI) wirkt als Nukleinsäureinterkalator und kann die perforierte Zellmembran von toten Zellen, aber in der Regel nicht die intakte Membran von lebenden Zellen durchdringen. Daher ist es durch die Markierungen mit PI möglich, zwischen lebenden und toten *Spermatozoen* zu differenzieren (Garner *et al.*, 1986; Pintado *et al.*, 2000). Hierzu wurde PI mit einer Endkonzentration von 15  $\mu$ M für 20 min bei 38°C zu den *Spermatozoen* (5 × 10<sup>6</sup>) in ein lichtundurchlässiges Reaktionsgefäß gegeben. Im Anschluss an die Inkubationszeit wurden die 2 × 10<sup>5</sup> Zellen in die Messküvette mit 2 ml auf 38°C temperiertem, sterilfiltriertem *p-NaCl*-Medium gegeben. Die Messung erfolgte an einem Durchflusszytometer (PAS, Partec) mit einer Exzitationswellenlänge von 488 nm und einer Emissionswellenlänge von 617 nm (FL-III Filter: LP>610 nm). Je Probe und Messung wurden insgesamt 15.000 Ereignisse erfasst. Die Auswertung erfolgte mit der Software FloMax, Ver. 2.0.

#### Phosphatgepufferte NaCI-Lösung (p-NaCI), pH 7,0:

- A) 0,5 M Na<sub>2</sub>HPO<sub>4</sub> × 12 H<sub>2</sub>O
- B) 0,5 M NaH<sub>2</sub>PO<sub>4</sub> × H<sub>2</sub>O
- C) 16,1 ml Lösung A + 8,9 ml Lösung B werden mit *Aqua bidest*. auf 100 ml aufgefüllt (Phosphatpuffer)
- D) Phosphatpuffer wird mit 0,9% iger NaCl-Lösung im Verhältnis 1:3 verdünnt, der pH-Wert auf 7,0 eingestellt.
- E) Lösung wurde vor Gebrauch sterilfiltriert

Die *p-NaCl*-Lösung wurde von IFN-Schönow etabliert und dort in den Routineuntersuchungen angewandt. Die Herstellung erfolgte, wie oben beschrieben, ebenfalls durch IFN-Schönow. Da dieses Medium keine Energiequelle (z.B. Glukose, siehe Kapitel 1.7) enthält, wurde dieses u.a. während den radiochemischen Untersuchungen (4.3.2) als ein Glukose-Mangel-Medium eingesetzt.

#### 3.5.2.2 Akrosomaler Status

Die Ermittlung des Anteils an *Spermatozoen* mit Akrosomveränderungen wurde durchgeführt, um pathologische oder durch die jeweilige Behandlung der *Spermatozoen* hervorgerufene Veränderungen der akrosomalen Membranstruktur mikroskopisch zu erfassen. Die Fixierung der flüssigkonservierten Zellen erfolgte in 0,05% (v/v) Methylaldehyd (37%ige Formaldehydlösung, Merck). Aus der fixierten Probe wurden 4 µl auf einen Objektträger (ISO 8073, 76 × 26 mm) gegeben und mit einem Deckglas (DIN 58884, 18 × 18 mm) abgedeckt. Anschließend wurde bei 800-facher Vergrößerung die mikroskopische Beurteilung (Jenaval, Carl Zeiss) von 200 Zellen je Präparat hinsichtlich der nachfolgenden Kriterien durchgeführt:

- NAR normaler apikaler Rand
- **GAR** geschwollener apikaler Rand
- AIA Akrosom in Ablösung
- AA abgelöstes Akrosom
- **DAR** deformierter apikaler Rand

Akrosomdefekte [in %] = NAR - (GAR + AIA + AA + DAR)

*Spermatozoen*, die nicht der Kategorie NAR entsprachen, wurden als akrosomdefekt bewertet und ihr Gesamtanteil in Prozent angegeben. Ausführlichere Erläuterungen zur Beurteilung der Akrosomveränderungen von nativen sowie flüssigkonservierten *Spermatozoen* sind Busch (2001) zu entnehmen.

# 3.5.3 Computerunterstützte Motilitätsanalyse (CASA) und

## Thermoresistenztest

Zur Beurteilung der Spermatozoenbewegung wurde das System SpermVision (SV)<sup>™</sup> (Minitüb<sup>®</sup>, Tiefenbach) eingesetzt. Die Erfassung der zu messenden Parameter wurde nach Angaben des Herstellers durchgeführt. Hierzu wurden die Proben durchmischt, eine aliquote Menge von 10 ml (2 × 10<sup>8</sup> Zellen) in ein Reagenzglas überführt und in einem Wasserbad bei 38°C unter Luftzutritt inkubiert. Für den Thermoresistenztest (TRT), welcher einen Vitalitätstest für flüssigkonservierte Zellen darstellt, wurden zwei Messzeitpunkte festgelegt. Eine erste Messung fand nach 30 min Inkubation statt, eine zweite 300 min nach Beginn der Inkubation. Dazu wurde nach dem Schwenken der Probe ein Aliquot von 2,5 µl (5 × 10<sup>4</sup> Zellen)

entnommen und in eine Messkammer des Typs Leja-4<sup>™</sup> (Leja<sup>®</sup>, Nieuw-Vennep) überführt, die zuvor ebenfalls auf 38°C erwärmt worden war (Heizplatte HAT 200, Minitüb<sup>®</sup>, Tiefenbach).

Die Messung erfolgte etwa 15 Sekunden nach vollständiger Verteilung der Probe in der Kammer entlang der Kammermittellinie. Es wurden vor allem die lokale und die progressive Motilität sowie der Anteil immotiler Spermien erfasst. Je untersuchte Probe wurden 1000 *Spermatozoen* bzw. 15 Messfelder ausgewertet. Der Mittelwert aller Motilitätsdaten der einzelnen Gesichtsfelder stellte das Ergebnis einer Messung dar (Schulze, 2010). Als Gesamtmotilität werden alle beweglichen *Spermatozoen* zusammengefasst. Ausführlichere Erläuterungen zu den Parametern nach CASA sind Boyers (1989) zu entnehmen.

#### 3.5.4 Bestimmung der Mitochondrienaktivität und Spermatozoenvitalität

In Anlehnung an flowzytometrische Untersuchungen von Human- (Wu et al., 2006), Bullen- und Hengstspermatozoen (Graham et al., 1990; Papaioannou et al., 1997) erfolgte die Analyse der Spermatozoenviabilität und Mitochondrienaktivität mittels Durchflusszytometrie anhand einer Rhodamin 123 (Rh123) / Propidiumiodid (PI)-Färbung. Das Membranpotential der inneren mitochondrialen Membran (MMP) wurde semiquantitativ mittels des Fluoreszenzfarbstoffes Rh123 gemessen (Baracca et al., 2003). Voraussetzung für die Signaldetektion sind lebende Zellen mit funktionsfähigen Mitochondrien, die eine negativ geladene Mitochondrienmatrix (MM) aufweisen (Ericsson et al., 1993; Garner et al., 1986; Garner et al., 1997; Kramer et al., 1993). Aufgrund der positiven Ladung von Rh123 lagern sie sich selektiv in Abhängigkeit vom negativen MMP in die mitochondriale Matrix ein. Die Intensität der Fluoreszenz ist direkt proportional zur Höhe des MMPs. Über die Höhe des MMPs sagt diese Methode nichts aus. Sie ermöglicht nur die Visualisierung von funktionsfähigen Mitochondrien. Hierzu wurde Rh123 zu den Spermatozoen (5 × 10<sup>6</sup>) mit einer Endkonzentration von 0,52 µM für 20 min bei 38°C in ein lichtundurchlässiges Reaktionsgefäß gegeben. Im Anschluss an die Inkubationszeit wurden die 2 × 10<sup>5</sup> Zellen in eine Messküvette mit 2 ml auf 38 °C temperiertem, sterilfiltriertem *p-NaCl*-Medium gegeben. Die Messung erfolgte am Durchflusszytometer (PAS, Partec GmbH, Münster) mit einer Exzitationswellenlänge von 488 nm und einer Emissionswellenlänge von 530 nm (FL-I Filter: BP 500-560 nm). Die Behandlung mit PI wurde bereits in 3.5.2.1 beschrieben. Je Probe und

Messung wurden insgesamt 15.000 Ereignisse erfasst. Die Auswertung erfolgte mit der Software FloMax Ver. 2.0. Die Ergebnisse einer Messung werden in Form von Dotplots sowie 1-Parameter-Histogrammen dargestellt. Die Software beinhaltet eine Regionenstatistik, woraus der prozentuale Anteil Rh123-markierter Zellen sowie die Intensität der Fluoreszenz erkennbar ist.

#### 3.5.5 Zytotoxizitätsassay

Zur Feststellung in welchen Konzentrationen und unter welchen Bedingungen die freien Fettsäuren sowie andere Komponenten des Inkubationsmediums für die Supplementierung der *Spermatozoen* einzusetzen sind, musste die zytotoxische Wirkung der einzelnen Komponenten des Mediums untersucht werden.

#### 3.5.5.1 Inkubation mit Ethanol

Für die Überprüfung der zytotoxischen Wirkung von Ethanol wurden  $2 \times 10^9$  den Mindestkriterien (3.4) entsprechenden *Spermatozoen* in 90 ml BTS-Medium mit 19 µM, 190 µM, 1.9 mM, 19 mM Ethanol (E-7023, Sigma) versetzt. Die Inkubationsdauer betrug 6 Stunden bei RT. Danach wurden *Spermatozoen* hinsichtlich ihrer Motilität (3.5.3) und Akrosommorphologie (3.5.2.2) beurteilt. Entsprach die Probe zu diesem Zeitpunkt den Mindestkriterien, so wurde eine Nachinkubation für 24 Stunden bei 17°C mit anschließenden Nachuntersuchungen durchgeführt.

#### 3.5.5.2 Inkubation mit fettsäurefreiem Rinderserumalbumin

Analog zur Inkubation mit Ethanol wurde eine Inkubation mit BSA durchgeführt. Das Protein wurde in *p-NaCl* aufgenommen und den Zellen mit 1.7  $\mu$ M, 17  $\mu$ M, 85  $\mu$ M, 170  $\mu$ M BSA zugegeben. Umfang und Inkubationsbedingungen der Untersuchungen entsprachen dem Zytotoxizitätsassay für Ethanol (3.5.5.1).

#### 3.5.5.3 Inkubation mit freien Fettsäuren

Analog zur Inkubation mit Ethanol wurde eine Inkubation mit freien Fettsäuren (40  $\mu$ M, 200  $\mu$ M, 400  $\mu$ M, 800  $\mu$ M) durchgeführt. Da die Fettsäuren durch ihre lipophilen Eigenschaften gekennzeichnet sind, konnte auf den Einsatz von Löslichkeitsvermittlern nicht verzichtet werden. Hierzu wurden die Octadecadiensäure in zytotoxisch unbedenklichen Mengen von Ethanol (190  $\mu$ M bis 1.9 mM) aufgenommen (4.3.1.1) und in den oben genannten Konzentrationen den

Zellen zugegeben. Der Umfang der Untersuchungen, sowie die Inkubationsbedingungen entsprachen dem Zytotoxizitätsassay für Ethanol (3.5.5.1).

#### 3.6 Lipidanalytik

#### 3.6.1 Gesamtlipidextraktion

Für die Lipidextraktion wurden *Spermatozoen*, Bakterien sowie Seminalplasma der Fragestellung entsprechend aus frischem, eingefrorenem oder kochlysiertem Material verwendet. Der Waschvorgang der Zellen vor der Lipidextraktion wurde mindestens zweimal wiederholt. Dafür wurden die Zellen 10 min bei 800 g (*Spermatozoen*) bzw. 3000 g (Bakteriensuspension) zentrifugiert, der Überstand wurde in gleichem Volumen des frischen Mediums aufgenommen und durch vorsichtiges Schwenken resuspendiert. Die Inaktivierung der Lipasen erfolgte durch die Kochlyse bzw. die Zugabe von organischen Lösungsmitteln. Die Extraktion der Lipide erfolgte mittels Zweiphasenextraktion nach Bligh and Dyer (1959). Die Lipide wurden entweder in Chloroform / Methanol (2:1) aufgenommen und die einzelnen Lipidkomponenten über Dünnschichtchromatographie (DC) präparativ aufgereinigt oder bei -20°C gelagert.

#### 3.6.1.1 Lipidextraktion aus Spermatozoen und aus Bakterien

Die sedimentierten Zellen wurden in ersten Extraktion einer mit Chloroform / Methanol (1:2) mindestens 30 min bei RT geschüttelt. Die Trennung von Zellen und Lösungsmittel erfolgte jeweils durch Zentrifugation (10000 g, 10 min, 4°C). Die zweite Extraktion erfolgte mit Chloroform / Methanol (2:1) unter den gleichen Bedingungen wie die erste Extraktion. Nach Vereinigung der beiden Gesamtextrakt Extrakte wurde der entweder direkt auf ein Verhältnis Chloroform / Methanol / (0,45%) NaCl in H<sub>2</sub>O (2:1:0,75) eingestellt oder bei größeren Mengen zuvor unter Stickstoff oder Argon eingeengt und dann im angegebenen Lösungsmittelgemisch wieder aufgenommen (Hölzl, 2005). Durch Zentrifugation (1000 g, 5 min, 4°C) wurde eine optimale Phasentrennung erreicht.

#### 3.6.1.2 Lipidextraktion aus Seminalplasma

Die Lipidextraktion aus dem Seminalplasma (natives Ejakulat) erfolgte wie in 3.6.1.1 beschrieben, wobei das Extraktionsmittel im Überschuss vorlag (Folch *et al.*, 1957). Das Verhältnis Extraktionsmittel / Seminalplasma wurde für die Extraktionen bei

mindestens 5:1 eingestellt. Nach Vereinigung der beiden Extrakte wurde der Gesamtextrakt auf ein Verhältnis Chloroform / Methanol / (0,45%) NaCl in H<sub>2</sub>O (2:1:0,75) eingestellt. Die organische Phase wurde abgenommen, eingeengt und in Chloroform / Methanol (2:1) aufgenommen.

#### 3.6.1.3 Lipidextraktion aus Kieselgel

Nach der Behandlung mit Primulinreagenz (Tab. 3) wurde der zu untersuchende Bereich der DC-Plate im UV-Licht visualisiert und mit einem Bleistift markiert. Die so markierten Kieselgelbereiche wurden von der DC-Plate abgenommen und die Lipide aus dem Kieselgel, wie unter Punkt 3.6.1.1 beschrieben, isoliert.

Tabelle 3: Reagenzien für den Nachweis von bestimmten Lipidklasssen auf DC-Platten

| Reagenz                                                                                                                                                | Destruktivität | Lipidklass* |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| <b>Primulin</b><br>0.005% (w/v) Primulin in Aceton / H <sub>2</sub> O (80:20, v/v)                                                                     | nein           | alle        |
| Ninhydrin<br>0.25% (w/v) Ninhydrin in Aceton                                                                                                           | ја             | GPS, GPE    |
| Molybdenum Blue Spray Reagent, 1.3% (Sigma-Alldrich)                                                                                                   | ja             | PL          |
| lod                                                                                                                                                    | ja             | alle        |
| <b>α-Naphthol</b><br>2,67% w/v Naphthol in Lösungsmittel:<br>83,3% v/v Methanol<br>6,7% v/v H <sub>2</sub> O<br>10% v/v H <sub>2</sub> SO <sub>4</sub> | ja             | Glycolipide |

\*) PL: alle Phosphoplipide, GPS: Glycerophosphoserin, GPE:Glycerophosphoethanolamin

# 3.6.2 Trennung, Visualisierung und Identifizierung einzelner

## Lipidklassen mittels Dünnschichtchromatographie

Die Lipidextrakte (3.6.1) wurden zur Trennung in ihre Einzelkomponenten auf Kieselgelplatten (Merck oder J.T. Baker), mit oder ohne eine Konzentrierungszone, in einer Bandbreite je nach Lipidmenge / Fragestellung – mit Glaskapillaren in maximal bis 1,0 cm langen Streifen aufgetragen. Die DC-Platten wurden in eine mit dem Laufmittel (Tab. 4) gesättigte DC-Kammer gestellt. Nach der Auftrennung (Laufmittel ca. 1 cm unter dem oberen Rand der DC-Platte) wurde die Platte herausgenommen und an der Luft (bei den destruktiven Analysen) bzw. unter Stickstoff oder Argon (für weitere massenspektrometrische Untersuchungen) getrocknet.

| Laufmittelgemisch                        | Verhältnis (v:v) | Referenz                           |
|------------------------------------------|------------------|------------------------------------|
| Chloroform / Methanol / H <sub>2</sub> O | 65:25:4          | (Hawrot and Kennedy, 1975)         |
| Aceton / Toluol / H <sub>2</sub> O *     | 91:30:8          | (Dörmann <i>et al.</i> , 1995)     |
| n-Hexan / Diethylether / Eisessig        | 85:15:1          | (Pie and Giner, 1966)              |
| Chloroform / Methanol / 25% $NH_4OH$     | 90:54:7          | (Weingartner <i>et al.</i> , 2010) |
| Chloroform / Methanol / Aceton /         | 50:10:20:10:5    | (Weingartner <i>et al.</i> , 2010) |
| Eisessig / H <sub>2</sub> O bei 30°C     |                  |                                    |

#### Tabelle 4: Laufmittel für die chromatographische Auftrennung von Lipidgemischen.

\*) DC-Platten wurden kurz in 0,15 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> getaucht und mindestens zwei Tage getrocknet, vor dem Einsatz 2,5 Stunden bei 120°C aktiviert.

Mit Hilfe von Referenzsubstanzen, basierend auf Farbreaktionen und Wanderungsgeschwindigkeit ( $R_r$ -Wert), erfolgte dann die Zuordnung der separierten Lipidbanden. Die Identifizierung und Strukturanalysen präparativ gereinigter Lipide erfolgten mittels massenspektrometrischer Techniken (3.7). Um die Lipide auf den entwickelten Kieselgelplatten zu detektieren, wurden die Platten durch Besprühen mit verschiedenen Reagenzien selektiv gefärbt (3.6.1.3).

# 3.6.3 Ermittlung der Trenneigenschaften des Lipidgesamtextraktes porciner *Spermatozoen* in der dünnschichtchromatographischen Auftrennung

#### 3.6.3.1 Eindimensionale dünnschichtchromatographische Auftrennung

Eine effektive dünnschichtchromatographische (DC) Zuordnung zu einer bestimmten Lipidklasse ist nur dann möglich, wenn die Laufeigenschaften der einzelnen Lipidfraktionen unterschiedlich sind. Dies wurde anhand unterschiedlicher Laufbedingungen erreicht (3.6.2). Eine Verifizierung wurde anhand der massenspektrometrischen Analysen (3.7) durchgeführt. Ein Beispiel für die ermittelten DC-Laufmuster von neutralen und polaren Lipiden der porcinen *Spermatozoen* ist in Abbildung 8 dargestellt.

31



Abbildung 8: 1D-dünnschichtchromatographische Auftrennung einer Lipidfraktion von porcinen *Spermatozoen*. Eine schematische Darstellung.

A. polare Lipidfraktion:

neutrale Lipide 2. freie Fettsäuren 3. Glycerophosphoethanolamin 4. Sulfogalactosyglycerolipid
Glycerophosphocholin 6. Glycerophosphoserin 7. Glycerophosphoinositol 8. Sphingolipid
Laufmittel: Chloroform / Methanol / H<sub>2</sub>O (65:25:4), DC-Platten: SI<sub>250</sub> PA 7003-04, J.T. Baker.
B. neutrale Lipidfraktion:

Wachsalkohole 2. Triacylglycerol 3. freie Fettsäuren 4. 1,3-Diacylglycerol 5. 1,2-Diacylglycerol
Monoacylglycerol 7. polare Lipide

Laufmittel: n-Hexan / Diethylether / Eisessig (80:15:1), DC-Platten: SI<sub>250</sub> PA 7003-04, J.T. Baker.

#### 3.6.3.2 Zweidimensionale dünnschichtchromatographische Auftrennung

Die zweidimensionale Dünnschichtchromatographie (2D-DC) wurde genutzt, um die einzelne polare Lipidklassen eindeutig voneinander zu trennen. Bei der 2D-DC SI 250 PA 7003 (J.T. Baker) wurden DC-Platten ohne Konzentrierungszone verwendet. Der Lipidextrakt wurde an der unteren Ecke der Platte aufgetragen. Zuerst lief Dünnschichtchromatographie mit Laufmittel die dem Chloroform / Methanol / 25% NH<sub>4</sub>OH (90:54:7). Nach Beendigung der ersten chromatographischen Auftrennung wurde die dünnschichtchromatographische Platte vollständig getrocknet und um 90° gedreht und der zweiten Chromatographie im Laufmittel Chloroform / Methanol / Aceton / Eisessig / H<sub>2</sub>O (50:10:20:10:5) bei 30°C unterzogen (Weingartner et al., 2010).

## 3.7 Massenspektrometrie

# 3.7.1 Matrix unterstützte Laserdesorptions-Ionisations-Time-of-Flight-Massenspektrometrie (MALDI-TOF-MS)

Die MALDI-TOF-Untersuchungen wurden an einem Massenspektrometer Autoflex I (Bruker Daltonics) durchgeführt. Zur Analyse lagen die Proben (zu untersuchende Substanzen 10  $\mu$ M – 0,01  $\mu$ M) in verschiedenen Lösungsmittelgemischen vor, in der Regel in Chloroform oder Chloroform / Methanol (2:1, v/v). Zur Präparation von Proben wurde in dieser Arbeit die "Dried Droplet"-Methode verwendet. Es wurden je 1 µl der Lipidextraktprobe (vorliegend in 0,1% TFA) mit 2 µl Matrix auf einem MALDI-Probenträger (MTP 384 massive target gold plated, Bruker Daltonics) gemischt. Als Matrix diente entweder 2,5-Dihydroxybenzoesäure (DHB) oder 9-Aminoacridin (9-AA), die sich beide in ihren sauren bzw. basischen Eigenschaften unterscheiden. Nach der zügigen Auskristallisierung der Analyt-Matrix-Mischung auf dem Probenträger wurden die Proben in der Probenkammer des Massenspektrometers mit einem Stickstofflaser ( $\lambda$  = 337 nm) und positiver / negativer Ionendetektion im Reflektronmodus analysiert. Die Beschleunigungsspannung betrug 20 kV, die Detektorempfindlichkeit wurde nach Bedarf eingestellt. Die Auswertung erfolgte mit der Software Flex analysis, Version 2.2 (Bruker Daltonics).

Die Identifizierung der einzelnen Lipide erfolgte anhand ihrer exakten Massen. Verschiedene Lipid-Spezies weisen die gleiche Summenformel auf und haben daher exakt die gleichen Massen. Bei den Messungen im positiven Ionenmodus fand die Desorption der Moleküle erst nach einer präparativen Aufreinigung der einzelnen Lipidfraktionen (3.6.1.3) bzw. direkt von DC-Platten statt (Fuchs *et al.*, 2007), um eine Verwechslung der Lipidspezies ausschließen zu können. Handelte es sich um ein aus der gleichen Lipidklasse bestehendes Gemisch, so wurden als alternative Bestimmungsmethode anhand Q-TOF-massenspektrometrischer Techniken (3.7.2) durchgeführt, und die Bildung charakteristischer Fragmente für die jeweiligen Fettsäuren / Fettaldehyde bei der Identifikation mit einbezogen (3.7.2).

33



Abbildung 9: MALDI-TOF-Massenspektrum von einem Gemisch präparativ gereinigter neutraler Lipide, positive lonendetektion.

Der vergrösserte Ausschnitt des Massenspektrums zeigt die detektierten Molekülionen von: 1. DAG-32:0 [M+Na]<sup>+</sup> *m/z*=591,7 (DAG-16:0 / 16:0, -12:0 / 20:0, -14:0 / 18:0) 2. DAG-36:4 [M+Na]<sup>+</sup> *m/z*=639,7 (DAG-18:2 / 18:2, -12:0 / 24:4, -16:0 / 20:4, -18:1 / 18:3) MALDI-TOF-MS-Bedingungen s. 3.7.1

Das MALDI-TOF-Massenspektrum präparativ gereinigten neutralen Lipiden (Abb. 9) zeigt u.a. zwei  $[M+Na]^+$ -Produktpeaks m/z = 591,7 und m/z = 639,7. Diese könnten jedoch unterschiedliche Molekülionen aufweisen. Das erste Molekülion mit m/z = 591.7könnte zu den DAG-16:0 / 16:0. -12:0 / 20:0 oder -14:0 / 18:0 Alle drei Substanzen zugeordnet werden. weisen gleiche elementare Zusammensetzung ( $C_{35}H_{68}O_5$ ) und daher exakt die gleichen Massen auf. Das zweite Molekülion m/z = 639,7 könnte entsprechend dem DAG 18:2/18:2, 12:0/24:4,16:0 / 20:4 sowie 18:1 / 18:3 zuzuordnen werden. Alle vier Substanzen weisen die gleiche Summenformel C<sub>39</sub>H<sub>68</sub>O<sub>5</sub> auf. Da bei der MALDI-TOF-Massenspektrometrie Identifizierung der jeweiligen ohne eine der exakten Massen Fettsäure Fragmentierungsanalysen nicht möglich ist. wird in dieser Arbeit die Bruttofettsäurekomposition angegeben. So stellt beispielweise 36:4 eine Gesamtzahl von 36 C-Atomen in den Fettsäureketten sowie vier Doppelbindungen dar.

#### 3.7.2 Quadrupol-Time-of-Flight-Massenspektrometrie (Q-TOF-MS)

Die Q-TOF-MS-Untersuchungen wurden mit einem Massenspektrometer (Q-TOF, 6530; Agilent) durchgeführt. Zur Analyse lagen die Proben entweder präparativ gereinigt über Dünnschichtchromatographie oder als Gesamtextrakte vor. Die Lipide wurden in einer Chloroform / Methanol / 300 mM NH₄OAc (300:665:35) aufgenommen und im Massenspektrometer mit Hilfe einer Chip-basierten Nanospray-Ionenquelle (HPLC Chip / MS 1200 *infusion chip*; Agilent) injiziert. Das Injektionsvolumen betrug 1 bis 2 µl × min<sup>-1</sup>. Die Proben wurden in positiver Ionendetektionmode mit einer Fragmentor-Spannung von 200 V analysiert. Die Molekülionen wurden im Quadrupole selektioniert und in der Kollisionszelle in Stickstoff mit einer Kollisionsenergie von 30 V (GPC, Ether-GPC) bzw. 20 V (DRG) fragmentiert. Die Auswertung erfolgte mit dem Programm Mass Hunter Workstation Software, Version B.02.00 (Agilent).

## 3.7.2.1 Auswertung der Spektren und Identifizierung und Quantifizierung der Substanzen

Kommerzielle Datenbanken zur Lipidanalytik der Spermatozoen sind bis dato nicht verfügbar. Durch eine große Anzahl hintereinander aufgenommener Massenspektren bei einem Q-TOF Lauf werden enorm große Datenmengen generiert. Eine manuelle Berechnung der genauen Massen der Lipidspezies und der anschließende Vergleich mit den detektierten Massen unterschiedlicher Molekülioinen (bzw. putativen Ionfragmenten) sind zeitaufwendig und wenig effizient. Daher wurden in dieser Arbeit alle Lipidklassen, die durch radiochemische Untersuchungen (3.9.5) identifiziert wurden, alle theoretisch vorkommenden Möglichkeiten von Lipidspezies der porcinen Spermatozoen, sowie die Lipidspezies, die sich von den supplementierten stabilen Isotopen (3.10) ableiten, in einer Datenbank zusammengefasst (8.1.1). Diese enthält Summenformel, Exakte- und Nominalmasse, Fettsäurereste sowie Massen von möglichen Ionisationsprodukten und umfasst alle putativen Glycerophosphocholine (GPC). Diradiylglycerole (DRG), Monoradiylglycerole (MRG) inklusive deren plasmanyl- und plasmenyl- Formen. Die Identifizierung der einzelnen Lipide erfolgte anhand ihrer exakten Massen und dem anschließenden Vergleich mit den detektierten Massen. Um eine Verwechselung unterschiedlicher Moleküle mit exakt gleichen Massen ausschließen zu können, wurden Fragmentierungsanalysen durchgeführt und anhand charakteristischer Fragmente Lipidspezies identifiziert.

## 3.8 Fettsäurequantifizierung mittels Gaschromatographie

Die Fettsäurequantifizierung basiert auf der Methylierung von Fettsäuren (Browse *et al.*, 1986) und ihrer Auftrennung über Gaschromatographie (GC). Es handel sich um säurekatalysierter Transmethylierung der Fettsäuren wobei die Fettsäuremethylester (FAME) gebildet werden. Diese werden anschließend mittels GC bestimmt. Etwa 50% der Spermatozoenlipide sind Ether-Glycerophospholipide. Ether-GPL sind durch einfache Etherbindung oder eine Enoletherbindung an der *C-1*-Position des Glycerols gekennzeichnet. Der Fettsäurerest an den *C-2*-Positionen des Glycerols ist

über eine Esterbindung verknüpft. Durch die FAME-Reaktion lassen sich ausschließlich die Esterbindunden spalten. Ethergebundene Alkanen und Alkenen werden anhand Fragmentierungsanalysen quantifiziert (3.7.2).

#### 3.8.1 Transmethylierung von Fettsäuren

Zur Analyse der Fettsäurenzusammensetzung wurden die zu untersuchenden Proben mit methanolischer 1 N HCl und 5 µg Fettsäure-15:0 als internem Standard versetzt. Die Inkubation (30 min bei 80°C) erfolgte in Glasgefäßen mit Schraubdeckel mit einem teflonbeschichteten Septum (Reagenzglas: # 233 175 11 59, Schraubdeckel: # 29 240 08 06, Septum: # 29 248 08 05). Nach dem Abkühlen wurden die Proben mit 1 ml Hexan und 1 ml 0,9% NaCI-Lösung versetzt, geschüttelt und abzentrifugiert. Die organische Phase wurde abgenommen, eingeengt, in 100-150 µl Hexan aufgenommen und anschließend in GC-Autoinjektionsröhrchen (Chromacol, Abimed Analysentechnik, Langenfeld) überführt.

## 3.8.2 Gaschromatographische Auftrennung von Fettsäuren

#### 3.8.2.1 Gaschromatographie

Die Auftrennung erfolgte mittels eines GC (HP 6890 Plus GC, Agilent) mit einer Kapillarsäule Supelco SP–2380 (Länge: 30 m, Durchmesser: 750 µm, Schichtdicke: 0,2 µm), Das Injektionsvolumen betrug 2 µl bei 220°C. Die Detektion erfolgte mit Flammenionisationsdetektor (FID) bei 250°C. Die Flussrate des Trägergases (Helium) betrug 11 ml / min. Die Temperaturgradienten betrugen: 1 min – 100°C, in 2,4 min auf 160°C, in 6 min auf 220°C, 4 min – 220°C (konst.), in 5 min auf 100°C. Die Auswertung erfolgte mit den Programmen Chemstation 4.0.2 (Agilent) und Excel (Microsoft).

Bei diesen Untersuchungen wurden die Fettsäuren (FS) mit einer Kettenlänge von 12C bis zu 22C Atome berücksichtigt. Da tierische Fettsäuren u.a. durch das Vorkommen von langkettigen, mehrfach ungesättigten Fettsäuren (VL-PUFA) sowie von Fettsäuren mit funktionellen Gruppen (z.B. methylsubstituierten Fettsäuren) charakterisiert sind, und diese ihrerseits nahezu identische Retentionszeiten mit VL-PUFA aufweisen, kann bei den GC-Analysen eine fälschliche Zuordnung von Fettsäuren mit funktionellen Gruppen zu VL-PUFA nicht mit Sicherheit ausgeschlossen werden (Glass *et al.*, 1974; Kluytmans and Zandee, 1973). Dies ist jedoch nur anhand der Referenzsubstanzen, z.B. VL-PUFA oder methylsubstituierten

Fettsäuren oder nicht-methylsubstituierten Produkten der Oxidation von Fettsäuren möglich. Da solche Referenzsubstanzen im Rahmen dieser Arbeit nicht vorgesehen waren, wurde auf eine gaschromatographische Analyse von VL-PUFA verzichtet. Die langkettigen, mehrfach ungesättigten Fettsäuren (Poulos *et al.*, 1986) sind laut Literaturangaben mit bis zu 30 mol% in den Glycerophospholipiden porciner *Spermatozoen* vertreten (Am-In *et al.*, 2011; Waterhouse *et al.*, 2006). Daher wurde bei der Auswertung der GC-FID-Daten der Anteil von VL-PUFA für alle Lipidklassen pauschal mit 30 mol% angenommen. Die gekoppelte gaschromatographische Massenspektrometrie (GC-MS) wurde als weitere Möglichkeit zur Analyse verwendet.

#### 3.8.2.2 Gaschromatographie-Massenspektrometrie

Die Auftrennung erfolgte mittels HP 6890 Plus GC, 5973 *Inert Mass Selective Detector*, Elektronenstoßionisation (Agilent) mit einer Kapillarsäule Hewlett-Packard 5MS-Säule (Länge: 30 m, Durchmesser: 0.25 mm, Schichtdicke: 0.2  $\mu$ m). Die Temperaturgradienten betrugen: 2 min – 140°C, in 4 min auf 250°C (10°C / min), in 6 min auf 220°C, in 20 min auf 140°C (20°C / min). Die Detektion erfolgte anhand des Totalionenstroms (TIC) und die Auswertung mit den Programmen Chemstation 4.0.2 (Agilent) und Excel (Microsoft).

## 3.9 Radiochemische Untersuchungen

Eine Möglichkeit der Verwertung von Octadecadiensäure durch die porcinen *Spermatozoen* ist in der Fachliteratur nicht beschrieben und der Einbau in die Lipide der Zellen nicht auszuschließen. Anhand der Markierungsexperimente mit radioaktiven Isotopen können jedoch Einblicke in den Metabolismus der Fettsäure gewonnen werden.

## 3.9.1 Markierungen der Spermatozoen mit [1-<sup>14</sup>C]-Octadecadiensäure

Zu metabolischen Studien wurden die  $2 \times 10^8$  bis  $1 \times 10^9$  *Spermatozoen* im BTS-Medium mit dem Isotopengemisch der Octadecadiensäure für bestimmten Zeiten und bei einer bestimmten Temperatur markiert. Die genaueren eingesetzten Isotopmengen, die Dauer der Markierung sowie die Inkubationstemperatur sind zu dem jeweiligen Experiment im Ergebnisteil dieser Arbeit dargestellt (4.3).

Die Endkonzentration der Octadecadiensäure betrug 39  $\mu$ M, wobei der Anteil von [<sup>12</sup>C]-Octadecadiensäure auf 30 – 35  $\mu$ M und [1-<sup>14</sup>C]-Octadecadiensäure auf 4-9  $\mu$ M eingestellt wurde. Die Zugabe des Isotops erfolgte in 100× Mastermix in 1% *p*-NaCl (v/v) jeweils zu Beginn der Markierungszeit.

#### Die Muster-Berechnung der Aktivitätskonzentration zu metabolischen Studien:

Isotopengemisch: 90% [<sup>12</sup>C]-Octadecadiensäure und 10% [1-<sup>14</sup>C]-Octadecadiensäure

Spezifische Aktivität der  $[1-^{14}C]$ -Octadecadiensäure: 55 mCi / mmol (203,5 MBq / mmol).

Zellzahl: 1 ×  $10^9$  *Spermatozoen* in 45 ml BTS, 39 µM Octadecadiensäure sowie 17 µM BSA.

Eingesetzte Menge von FS (490  $\mu$ g): 441  $\mu$ g (30  $\mu$ M) <sup>12</sup>C-Isotop und 49  $\mu$ g (9  $\mu$ M) [1-<sup>14</sup>C]-Isotop in 450  $\mu$ I von *p*-NaCI

#### Das entspricht 9,57 µCi.

Die Reaktion wurde entweder durch die "Kochlyse" (s. "*Puls-Chase*", 3.9.6) oder durch die Zugabe von organischen Lösungsmitteln gestoppt. Dadurch wurden die Enzyme der *Spermatozoen* inaktiviert. Anhand der Vorarbeiten konnten keine Unterschiede zwischen kochlysierten- und durch die Zugabe von organischen Lösungsmitteln behandelten Proben festgestellt werden.

## 3.9.2 Markierungen des Seminalplasmas mit [1-<sup>14</sup>C]-Octadecadiensäure

Zu den Seminalplasma-Markierungsexperimenten wurde 1 ml bis 2 ml des nativen Ejakulates eingesetzt. Die eingesetzte Menge des Isotopgemisches (3.9.1) betrug 0,5-1  $\mu$ Ci / ml Seminalplasma. Gleichzeitig fand die Markierung derselben flüssigkonservierten Probe statt. Ein Vergleich von Markierungsvarianten könnte die Hinweise über seminalplasmaspezifischen Signale liefern.

## 3.9.3 Markierungen der bakteriellen Kulturen

Bei den Markierungsexperimenten der *Spermatozoen* kann eine bakterielle Verwertung nicht ausgeschlossen werden. Deshalb wurden bakterielle Flüssigkulturen des jeweils zu untersuchenden Ejakulates im BTS-Medium (nach einer Anwachsphase: 0.5 bis 1 ×  $10^9$  Zellen / ml) mit  $0.1 - 1 \mu$ Ci markiert. Die

Experimentbedingungen wurden sowohl für *Spermatozoen* als auch für die bakteriellen Flüssigkulturen gleich gehalten. Die genaueren eingesetzten Isotopmengen, die Dauer der Markierung sowie das Temperaturregime sind zu dem jeweiligen Experiment im Ergebnissteil dieser Arbeit dargestellt (4.1.1).

#### 3.9.4 Visualisierung radioaktiv markierter Verbindungen

Zur Detektion und Quantifizierung [<sup>14</sup>*C*]-markierter Lipide nach der DC-Auftrennung (3.6.2) wurden die nach dem Lauf getrockneten DC-Platten in einer Expositionskassette (BAS-Standard 2040, FujiFilm) zusammen mit einer Imageplatte (BAS-TR 2040, FujiFilm) fixiert. Die Kassette wurde je nach eingesetzter Menge des Isotops von 12 bis zu 72 Stunden bei RT exponiert und anschließend mit dem Phosphorimager Analyser (FLA3000; Scankassette, BAS-IP-Magazin 2040, FujiFilm) analysiert. Zur densitometrischen Quantifizierung der Signale wurde die AIDA Software (Raytest) verwendet (Binder and Archimbaud, 2000).

## 3.9.5 Identifizierung radioaktiv-markierter Verbindungen

Die nach der dünnschichtchromatographischen Auftrennung getrocknete Platten wurden der densitometrischen Quantifizierung der Signale unterzogen. Mit Hilfe von Referenzsubstanzen, basierend auf Farbreaktionen und Wanderungsgeschwindigkeit ( $R_r$ -Werten), erfolgte die Zuordnung zu der jeweiligen Lipidklasse (3.6.3). Durch das "*overlay*"-Bild der visualisierten DC-Platte mit dem entsprechenden Radiosignal erfolgte eine Zuordnung der jeweils betroffenen Lipidklassen. Eine Verifizierung der so erzielten Ergebnisse wurde anhand der massenspektrometrischen Untersuchungen mit stabilen Isotopen durchgeführt (3.10).

## 3.9.6 Puls-Chase-Markierungen mit [1-<sup>14</sup>C]-Octadecadiensäure

Bei Puls-Experimenten wurde eine Aktivität von 0,5 bis 2  $\mu$ Ci / 30 ml BTS-Medium mit 0,66 × 10<sup>9</sup> *Spermatozoen* wie bereits im 3.9.1 beschrieben, eingesetzt. Hier wurde die Aktivität nicht herabgesetzt. Aufgrund der ermittelten toxischen Wirkung von freier [1-<sup>14</sup>*C*]-Octadecadiensäure auf die *Spermatozoen* (4.3.1) sowie allgemein bekannter Schwierigkeiten bei einer Extrapolation der Toxizität im Bereich niedriger Konzentration, wurden auch die *"Puls-Chase"*-Untersuchungen mithilfe einer proteinvermittelten FS-Aufnahme, wie es bereits in 3.9.1 beschrieben wurde, durchgeführt. Eine ausführlichere Beschreibung der Puls-Chase-Markierungen ist Tabelle 6 zu entnehmen. Die Dauer der Pulsmarkierungen betrug 30 sek

(Experiment 3) sowie 10 und 30 min (Experiment 1, 2 und 4). Die Zugabe des Isotops in 1% (v/v) *p*-NaCl erfolgte jeweils zu Beginn der Markierungszeit (*"Puls"*). Anschließend wurden die *Spermatozoen* mit BTS-Medium von den Resten der Radiochemikalie befreit und bei 17°C bis 48 Std weiter inkubiert (*"Chase"*). Die Probenentnahme fand unmittelbar nach dem Puls (*Status quo*) sowie nach 24 und 48 Std statt und betrug jeweils 10 ml. Die Terminierung der Reaktioneinsätze erfolgte durch die *"Kochlyse"*.

| -            | Puls   | Chase [Std] | Aktivität [µCi] | Zellzahl             | Volumen |
|--------------|--------|-------------|-----------------|----------------------|---------|
| Experiment 1 | 30 min | 1, 24, 48   | 0,5             | 0,66 10 <sup>9</sup> | 30 ml   |
| Experiment 2 | 10 min | 0, 24, 48   | 0,5             | 0,66 10 <sup>9</sup> | 30 ml   |
| Experiment 3 | 30 sek | 0, 24, 48   | 2               | 0,66 10 <sup>9</sup> | 30 ml   |
| Experiment 4 | 10 min | 0, 24, 48   | 0,5             | 0,66 10 <sup>9</sup> | 30 ml   |

Tabelle 5: Inkubationsvarianten. Puls-Chase-Markierungen mit [1-<sup>14</sup>C]-Octadecadiensäure

Für die Proben im Experiment 4 wurden die Zellen zusätzlich nach dem Puls mit dem "Hungermedium", welches anstelle des  $[1-^{14}C]$ - ein  $[^{12}C]$ -Isotop gleicher Endkonzentration von Octadecadiensäure enthielt, supplementiert.

#### 3.9.7 Bestimmung der Stoffmenge von radioaktiv markierten Substraten

Die quantitative Bestimmung der Stoffengen von  $[1-^{14}C]$ -Octadecadiensäure in den radioaktiven Lipiden, die sich von der  $[1-^{14}C]$ -Fettsäuren ableiten, wurde mithilfe densitometrischen Quantifizierungen der Signale und einer bekannten Menge der im Experiment eingesetzten Radiochemikalie über die spezifische Aktivität berechnet. Für die densitometrische Quantifizierung der Signale wurde die AIDA Software (Raytest) verwendet.

## 3.10 Untersuchungen mit stabilen Isotopen

Eine Möglichkeit der Verwertung von Octadecadiensäure durch die porcinen *Spermatozoen*, sowie eine chemische Modifizierung durch die Komponenten des Seminalplasmas sind nicht in der Fachliteratur beschrieben. Somit kann ein Einbau in die Lipide der Zellen nicht ausgeschlossen werden. Anhand der Supplementierungsexperimenten mit [ ${}^{12}C$ ] / [U- ${}^{13}C$ ]-Isotopen, können Einblicke in den Metabolismus exogener sowie endogen vorkommender Fettsäuren gewonnen werden.

## 3.10.1 Supplementierung mit [<sup>12</sup>C]-Fettsäuren

Die  $2 \times 10^9$  *Spermatozoen* in 90 ml BTS-Medium wurden mit 3,5 µmol Octadecadiensäure und 1,4 µmol BSA bei unterschiedlichen Temperaturen (6°C, 10°C, 17°C und 24°C) während unterschiedlicher Zeiträume (bis zu 196 Std) inkubiert. So betrug die Endkonzentration zum Zeitpunkt der Applikation für Octadecadiensäure 39 µM und 17 µM entsprechend für BSA.

Die Supplementierung erfolgte unmittelbar nach der Gewinnung und Aufnahme der Zellen in BTS-Medium durch die Zugabe von 0,9 ml des 100× Mastermixes zur 90 ml BTS mit 2 ×  $10^9$  *Spermatozoen*.

100× Mastermix wurde kurz vor der Supplementierung der Zellen hergestellt:

980  $\mu$ g Octadecadiensäure (L-1376, Sigma) wurde in 10  $\mu$ l Ethanol (E-7023, Sigma) aufgelöst, danach in 1 ml sterilfiltriertem *p-NaCl*-Medium mit 100 mg BSA (A-7030, Sigma) aufgenommen.

Analog zur Supplementierung mit Octadecadiensäure wurden auch proteinvermittelte Supplementierungen mit Hexadecen-, Octadecen-, Octadecatrien-, und Eicosapentaensäure durchgeführt. Die Endkonzentration der Fettsäure betrug für jedes getesteten Variant 39 µM und 17 µM entsprechend für BSA.

## 3.10.2 Supplementierung mit [U-<sup>13</sup>C]-Octadecadiensäure

Die 2 × 10<sup>9</sup> Spermatozoen in BTS-Medium wurden mit  $[U-^{13}C]$ -Octadecadiensäure bei unterschiedlichen Temperaturen während unterschiedlicher Zeiten, wie bereits in Kapitel 3.10.1 beschrieben, inkubiert. Die Endkonzentration der [U-<sup>13</sup>C]-Octadecadiensäure BSA entsprechend betrug 39 µM, 17 µM. Die Supplementierung erfolgte unmittelbar nach der Gewinnung und Aufnahme der Zellen in BTS-Medium durch die Zugabe des 100 × Mastermixes.

## 3.11 Mikrobiologische Untersuchungen

Nach der Entnahme lassen sich in jedem Ejakulat Bakterien nachweisen. Bakterien sind in der Lage exogene Fettsäuren aufzunehmen (Black and DiRusso, 1994) und diese zu verwerten (Hou, 1994, 2000; Hou *et al.*, 1997). Daher sollte bei Markierungsexperimenten von *Spermatozoen* auch Kontrollexperimente, welche eine

bakterielle Verwertung supplementierter Fettsäure verfolgen, durchgeführt werden. Bei der bakteriellen Verwertung der Fettsäure ist sowohl mit  $\beta$ - und  $\alpha$ -Oxidation sowie dem möglichen metabolischen Einbau in bakterielle Lipide zu rechnen. Da in dieser Arbeit verwendete Octadecadiensäure [1-<sup>14</sup>*C*] markiert ist, fand die Zugabe des Radioisotops erst nach der Anwachsphase statt, dadurch ließ sich ein Blindabbau des Substrates vermeiden.

## 3.11.1 Anzucht und Lagerung von Bakterien

Die Bakterien wurden zunächst im BTS-Medium durch das Einimpfen vorkultiviert. Dazu wurden in 40 ml des BTS-Mediums 10 ml BTS-Medium mit *Spermatozoen* in einem Erlenmeyerkolben bei RT zugegeben. Jeweils nach 1-2 Tagen wurde 1% der Kultur in frisches BTS-Kulturmedium überführt (Hauptkultur). Die Flüssigkulturen wurden durch Schütteln oder Rotation (100-150 rpm) belüftet. Als Kontrolle fand die Anzucht der Hauptkultur ohne zusätzliche Belüftung statt. Es galten gleiche Bedingungen wie bei flüssigkonservierten *Spermatozoen*.

#### Zelldichte:

Die Zelldichte einer unbekannten Kultur im Flüssigmedium wurde photometrisch in Anlehnung an einer *E. coli*-Kultur bei einer Wellenlänge von 600 nm bestimmt: Der Wert " $0.5^{\text{"}}$  [*OD*<sub>600</sub>] entsprach 0.5 bis 1 × 10<sup>9</sup> Zellen / ml. Erst nach dieser Anwachsphase wurde die [1-<sup>14</sup>*C*]-Octadecadiensäure zugegeben (3.9.3). Nach einer Inkubationsdauer von 24 bzw. 48 Stunden wurden entstandene Produkte sowohl aus dem Medium als auch aus dem im Verlauf der Aufarbeitung anfallenden Bakterienpellet extrahiert.

## 3.11.2 Bakterieller Kontaminationsstatus

Die Bestimmung der Bakterienarten wurde am Institut für Zoo- und Wildtierforschung (IZW, Abteilung Bakteriologie) zytochemisch mittels eines kommerziellen Testsystems durchgeführt.

## 4 ERGEBNISSE UND DISKUSSION

Die vorliegende Arbeit gliedert sich in zwei Schwerpunkte. Der erste Teil befasst sich mit dem Einbau von exogenen Fettsäuren in porcine Spermatozoenlipide. Dazu wurden zunächst die Lipid- und anschließend die Fettsäurezusammensetzung von porcinen *Spermatozoen* untersucht. Basierend auf diesen Ergebnissen wurde dann der Einbau von exogenen Fettsäuren radiochemisch sowie massenspektrometrisch untersucht. Der zweite Teil befasst sich mit der Auswirkung von exogenen Fettsäuren auf die physiologischen Parameter porciner *Spermatozoen* während der Flüssigkonservierung bei niedrigen (16°C und 6°C) Temperaturen. Dazu wurden Motilität, Vitalität sowie akrosomaler Status untersucht. Anschließend wurden die physiologischen Unterschiede bei den mit exogenen Fettsäuren supplementierten und den unbehandelten flüssigkonservierten *Spermatozoen* während der Lagerung bei unterschiedlichen Temperaturen verglichen.

## 4.1 Lipidzusammensetzung von porcinen Spermatozoen

Die Zusammensetzung und Organisation der Membranen porciner *Spermatozoen* zeigt Unterschiede zwischen Rassen, Individuen und Ejakulaten. Im Rahmen dieser Arbeit wurde mit den Rassen Piétrain und Duroc gearbeitet. Zur Analyse der Lipidzusammensetzung erfolgte eine Gesamtlipidextraktion (3.6.1) gefolgt von der Identifizierung einzelner Lipidklassen mittels Dünnschichtchromatographie (3.6.2). Referenzsubstanzen dienten für die Zuordnung zu den jeweiligen Lipidklassen. Desweiteren wurden alle Hauptlipidklassen nach einer präparativen Aufreinigung der einzelnen Spots (3.6.1.3) durch massenspektrometrische Analysen (3.7) untersucht. Im Vergleich zu somatischen Zellen kommen bei den *Spermatozoen* neutrale Lipide in wesentlich höheren Mengen vor (Nikolopoulou et al., 1985; Zanetti et al., 2010b). Daher wurden zuerst die neutralen Lipide porciner *Spermatozoen* mittels Dünnschichtchromatographie auftrennt (Abb. 10).

43



Abbildung 10: Dünnschichtchromatographische Auftrennung neutraler Lipide eines Gesamtlipidextraktes flüssigkonservierter porciner Spermatozoen

Die neutralen Lipide von flüssigkonservierten porcinen *Spermatozoen* umfassen freie Fettsäuren, Cholesterol, und Diacylglycerole (DAG). Wachsalkohole sowie Tri- und Monoradylglycerole (*diacyl-*, *plasmanyl-*, und *plasmenyl-*Spezies von TRG und MRG) wurden nicht nachgewiesen; Die Zuordnung zu den jeweiligen Lipidklassen erfolgte anhand der *R<sub>F</sub>*. Werte von Referenzsubstanzen. Iod-Farbreaktion, die Auftrennung erfolgte in *n*-Hexan / Diethylether / Eisessig (80:15:1); DC-Platten: SI<sub>250</sub> PA 7003-04, J.T. Baker.

Die Analyse zeigt, dass neutrale Lipide von flüssigkonservierten porcinen *Spermatozoen* Cholesterol, Diacylglycerole (DAG) und freie Fettsäuren umfassen. Das Vorkommen von DAG und Cholesterol in porcinen *Spermatozoen* wurde bereits beschrieben (Nikolopoulou et al., 1986; Roldan and Harrison, 1992; Vazquez and Roldan, 1997a). Daten über das Vorkommen von freien Fettsäuren in porcinen *Spermatozoen* liegen in der Fachliteratur nicht vor. Zanetti *et al.* (2010b) berichteten jedoch über freie Fettsäuren in den Lipiden der *Rattus Spermatozoen*. Unter den hier angewendeten experimentellen Bedingungen konnten keine Wachsalkohole, Trisowie Monoradylglycerole nachgewiesen werden. Die Diacylglycerole porciner *Spermatozoen* kommen als zwei Regioisomere 1,2-DAG und 1,3-DAG vor. Beide Isomere haben unterschiedliche Auswirkungen auf biologische- und Modell-Membranen (Gómez-Fernández and Corbalán-García, 2007; Sanchez-Migallon *et al.*, 1995).

Die Isomerisierung von 1,2- bzw. 2,3-DAG zu 1,3-DAG könnte ein experimentell bedingtes Artefakt sein. So wurde in der Arbeit von Kodali et al. (1990) beschrieben, bereits einer zwanzigminütigen dünnschichtchromatographischen dass nach Auftrennung 1,2-dipalmitoyl-*sn*-glycerol in Chloroform / Aceton auf von Kieselgelplatten bei 24°C eine geringfügige Isomerisierung zu 1,3-Dipalmitoylglycerol stattgefunden hat. Bereits eine Stunde nach dem Auftragen von 1.2-DAG und der Entwicklung der dünnschichtchromatographischen Platten erfolgte bei 34% der Ausgangssubstanz die Isomerisierung zu 1,3-DAG. Daher wurden bei allen hier durchgeführten Experimenten die Zeitabstände zwischen Probenauftrag, Visualisierung und präparativer Aufreinigung der Lipide so gering wie möglich gehalten. jedoch konnte eine spontane Isomerisierung nicht vollständig ausgeschlossen werden. Eine weitere Erklärung für das Vorkommen der 1,3-DAG-Isomere in Spermatozoenlipide könnte durch die Aufnahme von 1,3-DAG über Tierfuttermittel sein. Diese enthalten unter anderem freie Fettsäuren und Fette (Am-In et al., 2011). Diese können entweder aus natürlichen Quellen stammen ("natural fats") oder synthetisch aufbereitet sein ("synthetic natural fats"). "Synthetic natural fats" werden in der Regel durch lipasekatalysierte Verfahren aus Produktionsrückständen von Fetten und Ölen hergestellt. Diese werden im Vakuum ohne Lösungsmittel mit immobilisierten Lipasen versetzt. Dadurch entstehen die Gemische von 1,2- und 1,3-DAG. Die so entstandenen DAG-Isomere werden anschließend durch Vakuumdestillation gereinigt und als Nahrungsergänzungsmittel, Emulgatoren und als Bestandteile von pharmazeutischen, kosmetischen und technischen Produkten verwendet. In dieser Arbeit wird nicht näher auf die industrielle Herstellung fetthaltiger Komponenten von Futtermitteln, sowie auf ihre Verabreichung bei der Fütterung, auf die Metabolisierung und den Nachweis von DAG-Isomeren eingegangen (Crossley et al., 1959; Fagan et al., 2004; Gee and Goh, 2001; Gertz and Fiebig, 2006; Ichihara and Noda, 1982; Kodali et al., 1990; Lubary et al., 2011; Realini et al., 2010; Rudkowska et al., 2005; Shereena and Thangaraj, 2009).

*Bis dato* liegen kaum Angaben über Zusammensetzung und die Strukturanalytik der neutralen Lipide tierischer *Spermatozoen* vor. Daher wurden in dieser Arbeit die neutralen Lipide porciner *Spermatozoen* massenspektrometrisch untersucht. Diese wurden zuerst dünnschichtchromatographisch aufgetrennt und visualisiert. Die einzelnen Lipidspots wurden dann einer präparativen Aufreinigung unterzogen und anschließend mittels MALDI-TOF-MS untersucht. Dafür wurden die Lipid-Proben in Chloroform gelöst und dann eine "Matrix" (Dihydroxybenzoesäure, 2-DHB) zugegeben. Nach dem Trocknen liegt die zu analysierende Probe in Form von Mischkristallen vor. Durch einen Laserpuls werden die Matrixmolekülionen angeregt und lokal erhitzt. Dies führt zur Bildung von Addukt-Ionen, so genannten Quasimolekülionen. Diese sind bei positiver Ionendetektion die Anlagerungsprodukte von Protonen, Natrium- oder Ammoniumionen. Im Massenanalysator werden diese getrennt und dann vom Detektor nach ihrem Masse / Ladungsverhältnis (m/z) getrennt registriert. Die Ergebnisse sind in Abbildung 11 sowie in Tabelle 6 dargestellt.

Entsprechend den MALDI-TOF-MS Analysen sind Diacylglycerole und Cholesterol die Hauptkomponente der neutralen Lipide von flüssigkonservierten porcinen Spermatozoen. Die Auswertung der detektierten Massen von DAG-Quasimolekülionen hat gezeigt, dass 1,2- und 1,3-DAG-Isomere durch gesättigte Fettsäurereste charakterisiert sind (Abb. 11, Tab. 6 B-C). Die Intensität der jeweils nachgewiesenen Molekülionen weist darauf hin, dass die Diacylglycerole in flüssigkonservierten porcinen Spermatozoen durch DAG 28:0 und 30:0 vertreten sind. Diese können wahrscheinlich DAG (14:0 / 14:0) und DAG (14:0 / 16:0) zugeordnet werden. DAG-Spezies mit ungesättigten oder mit langkettigen, mehrfach (VL-PUFA) konnten nicht ungesättigten Fettsäuren detektiert werden. Glycerophospholipide werden in diesem Laufmittel nicht aufgetrennt und befinden sich somit am Start (Abb.11 D, Tab. 6 D).



Abbildung 11: Identifizierung der neutralen Lipide porciner Spermatozoen mittels MALDI-TOF-Massenspektrometrie

Links: Dünnschichtchromatographische Auftrennung eines Gesamtlipidextraktes von flüssigkonservierten porcinen Spermatozoen, Primulin-Farbreaktion.

Die Auftrennung erfolgte in n-Hexan / Diethylether / Eisessig (80:15:1), DC-Platten: Kieselgel 60 F<sub>254</sub> 10 × 10 cm, Merk

**Rechts:** MALDI-TOF-Massenspektren der jeweiligen Lipidklasse mittels positiver Ionen-Detektion. Die einzelnen Lipidspots wurden präparativ aufgereinigt und anschließend massenspektrometrisch analysiert.

A. Cholesterol (Cho), B. 1,3-Diacylglycerole (1,3-DAG), C. 1,2-Diacylglycerole (1,2-DAG), D. Glycerophospholipide (GPL)

Glycerophospholipide werden in diesem Laufmittel nicht aufgetrennt und befinden sich somit am Start;

\*: Matrix-Molekülion, \*\*: Tinuvin-144;

Ausführlichere Erläuterungen zu den jeweiligen Lipidspezies (1-13) der einzelnen Lipidklassen sind Tabelle 6 zu entnehmen.

#### ERGEBNISSE UND DISKUSSION

#### Tabelle 6: MALDI-TOF-Identifizierung der neutralen Lipide von flüssigkonservierten porcinen Spermatozoen

| Peak             | Lipidklasse / Lipidspezies                                                                                                                                    | [M+H] <sup>+</sup>               | Strukturformeln                        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|
|                  | A. Sterole                                                                                                                                                    |                                  |                                        |
| 1                | Cholesterol (Cho) $[M-H_2O + H]^+$                                                                                                                            | 369,2                            | $\rightarrow$                          |
|                  | B. 1,3-Diacylglygerole (1,3-DAG)                                                                                                                              | [M+Na]⁺                          |                                        |
| 2<br>3<br>4<br>5 | DAG (28:0)<br>DAG (30:0)<br>DAG (32:0)<br>DAG (34:0)                                                                                                          | 535,4<br>563,5<br>591,5<br>619,5 |                                        |
|                  | C. 1,2- bzw. 2,3-Diacylglygerole ( 1,2-DAG)                                                                                                                   | [M+Na]⁺                          | HO                                     |
| 6<br>7<br>8<br>9 | DAG (28:0)<br>DAG (30:0)<br>DAG (32:0)<br>DAG (34:0)                                                                                                          | 535,4<br>563,5<br>591,5<br>619,5 | Cholesterol (Cho)                      |
|                  | D. Glycerophospholipide (GPL)                                                                                                                                 | [M+H] <sup>+</sup>               |                                        |
| 10<br>11<br>12   | Ether-GPE (38:6) / -GPS (32:5) / -GPC (34:6)<br>Ether-GPE (38:2) / -GPC (36:2) / -GPS (36:3)<br><i>diacyl</i> -GPE (40:6) / -GPC (38:6) /<br>Ether CPS (29:7) | 750,5<br>772,6<br>792,6          | 1,2- bzw. 2,3-Diacylglycerol (1,2-DAG) |
| 13               | <i>diacyl</i> -GPE (42:9) / -GPC (38:2) / -GPS (38:3) 814,<br>Ether GPE (42:2) / -GPC (40:9)                                                                  | 814,6                            |                                        |
|                  |                                                                                                                                                               |                                  | 1,3-Diacylglycerol (1,3-DAG)           |

In MALDI-TOF-MS (Matrix: 2,5-DHB) werden bei positiver lonendetektion Diacylglycerole ausschließlich als [M+Na]<sup>+</sup>- aber Glycerophospholipide als [M+H]<sup>+</sup>- und [M+Na]<sup>+</sup>-Quasimolekülionen detektiert (Schiller *et al.*, 2007). In der Abbildung sind Acylreste rot markiert. Ausführliche Erläuterungen zu Glycerophospholipiden siehe Abb. 13, Tab. 7. Es ist Bruttofettsäurekomposition angegeben. 36:4 stellt beispielweise Gesamtzahl von 36 C-Atomen in den Acylresten (R<sub>1</sub> und R<sub>2</sub>) sowie vier Doppelbindungen dar.

Zur Analyse der polaren Lipide porciner *Spermatozoen* wurden diese zuerst dünnschichtchromatographisch aufgetrennt und die einzelnen Fraktionen anschließend mittels MALDI-TOF-MS untersucht. Eine dünnschichtchromatographische Auftrennung ist in Abbildung 12 dargestellt.



# Abbildung 12: Dünnschichtchromatographische Auftrennung polarer Lipide eines Gesamtlipidextraktes flüssigkonservierter porciner Spermatozoen

lod-Farbreaktion, die Auftrennung erfolgte in Chloroform / Methanol / H<sub>2</sub>O (65:25:4) DC-Platten: SI<sub>250</sub> PA 7003-04, J.T. Baker

Die Zuordnung zu den jeweiligen Lipidklassen erfolgte anhand der  $R_F$ Werte von Referenzsubstanzen, und anhand der Farbreaktionen folgender Lipidklassen: Sulfoglycoglycerolipid, Glycerophosphoethanolamin, Glycerophosphoserin (3.6.1.3).

Die Analyse zeigt, dass die Glycerophospholipide (GPL) die Hauptvertreter der porcinen Spermatozoenlipide sind. Glycerophosphocholin (GPC) und Glycerophosphoethanolamin (GPE) sind dabei die dominierende GPL (Abb. 12). Das stimmt mit den von Evans *et al.* (1980) gezeigten Daten überein. Weitere Lipidklassen sind Glycerophosphoserin (GPS), Glycerophosphoinositol (GPI), Phosphosphingolipide und Sulfoglycoglycerolipid (SGG). Die Identifizierung der polaren Lipidklassen und deren Spezies wurden mittels MALDI-TOF-MS verifiziert. Die Ergebnisse sind in der Abbildung 13 sowie in der Tabelle 7 dargestellt.

den MALDI-TOF-massenspektrometrischen Untersuchungen erfolgte die Bei Zuordnung der experimentell ermittelten Massen von Quasimolekülionen anhand der zuvor berechneten Isotopenmassen dieser Ionen. Somit konnte nachgewiesen werden, dass in den beiden Hauptlipidklassen porciner Spermatozoen (GPC und GPE) sowohl diacyl- als auch Ether-Spezies vorkommen (Abb. 13, Tab. 7). Dies stimmt mit den von Evans et al. (1980) gezeigten Daten überein. Weitere GPL von porcinen Spermatozoen sind Glycerophosphoserin (GPS), Glycerophosphoinositol (GPI) und Sphingomyelin (SM). Für GPS und GPI keine Ether-Lipidspezies nachgewiesen werden. Die beiden Lipidklassen GPS und GPI beinhalten ausschließlich diacyl-Spezies. Anhand der berechneten Massen der detektierten Quasimolekülionen sind GPL durch langkettige mehrfach ungesättigte Reste (Fettsäuren, Fettaldehyde) gekennzeichnet. Die Glycoglycerolipide kommen in porcinen Spermatozoen nur als Sulfogalactosyglycerolipide (SGG) vor und sind durch 16:0-Alkyl- und 16:0-Acylreste charakterisiert. Es handelt sich somit um plasmanyl-SGG (32:0). Zahlreiche Arbeiten haben dies bereits gezeigt (Evans et al., 1980; Ishizuka et al., 1973; Lessig et al., 2004). Mittels lod- sowie Primulin-Farbreaktion konnte gezeigt werden, dass Glycerophosphat, Glycerophosphoglycerol und die Lysoformen von GPL im Vergleich zu den cholin- und ethanolaminhaltigen GPL in deutlich geringeren Mengen vorkommen, so dass diese nicht weiter untersucht wurden.



#### Abbildung 13: Identifizierung der polaren Lipide porciner Spermatozoen mittels MALDI-TOF-Massenspektrometrie

Links: Dünnschichtchromatographische Auftrennung eines Gesamtlipidextraktes von flüssigkonservierten porcinen Spermatozoen, Primulin-Farbreaktion.

Die Auftrennung erfolgte in Chloroform / Methanol / H<sub>2</sub>O (65:25:4), DC-Platten: SI<sub>250</sub> PA 7003-04, J.T. Baker.

Rechts: MALDI-TOF-Massenspektren der jeweiligen Lipidklasse mittels positiver Ionen-Detektion, bei Probe C (Peak 5) mittels negativer Ionen-Detektion. Die einzelnen Lipidspots wurden präparativ aufgereinigt und anschließend massenspektrometrisch analysiert.

A. Glycerophosphoethanolamin (GPE), B. / C. Sulfogalactosyglycerolipid (SGG), D. / E. Glycerophosphocholin (GPC),

F. Glycerophosphoserin (GPS), Glycerophosphoinositol (GPI), J. Phosphosphingolipid: Sphingomyelin (SM).

Ausführlichere Erläuterungen zu den jeweiligen Lipidspezies (1-20) der einzelnen Lipidklassen sind Tabelle 7 zu entnehmen.

#### Tabelle 7: MALDI-TOF-Identifizierung der polaren Lipide von flüssigkonservierten porcinen Spermatozoen



Bei der MALDI-TOF-MS (Matrix: 2,5-DHB) werden unter positiver-lonendetektion Glycerophospholipide als [M+H]<sup>+</sup>- und [M+Na]<sup>+</sup>-Quasimolekülionen dargestellt (Schiller *et al.*, 2007). In der Abbildung sind Acylreste (R<sub>1</sub>, R<sub>2</sub>) rot und Alkylreste (R': ein Alken, R'': ein Alkan) blau markiert. Sphingomyelin: Sphingoid-Grundgerüst (18:1) ist grün und N-Acylrest (R) entsprechend rot dargestellt. Es ist Bruttofettsäurekomposition angegeben. 36:4 stellt beispielweise Gesamtzahl von 36 C-Atomen in den Acylresten (R<sub>1</sub> und R<sub>2</sub>) sowie vier Doppelbindungen dar.

Zusammenfassend wurde in diesem Teil der Arbeit gezeigt, dass sich die Verhältnisse von einzelnen Lipidklassen und Lipidspezies porciner Spermatozoen sowohl untereinander als auch voneinander deutlich unterscheiden. Glycerophosphocholine und Glycerophosphoethanolamine sind die Hauptlipidklassen der Glycerophospholipide und sind durch langkettige, mehrfach Fettaldehvde ungesättigte Fettsäuren und gekennzeichnet. Alle Glycerophospholipide, mit Ausnahme von Glycerophosphoserin, kommen als diacyl-Vertreter und Ether-Lipide vor. Einziger der Glycoglycerolipide ist Sulfogalactosyglycerolipid. Die Hauptvertreter der neutralen Lipide sind die Diacylglycerole mit mittelkettigen, gesättigten Fettsäuren. Da diese die Vorstufe für die Biosynthese von langkettigen, mehrfach ungesättigten Glycerophospholipiden sind, kann angenommen werden, dass in den flüssigkonservierten porciner Spermatozoen unter diesen Bedingungen (BTS-Medium, 17°C) keine aktive Biosynthese von VL-PUFA-GPL stattfindet. Dies sollte anhand nachfolgender Experimente überprüft werden.

# 4.2 Vorkommen von Octadecadiensäure in den Lipiden von porcinen Spermatozoen

Bisher wurde in der Literatur vor allem das Vorkommen von Octadecadiensäure in Plasmamembranlipiden von porcinen Spermatozoen der Rassen Landrace und Duroc beschrieben (Waterhouse et al., 2006). Vergleichende Untersuchungen der Gesamtlipidzusammensetzung porciner und humaner Spermatozoen (Lessig et al., 2004) haben gezeigt, dass in porcinen Spermatozoen die Octadecadiensäure in wesentlich geringer Menge repräsentiert ist. In der Untersuchungen von Am-In et al. (2011) wurde berichtet, dass die Octadecadiensäure in dem Gesamlipidextrakt unterschiedlicher porciner Rassen mit etwa 15 mol% vertreten ist. Die langkettigen, mehrfach ungesättigten Fettsäuren (VL-PUFA) sind in Plasmamembranglycerophospholipiden porciner Spermatozoen mit etwa 30 mol% vertreten (Am-In et al., 2011; Waterhouse et al., 2006). VL-PUFA weisen in den porcinen Spermatozoen eine Kettenlänge bis hin zu 34-Kohlenstoffatomen auf (Poulos et al., 1986). Daten über die Fettsäurezusammensetzung der neutralen Lipide porciner Spermatozoen liegen in der Fachliteratur nicht vor. Im Rahmen dieser Arbeit wurde mittels MALDI-TOF-MS gezeigt, dass die Acvl-Reste der Diacylglycerole ausschließlich als mittelkettige, gesättigte Fettsäuren vorliegen (4.1).

53

#### ERGEBNISSE UND DISKUSSION

Da die Octadecadiensäure eine langkettige, ungesättigte Fettsäure ist, wurde angenommen, dass diese bei den neutralen Lipiden porciner Spermatozoen nicht vorhanden ist. Zur Verifizierung dieses Ergebnisses und zur weiteren Quantifizierung der Fettsäurezusammensetzung wurde das endogene Vorkommen dieser Fettsäure Hauptlipidklassen der Spermatozoen der Rasse Piétrain in den mittels Gaschromatographie untersucht. Nach der Gesamtlipidextraktion (3.6.1) wurden zunächst die einzelnen Lipidklassen mittels Dünnschichtchromatographie (3.6.2) fraktioniert. Nach einer präparativen Aufreinigung (3.6.1.3) der Proben wurden diese Transmethylierung dann einer säurekatalysierten unterzogen (3.8.1)und anschließend mittels Gaschromatographie (GC-FID) analysiert (3.8.2.1). Im Fokus dieser Untersuchungen stand die Überprüfung des endogenen Vorkommens von VL-PUFA-Referenzsubstanzen Octadecadiensäure. Die standen für die gaschromatographische Bestimmung der Fettsäuren nicht zu Verfügung und wurden daher wie in der Literatur angegeben mit 30 mol% berücksichtigt (3.8.2). Die ermittelten Werte sind in der Abbildung 14 dargestellt.

Die Untersuchungen der Fettsäurezusammensetzung polarer Lipide porciner Spermatozoen zeigten, dass die Octadecadiensäure in den Glycerophospholipiden endogen vorhanden ist. Das stimmt mit den bereits publizierten Daten überein (Am-In et al., 2011; Waterhouse et al., 2006). Sie kommt in allen hier untersuchten GPL-Fraktionen mit einem Anteil von 15 mol% in der Glycerophosphocholin- und mit 10 mol% in der Glycerophosphoethanolamin-Sulfogalactosyglycerolipid-Fraktion vor. Die 16:0-Fettsäure ist vorherrschend mit bis zu 50 mol% in der Glycerophosphoserin / Glycerophosphoinositol-Fraktion. Weitere Fettsäuren sind die gesättigten 14:0-, und 18:0-Fettsäuren mit bis zu 10 mol% bzw. bis zu 15 mol%. Die einfach-ungesättigten sowie mehrfach-ungesättigten Fettsäuren 18:1-, 18:3-, 20:1und 20:4 liegen in deutlich geringeren Mengen (<3 mol%) vor. Das Vorkommen der 16:3-Fettsäure konnte nicht beobachtet werden (Abb. 14, A).

54

#### ERGEBNISSE UND DISKUSSION



#### Abbildung 14: Fettsäurezusammensetzung der Hauptlipidklassen flüssigkonservierter porciner Spermatozoen der Rasse Piétrain

**A.** Polare Lipide: GPE / SGG: Glycerophosphoethanolamin / Sulfogalactosyglycerolipid; GPC: Glycerophosphocholin; GPI / GPS: Glycerophosphoserin / Glycerophosphoinositol. Die Lipidspots wurden präparativ aufgereinigt und einer säurekatalysierten Transmethylierung unterzogen. Die Fettsäuremethylester wurden gaschromatographisch (GC-FID) quantifiziert. Die langkettigen, mehrfach ungesättigten Fettsäuren VL-PUFA (in der Abb. VL-P) wurden mit 30 mol% berücksichtigt, da keine geeigneten Standards zu Verfügung standen (3.8.2.1); **B.** Neutrale Lipide: FFS: freie Fettsäuren; 1,2-DAG: 1,3-Diacylglycerol. Die Lipidspots wurden ebenfalls präparativ aufgereinigt und einer säurekatalysierten Transmethylierung unterzogen. Die Fettsäuremethylester wurden mittels gekoppelten Gaschromatographie-Massenspektrometrie (GC-MS) quantifiziert (3.8.2.2). Auftrennung des Gesamtlipidextraktes über DC erfolgte in A. Chloroform / Methanol / H<sub>2</sub>O (65:25:4) und in B. *n*-Hexan / Diethylether / Eisessig (80:15:1), jeweils mit DC-Platten Sl<sub>250</sub> PA 7003-04, J.T. Baker.

Anhand des Vergleichs der Fettsäurezusammensetzung von neutralen und polaren Lipiden sind deutliche Unterschiede zu verzeichnen. Das endogene Vorkommen von Octadecadiensäure (18:2) als auch von VL-PUFA konnte in keiner der untersuchten neutralen Lipidklassen mittels Gaschromatographie und gekoppelter gaschromatographischen Massenspektrometrie (GC-MS) beobachtet werden. Die Fettsäurezusammensetzung der beiden Diacylglycerol-Isomere ist nahezu identisch. Die vorherrschenden Fettsäuren sind 14:0 und 16:0 mit einem Anteil von 55 mol% bzw. 25 mol%. Die restlichen 20 mol% sind durch 16:1, 18:0, 18:1-Fettsäuren vertreten. Sowohl die Abwesenheit von Octadecadiensäure als auch die Fettsäurezusammensetzung der neutralen Lipide stimmt mit den vorangegangenen MALDI-TOF-massenspektrometrischen Untersuchungen überein (4.1).

Es ist bekannt, dass Spermatozoen zu einer aktiven Lipidbiosynthese befähigt sind (Vazguez and Roldan, 1997b). DAG ist die Vorstufe für die Biosynthese von GPL in eukaryotischen Zellen (Gibellini and Smith, 2010). Der abschließende Schritt der denovo-GPL-Biosynthese ist ein Kopfgruppen-Transfer auf 1,2-DAG (Bishop and Bell, 1988). Bei der GPC-Biosynthese wird beispielweise die Cholin-Kopfgruppe durch Cholinephosphotransferase übertragen. GPC und GPE von porcinen Spermatozoen sind vor allem durch mehrfach ungesättigte, langkettige Fettsäuren gekennzeichnet (4.1). Diese lassen sich jedoch nicht in 1,2-DAG und im freien Fettsäurepool der flüssigkonservierten porcinen Spermatozoen nachweisen (Abb.14, B). Auch ein enzymatischer Abbau von Glycerophospholipiden durch Phospholipasen (PLA<sub>1</sub>, PLA<sub>2</sub>) zu Lyso-GPL (mono-GPL) und freien Fettsäuren wurde nicht beobachtet (Abb. 14, A). Da DAG nur mittelkettige, gesättigte Fettsäuren enthält, kann angenommen werden, dass in den morphologisch-intakten porcinen Spermatozoen, die keine Akrosomreaktion zeigen und bei 17°C in BTS-Medium gelagert wurden, keine aktive diacyl-Lipidbiosynthese von langkettigen mehrfach-ungesättigten GPL stattfindet.

Sowohl das Sekret der akzessorischen Drüsen, das sogenannte Seminalplasma als auch die Eileitersekrete enthalten PUFA und VL-PUFA, sowie deren Transport-Proteine (Am-In *et al.*, 2011; Iritani *et al.*, 1969; Kalic *et al.*, 1997). Die *Spermatozoen* werden bei der Ejakulation mit dem Seminalplasma und später nach Erreichen des Eileiters mit den Eileitersekreten vermischt und kommen erst dadurch mit den freien

56

Fettsäuren in Kontakt. Gleichzeitig finden eine Kapazitation und anschließend die Akrosomreaktion statt. Alle in der Fachliteratur beschriebenen Untersuchungen zur Spermatozoen-Lipidbiosynthese wurden unter kapazitations- bzw. akrosomreaktionsfördernden Bedingungen *in-vitro* durchgeführt (Roldan and Shi, 2007).

Zusammenfassend haben die qualitativen Untersuchungen zur Spermatozoen Fettsäurezusammensetzung porciner gezeigt, dass die Octadecadiensäure in den Glycerophospholipiden porciner Spermatozoenlipide endogen vorhanden ist. Aus diesem Grund kann angenommen werden, dass eine Fettsäure, die endogen in GPL vorhanden ist, als Substrat für die Lipidsynthese verwendet wird. Die Fettsäuren in den neutralen Lipiden sind alle mittelkettige, und mit Ausnahme von 16:1, gesättigte Fettsäuren. Desweiteren lässt sich bei den intakten flüssigkonservierten porcinen Spermatozoen während der Lagerung bei 17°C keine aktive GPL-Lipidbiosynthese nachweisen.

# 4.3 Auswirkung der Fettsäuresupplementierung auf die Lipidzusammensetzung der Spermatozoen

Die hier durchgeführten Untersuchungen der Lipide porciner Spermatozoen auf ihre Fettsäurezusammensetzung haben gezeigt, dass Octadecadiensäure in GPL vorkommt. In 1,2-DAG, der die Vorstufe bei der GPL Biosyntese fungiert, wurde hingegen keine Octadecadiensäure nachgewiesen (4.2). Daher wurde angenommen, dass eine Fettsäure, die endogen vorhanden ist, auch als Substrat für die Lipidbiosynthese akzeptiert wird. In der Literatur gibt es bereits Berichte, dass der Zusatz von Octadecadiensäure-BSA zum Kulturmedium einen positiven Effekt auf die Gefriertauglichkeit von in vitro Rinderembryonen hat. (Hochi et al., 1999). Die Zugabe diese Säure zum Kulturmedium hat ebenfalls einen positiven Einfluss auf in-vitro Wachstum und Produktivität von Chinese Hamster Ovary-Zellen (CHO-Zellen) (Castro et al., 1995). Der metabolische Einbau exogener Octadecadiensäure in die Lipide porciner Spermatozoen ist bis dato in der Literatur nicht beschrieben. Die Zytotoxizität von freien Fettsäuren auf andere Zelltypen ist jedoch weitgehend bekannt (Di Paola and Lorusso, 2006; Di Paola et al., 2006; Qian and Eaton, 1994; Schonfeld and Wojtczak, 2008). Sowohl die Bedingungen als auch die einzusetzenden Konzentrationen von freien Fettsäuren für die chemische Supplementierung porciner *Spermatozoen* sind jedoch unbekannt. Daher sollten zuerst die Supplementierungsbedingungen untersucht werden.

# 4.3.1 Analyse der Supplementierungsbedingungen für Octadecadiensäure

Bisher gib es kaum Berichte über die zytotoxische Wirkung von freien Fettsäuren auf *Spermatozoen*. Da sich die nachfolgenden Experimente mit dem Einbau von exogener Octadecadiensäure in die porcinen Spermatozoenlipide befassen, werden im folgenden Kapitel die Supplementierungsbedingungen ausschließlich für die Octadecadiensäure dargestellt. Es ist anzumerken, dass das "membranschädigende" Potential der freien Fettsäuren nicht nur konzentrationsabhängig ist, sondern auch durch deren Sättigungsgrad sowie deren Kettenlänge beeinflusst werden kann (Oberle, 1999).

Freie Fettsäuren sind in organischen Lösungsmitteln gut löslich, in Wasser aber fast unlöslich. Ausführliche Informationen über die Löslichkeit einzelner Fettsäuren in Wasser sind in der Literatur bisher kaum vorhanden. In dieser Arbeit wurde mit lebenden Zellen unter physiologischen Bedingungen gearbeitet. Dies begrenzte die Auswahl der löslichkeitsvermittelnden Substanzen erheblich, da diese ebenfalls eine toxische Wirkung auf die porcinen Spermatozoen aufweisen können. In den Arbeiten von Hosek et al. (2010) an monozytären THP-1 Zellen wurde unter anderem gezeigt, dass Dimethylsulfoxid (DMSO) als Lösungsvermittler für freie Fettsäuren im Vergleich zu Rinderserumalbumin eine wesentlich höhere zytotoxische Wirkung besitzt. Für die nachfolgenden Experimente wurde daher auf die Verwendung von DMSO verzichtet und als lösungsvermittelnde Substanzen Ethanol und Rinderserumalbumin eingesetzt. Alle Komponenten des Supplementierungsmediums (Ethanol, Rinderserumalbumin, Octadecadiensäure) wurden einzeln auf ihre Toxizität untersucht (s. Material und Methoden, 3.5.5). In den folgenden Kapiteln wird der Begriff "Zytotoxizität" vereinfachend sowohl für die negative Beeinflussung der Motilität als auch für die akrosomschädigenden Auswirkungen bestimmter Chemikalien auf die Spermatozoen verwendet.

#### 4.3.1.1 Zytotoxizität von Ethanol

Bisher gib es in der Fachliteratur keine Berichte über die zytotoxische Wirkung von Ethanol auf porcine *Spermatozoen*. Dieses organische Lösungsmittel kann als

Lösungsvermittler für die freien Fettsäuren zugesetzt werden. Daher wurden zuerst unterschiedlichen Ethanol-Konzentrationen bezüglich ihrer toxischen Wirkung auf porcine *Spermatozoen* untersucht. Die ermittelten Werte der Zytotoxizitätsassays von Ethanol sind der Abbildung 15 zu entnehmen.



#### Abbildung 15: Zytotoxizitätsassay nach Inkubation porciner Spermatozoen mit Ethanol Inkubationsdauer: 6 h bei RT; 24 h. bei 17°C

**A.** Anteil motiler *Spermatozoen* in [%]; nach 6 Std. bei RT **B.** Anteil akrosomdefekter *Spermatozoen* in [%] nach 6 Std. bei RT. **C.** Anteil motiler *Spermatozoen* nach 24 Std. bei 17°C. Angegeben sind die Mittelwerte aus zwei unabhängigen Bestimmungen, sowie die Standardabweichung. Die Daten wurden mittels computerunterstützter Motilitätsanalyse (CASA) erhoben (3.5.3), n=1.000 / Probe. **D.** Anteil akrosomdefekter *Spermatozoen* in [%] nach 24 Std. bei 17°C. Angegeben sind jeweils die Werte aus einfacher Bestimmung (3.5.2.2), n=200 / Probe.

Alle untersuchten Ethanol-Konzentrationen zwischen 19 µM und 1.9 mM zeigen sowohl nach 6 Stunden als auch nach 24 Stunden Inkubation keine schädliche
Auswirkung auf die *Spermatozoen*. Bei der unbehandelten Kontrollprobe sind 87% der *Spermatozoen* motil und 4% akrosomdefekt. Bei einer Ethanol-Konzentration von 19 mM und einer Inkubationsdauer von 6 Stunden bei RT sinkt der Anteil motiler *Spermatozoen* verglichen mit der unbehandelten Kontrollprobe von 87% auf etwa 60%. Bei einer Verlängerung der Inkubationsdauer auf 24 Stunden und unter gleicher Ethanol-Anfanggskonzentration von 19 mM sinkt die Motilität verglichen mit der unbehandelten Kontrollprobe steigt nach 6 Stunden Inkubation bei gleicher Ethanolanfanggskonzentration von 4% auf 14% und dementsprechend nach der Inkubation von 24 Stunden auf 22% an.

Die Applikation von Ethanol führt bis zu einer Konzentration von 1.9 mM zu keinen nennenswerten zytotoxischen Auswirkungen auf die porcinen *Spermatozoen* und ist somit unbedenklich bezüglich der Beeinträchtigung der Motilität sowie dem Auftreten von Akrosomdefekten.

### 4.3.1.2 Zytotoxizität von Rinderserumalbumin

Serumalbumin wird routinemäßig als ein Lösungsvermittler für lipophile Substanzen benutzt (Hosek *et al.*, 2010; Imahori *et al.*, 1995). Es wird unter anderem auch als proteinhaltiges Kapazitationsmedium zum Auslösen der Akrosomreaktion *in-vitro* verwendet (Go and Wolf, 1985). Es liegen keine Berichte über die konzentrationsabhängige toxische Wirkung von fettsäurefreiem Rinderserumalbumin auf die *Spermatozoen* vor. Daher wurde dies bezüglich seiner zytotoxischen Wirkung bei unterschiedlichen Konzentrationen untersucht. Die Herstellerangaben (A-7030, Sigma) zum Fettsäuregehalt (< 0.02%) des Rinderserumalbumins wurden mittels säurekatalysierter Transmethylierung und anschließender GC-Analyse verifiziert (Daten sind nicht gezeigt).



## Abbildung 16: Zytotoxizitätsassay nach Inkubation porciner *Spermatozoen* mit fettsäurefreiem Rinderserumalbumin

Inkubationsdauer: 6 h bei RT;

**A.** Anteil motiler *Spermatozoen* in [%]. Angegeben sind die Mittelwerte aus zwei unabhängigen Bestimmungen sowie die Standardabweichung. Die Daten wurden mittels computerunterstützter Motilitätsanalyse (CASA) erhoben (3.5.3), *n*=1.000 / Probe.

**B.** Anteil akrosomdefekter *Spermatozoen* in [%]. Angegeben sind die Werte aus einfacher Bestimmung, (3.5.2.2), *n*=200 / Probe.

Aus den ermittelten Werten des Zytotoxizitätsassays von Rinderserumalbumin mit porcinen *Spermatozoen* geht hervor, dass nach 6 Stunden Inkubation bei RT mit einer Rinderserumalbumin-Konzentration von 1,7  $\mu$ M keine Auswirkungen auf die Motilität und den akrosomalen Status der *Spermatozoen* zu verzeichnen ist (Abb. 16). Ab einer Konzentration von 17  $\mu$ M ist ein Rückgang der Motilität von 85% auf 70% verglichen mit der unbehandelten Kontrollprobe zu verzeichnen. Der Anteil der akrosomdefekten *Spermatozoen* steigt unter den oben genannten Bedingungen von 5% auf 9% an. Ab einer Rinderserumalbumin-Anfangskonzentration von 85  $\mu$ M sinkt der Anteil motiler *Spermatozoen* liegt dann weit über 75%.

Bei einer Rinderserumalbumin-Anfangskonzentration von 170 µM wurden nahezu keine motilen *Spermatozoen* mehr beobachtet. Daher wurde für die nachfolgenden Experimente festgelegt, dass die maximale Konzentration von fettsäurefreiem Rinderserumalbumin eine Konzentration von 17 µM nicht übersteigen darf.

### 4.3.1.3 Zytotoxizität von Octadecadiensäure

Für die Markierungs- sowie Supplementierungsexperimente bei den porcinen Octadecadiensäure sollte Spermatozoen mit diese in unterschiedlichen Konzentrationen eingesetzt und bezüglich ihrer zytotoxischen Auswirkungen Für die Überprüfung der untersucht werden. Zytotoxizität wurde die Octadecadiensäure mit der zuvor ermittelten unbedenklichen Ethanol-Menge versetzt und den porcinen Spermatozoen zugegeben (4.3.1.1).



## Abbildung 17: Zytotoxizitätsassay nach Inkubation porciner Spermatozoen mit Octadecadiensäure

Inkubationsdauer: 6 h. bei RT; Konzentration von Octadecadiensäure;

**A.** Anteil motiler *Spermatozoen* in [%]. Angegeben sind die Mittelwerte aus zwei unabhängigen Bestimmungen, sowie die Standardabweichung. Die Daten wurden mittels computerunterstützter Motilitätsanalyse (CASA) erhoben (3.5.3), *n*=1.000 / Probe.

**B.** Anteil akrosomdefekter *Spermatozoen* in [%]. Angegeben sind die Werte aus einfacher Bestimmung (3.5.2.2), *n*=200 / Probe.

Octadecadiensäure wurde mit Ethanol (1,9 mM) versetzt und den *Spermatozoen* in den angegebenen Konzentrationen zugegeben.

Wie in Abbildung 17 zu erkennen ist, sinkt die Motilität der *Spermatozoen* bereits nach 6 Stunden Inkubation im BTS-Medium bei einer 40 µM Octadecadiensäure-Anfangskonzentration von 86% bei der unbehandelten Kontrollprobe auf 70% ab. Die Octadecadiensäure ist bereits bei einer Konzentration von 200 µM stark zytotoxisch. Die Anzahl motiler *Spermatozoen* verringert sich hierbei von 85% auf unter 60% im Vergleich zur unbehandelten Kontrolle. Der Anteil akrosomdefekter *Spermatozoen* beträgt 71% verglichen mit nur 3% in der unbehandelten Kontrollprobe. Ab einer Konzentration von 400 µM konnten nahezu keine motilen sowie akrosomintakten mehr *Spermatozoen* beobachtet werden (Abb. 17). Für die nachfolgenden

Experimente wurde daher festgelegt, dass die maximale Anfangskonzentration der Octadecadiensäure lediglich 40 µM betragen darf.

### 4.3.1.4 Zytotoxizität von Octadecadiensäure unter Bedingungen einer Protein-vermittelten Verabreichung

In den vorangegangen Experimenten wurden die einzelnen Komponenten des Supplementierungsmediums bezüglich ihrer Zytotoxizität untersucht und die jeweils maximal einzusetzende Stoffmenge festgelegt.

Hosek et al. (2010) untersuchten die Bioverfügbarkeit sowie die zytotoxischen Auswirkungen der Fettsäuresupplementierung bei THP-1 Zellen. Hierbei konnte gezeigt werden, dass die Kombination aus freien Fettsäuren, Lösungsmittel sowie Rinderserumalbumin sowohl zu einer deutlich niedrigen Zytotoxizität des Lösungsmittels als auch zu einer Erhöhung der Bioverfügbarkeit der freien Fettsäuren führt. Um einerseits die zytotoxischen Effekte zu minimieren und andererseits eine ausreichende Bioverfügbarkeit zu gewährleisten, wurde für die nachfolgenden Supplementierungs- und Markierungs-Experimente in ähnlicher Weise eine Protein-vermittelte Verabreichung der Fettsäuren zu den porcinen Spermatozoen durchgeführt.



## Abbildung 18: Zytotoxizität von Octadecadiensäure unter einer Protein-vermittelten Verabreichung

Inkubationsdauer: 6 Std. bei RT

**A.** Anteil motiler *Spermatozoen* in [%]. Angegeben sind die Mittelwerte aus zwei unabhängigen Bestimmungen, sowie die Standardabweichung. Die Daten wurden mittels computerunterstützter Motilitätsanalyse (CASA) erhoben (3.5.3), n=1.000 / Probe.

**B.** Anteil akrosomdefekter *Spermatozoen* in [%]. Angegeben sind die Werte aus einfacher Bestimmung (3.5.2.2), *n*=200 / Probe.

Die Konzentrationen der zu supplementierenden Substanzen:

Rinderserumalbumin 17 µM; Ethanol 1,9 mM.

Konzentration Octadecadiensäure Bis zur einer der von 160 µM (mit Rinderserumalbumin 17 µM, Ethanol 1,9 mM) konnte keine wesentliche Beeinträchtigung der Motilität als auch des Akrosoms der porcinen Spermatozoen festgestellt werden.

Zusammenfassend wurde in diesem Teil der Arbeit gezeigt, dass die Applikation von Ethanol bis zu einer Konzentration von 1,9 mM zu keiner Beeinträchtigung der Motilität sowie zu keiner Akrosomschädigung porciner Spermatozoen führt. Die unbedenkliche Menge von fettsäurefreiem Rinderserumalbumin lag im Bereich zwischen 1,7 und 17 µM. Für die kombinierte Applikation von in Ethanol gelöster Octadecadiensäure konnte keine maximal-duldbare Konzentration festgestellt werden. Für die nachfolgenden Markierungs- sowie Supplementierungsexperimente wurden die optimalen Konzentrationen aller Komponenten des Supplementierungmediums festgelegt. Sie betrugen für Rinderserumalbumin 17 µM, für Ethanol 1,9 mM und für Octadecadiensäure 40 µM. Alle hier genannten Werte beziehen sich auf die Anfangskonzentrationen.

### 4.3.2 Untersuchungen der bakteriellen Metabolisierung von [1-<sup>14</sup>C]-Octadecadiensäure

Nach der Gewinnung lassen sich in jedem Ejakulat auch Bakterien, vor allem gramnegative Stämme, nachweisen (Okazaki et al., 2010). Bakterien sind in der Lage, Fettsäuren aus dem Kulturmedium aufzunehmen und zu verwerten (Black and DiRusso, 1994; Hou, 1994, 2000; Hou et al., 1997). Die aufgenommenen Fettsäuren werden entweder bei Ressourcenmangel als Energiequelle genutzt oder metabolisch in die bakteriellen Membranlipide eingebaut. Die nachfolgenden Experimente beschäftigen sich mit dem Einbau exogener Octadecadiensäure in porcine Spermatozoenlipide. Liegt eine bakterielle Kontamination des Ejakulats vor, kann radioaktiv-markierte Octadecadiensäure sowohl von den Spermatozoen als auch von den Bakterien als Energiequelle bzw. Substrat für die Lipidbiosynthese verwendet werden. Aufgrund der zunehmenden Multiresistenz der Bakterien konnte trotz des Zusatzes von Antibiotika zum Flüssigkonservierungsmedium keine Keimfreiheit der Proben gewährleistet werden. In untersuchten diesem Fall enthält der Gesamtlipidextrakt sowohl Spermatozoen- als auch bakterielle Lipide. Bei der radiochemischen Auswertung dieser Lipide kann daher ihr metabolischer Ursprung

weder den *Spermatozoen* noch den Bakterien eindeutig zugeordnet werden. Daher wurde zuerst die bakterielle Metabolisierung von  $[1-^{14}C]$ -Octadecadiensäure ausführlicher untersucht (3.1).

Bakterien sind in der Lage Fettsäuren aufzunehmen und unter anderem durch αbzw. β-Oxidation zu verwerten (Imamura *et al.*, 1990; Ishikawa *et al.*, 1997; Matsunaga *et al.*, 2000). Nach der Aufnahme und CoA-Aktivierung kommt es im Zuge der Oxidation zu einer Kettenverkürzung der Fettsäuren (Schulz, 2004; Wang and Schulz, 1989). Die Quelle der β-Strahlung der bei den nachfolgenden Experimenten verwendeten Radiochemikalie ist ein <sup>14</sup>C-Atom an der C-1 Position der Fettsäure. Daher kommt es während der α- bzw. β-Oxidation zu einem Verlust des radioaktiven [1-<sup>14</sup>C]-Atoms (Abbildung 19).



## Abbildung 19: Chemische Struktur der $[1-^{14}C]$ -Octadecadiensäure und $\beta$ -oxidativer Abbau von Fettsäuren.

**Oben:** [1-<sup>14</sup>*C*] Octadecadiensäure, das <sup>14</sup>*C*-Atom ist in der C-1 Position der Fettsäure (rot dargestellt) lokaliesiert.

**Unten:** Eine stark vereinfachte Darstellung vom  $\beta$ -oxidativen Abbau von Fettsäuren. Durch die Fettsäureoxidation wird das [1-<sup>14</sup>C]-Atom abgespalten und somit kann unter Umständen ein "Blindabbau des Substrates" während der Markierungsexperimente erfolgen. Die an den Reaktionen beteiligten enzymatischen Reaktionen sind ebenfalls vereinfacht dargestellt. Die  $\beta$ -Oxidation von ungesättigten Fettsäuren (z.B. Octadecadiensäure) entspricht der oben gezeigten Grundreaktion, einschließlich des Aktivierungsvorganges. Aufgrund der im Molekül enthaltenen Doppelbindungen (*9Z,12Z*) werden zum Abbau jedoch zusätzliche Enzyme (Dehydrogenase, Reduktase, Isomerase) benötigt (Schulz, 2004; Wang and Schulz, 1989). Fettsäuren, die an mehreren C-Atomen radioaktivmarkiert sind (Tran and Christophersen, 2002), standen im Rahmen dieser Arbeit aus Kostengründen nicht zu Verfügung.

Unter diesen Bedingungen könnten auch die im Ejakulat vorkommenden Bakterien Fettsäuren als Energiequelle nutzen. In Glukose-freien Flüssigkonservierungsmedien können humane *Spermatozoen* ebenfalls Fettsäuren als Energiequelle nutzen (Lenzi *et al.*, 1996). Wenn die  $\alpha$ - bzw.  $\beta$ -Fettsäureoxidation stattfindet, wird das [1-<sup>14</sup>*C*]-Atom von der in diesem Experiment eingesetzten Radiochemikalie abgespalten und es erfolgt somit ein "Blindabbau des Substrates".

Für die nachfolgenden Markierungsexperimente wurden daher die Markierungsbedingungen und der Blindabbau der Radiochemikalie näher untersucht. Dazu wurden zwei porcine Spermatozoenproben (10 ml, 0.2 × 10<sup>9</sup>) durch den Austausch des BTS-Mediums auf gleiches Volumen des p-NaCl-Mediums zum Glukose-Mangel (1 h, RT) gebracht und nach unterschiedlicher Inkubationsdauer mit [1-<sup>14</sup>C]-Octadecadiensäure markiert. Bei der Probe A fand die Markierung unmittelbar nach der einstündigen Inkubation statt. Die Dauer der Markierung mit [1-<sup>14</sup>C]-Octadecadiensäure betrug 24 Stunden und wurde bei Raumtemperatur durchgeführt. Die eingesetzte Aktivität der Radiochemikalie betrug 0,25 µCi. Die Probe B wurde zuerst 72 Stunden lang bei RT inkubiert und dann mikroskopisch untersucht. Die nachfolgende radioaktive Markierung erfolgte wie bei Probe A. Die mikroskopischen Untersuchungen haben gezeigt, dass nach 72 Stunden keine motilen Spermatozoen mehr beobachtet werden konnten. Sie lagen hingegen als Agglutinate vor und waren avital (Daten sind hier nicht gezeigt). Die bakterielle Kontamination der Probe war ebenfalls deutlich zu erkennen, welche anschließend zytochemisch untersucht wurde (3.11.2). Hierbei wurde eine starke Kontamination mit Proteus mirabilis und vereinzelt auch mit Alcaligenes faecalis nachgewiesen. Die bakteriologischen Kontrolluntersuchungen der verwendeten Flüssigkonservierungsmedien BTS- und *p-NaCl*-Medium wiesen hingegen keine bakterielle Kontamination auf. Somit konnte die Herkunft der Bakterien eindeutig den porcinen Ejakulaten zugeordnet werden. Nach dem positiven bakteriologischen Befund der Probe B wurde diese zur Kontrolle der bakteriellen Metabolisierung ebenfalls wie Probe A radioaktiv markiert. Nach Ende der Markierungszeit wurden aus beiden Proben die Gesamtlipide extrahiert, über Dünnschichtchromatographie aufgetrennt und anschließend autoradiographiert. Die Autoradiogramme sind in Abbildung 20 dargestellt.



Abbildung 20: Metabolischer Einbau der [1-<sup>14</sup>C]-Octadecadiensäure in die Lipide vitaler porciner *Spermatozoen* und bakterielle Metabolisierung in Glukose-freiem Medium A. vitale porcine *Spermatozoen*; B. bakterielle Kontamination des Ejakulates, avitale porcine *Spermatozoen* C. [1-<sup>14</sup>C]-Octadecadiensäure:

Spermatozoen **C**.  $[1-^{14}C]$ -Octadecadiensäure; Die Proben wurden 24 h bei RT mit  $[1-^{14}C]$ -Octadecadiensäure inkubiert. Anschließend fand die Gesamtlipidextraktion statt. Die dünnschichtchromatographische Auftrennung der Gesamtlipiextrakte erfolgte in Chloroform / Methanol / H<sub>2</sub>O (65:25:4). Es sind Autoradiogramme dargestellt. Die Zuordnung zu den jeweiligen Lipidklassen erfolgte anhand der R<sub>r</sub>Werte von Referenzsubstanzen.

[1-<sup>14</sup>C]-Abbildung Wie aus der zu entnehmen ist. konnte keine freie Octadecadiensäure im Gesamtlipidextrakt der beiden untersuchten Proben nachgewiesen werden. Bei den vitalen Spermatozoen lässt sich der metabolische Einbau der Radiochemikalie sowohl bei den polaren als auch bei den neutralen Lipiden detektieren (Abb. 20, A). Dies deutet darauf hin, dass unter diesen Bedingungen eine vollständige metabolische Aufnahme mit anschließendem Einbau der Radiochemikalie in die Spermatozoenlipiden stattgefunden hat. Bei den avitalen Spermatozoen, die eine hohe bakterielle Kontamination aufwiesen, ließ sich hingegen kein radioaktives Signal detektieren (Abb. 20, B). Dies deutet darauf hin, dass nur die vitalen Spermatozoen zu einer metabolischen Fettsäureaufnahme und Metabolisierung der exogenen Fettsäuren befähigt sind. Durch die vollständige Abwesenheit der radioaktiv markierten Lipide in Probe B, kann angenommen werden, dass durch den bakteriellen Stoffwechsel in Glukose-freiem Medium ein "Blindabbau des Substrates" (<sup>14</sup>C-Atom an der C-1 Position der Fettsäure) stattgefunden hat.

Das Experiment wurde mit Glukose-haltigem BTS-Medium wiederholt. Die eingesetzten Mengen der Radiochemikalie, das Volumen der Proben sowie die Zellzahlen der *Spermatozoen* entsprachen dem vorherigen Experiment. In Abbildung 21 sind die Autoradiogramme dargestellt. In diesem Experiment erfolgte der Einbau der Radiochemikalie sowohl in die Spermatozoenlipide als auch in die Bakterienlipide.



Abbildung 21: Metabolischer Einbau der [1-<sup>14</sup>C]-Octadecadiensäure in die Lipide vitaler porciner Spermatozoen und bakterielle Metabolisierung in Glukose-haltigem Medium A. vitale porcine Spermatozoen; B. bakterielle Kontamination des Ejakulates, avitale porcine Spermatozoen C. [1-<sup>14</sup>C]-Octadecadiensäure;

Spermatozoen **C.** [1-7<sup>-7</sup>C]-Octadecadiensäure; Die Proben wurden 24 h bei RT mit [1-<sup>14</sup>C]-Octadecadiensäure inkubiert. Anschließend fand die Lipidextraktion statt. Die dünnschichtchromatographische Auftrennung der Gesamtlipiextrakte erfolgte in Chloroform / Methanol / H<sub>2</sub>O (65:25:4). Es sind Autoradiogramme dargestellt. Die Zuordnung zu den jeweiligen Lipidklassen erfolgte anhand der  $R_r$ Werte von Referenzsubstanzen.

Bei beiden untersuchten Proben wurde im Gesamtlipidextrakt freie [1-<sup>14</sup>C]-Octadecadiensäure nachgewiesen. Dies deutet darauf hin, dass im Glukose-haltigen Medium eine unvollständige metabolische Aufnahme mit anschließendem Einbau der Radiochemikalie sowohl in die Spermatozoen- als auch in die Bakterien-Lipide stattgefunden hat. Bei den vitalen *Spermatozoen* wurde der metabolische Einbau der Radiochemikalie sowohl bei den polaren als auch bei den neutralen Lipiden detektiert (Abb. 21, A). Anhand der Referenzsubstanzen konnte das radioaktive polare Lipid als Glycerophosphocholin (GPC) identifiziert werden. Bei der Probe mit avitalen porcine *Spermatozoen* und bakteriellen Komponenten ließ sich der metabolische Einbau der Radiochemikalie nur in die polaren Lipide nachweisen (Abb. 21, B). Als Hauptvertreter wurde Glycerophosphoethanolamin (GPE) identifiziert. GPS / GPI kommen in wesentlich geringeren Mengen vor und wurden daher in den nachfolgenden Untersuchungen nicht mehr berücksichtigt (4.3.3). Der metabolische Einbau von  $[1-^{14}C]$ -Octadecadiensäure in GPE konnte bei vitalen *Spermatozoen* nicht nachgewiesen werden. Die Herkunft der radioaktiven Lipide konnte somit eindeutig entweder den porcinen *Spermatozoen* oder der bakteriellen Kontamination zugeordnet werden.

Die Abwesenheit des radioaktiven Signals auf der Frontlinie deutet darauf hin, dass es bei der bakteriellen Metabolisierung keine metabolische Einbau in die neutralen Lipide stattfindet. Daher kann eine *de-novo* Biosynthese von GPE / GPI via 1,2-DAG ausgeschlossen werden. Es kann angenommen werden, dass die metabolische Aufnahme der Radiochemikalie direkt in GPE / GPI erfolgte. Die Bakterien können die zu dem Kulturmedium zugesetzten exogene Fettsäuren in ihre bereits vorhandenen Phospholipide mittels bakterieller Acyltransferasen metabolisch aufnehmen (Fujita et al., 2007; Zhang and Rock, 2008). Die Hauptvertreter der bakteriellen polaren Lipidklassen sind GPE und Glycerophosphoglycerol (GPG) und kommen sowohl bei gramnegativen als auch bei grampositiven Bakterien vor (Mazzella et al., 2004; O'Leary and Wilkinson, 1988; Wilkinson, 1988). Bei den Mycobakterien wurden bereit sowohl GPE als auch GPI beschrieben (Morita et al., 2011). Die Ergebnisse der hier vorliegenden Arbeit und die Literaturangaben über den metabolischen Einbau von Fettsäuren in bakterielle Lipide zeigen somit, dass die metabolische Aufnahme der Radiochemikalie in GPC spermatozoenspezifisch und die Aufnahme in GPE / GPI bakterienspezifisch ist (4.3.3.).

In diesem Teil der Arbeit wurden die Voraussetzungen für die nachfolgenden Untersuchungen der metabolischen Aufnahme der exogenen Octadecadiensäure in porcine Spermatozoenlipide wurden alle geschaffen. Zuerst Supplementierungskomponenten einzeln auf ihre Zytotoxizität für porcine Spermatozoen überprüft. Dann wurden die Supplementierungsbedingungen wie die Fettsäurelöslichkeit und ihre Bioverfügbarkeit optimiert. Die anschließenden Experimente ermöglichten die exakte Zuordnung der metabolischen Aufnahme der Radiochemikalie entweder in die Lipide der porcinen Spermatozoen oder in Lipide

der bakteriellen Kontamination. Die hier ermittelten Ergebnisse und die zuvor analysierte Lipid- und Fettsäurezusammensetzung porciner *Spermatozoen* waren für die nachfolgenden Untersuchungen des metabolischen Einbaus exogener Octadecadiensäure in die Spermatozoenlipide unabdingbar.

### 4.3.3 Einbau der [1-<sup>14</sup>C]-Octadecadiensäure in porcine Spermatozoenlipide

Ein Weg zur Aufklärung des metabolischen Einbaus chemisch supplementierter Octadecadiensäure in porcine Spermatozoenlipide sind die Markierungsexperimente mit radioaktiv markierten Fettsäuren. Auf diese Weise konnten wichtige Erkenntnisse zur Biosynthese der Lipide gewonnen werden. Dazu wurden vergleichende Experimente mit [1-<sup>14</sup>C]-Isotopen von Octadecadiensäure durchgeführt. Die porcinen Spermatozoen wurden in BTS-Medium aufgenommen (3.4) und mit einem Gemisch bestehend aus  $[^{12}C]$ - und  $[1-^{14}C]$ -Octadecadiensäure markiert (3.9.1). Die Endkonzentration des Isotopengemisches betrug 39 µM. Nach der jeweiligen Inkubationsperiode wurden die Zellen gewaschen und die Lipide extrahiert (3.6.1). Danach erfolgte mittels Dünnschichtchromatographie die Auftrennung polarer und neutraler Lipide (3.6.2). Anschließend wurden die Platten autoradiographiert (3.9.4) und radioaktive Lipide mit Hilfe von Referenzlipiden den jeweiligen Lipidklassen zugeordnet (3.9.5) und densitometrisch guantifiziert (3.9.7). Die genauen eingesetzten Isotopmengen, die Dauer der Markierung, die Temperaturbedingungen sowie die Versuchsparameter der Dünnschichtchromatographie sind dem jeweiligen Experiment zu entnehmen.

Für die Untersuchungen des metabolischen Einbaus von Octadecadiensäure wurden  $1.33 \times 10^9$  porcine Spermatozoen in 60 ml BTS-Medium mit dem  $[^{12}C] / [1-^{14}C]$ Isotopengemisch für 1,5 Stunden bei RT (Probe ①) und 24 Stunden bei 6°C (Probe 2) markiert. Die eingesetzte Aktivität wurde bei jeder Inkubationsvariante auf 4,3 µCi eingestellt. Anschließend wurden die Proben durch Waschen von den nicht metabolisierten Radiochemikalien befreit. Die Lipide wurden dann extrahiert und über Dünnschichtchromatographie (DC) aufgetrennt. Zur Analyse des metabolischen Einbaus der Radiochemikalie wurden nun die DC-Platten autoradiographiert. Sowohl die Lipidextraktion den Spermatozoen, als auch die aus dünnschichtchromatographische Auftrennung fand für beide Proben unter gleichen Bedingungen statt. Die ermittelten Ergebnisse sind in der Abbildung 22 dargestellt.

### ERGEBNISSE UND DISKUSSION



## Abbildung 22: Dünnschichtchromatographische Auftrennung porciner Spermatozoenlipide und densitometrische Quantifizierung der Radiosignale nach Markierung mit [1-<sup>14</sup>C]-Octadecadiensäure

Probe ①: Markierungsdauer 1,5 Std bei RT; Probe ②: Markierungsdauer 24 Std bei 6°C; Probe ③: [1-<sup>14</sup>C]-Octadecadiensäure

A, D: DC-Platte, Iod-Farbreaktion; B, E: Autoradiogramm; C, F: "Overlay"-Bild: Iod-Farbreaktion und Autoradiogramm. Das Radiosignal ist rot dargestellt.

I. Neutrale Lipide: Die Auftrennung erfolgte in n-Hexan / Diethylether / Eisessig (80:15:1);

II. Polare Lipide: Die Auftrennung erfolgte in Chloroform / Methanol / H<sub>2</sub>O (65:25:4);

**III. Densitometrische Quantifizierung:** Der metabolische Einbau von  $[1-1^4C]$ -Octadecadiensäure erfolgte in 1,2-DAG und GPC.

Die Auftrennung des Gesamtlipidextraktes erfolgte jeweils auf DC-Platten: SI<sub>250</sub> PA 7000-04, J.T. Baker;

Die Zuordnung zu den jeweiligen Lipidklassen erfolgte anhand von Referenzsubstanzen und den R<sub>r</sub>Werten der Lipidklassen.

Bakt: der metabolische Einbau in bakterielles GPE (s. 4.3.1.4); DRG: der metabolische Einbau in Diradylglycerol.

Für die nachfolgende Auswertung werden nur Lipide berücksichtigt, in die der metabolische Einbau der  $[1-^{14}C]$ -Octadecadiensäure erfolgte. Bei Probe (1) fand bereits nach 1,5 Std Inkubation bei RT eine unvollständige metabolische Aufnahme mit anschließendem Einbau der Radiochemikalie sowohl in die polaren als auch in die neutralen Lipide statt. Anhand der Referenzsubstanzen konnte das radioaktive polare Lipid als Glycerophosphocholin (GPC) und das radioaktive neutrale Lipid als 1,2-Diacylglycerol (1,2-DAG) identifiziert werden. Da die weiteren radioaktiv markierten Lipide durch eine wesentlich geringere Intensität gekennzeichnet sind, werden diese im Folgenden nicht mehr berücksichtigt. Die relative densitometrische Quantifizierung der metabolisch eingebauten Radiochemikalie in Probe 1 weist für GPC und 1,2-DAG eine annähernd gleiche Intensität auf (Abb. 22, III-1). Bei Probe ② mit einer Inkubationsdauer von 24 Std bei 6°C ist die Gesamtintensität von GPC, 1,2-DAG und der von den Spermatozoen aufgenommenen freien Radiochemikalie deutlich erhöht. Die Signalstärke des markierten 1,2-DAG ist im Vergleich zum ebenfalls markierten GPC annähernd doppelt so hoch (Abb. 22, III-2). Im Autoradiogramm der dünnschichtchromatographischen Auftrennung des Gesamtlipidextraktes porciner Spermatozoen die mit [1-<sup>14</sup>C]-Octadecadiensäure markiert wurden, migrierte ein unbekanntes Lipid zwischen 1,3- und 1,2-DAG Mittels nachfolgenden massenspektrometrischen Untersuchungen (Abb. 22, I). konnte dies Lipid als 1Z-alkenylacylglycerol (0-16:1 / [U-13C]-18:2) identifiziert werden, welches in dieser Arbeit vereinfachend als Diradylglycerol (DRG) bezeichnet wird (4.3.5.2). Da kein radioaktiv markiertes in 1,3-DAG detektiert werden konnte, wurde eine spontane DAG-Isomerisierung während der DC-Auftrennung wie von Kodali et al. (1990) beschrieben, ausgeschlossen. Bei der Auswertung des Autoradiogamms von Probe (2) ist eine deutliche Co-Migration des radioaktiven GPC innerhalb des GPC-Spots zu erkennen (Abb. 22, II-E). Da dies nicht homogen verteilt war, wurde zur genaueren Analyse des radioaktiven Signals innerhalb des GPC-Spots eine zweidimensionale Dünnschichtchromatographie durchgeführt. Dazu wurden  $1 \times 10^9$  porcine Spermatozoen mit dem  $[^{12}C] / [1-^{14}C]$  Isotopengemisch in 45 ml BTS-Medium für 1,5 Std bei RT markiert. Das Isotopengemisch wurde mit einer Endkonzentration von 39 µM bei einer Aktivität der Radiochemikalie von 3,2 µCi eingesetzt. Die ermittelten Ergebnisse sind in der Abbildung 23 dargestellt.



## Abbildung 23: 2D-dünnschichtchromatographische Auftrennung polarer Lipide porciner *Spermatozoen* nach Markierung mit [1-<sup>14</sup>C]-Octadecadiensäure

**A.** DC-Platte, Iod-Farbreaktion **B.** *"Overlay*"-Bild: Farbreaktion und Autoradiogramm. Radioaktive Signale sind rot markiert. Die Auftrennung erfolgte in **1.** Chloroform / Methanol / 25% NH<sub>4</sub>OH (90:54:7) **2.** Chloroform / Methanol / Aceton / Eisessig / H<sub>2</sub>O (50:10:20:10:5 bei 30°C).

**FFS:** freie Fettsäuren; **GPE:** Glycerophosphoethanolamin; **SGG:** Sulfogalactosyglycerolipid; **GPC:** Glycerophosphocholin; **GPS:** Glycerophosphoserin; **GPA:** Glycerophosphat; **GPI:** 

Glycerophosphoinositol, (?) – unbekanntes Lipid.

Markierungsbedingungen: 1,5 h, RT. Die Auftrennung erfolgte auf DC-Platten: SI<sub>250</sub> PA 7000-04, J.T. Baker. Die Zuordnung zu den jeweiligen Lipidklassen erfolgte anhand von Referenzsubstanzen und den  $R_r$ -Werten der Lipidklassen (Weingartner *et al.*, 2010).

In der 2D-dünnschichtchromatographischen Analyse erfolgte eine genauere Auftrennung der polaren Lipide des Gesamtlipidextraktes porciner *Spermatozoen*. Die Laufeigenschaften von polaren Lipiden werden unter diesen experimentellen Bedingungen in erster Linie durch die Ladung der Kopfgruppe bestimmt. Die *acyl*-, *plasmanyl*- sowie *plasmenyl*-Reste von unterschiedlichen Lipidspezies einer Klasse haben eine deutlich geringere Auswirkung auf die Laufparameter (Fuchs et al., 2011). Erst durch die 2D-dünnschichtchromatographische Analyse kann eine Co-Migration unterschiedlicher Lipidklassen ausgeschlossen werden.

Bei der Auswertung der Autoradiogramme der 2D-dünnschichtchromatographie ist eine inhomogene Verteilung des radioaktiven Signals innerhalb des GPC-Spots deutlich zu erkennen (Abb.23, B). Würde der Einbau von  $[1-^{14}C]$ -Octadecadiensäure in alle GPC-Klassen erfolgen, käme es zu einer homogenen Verteilung des Signals. In der Plasmamembran porciner *Spermatozoen* kommen die Glycerophosphocholine zu etwa 20% als *diacyl*-GPC und ungefähr zu 80% als Ether-GPC vor (Evans *et al.*, 1980). Anhand der Verteilung des radioaktiven Signals innerhalb des gesamten

#### ERGEBNISSE UND DISKUSSION

GPC-Spots wird somit angenommen, dass ein metabolischer Einbau der Radiochemikalie nur in die diacyl-GPC erfolgte. Diese Annahme konnte durch die nachfolgenden massenspektrometrischen Analysen verifiziert werden. Bei GPA, welches die Vorstufe der de-novo Biosynthese von GPC ist, war ebenfalls ein Einbau der Radiochemikalie zu beobachten. Sowohl bei GPE als auch bei GPI sind wesentlich geringere Intensitäten des radioaktiven Signals zu verzeichnen. Anhand der vorangegangenen Untersuchungen konnte der metabolische Einbau der Radiochemikalie in GPE / GPI ausschließlich der bakteriellen Kontamination zugeordnet werden (4.3.2). Somit lag hier eine geringfügige bakterielle Kontamination des Ejakulates vor. Der Einbau der Radiochemikalie in SGG und in GPS konnte nicht beobachtet werden. Dadurch konnte ihr metabolischer Einbau in diese Lipidklassen ausgeschlossen werden. Desweiteren migriert ein unbekanntes Lipid oberhalb des GPE-Spots und stellt wahrscheinlich ein azidisches Lysoprodukt von bakteriellem GPE dar. Die Entstehung derartiger Lysoprodukte wurde bereits ausführlich beschrieben (Arnhold et al., 1995; Lessig et al., 2007). Die Autoren geben an, dass bei Ether-GPL bereits sehr geringe Säure-Konzentrationen zur Hydrolyse der Vinyl-Ether-Bindung führen können. Bei GPC war unter diesen Bedingungen keine Entstehung von Lysoprodukten zu beobachten. Dies stärkt ebenfalls die Annahme, dass es sich bei dem radioaktiven GPC um diacyl-GPC handelt.

Zusammenfassend wurde in diesem Teil der Arbeit der Einbau von  $[1-^{14}C]$ -Octadecadiensäure in die neutralen und polaren Lipide von porcinen *Spermatozoen* genauer untersucht. Anhand der densitometrischen Quantifizierung wurde der Einfluss der Temperatur und der Inkubationsdauer auf den metabolischen Einbau der  $[1-^{14}C]$ -Octadecadiensäure beobachtet. Mittels der dünnschichtchromatographischen Untersuchungen konnten die neutralen Lipide als 1,2-Diacylglycerol und die polaren Lipide wahrscheinlich als *diacyl*-GPC charakterisiert werden. Zur ausführlicheren Analyse dieser Lipide wurden daher im Anschluss massenspektrometrische Untersuchungen durchgeführt.

# 4.3.4 Untersuchung des Einbaus von [<sup>12</sup>C]-, [U-<sup>13</sup>C]-Octadecadiensäure in DAG mittels MALDI-TOF-MS

Anhand der Markierungsexperimente mit  $[U^{-14}C]$ -Octadecadiensäure wurde gezeigt, dass ihr metabolischer Einbau überwiegend in zwei unterschiedliche Lipidklassen (GPC und DAG) erfolgt. Das radioaktive Signal gibt nur einen Hinweis darauf, dass der metabolische Einbau stattgefunden hat. Es kann jedoch nicht differenziert werden, ob eine Elongation, Desaturation oder eine Oxidation der Radiochemikalie erfolgte. Bei der Auswertung der Autoradiogramme kann ebenfalls nicht bestimmt werden, ob nur ein oder zwei Moleküle  $[1^{-14}C]$ -Octadecadiensäure in DAG bzw. *diacyl*-GPC eingebaut wurden. So hat ein Molekül mit zwei metabolisch eingebauten  $[1^{-14}C]$ -Octadecadiensäuren die gleiche radioaktive Signalintensität wie zwei Moleküle mit jeweils nur einer metabolisch eingebauten Radiochemikalie. Somit ist eine relative Quantifizierung der radioaktiven Lipidklassen zueinander anhand der Signalintensität nicht möglich.

In den Arbeiten von (Roldan and Fragio, 1994; Roldan and Harrison, 1990, 1992, 1993; Vazquez and Roldan, 1997a, b) wurden bisher nur die unterschiedlichen Lipidklassen für Säugetierspermatozoen radiochemisch unter akrosomreaktionsfördernden Bedingungen untersucht. Im Zuge der Akrosomreaktion werden unter anderen Lipasen aktiviert, die zu einer Abspaltung der Kopfgruppen bzw. Fettsäuren führen können (Roldan, 1998). Somit ist der Vergleich der Literaturangaben mit den hier durchgeführten Experimenten während der Flüssigkonservierung nur sehr eingeschränkt möglich. In der Fachliteratur liegt bis dato keine Information über Säugetierspermatozoenlipide vor, die erst nach einer chemischen Supplementierung mit exogenen Fettsäuren während der Flüssigkonservierung entstehen.

Bei den vorangegangenen gaschromatographischen Untersuchungen der Fettsäurezusammensetzung der Hauptlipidklassen porciner *Spermatozoen* wurde gezeigt, dass Octadecadiensäure in GPC aber nicht in den neutralen Lipiden vorkommt (4.2). Um die in GPC porciner *Spermatozoen* bereits endogen vorkommende [<sup>12</sup>*C*]-Octadecadiensäure von der exogen chemisch supplementierten unterscheiden zu können, wurden vergleichende Experimente mit [<sup>12</sup>*C*]- sowie mit [U-<sup>13</sup>*C*]-Isotopen durchgeführt (3.10.1, 3.10.2). Anschließend wurden die Lipide

porciner Spermatozoen massenspektrometrisch untersucht. Dafür wurden eine Probe mit 2 × 10<sup>9</sup> porcinen Spermatozoen in 90 ml BTS-Medium, mit  $[^{12}C]$ - und eine weitere mit [U-<sup>13</sup>C]-Octadecadiensäure für 48 Stunden bei 17°C supplementiert. Die jeweilige Fettsäure-Konzentration betrug 39 µM, was einer Absolutmenge von 980 µg entspricht. Nach der Gesamtlipidextraktion (3.6.1) wurden die neutralen Lipide über DC aufgetrennt (3.6.2), präparativ aufgereinigt und anschließend einer MALDI-TOF-MS-Untersuchung unterzogen (3.7.1). Bei positiver lonendetektion und eingesetzter 2,5-DHB-Matrix lassen sich die neutralen Lipide (TRG / DRG / MRG) als [M+Na]<sup>+</sup>und die polaren Lipide (GPC) in erster Linie als [M+H]<sup>+</sup>-Quasimolekülionen darstellen (Gidden et al., 2007; Schiller et al., 2007). In der Abbildung 24 sind die MALDIpositiv-Ionen-Massenspektren der neutralen Lipide (DAG) bei den verschiedenen Supplementierungsvarianten dargestellt. Die Probe A ist die unbehandelte Kontrollprobe, Probe B wurde mit  $[^{12}C]$ —Octadecadiensäure und Probe C mit [U-<sup>13</sup>C]-Octadecadiensäure supplementiert. Wie aus der Abbildung zu erkennen ist, lassen sich in allen drei Massenspektren (Probe A, B, C) die den Na<sup>+</sup>-Addukten entsprechenden Quasi-Molekülionen (Peak 1-4) mit m/z=535, m/z=563, m/z=591 und m/z=619 erkennen. Diese könnten entweder zu den  $[M+Na]^+$  oder zu den  $[M+H]^+$ -Addukten der neutralen Lipiden zugeordnet werden. Sowohl in den eigenen Vorarbeiten, als auch in den Publikationen anderer Arbeitsgruppen (Gidden et al., 2007) wurde jedoch gezeigt, dass bei der massenspektrometrischen Untersuchung von neutralen Lipiden mittels MALDI-TOF ganz überwiegend [M+Na]<sup>+</sup>- und nicht [M+H]<sup>+</sup>-Addukte Daher konnten etwa gebildet werden. die detektierten Quasimolekülionen entsprechend DAG-28:0 bis DAG-34:0 zugeordnet werden (Tab. 8, Peak 1-4). Dies deutet darauf hin, dass in allen untersuchten Proben kurzkettige, gesättigte Fettsäuren für Diacylglycerol charakteristisch sind. Im Massenspektrum weisen die Signale von DAG 28:0 (m/z=535) und DAG 30:0 (m/z=563) die höchsten Intensitäten auf. Daher sind die 14:0- sowie 16:0-Fettsäuren die Hauptvertreter von DAG in porcinen Spermatozoen. Dies konnte bereits bei den gaschromotographischen Untersuchungen der Fettsäurezusammensetzung neutraler Lipide in Kapitel 4.1 gezeigt werden. Die 14:0-Fettsäure ist mit ca. 60 mol% und die 16:0-Fettsäure mit ca. 30 mol% in den neutralen Lipiden vertreten. Die Signalintensitäten von DAG 32:0 (m/z=591) und DAG 34:0 (m/z=619) sind deutlich geringer und entsprechen DAG mit zwei 16:0- sowie DAG mit einer 16:0 und einer 18:0-Fettsäure (Tab. 8, Peak 3-4).



**Abbildung 24: Identifizierung der Diacylglycerol-Spezies von flüssigkonservierten**, **porcinen** *Spermatozoen* **mittels MALDI-TOF-Massenspektrometrie Probe A:** ohne Supplementierung; **Probe B:** Supplementierung mit [<sup>12</sup>C]-Octadecadiensäure; **Probe C:** Supplementierung mit [U-<sup>13</sup>C]-Octadecadiensäure MALDI-TOF-Massenspektren neutraler Lipide, positive Ionendetektion. Der mit "\*" gekennzeichnete Peak entspricht einem Signal der eingesetzten DHB-Matrix.

Tabelle 8: Gesamtfettsäurezusammensetzung der neutralen Lipide mittels MALDI-TOF-Massenspektrometrie



Acylreste von [<sup>12</sup>C]-Octadecadiensäure sind blau und von [U-<sup>13</sup>C]-Octadecadiensäure rot dargestellt. Es sind Bruttofettsäurekomposition angegeben; Erläuterungen im Text; MALDI-TOF-MS-Bedingungen siehe 3.7.1.

Nur flüssigkonservierten Spermatozoen bei den in Probe B. die mit [<sup>12</sup>C]-Octadecadiensäure supplementiert wurden, ließ sich ein spezifischer Peak (5) mit m/z=639 detektieren (Abb. 23, B). Dieser Peak entspricht den  $[M+Na]^+$ -Quasi-Molekülionen DAG von DAG-36:4, also dem mit zwei [<sup>12</sup>C]-Octadecadiensäureresten. In der Probe C, die mit dem [U-<sup>13</sup>C]-Isotop der Octadecadiensäure supplementiert wurde, ließ sich ebenfalls ein spezifischer Peak 6 mit *m*/*z*=675 detektieren (Abb. 23, C). Sowohl Peak 5 als auch Peak 6 sind spezifisch für die jeweilige Supplementierungsvariante und waren in der unbehandelten Kontrollprobe A nicht vorhanden (Abbildung 23). Die Massendifferenz ( $\Delta m$ ) zwischen Peak (5) und Peak (6) mit *m*/z=675 und *m*/z=639 beträgt 36. Dies  $\Delta m$ entspricht somit der zweifachen Massendifferenz zwischen einer "natürlichen" Octadecadiensäure  $({}^{12}C_{18})$ <sup>13</sup>C-markierten und einheitlich einer Octadecadiensäure  $({}^{13}C_{18})$ . In den Spermatozoen-Proben B und C findet somit eine de-novo Biosynthese von DAG-Molekülen mit jeweils zwei aus dem Supplementierungsmedium exogen aufgenommenen Octadecadiensäuren statt. Die Ergebnisse konnten ebenfalls gaschromatographisch verifiziert werden. Die metabolische Aufnahme von Octadecadiensäure in DAG wurde sowohl bei unterschiedlichen Individuen (n=5) als auch bei den unterschiedlichen Ejakulaten des gleichen Individuums (n=2) beobachtet (Daten sind nicht gezeigt). Die Auswertung der MALDI-TOF-Massenspektren zeigt somit, dass keine metabolische Modifizierung der Octadecadiensäure, wie Elongation, Desaturation oder Oxidation stattfindet, wenn sie als DAG vorliegen.

Im Anschluss erfolgte die Untersuchung der polaren GPC mittels MALDI-TOF-Massenspektrometrie unter gleichen Versuchsbedingungen wie bei den neutralen Lipiden. Nach der Gesamtlipidextraktion (3.6.1) wurden die polaren Lipide über Dünnschichtchromatographie aufgetrennt (3.6.2) und die GPC-Fraktion präparativ aufgereinigt und anschließend mittels MALDI-TOF-MS untersucht (3.7.1). In Abbildung 25 sind die positiv-Ionen MALDI-TOF-Massenspektren von GPC dargestellt. Probe A ist die unbehandelte Kontrollprobe, Probe B wurde mit [ $^{12}C$ ]-Octadecadiensäure und Probe C mit [U- $^{13}C$ ]-Octadecadiensäure supplementiert.



Abbildung 25: Analyse von Glycerophosphocholinen porciner *Spermatozoen* mittels MALDI-TOF-Massenspektrometrie **Oben: Probe A:** ohne Supplementierung; **Probe B:** Supplementierung mit [<sup>12</sup>C]-Octadecadiensäure; **Probe C:** Supplementierung mit [U-<sup>13</sup>C]-Octadecadiensäure MALDI-TOF-Massenspektren von GPC, positive lonendetektion. **Unten:** Strukturformeln von GPC; Acylreste von [U-<sup>13</sup>C]-Octadecadiensäure sind rot dargestellt. Erläuterungen im Text. MALDI-MS-Bedingungen siehe 3.7.1.

Die Massenspektren zeigen keine jeweils eindeutigen, probenspezifischen Quasi-Molekülionen von GPC. Bei Probe C konnte verglichen mit den anderen Proben bei drei Peaks geringe Zunahme der Intensität beobachtet eine werden (Abb. 25, C; Peak (1)-(3)). Für diese Peaks wurde eine theoretische Berechnung der möglichen GPC-Quasi-Molekülione entsprechend etwa 100 ppm Massengenauigkeit unternommen. Dies hat ergeben, dass es sich um eine sehr große Anzahl von Quasimolekülionen der GPC-Lipide mit nahezu gleichen Massen handeln könnte. In Tabelle 9 sind diese für die theoretischen [M+H<sup>+</sup>]-Quasimolekülionen von GPC mit m/z=818 exemplarisch dargestellt.

Tabelle 9: Berechnete *m*/z-Werte der Quasimolekülionen von theoretisch vorkommenden GPC im Massenbereich von 818,5 bis 818,8

|   |                                                  | Summenformel Atommasse                                                           |       | m/z                       |  |
|---|--------------------------------------------------|----------------------------------------------------------------------------------|-------|---------------------------|--|
| 1 | GPC-38:0                                         | C <sub>46</sub> H <sub>92</sub> N O <sub>8</sub> P                               | 817,7 | [M+H <sup>+</sup> ] 818,7 |  |
| 2 | GPC-36:4 ( <sup>13</sup> C <sub>36</sub> )       | <sup>13</sup> C <sub>36</sub> C <sub>8</sub> H <sub>80</sub> N O <sub>8</sub> P  | 817,7 | [M+H <sup>+</sup> ] 818,7 |  |
| 3 | Ether-GPC-40:7                                   | C <sub>48</sub> H <sub>84</sub> N O <sub>7</sub> P                               | 817,6 | [M+H⁺] 818,6              |  |
| 4 | Ether-GPC-38:2 ( <sup>13</sup> C <sub>18</sub> ) | <sup>13</sup> С <sub>18</sub> С <sub>28</sub> Н <sub>90</sub> N О <sub>7</sub> Р | 817,7 | [M+H <sup>+</sup> ] 818,7 |  |

Unter Berücksichtigung aller theoretisch möglichen [M+Na<sup>+</sup>]-Quasimolekülione von GPC und der eventuell vorkommenden Oxidationsprodukte würde sich die Anzahl der möglichen Quasimolekülionen in diesem Massenbereich deutlich erhöhen. Daher ist eine exakte Zuordnung der theoretisch berechneten zu den tatsächlich detektierten Massen bei der hier verfügbaren Massengenauigkeit von etwa 100 *ppm* nicht möglich. Ein weiteres Problem bei der Auswertung der Massenspektren ergibt sich, wenn die Quasimolekülionen in einem komplexen Gemisch vorliegen und außerdem nahezu gleiche Massen aufweisen. In der Abbildung 26 ist der Massenbereich von m/z 818 bis 819 aus dem oben gezeigten MALDI-TOF-Massenspektrum vergrößert dargestellt um das Problem zu verdeutlichen.

### ERGEBNISSE UND DISKUSSION



### Abbildung 26: MALDI-TOF-Massenspektrum, Massenbereich *m*/z=818 bis *m*/z=819 Oben: MALDI-TOF-Massenspektren, positive lonendetektion

**Unten:** Ein vergrößerter Ausschnitt aus dem Gesamtspektrum im Bereich m/z=818-819 von Probe C Die Massendifferenzen ( $\Delta m$ ) wurden in dieser Abbildung vereinfacht nur auf das [M+Na]<sup>+</sup>-Quasimolekülion von Ether-GPC (38:4) bezogen. Eine eindeutige Zuordnung der Quasimolekülionen ist anhand der gegebenen Massenauflösung nicht möglich.

Desweiteren sei angemerkt, dass die porcinen *Spermatozoen* durch eine große Vielfalt an unterschiedlichen GPC-Spezies gekennzeichnet sind (4.1). Die fünf exemplarisch berechneten Quasimolekülionen könnten in diesem Massenbereich alle vorhanden sein. Die in diesem Beispiel berechneten Massendifferenzen liegen zwischen 0,0019 und 0,1092. Die benötigte Massenauflösung zur Auftrennung dieser Signale auseinander liegt daher im Bereich 430.800 und 7.500. Unter den hier gegebenen experimentellen Bedingungen ist somit eine eindeutige Zuordnung anhand der zuvor berechneten Massen der Quasimolekülionen nicht möglich. Die Auswertung wird zusätzlich durch die Bildung unterschiedlicher Addukte erschwert. GPC bildet während der Ionisation sowohl  $[M+H]^+$ - als auch  $[M+Na]^+$ -Addukte, wobei einige Spezies hierbei nahezu gleichen Massen aufweisen können (Schiller *et al.*, 1999; Schiller *et al.*, 2007). Beispielsweise unterscheiden sich die Massen des  $[M+Na]^+$ -Quasimolekülions von Ether-GPC (38:4) und des  $[M+H]^+$ -Quasimolekülion von GPC (38:0) nur durch  $\Delta m=0,0594$ .

Die in der Abbildung 25 konnten somit Peaks ② und ③ in der Probe C wegen der großen Anzahl von möglichen vorkommenden Quasimolekülionen nicht eindeutig einem bestimmten Lipid zugeordnet werden. Anhand des Vergleichs der theoretisch

berechneten mit den experimentell ermittelten Werten wurde angenommen, dass alle für Probe C spezifischen Signale durch eine metabolische Aufnahme von chemisch supplementierter  $[U^{13}C]$ -Octadecadiensäure in GPC entstanden sind. Peak (1) könnte durch eine Fragmentierung des Mutter-Quasimolekülions (Peak ③) erklärt werden. Das verwendete MALDI-TOF-Massenspektrometer war nicht mit einer Kollisionszelle mit CID-Fragmentierung (stoßverursachte, collision-induced decay, CID) ausgestattet. Es ist jedoch bekannt, dass durch Beschleunigung des Analyts oder Kollisionen mit Spuren der Gasmoleküle bei MALDI-TOF-Techniken eine spontane PSD-Fragmentierung (post-source decay, PSD) erfolgen kann. Dieses Phänomen wurde erstmals bei der MALDI-TOF-Untersuchungen an Proteinen beschrieben (Spengler et al., 1991). Die Autoren haben gezeigt, dass Mutter-Quasimolekülionen nach dem Verlassen der Quelle während der Beschleunigung bzw. des Fluges einem spontanen Zerfall in ein geladenes Tochterion und in ein neutrales Fragmentmolekül unterliegen. In diesem Experiment könnten somit durch die PSD-Fragmentierung von GPC-([U-<sup>13</sup>C]-18:2 / [U-<sup>13</sup>C]-18:2) zwei Tochter-Ionen entstehen, wobei nur ein geladenes Tochter-Quasimolekülion (Peak ①) mit m/z=635,6 detektiert würde. Die nicht detektierte Cholin-Kopfgruppe (m/z=183) bliebe unter diesen Bedingungen neutral. Peak 2 mit m/z=776 könnte den [M+H]<sup>+</sup>-Quasi-Molekülionen von GPC (16:0 / [U-<sup>13</sup>C]-18:2) zugeordnet werden (Anhang 8.1.1). Somit lieferten die hier für GPC dargestellten Ergebnisse nur Hinweise, gaben aber keine direkten Beweise darüber, ob ein metabolischer Einbau von Octadecadiensäure in GPL tatsächlich stattfindet.

Zusammenfassend wurde anhand der MALDI-TOF-Untersuchungen in den mit Octadecadiensäure supplementierten porcinen Spermatozoen eine de-novo Entstehung von PUFA-DAG nachgewiesen. Die metabolischen Produkte, die auf eine Oxidation, Desaturation oder Elongation der den Spermatozoen zugesetzten Octadecadiensäure hindeuteten, wurden nicht beobachtet. Desweiteren lieferten die MALDI-TOF-MS-Untersuchungen nur erste Hinweise auf einen metabolischen Octadecadiensäure in GPC. Dies sollte Einbau von anhand anderer massenspektrometrischen Methoden weiter untermauert werden (4.3.5).

# 4.3.5 Analyse des Einbaus von [<sup>12</sup>C]-, [U-<sup>13</sup>C]-Octadecadiensäure in DRG und GPC mittels Q-TOF-MS

Die radiochemischen Untersuchungen haben gezeigt, dass die zu den porcinen Spermatozoen zugesetzte Octadecadiensäure metabolisch in die Lipide eingebaut wird. Mittels MALDI-TOF-MS konnte der metabolische Einbau in DAG eindeutig nachgewiesen werden. Weiterhin gab es Hinweise auf den Einbau der artifiziell zugesetzten (chemisch supplementierten) Fettsäure in die GPC. Zur Bestätigung dieser Hinweise und zur genaueren Charakterisierung der neutralen Lipide wurde sowohl DAG als auch GPC mittels Q-TOF-MS untersucht. Diese Methode zeichnet sich laut Herstellerangaben zum einen durch eine hohe Massenauflösung (bis 50.000) und zum anderen durch eine Massengenauigkeit ( $\Delta m$ ) bis 1 ppm aus. Das Detektionslimit liegt aufgrund der geringen Peakbreite im attomolaren Bereich. Daher können die gesuchten Quasimolekülionen aufgrund der hohen Massengenauigkeit direkt identifiziert werden. Liegen diese Quasimolekülionen jedoch in einem Lipidgemisch unterschiedlicher Lipidspezies mit nahezu gleichen Massen vor, so anschließender können diese zusätzlich einer Quadrupolselektion mit Fragmententierungsanalyse unterzogen werden. Hierzu erfolgt eine zweifache Massenanalyse. Bei der ersten werden zuerst die Mutter-Quasimolekülionen im Quadrupol nach Bedarf in einem engen m/z-Verhältnis ( $\Delta m \pm 0.5$  [u]) selektiert. Bei der nachgeschalteten zweiten Massenanalyse werden dann nur die so selektierten Quasimolekülionen in Tochter-Ionen fragmentiert. Die Auswertungen der MS / MS-Spektren geben Rückschlüsse über die chemische Struktur der ursprünglichen Mutter-Quasimolekülionen. Voraussetzung sowohl für den direkten Nachweis der gesuchten Quasimolekülionen anhand der Masse, als auch für die nachfolgende Selektion mittels Quadrupol ist. dass die Massen der Quasimolekülionen zuvor bekannt sein müssen. Da bei einem Q-TOF Lauf durch die große Anzahl hintereinander aufgenommener Massenspektren enorm große Datenmengen ist die manuelle Berechnung der entstehen. anschließende Quasimolekülionenmassen und der Vergleich mit dem Massenspektrum ineffizient und sehr zeitaufwendig. Kommerzielle Datenbanken zur Lipidanalytik der Spermatozoen sind bis dato nicht verfügbar. Daher wurden in dieser Arbeit alle Lipidklassen, die durch radiochemische- sowie MALDI-TOF-MS-Untersuchungen identifiziert wurden, in einer Datenbank zusammengefasst (Anhang 8.1.1). Die Datenbank enthält Summenformeln, Atom- und Isotopen-

Massen, Fettsäure- und Fettaldehydreste sowie die Massen von möglichen Ionisations- und Fragmentierungs-Addukte und umfasst alle möglicherweise vorkommenden Glycerophosphocholine (GPC), Diradylglycerole (DRG), Monoradylglycerole (MRG) inklusive deren plasmanyl- und plasmenyl- Formen. In der Datenbank wurden alle bis dato in der Fachliteratur für Säugertierspermatozoen beschriebenen, als auch kaum beschriebene Fettsäure- und Fettaldehyd-Reste von GPL mit einer Kettenlänge von 12:0 bis 34:6 berücksichtigt (Poulos et al., 1986). Zusätzlich wurden auch alle kombinatorischen Möglichkeiten des metabolischen Einbaus von [U-<sup>13</sup>C]-Octadecadiensäure in diese Lipidklassen der porcinen Spermatozoen berücksichtigt. Die Identifizierung der einzelnen Lipide erfolgte anhand eines Computer-gestützten Vergleichs der berechneten mit den mittels Q-TOF-MS detektierten Massen. Um eine Verwechslung unterschiedlicher Ionen mit exakt gleichen Massen ausschließen zu können, wurden anschließend Fragmentierungsanalysen durchgeführt.

## 4.3.5.1 Analyse des Einbaus von [<sup>12</sup>C]-, [U-<sup>13</sup>C]-Octadecadiensäure in GPC mittels Q-TOF-MS

Um die Hinweise der MALDI-TOF-MS-Untersuchungen über die metabolische Aufnahme von chemisch supplementierter Octadecadiensäure in GPC zu überprüfen, erfolgte eine genauere Analyse mittels Q-TOF-MS. Die *Spermatozoen* wurden ebenfalls, wie in 4.3.4 beschrieben, mit Octadecadiensäure supplementiert. Nach der Gesamtlipidextraktion (3.6.1) wurden die Lipide über DC aufgetrennt (3.6.2), präparativ aufgereinigt und anschließend einer Q-TOF-MS-Untersuchung unterzogen (3.7.2). Die GPC-Lipidklasse bei positiver Ionendetektion wird hierbei in Anwesenheit von Ammoniumacetat in erster Linie als [M+H]<sup>+</sup>-Quasimolekülionen detektiert (Devaiah et al., 2006).

#### ERGEBNISSE UND DISKUSSION



#### Abbildung 27: Analyse von Glycerophosphocholin porciner Spermatozoen mittels Q-TOF-Massenspektrometrie

**Oben: Probe A:** ohne Supplementierung; **Probe B:** chemische Supplementierung mit [<sup>12</sup>C]-Octadecadiensäure; **Probe C:** chemische Supplementierung mit [U-<sup>13</sup>C]-Octadecadiensäure.

Q-TOF-Massenspektren von GPC nach präparativer Aufreinigung, positive lonendetektion.

**Unten:** Tabelle der theoretisch berechneten und experimentell ermittelten *m*/*z*-Werte der [M+H]<sup>+</sup>-Quasimolekülionen. Massengenauigkeit: 3×10<sup>-4</sup> bis 17×10<sup>-4</sup> [u].

In der Abbildung 27 sind Q-TOF-Massenspektren von Probe A (als unbehandelte Kontrollprobe), Probe B wurde mit  $[^{12}C]$ —Octadecadiensäure und Probe C mit [U-<sup>13</sup>C]-Octadecadiensäure supplementiert, dargestellt. In allen untersuchten Proben (A-C) von porcinen Spermatozoen lassen sich die Hauptvertreter von GPC nachweisen. Diese sind Ether-GPC (38:6) sowie diacyl-GPC (30:0), (32:0), (34:1), (36:3) und (36:0). Das stimmt mit den vorangegangenen MALDI-TOF-MS Untersuchungen überein (Kapitel: 4.1, 4.3.4). Bei den flüssigkonservierten Spermatozoen in Probe C, die mit [<sup>13</sup>C]-Octadecadiensäure supplementiert wurden, ließen sich zwei nur für diese Probe spezifische Signale detektieren. Diese sind Peak ① und Peak ③ mit *m*/*z*=776,6281 und *m*/*z*=818,6890 (Abb. 27, C). Der computergestützte Vergleich der experimentell gemessenen mit den theoretisch berechneten Massen der Datenbank hat ergeben, dass Peak ① dem [M+H]<sup>+</sup>-Quasi-Molekülion von GPC ([U-<sup>13</sup>C]-18:2 / [U-<sup>13</sup>C]-18:2) entspricht. Dieses *diacyl*-GPC enthält somit zwei einheitlich <sup>13</sup>C-markierte Octadecadiensäuren aus dem Supplementierungsmedium. Peak ③ konnte dem [M+H]<sup>+</sup>-Quasi-Molekülion von GPC (16:0 / [U-<sup>13</sup>C]-18:2) zugeordnet werden. Dieses *diacyl*-GPC enthält somit eine endogene 16:0- und eine einheitlich <sup>13</sup>C-markierten exogene Octadecadiensäure. Peak 2 mit m/z=782,5683 und Peak 4 mit m/z=758,5683 kommen in allen Proben vor, und weisen in Probe B, die mit  ${}^{12}C$ -Octadecadiensäure supplementiert wurde, eine deutliche höhere Signalintensität verglichen mit den beiden anderen Proben auf. Der computergestützte Vergleich der experimentell gemessenen mit den theoretisch berechneten Massen der Datenbank hat ergeben, dass Peak 2 dem [M+H]<sup>+</sup>-Quasi-Molekülion von GPC (18:2 / 18:2) entspricht. Dieses diacyl-GPC enthält somit zwei <sup>12</sup>C-Octadecadiensäurereste. natürlich vorkommenden Peak ④ konnte dementsprechend dem [M+H]<sup>+</sup>-Quasi-Molekülion von GPC (16:0 / 18:2) zugeordnet werden und enthält eine endogene 16:0- und eine natürlich vorkommende <sup>12</sup>C-Octadecadiensäure. Die Massendifferenz ( $\Delta m$ ) zwischen den Peaks (2) und (4) und den nur für die Probe C spezifischen Peaks (1) und (3) beträgt ( $\Delta m$ =18 [u]) bzw.  $(\Delta m=36 [u])$ . Die einfache Massendifferenz  $(\Delta m=18 [u])$  entspricht dem Unterschied der Massen einer einheitlich <sup>13</sup>C-markierten Octadecadiensäure und der Masse einer "natürlichen" <sup>12</sup>C-Octadecadiensäure ( $[U-^{13}C_{18}] - ^{12}C_{18}=18$ ). Somit entspricht die zweifache Massendifferenz ( $\Delta m$ =36 [u]) dem Unterschied der Massen von zwei einheitlich <sup>13</sup>C-markierten Octadecadiensäuren im Vergliech zur Masse von zwei

#### ERGEBNISSE UND DISKUSSION

"natürlichen" <sup>12</sup>C-Octadecadiensäuren ([U-<sup>13</sup>C<sub>36</sub>] – <sup>12</sup>C<sub>36</sub>=36). Die Differenzen zwischen den experimentell gemessenen Massen der Quasimolekülionen zu den vorher theoretisch ermittelten Massen zeigen eine maximale Abweichung von 17 × 10<sup>-4</sup>. Die spezifischen Peaks in Probe C könnten durch eine Oxidation von bereits vorhandenen, endogen Lipiden entstanden sein. Beispielhaft wurde hier für GPC (34:1, C<sub>42</sub>H<sub>82</sub>NO<sub>8</sub>P) mit *m*/*z*=760,5867 die Masse des Oxidationsproduktes berechnet (C<sub>42</sub>H<sub>82</sub>NO<sub>9</sub>P). Die Massendifferenz zwischen den theoretisch ermittelten und den detektierten Werten beträgt 476 × 10<sup>-4</sup> und ist somit 40-fach höher im Vergleich zu den maximalen in diesem Experiment ermittelten Abweichungen von 17 × 10<sup>-4</sup> [u]. Daher kann eine Oxidation von bereits endogenen Lipiden unter diesen experimentellen Bedingungen ausgeschlossen werden. Metabolische Modifikationen der zu den *Spermatozoen* zugesetzte Octadecadiensäure wie deren Desaturation oder Elongation wurden ebenfalls nicht beobachtet.

Zusammenfassend wurde mittels Q-TOF-MS der metabolische Einbau von Octadecadiensäure in GPC nachgewiesen. Da die Octadecadiensäure in der gesamten GPC-Klasse porciner Spermatozoen mit ca. 15 mol% endogen vorkommt (Kapitel 4.2), konnte deren metabolische Aufnahme in die diacy/-GPC nur anhand einheitlich <sup>13</sup>C-markierter Octadecadiensäure Supplementierung mit der nachgewiesen werden. Die identifizierten Lipidspezies sind GPC (16:0 / 18:2) und GPC (18:2 / 18:2). Chemische Modifikationen der GPC in metabolisch aufgenommenen Octadecadiensäure wie Oxidation, Desaturation oder Elongation, wurden nicht beobachtet.

## 4.3.5.2 Analyse des Einbaus von [U-<sup>13</sup>C]-Octadecadiensäure in DRG mittels Q-TOF-MS / MS

Die radiochemischen Untersuchungen haben gezeigt, dass die zu porcinen *Spermatozoen* supplementierte [1-<sup>14</sup>C]-Octadecadiensäure ebenfalls in 1,2-DAG metabolisch eingebaut wird. Bei der Auswertung der Autoradiogramme migrierte ein unbekanntes radioaktiv markiertes Lipid nahe der Position der 1,2-DAG. Mittels MALDI-TOF-MS wurde gezeigt, dass nach einer chemischen Supplementierung mit exogener Octadecadiensäure eine *de-novo* Biosynthese von DAG stattfindet. Um diese Ergebnisse zu verifizieren und das unbekannte neutrale Lipid zu identifizieren, wurde der Gesamtlipidextrakt mittels Q-TOF-MS analysiert (3.7.2). In Anwesenheit von Ammoniumacetat lassen sich neutrale Lipide (TRG, DRG, MRG) als

[M+NH<sub>4</sub>]<sup>+</sup>-Quasimolekülionen detektieren (Kalo *et al.*, 2006). Es wurden zwei separate Experimente durchgeführt. Für beide Experimente wurden porcine Spermatozoen mit [U-<sup>13</sup>C]-Octadecadiensäure chemisch angereichert. Nach der Gesamtlipidextraktion wurden die Quasimolekülionen im Quadrupol selektiert. Für jede Probe wurde anhand der Datenbank der zu untersuchende Massenbereich bestimmt. Die anschließenden Fragmentierungsanalysen lieferten detailliertere Informationen über die chemische Struktur der so selektierten Quasimolekülionen. Im Experiment wurden die Quasimolekülionen ersten von DAG ( $[U^{-13}C]$ -18:2 /  $[U^{-13}C]$ -18:2), also DAG mit zwei Molekülen einheitlich <sup>13</sup>C-markierter Octadecadiensäureresten untersucht. Diese [M+NH<sub>4</sub>]<sup>+</sup>-Quasimolekülionen wurden mittels Quadrupol anhand ihrer theoretisch ermittelten Masse von 670,6 mit (∆m≈0,2 [u]) selektiert und diese anschließend fragmentiert. In Abbildung 28 ist das MS / MS-Spektrum und das Fragmentierungschema des Quasimolekülions dargestellt.





## Abbildung 28: MS / MS-Spektrum und Fragmentierungschema des [M+NH<sub>4</sub>]<sup>+</sup>-Quasimolekülions mit *m/z*=670

**Oben:** Analyse des Gesamtlipidextraktes, Q-TOF-Massenspektrum, positive lonendetektion **Unten:** Fragmentierungsschema des [M+NH<sub>4</sub>]<sup>+</sup>-Quasimolekülions mit *m/z*=670 Fragmentor-Spannung 200 V, Quadrupol-Selektion, Kollisionsenergie 20 V

Im MS / MS-Spektrum lassen sich fünf Peaks erkennen. Peak ① ist das zuvor selektierte, unfragmentierte Mutter- $[M+NH_4]^+$ -Quasimolekülion mit *m*/z=670. Bei der hier verwendeten Kollisionsenergie wurde dies nahezu vollständig fragmentiert. Peak 2 ist auf den Verlust der Ammoniumgruppe des Mutter-Quasimolekülions und Peak ③ auf den zusätzlichen Verlust eines Wassermoleküls zurückzuführen. Peak ④ und ⑤ können durch die Abspaltung des acyl-Restes erklärt werden (Abb. 28, unten). Die Massendifferenz für die Tochter-Quasimolekülionen zwischen den theoretisch ermittelten und den detektierten Werten beträgt maximal 30×10<sup>-4</sup> [u]. Daher kann das Mutter-Quasimolekülion m/z=670 mit als DAG ([U-<sup>13</sup>C]-18:2 / [U-<sup>13</sup>C]-18:2) identifiziert werden. Somit findet in den porcinen flüssigkonservierten Spermatozoen eine Biosynthese von DAG-Molekülen mit jeweils zwei aus dem Supplementierungsmedium exogen aufgenommenen Molekülen [U-<sup>13</sup>C]-Octadecadiensäuren statt. Die Ergebnisse der MALDI-TOF-MS-Untersuchung konnten somit verifiziert werden.

Das zweite Experiment diente zu Charakterisierung des unbekannten Lipids, welches in den vorangegangenen radiochemischen Untersuchungen während der dünnschichtchromatographischen Auftrennung der neutralen Lipide mit 1,2-DAG co-migrierte (Abb. 22, I-B). Daher konnte angenommen werden, dass dieses neutrale Lipid im Verglich zu DAG eine sehr ähnliche chemische Struktur aufweist und möglicherweise der DRG-Lipidklasse zugeordnet werden kann. Ein Hinweis über die exakte Masse dieses unbekannten Lipides lag wie im vorangegangenen Versuch nicht vor. Daher wurden zum einem alle kombinatorischen Möglichkeiten des metabolischen Einbaus von [U-<sup>13</sup>C]-Octadecadiensäuren in DRG porciner Spermatozoen berücksichtigt. Zum anderen wurden zusätzlich alle möglicherweise vorkommenden Kombinationen von endogen vorhandenen Fettsäuren und Fettaldehyden in DRG für die Quadrupol-Selektion mit einbezogen. Ausführliche Informationen über die untersuchten Massen der kombinatorisch möglichen Quasimolekülionen sind aus Gründen der Übersichtlichkeit hier nicht dargestellt sondern dem Anhang 8.1.1 zu entnehmen. Nach der Gesamtlipidextraktion wurden die Quasimolekülionen zuerst selektiert und einer anschließenden Fragmentierung unterzogen. Dann wurden die Fragmentierungsmuster jedes einzeln selektierten lons der unbehandelten mit der behandelten Probe computergestützt paarweise miteinander verglichen. Bei der Auswertung der MS / MS-Massenspektren wurde nur

bei den Quasimolekülionen mit m/z = 612,6 ( $\Delta m \approx 0,2$  [u]) ein abweichendes Fragmentierungsmuster beobachtet. In Abbildung 29 sind diese Spektren für die unbehandelte Kontrollprobe A und die mit [U-<sup>13</sup>C]-Octadecadiensäure chemisch supplementierte Probe B dargestellt.

In dem MS/MS-Spektrum der unbehandelten Probe A lassen sich bei der Fragmentierung des Mutter-Quasimolekülions mit m/z=612 vier Peaks erkennen. Peak ① entspricht dem zuvor selektierten, unfragmentierten Mutter- $[M+NH_4]^+$ -Quasimolekülion mit *m*/z=612. Bei der hier verwendeten Kollisionsenergie wurde es nahezu vollständig fragmentiert. Peak 2 repräsentiert das Mutter-Quasimolekülion nach Verlust der Ammoniumgruppe und eines Wassermoleküls. Peak ③ und Peak ④ können durch die Abspaltung des acyl-Restes erklärt werden (Abbildung 29, A). Die Massendifferenz für die Tochter-Quasimolekülionen beträgt zwischen den theoretisch ermittelten und den detektierten Werten maximal 18×10<sup>-4</sup> [u]. Der computergestützte Vergleich der experimentell gemessenen mit den theoretisch berechneten Massen der Datenbank hat ergeben, dass Peak (1) dem [M+H]<sup>+</sup>-Quasi-Molekülion von DAG (34:1), also DAG (16:1 / 18:0), DAG (16:0 / 18:1) oder DAG (12:0 / 22:1) zugeordnet werden kann. Anhand der Fragmentierungsanalysen wurde dieses endogene Lipid als DAG (16:0 / 18:1) identifiziert. In dem MS / MS-Spektrum der mit [U-<sup>13</sup>C]-Octadecadiensäure angereicherten Probe B lassen sich die Fragmente von endogenem DAG (16:0 / 18:1) ebenfalls nachweisen. Drei Fragmente sind zusätzlich vorhanden und stellen die Tochter-Quasimolekülionen des unbekannten Lipids dar. Die Quadrupol-Selektion erfolgte in diesem Experiment im Massenbereich von m/z=612.6 mit ( $\Delta m\approx 0.2$  [u]). Daher besitzen sowohl das bereits identifizierte DAG (16:0 / 18:1) als auch das unbekannte Lipid nahezu gleiche Massen. Anhand der Datenbank können diesem definierten Massenbereich mindestens fünf unterschiedliche Lipid-Quasimolekülionen zugeordnet werden (Tabelle 10).

Tabelle 10: Berechnete *m*/z-Werte der Quasimolekülionen von theoretisch vorkommenden Lipiden im Massenbereich von 612,4 bis 612,8

|   |                                          | Summenformel                                                                 | Atommasse | m/z                            |
|---|------------------------------------------|------------------------------------------------------------------------------|-----------|--------------------------------|
| 1 | mono-Ether-GPC (24:2)                    | C <sub>32</sub> H <sub>64</sub> N O <sub>6</sub> P                           | 589,4471  | [M+Na <sup>+</sup> ] 612,4363  |
| 2 | mono-Ether-GPC (26:5)                    | $C_{34} H_{62} N O_6 P$                                                      | 611,4315  | [M+H <sup>+</sup> ] 612,4381   |
| 3 | mono- <i>acyl</i> -GPE (28:5)            | C <sub>33</sub> H <sub>58</sub> N O <sub>7</sub> P                           | 611,3950  | [M+Na⁺] 612,4024               |
| 4 | DAG (34:1)                               | $C_{37} H_{70} O_5$                                                          | 594,5223  | [M+NH4 <sup>+</sup> ] 612,5562 |
| 5 | DRG (0-16:1 / [U- <sup>13</sup> C]-18:2) | <sup>13</sup> C <sub>18</sub> C <sub>19</sub> H <sub>68</sub> O <sub>4</sub> | 594,5721  | [M+NH4 <sup>+</sup> ] 612,6060 |

#### ERGEBNISSE UND DISKUSSION

Α

Β



x10<sup>2</sup> +ESI Product Ion (6,843 min) Frag=200,0V CID@20,0 612,6054[z=1]

Abbildung 29: MS/MS-Spektren und Fragmentierungsschemata des [M+NH<sub>4</sub>]<sup>+</sup>-Quasimolekülions mit *m*/z=612

Probe A: Unbehandelte Probe; Probe B: Supplementierung mit [U-<sup>13</sup>C]-Octadecadiensäure

Fragmentierungsschemas (grau markiert)

Quasimolekülion in Probe A m/z = 612,55 (Peak (1)) und in Probe A und B m/z = 612,60 (Peak (5)) und m/z = 612,55 (Peak (1)).

Analyse eines Gesamtlipidextraktes, Q-TOF-Massenspektrum positiver Ionendetektionsmode mit einer Fragmentor-Spannung 200 V, Quadrupol-Selektion, Kollisionsenergie 20 V.

DAG (34:1) kommt endogen sowohl in behandelten als auch in der unbehandelten Proben vor und wurde als DAG (16:0 / 18:1) identifiziert. Die weiteren potentiellen Quasimolekülionen wurden einer *in-silico* Fragmentierung unterzogen. Nur die Fragmente von DRG (0-16:1 /  $[U-^{13}C]-18:2$ ) stimmten mit den experimentell ermittelten Fragmenten mit einer Massengenauigkeit von 44 bis 57 × 10<sup>-4</sup> [u] überein.

In dem MS / MS-Spektrum der behandelten Probe B wurden das Muttermit *m/z*=612,6 (∆*m*≈0,2 [u]) Quasimolekülionen sowohl von endogenem DAG (16:0 / 18:1) als auch von dem unbekannten Lipid fragmentiert. Das spezifische Fragmentierungsmuster des Quasimolekülions der mit [U-<sup>13</sup>C] supplementierten Probe ist durch Peak (5) bis Peak (8) gekennzeichnet. Peak (5) stellt das zuvor selektierte, unfragmentierte Mutter-Quasimolekülion des unbekannten Lipids dar und Peak (6) wurde nahezu vollständig fragmentiert. repräsentiert das Mutter-Quasimolekülion nach Verlust eines 16:1-Fettaldehyds. Peak 7 kann durch die Abspaltung des acyl-Restes und Peak (8) durch den Verlust eines Wassermoleküls erklärt werden (Abb. 29, B). Anhand der Fragmentierungsanalysen konnte dieses Mutter- $[M+NH_4]^+$ -Quasimolekülion mit *m*/*z*=612 als 1Z-*alkenyl-acyl*glycerol (0-16:1 / [U-<sup>13</sup>C]-18:2) identifiziert werden. Dieses Diradylglycerol (DRG) ist aus einem 16:1-Fettaldehyd und eines aus dem Supplementierungsmedium <sup>13</sup>C]-markierten metabolisch aufgenommenen, einheitlich Moleküls Octadecadiensäure aufgebaut. Bei allen untersuchten Individuen (n=3) und in unterschiedlichen Ejakulaten des gleichen Individuums (n=2) ließen sich die hier gezeigten Fragmentierungsmuster reproduzieren.

Zusammenfassend konnte der bereits durch MALDI-TOF-MS nachgewiesene metabolische Einbau von chemisch supplementierter Octadecadiensäure in DAG mittels Q-TOF-MS-Fragmentierungsanalysen verifiziert werden. Alle kombinatorischen Möglichkeiten der theoretisch vorkommenden Quasimolekülion-Massen wurden berechnet und in einer Datenbank zusammengestellt. Das Vorgehen bei der Identifizierung von DAG (34:1) wurde am Beispiel von DAG (16:0 / 18:1) exemplarisch dargestellt. Das unbekannte Lipid, welches in den radiochemischen detektiert wurde. konnte anhand spezifischen Experimenten seins Fragmentierungsmusters als DRG (0-16:1 /  $[U-^{13}C]-18:2$ ) identifiziert werden.

# 4.3.6 Analyse der Spezifität für den Einbau von Fettsäuren in 1,2-DAG mittels MALDI-TOF-MS

Die Untersuchungen Hauptlipidklassen vorangegangenen der porciner Spermatozoen auf ihre Fettsäurezusammensetzung sowie massenspektrometrischen Analysen der Lipide haben gezeigt, dass Octadecadiensäure endogen vorkommt und als Substrat für die Lipidsynthese akzeptiert wird. Die chemische Supplementierung porciner Spermatozoen mit den verschiedenen Fettsäuren stellt neben der genetischen Supplementierung eine Möglichkeit zur Aufklärung der Substratspezifität dar. Für die Untersuchung der metabolischen Aufnahme von verschiedenen Fettsäuren in die neutralen Lipide porciner Spermatozoen wurde eine chemische Supplementierung mit den endogen vorkommenden Fettsäuren: Hexadecen-, Octadecen-, Octadecadien- und Octadecatriensäure durchgeführt. Zusätzlich wurde der metabolische Einbau der in porcinen Spermatozoenlipiden nicht vorkommenden Eicosapentaensäure untersucht. Die Supplementierungsbedingungen wurden für alle Experiment untersuchten Fettsäuren wie in Kapitel 4.3.4 in diesem für Octadecadiensäure beschrieben, gewählt. Als Kontrolle aller Varianten diente eine nicht supplementierte Probe. Die chemische Supplementierung erfolgte in jeder Probe proteinvermittelt. Die Endkonzentrationen der jeweiligen Fettsäuren betrug 39 µM und die Endkonzentration des Rinderserumalbumins 17 µM. Für die  $2 \times 10^{9}$ wurden porcine Spermatozoen Inkubation in 90 ml **BTS-Medium** aufgenommen, mit der jeweiligen Fettsäure versetzt und 48 Stunden bei 17°C wurden inkubiert. Anschließend die neutralen Lipide präparativ über Dünnschichtchromatographie aufgereinigt und mittels MALDI-TOF-MS untersucht. Die Massenspektren verschiedener Proben sind in Abbildung 30 dargestellt.

|    | 2000 - | DAG (14:0/14:0)<br>535.4 |                   | DAG (14:0/16:0) |                   |                                                |                        |                        |                |                    |
|----|--------|--------------------------|-------------------|-----------------|-------------------|------------------------------------------------|------------------------|------------------------|----------------|--------------------|
| Δ  | 1000   |                          | *                 | 563.4           |                   | AG (16:0/16:0)                                 | <b>DAO</b> (40-0/40-0) |                        | unbehai        | ndelte Probe       |
|    | 500    |                          | 550.9             |                 |                   | 591.5                                          | DAG (16:0/18:0)        |                        |                |                    |
|    | o      |                          | l                 |                 |                   | . A                                            | <u></u>                |                        |                |                    |
|    | 800 -  | 535.4                    |                   |                 | (                 | 1                                              |                        |                        |                |                    |
| в  | 600 -  |                          |                   | 563.4           | 51                | 27 4                                           |                        |                        | Suppleme       | ntierung mit       |
| -  | 400 -  |                          | <b>*</b><br>550 Q |                 | <u></u>           | 591.5                                          |                        |                        | Hexade         | ecensäure          |
|    | 200 -  | lı.                      |                   | lr              |                   | lint                                           | <u>619.5</u>           |                        | ~ .            |                    |
|    | ° =    | 525.2                    |                   |                 |                   |                                                |                        | $\sim$                 |                |                    |
| ~  | 1500   | 535.3                    |                   | 563.4           |                   |                                                |                        | (2)                    | Suppleme       | ntierung mit       |
| C  | 1000 🚽 |                          | <b>*</b>          |                 |                   |                                                |                        | 642.4                  | Octade         |                    |
|    | 500    | 1.                       | <u>330.8</u>      | 1.              |                   | <u>591.4</u>                                   | 619.5                  | 043.4                  | ootado         | oonouuro           |
|    | 0 =    |                          |                   |                 |                   |                                                | <u> </u>               | ۸۸                     |                |                    |
|    | 1000   | 535.4                    |                   | 562 4           |                   |                                                |                        | 3                      | Suppleme       | ntieruna mit       |
| D  |        |                          | *                 | 505.4           |                   |                                                |                        | U                      | Octadec        | adiensäure         |
| _  | 500 -  |                          | 550.9             |                 |                   | 591.5                                          | 610 F                  | 639.4                  |                |                    |
|    | Ęο     |                          | l.                |                 |                   | Ă.                                             | <u></u>                | ٨.                     |                |                    |
|    | 4000 - | 535.4                    |                   |                 |                   |                                                |                        |                        |                |                    |
| Е  | -      |                          | -1-               | 563.4           |                   |                                                |                        | 4                      | Suppleme       | ntierung mit       |
| _  | 2000 - |                          | ×                 |                 |                   | 591 /                                          |                        | 635.4                  | Octadec        | atriensäure        |
|    | 0      |                          | <u>000.0</u>      |                 |                   | <u></u>                                        | 619.5                  | l                      |                |                    |
|    | 3000   | 535 A                    |                   |                 |                   |                                                |                        |                        |                |                    |
| F  | 2000   | <u>335.4</u>             |                   | 563.4           |                   |                                                |                        |                        | Suppleme       | ntierung mit       |
|    | 1000   |                          | *                 |                 |                   |                                                |                        |                        | Eicosape       | ntaensäure         |
|    | 1000   | A.                       | 550.9             | l.              |                   | <u>591.4</u>                                   | 619.5                  |                        |                |                    |
|    | 0 -4   | 540                      |                   | 560             | 580               | 600                                            | 620                    | 640                    | 660            | 680                |
|    |        |                          |                   | -               |                   |                                                |                        |                        |                | m/z                |
| Ρ  | eak    |                          |                   |                 |                   | Summenformel                                   | berechnet [N           | M+Na] <sup>+</sup> [u] | gemessen [M+Na | ] <sup>†</sup> [u] |
|    |        |                          |                   |                 |                   |                                                | •                      |                        |                |                    |
| 1  | )      | DAG (16:1/               | (16:1)            |                 |                   | $C_{35} H_{64} O_5$                            | 587.46                 |                        | 587.4          |                    |
| 2  |        | DAG (18:1/18:1)          |                   |                 | $C_{39}H_{72}O_5$ | 643.53                                         |                        | 643.4                  |                |                    |
| (3 | D      | DAG (18:2/               | ′18:2)́           |                 |                   | C <sub>39</sub> H <sub>68</sub> O <sub>5</sub> | 639.49                 |                        | 639.4          |                    |
| (4 | )      | DAG (18:3)               | /18:3)            |                 |                   | C <sub>39</sub> H <sub>64</sub> O <sub>5</sub> | 635.46                 |                        | 635.4          |                    |
| -  |        | DAG (20:5/               | (20:5)            |                 |                   | C <sub>43</sub> H <sub>64</sub> O <sub>5</sub> | 683.46                 |                        | -              |                    |

Abbildung 30: Identifizierung verschiedener Diacylglycerol-Spezies von flüssigkonservierten, porcinen Spermatozoen mittels MALDI-TOF-Massenspektrometrie

A. ohne Supplementierung; Supplementierungen mit: B. Hexadecensäure C. Octadecensäure D. Octadecadiensäure E. Octadecatriensäure F. Eicosapentaensäure; MALDI-TOF-Massenspektren neutraler Lipide, positive Ionendetektion

Der vergrößerte Ausschnitt des Massenspektrums zeigt die detektierten [M+Na]<sup>+</sup>-Quasimolekülionen von DAG porciner Spermatozoen.

Neutrale Lipide wurden präparativ über Dünnschichtchromatographie aufgereinigt, positive Ionendetektion. Erläuterungen im Text; MALDI-MS-Bedingungen siehe 3.7.1

Alle diesem Experiment erhaltenen MS-Signale in konnten den [M+Na]<sup>+</sup>-Quasimolekülionen von DAG (14:0 / 14:0), (14:0 / 16:0), (16:0 / 16:0) und (16:0 / 18:0) zugeordnet werden. Für alle Supplementierungsvarianten mit Ausnahme ließen den von Eicosapentaensäure, sich in Massenspektren ieweils charakteristische Peaks nachweisen. Diese sind in der Abbildung 30 als Peak (1) bis Peak ④ markiert. Anhand der erstellten Datenbank (8.1.1) konnten diese vier detektierten, probenspezifischen Signale den jeweiligen [M+Na]<sup>+</sup>-Quasimolekülionen von DAG zugeordnet werden. Diese sind DAG (16:1/16:1), (18:1/18:1), (18:2 / 18:2) und (18:3 / 18:3). Bei einer chemischen Supplementierung mit Eicosapentaensäure, ließ sich in den Lipiden porciner Spermatozoen kein probenspezifisches [M+Na]<sup>+</sup>-Quasimolekülion mit m/z = 683.46von DAG (20:5 / 20:5) nachweisen. Dies deute darauf hin, dass Eicosapentaensäure nicht in die Spermatozoenlipide metabolisch eingebaut wird. Es ist jedoch unbekannt ob die Aufnahme diese Säure in den freien Fettsäuren-Pool der Zellen, deren CoA-Aktivierung oder die Substratspezifität für die an der Reaktion beteiligten Enzymen verantwortlich ist.

Somit wurde in diesem Versuch gezeigt, dass endogen in den porcinen *Spermatozoen* vorkommenden Fettsäuren für die Biosynthese von DAG akzeptiert werden. Die chemische Supplementierung mit der endogen nicht vorkommenden Eicosapentaensäure führte zur keinem metabolischen Einbau in die DAG. Bei allen untersuchten Individuen (n=3) sowie bei unterschiedlichen Ejakulaten des gleichen Individuums (n=1) ließen sich die hier gezeigten Ergebnisse sicher reproduzieren.
## 4.4 Temperatur-, individuums- und seminalplasmaspezifische Einflüsse der metabolischen Aufnahme von Octadecadiensäure

Die bisher in der Literatur beschriebenen Markierungsexperimente mit Fettsäuren wurden nur unter akrosom-reaktionsfördernden Bedingungen durchgeführt (Roldan and Harrison, 1990, 1992, 1993; Roldan et al., 1994; Vazguez and Roldan, 1997a, b; 2010b). In den vorangegangenen Untersuchungen Zanetti et al., unter Flüssigkonservierungsbedingungen wurde gezeigt, dass Octadecadiensäure in den porcinen Spermatozoen endogen vorkommt und als Substrat für die Lipidbiosynthese akzeptiert wird (4.2). Weiterhin wurde gezeigt, dass der metabolische Einbau dieser Fettsäure in 1,2-DAG und *diacyl*-GPC stattfindet und wahrscheinlich temperaturabhängig ist (4.3.3). In der Fachliteratur liegen bis dato keine Angaben über die Metabolisierung der Octadecadiensäure bei Säugetierspermatozoen vor. Der Einfluss der Menge des zur Verfügung stehenden Substrats, der Temperatur und der Einfluss des Seminalplasmas sowie individuelle Unterschiede sind ebenfalls in der Fachliteratur nicht beschrieben. Um den metabolischen Einbau der Octadecadiensäure in GPC und DAG detaillierter zu untersuchen, werden daher Markierungsexperimente durchgeführt. Desweiteren wird überprüft, ob die oben genannten Faktoren wie individuelle Unterschiede und temperaturabhängige Veränderungen die chemische Supplementierung beeinflussen. Zusätzlich soll eine mögliche Metabolisierung der Octadecadiensäure durch das Seminalplasma untersucht werden.

## 4.4.1 Nachweis der metabolischen Aufnahme von Octadecadiensäure in *diacyl*-GPC / 1,2-DAG mittels [1-<sup>14</sup>C]-Kurzzeitmarkierung

Für die genauere Untersuchung der metabolischen Aufnahme von  $[1-^{14}C]$ -Octadecadiensäure in die bereits identifizierten Lipidklassen (4.3.5) wurden Kurzzeitmarkierungsexperimente durchgeführt. Zum einen wurde die Aufnahme der Radiochemikalie in den freien Fettsäure Pool (FFS-Pool) der porcinen *Spermatozoen* analysiert, zum anderen wurde untersucht, ob bei der metabolischen Aufnahme ein Einbau in 1,2-DAG oder *diacyl*-GPC präferiert wird. Dazu wurden 1,33 × 10<sup>9</sup> porcine *Spermatozoen* in 60 ml BTS-Medium mit dem Isotopengemisch über einen Zeitraum von 1 min bis 90 min bei RT markiert.

Die Endkonzentration des  $[^{12}C] / [1-^{14}C]$ -Isotopengemisches betrug 39  $\mu$ M und die eingesetzte Aktivität 4,67 µCi, was einer radioaktive Menge von 0,58 µCi / Probe entsprach. Zu unterschiedlichen Zeitpunkten wurden 7.5 ml ie des Markierungsansatzes abgenommen und die Reaktion durch Kochlyse gestoppt. Um sowohl den unspezifischen, nicht enzymatischen, metabolischen Einbau der Radiochemikalie in die bereits vorhandenen Spermatozoenlipide, als auch die eventuelle Entstehung von Artefakten durch das Flüssigkonservierungsmedium auszuschließen, wurde eine Kontrolluntersuchung durchgeführt. Hierfür wurden ebenfalls 7,5 ml des gleichen Markierungsansatzes abgenommen und die Spermatozoen noch vor der Markierung durch Kochlyse avitalisiert. Die 90-minütige Inkubation dieser Kontrollprobe erfolgte ebenfalls unter den oben genannten Bedingungen. Bei allen Proben wurde dann eine Gesamtlipidextraktion durchgeführt (3.6.1). Die Lipide wurden dünnschichtchromatographisch aufgetrennt (3.6.2) und anschließend mittels Autoradiographie visualisiert (3.9.4). Die Zuordnung zu den jeweiligen Lipidklassen erfolgte wie im Kapitel 4.3.3 beschrieben. In der Abbildung 31 sind nur die Autoradiogrammbereiche der von dem metabolischen Einbau betroffenen Lipidklassen dargestellt.



## Abbildung 31: Einbau von [1-<sup>14</sup>C]-Octadecadiensäure in die Lipide porciner *Spermatozoen* nach Kurzzeitmarkierung

Es sind Autoradiogramme der dünnschichtchromatographischen Auftrennung dargestellt.

**A.** Aufnahme von  $[1-^{14}C]$ -Octadecadiensäure in den freien Fettsäure Pool; Metabolischer Einbau in:

**B.** 1,2-Diacylglycerol (1,2-DAG); **C.** *diacyl*-Glycerophosphocholin (*diacyl*-GPC); **D.** Glycerophosphat; Markierungsdauer 1 min bis 90 min, RT; Kontrollprobe (K): Untersuchung des unspezifischen Einbaus und Artefaktbildung, Markierungsdauer: 90 min, RT;

Nach der jeweiligen Inkubation wurden die *Spermatozoen* kochlysiert, gewaschen und die Lipide extrahiert (3.6.1). Danach erfolgte mittels Dünnschichtchromatographie die Auftrennung polarer und neutraler Lipide (3.6.2). Anschließend wurden die Platten autoradiographiert (3.9.4) und radioaktive Lipide mit Hilfe von Referenzlipiden den jeweiligen Lipidklassen zugeordnet (3.9.5). Dünnschichtchromatographiesche Auftrennung erfolgte:

(A, B) in Chloroform / Methanol /  $H_2O$  (65:25:4)

(C, D) in *n*-Hexan / Diethylether / Eisessig (80:15:1); DC-Platten: SI<sub>250</sub> PA 7003-04, J.T. Baker.

Unten den in diesem Experiment gewählten Bedingungen fand eine Aufnahme von [1-<sup>14</sup>C]-Octadecadiensäure in den freien Fettsäure-Pool (FFS-Pool) der vitalen, porcinen Spermatozoen statt (Abb. 31, A). Bei der Kontrollprobe ist ebenfalls ein Signal allerdings mit deutlich geringerer Intensität zu verzeichnen. Es ist bekannt, dass bei den somatischen Zellen neben der aktiven Aufnahme von Fettsäuren auch ein passiver Transport in die Zellen erfolgen kann. Die in die Zellen aufgenommenen freien Fettsäuren können entweder direkt durch Coenzym-A (Co-A) aktiviert und anschließend metabolisiert werden oder zuvor kann eine Bindung an ein Membranassoziiertes Protein (FABP, fatty acid-binding protein) erfolgen mit anschließender Aktivierung und Metabolisierung (Schwenk et al., 2010). Um die von den Spermatozoen nicht aufgenommene Radiochemikalie zu entfernen, wurden wiederholte Waschvorgänge durchgeführt (3.6.1). Die Zunahme der detektierten Signalintensität der Radiochemikalie steht in einem direkten Zusammenhang mit der Inkubationsdauer. Dies deutet darauf hin, dass eine fortlaufende Aufnahme der Radiochemikalie in den FFS-Pool porciner Spermatozoen erfolgt. Die metabolische der [1-<sup>14</sup>C]-Octadecadiensäure in 1,2-Diacylglycerol Aufnahme (1,2-DAG), diacyl-Glycerophosphocholin (diacyl-GPC) und Glycerophosphat (GPA) zeigt ebenfalls eine enge Korrelation mit der Inkubationsdauer (Abb. 31, B-D). Bereits nach 10 min Inkubation wurden bei den vom metabolischen Einbau der Radiochemikalie betroffenen Lipidklassen ersten Signale detektiert. Diese sind mit annähernd gleichen Intensitäten vertreten und steigen im Verlauf des gesamten Experimentes bei DAG, GPC und GPA im gleichen Ausmaß an. Bei der Kontrollprobe (K) mit invitalen Spermatozoen wurde auch nach der längsten in diesem Versuch angewendeten Inkubationsdauer von 90 min keine metabolische Aufnahme in die hier untersuchten Lipidklassen nachgewiesen. Somit kann sowohl eine Artefaktbildung als auch ein unspezifischer, nicht enzymatischer Einbau der Radiochemikalie in bereits vorhandene Spermatozoenlipide ausgeschlossen werden. In den bereits durchgeführten massenspektrometrischen Untersuchungen mit die stabilen Isotopen wurde dass metabolische Aufnahme gezeigt, der Octadecadiensäure unter anderem in *diacyl*-GPC und in 1,2-DAG stattfindet (4.3.5). Da sowohl nur eine, als auch zwei aus dem Supplementierungsmedium stammenden [1-<sup>14</sup>C]-Octadecadiensäuren in diese Lipidklassen metabolisch eingebaut werden können, ist hier nur eine relative Quantifizierung der in die Lipide aufgenommenen möglich (4.3.5.1, 4.3.5.2). Radiochemikalie Die Menge der metabolisch

aufgenommenen  $[1-^{14}C]$ -Octadecadiensäure liegt in allen dargestellten Lipidklassen beim jeweiligen Untersuchungszeitpunkt (10 min bis 90 min) im Gleichgewicht vor.

Zusammenfassend wurde in diesem Experiment festgestellt, dass nach einer Kurzzeitmarkierung kein präferierter metabolischer Einbau der Radiochemikalie in eine bestimmte Lipidklasse stattfindet. Desweiteren konnte ein unspezifischer, nicht enzymatischer Einbau der Radiochemikalie in bereits vorhandene Spermatozoenlipide ausgeschlossen werden.

# 4.4.2 *"Pulse-Chase"* - Untersuchungen der metabolischen Aufnahme von Octadecadiensäure

den folgenden Experimenten wurde die metabolische Aufnahme In von [1-<sup>14</sup>C]-Octadecadiensäure über einen Zeitraum von bis zu 48 h untersucht. Das im folgenden angewendete Pulse-Chase-Experiment unterscheidet sich von den vorangegangenen Experimenten dadurch, dass die Radiochemikalie nur für einen kurzen Zeitraum den porcinen Spermatozoen zur Verfügung gestellt wird ("Puls"). Anschließend werden diese von den Resten der Radiochemikalie befreit und weiter inkubiert ("Chase"). Dies ermöglicht somit eine detailliere Untersuchung des Fettsäuremetabolismus. Bei den Puls-Chase-Experimenten wurden 6,6 × 10<sup>8</sup> in 30 ml BTS-Medium flüssigkonservierte, porcine Spermatozoen mit [1-<sup>14</sup>C]-Octadecadiensäure markiert. Die Dauer der Pulsmarkierungen betrug 3 min bis 30 min. Die eingesetzte Aktivität betrug 5 µCi. Um eine Detektion nach einem sehr kurzen Puls zu ermöglichen, wurde bei diesen Untersuchungen die Radiochemikalie unverdünnt und nicht wie im vorangegangenen Experiment als [<sup>12</sup>C / 1-<sup>14</sup>C]-Isotopengemisch eingesetzt. Anschließend wurden die Spermatozoen mit BTS-Medium von den Resten der Radiochemikalie befreit. Die anschließende Inkubation ("Chase") wurde bei 17°C durchgeführt. Die Analyse der metabolischen Aufnahme der Radiochemikalie erfolgte nach 1 h, 24 h und 48 h. Die Details der Lipidextraktion und Quantifizierung sind dem Kapitel 4.4.1 zu entnehmen. Da bei den verschiedenen Pulsmarkierungen bezüglich der metabolischen Aufnahme der Radiochemikalie in die Lipide nur geringfügige Unterschiede zu verzeichnen waren, wird in der folgenden Auswertung nur die Puls-Markierung (30 min) exemplarisch dargestellt.



## Abbildung 32: Auswirkungen unterschiedlicher Chase-Zeiträume auf den Einbau von [1-<sup>14</sup>C]-Octadecadiensäure in die Lipide porciner Spermatozoen A. Autoradiogramm der dünnschichtchromatographischen Auftrennung;

B-E: Relative, densitometrische Quantifizierung der metabolisch aufgenommenen [1-<sup>14</sup>C]-Octadecadiensäure in die Lipide porciner Spermatozoen

Puls-Dauer: 30 min bei 17°C; Chase-Dauer: 1 h, 24 h, 48 h bei 17°C;

Nach der jeweiligen Inkubation wurden die *Spermatozoen* gewaschen, kochlysiert und die Lipide extrahiert (3.6.1). Danach erfolgte mittels Dünnschichtchromatographie die Auftrennung der Lipide (3.6.2). Die Zuordnung zu den jeweiligen Lipidklassen wurde mit Hilfe von Referenzlipiden durchgeführt (3.9.5). Anschließend wurden die Platten autoradiographiert (3.9.4) und die radioaktiven Lipide densitometrisch quantifiziert (3.9.5, 3.9.7). Die DC-Auftrennung erfolgte in Chloroform / Methanol /  $H_2O$  (65:25:4); DC-Platten: SI<sub>250</sub> PA 7003-04, J.T. Baker.

Bei der Auswertung des Autoradiogramms wurde die in den freien Fettsäure-Pool der porcinen *Spermatozoen* aufgenommene [1-<sup>14</sup>*C*]-Octadecadiensäure detektiert (Abb. 32, B). Im Verlauf des Experiments ist die Abnahme der Signalintensität der freien Radiochemikalie bei gleichzeitiger Zunahme der Signalintensität bei den untersuchten Lipidklassen offensichtlich. Somit findet ein metabolischer Einbau sowohl in die neutralen Lipide (DRG / 1,2-DAG) als auch in die polaren Lipide (GPC und GPA) statt. Bei den Untersuchungen der neutralen Lipide (4.3.3) wurde gezeigt, dass die metabolische Aufnahme hauptsächlich in 1,2-DAG und nur in wesentlich geringeren Mengen in DRG (1*Z-alkenyl-acyl*-glycerol, (0-16:1 / 18:2)) stattfindet. Daher wird in den folgenden Auswertungen nur 1,2-DAG berücksichtigt.

Bei der densitometrischen Auswertung wurde gezeigt, dass die relative Verteilung der Signalintensitäten bei 1,2-DAG und diacyl-GPC zu allen Untersuchungszeitpunkten annähernd gleich ist. Die Menge der metabolisch aufgenommenen [1-14C]-Octadecadiensäure liegt somit in diesen Lipidklassen im Gleichgewicht vor. Die Signalintensität von GPA nimmt im Verlauf der Puls-Chase-Experimente ab. Bei der GPC-Biosynthese wird zuerst GPA zu 1,2-DAG und anschließend zu GPC umgewandelt (Gurr et al., 2002). Daher korreliert die Abnahme der Signalintensität von GPA mit der Zunahme der Signalintensität von diacyl-GPC und DAG. Desweiteren wurde die metabolische Aufnahme in das bereits identifizierte, bakterielle GPE detektiert (4.3.2). Somit lag hier eine geringfügige bakterielle Kontamination des Ejakulates vor. Der Einfluss der Temperatur sowie der Inkubationsdauer auf die metabolische Aufnahme von Octadecadiensäure in Lipide der Bakterien werden in der anschließenden Langzeitmarkierung näher untersucht (4.4.3).

Zusammenfassend wurde in diesem *Puls-Chase-Experiment* gezeigt, dass die Octadecadiensäure in den freien Fettsäure Pool der *Spermatozoen* aufgenommen und anschließend metabolisch in die Lipide eingebaut wird. Im Unterschied zu den vorangegangenen Kurzzeitmarkierungen konnte in diesen *Puls-Chase-Experimenten* gezeigt werden, dass die in den FFS-Pool aufgenommene Octadecadiensäure nahezu vollständig für die Lipidbiosynthese von 1,2-DAG und GPC verwendet wird.

# 4.4.3 Temperatur- und individuumsspezifische Einflüsse auf die metabolische Aufnahme von Octadecadiensäure

Bei der folgenden Langzeitmarkierung mit [1-<sup>14</sup>C]-Octadecadiensäure wurden zum einen der Einfluss der Temperatur und zum anderen die individuumsspezifischen Unterschiede bei der metabolische Aufnahme von Octadecadiensäure in die Lipide  $1.33 \times 10^{9}$ porciner Spermatozoen untersucht. Dazu wurden je porcine Spermatozoen von zwei unterschiedlichen Individuen der gleichen porcinen Rasse (Piétrain), die bei gleichen Bedingungen gehalten wurden, analysiert. Die Spermatozoen wurden in 60 ml BTS-Medium aufgenommen und mit dem [<sup>12</sup>C] / [1-<sup>14</sup>C]-lsotopengemisch über einen Zeitraum von 48 h bei 6°C oder bei 17°C Gegensatz zu den *Puls-Chase*-Experimenten markiert. Im wurde die Radiochemikalie zum einem als Isotopengemisch und zum anderen über den gesamten Versuchszeitraum zugesetzt. Die Anfangskonzentration des Octadecadiensäuregemisches betrug 39 µM und die eingesetzte Aktivität betrug 8,6 µCi, was einer radioaktiven Menge von 2,87 µCi / Probe entspricht. Die Gesamtlipidextraktion, die dünnschichtchromatographische Auftrennung und die anschließende Analyse erfolgten wie bereits in Kapitel 4.4.1 beschrieben. Eine genaue Quantifizierung der radioaktiv-markierten Lipide zueinander ist nicht möglich, da sowohl nur eine als auch zwei aus dem Supplementierungsmedium stammende [1-<sup>14</sup>C]-Octadecadiensäuren in diese Lipidklassen metabolisch eingebaut werden können (4.3.5). In der Abbildung 33 sind die Autoradiogramme und die relative densitometrische Quantifizierung der metabolisch eingebauten Radiochemikalie in die Spermatozoenlipide und in die bakteriellen Lipide dargestellt.





**B.** Relative, densitometrische Quantifizierung der in den FFS-Pool porciner *Spermatozoen* aufgenommen [1-<sup>14</sup>C]-Octadecadiensäure; Metabolischer Einbau von [1-<sup>14</sup>C]-Octadecadiensäure in: **C.** 1,2-Diacylglycerol (1,2-DAG); **D.** *diacyl*-Glycerophosphocholin (*diacyl*-GPC); **E.** Glycerophosphat (GPA); Metabolischer Einbau in die bakterielle Lipide siehe Details in Abbildung 34. Proben Vorbereitung siehe Text; DC-Auftrennung erfolgte für (B, C) in

*n*-Hexan / Diethylether / Eisessig (80:15:1) und für (D, E) in Chloroform / Methanol /  $H_2O$  (65:25:4); jeweils DC-Platten: Sl<sub>250</sub> PA 7003-04, J.T. Baker.

Bei der Auswertung der Autoradiogramme wurde die in den freien Fettsäure-Pool (FFS-Pool) porciner Spermatozoen aufgenommene [1-<sup>14</sup>C]-Octadecadiensäure detektiert (Abb. 33, B). Die Menge der aufgenommenen Radiochemikalie ist bei Individuum 2 sowohl bei 6°C als auch bei 17°C Flüssigkonservierung verglichen mit Individuum 1 erhöht. Bei beiden Individuen ist bei 17°C eine verstärkte Aufnahme der Radiochemikalie zu verzeichnen. Die Lagerungstemperatur hat somit einen Einfluss auf die Aufnahme der Octadecadiensäure in den FFS-Pool porciner Spermatozoen. Bei den untersuchten Lipidklassen GPA, 1,2-DAG und GPC wurde ebenfalls bei 17°C bei beiden Individuen ein verstärkter metabolischer Einbau beobachtet. Dies kann dadurch erklärt werden, dass die [1-<sup>14</sup>C]-Octadecadiensäure in diesem Experiment als Vorstufe bei der Biosynthese dieser Lipidklassen verwendet wird (Gurr et al., 2002). Somit korreliert die erhöhte Aufnahmerate der Radiochemikalie in die porcinen Spermatozoen mit dem anschließenden ebenfalls erhöhten metabolischen Einbau in die Lipide. Ein wie im vorangegangenen Puls-Chase-Experiment festgestellter GPA-Verbrauch wurde bei diesem Experiment aufgrund der kontinuierlich vorhandenen Radiochemikalie nicht detektiert. Die Menge der in GPC und 1,2-DAG metabolisch aufgenommenen Radiochemikalie lag hier ebenfalls nicht im Gleichgewicht vor. Die Signalintensität der Radiochemikalie ist bei der durchgeführten Langzeitmarkierung von 1,2-DAG verglichen mit GPC hingegen etwa zweifach erhöht. Es wurde kein Einfluss der Inkubationstemperatur auf dieses Verhältnis festgestellt. Die genauen Ursachen für den hier gezeigten präferierten Einbau in 1,2-DAG bei dauerhaft vorliegender Octadecadiensäure als Substrat, sind unbekannt. Es kann jedoch angenommen werden, dass entweder eine negative Rückkopplung für die bei den metabolischen Prozessen beteiligten Enzymen existiert oder dass die Quelle an Cholin-Phosphat erschöpft wurde, und somit keine für die GPC-Biosynthese essentiellen Kopfgruppen mehr vorhanden sind. Ob bei der chemischen Supplementierung mit anderen Fettsäuren ein ähnlich präferierter Einbau in die Lipide porciner Spermatozoen stattfindet, sollte in weiteren Experimenten genauer untersucht werden.

Bei den Spermatozoenproben von Individuum 1 und Individuum 2 wurden temperaturunabhängige Unterschiede festgestellt. Sowohl die Aufnahme der Radiochemikalie in den FFS-Pool als auch der metabolischen Einbau in die Lipide war bei Individuum 2 erhöht. Eine mögliche Erklärung hierfür können individuumsoder ejakulatspezifische Besonderheiten sein. Eine weitere Möglichkeit wäre, dass bei den untersuchten Proben von Individuum 2 mehr vitale und somit zum Stoffwechsel befähigte *Spermatozoen* vorlagen. Die Zellzahl der *Spermatozoen* in den Proben ( $2,2 \times 10^7$  /ml) wird durch die Anzahl der motilen *Spermatozoen* definiert (3.4). Da die Motilität nur eine von mehreren physiologischen Kriterien ist, kann nicht ausgeschlossen werden, dass als immotil eingestufte *Spermatozoen* trotzdem eine metabolische Aktivität aufweisen und somit sowohl zur Aufnahme von Fettsäuren als auch zur Lipidbiosynthese befähigt sind. Berichte über die Lipidbiosynthese immotiler *Spermatozoen* liegen jedoch *bis dato* in der Fachliteratur nicht vor.

Bei beiden untersuchten Individuen ist ebenfalls eine metabolische Aufnahme der Radiochemikalie in die bereits identifizierten bakteriellen Lipide GPE und GPI nachweisbar (4.3.2, Abbildung 33 A). Die relative densitometrische Quantifizierung dieser radioaktiv markierten Lipide ist in Abbildung 34 dargestellt. Die folgende Diskussion bezieht sich ausschließlich auf bakterielles GPE und bakterielles GPI.



Abbildung 34: Einbau von [1-<sup>14</sup>C]-Octadecadiensäure in bakterielles GPE und GPI nach Langzeitzeitmarkierung bei 6°C und bei 17°C

Probe ①: flüssigkonservierte Proben von Individuum 1; Probe ②: flüssigkonservierte Proben von Individuum 2; Markierungsdauer 48 h bei 6° und 17°C

Metabolischer Einbau von [1-<sup>14</sup>C]-Octadecadiensäure in: **A.** Glycerophosphoethanolamin (bakt. GPE), **B.** Glycerophosphoinositol (bakt. GPI); Metabolische Aufnahme der Radiochemikalie in bakterielle Lipide ist in Kapitel 4.3.2 beschrieben; Probenvorbereitung siehe Text.

In den flüssigkonservierten Proben von Individuum 1 ist die metabolische Aufnahme der Radiochemikalie nur in GPE nachweisbar. Bei Individuum 2 ist die Aufnahme sowohl in GPE als auch GPI zu verzeichnen. Diese probenspezifischen Besonderheiten weisen darauf hin, dass beide Proben mit unterschiedlichen Bakterien kontaminiert sein könnten (4.3.2). Es ist bekannt, dass beispielsweise E.coli GPE, aber nicht GPI synthetisieren kann (O'Leary and Wilkinson, 1988; Wilkinson, 1988). Mykobakterien können jedoch sowohl GPE als auch GPI synthetisieren (Morita et al., 2011). Es wurden zusätzliche Analysen dieser Proben gleichen Bedingungen jedoch in einem gentamycinhaltigem BTSunter Flüssigkonservierungsmedium mit avitialisierten Spermatozoen (4.3.2) durchgeführt. Hierbei wurde ebenfalls die Aufnahmen der Radiochemikalie in bakterielles GPE und bakterielles GPI mit gleichen Signalintensitäten detektiert (Daten hier nicht gezeigt). Somit führte der gesetzlich vorgeschriebene Antibiotikazusatz (544 µM / Probe, Richtlinie: 90/429/EWG vom 26. Juni 1990) nicht zu einer Verringerung der bakteriellen Kontamination und es konnte davon ausgegangen werden, dass diese Bakterienstämme eine Gentamycinresistenz aufweisen. Das Vorkommen von antibiotikaresistenten und multiresistenten Bakterienstämmen in porcinen Ejakulaten wurde in der Fachliteratur bereits ausführlich beschrieben (Althouse and Lu, 2005; Althouse et al., 2008).

Bei der densitometrischen Auswertung der radioaktiv markierten Lipide GPE und GPI in der Abbildung 34 wurde gezeigt, dass die metabolische Aufnahme der Radiochemikalie in die untersuchten bakteriellen Lipidklassen temperaturabhängig ist. Bei Niedrigtemperaturlagerung (6°C) ist die Signalstärke verglichen mit der gängigen Flüssigkonservierungstemperatur (17°C) um etwa 70% reduziert. Die porcinen Ejakulate sind vor allem durch mesophile Bakterienarten kontaminiert (Schulze, 2010). Die Niedrigtemperaturlagerung führt bei diesen Bakterienarten sowohl zu einer Verringerung ihrer Stoffwechselaktivität als auch zu einer Zunahme des Generationsintervalls (Scherer and Neuhaus, 2006). Somit kann durch das Absenken der Lagerungstemperatur eine Reduktion der Keimzahl erreicht werden.

Zusammenfassend wurde bei dieser Langzeitmarkierung gezeigt, dass die metabolische Aufnahme von Octadecadiensäure sowohl in die Lipide porciner *Spermatozoen* als auch in die bakteriellen Lipide temperaturabhängig ist. Es findet ein präferierter metabolischer Einbau der Radiochemikalie in 1,2-DAG statt. Individuums- bzw. ejakulatspezifische Unterschiede wurden beobachtet und werden in den nachfolgenden Untersuchungen dargestellt. Durch die

Niedrigtemperaturlagerung kann eine Reduktion der bakteriellen Kontamination erreicht werden.

# 4.4.4 Seminalplasmaspezifische Einflüsse auf die metabolische Aufnahme von Octadecadiensäure in die Lipide

Bei der Ejakulation werden die Spermatozoen mit dem Sekret der akzessorischen Geschlechtsdrüsen, dem Seminalplasma, vermischt. Das native Ejakulat besteht somit aus diesem Sekret und den Spermatozoen. Das Seminalplasma beeinflusst sowohl die physiologischen Parameter der Spermatozoen als auch den gesamten Reproduktionsvorgang (1.2). Durch den Vergleich von flüssigkonservierten porcinen Spermatozoen und nativem porcinen Ejakulat nach chemischer Supplementierung sollte die metabolische Aufnahme der Octadecadiensäure in die Lipide des Seminalplasmas näher untersucht werden. Für die Analyse der flüssigkonservierten Spermatozoen wurden  $6.6 \times 10^8$  Zellen (1 ml des nativen Ejakulats) eines Individuums der Rasse Piétrain gewaschen und in 30 ml **BTS-Medium** aufgenommen. Diese Probe A war somit nahezu seminalplasmafrei. Die Analyse des nativen Ejakulats (1,5 ml) erfolgte ohne Zugabe des BTS-Mediums (Probe B). Die Markierung und Probenvorbereitung wurde wie in Kapitel 4.4.1 beschrieben, durchgeführt. In der Abbildung 35 sind die Autoradiogramme beider Proben nach dünnschichtchromatographischer Auftrennung des Gesamtlipidextraktes dargestellt.



## Abbildung 35: Vergleich des metabolischen Einbaus von [1-<sup>14</sup>C]-Octadecadiensäure in die Lipide flüssigkonservierter, porciner *Spermatozoen* und in natives porcines Ejakulat

Es sind Autoradiogramme der dünnschichtchromatographischen Auftrennung dargestellt: **A.** Flüssigkonservierte porcine *Spermatozoen*; **B.** natives Ejakulat des gleichen Individuums; Markierungsdauer: 3 h, RT; *Spermatozoen* aus einem nativen Ejakulat wurden gewaschen, flüssigkonserviert und anschließend mit der Radiochemikalie markiert (A); Natives Ejakulat porciner *Spermatozoen* wurde mit der Radiochemikalie markiert (B); Nach der Gesamtlipidextraktion erfolgte die dünnschichtchromatographische Auftrennung der Gesamtlipidextrakte in Chloroform / Methanol / H<sub>2</sub>O (65:25:4); DC-Platten: SI<sub>250</sub> PA 7003-04, J.T. Baker. Die Zuordnung zu den jeweiligen Lipidklassen erfolgte anhand der *R<sub>r</sub>*-Werte von Referenzsubstanzen.

Bei der Betrachtung der Autoradiogramme sind probenspezifische Signale der metabolisch in den Lipiden eingebauten Radiochemikalie zu erkennen. Die metabolische Aufnahme in die Lipide der flüssigkonservierten porcinen Spermatozoen (Probe A) wurde bereits ausführlich in den Kapiteln 4.3.3 und 4.4.1 beschrieben. Bei Probe B sind zusätzlich weitere Lipidklassen von der Aufnahme der  $[1-^{14}C]$ -Octadecadiensäure betroffen. Dies sind sowohl polare als auch neutrale Lipide. Die Signalintensität ist in dieser Probe zusätzlich deutlich erhöht. Dies kann dadurch erklärt werden, dass in der Probe mit dem nativen Ejakulat mehr Spermatozoen vorlagen.

bei der Auswertung der Autoradiogamme bei beiden Proben jedoch Da unterschiedliche Lipidklassen vom Einbau der Radiochemikalie betroffen sind, kann davon ausgegangen werden, dass zusätzlich die Bestandteile des Seminalplasmas eine metabolische Aktivität aufweisen. Eine weitere Möglichkeit wäre eine starke bakterielle Kontamination des nativen Ejakulats in Probe B. Dies würde jedoch zu einer Agglutination der Spermatozoen führen (Kaur et al., 2010; Monga and Roberts, 1994). Bei den mikroskopischen Analysen wurde keine Agglutination der Spermatozoen beobachtet und somit kann die bakterielle Kontamination als Ursache für das unterschiedliche Markierungsmuster beider Proben ausgeschlossen werden. Diese Annahme wird durch die vorangegangenen Untersuchungen der bakteriellen Kontamination von flüssigkonservierten porcinen Spermatozoen gestützt. Dort wurde gezeigt, dass die Aufnahme der Radiochemikalie bei Bakterien vor allem in die Lipidklassen GPE und GPI stattfindet (4.3.2). Da hier jedoch weitere radioaktivmarkierte Lipidklassen detektiert wurden, kann von einer Metabolisierung der Radiochemikalie durch die Komponenten des Seminalplasmas ausgegangen werden. Die ejakulatsspezifische und individuumsspezifische Zusammensetzung des Seminalplasmas und das Gesamtvolumen des Ejakulats sind von zahlreichen Faktoren, wie beispielsweise von dem Gesundheitszustand und der Ernährung abhängig und unterliegen zusätzlich noch saisonalen Schwankungen. In diesem Experiment wurde daher nur exemplarisch der Einfluss der chemischen Supplementierung mit Octadecadiensäure auf das Seminalplasma eines Individuums untersucht.

## 4.5 Physiologische Auswirkungen der chemischen Supplementierung mit Fettsäuren auf porcine *Spermatozoen*

In diesem Teil der Arbeit wurde die Auswirkung der chemischen Supplementierung auf die physiologischen Parameter bei flüssigkonservierten porcinen Spermatozoen untersucht. In zahlreichen Arbeiten wurden sowohl die metabolische Aufnahme von Fettsäuren als auch die Veränderung der Lipidzusammensetzung von Säugetierspermatozoen unter akrosom-reaktionsfördernden Bedingungen untersucht (Roldan and Harrison, 1990, 1992, 1993; Roldan et al., 1994; Vazquez and Roldan, 1997a, b; Zanetti et al., 2010b). Daten über physiologische Veränderungen bei niedrigtemperaturgelagerten, flüssigkonservierten porcinen Spermatozoen, wie beispielweise die Beeinflussung der Motilität durch die metabolische Aufnahme von Fettsäuren in die Lipide, liegen in der Literatur nicht vor. In den hier durchgeführten Untersuchungen wurde gezeigt, dass die zu dem Flüssigkonservierungsmedium chemisch supplementierten, endogen vorkommenden Fettsäuren metabolisch in die Lipide eingebaut werden. Die chemische Supplementierung mit der in porcinen Spermatozoen endogen nicht vorkommenden Eicosapentaensäure führte hingegen zu keiner metabolischen Aufnahme in die Lipide (4.3.3 - 4.3.6). Die Untersuchungen Octadecadiensäure Protein-vermittelten Zytotoxizität von unter einer der Verabreichung haben ergeben, dass bis zur Konzentration der Octadecadiensäure von 80 µM der Anteil der motilen Spermatozoen verglichen mit einer unbehandelten Kontrollprobe ansteigt. Der Anteil akrosomdefekter Spermatozoen blieb unter diesen Bedingungen hingegen konstant (4.3.1.4). Ähnliche Beobachtungen wurden bereits von (Hossain et al., 2007a; Hossain et al., 2007b) publiziert. Hierzu wurden Spermatozoenproben von zwei Individuen nach chemischer Supplementierung mit Fettsäuren bezüglich der Auswirkungen auf physiologische Parameter untersucht. Die vom Autor eingesetzten Fettsäurekonzentrationen konnten jedoch anhand der hier durchgeführten Experimente als zytotoxisch eingestuft werden (4.3.1). Somit ist Literaturangaben der Vergleich mit den auf Grund der eingesetzten Fettsäurekonzentration, den unterschiedlichen Flüssigkonservierungsbedingungen und der nur geringen Stichprobengröße nicht möglich.

## 4.5.1 Festlegung der Stichprobengröße für Supplementierungsvarianten, Bestimmung der physiologischen Kriterien

Die in der Fachliteratur bis dato beschrieben Untersuchungen über die chemische Fettsäuresupplementierung von Spermatozoen wurden nur mit geringen Fallzahlen durchgeführt. Die statistischen Auswertungen haben unter diesen Bedingungen jedoch nur eine begrenzte Aussagekraft (Bower, 2003). Für die nachfolgenden Experimente wurden daher zuerst die Stichprobengröße und das zu verwendende statistische Testverfahren festgelegt. Bei der Auswertung werden jeweils verbundene Stichproben untersucht, wobei die Normalverteilung dieser experimentell erhaltenen Werte nicht angenommen wurde. Die Auswertung erfolgte somit anhand nichtparametrischer Testverfahren für verbundene Stichproben. Um mit dem zweiseitigen Wilcoxon-Vorzeichen-Rang-Test mit einer Irrtumswahrscheinlichkeit von 5% und einer Power von 0,75 einen Effekt nachzuweisen, bei dem in 90% der Fälle eine Zunahme (bzw. Abnahme) der experimentell ermittelten Werte zu beobachten ist, hat die Power-Analyse eine Stichprobengröße von mindestens 13 zu untersuchende Individuen (N=13) ergeben (Software: StudySize 2.0, CreoStat HB). Bei jeder Stichprobe wurden jeweils elf verschiedene physiologische Parameter untersucht. Diese sind die computergestützte Erfassung der Spermatozoengesamtmotilität und der progressiven Motilität (30 min / 300 min) nach 48 h und 168 h (3.5.3), der Vitalitätstest mittels durchflußzytometrischer Bestimmung nach Lebend / Tot-Färbung nach 72 h (3.5.2.1, 3.5.4) und die mikroskopische Untersuchung der Akrosomdefekte nach 24 h und nach 72 h (3.5.2.2). Bei der Untersuchung (mit N=13) porciner Spermatozoen auf die oben genannten elf physiologischen Parameter nach der Supplementierung mit jeweils einer von fünf unterschiedlichen Fettsäuren (6°C) und der zusätzlichen Analyse von zwei nicht supplementierten Kontrollproben (6°C und 17°C) müssen somit 1001 Datensätze erhoben werden. Bei so einer großen Anzahl von zu erhebenden Datensätzen kann ein Ausfall einzelner Proben nicht ausgeschlossen werden. Um die Mindestgröße der Stichprobe jedoch gewährleisten zu können, wurde die Anzahl der untersuchenden Individuen zur Absicherung auf 16 erhöht. Somit werden 1232 experimentelle Datensätze erhoben (Anhang 8.1.5).

## 4.5.2 Verwendete statistische Testverfahren

Für die statistische Auswertung wurden insgesamt bis zu fünf Tests durchgeführt (Abb. 36). Im ersten Test wurden die unbehandelten Kontrollproben, die bei 6°C und bei 17°C flüssigkonserviert wurden, miteinander verglichen. Dieser Test dient zur Analyse, ob das Absinken der Temperatur bei der Flüssigkonservierung zu signifikanten Unterschieden in den untersuchten physiologischen Parametern führt (4.5.1). Test 2 und Test 3 dienten zur Überprüfung, ob die einzelnen Supplementierungsvarianten, die bei 6°C gelagert wurden, einen Einfluss auf den physiologischen Status ausüben, vergleichen mit den beiden unbehandelten Kontrollproben (Abb. 36, A).



#### Abbildung 36: Übersicht der angewendeten statistischen Testverfahren

Physiologische Auswirkungen der chemischen Supplementierung mit unterschiedlichen Fettsäuren auf porcine *Spermatozoen*.

**A.** Test 1: Vergleich der beiden unbehandelten Kontrollproben bei 6°C und bei 17°C untereinander; Test 2 und Test 3: jeweils paarweiser Vergleich der unbehandelten Kontrollproben bei 17°C bzw. bei 6°C mit den jeweiligen Supplementierungsvarianten;

**B.** Test 4: Vergleich der unterschiedlichen Supplementierungsvarianten (6°C) untereinander;

Test 5: falls im vorangehenden Test 4 signifikante Unterschiede festgestellt wurden, erfolgte ein *a posteriori* Post-Hoc-Test (ungeplanter Test);

Test: 1, 2, 3 - Wilcoxon-Vorzeichen-Rang-Testverfahren (zweiseitig);

Test 4 Friedman-Test (zweiseitig);

Test 5: *a posteriori* Post-Hoc-Test (Wilcoxon-Vorzeichen-Rang-Test, zweiseitig); Signifikanzen wurden mit der Bonferroni-Holm-Methode adjustiert.

Test 1 bis Test 3 erfolgten mittels des zweiseitigen, nicht-parametrischen Wilcoxon-Vorzeichen-Rang-Tests. Dieser diente zum Nachweis der Unterschiede zweier verbundener Stichproben. Als Nullhypothese wurde angenommen, dass die Proben sich in ihrem physiologischen Status nicht unterscheiden. Als Alternativhypothese wurde angenommen, dass die Proben physiologische Unterschiede aufweisen. Es wurde festgelegt, dass der Test nur dann signifikante Unterschiede liefert, wenn  $p \le 0.05$  ist. Für hochsignifikante Unterschiede wurde  $p \le 0.001$  festgelegt. Bei einem Signifikanzwert von  $p \le 0.05$  wurde die Nullhypothese verworfen und die Alternativhypothese galt als statistisch gesichert. Im Test 4 wurden die verbundenen Stichproben mittels zweiseitigem, nicht-parametrischen Friedman-Test überprüft. Im Gegensatz zum Wilcoxon-Vorzeichen-Test für verbundene Stichproben können mit diesem Test mehr als zwei Supplementierungsvarianten bezüglich der Unterschiede untersucht werden. Dieses Testverfahren diente allgemein zur Feststellung von Unterschieden innerhalb einer Gruppe (Abb. 36, B). Für den Friedman-Test wurde ebenfalls festgelegt, dass die Unterschiede zwischen den Supplementierungsvarianten nur dann signifikant sind, wenn  $p \le 0.05$  ist. In diesem Fall wurden a posteriori die Post-Hoc-Tests mittels zweiseitigen Wilcoxon-Vorzeichen-Rang-Testverfahren durchgeführt, wobei die Signifikanzen mit der Bonferroni-Holm-Methode adjustiert wurden. Post-Hoc-Tests können nur dann durchgeführt werden, wenn in dem vorangegangenen allgemeinen Test eine Signifikanz festgestellt wurde. Lag keine Signifikanz vor, so durften die Post-Hoc-Tests nicht interpretiert werden. Zur Absicherung der Analysen wurden nur die hochsignifikanten Unterschiede zwischen den Supplementierungsvarianten diskutiert. Die Ergebnisse von Test 1 bis Test 3 sind als Box-Plots dargestellt und auf die statistisch gesicherten Unterschiede wird im Text verwiesen. Die deskriptiven Statistiken sowie die ausführlichen Testergebnisse sind aus Gründen der Übersichtlichkeit dem Anhang 8.1.2 und 8.1.3 zu entnehmen.

Zusammenfassend wurden in diesem Teil der Arbeit die Stichprobengröße, die zu untersuchenden physiologischen Parameter sowie die Supplementierungsvarianten festgelegt. Desweiteren wurden die Hypothesen für die geplanten Tests formuliert und das Signifikanzniveau für alle verwendeten Testverfahren festgelegt. Im folgenden Kapitel werden die statistischen Auswertungen der untersuchten physiologischen Parameter dargestellt.

## 4.5.3 Motilitätsanalyse flüssigkonservierter porciner *Spermatozoen* nach Fettsäuresupplementierung

Für die erfolgreiche Befruchtung der Eizelle müssen die Spermatozoen unter anderem über eine gute Motilität, eine funktionsfähige Plasmamembran, sowie ein intaktes Akrosom verfügen. Somit ist eine Aussage über den physiologischen Zustand der Spermatozoen nur dann möglich, wenn bei den In-vitro-Untersuchungen möglichst viele Faktoren berücksichtigt werden. Die Motilität der Spermatozoen stellt eine wesentliche Voraussetzung für die Befruchtung der Eizelle dar (Kapitel 1.2). Die Motilitätsanalyse erfolgte computerunterstützt mittels des Thermoresistenztests (TRT). Dieses Verfahren untersucht die Veränderungen der Motilität bei den flüssigkonservierten Spermatozoen nach Erhöhung der Lagerungstemperatur von 17°C bzw. 6°C auf die in dem weiblichen Genitaltrakt herrschenden 38°C. Nach einer Inkubationsdauer von 30 min bzw. 300 min wurde die Motilität von 1.000 Spermatozoen computerunterstützt analysiert (3.5.3). Für die Motilitätsanalysen nach Supplementierung mit Fettsäuren wurden die porcinen Spermatozoen zuerst flüssigkonserviert (3.4), dann mit unterschiedlichen Fettsäuren supplementiert (3.10.1) und anschließend bei 6°C gelagert. Nach 48 h bzw. nach 168 h fand die Untersuchung mittels TRT statt. Die Gesamtmotilität und die progressive Motilität wurden jeweils nach einer Inkubation von 30 min (TRT-30) bzw. von 300 min (TRT-300) erfasst (3.5.3). Da nur geringfügige Unterschiede zwischen der Gesamtmotilität und progressiven Motilität festgestellt wurden (8.1.2, 8.1.3), wird in der folgenden Disskussion nur die Gesamtmotilität berücksichtigt. In der Abbildung 36 sind die Gesamtmotilitätswerte des TRT-30 nach 48 h bzw. nach 168 h Flüssigkonservierung dargestellt. Aus Gründen der Übersichtlichkeit werden im Folgenden nur die statistisch gesicherten Unterschiede erläutert. Ausführliche Testergebnisse sind im Anhang 8.1.2 (deskriptive Statistiken) und Anhang 8.1.3 (Testergebnisse) dargestellt.

In dem TRT-30 wurde gezeigt, dass 56% der *Spermatozoen* der unbehandelten Kontrollproben nach 48 h flüssigkonservierter Lagerung bei 6°C motil sind (Abb. 37). Bei 17°C sind nach 48 h hingegen 74% motil. Nach 168 h Lagerung sind 49% der bei 6°C und 71% der bei 17°C gelagerten *Spermatozoen* motil.



#### Abbildung 37: Untersuchung der Gesamtmotilität porciner Spermatozoen mittels TRT-30

Anteil gesamtmotiler porciner *Spermatozoen* in [%] nach **A.** 48 h Inkubation, 30 min bei 38°C; **B.** 168 h Inkubation, 30 min bei 38°C; Inkubationsvarianten: K 6°C – unbehandelte Kontrollproben, Lagerung bei 6°C; K 17°C - unbehandelte Kontrollproben, Lagerung bei 17°C; Fettsäuren: 16:1 – Hexadecensäure; 18:1 – Octadecensäure; 20:5 – Eicosapentaensäure; 18:2 – Octadecadiensäure; 18:3 – Octadecatriensäure; Die Flüssigkonservierung wurde bei allen supplementierten Proben bei 6°C durchgeführt;

\* signifikante Unterschiede (p  $\leq$  0,05) bezogen auf die unbehandelten Kontrollproben (K 6°C); <sup>o</sup> Ausreißer, die Beschriftung entspricht den Fallnummern; Die Interpretation der Boxplot-Diagramme ist Anhang 8.1.4 zu entnehmen. Die Daten wurden mittels computerunterstützter Motilitätsanalyse (CASA) erhoben (3.5.3); *n*=1.000 / Probe.

Somit ist bei beiden Untersuchungen eine Reduktion des Anteils der gesamtmotilen Spermatozoen durch die Niedrigtemperaturlagerung zu verzeichnen. Durch die statistischen Analysen der Datensätze des TRT-30 wurde gezeigt, dass die Reduktion der Gesamtmotilität bei 6°C verglichen mit 17°C in beiden Experimenten hoch signifikant ( $p \le 0.001$ ) ist (8.1.2, 8.1.3). Die Lagerungstemperatur hat somit einen entscheidenden Einfluss auf die Gesamtmotilität porciner Spermatozoen. Dieser Temperatureinfluss wurde bereits in zahlreichen Experimenten beobachtet (Kumar et al., 2003; Medrano et al., 2009). In den folgenden Analysen werden die supplementierten Proben (6°C) mit den nicht behandelten Kontrollproben (6°C und 17°C) bezüglich ihrer Gesamtmotilität mittels TRT-30 nach 48 h und nach 168 h verglichen (Abb. 37). Nach 48 h Lagerung ist die Gesamtmotilität der mit 16:1, 18:2 und 18:3-Fettsäuren chemisch supplementierten Proben hoch signifikant erhöht  $(p \le 0.001)$ . Der Anteil der gesamtmotilen Spermatozoen steigt für die Proben 16:1 von 55% auf 66% und für die Proben 18:2 sowie 18:3 von 55% auf 62% jeweils verglichen mit den Kontrollproben (6°C) an. Nach 168 h vergrößert sich der Anteil der gesamtmotilen Spermatozoen von 49% auf 62% für 16:1 (p≤0,001) und von 49% auf 57% für die mit 18:3 (p≤0,008) supplementierten Proben. Der Vergleich erfolgte jeweils mit den nicht supplementierten Kontrollproben (6°C). Alle Supplementierungsvarianten wiesen hoch signifikante (p≤0,001) Unterschiede in der Gesamtmotilität sowohl nach 48 h als auch nach 168 h, jeweils verglichen mit den nicht behandelten Kontrollproben (17°C), auf. Somit wurde zum einem gezeigt, dass durch die Supplementierung mit Fettsäuren im Vergleich mit den unbehandelten Kontrollproben eine Erhöhung der Gesamtmotilität zu verzeichnen war. Zum anderen wurde festgestellt, dass das Motilitätsniveau der gängigen Flüssigkonservierungsverfahren bei 17°C durch die Supplementierung und Lagerung bei 6°C nicht erreicht wurde.

In der graphischen Darstellung der experimentell ermittelten Datensätze sind in fast allen untersuchten Proben Ausreißer zu verzeichnen (Abb. 37). Es ist bekannt, dass Ausreißer unter anderem durch Fehler bei der Datenerhebung oder Dateneingabe entstehen könnten (Gather and Pawlitschko, 2006; Kuhnt and Pawlitschko, 2005). Dies kann dazu führen, dass dadurch die Ergebnisse der statistischen Untersuchungen verfälscht werden und somit die Interpretation der hinter dem Versuchsplan stehenden Hypothesen unmöglich wird. Da bei der

Gesamtmotilitätsanalyse bis zu 1.000 einzelnen Spermatozoen computerunterstützt mittels CASA detektiert und analysiert werden, konnten die oben genannten Fehlerquellen ausgeschlossen werden. Die hier angewendeten graphischen Darstellungen als Boxplot-Diagramme geben Hinweise darüber, in welchem Bereich die Messwerte liegen und wie sie sich über diesen Bereich verteilen. Ausreißer sind per Definition solche Werte, die das 1. und 3. Quartil (Box) um mehr als das 1,5-fache des Interquartilbereichs über- bzw. unterschreiten (Chambers et al., 1983; Gather and Pawlitschko, 2006; Hoaglin et al., 1983; Kuhnt and Pawlitschko, 2005). Die Größe der Box (Interquartilbereich) wird durch die Streuung und Verteilung der Messwerte definiert. Der Faktor 1,5 zur Definition der Ausreißer ist nicht allgemein gültig und basiert auf den zugrunde liegenden Messwerten und ist ebenfalls von der Streuung der Messwerte abhängig (Details siehe Anhang 8.1.4). Daher wird in den nachfolgenden Auswertungen nur auf die auffälligen, sich in allen Untersuchungen wiederholenden Ausreißer eingegangen. Die Beschriftung entspricht der jeweiligen Datensatznummer und ermöglicht somit eine eindeutige Zuordnung zum jeweils untersuchten Individuum. Bei den hier durchgeführten In-vitro-Untersuchungen wurden die Spermatozoenproben von Individuum 8 und Individuum 15 als auffällig klassifiziert.

Bei Individuum 8 sind in allen untersuchten Proben, die bei 6°C flüssigkonserviert wurden, deutlich geringere Anteile von gesamtmotilen *Spermatozoen* zu verzeichnen (Abb. 37). Die chemische Supplementierung mit den hier verwendeten Fettsäuren führte bei den *Spermatozoen* von diesem Individuum zu keiner Erhöhung der Gesamtmotilität. In beiden Kontrollproben, die bei 17°C gelagert wurden, wiesen diese *Spermatozoen* jedoch keine Auffälligkeiten bezüglich der Gesamtmotilität auf. Dies deutet darauf hin, dass sie besonders sensibel auf einer Lagerung bei 6°C reagieren. In der Fachliteratur wurde bereits beschrieben, dass die porcinen *Spermatozoen*, verglichen mit andern Tierarten sowie humanen *Spermatozoen*, kältesensibler reagieren (Medeiros et al., 2002; Medrano et al., 2009; Waterhouse et al., 2006; Watson and Plummer, 1985). Bei einzelnen Individuen bzw. Ejakulaten wurde bereits eine deutlich erhöhte Kältesensiblilität beschrieben (Medrano et al., 2009). Die genauen Ursachen hierfür sind jedoch unbekannt. Bei Individuum 15 war sowohl in den Kontrollproben (6°C) als auch bei den mit 16:1-Fettsäure

supplementierten Proben nach 168 h eine geringfügig erhöhte Motilität zu verzeichnen.

In dem anschließenden Experiment wurden die gesamtmotilen *Spermatozoen* nach einer 300 minütigen Erhöhung der Lagerungstemperatur von 17°C bzw. 6°C, auf die in dem weiblichen Genitaltrakt herrschenden 38°C, computerunterstützt erfasst. In der Abbildung 38 sind die Gesamtmotilitätswerte des TRT-300 nach 48 h bzw. nach 168 h Flüssigkonservierung dargestellt.

Anhand des TRT-300 sind 33% der Spermatozoen der unbehandelten Kontrollproben nach 48 h flüssigkonservierter Lagerung bei 6°C motil (Abb. 38). Bei 17°C sind nach 48 h hingegen 50% motil. Nach 168 h Lagerung sind 31% der bei 6°C und 45% der bei 17°C gelagerten Spermatozoen motil. Somit ist auch bei den hier durchgeführten Untersuchungen, wie bereits bei TRT-30 gezeigt wurde, eine Verringerung des Anteils der gesamtmotilen Spermatozoen durch die Niedrigtemperaturlagerung zu verzeichnen. Die statistischen Analysen haben gezeigt, dass die Reduktion der Gesamtmotilität bei 6°C verglichen mit 17°C in beiden Experimenten signifikant ( $p \le 0.05$ ) ist (Anhang 8.1.2, 8.1.3). Somit wurde auch nach 300-minütiger Inkubation bei 38°C ein Einfluss der Lagerungstemperatur auf die Gesamtmotilität porciner Spermatozoen nachgewiesen.

In den folgenden Analysen werden, wie bereits bei TRT-30 beschrieben, die supplementierten Proben (6°C) mit den nicht behandelten Kontrollproben (6°C und 17°C) bezüglich ihrer Gesamtmotilität nun mittels TRT-300 verglichen (Abb. 38). Nach 48 h Lagerung ist die Gesamtmotilität von allen chemisch supplementierten Proben hoch signifikant erhöht ( $p \le 0,001$ ). Der Anteil der gesamtmotilen *Spermatozoen* steigt verglichen mit den Kontrollproben (6°C) beispielsweise für die mit 16:1 supplementierten Proben von 33% auf 50% und für die mit 18:2 supplementierten Proben von 33% auf 53% an.



#### Abbildung 38: Untersuchung der Gesamtmotilität porciner Spermatozoen mittels TRT-300

Anteil gesamtmotiler, porciner *Spermatozoen* in [%] nach **A.** 48 h Inkubation, 300 min bei 38°C; **B.** 168 h Inkubation, 300 min bei 38°C; Inkubationsvarianten: K 6°C – unbehandelte Kontrollproben, Lagerung bei 6°C; K 17°C - unbehandelte Kontrollproben, Lagerung bei 17°C; Fettsäuren: 16:1 – Hexadecensäure; 18:1 – Octadecensäure; 20:5 – Eicosapentaensäure; 18:2 – Octadecadiensäure; 18:3 – Octadecatriensäure; Die Flüssigkonservierung wurde bei allen supplementierten Proben bei 6°C durchgeführt;

\* signifikante Unterschiede ( $p \le 0.05$ ) bezogen auf die unbehandelten Kontrollproben (K 6°C); <sup>o</sup> Ausreißer, die Beschriftung entspricht den Fallnummern; Die Interpretation der Boxplot-Diagramme ist Anhang 8.1.4 zu entnehmen. Die Daten wurden mittels computerunterstützter Motilitätsanalyse (CASA) erhoben (3.5.3); *n*=1.000 / Probe. Nach 168 h ist jedoch nur bei diesen beiden Proben ein signifikanter Unterschied  $(p \le 0,05)$  in der Gesamtmotilität zu verzeichnen. Der Anteil der gesamtmotilen Spermatozoen steigt in TRT-300 nach 168 h von 31% auf 42% für die 16:1- und für die 18:2-Supplementierungsvariante ( $p \le 0.05$ ), ebenfalls bezogen auf die nicht supplementierten Kontrollproben (6°C) an. Der Vergleich aller supplementierten Varianten mit den nicht behandelten Kontrollproben (17°C) wies nach 48 h-Lagerung keine signifikanten Unterschiede in der Gesamtmotilität auf. Nach 168 h Lagerung wurden nur für die mit 20:5 supplementierten Proben signifikante (p=0,008) Unterschiede festgestellt. Somit wurde zum einem gezeigt, dass durch die Supplementierung mit Fettsäuren eine Erhöhung der Gesamtmotilität verglichen mit den unbehandelten Kontrollproben erreicht wurde. Zum anderen wurde festgestellt, dass nach 168 h das Motilitätsniveau der gängigen Flüssigkonservierungsverfahren bei 17°C durch die Supplementierung und Lagerung bei 6°C mit Ausnahme der mit 20:5 supplementierten Proben erreicht wurde. Nach 168 h in TRT-300 wurden wie im vorangegangenen TRT-30 die Proben von Individuum 15 als Ausreißer klassifiziert. Diese Proben wiesen nach der Supplementierung mit 18:1 oder mit 18:2-Fettsäure eine deutlich erhöhte Gesamtmotilität auf.

Zusammenfassend wurde in diesen Experimenten die gezeigt, dass Lagerungstemperatur einen entscheidenden Einfluss auf die Gesamtmotilität porciner Spermatozoen hat. Die bei 6°C flüssigkonservierten Proben wiesen eine deutlich geringere Gesamtmotilität verglichen mit den bei 17°C gelagerten Proben auf. Im TRT-30 wurde zu beiden Untersuchungszeitpunkten (48 h und 168 h) für alle chemisch supplementierten Proben (6°C), mit Ausnahme von 20:5, ein signifikant erhöhter Anteil von gesamtmotilen Spermatozoen, verglichen mit den unbehandelten Kontrollproben (6°C), beobachtet. Die Zunahme der Gesamtmotilität war für die mit 16:1-Fettsäure supplementierten Proben am deutlichsten. Das Motilitätsniveau der gängigen Flüssigkonservierungsverfahren bei 17°C konnte jedoch in TRT-300 durch keine der hier untersuchten Supplementierungvarianten bei 6°C erreicht werden. Beim Vergleich zwischen TRT-30 und TRT-300 wurde festgestellt, dass das Motilitätsniveau aller untersuchten Proben (6°C und 17°) im TRT-300 geringer war. allen Supplementierungsvarianten (6°C), mit Ausnahme der mit 20:5 Bei supplementierten Proben, wurde im TRT-300 ein annähernd gleicher Anteil von gesamtmotilen Spermatozoen wie in den unbehandelten Kontrollproben (17°C)

nachgewiesen. Desweiteren wurden kältesensible Proben im TRT-30 beobachtet und diese konnten einem bestimmten Individuum zugeordnet werden. Im TRT-300 zeigte dieses Individuum jedoch keine signifikante Abnahme der Gesamtmotilität in allen bei 6°C flüssigkonservierten Proben. Somit kann davon ausgegangen werden, dass nach 300-minütiger Inkubation bei 38°C eine Regeneration des physiologischen Zustandes der *Spermatozoen*, die zuvor bei 6°C gelagert wurden, stattfand. Keine der verwendeten Supplementierungsvarianten übte einen Einfluss auf die Regeneration der kältesensiblen *Spermatozoen* aus. Desweiteren wurde bei den *Spermatozoen* eines anderen Individuums eine ausgeprägte Erhöhung der Gesamtmotilität nach der Supplementierung mit 16:1, 18:1 und 18:2 beobachtet. Der metabolische Einbau dieser Fettsäuren wurde bereits in vorangegangenen Untersuchungen für porcine *Spermatozoen* nachgewiesen (4.3.5). Ob diese individuumsspezifische Erhöhung der Gesamtmotilität supplementierungsbedingt oder ejakulatspezifisch ist, sollte in einem separaten Projekt anhand der hier etablierten Methoden näher untersucht werden.

## 4.5.4 Vitalitätsanalyse flüssigkonservierter, porciner *Spermatozoen* nach Fettsäuresupplementierung

Ein weiterer Parameter für die Beurteilung des physiologischen Zustands der porcinen Spermatozoen ist die Beurteilung ihre Vitalität. Diese lässt sich zum einen die Integrität der Plasmamembran und zum anderen durch die durch Funktionsfähigkeit der Mitochondrien erfassen. Die Bestimmung der Spermatozoenvitalität erfolgte durch Vitalfärbung mittels der Farbstoffe Propidiumjodid (PI) und Rhodamin123 (Rh123). PI wirkt als Nukleinsäureinterkalator und kann die perforierte Zellmembran von toten Zellen, aber in der Regel nicht die intakte Membran von lebenden Zellen, durchdringen. Daher ist es durch die Markierung mit PI möglich, zwischen lebenden und toten Spermatozoen zu differenzieren. Die Markierung funktionsfähiger Mitochondrien erfolgte durch Rh123. Zur Untersuchung der Vitalität nach der Supplementierung mit Fettsäuren wurden die porcinen Spermatozoen flüssigkonserviert (3.4) und mit unterschiedlichen Fettsäuren supplementiert (3.10.1). Nach 72 h Inkubation bei 6°C fand anschließend die Vitalitätsanalyse mittels Rh123 / PI-Markierung statt. Als Kontrolle dienten unbehandelte Proben (6°C und 17°C). Die Auswertung der so lebend-tot markierten *Spermatozoen* wurde mittels durchflußzytometrischer Techniken durchgeführt (3.5.2.1, 3.5.4).

In dem Vitalitätstest mittels Rh123 / PI-Markierung wurde gezeigt, dass in den unbehandelten Kontrollproben 60% der *Spermatozoen* nach 72 h flüssigkonservierter Lagerung bei 6°C vital sind (Abb. 39).



**Abbildung 39: Untersuchung der Vitalität porciner** *Spermatozoen* mittels Rh123/PI-Markierung Anteil vitaler *Spermatozoen* in [%] nach 72 h Inkubation; Inkubationsvarianten: K 6°C – unbehandelte Kontrollproben, Lagerung bei 6°C; K 17°C - unbehandelte Kontrollproben, Lagerung bei 17°C; Fettsäuren: 16:1 – Hexadecensäure; 18:1 – Octadecensäure; 20:5 – Eicosapentaensäure; 18:2 – Octadecadiensäure; 18:3 – Octadecatriensäure; Die Flüssigkonservierung wurde bei allen supplementierten Proben bei 6°C durchgeführt; *n*=15.000 / Probe;

\* signifikante Unterschiede (p ≤ 0,05) bezogen auf die unbehandelten Kontrollproben (K 6°C);

<sup>o</sup> Ausreißer, die Beschriftung entspricht den Fallnummern; Die Interpretation der Boxplot-Diagramme sind 8.1.4 zu entnehmen. Die Daten wurden mittels Rh123 / PI-Markierung und anschließender durchflußzytometrischer Messung erhoben (3.5.2.1, 3.5.4).

Bei 17°C sind zu diesem Zeitpunkt hingegen 78% vital. Somit ist eine Reduktion des Anteils der vitalen *Spermatozoen* durch die Niedrigtemperaturlagerung zu verzeichnen. Aus den statistischen Analysen der Datensätze geht hervor, dass die Reduktion des Anteils vitaler *Spermatozoen* bei 6°C verglichen mit 17°C hoch signifikant ( $p \le 0,001$ ) ist (Anhang 8.1.2-8.1.3). Die Lagerungstemperatur hat somit auch einen entscheidenden Einfluss auf die Vitalität porciner *Spermatozoen*. Nach 72 h Lagerung bei 6°C ist die Vitalität von allen chemisch supplementierten Proben, mit Ausnahme von 20:5, verglichen mit den unbehandelten Kontrollproben (6°C) hoch signifikant erhöht ( $p \le 0,001$ ). Ein deutlich erhöhter Anteil vitaler Spermatozoen wurde in den mit 16:1 und mit 18:1 supplementierten Proben nachgewiesen. Dieser Anteil stieg beispielsweise für die mit 16:1 supplementierten Proben von 60% auf 71% und für die mit 18:1 supplementierten Proben von 60% auf 72%, jeweils verglichen mit den Kontrollproben (6°C), an. Aus den statistischen Analysen der Datensätze geht hervor, dass die Reduktion des Anteils von vitalen Spermatozoen bei allen supplementierten Varianten (6°C), verglichen mit den unbehandelten Kontrollproben (17°C), signifikant ( $p \le 0.05$ ) ist. Die bei den vorangegangenen Motilitätsstudien auffälligen Individuen wurden auch in diesem Vitalitätstest als Ausreißer klassifiziert. Die kältesensiblen Spermatozoen von Individuum 8 wiesen nach der Supplementierung mit 18:3-Fettsäure einen deutlich geringeren Anteil von vitalen Spermatozoen auf. Die in den vorangegangenen Motilitätsuntersuchungen ebenfalls auffälligen Spermatozoen von Individuum 15 wiesen in allen untersuchten Proben den höchsten Anteil vitaler Spermatozoen auf. Nur in den unbehandelten Kontrollproben (17°C) wird auf Grund der geringeren Streuung aller Datensätze dieses Individuum als Ausreißer eingestuft. Die beiden in ihrer Vitalität auffälligen Proben von Individuum 8 und Individuum 15 stützen somit die Ergebnisse der vorangegangen Motilitätsanalysen (4.5.3).

Zusammenfassend wurde in diesem Experiment gezeigt, dass alle verwendeten Supplementierungsvarianten, mit Ausnahme von 20:5-Fettsäure, zu einer signifikanten Erhöhung der Spermatozoenvitalität führten. Das Vitalitätsniveau der gängigen Flüssigkonservierungsverfahren (17°C) wurde jedoch bei keiner der untersuchten Supplementierungsvarianten (6°C) erreicht.

# 4.5.5 Untersuchung des akrosomalen Status flüssigkonservierter porciner *Spermatozoen* nach Fettsäuresupplementierung

Die Befruchtungskompetenz der *Spermatozoen* ist zum einem durch ihre Motilität, Plasmamembranintegrität sowie ihre Vitalität gekennzeichnet (1.2, 1.3). Ein weiterer wichtiger Parameter zur Gesamtbeurteilung des physiologischen Zustandes ist der akrosomale Status der *Spermatozoen* (Curry and Watson, 1995). Porcine

Spermatozoen reagieren im Vergleich zu anderen Tierarten sowie zu humanen Spermatozoen sehr empfindlich auf eine Niedrigtemperaturlagerung (Rusu et al., 2011). Im folgenden Experiment wurden die Auswirkungen der Niedrigtemperaturlagerung sowie der Fettsäuresupplementierung auf den akrosomalen Status porciner Spermatozoen untersucht. Hierfür wurden die Spermatozoen zuerst flüssigkonserviert (3.4), dann mit unterschiedlichen Fettsäuren supplementiert (3.10.1) und nach einer Inkubation von 24 h bzw. 72 h fixiert (3.5.2.2). Anschließend erfolgte die mikroskopische Untersuchung des akrosomalen Status. Die Auswertung hat ergeben, dass 7% der Spermatozoen in den unbehandelten Kontrollproben (6°C) nach 24 h flüssigkonservierter Lagerung Akrosomdefekte aufweisen (Abb. 40). Bei den unbehandelten Kontrollproben (17°C) sind zu diesem Zeitpunkt hingegen 5% akrosomdefekt. Aus den statistischen Analysen der Datensätze geht hervor, dass die Zunahme des Anteils akrosomdefekter Spermatozoen bei 6°C verglichen mit 17°C sowohl nach 24 h als auch nach 72 h  $(p \le 0.05)$ Flüssigkonservierung signifikant ist (Anhang 8.1.2-8.1.3). Die Lagerungstemperatur hat somit auch einen entscheidenden Einfluss auf den akrosomalen Status porciner Spermatozoen.



#### Abbildung 40: Mikroskopische Untersuchung akrosomdefekter porciner Spermatozoen

Untersuchung akrosomdefekter Spermatozoen nach A. 24 h Lagerung; B. nach einer 72 h Lagerung;

Inkubationsvarianten: K 6°C – unbehandelte Kontrollproben, Lagerung bei 6°C; K 17°C - unbehandelte Kontrollproben, Lagerung bei 17°C;

Fettsäuren: 16:1 – Hexadecensäure; 18:1 – Octadecensäure; 20:5 – Eicosapentaensäure; 18:2 – Octadecadiensäure; 18:3 – Octadecatriensäure;

Die Flüssigkonservierung wurde bei allen supplementierten Proben bei 6°C durchgeführt; *n*=200 / Probe;

\* signifikante Unterschiede ( $p \le 0.05$ ) bezogen auf die unbehandelten Kontrollproben (K 6°C);

<sup>o</sup> Ausreißer, die Beschriftung entspricht den Fallnummern; Die Interpretation der Boxplot-Diagramme ist 8.1.4 zu entnehmen. Die Angaben zur Fixierung der *Spermatozoen* und die Bedingungen der mikroskopischen Untersuchungen siehe 3.5.2.2.

In den folgenden Analysen werden die supplementierten Proben (6°C) mit den nicht behandelten Kontrollproben (6°C und 17°C) bezüglich ihres akrosomalen Status nach 24 h und nach 72 h verglichen. Zu beiden Zeitpunkten ist nur bei den mit 16:1 chemisch supplementierten Proben der Anteil akrosomdefekter Spermatozoen signifikant niedriger ( $p \le 0.05$ ) verglichen mit den unbehandelten Kontrollproben (6°C). Bei dem Vergleich der supplementierten Proben (6°C) mit den unbehandelten Kontrollproben (17°C) wurde für alle Supplementierungsvarianten, mit Ausnahme von 16:1, eine signifikante Zunahme des Anteils akrosomdefekter Spermatozoen nachgewiesen. Somit wurde festgestellt, dass durch die Supplementierung mit 16:1 bei Niedrigtemperaturlagerung weniger akrosomdefekte Spermatozoen, verglichen mit den unbehandelten Kontrollproben (6°C), vorhanden sind. Diese Supplementierungsvariante (6°C) führt zu einem vergleichbar geringen Anteil akrosomdefekter Spermatozoen wie die gängigen Flüssigkonservierungsverfahren bei 17°C.

Bei der Auswertung der Datensätze wurden im Vergleich mit den vorangegangenen Untersuchungen deutlich mehr Ausreißer klassifiziert. Eine mögliche Ursache hierfür kann die geringe Anzahl ( $n=2 \times 10^2$ ) der einzeln untersuchten *Spermatozoen* aus einer Gesamtprobe ( $n=2 \times 10^9$ ) sein. Auch die Subjektivität bei der Einstufung des akrosomalen Status kann dafür verantwortlich sein (Gadea, 2005). Durch die Anwendung des für Ausreißer unempfindlichen nicht-parametrischen Vorrang-Test-Verfahrens können die oben genannten möglichen Fehlerquellen minimiert werden.

Zusammenfassend wurde in diesen Experimenten gezeigt, dass bei der Niedrigtemperaturlagerung (6°C) ein häufigeres Auftreten von akrosomalen Schäden bei den porcinen *Spermatozoen* beobachtet wurde. Die Supplementierung bei 6°C mit 16:1 führte zu einer signifikanten Verringerung des Anteils akrosomdefekter *Spermatozoen*. Der Anteil akrosomdefekter *Spermatozoen* entsprach nur bei dieser 16:1-Supplementierungsvariante dem Niveau der unbehandelten Kontrollproben, die bei 17°C gelagert wurden.

## 4.5.6 Vergleich der Supplementierungsvarianten untereinander bezüglich ihrer physiologischen Auswirkungen

In den vorangegangen Untersuchungen wurden zuerst der physiologische Zustand von flüssigkonservierten Spermatozoen bei unbehandelten Kontrollproben (6°C und 17°C) zueinander verglichen (Test 1). Dann erfolge ein paarweiser Vergleich der unterschiedlich supplementierten Proben mit den beiden Kontrollproben (Test 2 und Test 3). Die paarweise angewendeten statistischen Analysen ermöglichen keine Vergleiche der Supplementierungsvarianten untereinander bezüglich ihrer physiologischen Auswirkungen. Daher wurden die verwendeten Supplementierungsvarianten zuerst miteinander in einem globalen Test verglichen (Test 4). Falls in diesem Test signifikante Unterschiede für die untersuchten physiologischen Parameter festgestellt wurden, erfolgte dann ein ungeplanter Post-Hoc-Test (Test 5). Für die Bewertung des physiologischen Zustandes der porcinen Spermatozoen wurden elf verschiedene Untersuchungen ie Supplementierungsvariante durchgeführt (8.1.5). Beim Vergleich dieser Varianten untereinander wurden mittels des globalen Tests bei zwei Untersuchungen (Erfassung der Gesamtmotilität in TRT-300 nach 48 h; akrosomaler Status nach 72 h) signifikante ( $p \le 0.05$ ) Unterschiede nachgewiesen. Bei fünf Untersuchungen (je Erfassung der Gesamt- und progressiven Motilität in TRT-30 nach 48 h und nach 168 h; Vitalitätstest Rh123/PI nach 72 h) waren die Unterschiede hochsignifikant  $(p \le 0.001)$ . Daher wurde für diese sieben Untersuchungen im Anschluss jeweils ein Post-Hoc-Test durchgeführt. Die Ergebnisse dieser Tests dürfen nur dann interpretiert werden, wenn der vorangegangene Friedmann-Test signifikant ( $p \le 0.05$ ) war. Um die Aussagekraft der statistischen Analysen jedoch zu erhöhen, wird in der folgenden Diskussion nur auf die hochsignifikanten Unterschiede zwischen den Supplementierungsvarianten eingegangen ( $p \le 0,001$ ). Die Ergebnisse des Post-Hoc-Tests sind in Tabelle 11 dargestellt. Die statistische Analyse hat ergeben, dass hochsignifikante Unterschiede nur beim jeweiligen Vergleich entweder mit 20:5 oder 16:1 vorhanden sind. Dies weist nur darauf hin, dass die Supplementierung mit einer von diesen beiden Fettsäuren im Vergleich mit den anderen getesteten Supplementierungsvarianten sich deutlich unterscheidet.

|           |      | Beurteilung des physiologischen Zustandes |       |       |       |       |
|-----------|------|-------------------------------------------|-------|-------|-------|-------|
| Vergleich |      | A1                                        | A2    | A5    | A6    | A9    |
| 16:1      | 18:1 | 0,012                                     | 0,023 | 0,005 | 0,005 | 0,697 |
|           | 20:5 | 0,000                                     | 0,000 | 0,022 | 0,037 | 0,001 |
|           | 18:2 | 0,021                                     | 0,150 | 0,022 | 0,037 | 0,140 |
|           | 18:3 | 0,012                                     | 0,148 | 0,024 | 0,160 | 0,526 |
| 18:1      | 16:1 | 0,012                                     | 0,023 | 0,005 | 0,005 | 0,697 |
|           | 20:5 | 0,262                                     | 0,578 | 0,751 | 0,542 | 0,001 |
|           | 18:2 | 0,807                                     | 0,578 | 0,199 | 0,199 | 0,025 |
|           | 18:3 | 0,823                                     | 0,701 | 0,028 | 0,031 | 0,333 |
| 18:2      | 16:1 | 0,021                                     | 0,150 | 0,022 | 0,037 | 0,140 |
|           | 18:1 | 0,807                                     | 0,578 | 0,199 | 0,199 | 0,025 |
|           | 20:5 | 0,006                                     | 0,013 | 0,649 | 0,751 | 0,000 |
|           | 18:3 | 0,929                                     | 0,860 | 0,424 | 1,000 | 0,782 |
| 18:3      | 16:1 | 0,012                                     | 0,148 | 0,024 | 0,160 | 0,526 |
|           | 18:1 | 0,823                                     | 0,701 | 0,028 | 0,031 | 0,333 |
|           | 20:5 | 0,003                                     | 0,012 | 0,377 | 0,272 | 0,004 |
|           | 18:2 | 0,929                                     | 0,860 | 0,424 | 1,000 | 0,782 |
| 20:5      | 16:1 | 0,000                                     | 0,000 | 0,022 | 0,037 | 0,001 |
|           | 18:1 | 0,262                                     | 0,578 | 0,751 | 0,542 | 0,001 |
|           | 18:2 | 0,006                                     | 0,013 | 0,649 | 0,751 | 0,000 |
|           | 18:3 | 0,003                                     | 0,012 | 0,377 | 0,272 | 0,004 |

Tabelle 11: Ergebnisse des Post-Hoc-Tests. Vergleich der Supplementierungsvarianten untereinander bezüglich ihrer physiologischen Auswirkungen.

A1: TRT-30min nach 48 h (Gesamtmotilität); A2: TRT-30min nach 48 h (progressive Motilität);
A5: TRT-30min nach 168 h (Gesamtmotilität); A6. TRT-30min nach 168 h (progressive Motilität);
A9. Vitalitätstest Rh123 / PI nach 72 h.

Hochsignifikante ( $p \le 0,001$ ) Ergebnisse sind grau unterlegt. Die Beschriftung der durchgeführten Untersuchungen der physiologischen Parameter entspricht der Darstellung im Anhang 8.1.3.

Ob der Effekt bei dem jeweils angewendeten Versuch eine positive oder eine negative Auswirkung auf den physiologischen Zustand der Spermatozoen ausübt, kann anhand vorliegender Signifikanz nicht beurteilt werden. Für diese Bewertung ist die Betrachtung der positiven und negativen Ränge des Post-Hoc-Tests notwendig (8.1.3). Dies hat ergeben, dass die Supplementierung mit 16:1 verglichen mit der 20:5-Supplementierungsvariante in TRT-30 nach 48 h zu einer Erhöhung des Anteils von gesamt- und progressiven motilen Spermatozoen und auch zu eine Erhöhung des Anteils vitaler Spermatozoen führt. Die Supplementierung mit 20:5 führte jeweils verglichen mit den 16:1-, 18:1- und 18:2-Supplementierungsvarianten zu einer Reduktion des Anteils von vitalen Spermatozoen. Bei der Untersuchung der Gesamtund Progressivmotilität TRT-30 nach 168 h unterschieden sich die verwendeten Supplementierungsvarianten nicht hochsignifikant. Für die 18:3-Supplementierungsvariante wurde ebenfalls in keiner der durchgeführten Untersuchungen hochsignifikante Unterschiede festgestellt.

## 4.6 Abschließender Überblick

Im Folgenden wird eine kritische Zusammenfassung der Ergebnis- und Disskussionkapitel des ersten Teils der Arbeit dargestellt, die sich mit dem Einbau von Fettsäuren in porcine Spermatozoenlipide befasst. Danach werden die physiologischen Auswirkungen auf Parameter während der Flüssigkonservierung bei niedrigen Temperaturen dargestellt und auf möglichen Ursachen dafür anhand des Vergleichs mit den Angaben in der Fachliteratur kurz eingegangen. Abschließend erfolgt eine allgemeine Zusammenfassung mit Ausblick.

Diese Arbeit beschäftigte sich mit den physiologischen Veränderungen porciner Spermatozoen. die metabolischen Einbau durch einen von Fettsäuren (Hexadecensäure, Octadecensäure. Octadecadiensäure, Octadecatriensäure, Eicosapentaensäure) in ihre Lipide hervorgerufen werden (Abb. 41). Dazu wurde zunächst ① die Lipidzusammensetzung porciner Spermatozoen untersucht, 2 gefolgt von Fettsäureanalysen einzelner Lipidklassen. Es wurden polare und neutrale Lipide detailliert untersucht. Hauptvertreter der polaren Lipidklassen sind Glycerophospholipide (GPC, GPE) und diese sind sowohl durch das Vorkommen von diacyl- als auch durch Ether-Lipidspezies gekennzeichnet. Die Fettsäuren und Fettaldehyde dieser Spezies sind mittel- und langkettig und vor allem hochgradig ungesättigt. Der Hauptvertreter der neutralen Lipidklassen ist Diacylglycerol (1,2-DAG) mit mittlerer Kettenlänge und hauptsächlich gesättigten Resten. 1,2-DAG ist die Vorstufe bei der Biosynthese von Glycerophospholipiden (GPL). Da Unterschiede in der Fettsäurezusammensetzung bei DAG und GPL festgestellt wurden, kann davon ausgegangen werden, dass keine aktive Biosynthese von GPL mit ungesättigten Acyl-Resten in flüssigkonservierten porcinen Spermatozoen stattfindet. Die Untersuchungen der metabolischen Aufnahme von Fettsäuren in Spermatozoenlipide wurden mittels chemischer Supplementierung durchgeführt. Als Substrat wurde die ungesättigte mittelkettige Octadecadiensäure ③, die in GPC aber nicht in 1,2-DAG vorkommt, ausgewählt; ④ die Supplementierungsbedingungen wurden analysiert und (5) anschließend wurden die einzusetzenden Konzentrationen festgelegt.



Abbildung 41: Aufnahme von Fettsäuren in die Lipide porciner Spermatozoen und physiologische Auswirkungen.

**A.** Lipid und Fettsäurezusammensetzung: ① Analyse der Lipidzusammensetzung.

2 Untersuchung der Fettsäure- und Fettaldehydzusammensetzung einzelner Lipidklassen porciner *Spermatozoen* (Kapitel:4.1, 4.2).

③ Unterschiede in der Fettsäurezusammensetzung zwischen DAG und GPL. Octadecadiensäure (18:2) ist das Substrat für die Untersuchungen der metabolischen Aufnahme von Fettsäuren (Kapitel:4.3).

 Analyse der Supplementierungsbedingungen in Zytotoxizitätsassays (Kapitel: 4.3.1.1-4.3.1.3).

**B.** Untersuchung des metabolisches Einbaus:

(5) Bestimmung der einzusetzenden Konzentrationen einzelner Komponenten des Supplementierungsmediums (Kapitel:4.3.1.4).

6 Radiochemische Untersuchungen des metabolischen Einbaus von 18:2 in GPA, 1,2-DAG und GPC (Kapitel: 4.3.3-4.3.5).

⑦ Bakterielle Metabolisierung, Analyse des metabolischen Einbaus von 18:2 in die bakteriellen GPE / GPI (Kapitel: 4.3.2).

(B)Nachweis der *de-novo* Entstehung des ungesättigten DAG (18:2 / 18:2) (Kapitel: 4.3.4, 4.3.5.2). Die endogen in porcinen *Spermatozoen* vorkommenden 16:1, 18:1, 18:2, 18:3 werden als Substrat für die Lipidbiosynthese akzeptiert. 20:5 kommt in den Lipiden nicht vor und wird nicht als Substrat akzeptiert (Kapitel:4.3.6)

(9) Erstellung einer Datenbank für alle möglicherweise in porcinen *Spermatozoen* vorkommenden DAG und GPC (Kapitel: 4.3.5, 8.1.1).

PAP: Phosphatidat-Phosphatase; DAGK: DAG-Kinase; CPT: Choline-Phosphat Cytidylyltransferase; PLC: Phospholipase-C; PLA2: Phospholipase-A2; LAT: Lyso-Glycerophosphatidylcholin-Acyltransferase |

1 Nachweis von DAG(18:2/18:2), GPC (16:1/18:2) und GPC (18:2/18:2) mittels hochauflösender Massenspektrometrie (Kapitel: 4.3.5.1). Ein bevorzugter metabolischer Einbau entweder in 1,2-DAG oder GPC ist von der Menge des Substrates, Dauer der Supplementierung sowie der Inkubationstemperatur abhängig. Das Seminalplasma kann die metabolische Aufnahme zusätzlich beeinflussen (Kapitel: 4.4.1-4.4.4). Niedrigtemperaturlagerung führt zur Reduktion der bakteriellen Kontamination (Kapitel: 4.4.3).

C. Metabolische Aufnahme von freien Fettsäuren in die Spermatozoenlipide und mögliche Mechanismen der physiologischen Auswirkungen: siehe Kapitel: 4.4.3-4.5.

Die metabolische Aufnahme der Octadecadiensäure erfolgte entweder in die Lipide porciner Spermatozoen (6): GPA, 1,2-DAG, GPC) oder in die bakteriellen Lipide (⑦: GPI, GPE). Nach der chemischen Supplementierung mit Octadecadiensäure wurde eine de-novo Entstehung von ungesättigtem mittelkettigem 1,2-DAG nachgewiesen, wobei keine Oxidation, Desaturation oder Elongation der Acyl-Reste stattfand (8). Für die Lipidklassen DAG und GPC, in welche die Octadecadiensäure metabolisch aufgenommen wird, wurde für die hochauflösenden massenspektometrischen Untersuchungen eine Datenbank erstellt (9). Dadurch wurden die Lipidspezies als DAG (18:2 / 18:2), GPC (16:0 / 18:2) und GPC (18:2 / 18:2) identifiziert (1). Die metabolische Aufnahme von den in porcinen Spermatozoenlipiden vorkommenden 16:1, 18:1 und 18:3 wurde ebenfalls festgestellt während für 20:5, die endogen nicht vorkommt, hingegen kein metabolischer Einbau nachgewiesen wurde (4.3.6).in Wenn einem Markierungsexperiment das Substrat (Octadecadiensäure) nur kurzzeitig zu Verfügung stand, fand kein bevorzugter metabolischer Einbau in 1,2-DAG oder GPC statt und die Menge des aufgenommenen Substrates war in den beiden Lipidklassen etwa gleich. Bei einer kontinuierlichen Substratzufuhr erfolgte hingegen eine metabolische Aufnahme vor allem in 1,2-DAG. Die Supplementierung bei 17°C führt, verglichen mit der Supplementierung bei 6°C, zur Erhöhung der metabolischen Aufnahmerate Octadecadiensäure der und kann individuumsbzw. ejakulatspezifischen Einflüssen unterliegen. Die metabolische Aufnahme von Octadecadiensäure in die bakteriellen Lipide war bei der Niedrigtemperaturlagerung deutlich geringer. Dies deutet darauf hin, dass der bakterielle Stoffwechsel herabgesetzt wurde und dies zu einer Reduktion der bakteriellen Kontamination führte (4.4.3). Die Niedrigtemperaturlagerung beeinflusst jedoch auch die porcinen Spermatozoen (4.5.3-4.5.5). Durch den Zusatz der hier untersuchten Fettsäuren zum Flüssigkonservierungsmedium konnte, mit Ausnahme von Eicosapentaensäure, eine Verbesserung des physiologischen Zustandes im Vergleich zu den unbehandelten Kontrollproben verzeichnet werden (4.5.3 - 4.5.5).Anhand der massenspektrometrischen Analysen wurde gezeigt, dass Eicosapentaensäure nicht metabolisch in die porcinen Spermatozoenlipide eingebaut wird (4.3.6). Aus diesem Grund kann angenommen werden, dass die Metabolisierung der Fettsäuren sowohl
zu einer Reduktion des Anteils akrosomdefekter *Spermatozoen* als auch zu einer Zunahme der Motilität führt.

Obwohl angenommen wird, dass die *Spermatozoen* ihre Fähigkeit zu Wachstum, Zellteilung, Fähigkeit zur Reparatur und Biosynthese in der abschließenden Phase der Spermatogenese verlieren und ausschließlich dem Zwecke der Fertilisation dienen (Yoshida, 2000), sind die *Spermatozoen* zu einer aktiven Lipidbiosynthese befähigt (Abb. 41). Erst nach dem Zusatz von ungesättigten, mittelkettigen Fettsäuren zu dem Flüssigkonservierungsmedium findet eine *de-novo* Generierung von ungesättigtem mittelkettigen 1,2-DAG, wobei die beiden Fettsäuren aus dem Supplementierungsmedium stammen (Abb. 41, I). Es ist bekannt, dass die Kältetoleranz der *Spermatozoen* durch den Anteil ungesättigter Acyl-Reste in den Membranlipiden moduliert wird (Arav et al., 2000). Daher kann angenommen werden, dass die Kältetoleranz auf der Membranenebene sowohl durch die *de-novo* Synthese von ungesättigtem 1,2-DAG als auch durch die Zunahme von bereits vorkommenden GPC mit ungesättigten Acyl-Resten erhöht wird (Abb. 41, II). Dies kann die allgemeine Verbesserung des physiologischen Zustandes der *Spermatozoen* bei der Niedrigtemperaturlagerung erklären (4.5.6).

Bei Untersuchung der physiologischen alle der Parameter wurde für Supplementierungsvarianten, mit Ausnahme von 20:5, eine Erhöhung des Anteils motiler und vitaler niedrigtemperaturgelagerter Spermatozoen festgestellt (4.5.3-4.5.4). Da bei dem Zusatz von 20:5 zu dem Flüssigkonservierungsmedium kein metabolischer Einbau in 1,2-DAG stattfindet (4.3.6), kann angenommen werden, dass die Auswirkung auf die Motilität und Vitalität durch das von den Spermatozoen de-novo synthetisierte DAG (16:1, 18:1, 18:2 und 18:3) zurück zu führen ist. DAG kann während der Kapazitation als Signalmolekül die Proteinkinase-C aktivieren und dies führt zur Akrosomreaktion (Baldi et al., 2000). Unter physiologischen Bedingungen entsteht DAG bei den Spermatozoen erst während der Kapazitation durch die Hydrolyse von GPL durch die phosphoinositol- oder durch die phosphocholinspezifische Phospholipase-C (O'Toole et al., 1996; Roldan, 1998; Roldan and Shi, 2007). Daher kann angenommen werden, dass die Zunahme des Anteils von motilen Spermatozoen auf eine de-novo Biosynthese von DAG, ohne die vorangegangene Hydrolyse von GPL zurück zu führen ist (Abb. 41, III). Diese Annahme wird dadurch bekräftigt, dass die Zunahme des Anteil der gesamtmotilen

*Spermatozoen* nur in den 16:1, 18:1, 18:2 und 18:3-Supplementierungsvarianten beobachtet wurde. Bei den unbehandelten Kontrollproben und bei der Supplementierung mit 20:5 wurde hingegen keine Zunahme der Motilität beobachtet (4.5.3).

Unter physiologischen Bedingungen findet die Aufrechterhaltung der intrazellulären Ca<sup>2+</sup>-Konzentration (Calcium-Homöostase) statt. Ein Anstieg der intrazellulären Konzentration kann dazu führen, dass die Ca<sup>2+</sup>-Ionen, als Signalmoleküle, die Hydrolyse von GPL durch die Ca<sup>2+</sup>-abhängigen Phospholipasen-A<sub>2</sub> aktivieren können (Abb. 41, V). Die Hydrolyse von GPC zu Lyso-GPC und freie Fettsäure führt zur Vesikulation der Plasmamembran und der äußeren akrosomalen Membran und anschließend zur Freisetzung des akrosomalen Inhaltes (Abou-haila and Tulsiani, 2009; Flesch and Gadella, 2000; Regazzi and Tomes, 2007; Roldan and Shi, 2007). Während der Niedrigtemperaturlagerung von flüssigkonservierten *Spermatozoen* kann auf Grund der Reduktion des Stoffwechsels auch die Aktivität von Na<sup>+</sup>/K<sup>+</sup>-ATPasen herabgesetzt werden, wodurch die intrazelluläre Na<sup>+</sup>-Konzentration ansteigt. Dies führt zur Depolarisation der Zellmembran und kann anschließend die spannungsabhängigen Ca<sup>2+</sup>-Kanäle aktivieren (Watson, 2000). Die metabolische Aufnahme von zum Medium zugesetzten Fettsäuren in die Lyso-GPC kann daher zur Verhinderung der Akrosomreaktion führen (Abb. 41, IV).

Diese Annahme wird dadurch gestärkt, dass trotz der Niedrigtemperaturlagerung keine Zunahme der akrosomalen Schäden, wie bei den unbehandelten Kontrollproben, beobachtet werden konnte (4.5.5).

### 5 ZUSAMMENFASSUNG

Die vorliegende Arbeit beschäftigt sich mit den physiologischen Veränderungen porciner Spermatozoen, die durch einen metabolischen Einbau von Fettsäuren (Hexadecensäure, Octadecensäure, Octadecadiensäure, Octadecatriensäure, Eicosapentaensäure) Spermatozoenlipide hervorgerufen Zu in werden. Konservierungszwecken werden den Spermatozoen seit Jahrzehnten empirisch lipidund fettsäurehaltige Substanzen als Kryoprotektiva zugefügt, die genaue molekulare Wirkungsweise ist jedoch bis dato nicht bekannt. Ziel dieser Arbeit war daher sowohl die Untersuchung der metabolischen Aufnahme von Fettsäuren in die Spermatozoenlipide als auch die Bewertung des physiologischen Zustandes porciner Spermatozoen mit Hinblick auf die Niedrigtemperaturlagerung. Die Niedrigtemperaturlagerung von Spermatozoen bei 4 bis 6°C führt zu einer Reduktion bakteriellen Kontamination und daher eine der soll Verringerung von Antibiotikazusätzen gestatten. was wiederum künftig die Entwicklung von für Antibiotikaresistenzen einschränken soll. Insbesondere die sehr kälteempfindlichen porcinen Spermatozoen ist eine Lagerung bei 6°C allerdings mit erheblichen Verlusten der Vitalität verbunden. Im ersten Teil der Arbeit wurden alle in den porcinen Spermatozoen vorkommenden Lipide und die Fettsäuren mittels GC und MALDI-TOF-MS analysiert und eine detaillierte Lipid-Datenbank erstellt. Hauptvertreter der polaren Lipidklassen sind Glycerophospholipide (GPC, GPE), mit hauptsächlich ungesättigten, mittel- und langkettigen Fettsäuren und Fettaldehyden. Der Hauptvertreter der neutralen Lipidklassen ist Diacylglycerol (1,2-DAG) mit mittlerer Kettenlänge und hauptsächlich gesättigten Resten. Es wurde gezeigt, dass Octadecadiensäure in der beispielsweise gesamten GPC-Klasse porciner Spermatozoen mit ca. 15 mol% endogen vorkommt.

Die metabolische Aufnahme von Fettsäuren in die Lipide wurde exemplarisch durch die Supplementierung des Flüssigkonservierungsmediums mit [1-<sup>14</sup>C]-Octadecadiensäure radiochemisch untersucht. Anhand dieser Experimente wurde gezeigt, dass die Temperatur und die Inkubationsdauer wichtige Faktoren für die metabolische Aufnahme dieser Radiochemikalie in die Spermatozoenlipide sind. Die zugesetzten Fettsäurenwerden sowohl in die neutralen (1,2-DAG) als auch in die polaren Lipide (*diacyl*-GPC) der *Spermatozoen* eingebaut. Nach Supplementierung mit einheitlich <sup>13</sup>C-markierter Octadecadiensäure wurden die betroffenen Lipide

mittels MALDI-TOF-MS und Q-TOF-MS als DAG (18:2 / 18:2), GPC (16:0 / 18:2) und GPC (18:2 / 18:2) charakterisiert. Dabei konnte gezeigt werden, dass es sich bei DAG (18:2 / 18:2) um eine de-novo Biosynthese handelt. Die gleichen Ergebnisse wurden auch für die in den Spermatozoenlipiden vorkommenden Hexadecen-, Octadecen-, und Octadecatriensäure erhalten. Die chemische Supplementierung mit der in porcinen Spermatozoen endogen nicht vorkommender Eicosapentaensäure führte hingegen zu keiner metabolischen Aufnahme in die Lipide. Bei der Untersuchung des physiologischen Zustandes von Spermatozoen wurde gezeigt, dass insbesondere Supplementierungsvarianten mit endogen vorkommenden Fettsäuren im Vergleich zur Kontrolle ohne Supplementierung zu einer besseren Spermatozoenvitalität und Motilität bei Niedrigtemperaturlagerung führten. Gleichzeitig wurde eine Verminderung des Auftretens von akrosomalen Schäden festgestellt. Hexadecensäure stabilisierte die alle Vitalitätsparameter signifikant.

Damit stellt eine Supplementierung der *Spermatozoen* mit ausgewählten Fettsäuren eine effektive Maßnahme zur Lagerung von *Spermatozoen* bei 4 bis 6°C dar, so dass langfristig die Reduzierung von Antibiotikazusätzen bei der Flüssigkonservierung möglich wird.

## 6 AUSBLICK

Die zum Flüssigkonservierungsmedium zugesetzten Fettsäuren, die endogen in den Spermatozoen vorkommen, werden in die Spermatozoenlipide metabolisch aufgenommen. Insbesondere die Metabolisierung von Octadecadiensäure wurde in dieser Arbeit exemplarisch ausführlich beschrieben. In Analogie sollten in nachfolgenden Arbeiten weitere Fettsäuren (vor allem die Hexadecensäure) und auch andere Lipidkomponenten (z.B. Cholinphosphat, Glycerin) im Hinblick auf die Lipidzusammensetzung der Veränderungen in der Spermatozoen bei Niedrigtemperaturlagerung untersucht Als werden. Grundlage wären Untersuchungen zu Zytotoxizität, Bioverfügbarkeit und Verabreichungsmethoden dieser Substanzen durchzuführen. Die physiologischen Auswirkungen neuer Komponenten des Flüssigkonservierungsmediums während der Niedrigtemperaturlagerung müssten begleitend dokumentiert werden. Zusätzlich zu den in dieser Arbeit vorgenommenen Aussagen zu Parametern der Spermagualität, wären mögliche Effekte auf die Befruchtungsfähigkeit der Spermien, die Embryogenese sowie die weitere Entwicklung von Trächtigkeiten und Nachkommen zu untersuchen. Eine detailliertere Analyse der Metabolisierung exogen verfügbarer Fettsäuren durch die Spermatozoen und die Bestimmung der relevanten Enzyme, Transporter etc. sollte perspektivisch auch zur Aufklärung des Wirkungsmechanismus der Supplementierung bezüglich der Spermatozoenvitalität beitragen.

## 7 LITERATURVERZEICHNIS

Abou-haila, A., and Tulsiani, D.R. (2009). Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch Biochem Biophys 485, 72-81.

Althouse, G.C. (2008). Sanitary procedures for the production of extended semen. Reprod Domest Anim 43 Suppl 2, 374-378.

Althouse, G.C., and Lu, K.G. (2005). Bacteriospermia in extended porcine semen. Theriogenology 63, 573-584.

Althouse, G.C., Pierdon, M.S., and Lu, K.G. (2008). Thermotemporal dynamics of contaminant bacteria and antimicrobials in extended porcine semen. Theriogenology 70, 1317-1323.

Am-In, N., Kirkwood, R.N., Techakumphu, M., and Tantasuparuk, W. (2011). Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology 75, 897-903.

Amidi, F., Farshad, A., and Khor, A.K. (2010). Effects of cholesterol-loaded cyclodextrin during freezing step of cryopreservation with TCGY extender containing bovine serum albumin on quality of goat spermatozoa. Cryobiology 61, 94-99.

Ansell, G.B., and Spanner, S. (1982). Phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine. In Hawthorne J. N., Ansell G. B.(eds): "Phospholipids" (Amsterdam; Oxford, Elsevier Biomedical).

Arav, A., Pearl, M., and Zeron, Y. (2000). Does membrane lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? Cryo Letters 21, 179-186.

Arnhold, J., Panasenko, O.M., Schiller, J., Vladimirov Yu, A., and Arnold, K. (1995). The action of hypochlorous acid on phosphatidylcholine liposomes in dependence on the content of double bonds. Stoichiometry and NMR analysis. Chem Phys Lipids 78, 55-64.

Austin, C.R. (1952). The capacitation of the mammalian sperm. Nature 170, 326.

Aveldano, M.I., Rotstein, N.P., and Vermouth, N.T. (1992). Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series. Biochem J 283 (1), 235-241.

Baldi, E., Luconi, M., Bonaccorsi, L., Krausz, C., and Forti, G. (1996). Human sperm activation during capacitation and acrosome reaction: role of calcium, protein phosphorylation and lipid remodelling pathways. Frontiers in Bioscience 1, d189-205.

Baldi, E., Luconi, M., Bonaccorsi, L., Muratori, M., and Forti, G. (2000). Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Frontiers in Bioscience 1, E110-123.

Baracca, A., Sgarbi, G., Solaini, G., and Lenaz, G. (2003). Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta 1606, 137-146.

Bathgate, R., Maxwell, W.M., and Evans, G. (2006). Studies on the effect of supplementing boar semen cryopreservation media with different avian egg yolk types on in vitro post-thaw sperm quality. Reprod Domest Anim 41, 68-73.

Bedford, J.M., and Hoskins, D.D. (1990). The mammalian spermatozoon: morphology, biochemistry and physiology. In Marshall's Physiology of Reproduction, 4th Edn Vol. 2, pp 379–568.

Binder, R., and Archimbaud, Y. (2000). Sensitivity of radioluminography using (14)C-labeled tracers in whole-body sections of rats. Regul Toxicol Pharmacol 31, 23-26.

Bishop, W.R., and Bell, R.M. (1988). Assembly of phospholipids into cellular membranes: biosynthesis, transmembrane movement and intracellular translocation. Annu Rev Cell Biol 4, 579-610.

Black, P.N., and DiRusso, C.C. (1994). Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. Biochim Biophys Acta 1210, 123-145.

Bligh, E.G., and Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917.

Bower, K. (2003). When to use Fisher's exact test. American Society for Quality, Six Sigma Forum Magazine 2, 35–37.

Boyers, S.P. (1989). Fertilization and implantation. Curr Opin Obstet Gynecol 1, 45-54.

Browse, J., McCourt, P.J., and Somerville, C.R. (1986). Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152, 141-145.

Buhr, M.M., Curtis, E.F., and Kakuda, N.S. (1994). Composition and behavior of head membrane lipids of fresh and cryopreserved boar sperm. Cryobiology 31, 224-238.

Busch, W. (2001). Veterinärmedizinische Andrologie : Physiologie und Pathologie der Fortpflanzung bei männlichen Tieren; Stuttgart; New York, Schattauer.

Castellano, C.A., Audet, I., Bailey, J.L., Laforest, J.P., and Matte, J.J. (2010). Dietary omega-3 fatty acids (fish oils) have limited effects on boar semen stored at 17 degrees C or cryopreserved. Theriogenology 74, 1482-1490.

Castro, P.M.L., Ison, A.P., Hayter, P.M., and Bull, A.T. (1995). CHO cell growth and recombinant interferon-γ production: Effects of BSA, Pluronic and lipids. Cytotechnology 19, 27-36.

Chakrabarty, J., Banerjee, D., Pal, D., De, J., Ghosh, A., and Majumder, G.C. (2007). Shedding off specific lipid constituents from sperm cell membrane during cryopreservation. Cryobiology 54, 27-35.

Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P. (1983). Graphical methods for data analysis (Duxbury Press).

Chen, W.Y., Xu, W.M., Chen, Z.H., Ni, Y., Yuan, Y.Y., Zhou, S.C., Zhou, W.W., Tsang, L.L., Chung, Y.W., Hoglund, P., et al. (2009). CI- is required for HCO3- entry necessary for sperm capacitation in guinea pig: involvement of a CI-/HCO3- exchanger (SLC26A3) and CFTR. Biol Reprod 80, 115-123.

Cheng, T.-K., W. (1985). In vitro fertilization of farm animal oocytes. Thesis (doctoral) Cambridge, Agricultural and Food Research Council.

Cherian, G. (2008). Egg quality and yolk polyunsaturated fatty acid status in relation to broiler breeder hen age and dietary n-3 oils. Poult Sci 87, 1131-1137.

Choi, Y.H., and Toyoda, Y. (1998). Cyclodextrin removes cholesterol from mouse sperm and induces capacitation in a protein-free medium. Biol Reprod 59, 1328-1333.

Clegg, E.D., and Foote, R.H. (1973). Phospholipid composition of bovine sperm fractions, seminal plasma and cytoplasmic droplets. J Reprod Fertil 34, 379-383.

Cooper, T.G. (1996). Epididymis and sperm function. Andrologia 28 Suppl 1, 57-59.

Cooper, T.G. (2011). The epididymis, cytoplasmic droplets and male fertility. Asian J Androl 13, 130-138. Crossley, A., Freeman, I.P., Hudson, B.J.F., and Pierce, J.H. (1959). Acyl migration in diglycerides. Journal of the Chemical Society (Resumed), 760-764.

Curry, M.R., and Watson, P.F. (1995). Sperm structure and function. In Cambridge Reviews in Reproduction Vol1 Gametes – The Spermatozoon" Eds JG Grudzinskas, JL Yovich, JL Simpson & TChard, Cambridge University Press (Cambridge), 45-69.

Dapino, D.G., Marini, P.E., and Cabada, M.O. (2006). Effect of heparin on in vitro capacitation of boar sperm. Biol Res 39, 631-639.

Devaiah, S.P., Roth, M.R., Baughman, E., Li, M., Tamura, P., Jeannotte, R., Welti, R., and Wang, X. (2006). Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE Dα1 knockout mutant. Phytochemistry 67, 1907-1924.

Di Paola, M., and Lorusso, M. (2006). Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta 1757, 1330-1337.

Di Paola, M., Zaccagnino, P., Oliveros-Celis, C., and Lorusso, M. (2006). Arachidonic acid induces specific membrane permeability increase in heart mitochondria. FEBS Lett 580, 775-781.

Dörmann, P., Hoffmann-Benning, S., Balbo, I., and Benning, C. (1995). Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7, 1801-1810.

Du Mesnil du Buissson, F., and Dauzier, L. (1959). Improvement of practical use of preservation techniques for boar semen by saturation of the diluent with carbondioxide. Ann Zootech Suppl 8, 81-96.

Ekhlasi-Hundrieser, M. (2010). Habilitationsschrift: "Struktur-Funktionsbeziehungen spermienbindender Proteine des männlichen Reproduktionstrakts beim Säuger". In Tierärztliche Hochschule (Hannover).

Ericsson, S.A., Garner, D.L., Thomas, C.A., Downing, T.W., and Marshall, C.E. (1993). Interrelationships among fluorometric analyses of spermatozoal function, classical semen quality parameters and the fertility of frozen-thawed bovine spermatozoa. Theriogenology 39, 1009-1024.

Evans, R.W., Weaver, D.E., and Clegg, E.D. (1980). Diacyl, alkenyl, and alkyl ether phospholipids in ejaculated, in utero-, and in vitro-incubated porcine spermatozoa. J Lipid Res 21, 223-228.

Fagan, P., Wijesundera, C., and Watkins, P. (2004). Determination of mono- and di-acylglycerols in milk lipids. J Chromatogr A 1054, 251-259.

Farstad, W. (2009). Cryopreservation of canine semen - new challenges. Reprod Domest Anim 44 Suppl 2, 336-341.

Fazeli, A., Duncan, A.E., Watson, P.F., and Holt, W.V. (1999). Sperm-oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species. Biol Reprod 60, 879-886.

Feki, N.C., Therond, P., Couturier, M., Limea, G., Legrand, A., Jouannet, P., and Auger, J. (2004). Human sperm lipid content is modified after migration into human cervical mucus. Mol Hum Reprod 10, 137-142.

Flesch, F.M., and Gadella, B.M. (2000). Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes 1469, 197-235.

Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509.

Fuchs, B., Jakop, U., Goritz, F., Hermes, R., Hildebrandt, T., Schiller, J., and Müller, K. (2009). MALDI-TOF "fingerprint" phospholipid mass spectra allow the differentiation between ruminantia and feloideae spermatozoa. Theriogenology 71, 568-575.

Fuchs, B., Schiller, J., Suss, R., Schurenberg, M., and Suckau, D. (2007). A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem 389, 827-834.

Fuchs, B., Suss, R., Teuber, K., Eibisch, M., and Schiller, J. (2011). Lipid analysis by thin-layer chromatography--a review of the current state. J Chromatogr A 1218, 2754-2774.

Fujita, Y., Matsuoka, H., and Hirooka, K. (2007). Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66, 829-839.

Gadea, J. (2003). Review: Semen extenders used in the artificial insemination of swine Spanish Journal of Agricultural Research 1, 17-27.

Gadea, J. (2005). Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology 63, 431-444.

Garner, D.L., Pinkel, D., Johnson, L.A., and Pace, M.M. (1986). Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses. Biol Reprod 34, 127-138.

Garner, D.L., Thomas, C.A., Joerg, H.W., DeJarnette, J.M., and Marshall, C.E. (1997). Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol Reprod 57, 1401-1406.

Gather, U., and Pawlitschko, J. (2006). Outlier Detection. In Encyclopedia of Actuarial Science (John Wiley & Sons, Ltd).

Gee, P.T., and Goh, S.H. (2001). Dietary and chiral diacyglycerols. Malaysian Oil Science and Technology 10, 49-50.

Gertz, C., and Fiebig, H.-J. (2006). Isomeric diacylglycerols – Determination of 1,2- and 1,3-diacylglycerols in virgin olive oil. European Journal of Lipid Science and Technology 108, 1066-1069.

Gibellini, F., and Smith, T.K. (2010). The Kennedy pathway--De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, 414-428.

Gidden, J., Liyanage, R., Durham, B., and Lay, J.O., Jr. (2007). Reducing fragmentation observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of triacylglycerols in vegetable oils. Rapid Commun Mass Spectrom 21, 1951-1957.

Glass, R.L., Krick, T.P., and Echardt, A.E. (1974). New series of fatty acids in northern pike (Esox lucius). Lipids 9, 1004-1008.

Go, K.J., and Wolf, D.P. (1985). Albumin-mediated changes in sperm sterol content during capacitation. Biol Reprod 32, 145-153.

Gómez-Fernández, J.C., and Corbalán-García, S. (2007). Diacylglycerols, multivalent membrane modulators. Chemistry and Physics of Lipids 148, 1-25.

Gottardi L., B.L., Zanelli L. (1980). New dilution media for artificial insemination in the pig. 9th ICAR Madrid 5, 49-53.

Graham, J.K., Kunze, E., and Hammerstedt, R.H. (1990). Analysis of sperm cell viability, acrosomal integrity, and mitochondrial function using flow cytometry. Biol Reprod 43, 55-64.

Gulaya, N.M., Margitich, V.M., Govseeva, N.M., Klimashevsky, V.M., Gorpynchenko, II, and Boyko, M.I. (2001). Phospholipid composition of human sperm and seminal plasma in relation to sperm fertility. Arch Androl 46, 169-175.

Gunstone, F.D., Harwood, J.L., and Dijkstra, A.J. (2007). The lipid handbook, 3rd ed. edn (CRC; London: Taylor & Francis).

Gupta, A., Mahdi, A.A., Ahmad, M.K., Shukla, K.K., Jaiswer, S.P., and Shankhwar, S.N. (2011). 1H NMR spectroscopic studies on human seminal plasma: a probative discriminant function analysis classification model. J Pharm Biomed Anal 54, 106-113.

Gurr, M.I., Harwood, J.L., and Frayn, K.N. (2002). Lipid biochemistry, 5th edn (Oxford, Blackwell Science, 267-276).

Hamilton, D.W., and Olson, G.E. (1976). Effects of carnitine on oxygen uptake and utilization of (U-14C)palmitate by ejaculated bull spermatozoa. J Reprod Fertil 46, 195-202.

Hammerstedt, R.H., Hay, S.R., and Amann, R.P. (1982). Modification of ram sperm membranes during epididymal transit. Biol Reprod 27, 745-754.

Hansen, C., Vermeiden, T., Vermeiden, J.P., Simmet, C., Day, B.C., and Feitsma, H. (2006). Comparison of FACSCount AF system, Improved Neubauer hemocytometer, Corning 254 photometer, SpermVision, UltiMate and NucleoCounter SP-100 for determination of sperm concentration of boar semen. Theriogenology 66, 2188-2194.

Hawrot, E., and Kennedy, E.P. (1975). Biogenesis of membrane lipids: mutants of Escherichia coli with temperature-sensitive phosphatidylserine decarboxylase. Proc Natl Acad Sci U S A 72, 1112-1116.

Henault, M.A., and Killian, G.J. (1993a). Composition and morphology of lipid droplets from oviduct epithelial cells. Anat Rec 237, 466-474.

Henault, M.A., and Killian, G.J. (1993b). Neutral lipid droplets in bovine oviductal epithelium and lipid composition of epithelial cell homogenates. J Dairy Sci 76, 691-700.

Henault, M.A., and Killian, G.J. (1993c). Synthesis and secretion of lipids by bovine oviduct mucosal explants. J Reprod Fertil 98, 431-438.

Hjelmstad, R.H., and Bell, R.M. (1991). Molecular insights into enzymes of membrane bilayer assembly. Biochemistry 30, 1731-1740.

Hoaglin, D.C., Mosteller, F., and Tukey, J.W. (1983). Understanding robust and exploratory data analysis (New York ; Chichester, Wiley).

Hochi, S., Kimura, K., and Hanada, A. (1999). Effect of linoleic acid-albumin in the culture medium on freezing sensitivity of in vitro-produced bovine morulae. Theriogenology 52, 497-504.

Hölzl, G. (2005). Veränderung des Glykolipidmusters in Thylakoiden von Pflanzen und Blaualgen durch heterologe Expression bakterieller Glykosyltransferasen. In Universität Hamburg, FB Biologie.

Hosek, J., Zavalova, V., and Kollar, P. (2010). Effect of solvent on cytotoxicity and bioavailability of fatty acids. Immunopharmacol Immunotoxicol 32, 462-465.

Hossain, M., Hyeong, L., Miah, A., and Tsujii, H. (2007a). Effect of fatty acids bound to bovine serum albumin-V on acrosome reaction and utilization of glucose in boar spermatozoa. Reproductive Medicine and Biology 6, 109-115.

Hossain, S., Tareq, K., Hammano, K.-I., and Tsujii, H. (2007b). Effect of fatty acids on boar sperm motility viability and acrosome reaction. Reproductive Medicine and Biology 6, 235-239.

Hou, C.T. (1994). Production of 10-Ketostearic Acid from Oleic Acid by Flavobacterium sp. Strain DS5 (NRRL B-14859). Appl Environ Microbiol 60, 3760-3763.

Hou, C.T. (2000). Biotransformation of unsaturated fatty acids to industrial products. Adv Appl Microbiol 47, 201-220.

Hou, C.T., Brown, W., Labeda, D.P., Abbott, T.P., and Weisleder, D. (1997). Microbial production of a novel trihydroxy unsaturated fatty acid from linoleic acid. J Ind Microbiol Biotechnol 19, 34-38.

Ichihara, K.i., and Noda, M. (1982). Some properties of diacylglycerol acyltransferase in a particulate fraction from maturing safflower seeds. Phytochemistry 21, 1895-1901.

Imahori, Y., Ohmori, Y., Fujii, R., Matsumoto, K., and Ueda, S. (1995). Rapid incorporation of carbon-11-labeled diacylglycerol as a probe of signal transduction in glioma. Cancer Res 55, 4225-4229.

Imamura, S., Ueda, S., Mizugaki, M., and Kawaguchi, A. (1990). Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system. J Biochem 107, 184-189.

Iritani, A., Gomes, W.R., and Vandemark, N.L. (1969). Secretion rates and chemical composition of oviduct and uterine fluids in ewes. Biol Reprod 1, 72-76.

Ishikawa, M., Mikami, Y., Usukura, J., Iwasaki, H., Shinagawa, H., and Morikawa, K. (1997). Reconstitution, morphology and crystallization of a fatty acid beta-oxidation multienzyme complex from Pseudomonas fragi. Biochem J 328 (Pt 3), 815-820.

Ishizuka, I., Suzuki, M., and Yamakawa, T. (1973). Isolation and characterization of a novel sulfoglycolipid, 'seminolipid,' from boar testis and spermatozoa. J Biochem 73, 77-87.

Jin, J.Y., Chen, W.Y., Zhou, C.X., Chen, Z.H., Yu-Ying, Y., Ni, Y., Chan, H.C., and Shi, Q.X. (2009). Activation of GABAA receptor/Cl- channel and capacitation in rat spermatozoa: HCO3- and Cl- are essential. Syst Biol Reprod Med 55, 97-108.

Kalic, M., Kamp, G., and Lauterwein, J. (1997). Nuclear magnetic resonance studies of boar seminal plasma. Problems encountered in the identification of small molecules: hypotaurine and carnitine. NMR Biomed 10, 341-347.

Kalo, P.J., Ollilainen, V., Rocha, J.M., and Malcata, F.X. (2006). Identification of molecular species of simple lipids by normal phase liquid chromatography-positive electrospray tandem mass spectrometry, and application of developed methods in comprehensive analysis of low erucic acid rapeseed oil lipids. Int J Mass Spectrom 254, 106-121.

Kaur, S., Prabha, V., and Sarwal, A. (2010). Receptor mediated agglutination of human spermatozoa by spermagglutinating factor isolated from Staphylococcus aureus. J Urol 184, 2586-2590.

Kluytmans, J.H., and Zandee, D.I. (1973). Lipid metabolism in the northern pike (Esox lucius L.). 1. The fatty composition of the northern pike. Comp Biochem Physiol B 44, 451-458.

Kodali, D.R., Tercyak, A., Fahey, D.A., and Small, D.M. (1990). Acyl migration in 1,2-dipalmitoyl-sn-glycerol. Chem Phys Lipids 52, 163-170.

Kongmanas, K., Xu, H., Yaghoubian, A., Franchini, L., Panza, L., Ronchetti, F., Faull, K., and Tanphaichitr, N. (2010). Quantification of seminolipid by LC-ESI-MS/MS-multiple reaction monitoring: compensatory levels in Cgt(+/) mice. J Lipid Res 51, 3548-3558.

Kramer, R.Y., Garner, D.L., Bruns, E.S., Ericsson, S.A., and Prins, G.S. (1993). Comparison of motility and flow cytometric assessments of seminal quality in fresh, 24-hour extended and cryopreserved human spermatozoa. J Androl 14, 374-384.

Kraus, M., Ticha, M., Zelezna, B., Peknicova, J., and Jonakova, V. (2005). Characterization of human seminal plasma proteins homologous to boar AQN spermadhesins. J Reprod Immunol 65, 33-46.

Krummenauer, F., Wojciechowski, C., Baulig, C., and Al-Nawas, B. (2007). Boxplots – die flexible Alternative zum "Antennen-Bildchen". Z Zahnärtzl Implantol Bd. 23, 308-311.

Kuhnt, S., and Pawlitschko, J. (2005). Outlier Identification Rules for Generalized Linear Models. Innovations in Classification, Data Science and Information Systems, 165-172.

Kumar, S., Millar, J.D., and Watson, P.F. (2003). The effect of cooling rate on the survival of cryopreserved bull, ram, and boar spermatozoa: a comparison of two controlled-rate cooling machines. Cryobiology 46, 246-253.

Kurz, A. (2005). Organisation und Dynamik der Phospholipide in der Zell- und Akrosommembran von Eberspermien während der Kapazitation und Akrosomreaktion In Mathematisch-Naturwissenschaftliche Fakultät II (Berlin, Humboldt-Universität zu Berlin).

Leiding, C. (2005). Ebersamenverdünner – Stand der Technologie. In Züchtungskunde 77, Bd.2, Eugen Ulmer Verlag GmbH & Co., Stuttgart, 151-156.

Lenzi, A., Gandini, L., Lombardo, F., Picardo, M., Maresca, V., Panfili, E., Tramer, F., Boitani, C., and Dondero, F. (2002). Polyunsaturated fatty acids of germ cell membranes, glutathione and blutathione-dependent enzyme-PHGPx: from basic to clinic. Contraception 65, 301-304.

Lenzi, A., Gandini, L., Picardo, M., Tramer, F., Sandri, G., and Panfili, E. (2000). Lipoperoxidation damage of spermatozoa polyunsaturated fatty acids (PUFA): scavenger mechanisms and possible scavenger therapies. Front Biosci 5, E1-E15.

Lenzi, A., Picardo, M., Gandini, L., and Dondero, F. (1996). Lipids of the sperm plasma membrane: from polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum Reprod Update 2, 246-256.

Lessig, J., Gey, C., Suss, R., Schiller, J., Glander, H.J., and Arnhold, J. (2004). Analysis of the lipid composition of human and boar spermatozoa by MALDI-TOF mass spectrometry, thin layer chromatography and 31P NMR spectroscopy. Comp Biochem Physiol B Biochem Mol Biol 137, 265-277.

Lessig, J., Schiller, J., Arnhold, J., and Fuchs, B. (2007). Hypochlorous acid-mediated generation of glycerophosphocholine from unsaturated plasmalogen glycerophosphocholine lipids. J Lipid Res 48, 1316-1324.

Lindenthal, B., Aldaghlas, T.A., Kelleher, J.K., Henkel, S.M., Tolba, R., Haidl, G., and von Bergmann, K. (2001). Neutral sterols of rat epididymis. High concentrations of dehydrocholesterols in rat caput epididymidis. J Lipid Res 42, 1089-1095.

Lubary, M., Hofland, G.W., and ter Horst, J.H. (2011). A process for the production of a diacylglycerolbased milk fat analogue. European Journal of Lipid Science and Technology 113, 459-468.

Mackie, A.R., James, P.S., Ladha, S., and Jones, R. (2001). Diffusion barriers in ram and boar sperm plasma membranes: directionality of lipid diffusion across the posterior ring. Biol Reprod 64, 113-119.

Maldjian, A., Pizzi, F., Gliozzi, T., Cerolini, S., Penny, P., and Noble, R. (2005). Changes in sperm quality and lipid composition during cryopreservation of boar semen. Theriogenology 63, 411-421.

Mann, T., and Lutwak-Mann, C. (1981). Male reproductive function and semen: themes and trends in physiology, biochemistry and investigative andrology (Berlin; New York, Springer-Verlag).

Mann, T., and Lutwak-Mann, C. (1982). Passage of chemicals into human and animal semen: mechanisms and significance. Crit Rev Toxicol 11, 1-14.

Matsunaga, I., Sumimoto, T., Ueda, A., Kusunose, E., and Ichihara, K. (2000). Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for alpha-hydroxylation. Lipids 35, 365-371.

Maxwell, W.M., and Johnson, L.A. (1997). Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Mol Reprod Dev 46, 408-418.

Mazzella, N., Molinet, J., Syakti, A.D., Dodi, A., Doumenq, P., Artaud, J., and Bertrand, J.C. (2004). Bacterial phospholipid molecular species analysis by ion-pair reversed-phase HPLC/ESI/MS. J Lipid Res 45, 1355-1363.

Medeiros, C.M., Forell, F., Oliveira, A.T., and Rodrigues, J.L. (2002). Current status of sperm cryopreservation: why isn't it better? Theriogenology 57, 327-344.

Medrano, A., Holt, W.V., and Watson, P.F. (2009). Controlled freezing studies on boar sperm cryopreservation. Andrologia 41, 246-250.

Monga, M., and Roberts, J.A. (1994). Spermagglutination by bacteria: receptor-specific interactions. J Androl 15, 151-156.

Morita, Y.S., Fukuda, T., Sena, C.B.C., Yamaryo-Botte, Y., McConville, M.J., and Kinoshita, T. (2011). Inositol lipid metabolism in mycobacteria: Biosynthesis and regulatory mechanisms. Biochimica et Biophysica Acta (BBA) - General Subjects 1810, 630-641.

Morreti, J. (1981). Artificial insemination of swine: fertility using several liquid semen diluents (cited by Johnson L.A., Aalberts J.G., 1984). 8th IPVS Congress Ghent, Belgium, 293.

Mourvaki, E., Cardinali, R., Dal Bosco, A., Corazzi, L., and Castellini, C. (2010). Effects of flaxseed dietary supplementation on sperm quality and on lipid composition of sperm subfractions and prostatic granules in rabbit. Theriogenology 73, 629-637.

Neill, A.R., and Masters, C.J. (1971). Incorporation of (U-14C)palmitic acid into the phospholipids of bovine semen. J Reprod Fertil 24, 295-297.

Neill, A.R., and Masters, C.J. (1972). Metabolism of fatty acids by bovine spermatozoa. Biochem J 127, 375-385.

Neill, A.R., and Masters, C.J. (1973). Metabolism of fatty acids by ovine spermatozoa. J Reprod Fertil 34, 279-287.

Nikolopoulou, M., Soucek, D.A., and Vary, J.C. (1985). Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta 815, 486-498.

Nikolopoulou, M., Soucek, D.A., and Vary, J.C. (1986). Modulation of the lipid composition of boar sperm plasma membranes during an acrosome reaction in vitro. Arch Biochem Biophys 250, 30-37.

O'Leary, W.M., and Wilkinson, S.G. (1988). Gram-positive bacteria. In Microbial lipids. C Ratlidge and S G Wilkinson, editors, Microbial lipids Vol 1 Academic Press, London, UK, 117-201.

O'Toole, C.M., Roldan, E.R., Hampton, P., and Fraser, L.R. (1996). A role for diacylglycerol in human sperm acrosomal exocytosis. Mol Hum Reprod 2, 317-326.

Oberle, V. (1999). Untersuchungen zum Einfluß freier Fettsäuren auf die Eigenschaften biologischer und Modellmembranen (Halle (Saale) Martin-Luther-Universität Halle-Wittenberg, Dissertation).

Okazaki, T., Mihara, T., Fujita, Y., Yoshida, S., Teshima, H., and Shimada, M. (2010). Polymyxin B neutralizes bacteria-released endotoxin and improves the quality of boar sperm during liquid storage and cryopreservation. Theriogenology 74, 1691-1700.

Papaioannou, K.Z., Murphy, R.P., Monks, R.S., Hynes, N., Ryan, M.P., Boland, M.P., and Roche, J.F. (1997). Assessment of viability and mitochondrial function of equine spermatozoa using double staining and flow cytometry. Theriogenology 48, 299-312.

Parks, J.E., and Lynch, D.V. (1992). Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29, 255-266.

Peitz, B., and Olds-Clarke, P. (1986). Effects of seminal vesicle removal on fertility and uterine sperm motility in the house mouse. Biol Reprod 35, 608-617.

Pelech, S.L., and Vance, D.E. (1984). Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta 779, 217-251.

Petrunkina, A.M., Waberski, D., Gunzel-Apel, A.R., and Topfer-Petersen, E. (2007). Determinants of sperm quality and fertility in domestic species. Reproduction 134, 3-17.

Pie, A., and Giner, A. (1966). Solvents for thin layer chromatography of blood serum lipids. Nature 212, 402-403.

Pintado, B., de la Fuente, J., and Roldan, E.R. (2000). Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or Hoechst 33258, or to eosin: accuracy in the assessment of cell viability. J Reprod Fertil 118, 145-152.

Plisko, N.T. (1965). A method for prolonging the viability and fertilizing ability of boar spermatozoa. Svinovodstvo 9, 37-41.

Poulos, A., Sharp, P., Johnson, D., White, I., and Fellenberg, A. (1986). The occurrence of polyenoic fatty acids with greater than 22 carbon atoms in mammalian spermatozoa. Biochem J 240, 891-895.

Pursel, V.G., and Johnson, L.A. (1975). Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci 40, 99-102.

Qian, M., and Eaton, J.W. (1994). Free fatty acids enhance hypochlorous acid production by activated neutrophils. J Lab Clin Med 124, 86-95.

Queen, K., Dhabuwala, C.B., and Pierrepoint, C.G. (1981). The effect of the removal of the various accessory sex glands on the fertility of male rats. J Reprod Fertil 62, 423-426.

Realini, C.E., Duran-Montge, P., Lizardo, R., Gispert, M., Oliver, M.A., and Esteve-Garcia, E. (2010). Effect of source of dietary fat on pig performance, carcass characteristics and carcass fat content, distribution and fatty acid composition. Meat Sci 85, 606-612.

Regazzi, R., and Tomes, C.N. (2007). Acrosomal Exocytosis. In Molecular Mechanisms of Exocytosis (Springer New York), pp. 117-147.

Revell, S.G., and Glossop, C.E. (1989). A long-time ambient temperature diluent for boar semen. Animal Production 48, 579-584.

Ribbes, H., Plantavid, M., Bennet, P.J., Chap, H., and Douste-Blazy, L. (1987). Phospholipase C from human sperm specific for phosphoinositides. Biochim Biophys Acta 919, 245-254.

Robinson, B.S., Johnson, D.W., and Poulos, A. (1992). Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very-long-chain fatty acids in mammalian testes and spermatozoa. J Biol Chem 267, 1746-1751.

Rodemer, C., Thai, T.P., Brugger, B., Gorgas, K., and Just, W. (2003a). Targeted disruption of ether lipid synthesis in mice. Adv Exp Med Biol 544, 355-368.

Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., and Just, W.W. (2003b). Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum Mol Genet 12, 1881-1895.

Roldan, E.R. (1998). Role of phospholipases during sperm acrosomal exocytosis. Front Biosci 3, D1109-1119.

Roldan, E.R., and Fragio, C. (1994). Diradylglycerols stimulate phospholipase A2 and subsequent exocytosis in ram spermatozoa. Evidence that the effect is not mediated via protein kinase C. Biochem J 297 (1), 225-232.

Roldan, E.R., and Harrison, R.A. (1990). Diacylglycerol and phosphatidate production and the exocytosis of the sperm acrosome. Biochem Biophys Res Commun 172, 8-15.

Roldan, E.R., and Harrison, R.A. (1992). The role of diacylglycerol in the exocytosis of the sperm acrosome. Studies using diacylglycerol lipase and diacylglycerol kinase inhibitors and exogenous diacylglycerols. Biochem J 281 (3), 767-773.

Roldan, E.R., and Harrison, R.A. (1993). Diacylglycerol in the exocytosis of the mammalian sperm acrosome. Biochem Soc Trans 21, 284-289.

Roldan, E.R., Martinez-Dalmau, R., and Mollinedo, F. (1994). Diacylglycerol and alkylacylglycerol stimulate ram sperm phospholipase A2. Int J Biochem 26, 951-958.

Roldan, E.R., and Murase, T. (1994). Polyphosphoinositide-derived diacylglycerol stimulates the hydrolysis of phosphatidylcholine by phospholipase C during exocytosis of the ram sperm acrosome. Effect is not mediated by protein kinase C. J Biol Chem 269, 23583-23589.

Roldan, E.R., and Shi, Q.X. (2007). Sperm phospholipases and acrosomal exocytosis. Front Biosci 12, 89-104.

Rudkowska, I., Roynette, C.E., Demonty, I., Vanstone, C.A., Jew, S., and Jones, P.J. (2005). Diacylglycerol: efficacy and mechanism of action of an anti-obesity agent. Obes Res 13, 1864-1876.

Rüsse, I., and Sinowatz, F. (1998). Gametogenese. In: "Lehrbuch der Embryologie der Haustiere", I. Rüsse, and F. Sinowatz, eds. (Berlin, Blackwell).

Rusu, A.-V., Miclea, V., and Zahan, M. (2011). Egg Yolk Protective Effect in Boar Spermatozoa Cooled at 5°C. Animal Science and Biotechnologies 44, 447-452.

Sanchez-Migallon, M.P., Aranda, F.J., and Gomez-Fernandez, J.C. (1995). The dissimilar effect of diacylglycerols on Ca(2+)-induced phosphatidylserine vesicle fusion. Biophys J 68, 558-566.

Scherer, S., and Neuhaus, K. (2006). Life at Low Temperatures. In The Prokaryotes, M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt, eds. (Springer New York), pp. 210-262.

Schiller, J., Arnhold, J., Benard, S., Müller, M., Reichl, S., and Arnold, K. (1999). Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal Biochem 267, 46-56.

Schiller, J., Müller, K., Suss, R., Arnhold, J., Gey, C., Herrmann, A., Lessig, J., Arnold, K., and Müller, P. (2003). Analysis of the lipid composition of bull spermatozoa by MALDI-TOF mass spectrometry--a cautionary note. Chem Phys Lipids 126, 85-94.

Schiller, J., Suss, R., Fuchs, B., Müller, M., Zschornig, O., and Arnold, K. (2007). MALDI-TOF MS in lipidomics. Front Biosci 12, 2568-2579.

Schonfeld, P., and Wojtczak, L. (2008). Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45, 231-241.

Schulz, H. (2004). Fatty Acid Oxidation. In Encyclopedia of Biological Chemistry, J.L. William, and M.D. Lane, eds. (New York, Elsevier), pp. 90-94.

Schulze, M. (2010). Effect of antimicrobial peptides (AMP) in boar sperm preservation (Freie Universität Berlin, Doctoral thesis), pp. IV, 89 S.

Schwenk, R.W., Holloway, G.P., Luiken, J.J., Bonen, A., and Glatz, J.F. (2010). Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot Essent Fatty Acids 82, 149-154.

Seki, N., Toyama, Y., and Nagano, T. (1992). Changes in the distribution of filipin-sterol complexes in the boar sperm head plasma membrane during epididymal maturation and in the uterus. Anat Rec 232, 221-230.

Selivonchick, D.P., Schmid, P.C., Natarajan, V., and Schmid, H.H. (1980). Structure and metabolism of phospholipids in bovine epididymal spermatozoa. Biochim Biophys Acta 618, 242-254.

Shadan, S., James, P.S., Howes, E.A., and Jones, R. (2004). Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 71, 253-265.

Shears, S.B. (1993). Regulation of the metabolism of 1,2-diacylglycerols and inositol phosphates that respond to receptor activation. In Taylor, Colin W. (Eds): Intracellular messengers. International encyclopedia of pharmacology and therapeutics. (Oxford, Pergamon: 315-346).

Shereena, K.M., and Thangaraj, T. (2009). Biodiesel: An Alternative fuel Produced from Vegetable Oils by Transesterification. Electronic Journal of Biology 5, 67-74.

Sidhu, K.S., and Guraya, S.S. (1989). Cellular and molecular biology of capacitation and acrosome reaction in mammalian spermatozoa. Int Rev Cytol 118, 231-280.

Spengler, B., Kirsch, D., Kaufmann, R., and Cotter, R.J. (1991). Metastable decay of peptides and proteins in matrix-assisted laser-desorption mass spectrometry. Rapid Communications in Mass Spectrometry 5, 198-202.

Storey, B.T. (1995). Interactions between gametes leading to fertilization: the sperm's eye view. Reprod Fertil Dev 7, 927-942.

Strzezek, J., Fraser, L., Kuklinska, M., Dziekonska, A., and Lecewicz, M. (2004). Effects of dietary supplementation with polyunsaturated fatty acids and antioxidants on biochemical characteristics of boar semen. Reprod Biol 4, 271-287.

Suarez, S., Redfern, K., Raynor, P., Martin, F., and Phillips, D.M. (1991). Attachment of boar sperm to mucosal explants of oviduct in vitro: possible role in formation of a sperm reservoir. Biol Reprod 44, 998-1004.

Tannert, A., Kurz, A., Erlemann, K.R., Müller, K., Herrmann, A., Schiller, J., Topfer-Petersen, E., Manjunath, P., and Müller, P. (2007a). The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet. Eur Biophys J 36, 461-475.

Tannert, A., Topfer-Petersen, E., Herrmann, A., Müller, K., and Müller, P. (2007b). The lipid composition modulates the influence of the bovine seminal plasma protein PDC-109 on membrane stability. Biochemistry 46, 11621-11629.

Terner, C., and Korsh, G. (1962). The biosynthesis of C-14-labeled lipids by isolated bull spermatozoa. Biochemistry 1, 367-372.

Tran, T.N., and Christophersen, B.O. (2002). Partitioning of polyunsaturated fatty acid oxidation between mitochondria and peroxisomes in isolated rat hepatocytes studied by HPLC separation of oxidation products. Biochim Biophys Acta 1583, 195-204.

Trimeche, A., Anton, M., Renard, P., Gandemer, G., and Tainturier, D. (1997). Quail egg yolk: a novel cryoprotectant for the freeze preservation of Poitou jackass sperm. Cryobiology 34, 385-393.

Vazquez, J.M., and Roldan, E.R. (1997a). Diacylglycerol species as messengers and substrates for phosphatidylcholine re-synthesis during Ca2+-dependent exocytosis in boar spermatozoa. Mol Reprod Dev 48, 95-105.

Vazquez, J.M., and Roldan, E.R. (1997b). Phospholipid metabolism in boar spermatozoa and role of diacylglycerol species in the de novo formation of phosphatidylcholine. Mol Reprod Dev 47, 105-112.

Visconti, P.E., Galantino-Homer, H., Moore, G.D., Bailey, J.L., Ning, X., Fornes, M., and Kopf, G.S. (1998). The molecular basis of sperm capacitation. J Androl 19, 242-248.

Visconti, P.E., Galantino-Homer, H., Ning, X., Moore, G.D., Valenzuela, J.P., Jorgez, C.J., Alvarez, J.G., and Kopf, G.S. (1999a). Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem 274, 3235-3242.

Visconti, P.E., and Kopf, G.S. (1998). Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 59, 1-6.

Visconti, P.E., Ning, X., Fornes, M.W., Alvarez, J.G., Stein, P., Connors, S.A., and Kopf, G.S. (1999b). Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol 214, 429-443.

Visconti, P.E., Stewart-Savage, J., Blasco, A., Battaglia, L., Miranda, P., Kopf, G.S., and Tezon, J.G. (1999c). Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol Reprod 61, 76-84.

Vriese, S.R.D. and Christophe, A.B. (2003). Male fertility and lipid metabolism, AOCS Press, Illinois, chap. 1-15, pp. 1-249.

Wang, H.Y., and Schulz, H. (1989). Beta-oxidation of polyunsaturated fatty acids with conjugated double bonds. Mitochondrial metabolism of octa-2,4,6-trienoic acid. Biochem J 264, 47-52.

Waterhouse, K.E., Hofmo, P.O., Tverdal, A., and Miller, R.R., Jr. (2006). Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 131, 887-894.

Watson, P.F. (2000). The causes of reduced fertility with cryopreserved semen. Animal Reproduction Science 60-61, 481-492.

Watson, P.F., and Plummer, J.M. (1985). The responses of boar sperm membranes to cold shock and cooling. In: Johnson A, Larsson K (eds), Deep Freezing of Boar Semen Proceedings of the First International Congress on Deep Freezing of Boar Semen Uppsala, Sweden: L Swedish University of Agricultural Sciences, 113–127.

Weingartner, A., Drobot, B., Herrmann, A., Sanchez-Canete, M.P., Gamarro, F., Castanys, S., and Günther Pomorski, T. (2010). Disruption of the lipid-transporting LdMT-LdRos3 complex in Leishmania donovani affects membrane lipid asymmetry but not host cell invasion. PLoS ONE, vol 5, nr. 8.

Weitze, K.F. (1990). Long-term storage of extended boar semen. Reprod Dom Anim, 231-253.

Wilkinson, S.G. (1988). Gram-negative bacteria. In Microbial lipids. C Ratlidge and S G Wilkinson, editors, Microbial lipids Vol 1 Academic Press, London, UK, 299-488.

Wu, Y.M., Xia, X.Y., Pan, L.J., Shao, Y., Jin, B.F., Huang, Y.F., and Wang, X.L. (2006). Evaluation of sperm mitochondrial function using Rh123/PI dual fluorescent staining. Zhonghua Nan Ke Xue 12, 803-806.

Yalcyn, H., Unal, M.K., and Basmacyoolu, H. (2007). The fatty acid and cholesterol composition of enriched egg yolk lipids obtained by modifying hens' diets with fish oil and flaxseed. Espagnol 58, 7.

Yanagimachi, R. (1994). Mammalian fertilization. In The Physiology of Reproduction, E. Knobil and J.D. Neill, eds. Raven Press, New York, 189–317.

Yoshida, M. (2000). Conservation of sperms: current status and new trends. Anim Reprod Sci 60-61.

Zanetti, S.R., de Los Angeles Monclus, M., Rensetti, D.E., Fornes, M.W., and Aveldano, M.I. (2010a). Ceramides with 2-hydroxylated, very long-chain polyenoic fatty acids in rodents: From testis to fertilization-competent spermatozoa. Biochimie 92, 1778-1786.

Zanetti, S.R., Monclus Mde, L., Rensetti, D.E., Fornes, M.W., and Aveldano, M.I. (2010b). Differential involvement of rat sperm choline glycerophospholipids and sphingomyelin in capacitation and the acrosomal reaction. Biochimie 92, 1886-1894.

Zaneveld, L.J., De Jonge, C.J., Anderson, R.A., and Mack, S.R. (1991). Human sperm capacitation and the acrosome reaction. Hum Reprod 6, 1265-1274.

Zhang, Y.M., and Rock, C.O. (2008). Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6, 222-233.

#### 8.1.1 Auszug aus der Datenbank, die Atommassen der Quasimolekülionen von GPC und DRG.

Kombinatorische Möglichkeiten des metabolischen Einbaus von [U-<sup>13</sup>C]-Octadecadiensäure (grau markiert) sowie die möglicherweise vorkommende Kombinationen von endogen vorhandenen Fettsäuren und Fettaldehyden in Lipiden porciner *Spermatozoen*.

Aus Gründen der Übersichtlichkeit sind hier nur die Massen der Quasimolekülione von GPC und DRG dargestellt. GPE / GPI / GPS, mono-GPE / GPI / GPS (lyso-GPL), Monoradylglycerole sowie deren Oxidationsprodukte werden hier nur exemplarisch dargestellt. Ebenfalls werden hier die kombinatorischen Möglichkeiten der MS / MS-Fragmentierung alle dieser Lipide nicht aufgelistet.



|      |                       | 1                        | 1                       | 2                              | 2                             | 3                      | 3                       | <b>(4</b> )                  | <b>(4</b> )                   |
|------|-----------------------|--------------------------|-------------------------|--------------------------------|-------------------------------|------------------------|-------------------------|------------------------------|-------------------------------|
| R₁   | R <sub>2</sub>        | DAG [M+NH₄] <sup>⁺</sup> | DAG [M+Na] <sup>⁺</sup> | Ether-DRG [M+NH₄] <sup>⁺</sup> | Ether-DRG [M+Na] <sup>⁺</sup> | GPC [M+H] <sup>+</sup> | GPC [M+Na] <sup>⁺</sup> | Ether-GPC [M+H] <sup>+</sup> | Ether-GPC [M+Na] <sup>⁺</sup> |
| 12:0 | 12:0                  | 474,4148                 | 479,3707                | 460,4355                       | 465,3914                      | 622,4431               | 644,4256                | 608,4639                     | 630,4464                      |
|      | 14:0                  | 502,4461                 | 507,4020                | 488,4668                       | 493,4227                      | 650,4744               | 672,4569                | 636,4952                     | 658,4777                      |
|      | 16:0                  | 530,4774                 | 535,4333                | 516,4981                       | 521,4540                      | 678,5057               | 700,4882                | 664,5265                     | 686,5090                      |
|      | 16:1                  | 528,4617                 | 533,4176                | 514,4824                       | 519,4384                      | 676,4901               | 698,4726                | 662,5108                     | 684,4933                      |
|      | 18:0                  | 558,5087                 | 563,4646                | 544,5294                       | 549,4853                      | 706,5370               | 728,5195                | 692,5578                     | 714,5403                      |
|      | 18:1                  | 556,4930                 | 561,4489                | 542,5137                       | 547,4697                      | 704,5214               | 726,5039                | 690,5421                     | 712,5246                      |
|      | 18:2                  | 554,4774                 | 559,4333                | 540,4981                       | 545,4540                      | 702,5057               | 724,4882                | 688,5265                     | 710,5090                      |
|      | 18:2: <sup>13</sup> C | 572,5377                 | 577,4937                | 558,5585                       | 563,5144                      | 720,5661               | 742,5486                | 706,5869                     | 728,5693                      |
|      | 18:3                  | 552,4617                 | 557,4176                | 538,4824                       | 543,4384                      | 700,4901               | 722,4726                | 686,5108                     | 708,4933                      |
|      | 20:0                  | 586,5400                 | 591,4959                | 572,5607                       | 577,5166                      | 734,5683               | 756,5508                | 720,5891                     | 742,5716                      |
|      | 20:2                  | 582,5087                 | 587,4646                | 568,5294                       | 573,4853                      | 730,5370               | 752,5195                | 716,5578                     | 738,5403                      |
|      | 20:4                  | 578,4774                 | 583,4333                | 564,4981                       | 569,4540                      | 726,5057               | 748,4882                | 712,5265                     | 734,5090                      |
|      | 20:5                  | 576,4617                 | 581,4176                | 562,4824                       | 567,4384                      | 724,4901               | 746,4726                | 710,5108                     | 732,4933                      |
|      | 22:0                  | 614,5713                 | 619,5272                | 600,5920                       | 605,5479                      | 762,5996               | 784,5821                | 748,6204                     | 770,6029                      |
|      | 22:1                  | 612,5556                 | 617,5115                | 598,5763                       | 603,5323                      | 760,5840               | 782,5665                | 746,6047                     | 768,5872                      |
|      | 22:4                  | 606,5087                 | 611,4646                | 592,5294                       | 597,4853                      | 754,5370               | 776,5195                | 740,5578                     | 762,5403                      |
|      | 22:5                  | 604,4930                 | 609,4489                | 590,5137                       | 595,4697                      | 752,5214               | 774,5039                | 738,5421                     | 760,5246                      |
|      | 22:6                  | 602,4774                 | 607,4333                | 588,4981                       | 593,4540                      | 750,5057               | 772,4882                | 736,5265                     | 758,5090                      |
|      | 24:0                  | 642,6026                 | 647,5585                | 628,6233                       | 633,5792                      | 790,6309               | 812,6134                | 776,6517                     | 798,6342                      |
|      | 24:1                  | 640,5869                 | 645,5428                | 626,6076                       | 631,5636                      | 788,6153               | 810,5978                | 774,6360                     | 796,6185                      |
|      | 24:2                  | 638,5713                 | 643,5272                | 624,5920                       | 629,5479                      | 786,5996               | 808,5821                | 772,6204                     | 794,6029                      |
|      | 24:4                  | 634,5400                 | 639,4959                | 620,5607                       | 625,5166                      | 782,5683               | 804,5508                | 768,5891                     | 790,5716                      |
|      | 24:5                  | 632,5243                 | 637,4802                | 618,5450                       | 623,5010                      | 780,5527               | 802,5352                | 766,5734                     | 788,5559                      |
|      | 24:6                  | 630,5087                 | 635,4646                | 616,5294                       | 621,4853                      | 778,5370               | 800,5195                | 764,5578                     | 786,5403                      |
|      | 26:3                  | 664,5869                 | 669,5428                | 650,6076                       | 655,5636                      | 812,6153               | 834,5978                | 798,6360                     | 820,6185                      |
|      | 26:4                  | 662,5713                 | 667,5272                | 648,5920                       | 653,5479                      | 810,5996               | 832,5821                | 796,6204                     | 818,6029                      |
|      | 26:5                  | 660,5556                 | 665,5115                | 646,5763                       | 651,5323                      | 808,5840               | 830,5665                | 794,6047                     | 816,5872                      |
|      | 28:4                  | 690,6026                 | 695,5585                | 676,6233                       | 681,5792                      | 838,6309               | 860,6134                | 824,6517                     | 846,6342                      |
|      | 28:5                  | 688,5869                 | 693,5428                | 674,6076                       | 679,5636                      | 836,6153               | 858,5978                | 822,6360                     | 844,6185                      |
|      | 28:6                  | 686,5713                 | 691,5272                | 672,5920                       | 677,5479                      | 834,5996               | 856,5821                | 820,6204                     | 842,6029                      |
|      | 30:4                  | 718,6339                 | 723,5898                | 704,6546                       | 709,6105                      | 866,6622               | 888,6447                | 852,6830                     | 874,6655                      |
|      | 30:5                  | 716,6182                 | 721,5741                | 702,6389                       | 707,5949                      | 864,6466               | 886,6291                | 850,6673                     | 872,6498                      |
|      | 30:6                  | 714,6026                 | 719,5585                | 700,6233                       | 705,5792                      | 862,6309               | 884,6134                | 848,6517                     | 870,6342                      |
|      | 32:4                  | 746,6652                 | 751,6211                | 732,6859                       | 737,6418                      | 894,6935               | 916,6760                | 880,7143                     | 902,6968                      |
|      | 32:5                  | 744,6495                 | 749,6054                | 730,6702                       | 735,6262                      | 892,6779               | 914,6604                | 878,6986                     | 900,6811                      |
|      | 32:6                  | 742,6339                 | 747,5898                | 728,6546                       | 733,6105                      | 890,6622               | 912,6447                | 876,6830                     | 898,6655                      |
|      | 34:5                  | 772,6808                 | 777,6367                | 758,7015                       | 763,6575                      | 920,7092               | 942,6917                | 906,7299                     | 928,7124                      |
|      | 34:6                  | 770,6652                 | 775,6211                | 756,6859                       | 761,6418                      | 918,6935               | 940,6760                | 904,7143                     | 926,6968                      |
| 14:0 | 14:0                  | 530,4774                 | 535,4333                | 516,4981                       | 521,4540                      | 678,5057               | 700,4882                | 664,5265                     | 686,5090                      |
|      | 16:0                  | 558,5087                 | 563,4646                | 544,5294                       | 549,4853                      | 706,5370               | 728,5195                | 692,5578                     | 714,5403                      |
|      | 16:1                  | 556,4930                 | 561,4489                | 542,5137                       | 547,4697                      | 704,5214               | 726,5039                | 690,5421                     | 712,5246                      |
|      | 18:0                  | 586,5400                 | 591,4959                | 572,5607                       | 577,5166                      | 734,5683               | 756,5508                | 720,5891                     | 742,5716                      |
|      | 18:1                  | 584,5243                 | 589,4802                | 570,5450                       | 575,5010                      | 732,5527               | 754,5352                | 718,5734                     | 740,5559                      |

| 18:2                  | 582,5087 | 587,4646 | 568,5294 | 573,4853 | 730,5370 | 752,5195 | 716,5578 | 738,5403 |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| 18:2: <sup>13</sup> C | 600,5690 | 605,5250 | 586,5898 | 591,5457 | 748,5974 | 770,5799 | 734,6182 | 756,6006 |
| 18:3                  | 580,4930 | 585,4489 | 566,5137 | 571,4697 | 728,5214 | 750,5039 | 714,5421 | 736,5246 |
| 20:0                  | 614,5713 | 619,5272 | 600,5920 | 605,5479 | 762,5996 | 784,5821 | 748,6204 | 770,6029 |
| 20:2                  | 610,5400 | 615,4959 | 596,5607 | 601,5166 | 758,5683 | 780,5508 | 744,5891 | 766,5716 |
| 20:4                  | 606,5087 | 611,4646 | 592,5294 | 597,4853 | 754,5370 | 776,5195 | 740,5578 | 762,5403 |
| 20:5                  | 604,4930 | 609,4489 | 590,5137 | 595,4697 | 752,5214 | 774,5039 | 738,5421 | 760,5246 |
| 22:0                  | 642,6026 | 647,5585 | 628,6233 | 633,5792 | 790,6309 | 812,6134 | 776,6517 | 798,6342 |
| 22:1                  | 640,5869 | 645,5428 | 626,6076 | 631,5636 | 788,6153 | 810,5978 | 774,6360 | 796,6185 |
| 22:4                  | 634,5400 | 639,4959 | 620,5607 | 625,5166 | 782,5683 | 804,5508 | 768,5891 | 790,5716 |
| 22:5                  | 632,5243 | 637,4802 | 618,5450 | 623,5010 | 780,5527 | 802,5352 | 766,5734 | 788,5559 |
| 22:6                  | 630,5087 | 635,4646 | 616,5294 | 621,4853 | 778,5370 | 800,5195 | 764,5578 | 786,5403 |
| 24:0                  | 670,6339 | 675,5898 | 656,6546 | 661,6105 | 818,6622 | 840,6447 | 804,6830 | 826,6655 |
| 24:1                  | 668,6182 | 673,5741 | 654,6389 | 659,5949 | 816,6466 | 838,6291 | 802,6673 | 824,6498 |
| 24:2                  | 666,6026 | 671,5585 | 652,6233 | 657,5792 | 814,6309 | 836,6134 | 800,6517 | 822,6342 |
| 24:4                  | 662,5713 | 667,5272 | 648,5920 | 653,5479 | 810,5996 | 832,5821 | 796,6204 | 818,6029 |
| 24:5                  | 660,5556 | 665,5115 | 646,5763 | 651,5323 | 808,5840 | 830,5665 | 794,6047 | 816,5872 |
| 24:6                  | 658,5400 | 663,4959 | 644,5607 | 649,5166 | 806,5683 | 828,5508 | 792,5891 | 814,5716 |
| 26:3                  | 692,6182 | 697,5741 | 678,6389 | 683,5949 | 840,6466 | 862,6291 | 826,6673 | 848,6498 |
| 26:4                  | 690,6026 | 695,5585 | 676,6233 | 681,5792 | 838,6309 | 860,6134 | 824,6517 | 846,6342 |
| 26:5                  | 688,5869 | 693,5428 | 674,6076 | 679,5636 | 836,6153 | 858,5978 | 822,6360 | 844,6185 |
| 28:4                  | 718,6339 | 723,5898 | 704,6546 | 709,6105 | 866,6622 | 888,6447 | 852,6830 | 874,6655 |
| 28:5                  | 716,6182 | 721,5741 | 702,6389 | 707,5949 | 864,6466 | 886,6291 | 850,6673 | 872,6498 |
| 28:6                  | 714,6026 | 719,5585 | 700,6233 | 705,5792 | 862,6309 | 884,6134 | 848,6517 | 870,6342 |
| 30:4                  | 746,6652 | 751,6211 | 732,6859 | 737,6418 | 894,6935 | 916,6760 | 880,7143 | 902,6968 |
| 30:5                  | 744,6495 | 749,6054 | 730,6702 | 735,6262 | 892,6779 | 914,6604 | 878,6986 | 900,6811 |
| 30:6                  | 742,6339 | 747,5898 | 728,6546 | 733,6105 | 890,6622 | 912,6447 | 876,6830 | 898,6655 |
| 32:4                  | 774,6965 | 779,6524 | 760,7172 | 765,6731 | 922,7248 | 944,7073 | 908,7456 | 930,7281 |
| 32:5                  | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092 | 942,6917 | 906,7299 | 928,7124 |
| 32:6                  | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935 | 940,6760 | 904,7143 | 926,6968 |
| 34:5                  | 800,7121 | 805,6680 | 786,7328 | 791,6888 | 948,7405 | 970,7230 | 934,7612 | 956,7437 |
| 34:6                  | 798,6965 | 803,6524 | 784,7172 | 789,6731 | 946,7248 | 968,7073 | 932,7456 | 954,7281 |
|                       |          |          |          |          |          |          |          |          |
| 16:0                  | 586,5400 | 591,4959 | 572,5607 | 577,5166 | 734,5683 | 756,5508 | 720,5891 | 742,5716 |
| 16:1                  | 584,5243 | 589,4802 | 570,5450 | 575,5010 | 732,5527 | 754,5352 | 718,5734 | 740,5559 |
| 18:0                  | 614,5713 | 619,5272 | 600,5920 | 605,5479 | 762,5996 | 784,5821 | 748,6204 | 770,6029 |
| 18:1                  | 612,5556 | 617,5115 | 598,5763 | 603,5323 | 760,5840 | 782,5665 | 746,6047 | 768,5872 |
| 18:2                  | 610,5400 | 615,4959 | 596,5607 | 601,5166 | 758,5683 | 780,5508 | 744,5891 | 766,5716 |
| 18:2:'°C              | 628,6003 | 633,5563 | 614,6211 | 619,5770 | 776,6287 | 798,6112 | 762,6495 | 784,6319 |
| 18:3                  | 608,5243 | 613,4802 | 594,5450 | 599,5010 | 756,5527 | 778,5352 | 742,5734 | 764,5559 |
| 20:0                  | 642,6026 | 647,5585 | 628,6233 | 633,5792 | 790,6309 | 812,6134 | 776,6517 | 798,6342 |
| 20:2                  | 638,5713 | 643,5272 | 624,5920 | 629,5479 | 786,5996 | 808,5821 | 772,6204 | 794,6029 |
| 20:4                  | 634,5400 | 639,4959 | 620,5607 | 625,5166 | 782,5683 | 804,5508 | 768,5891 | 790,5716 |
| 20:5                  | 632,5243 | 637,4802 | 618,5450 | 623,5010 | 780,5527 | 802,5352 | 766,5734 | 788,5559 |
| 22:0                  | 670,6339 | 675,5898 | 656,6546 | 661,6105 | 818,6622 | 840,6447 | 804,6830 | 826,6655 |
| 22:1                  | 668,6182 | 673,5741 | 654,6389 | 659,5949 | 816,6466 | 838,6291 | 802,6673 | 824,6498 |
| 22:4                  | 662,5713 | 667,5272 | 648,5920 | 653,5479 | 810,5996 | 832,5821 | 796,6204 | 818,6029 |
| 22:5                  | 660,5556 | 665,5115 | 646,5763 | 651,5323 | 808,5840 | 830,5665 | 794,6047 | 816,5872 |
| 22:6                  | 658,5400 | 663,4959 | 644,5607 | 649,5166 | 806,5683 | 828,5508 | 792,5891 | 814,5716 |

16:0

| 24:0                  | 698.6652 | 703.6211 | 684.6859 | 689.6418 | 846.6935   | 868.6760 | 832.7143 | 854.6968 |
|-----------------------|----------|----------|----------|----------|------------|----------|----------|----------|
| 24:1                  | 696.6495 | 701.6054 | 682.6702 | 687.6262 | 844.6779   | 866,6604 | 830,6986 | 852,6811 |
| 24:2                  | 694,6339 | 699,5898 | 680,6546 | 685,6105 | 842,6622   | 864,6447 | 828,6830 | 850,6655 |
| 24:4                  | 690,6026 | 695,5585 | 676.6233 | 681,5792 | 838,6309   | 860,6134 | 824,6517 | 846,6342 |
| 24:5                  | 688,5869 | 693,5428 | 674.6076 | 679,5636 | 836.6153   | 858,5978 | 822.6360 | 844.6185 |
| 24:6                  | 686,5713 | 691,5272 | 672.5920 | 677.5479 | 834,5996   | 856.5821 | 820.6204 | 842.6029 |
| 26:3                  | 720.6495 | 725,6054 | 706.6702 | 711,6262 | 868,6779   | 890,6604 | 854,6986 | 876,6811 |
| 26:4                  | 718 6339 | 723 5898 | 704 6546 | 709 6105 | 866 6622   | 888 6447 | 852 6830 | 874 6655 |
| 26:5                  | 716.6182 | 721,5741 | 702.6389 | 707,5949 | 864,6466   | 886.6291 | 850,6673 | 872,6498 |
| 28:4                  | 746 6652 | 751 6211 | 732 6859 | 737 6418 | 894 6935   | 916 6760 | 880 7143 | 902 6968 |
| 28:5                  | 744 6495 | 749 6054 | 730 6702 | 735 6262 | 892 6779   | 914 6604 | 878 6986 | 900 6811 |
| 28:6                  | 742 6339 | 747 5898 | 728 6546 | 733 6105 | 890 6622   | 912 6447 | 876 6830 | 898 6655 |
| 30:4                  | 774 6965 | 779 6524 | 760 7172 | 765 6731 | 922 7248   | 944 7073 | 908 7456 | 930 7281 |
| 30:5                  | 772 6808 | 777 6367 | 758 7015 | 763 6575 | 920 7092   | 942 6917 | 906 7299 | 928 7124 |
| 30:6                  | 770 6652 | 775 6211 | 756 6859 | 761 6418 | 918 6935   | 940 6760 | 904 7143 | 926 6968 |
| 32.4                  | 802 7278 | 807 6837 | 788 7485 | 793 7044 | 950 7561   | 972 7386 | 936 7769 | 958 7594 |
| 32:5                  | 800 7121 | 805 6680 | 786 7328 | 791 6888 | 948 7405   | 970 7230 | 934 7612 | 956 7437 |
| 32.6                  | 798 6965 | 803 6524 | 784 7172 | 789 6731 | 946 7248   | 968 7073 | 932 7456 | 954 7281 |
| 34:5                  | 828 7434 | 833 6993 | 814 7641 | 819 7201 | 976 7718   | 998 7543 | 962 7925 | 984 7750 |
| 34.6                  | 826 7278 | 831 6837 | 812 7485 | 817 7044 | 974 7561   | 996 7386 | 960 7769 | 982 7594 |
| ••                    | 020,1210 | 001,0001 | 012,1100 | 011,1011 | 01 1,1 001 | 000,1000 | 000,1100 | 002,7001 |
| 16:1                  | 582,5087 | 587,4646 | 568,5294 | 573,4853 | 730,5370   | 752,5195 | 716,5578 | 738,5403 |
| 18:0                  | 612,5556 | 617,5115 | 598,5763 | 603,5323 | 760,5840   | 782,5665 | 746,6047 | 768,5872 |
| 18:1                  | 610,5400 | 615,4959 | 596,5607 | 601,5166 | 758,5683   | 780,5508 | 744,5891 | 766,5716 |
| 18:2                  | 608,5243 | 613,4802 | 594,5450 | 599,5010 | 756,5527   | 778,5352 | 742,5734 | 764,5559 |
| 18:2: <sup>13</sup> C | 626,5847 | 631,5406 | 612,6054 | 617,5614 | 774,6131   | 796,5956 | 760,6338 | 782,6163 |
| 18:3                  | 606,5087 | 611,4646 | 592,5294 | 597,4853 | 754,5370   | 776,5195 | 740,5578 | 762,5403 |
| 20:0                  | 640,5869 | 645,5428 | 626,6076 | 631,5636 | 788,6153   | 810,5978 | 774,6360 | 796,6185 |
| 20:2                  | 636,5556 | 641,5115 | 622,5763 | 627,5323 | 784,5840   | 806,5665 | 770,6047 | 792,5872 |
| 20:4                  | 632,5243 | 637,4802 | 618,5450 | 623,5010 | 780,5527   | 802,5352 | 766,5734 | 788,5559 |
| 20:5                  | 630,5087 | 635,4646 | 616,5294 | 621,4853 | 778,5370   | 800,5195 | 764,5578 | 786,5403 |
| 22:0                  | 668,6182 | 673,5741 | 654,6389 | 659,5949 | 816,6466   | 838,6291 | 802,6673 | 824,6498 |
| 22:1                  | 666,6026 | 671,5585 | 652,6233 | 657,5792 | 814,6309   | 836,6134 | 800,6517 | 822,6342 |
| 22:4                  | 660,5556 | 665,5115 | 646,5763 | 651,5323 | 808,5840   | 830,5665 | 794,6047 | 816,5872 |
| 22:5                  | 658,5400 | 663,4959 | 644,5607 | 649,5166 | 806,5683   | 828,5508 | 792,5891 | 814,5716 |
| 22:6                  | 656,5243 | 661,4802 | 642,5450 | 647,5010 | 804,5527   | 826,5352 | 790,5734 | 812,5559 |
| 24:0                  | 696,6495 | 701,6054 | 682,6702 | 687,6262 | 844,6779   | 866,6604 | 830,6986 | 852,6811 |
| 24:1                  | 694,6339 | 699,5898 | 680,6546 | 685,6105 | 842,6622   | 864,6447 | 828,6830 | 850,6655 |
| 24:2                  | 692,6182 | 697,5741 | 678,6389 | 683,5949 | 840,6466   | 862,6291 | 826,6673 | 848,6498 |
| 24:4                  | 688,5869 | 693,5428 | 674,6076 | 679,5636 | 836,6153   | 858,5978 | 822,6360 | 844,6185 |
| 24:5                  | 686,5713 | 691,5272 | 672,5920 | 677,5479 | 834,5996   | 856,5821 | 820,6204 | 842,6029 |
| 24:6                  | 684,5556 | 689,5115 | 670,5763 | 675,5323 | 832,5840   | 854,5665 | 818,6047 | 840,5872 |
| 26:3                  | 718,6339 | 723,5898 | 704,6546 | 709,6105 | 866,6622   | 888,6447 | 852,6830 | 874,6655 |
| 26:4                  | 716,6182 | 721,5741 | 702,6389 | 707,5949 | 864,6466   | 886,6291 | 850,6673 | 872,6498 |
| 26:5                  | 714,6026 | 719,5585 | 700,6233 | 705,5792 | 862,6309   | 884,6134 | 848,6517 | 870,6342 |
| 28:4                  | 744,6495 | 749,6054 | 730,6702 | 735,6262 | 892,6779   | 914,6604 | 878,6986 | 900,6811 |
| 28:5                  | 742,6339 | 747,5898 | 728,6546 | 733,6105 | 890,6622   | 912,6447 | 876,6830 | 898,6655 |
| 28:6                  | 740,6182 | 745,5741 | 726,6389 | 731,5949 | 888,6466   | 910,6291 | 874,6673 | 896,6498 |
| 30:4                  | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092   | 942,6917 | 906,7299 | 928,7124 |
|                       | ,        |          | ,        | ,        |            | ,        |          |          |

|      | 30.2                  | 770 6652 | 775 6211 | 756 6859 | 761 6418 | 918 6935  | 940 6760  | 904 7143 | 926 6968  |
|------|-----------------------|----------|----------|----------|----------|-----------|-----------|----------|-----------|
|      | 30:6                  | 768 6495 | 773 6054 | 754 6702 | 759 6262 | 916 6779  | 938 6604  | 902 6986 | 924 6811  |
|      | 32:4                  | 800 7121 | 805 6680 | 786 7328 | 791 6888 | 948 7405  | 970 7230  | 934 7612 | 956 7437  |
|      | 32:5                  | 798.6965 | 803.6524 | 784,7172 | 789.6731 | 946,7248  | 968,7073  | 932.7456 | 954,7281  |
|      | 32:6                  | 796.6808 | 801.6367 | 782.7015 | 787.6575 | 944,7092  | 966.6917  | 930.7299 | 952.7124  |
|      | 34:5                  | 826.7278 | 831.6837 | 812.7485 | 817.7044 | 974.7561  | 996.7386  | 960.7769 | 982.7594  |
|      | 34:6                  | 824,7121 | 829,6680 | 810,7328 | 815,6888 | 972,7405  | 994,7230  | 958,7612 | 980,7437  |
| 18:0 | 18:0                  | 642.6026 | 647.5585 | 628.6233 | 633.5792 | 790.6309  | 812.6134  | 776.6517 | 798.6342  |
|      | 18:1                  | 640,5869 | 645,5428 | 626,6076 | 631,5636 | 788,6153  | 810,5978  | 774,6360 | 796,6185  |
|      | 18:2                  | 638,5713 | 643,5272 | 624,5920 | 629,5479 | 786,5996  | 808,5821  | 772,6204 | 794,6029  |
|      | 18:2: <sup>13</sup> C | 656,6316 | 661,5876 | 642,6524 | 647,6083 | 804,6600  | 826,6425  | 790,6808 | 812,6632  |
|      | 18:3                  | 636,5556 | 641,5115 | 622,5763 | 627,5323 | 784,5840  | 806,5665  | 770,6047 | 792,5872  |
|      | 20:0                  | 670,6339 | 675,5898 | 656,6546 | 661,6105 | 818,6622  | 840,6447  | 804,6830 | 826,6655  |
|      | 20:2                  | 666,6026 | 671,5585 | 652,6233 | 657,5792 | 814,6309  | 836,6134  | 800,6517 | 822,6342  |
|      | 20:4                  | 662,5713 | 667,5272 | 648,5920 | 653,5479 | 810,5996  | 832,5821  | 796,6204 | 818,6029  |
|      | 20:5                  | 660,5556 | 665,5115 | 646,5763 | 651,5323 | 808,5840  | 830,5665  | 794,6047 | 816,5872  |
|      | 22:0                  | 698,6652 | 703,6211 | 684,6859 | 689,6418 | 846,6935  | 868,6760  | 832,7143 | 854,6968  |
|      | 22:1                  | 696,6495 | 701,6054 | 682,6702 | 687,6262 | 844,6779  | 866,6604  | 830,6986 | 852,6811  |
|      | 22:4                  | 690,6026 | 695,5585 | 676,6233 | 681,5792 | 838,6309  | 860,6134  | 824,6517 | 846,6342  |
|      | 22:5                  | 688,5869 | 693,5428 | 674,6076 | 679,5636 | 836,6153  | 858,5978  | 822,6360 | 844,6185  |
|      | 22:6                  | 686,5713 | 691,5272 | 672,5920 | 677,5479 | 834,5996  | 856,5821  | 820,6204 | 842,6029  |
|      | 24:0                  | 726,6965 | 731,6524 | 712,7172 | 717,6731 | 874,7248  | 896,7073  | 860,7456 | 882,7281  |
|      | 24:1                  | 724,6808 | 729,6367 | 710,7015 | 715,6575 | 872,7092  | 894,6917  | 858,7299 | 880,7124  |
|      | 24:2                  | 722,6652 | 727,6211 | 708,6859 | 713,6418 | 870,6935  | 892,6760  | 856,7143 | 878,6968  |
|      | 24:4                  | 718,6339 | 723,5898 | 704,6546 | 709,6105 | 866,6622  | 888,6447  | 852,6830 | 874,6655  |
|      | 24:5                  | 716,6182 | 721,5741 | 702,6389 | 707,5949 | 864,6466  | 886,6291  | 850,6673 | 872,6498  |
|      | 24:6                  | 714,6026 | 719,5585 | 700,6233 | 705,5792 | 862,6309  | 884,6134  | 848,6517 | 870,6342  |
|      | 26:3                  | 748,6808 | 753,6367 | 734,7015 | 739,6575 | 896,7092  | 918,6917  | 882,7299 | 904,7124  |
|      | 26:4                  | 746,6652 | 751,6211 | 732,6859 | 737,6418 | 894,6935  | 916,6760  | 880,7143 | 902,6968  |
|      | 26:5                  | 744,6495 | 749,6054 | 730,6702 | 735,6262 | 892,6779  | 914,6604  | 878,6986 | 900,6811  |
|      | 28:4                  | 774,6965 | 779,6524 | 760,7172 | 765,6731 | 922,7248  | 944,7073  | 908,7456 | 930,7281  |
|      | 28:5                  | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092  | 942,6917  | 906,7299 | 928,7124  |
|      | 28:6                  | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935  | 940,6760  | 904,7143 | 926,6968  |
|      | 30:4                  | 802,7278 | 807,6837 | 788,7485 | 793,7044 | 950,7561  | 972,7386  | 936,7769 | 958,7594  |
|      | 30:5                  | 800,7121 | 805,6680 | 786,7328 | 791,6888 | 948,7405  | 970,7230  | 934,7612 | 956,7437  |
|      | 30:6                  | 798,0905 | 803,6524 | 784,7172 | 789,0731 | 946,7248  | 968,7073  | 932,7450 | 954,7281  |
|      | 32:4                  | 830,7591 | 835,7150 | 816,7798 | 821,7357 | 9/8,/8/4  | 1000,7699 | 964,8082 | 986,7907  |
|      | 32:5                  | 020,7434 | 033,0993 | 014,7041 | 019,7201 | 9/0,//10  | 990,7040  | 902,7925 | 904,7750  |
|      | 32:0                  | 820,7278 | 831,0837 | 812,7485 | 817,7044 | 974,7501  | 990,7380  | 960,7769 | 982,7594  |
|      | 34:5                  | 850,7747 | 801,7300 | 842,7954 | 847,7514 | 1004,8031 | 1020,7850 | 990,8238 | 1012,8063 |
|      | 34:0                  | 004,7091 | 659,7150 | 040,7790 | 045,7357 | 1002,7874 | 1024,7699 | 900,0002 | 1010,7907 |
| 18:1 | 18:1                  | 638,5713 | 643,5272 | 624,5920 | 629,5479 | 786,5996  | 808,5821  | 772,6204 | 794,6029  |
|      | 18:2                  | 636,5556 | 641,5115 | 622,5763 | 627,5323 | 784,5840  | 806,5665  | 770,6047 | 792,5872  |
|      | 18:2: <sup>13</sup> C | 654,6160 | 659,5719 | 640,6367 | 645,5927 | 802,6444  | 824,6269  | 788,6651 | 810,6476  |
|      | 18:3                  | 634,5400 | 639,4959 | 620,5607 | 625,5166 | 782,5683  | 804,5508  | 768,5891 | 790,5716  |
|      | 20:0                  | 668,6182 | 673,5741 | 654,6389 | 659,5949 | 816,6466  | 838,6291  | 802,6673 | 824,6498  |
|      | 20:2                  | 664,5869 | 669,5428 | 650,6076 | 655,5636 | 812,6153  | 834,5978  | 798,6360 | 820,6185  |

| 20:4                  | 660,5556 | 665,5115 | 646,5763 | 651,5323   | 808,5840  | 830,5665             | 794,6047 | 816,5872  |
|-----------------------|----------|----------|----------|------------|-----------|----------------------|----------|-----------|
| 20:5                  | 658,5400 | 663,4959 | 644,5607 | 649,5166   | 806,5683  | 828,5508             | 792,5891 | 814,5716  |
| 22:0                  | 696,6495 | 701,6054 | 682.6702 | 687,6262   | 844,6779  | 866.6604             | 830,6986 | 852,6811  |
| 22:1                  | 694 6339 | 699 5898 | 680 6546 | 685 6105   | 842 6622  | 864 6447             | 828 6830 | 850 6655  |
| 22.4                  | 688 5869 | 693 5428 | 674 6076 | 679 5636   | 836 6153  | 858 5978             | 822 6360 | 844 6185  |
| 22.5                  | 686 5713 | 691 5272 | 672 5920 | 677 5479   | 834 5996  | 856 5821             | 820 6204 | 842 6029  |
| 22:6                  | 684 5556 | 689 5115 | 670 5763 | 675 5323   | 832 5840  | 854 5665             | 818 6047 | 840 5872  |
| 24:0                  | 724 6808 | 720 6367 | 710 7015 | 715 6575   | 872 7002  | 204,5005<br>204,6017 | 858 7200 | 880 7124  |
| 24.0                  | 722,0000 | 729,0307 | 708 6850 | 713,0373   | 870 6035  | 802 6760             | 856 7143 | 878 6068  |
| 24.1                  | 722,0052 | 725,0211 | 706,0039 | 713,0410   | 070,0933  | 800,6604             | 854,6096 | 070,0900  |
| 24:2                  | 720,0495 | 723,0034 | 700,0702 | 711,0202   | 000,0779  | 090,0004             | 054,0900 | 070,0011  |
| 24:4                  | 710,0102 | 721,3741 | 702,6369 | 707,5949   | 004,0400  | 000,0291             | 050,0075 | 072,0490  |
| 24:5                  | 714,6026 | 719,5585 | 700,6233 | 705,5792   | 862,6309  | 884,6134             | 848,6517 | 870,6342  |
| 24:6                  | 712,5869 | /1/,5428 | 698,6076 | 703,5636   | 860,6153  | 882,5978             | 846,6360 | 868,6185  |
| 26:3                  | 746,6652 | 751,6211 | 732,6859 | 737,6418   | 894,6935  | 916,6760             | 880,7143 | 902,6968  |
| 26:4                  | 744,6495 | 749,6054 | 730,6702 | 735,6262   | 892,6779  | 914,6604             | 878,6986 | 900,6811  |
| 26:5                  | 742,6339 | 747,5898 | 728,6546 | 733,6105   | 890,6622  | 912,6447             | 876,6830 | 898,6655  |
| 28:4                  | 772,6808 | 777,6367 | 758,7015 | 763,6575   | 920,7092  | 942,6917             | 906,7299 | 928,7124  |
| 28:5                  | 770,6652 | 775,6211 | 756,6859 | 761,6418   | 918,6935  | 940,6760             | 904,7143 | 926,6968  |
| 28:6                  | 768,6495 | 773,6054 | 754,6702 | 759,6262   | 916,6779  | 938,6604             | 902,6986 | 924,6811  |
| 30:4                  | 800,7121 | 805,6680 | 786,7328 | 791,6888   | 948,7405  | 970,7230             | 934,7612 | 956,7437  |
| 30:5                  | 798,6965 | 803,6524 | 784,7172 | 789,6731   | 946,7248  | 968,7073             | 932,7456 | 954,7281  |
| 30:6                  | 796,6808 | 801,6367 | 782,7015 | 787,6575   | 944,7092  | 966,6917             | 930,7299 | 952,7124  |
| 32:4                  | 828,7434 | 833,6993 | 814,7641 | 819,7201   | 976,7718  | 998,7543             | 962,7925 | 984,7750  |
| 32:5                  | 826,7278 | 831,6837 | 812,7485 | 817,7044   | 974,7561  | 996,7386             | 960,7769 | 982,7594  |
| 32:6                  | 824 7121 | 829 6680 | 810 7328 | 815 6888   | 972 7405  | 994 7230             | 958 7612 | 980 7437  |
| 34:5                  | 854 7591 | 859 7150 | 840 7798 | 845 7357   | 1002 7874 | 1024 7699            | 988 8082 | 1010 7907 |
| 34.6                  | 852 7434 | 857 6993 | 838 7641 | 843 7201   | 1000 7718 | 1022 7543            | 986 7925 | 1008 7750 |
| ••                    | 00_,     | ,        | 000,1011 | 0.10,1.201 |           |                      | 000,1020 |           |
| 18:2                  | 634,5400 | 639,4959 | 620,5607 | 625,5166   | 782,5683  | 804,5508             | 768,5891 | 790,5716  |
| 18:2: <sup>13</sup> C | 652,6003 | 657,5563 | 638.6211 | 643.5770   | 800.6287  | 822.6112             | 786.6495 | 808.6319  |
| 18:3                  | 632,5243 | 637,4802 | 618,5450 | 623,5010   | 780.5527  | 802.5352             | 766.5734 | 788.5559  |
| 20:0                  | 666,6026 | 671,5585 | 652,6233 | 657,5792   | 814,6309  | 836,6134             | 800.6517 | 822,6342  |
| 20:2                  | 662,5713 | 667.5272 | 648,5920 | 653,5479   | 810,5996  | 832,5821             | 796.6204 | 818,6029  |
| 20:4                  | 658 5400 | 663 4959 | 644 5607 | 649 5166   | 806 5683  | 828 5508             | 792 5891 | 814 5716  |
| 20:5                  | 656 5243 | 661 4802 | 642 5450 | 647 5010   | 804 5527  | 826 5352             | 790 5734 | 812 5559  |
| 22.0                  | 694 6339 | 699 5898 | 680 6546 | 685,6105   | 842 6622  | 864 6447             | 828 6830 | 850,6655  |
| 22.1                  | 692 6182 | 697 5741 | 678 6389 | 683 5949   | 840 6466  | 862 6291             | 826 6673 | 848 6498  |
| 22.4                  | 686 5713 | 601 5272 | 672 5920 | 677 5479   | 834 5006  | 856 5821             | 820,6204 | 842 6029  |
| 22.4                  | 684 5556 | 680 5115 | 670 5763 | 675 5323   | 832 5840  | 854 5665             | 818 6047 | 840 5872  |
| 22.5                  | 682 5400 | 687 /050 | 668 5607 | 673 5166   | 830 5683  | 852 5508             | 816 5801 | 838 5716  |
| 22.0                  | 702,5400 | 707 6011 | 709 6950 | 712 6419   | 970 6025  | 002,000<br>002,6760  | 956 7142 | 030,3710  |
| 24.0                  | 722,0002 | 725,0211 | 706,0009 | 713,0410   | 070,0933  | 092,0700             | 050,7145 | 070,0900  |
| 24.1                  | 720,0495 | 723,0034 | 700,0702 | 711,0202   | 000,0779  | 090,0004             | 054,0900 | 070,0011  |
| 24:2                  | 710,0339 | 723,3090 | 704,0540 | 709,6105   | 000,0022  | 000,0447             | 052,0050 | 074,0000  |
| 24:4                  | 714,0020 | 719,0000 | 700,6233 | 100,0192   | 802,0309  | 004,0134             |          | 870,0342  |
| 24:5                  | /12,5869 | /1/,5428 | 698,6076 | /03,5636   | 860,6153  | 882,5978             | 846,6360 | 868,6185  |
| 24:6                  | /10,5/13 | /15,52/2 | 696,5920 | /01,54/9   | 858,5996  | 880,5821             | 844,6204 | 866,6029  |
| 26:3                  | /44,6495 | 749,6054 | 730,6702 | 735,6262   | 892,6779  | 914,6604             | 878,6986 | 900,6811  |
| 26:4                  | 742,6339 | 747,5898 | 728,6546 | 733,6105   | 890,6622  | 912,6447             | 876,6830 | 898,6655  |
| 26:5                  | 740,6182 | 745,5741 | 726,6389 | 731,5949   | 888,6466  | 910,6291             | 874,6673 | 896,6498  |

18:2

|          | 28:4     | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935  | 940,6760  | 904,7143  | 926,6968  |
|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
|          | 28:5     | 768,6495 | 773,6054 | 754,6702 | 759,6262 | 916,6779  | 938,6604  | 902,6986  | 924,6811  |
|          | 28:6     | 766,6339 | 771,5898 | 752,6546 | 757,6105 | 914,6622  | 936,6447  | 900,6830  | 922,6655  |
|          | 30:4     | 798,6965 | 803,6524 | 784,7172 | 789,6731 | 946,7248  | 968,7073  | 932,7456  | 954,7281  |
|          | 30:5     | 796,6808 | 801,6367 | 782,7015 | 787,6575 | 944,7092  | 966,6917  | 930,7299  | 952,7124  |
|          | 30:6     | 794,6652 | 799,6211 | 780,6859 | 785,6418 | 942,6935  | 964,6760  | 928,7143  | 950,6968  |
|          | 32:4     | 826,7278 | 831,6837 | 812,7485 | 817,7044 | 974,7561  | 996,7386  | 960,7769  | 982,7594  |
|          | 32:5     | 824,7121 | 829,6680 | 810,7328 | 815,6888 | 972,7405  | 994,7230  | 958,7612  | 980,7437  |
|          | 32:6     | 822,6965 | 827.6524 | 808,7172 | 813.6731 | 970,7248  | 992,7073  | 956,7456  | 978,7281  |
|          | 34:5     | 852,7434 | 857.6993 | 838,7641 | 843.7201 | 1000.7718 | 1022.7543 | 986,7925  | 1008.7750 |
|          | 34:6     | 850,7278 | 855,6837 | 836,7485 | 841,7044 | 998,7561  | 1020,7386 | 984,7769  | 1006,7594 |
| 40.0.130 | 40.0.130 | 670 6607 | 675 6467 | CEC C01E | 661 6274 | 010 6001  | 940 6746  | 004 7000  | 826 6022  |
| 10:2: U  | 10:2: 0  | 670,0007 | 0/0,010/ | 030,0015 | 641 5614 | 700 6121  | 040,0710  | 004,7090  | 020,0923  |
|          | 10.3     | 694 6620 | 690 6190 | 670 6927 | 675 6206 | 790,0131  | 020,0900  | 704,0330  | 840 6046  |
|          | 20.0     | 690 6216 | 009,0109 | 070,0837 | 671 6093 | 032,0913  | 004,0700  | 010,7121  | 040,0940  |
|          | 20:2     | 000,0310 | 000,0070 | 666,6524 | 071,0003 | 020,0000  | 000,0420  | 014,0000  | 030,0032  |
|          | 20:4     | 070,0003 | 081,0003 | 662,6211 | 007,5770 | 824,6287  | 840,0112  | 810,6495  | 832,0319  |
|          | 20:5     | 074,0047 | 079,0400 | 660,6054 | 702,5014 | 022,0131  | 044,0900  | 000,0330  | 030,0103  |
|          | 22:0     | 712,6942 | 717,0002 | 698,7150 | 703,6709 | 860,7226  | 882,7051  | 840,7434  | 868,7259  |
|          | 22:1     | 710,6786 | 715,6345 | 696,6993 | 701,6553 | 858,7070  | 880,6895  | 844,7277  | 866,7102  |
|          | 22:4     | 704,6316 | 709,5876 | 690,6524 | 695,6083 | 852,6600  | 874,6425  | 838,6808  | 860,6632  |
|          | 22:5     | 702,6160 | 707,5719 | 688,6367 | 693,5927 | 850,6444  | 872,6269  | 836,6651  | 858,6476  |
|          | 22:6     | 700,6003 | 705,5563 | 686,6211 | 691,5770 | 848,6287  | 870,6112  | 834,6495  | 856,6319  |
|          | 24:0     | 740,7255 | 745,6815 | 726,7463 | 731,7022 | 888,7539  | 910,7364  | 874,7747  | 896,7572  |
|          | 24:1     | 738,7099 | 743,6658 | 724,7306 | 729,6866 | 886,7383  | 908,7208  | 872,7590  | 894,7415  |
|          | 24:2     | 736,6942 | 741,6502 | 722,7150 | 727,6709 | 884,7226  | 906,7051  | 870,7434  | 892,7259  |
|          | 24:4     | 732,6629 | 737,6189 | 718,6837 | 723,6396 | 880,6913  | 902,6738  | 866,7121  | 888,6946  |
|          | 24:5     | 730,6473 | 735,6032 | 716,6680 | 721,6240 | 878,6757  | 900,6582  | 864,6964  | 886,6789  |
|          | 24:6     | 728,6316 | 733,5876 | 714,6524 | 719,6083 | 876,6600  | 898,6425  | 862,6808  | 884,6632  |
|          | 26:3     | 762,7099 | 767,6658 | 748,7306 | 753,6866 | 910,7383  | 932,7208  | 896,7590  | 918,7415  |
|          | 26:4     | 760,6942 | 765,6502 | 746,7150 | 751,6709 | 908,7226  | 930,7051  | 894,7434  | 916,7259  |
|          | 26:5     | 758,6786 | 763,6345 | 744,6993 | 749,6553 | 906,7070  | 928,6895  | 892,7277  | 914,7102  |
|          | 28:4     | 788,7255 | 793,6815 | 774,7463 | 779,7022 | 936,7539  | 958,7364  | 922,7747  | 944,7572  |
|          | 28:5     | 786,7099 | 791,6658 | 772,7306 | 777,6866 | 934,7383  | 956,7208  | 920,7590  | 942,7415  |
|          | 28:6     | 784,6942 | 789,6502 | 770,7150 | 775,6709 | 932,7226  | 954,7051  | 918,7434  | 940,7259  |
|          | 30:4     | 816,7568 | 821,7128 | 802,7776 | 807,7335 | 964,7852  | 986,7677  | 950,8060  | 972,7885  |
|          | 30:5     | 814,7412 | 819,6971 | 800,7619 | 805,7179 | 962,7696  | 984,7521  | 948,7903  | 970,7728  |
|          | 30:6     | 812,7255 | 817,6815 | 798,7463 | 803,7022 | 960,7539  | 982,7364  | 946,7747  | 968,7572  |
|          | 32:4     | 844,7881 | 849,7441 | 830,8089 | 835,7648 | 992,8165  | 1014,7990 | 978,8373  | 1000,8198 |
|          | 32:5     | 842,7725 | 847,7284 | 828,7932 | 833,7492 | 990,8009  | 1012,7834 | 976,8216  | 998,8041  |
|          | 32:6     | 840,7568 | 845,7128 | 826,7776 | 831,7335 | 988,7852  | 1010,7677 | 974,8060  | 996,7885  |
|          | 34:5     | 870,8038 | 875,7597 | 856,8245 | 861,7805 | 1018,8322 | 1040,8147 | 1004,8529 | 1026,8354 |
|          | 34:6     | 868,7881 | 873,7441 | 854,8089 | 859,7648 | 1016,8165 | 1038,7990 | 1002,8373 | 1024,8198 |
| 18:3     | 18:3     | 630,5087 | 635,4646 | 616,5294 | 621,4853 | 778,5370  | 800,5195  | 764,5578  | 786,5403  |
|          | 20:0     | 664,5869 | 669,5428 | 650,6076 | 655,5636 | 812,6153  | 834,5978  | 798,6360  | 820,6185  |
|          | 20:2     | 660,5556 | 665,5115 | 646,5763 | 651,5323 | 808.5840  | 830,5665  | 794,6047  | 816.5872  |
|          | 20:4     | 656,5243 | 661,4802 | 642,5450 | 647,5010 | 804,5527  | 826,5352  | 790,5734  | 812,5559  |
|          | 20:5     | 654,5087 | 659,4646 | 640,5294 | 645,4853 | 802,5370  | 824,5195  | 788,5578  | 810,5403  |
|          |          |          |          |          |          | •         |           |           |           |

| 22:0 | 692,6182 | 697,5741 | 678,6389 | 683,5949 | 840,6466 | 862,6291  | 826,6673 | 848,6498  |
|------|----------|----------|----------|----------|----------|-----------|----------|-----------|
| 22:1 | 690,6026 | 695,5585 | 676,6233 | 681,5792 | 838,6309 | 860,6134  | 824,6517 | 846,6342  |
| 22:4 | 684,5556 | 689,5115 | 670,5763 | 675,5323 | 832,5840 | 854,5665  | 818,6047 | 840,5872  |
| 22:5 | 682,5400 | 687,4959 | 668,5607 | 673,5166 | 830,5683 | 852,5508  | 816,5891 | 838,5716  |
| 22:6 | 680,5243 | 685,4802 | 666,5450 | 671,5010 | 828,5527 | 850,5352  | 814,5734 | 836,5559  |
| 24:0 | 720,6495 | 725,6054 | 706,6702 | 711,6262 | 868,6779 | 890,6604  | 854,6986 | 876,6811  |
| 24:1 | 718,6339 | 723,5898 | 704,6546 | 709,6105 | 866,6622 | 888,6447  | 852,6830 | 874,6655  |
| 24:2 | 716,6182 | 721,5741 | 702,6389 | 707,5949 | 864,6466 | 886,6291  | 850,6673 | 872,6498  |
| 24:4 | 712,5869 | 717,5428 | 698,6076 | 703,5636 | 860,6153 | 882,5978  | 846,6360 | 868,6185  |
| 24:5 | 710,5713 | 715,5272 | 696,5920 | 701,5479 | 858,5996 | 880,5821  | 844,6204 | 866,6029  |
| 24:6 | 708,5556 | 713,5115 | 694,5763 | 699,5323 | 856,5840 | 878,5665  | 842,6047 | 864,5872  |
| 26:3 | 742,6339 | 747,5898 | 728,6546 | 733,6105 | 890,6622 | 912,6447  | 876,6830 | 898,6655  |
| 26:4 | 740,6182 | 745,5741 | 726,6389 | 731,5949 | 888,6466 | 910,6291  | 874,6673 | 896,6498  |
| 26:5 | 738,6026 | 743,5585 | 724,6233 | 729,5792 | 886,6309 | 908,6134  | 872,6517 | 894,6342  |
| 28:4 | 768,6495 | 773,6054 | 754,6702 | 759,6262 | 916,6779 | 938,6604  | 902,6986 | 924,6811  |
| 28:5 | 766.6339 | 771,5898 | 752.6546 | 757.6105 | 914,6622 | 936,6447  | 900.6830 | 922,6655  |
| 28:6 | 764,6182 | 769,5741 | 750,6389 | 755,5949 | 912,6466 | 934,6291  | 898,6673 | 920,6498  |
| 30:4 | 796,6808 | 801.6367 | 782,7015 | 787.6575 | 944,7092 | 966.6917  | 930,7299 | 952,7124  |
| 30:5 | 794.6652 | 799.6211 | 780.6859 | 785.6418 | 942,6935 | 964.6760  | 928,7143 | 950.6968  |
| 30:6 | 792,6495 | 797.6054 | 778.6702 | 783.6262 | 940,6779 | 962,6604  | 926,6986 | 948.6811  |
| 32:4 | 824,7121 | 829,6680 | 810,7328 | 815,6888 | 972,7405 | 994,7230  | 958,7612 | 980,7437  |
| 32:5 | 822,6965 | 827.6524 | 808.7172 | 813.6731 | 970,7248 | 992,7073  | 956.7456 | 978.7281  |
| 32:6 | 820,6808 | 825,6367 | 806.7015 | 811.6575 | 968,7092 | 990,6917  | 954,7299 | 976.7124  |
| 34:5 | 850,7278 | 855,6837 | 836.7485 | 841,7044 | 998,7561 | 1020.7386 | 984,7769 | 1006.7594 |
| 34:6 | 848,7121 | 853,6680 | 834,7328 | 839,6888 | 996,7405 | 1018,7230 | 982.7612 | 1004.7437 |
|      | /        |          | ,        | ,        | ,        | ,         |          |           |
| 20:0 | 698,6652 | 703,6211 | 684,6859 | 689,6418 | 846,6935 | 868,6760  | 832,7143 | 854,6968  |
| 20:2 | 694,6339 | 699,5898 | 680,6546 | 685,6105 | 842,6622 | 864,6447  | 828,6830 | 850,6655  |
| 20:4 | 690,6026 | 695,5585 | 676,6233 | 681,5792 | 838,6309 | 860,6134  | 824,6517 | 846,6342  |
| 20:5 | 688,5869 | 693,5428 | 674,6076 | 679,5636 | 836,6153 | 858,5978  | 822,6360 | 844,6185  |
| 22:0 | 726,6965 | 731,6524 | 712,7172 | 717,6731 | 874,7248 | 896,7073  | 860,7456 | 882,7281  |
| 22:1 | 724,6808 | 729,6367 | 710,7015 | 715,6575 | 872,7092 | 894,6917  | 858,7299 | 880,7124  |
| 22:4 | 718,6339 | 723,5898 | 704,6546 | 709,6105 | 866,6622 | 888,6447  | 852,6830 | 874,6655  |
| 22:5 | 716,6182 | 721,5741 | 702,6389 | 707,5949 | 864,6466 | 886,6291  | 850,6673 | 872,6498  |
| 22:6 | 714,6026 | 719,5585 | 700,6233 | 705,5792 | 862,6309 | 884,6134  | 848,6517 | 870,6342  |
| 24:0 | 754,7278 | 759,6837 | 740,7485 | 745,7044 | 902,7561 | 924,7386  | 888,7769 | 910,7594  |
| 24:1 | 752,7121 | 757,6680 | 738,7328 | 743,6888 | 900,7405 | 922,7230  | 886,7612 | 908,7437  |
| 24:2 | 750,6965 | 755,6524 | 736,7172 | 741,6731 | 898,7248 | 920,7073  | 884,7456 | 906,7281  |
| 24:4 | 746,6652 | 751,6211 | 732,6859 | 737,6418 | 894,6935 | 916,6760  | 880,7143 | 902,6968  |
| 24:5 | 744,6495 | 749,6054 | 730,6702 | 735,6262 | 892,6779 | 914,6604  | 878,6986 | 900,6811  |
| 24:6 | 742,6339 | 747,5898 | 728,6546 | 733,6105 | 890,6622 | 912,6447  | 876,6830 | 898,6655  |
| 26:3 | 776,7121 | 781,6680 | 762,7328 | 767,6888 | 924,7405 | 946,7230  | 910,7612 | 932,7437  |
| 26:4 | 774,6965 | 779,6524 | 760,7172 | 765,6731 | 922,7248 | 944,7073  | 908,7456 | 930,7281  |
| 26:5 | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092 | 942,6917  | 906,7299 | 928,7124  |
| 28:4 | 802,7278 | 807,6837 | 788,7485 | 793,7044 | 950,7561 | 972,7386  | 936,7769 | 958,7594  |
| 28:5 | 800,7121 | 805,6680 | 786,7328 | 791,6888 | 948,7405 | 970,7230  | 934,7612 | 956,7437  |
| 28:6 | 798,6965 | 803,6524 | 784,7172 | 789,6731 | 946,7248 | 968,7073  | 932,7456 | 954,7281  |
| 30:4 | 830,7591 | 835,7150 | 816,7798 | 821,7357 | 978,7874 | 1000,7699 | 964,8082 | 986,7907  |
| 30:5 | 828,7434 | 833,6993 | 814,7641 | 819,7201 | 976,7718 | 998,7543  | 962,7925 | 984,7750  |

20:0

|      | 30:6 | 826,7278 | 831,6837 | 812,7485 | 817,7044 | 974,7561  | 996,7386  | 960,7769  | 982,7594  |
|------|------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
|      | 32:4 | 858,7904 | 863,7463 | 844,8111 | 849,7670 | 1006,8187 | 1028,8012 | 992,8395  | 1014,8220 |
|      | 32:5 | 856,7747 | 861,7306 | 842,7954 | 847,7514 | 1004,8031 | 1026,7856 | 990,8238  | 1012,8063 |
|      | 32:6 | 854,7591 | 859,7150 | 840,7798 | 845,7357 | 1002,7874 | 1024,7699 | 988,8082  | 1010,7907 |
|      | 34:5 | 884,8060 | 889,7619 | 870,8267 | 875,7827 | 1032,8344 | 1054,8169 | 1018,8551 | 1040,8376 |
|      | 34:6 | 882,7904 | 887,7463 | 868,8111 | 873,7670 | 1030,8187 | 1052,8012 | 1016,8395 | 1038,8220 |
| 20:2 | 20:2 | 690,6026 | 695,5585 | 676,6233 | 681,5792 | 838,6309  | 860,6134  | 824,6517  | 846,6342  |
|      | 20:4 | 686,5713 | 691,5272 | 672,5920 | 677,5479 | 834,5996  | 856,5821  | 820,6204  | 842,6029  |
|      | 20:5 | 684,5556 | 689,5115 | 670,5763 | 675,5323 | 832,5840  | 854,5665  | 818,6047  | 840,5872  |
|      | 22:0 | 722,6652 | 727,6211 | 708,6859 | 713,6418 | 870,6935  | 892,6760  | 856,7143  | 878,6968  |
|      | 22:1 | 720,6495 | 725,6054 | 706,6702 | 711,6262 | 868,6779  | 890,6604  | 854,6986  | 876,6811  |
|      | 22:4 | 714,6026 | 719,5585 | 700,6233 | 705,5792 | 862,6309  | 884,6134  | 848,6517  | 870,6342  |
|      | 22:5 | 712,5869 | 717,5428 | 698,6076 | 703,5636 | 860,6153  | 882,5978  | 846,6360  | 868,6185  |
|      | 22:6 | 710,5713 | 715,5272 | 696,5920 | 701,5479 | 858,5996  | 880,5821  | 844,6204  | 866,6029  |
|      | 24:0 | 750,6965 | 755,6524 | 736,7172 | 741,6731 | 898,7248  | 920,7073  | 884,7456  | 906,7281  |
|      | 24:1 | 748,6808 | 753,6367 | 734,7015 | 739,6575 | 896,7092  | 918,6917  | 882,7299  | 904,7124  |
|      | 24:2 | 746,6652 | 751,6211 | 732,6859 | 737,6418 | 894,6935  | 916,6760  | 880,7143  | 902,6968  |
|      | 24:4 | 742,6339 | 747,5898 | 728,6546 | 733,6105 | 890,6622  | 912,6447  | 876,6830  | 898,6655  |
|      | 24:5 | 740,6182 | 745,5741 | 726,6389 | 731,5949 | 888,6466  | 910,6291  | 874,6673  | 896,6498  |
|      | 24:6 | 738,6026 | 743,5585 | 724,6233 | 729,5792 | 886,6309  | 908,6134  | 872,6517  | 894,6342  |
|      | 26:3 | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092  | 942,6917  | 906,7299  | 928,7124  |
|      | 26:4 | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935  | 940,6760  | 904,7143  | 926,6968  |
|      | 26:5 | 768,6495 | 773,6054 | 754,6702 | 759,6262 | 916,6779  | 938,6604  | 902,6986  | 924,6811  |
|      | 28:4 | 798,6965 | 803,6524 | 784,7172 | 789,6731 | 946,7248  | 968,7073  | 932,7456  | 954,7281  |
|      | 28:5 | 796,6808 | 801,6367 | 782,7015 | 787,6575 | 944,7092  | 966,6917  | 930,7299  | 952,7124  |
|      | 28:6 | 794,6652 | 799,6211 | 780,6859 | 785,6418 | 942,6935  | 964,6760  | 928,7143  | 950,6968  |
|      | 30:4 | 826,7278 | 831,6837 | 812,7485 | 817,7044 | 974,7561  | 996,7386  | 960,7769  | 982,7594  |
|      | 30:5 | 824,7121 | 829,6680 | 810,7328 | 815,6888 | 972,7405  | 994,7230  | 958,7612  | 980,7437  |
|      | 30:6 | 822,6965 | 827,6524 | 808,7172 | 813,6731 | 970,7248  | 992,7073  | 956,7456  | 978,7281  |
|      | 32:4 | 854,7591 | 859,7150 | 840,7798 | 845,7357 | 1002,7874 | 1024,7699 | 988,8082  | 1010,7907 |
|      | 32:5 | 852,7434 | 857,6993 | 838,7641 | 843,7201 | 1000,7718 | 1022,7543 | 986,7925  | 1008,7750 |
|      | 32:6 | 850,7278 | 855,6837 | 836,7485 | 841,7044 | 998,7561  | 1020,7386 | 984,7769  | 1006,7594 |
|      | 34:5 | 880,7747 | 885,7306 | 866,7954 | 871,7514 | 1028,8031 | 1050,7856 | 1014,8238 | 1036,8063 |
|      | 34:6 | 878,7591 | 883,7150 | 864,7798 | 869,7357 | 1026,7874 | 1048,7699 | 1012,8082 | 1034,7907 |
| 20:4 | 20:4 | 682,5400 | 687,4959 | 668,5607 | 673,5166 | 830,5683  | 852,5508  | 816,5891  | 838,5716  |
|      | 20:5 | 680,5243 | 685,4802 | 666,5450 | 671,5010 | 828,5527  | 850,5352  | 814,5734  | 836,5559  |
|      | 22:0 | 718,6339 | 723,5898 | 704,6546 | 709,6105 | 866,6622  | 888,6447  | 852,6830  | 874,6655  |
|      | 22:1 | 716,6182 | 721,5741 | 702,6389 | 707,5949 | 864,6466  | 886,6291  | 850,6673  | 872,6498  |
|      | 22:4 | 710,5713 | 715,5272 | 696,5920 | 701,5479 | 858,5996  | 880,5821  | 844,6204  | 866,6029  |
|      | 22:5 | 708,5556 | 713,5115 | 694,5763 | 699,5323 | 856,5840  | 878,5665  | 842,6047  | 864,5872  |
|      | 22:6 | 706,5400 | 711,4959 | 692,5607 | 697,5166 | 854,5683  | 876,5508  | 840,5891  | 862,5716  |
|      | 24:0 | 746,6652 | 751,6211 | 732,6859 | 737,6418 | 894,6935  | 916,6760  | 880,7143  | 902,6968  |
|      | 24:1 | 744,6495 | 749,6054 | 730,6702 | 735,6262 | 892,6779  | 914,6604  | 878,6986  | 900,6811  |
|      | 24:2 | 742,6339 | 747,5898 | 728,6546 | 733,6105 | 890,6622  | 912,6447  | 876,6830  | 898,6655  |
|      | 24:4 | 738,6026 | 743,5585 | 724,6233 | 729,5792 | 886,6309  | 908,6134  | 872,6517  | 894,6342  |
|      | 24:5 | 736,5869 | 741,5428 | 722,6076 | 727,5636 | 884,6153  | 906,5978  | 870,6360  | 892,6185  |
|      | 24:6 | 734,5713 | 739,5272 | 720,5920 | 725,5479 | 882,5996  | 904,5821  | 868,6204  | 890,6029  |

|      | 26:3 | 768,6495 | 773,6054 | 754,6702 | 759,6262 | 916,6779              | 938,6604  | 902,6986  | 924,6811  |
|------|------|----------|----------|----------|----------|-----------------------|-----------|-----------|-----------|
|      | 26:4 | 766.6339 | 771.5898 | 752.6546 | 757.6105 | 914,6622              | 936.6447  | 900.6830  | 922.6655  |
|      | 26:5 | 764.6182 | 769.5741 | 750.6389 | 755,5949 | 912,6466              | 934,6291  | 898.6673  | 920.6498  |
|      | 28:4 | 794 6652 | 799 6211 | 780 6859 | 785 6418 | 942 6935              | 964 6760  | 928 7143  | 950 6968  |
|      | 28:5 | 792 6495 | 797 6054 | 778 6702 | 783 6262 | 940 6779              | 962 6604  | 926 6986  | 948 6811  |
|      | 28:6 | 790 6339 | 795 5898 | 776 6546 | 781 6105 | 938 6622              | 960 6447  | 924 6830  | 946 6655  |
|      | 30.4 | 822 6965 | 827 6524 | 808 7172 | 813 6731 | 970 7248              | 992 7073  | 956 7456  | 978 7281  |
|      | 30.5 | 820 6808 | 825 6367 | 806 7015 | 811 6575 | 968 7092              | 990 6917  | 954 7299  | 976 7124  |
|      | 30.6 | 818 6652 | 823 6211 | 804 6859 | 809 6418 | 966 6935              | 988 6760  | 952 7143  | 974 6968  |
|      | 32.4 | 850 7278 | 855 6837 | 836 7485 | 841 7044 | 998 7561              | 1020 7386 | 984 7769  | 1006 7594 |
|      | 32.5 | 848 7121 | 853 6680 | 834 7328 | 839 6888 | 996 7405              | 1018 7230 | 982 7612  | 1000,7334 |
|      | 32.6 | 846 6965 | 851 6524 | 832 7172 | 837 6731 | 004 7248              | 1016 7073 | 980 7456  | 1002 7281 |
|      | 34.5 | 876 7434 | 881 6003 | 862 7641 | 867 7201 | 1024 7718             | 1046 7543 | 1010 7925 | 1032 7750 |
|      | 34.6 | 874 7278 | 870 6837 | 860 7485 | 865 7044 | 1024,7710             | 1040,7386 | 1008 7769 | 1030 7504 |
|      | 54.0 | 014,1210 | 019,0001 | 000,7400 | 000,7044 | 1022,7501             | 1044,7500 | 1000,7709 | 1030,7334 |
| 20:5 | 20:5 | 678,5087 | 683,4646 | 664,5294 | 669,4853 | 826,5370              | 848,5195  | 812,5578  | 834,5403  |
|      | 22:0 | 716,6182 | 721,5741 | 702,6389 | 707,5949 | 864,6466              | 886,6291  | 850,6673  | 872,6498  |
|      | 22:1 | 714,6026 | 719,5585 | 700,6233 | 705,5792 | 862,6309              | 884,6134  | 848,6517  | 870,6342  |
|      | 22:4 | 708,5556 | 713,5115 | 694,5763 | 699,5323 | 856,5840              | 878,5665  | 842,6047  | 864,5872  |
|      | 22:5 | 706,5400 | 711,4959 | 692,5607 | 697,5166 | 854,5683              | 876,5508  | 840,5891  | 862,5716  |
|      | 22:6 | 704,5243 | 709,4802 | 690,5450 | 695,5010 | 852,5527              | 874,5352  | 838,5734  | 860,5559  |
|      | 24:0 | 744,6495 | 749,6054 | 730,6702 | 735,6262 | 892,6779              | 914,6604  | 878,6986  | 900,6811  |
|      | 24:1 | 742,6339 | 747,5898 | 728,6546 | 733,6105 | 890,6622              | 912,6447  | 876,6830  | 898,6655  |
|      | 24:2 | 740.6182 | 745.5741 | 726.6389 | 731,5949 | 888,6466              | 910.6291  | 874.6673  | 896.6498  |
|      | 24:4 | 736,5869 | 741,5428 | 722.6076 | 727,5636 | 884,6153              | 906.5978  | 870,6360  | 892.6185  |
|      | 24:5 | 734,5713 | 739.5272 | 720,5920 | 725,5479 | 882,5996              | 904,5821  | 868.6204  | 890,6029  |
|      | 24:6 | 732 5556 | 737 5115 | 718 5763 | 723 5323 | 880 5840              | 902 5665  | 866 6047  | 888 5872  |
|      | 26:3 | 766 6339 | 771 5898 | 752 6546 | 757 6105 | 914 6622              | 936 6447  | 900 6830  | 922 6655  |
|      | 26:4 | 764 6182 | 769 5741 | 750 6389 | 755 5949 | 912 6466              | 934 6291  | 898 6673  | 920,6498  |
|      | 26:5 | 762 6026 | 767 5585 | 748 6233 | 753 5792 | 910 6309              | 932 6134  | 896 6517  | 918 6342  |
|      | 28.4 | 792 6495 | 797 6054 | 778 6702 | 783 6262 | 940 6779              | 962 6604  | 926 6986  | 948 6811  |
|      | 28.5 | 790 6339 | 795 5898 | 776 6546 | 781 6105 | 938 6622              | 960 6447  | 924 6830  | 946 6655  |
|      | 28.6 | 788 6182 | 793 5741 | 774 6389 | 779 5949 | 936 6466              | 958 6291  | 922 6673  | 944 6498  |
|      | 30.4 | 820 6808 | 825 6367 | 806 7015 | 811 6575 | 968 7092              | 990 6917  | 954 7299  | 976 7124  |
|      | 30.5 | 818 6652 | 823 6211 | 804 6859 | 809 6418 | 966 6935              | 988 6760  | 952 7143  | 974 6968  |
|      | 30.5 | 816 6405 | 821 6054 | 802 6702 | 807 6262 | 064 6770              | 086 6604  | 952,7145  | 072 6911  |
|      | 30.0 | 848 7121 | 853 6680 | 834 7328 | 830 6888 | 904,0779              | 1018 7220 | 930,0980  | 1004 7437 |
|      | 32.4 | 040,7121 | 951,0000 | 034,7320 | 927 6721 | 990,7403              | 1016,7230 | 902,7012  | 1004,7437 |
|      | 32.5 | 040,0900 | 001,0024 | 032,7172 | 037,0731 | 994,7240              | 1010,7073 | 900,7430  | 1002,7201 |
|      | 32.0 | 044,0000 | 049,0307 | 860 7495 | 000,0070 | 992,7092<br>1000 7561 | 1014,0917 | 970,7299  | 1000,7124 |
|      | 34:5 | 0/4,/2/0 | 0/9,003/ | 000,7400 | 805,7044 | 1022,7501             | 1044,7300 | 1006,7769 | 1030,7594 |
|      | 34:6 | 872,7121 | 877,6680 | 858,7328 | 863,6888 | 1020,7405             | 1042,7230 | 1006,7612 | 1028,7437 |
| 22:0 | 22:0 | 754,7278 | 759,6837 | 740,7485 | 745,7044 | 902,7561              | 924,7386  | 888,7769  | 910,7594  |
|      | 22:1 | 752,7121 | 757,6680 | 738,7328 | 743,6888 | 900,7405              | 922,7230  | 886,7612  | 908,7437  |
|      | 22:4 | 746,6652 | 751.6211 | 732.6859 | 737.6418 | 894,6935              | 916.6760  | 880.7143  | 902.6968  |
|      | 22:5 | 744,6495 | 749.6054 | 730.6702 | 735.6262 | 892.6779              | 914.6604  | 878.6986  | 900.6811  |
|      | 22:6 | 742,6339 | 747,5898 | 728,6546 | 733.6105 | 890,6622              | 912.6447  | 876.6830  | 898,6655  |
|      | 24:0 | 782,7591 | 787,7150 | 768,7798 | 773 7357 | 930 7874              | 952,7699  | 916,8082  | 938 7907  |
|      | 24.1 | 780 7434 | 785 6993 | 766 7641 | 771 7201 | 928 7718              | 950 7543  | 914 7925  | 936 7750  |
|      | 47.1 | 100,1404 | 100,0000 | 100,1041 | 111,1201 | 520,7710              | 000,7040  | 014,7020  | 550,7750  |

|      | 24:2 | 778,7278 | 783,6837 | 764,7485 | 769,7044 | 926,7561  | 948,7386  | 912,7769  | 934,7594  |
|------|------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
|      | 24:4 | 774,6965 | 779,6524 | 760,7172 | 765,6731 | 922,7248  | 944,7073  | 908,7456  | 930,7281  |
|      | 24:5 | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092  | 942,6917  | 906,7299  | 928,7124  |
|      | 24:6 | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935  | 940,6760  | 904,7143  | 926,6968  |
|      | 26:3 | 804,7434 | 809,6993 | 790,7641 | 795,7201 | 952,7718  | 974,7543  | 938,7925  | 960,7750  |
|      | 26:4 | 802,7278 | 807,6837 | 788,7485 | 793,7044 | 950,7561  | 972,7386  | 936,7769  | 958,7594  |
|      | 26:5 | 800,7121 | 805,6680 | 786,7328 | 791,6888 | 948,7405  | 970,7230  | 934,7612  | 956,7437  |
|      | 28:4 | 830,7591 | 835,7150 | 816,7798 | 821,7357 | 978,7874  | 1000,7699 | 964,8082  | 986,7907  |
|      | 28:5 | 828,7434 | 833,6993 | 814,7641 | 819,7201 | 976,7718  | 998,7543  | 962,7925  | 984,7750  |
|      | 28:6 | 826,7278 | 831,6837 | 812,7485 | 817,7044 | 974,7561  | 996,7386  | 960,7769  | 982,7594  |
|      | 30:4 | 858,7904 | 863,7463 | 844,8111 | 849,7670 | 1006,8187 | 1028,8012 | 992,8395  | 1014,8220 |
|      | 30:5 | 856,7747 | 861,7306 | 842,7954 | 847,7514 | 1004,8031 | 1026,7856 | 990,8238  | 1012,8063 |
|      | 30:6 | 854,7591 | 859,7150 | 840,7798 | 845,7357 | 1002,7874 | 1024,7699 | 988,8082  | 1010,7907 |
|      | 32:4 | 886,8217 | 891,7776 | 872,8424 | 877,7983 | 1034,8500 | 1056,8325 | 1020,8708 | 1042,8533 |
|      | 32:5 | 884,8060 | 889,7619 | 870,8267 | 875,7827 | 1032,8344 | 1054,8169 | 1018,8551 | 1040,8376 |
|      | 32:6 | 882,7904 | 887,7463 | 868,8111 | 873,7670 | 1030,8187 | 1052,8012 | 1016,8395 | 1038,8220 |
|      | 34:5 | 912,8373 | 917,7932 | 898,8580 | 903,8140 | 1060,8657 | 1082,8482 | 1046,8864 | 1068,8689 |
|      | 34:6 | 910,8217 | 915,7776 | 896,8424 | 901,7983 | 1058,8500 | 1080,8325 | 1044,8708 | 1066,8533 |
|      |      | ,        | ,        |          | ,        | ,         | ,         |           | ,         |
| 22:1 | 22:1 | 750,6965 | 755,6524 | 736,7172 | 741,6731 | 898,7248  | 920,7073  | 884,7456  | 906,7281  |
|      | 22:4 | 744,6495 | 749,6054 | 730,6702 | 735,6262 | 892,6779  | 914,6604  | 878,6986  | 900,6811  |
|      | 22:5 | 742,6339 | 747,5898 | 728,6546 | 733,6105 | 890,6622  | 912,6447  | 876,6830  | 898,6655  |
|      | 22:6 | 740,6182 | 745,5741 | 726,6389 | 731,5949 | 888,6466  | 910,6291  | 874,6673  | 896,6498  |
|      | 24:0 | 780,7434 | 785,6993 | 766,7641 | 771,7201 | 928,7718  | 950,7543  | 914,7925  | 936,7750  |
|      | 24:1 | 778,7278 | 783,6837 | 764,7485 | 769,7044 | 926,7561  | 948,7386  | 912,7769  | 934,7594  |
|      | 24:2 | 776,7121 | 781,6680 | 762,7328 | 767,6888 | 924,7405  | 946,7230  | 910,7612  | 932,7437  |
|      | 24:4 | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092  | 942,6917  | 906,7299  | 928,7124  |
|      | 24:5 | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935  | 940,6760  | 904,7143  | 926,6968  |
|      | 24:6 | 768,6495 | 773,6054 | 754,6702 | 759,6262 | 916,6779  | 938,6604  | 902,6986  | 924,6811  |
|      | 26:3 | 802,7278 | 807,6837 | 788,7485 | 793,7044 | 950,7561  | 972,7386  | 936,7769  | 958,7594  |
|      | 26:4 | 800,7121 | 805,6680 | 786,7328 | 791,6888 | 948,7405  | 970,7230  | 934,7612  | 956,7437  |
|      | 26:5 | 798,6965 | 803,6524 | 784,7172 | 789,6731 | 946,7248  | 968,7073  | 932,7456  | 954,7281  |
|      | 28:4 | 828,7434 | 833,6993 | 814,7641 | 819,7201 | 976,7718  | 998,7543  | 962,7925  | 984,7750  |
|      | 28:5 | 826,7278 | 831,6837 | 812,7485 | 817,7044 | 974,7561  | 996,7386  | 960,7769  | 982,7594  |
|      | 28:6 | 824,7121 | 829,6680 | 810,7328 | 815,6888 | 972,7405  | 994,7230  | 958,7612  | 980,7437  |
|      | 30:4 | 856,7747 | 861,7306 | 842,7954 | 847,7514 | 1004,8031 | 1026,7856 | 990,8238  | 1012,8063 |
|      | 30:5 | 854,7591 | 859,7150 | 840,7798 | 845,7357 | 1002,7874 | 1024,7699 | 988,8082  | 1010,7907 |
|      | 30:6 | 852,7434 | 857,6993 | 838,7641 | 843,7201 | 1000,7718 | 1022,7543 | 986,7925  | 1008,7750 |
|      | 32:4 | 884,8060 | 889,7619 | 870,8267 | 875,7827 | 1032,8344 | 1054,8169 | 1018,8551 | 1040,8376 |
|      | 32:5 | 882,7904 | 887,7463 | 868,8111 | 873,7670 | 1030,8187 | 1052,8012 | 1016,8395 | 1038,8220 |
|      | 32:6 | 880,7747 | 885,7306 | 866,7954 | 871,7514 | 1028,8031 | 1050,7856 | 1014,8238 | 1036,8063 |
|      | 34:5 | 910,8217 | 915,7776 | 896,8424 | 901,7983 | 1058,8500 | 1080,8325 | 1044,8708 | 1066,8533 |
|      | 34:6 | 908,8060 | 913,7619 | 894,8267 | 899,7827 | 1056,8344 | 1078,8169 | 1042,8551 | 1064,8376 |
| 22:4 | 22:4 | 738,6026 | 743,5585 | 724,6233 | 729,5792 | 886,6309  | 908,6134  | 872,6517  | 894,6342  |
|      | 22:5 | 736,5869 | 741,5428 | 722,6076 | 727,5636 | 884,6153  | 906,5978  | 870,6360  | 892,6185  |
|      | 22:6 | 734,5713 | 739,5272 | 720,5920 | 725,5479 | 882,5996  | 904,5821  | 868,6204  | 890,6029  |
|      | 24:0 | 774,6965 | 779,6524 | 760,7172 | 765,6731 | 922,7248  | 944,7073  | 908,7456  | 930,7281  |
|      | 24:1 | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092  | 942,6917  | 906,7299  | 928,7124  |

|      | 24:2 | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935              | 940,6760  | 904,7143  | 926,6968  |
|------|------|----------|----------|----------|----------|-----------------------|-----------|-----------|-----------|
|      | 24:4 | 766,6339 | 771,5898 | 752,6546 | 757,6105 | 914,6622              | 936,6447  | 900,6830  | 922,6655  |
|      | 24:5 | 764,6182 | 769,5741 | 750,6389 | 755,5949 | 912,6466              | 934,6291  | 898,6673  | 920,6498  |
|      | 24:6 | 762,6026 | 767,5585 | 748.6233 | 753,5792 | 910,6309              | 932,6134  | 896.6517  | 918,6342  |
|      | 26:3 | 796.6808 | 801,6367 | 782.7015 | 787.6575 | 944,7092              | 966.6917  | 930.7299  | 952,7124  |
|      | 26:4 | 794.6652 | 799.6211 | 780.6859 | 785.6418 | 942,6935              | 964,6760  | 928,7143  | 950,6968  |
|      | 26:5 | 792 6495 | 797 6054 | 778 6702 | 783 6262 | 940 6779              | 962 6604  | 926 6986  | 948 6811  |
|      | 28.4 | 822 6965 | 827 6524 | 808 7172 | 813 6731 | 970 7248              | 992 7073  | 956 7456  | 978 7281  |
|      | 28.5 | 820 6808 | 825,6367 | 806 7015 | 811 6575 | 968 7092              | 990 6917  | 954 7299  | 976 7124  |
|      | 28.6 | 818 6652 | 823 6211 | 804 6859 | 809 6418 | 966 6935              | 988 6760  | 952 7143  | 974 6968  |
|      | 30.4 | 850 7278 | 855 6837 | 836 7485 | 841 7044 | 008 7561              | 1020 7386 | 084 7760  | 1006 7504 |
|      | 20.5 | 848 7121 | 853,6680 | 834 7328 | 830 6888 | 006 7405              | 1020,7300 | 082 7612  | 1000,7334 |
|      | 20.5 | 946 6065 | 951 6524 | 034,7320 | 039,0000 | 990,7405              | 1016,7230 | 902,7012  | 1004,7437 |
|      | 30.6 | 040,0900 | 001,0024 | 052,7172 | 007,0731 | 994,7240<br>1006 7974 | 1010,7073 | 900,7430  | 1002,7201 |
|      | 32:4 | 070,7091 | 003,7130 | 004,7790 | 009,7357 | 1020,7074             | 1040,7099 | 1012,0002 | 1034,7907 |
|      | 32:5 | 876,7434 | 881,6993 | 862,7641 | 867,7201 | 1024,7718             | 1046,7543 | 1010,7925 | 1032,7750 |
|      | 32:6 | 8/4,/2/8 | 879,6837 | 860,7485 | 865,7044 | 1022,7561             | 1044,7386 | 1008,7769 | 1030,7594 |
|      | 34:5 | 904,7747 | 909,7306 | 890,7954 | 895,7514 | 1052,8031             | 1074,7856 | 1038,8238 | 1060,8063 |
|      | 34:6 | 902,7591 | 907,7150 | 888,7798 | 893,7357 | 1050,7874             | 1072,7699 | 1036,8082 | 1058,7907 |
| 22:5 | 22:5 | 734,5713 | 739,5272 | 720,5920 | 725,5479 | 882,5996              | 904,5821  | 868,6204  | 890,6029  |
|      | 22:6 | 732,5556 | 737,5115 | 718,5763 | 723,5323 | 880,5840              | 902,5665  | 866,6047  | 888,5872  |
|      | 24:0 | 772,6808 | 777,6367 | 758,7015 | 763,6575 | 920,7092              | 942,6917  | 906,7299  | 928,7124  |
|      | 24:1 | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935              | 940,6760  | 904,7143  | 926,6968  |
|      | 24:2 | 768,6495 | 773,6054 | 754,6702 | 759,6262 | 916,6779              | 938,6604  | 902,6986  | 924,6811  |
|      | 24:4 | 764,6182 | 769,5741 | 750,6389 | 755,5949 | 912,6466              | 934,6291  | 898,6673  | 920,6498  |
|      | 24:5 | 762,6026 | 767,5585 | 748,6233 | 753,5792 | 910,6309              | 932,6134  | 896,6517  | 918,6342  |
|      | 24:6 | 760,5869 | 765,5428 | 746,6076 | 751,5636 | 908,6153              | 930,5978  | 894,6360  | 916,6185  |
|      | 26:3 | 794,6652 | 799,6211 | 780,6859 | 785,6418 | 942,6935              | 964,6760  | 928,7143  | 950,6968  |
|      | 26:4 | 792,6495 | 797,6054 | 778,6702 | 783,6262 | 940,6779              | 962,6604  | 926,6986  | 948,6811  |
|      | 26:5 | 790,6339 | 795,5898 | 776.6546 | 781.6105 | 938,6622              | 960,6447  | 924,6830  | 946,6655  |
|      | 28:4 | 820,6808 | 825,6367 | 806.7015 | 811.6575 | 968,7092              | 990.6917  | 954,7299  | 976.7124  |
|      | 28:5 | 818,6652 | 823,6211 | 804,6859 | 809,6418 | 966,6935              | 988.6760  | 952,7143  | 974,6968  |
|      | 28:6 | 816 6495 | 821 6054 | 802 6702 | 807 6262 | 964 6779              | 986 6604  | 950 6986  | 972 6811  |
|      | 30.4 | 848 7121 | 853 6680 | 834 7328 | 839 6888 | 996 7405              | 1018 7230 | 982 7612  | 1004 7437 |
|      | 30.5 | 846 6965 | 851 6524 | 832 7172 | 837 6731 | 994 7248              | 1016 7073 | 980 7456  | 1002 7281 |
|      | 30.6 | 844 6808 | 849 6367 | 830 7015 | 835 6575 | 992 7092              | 1014 6917 | 978 7299  | 1000 7124 |
|      | 32.4 | 876 7434 | 881 6993 | 862 7641 | 867 7201 | 1024 7718             | 1046 7543 | 1010 7925 | 1032 7750 |
|      | 32.5 | 874 7278 | 879 6837 | 860 7485 | 865 7044 | 1022 7561             | 1044 7386 | 1008 7769 | 1030 7594 |
|      | 32.6 | 872 7121 | 877 6680 | 858 7328 | 863 6888 | 1022,7301             | 1044,7300 | 1006,7703 | 1028 7437 |
|      | 34.5 | 002,7121 | 007 7150 | 888 7708 | 803 7357 | 1020,7403             | 1072 7600 | 1036 8082 | 1058 7007 |
|      | 34.5 | 000 7434 | 005 6003 | 886 76/1 | 801 7201 | 10/10/7710            | 1072,7033 | 1030,0002 | 1056,7307 |
|      | 54.0 | 900,7434 | 905,0995 | 000,7041 | 091,7201 | 1040,7710             | 1070,7545 | 1034,7925 | 1050,7750 |
| 22:6 | 22:6 | 730,5400 | 735,4959 | 716,5607 | 721,5166 | 878,5683              | 900,5508  | 864,5891  | 886,5716  |
|      | 24:0 | 770,6652 | 775,6211 | 756,6859 | 761,6418 | 918,6935              | 940,6760  | 904,7143  | 926,6968  |
|      | 24:1 | 768,6495 | 773,6054 | 754,6702 | 759,6262 | 916,6779              | 938,6604  | 902,6986  | 924,6811  |
|      | 24:2 | 766,6339 | 771,5898 | 752,6546 | 757,6105 | 914,6622              | 936,6447  | 900,6830  | 922,6655  |
|      | 24:4 | 762,6026 | 767,5585 | 748,6233 | 753,5792 | 910,6309              | 932,6134  | 896,6517  | 918,6342  |
|      | 24:5 | 760,5869 | 765,5428 | 746,6076 | 751,5636 | 908,6153              | 930,5978  | 894,6360  | 916,6185  |
|      | 24:6 | 758,5713 | 763,5272 | 744,5920 | 749,5479 | 906,5996              | 928,5821  | 892,6204  | 914,6029  |

|      | 26:3 | 792,6495 | 797,6054 | 778,6702 | 783,6262 | 940,6779  | 962,6604  | 926,6986             | 948,6811  |
|------|------|----------|----------|----------|----------|-----------|-----------|----------------------|-----------|
|      | 26:4 | 790,6339 | 795,5898 | 776,6546 | 781,6105 | 938,6622  | 960,6447  | 924,6830             | 946,6655  |
|      | 26:5 | 788,6182 | 793,5741 | 774,6389 | 779,5949 | 936,6466  | 958,6291  | 922,6673             | 944,6498  |
|      | 28:4 | 818.6652 | 823.6211 | 804.6859 | 809.6418 | 966.6935  | 988.6760  | 952,7143             | 974,6968  |
|      | 28:5 | 816,6495 | 821,6054 | 802,6702 | 807,6262 | 964,6779  | 986,6604  | 950,6986             | 972,6811  |
|      | 28:6 | 814 6339 | 819 5898 | 800 6546 | 805 6105 | 962 6622  | 984 6447  | 948 6830             | 970 6655  |
|      | 30.4 | 846 6965 | 851 6524 | 832 7172 | 837 6731 | 994 7248  | 1016 7073 | 980 7456             | 1002 7281 |
|      | 30.5 | 844 6808 | 849 6367 | 830 7015 | 835 6575 | 992 7092  | 1014 6017 | 978 7299             | 1000 7124 |
|      | 30.6 | 842 6652 | 847 6211 | 828 6859 | 833 6418 | 000 6035  | 1012 6760 | 976 71/3             | 008 6068  |
|      | 22.4 | 074 7070 | 070 6027 | 960 7495 | 865 7044 | 1022 7561 | 1012,0700 | 1009 7760            | 1020 7504 |
|      | 32.4 | 074,7270 | 019,0031 | 000,7400 | 003,7044 | 1022,7301 | 1044,7300 | 1006,7709            | 1030,7394 |
|      | 32.5 | 072,7121 | 077,0000 | 050,7320 | 003,0000 | 1020,7403 | 1042,7230 | 1000,7012            | 1020,7437 |
|      | 32:6 | 870,0905 | 875,0524 | 850,7172 | 801,0731 | 1018,7248 | 1040,7073 | 1004,7456            | 1020,7281 |
|      | 34:5 | 900,7434 | 905,6993 | 886,7641 | 891,7201 | 1048,7718 | 1070,7543 | 1034,7925            | 1056,7750 |
|      | 34:6 | 898,7278 | 903,6837 | 884,7485 | 889,7044 | 1046,7561 | 1068,7386 | 1032,7769            | 1054,7594 |
| 24:0 | 24:0 | 810,7904 | 815,7463 | 796,8111 | 801,7670 | 958,8187  | 980,8012  | 944,8395             | 966,8220  |
|      | 24:1 | 808,7747 | 813,7306 | 794,7954 | 799,7514 | 956,8031  | 978,7856  | 942,8238             | 964,8063  |
|      | 24:2 | 806,7591 | 811,7150 | 792,7798 | 797,7357 | 954,7874  | 976,7699  | 940,8082             | 962,7907  |
|      | 24:4 | 802.7278 | 807.6837 | 788,7485 | 793,7044 | 950,7561  | 972,7386  | 936.7769             | 958,7594  |
|      | 24:5 | 800,7121 | 805.6680 | 786.7328 | 791.6888 | 948,7405  | 970,7230  | 934,7612             | 956,7437  |
|      | 24:6 | 798 6965 | 803 6524 | 784 7172 | 789 6731 | 946 7248  | 968 7073  | 932 7456             | 954 7281  |
|      | 26:3 | 832 7747 | 837 7306 | 818 7954 | 823 7514 | 980 8031  | 1002 7856 | 966 8238             | 988 8063  |
|      | 26.4 | 830 7591 | 835 7150 | 816 7798 | 821 7357 | 978 7874  | 1000 7699 | 964 8082             | 986 7907  |
|      | 26.5 | 828 7434 | 833 6003 | 814 7641 | 819 7201 | 976 7718  | 998 7543  | 962 7925             | 984 7750  |
|      | 20.0 | 858 7004 | 863 7463 | 844 8111 | 840 7670 | 1006 8187 | 1028 8012 | 002 8305             | 1014 8220 |
|      | 20.4 | 856 7747 | 861 7306 | 842 7054 | 847 7514 | 1000,0107 | 1026,0012 | 000 8238             | 1014,0220 |
|      | 20.5 | 050,7747 | 001,7300 | 042,7904 | 047,7314 | 1004,0031 | 1020,7000 | 990,6236             | 1012,0003 |
|      | 20:0 | 004,7091 | 009,7100 | 040,7790 | 045,7357 | 1002,7074 | 1024,7099 | 900,0002             | 1010,7907 |
|      | 30:4 | 880,8217 | 891,7770 | 872,8424 | 877,7983 | 1034,8500 | 1050,8325 | 1020,8708            | 1042,8533 |
|      | 30:5 | 884,8060 | 889,7619 | 870,8267 | 875,7827 | 1032,8344 | 1054,8169 | 1018,8551            | 1040,8376 |
|      | 30:6 | 882,7904 | 887,7463 | 868,8111 | 873,7670 | 1030,8187 | 1052,8012 | 1016,8395            | 1038,8220 |
|      | 32:4 | 914,8530 | 919,8089 | 900,8737 | 905,8296 | 1062,8813 | 1084,8638 | 1048,9021            | 1070,8846 |
|      | 32:5 | 912,8373 | 917,7932 | 898,8580 | 903,8140 | 1060,8657 | 1082,8482 | 1046,8864            | 1068,8689 |
|      | 32:6 | 910,8217 | 915,7776 | 896,8424 | 901,7983 | 1058,8500 | 1080,8325 | 1044,8708            | 1066,8533 |
|      | 34:5 | 940,8686 | 945,8245 | 926,8893 | 931,8453 | 1088,8970 | 1110,8795 | 1074,9177            | 1096,9002 |
|      | 34:6 | 938,8530 | 943,8089 | 924,8737 | 929,8296 | 1086,8813 | 1108,8638 | 1072,9021            | 1094,8846 |
| 24:1 | 24:1 | 806.7591 | 811.7150 | 792.7798 | 797.7357 | 954.7874  | 976.7699  | 940.8082             | 962.7907  |
|      | 24:2 | 804,7434 | 809,6993 | 790,7641 | 795,7201 | 952,7718  | 974,7543  | 938,7925             | 960,7750  |
|      | 24:4 | 800 7121 | 805 6680 | 786 7328 | 791 6888 | 948 7405  | 970 7230  | 934 7612             | 956 7437  |
|      | 24.5 | 798 6965 | 803 6524 | 784 7172 | 789 6731 | 946 7248  | 968 7073  | 932 7456             | 954 7281  |
|      | 24.6 | 796 6808 | 801 6367 | 782 7015 | 787 6575 | 944 7092  | 966 6917  | 930 7299             | 952 7124  |
|      | 26.3 | 830 7501 | 835 7150 | 816 7708 | 821 7357 | 078 7874  | 1000,0017 | 964 8082             | 086 7007  |
|      | 26.4 | 828 7/3/ | 833 6003 | 814 7641 | 810 7201 | 076 7719  | 008 75/3  | 062 7025             | 084 7750  |
|      | 20.4 | 826 7272 | 831 6937 | 812 7/95 | 817 7044 | 07/ 7561  | 006 7396  | 060 7760             | 080 7504  |
|      | 20.0 | 020,1210 | 001,0007 | 012,7400 | 017,7044 | 1004 0024 | 1026 7056 | 900,7709<br>000 0000 | 302,1094  |
|      | 20:4 | 000,1141 | 001,1300 | 042,1904 | 047,7014 | 1004,0031 | 1020,7000 | 990,0230<br>000 0002 | 1012,0003 |
|      | 28:5 | 854,7591 | 059,7150 | 840,7798 | 845,7357 | 1002,7874 | 1024,7699 | 988,8082             | 1010,7907 |
|      | 28:6 | 852,7434 | 857,6993 | 838,7641 | 843,7201 | 1000,7718 | 1022,7543 | 986,7925             | 1008,7750 |
|      | 30:4 | 884,8060 | 889,7619 | 870,8267 | 875,7827 | 1032,8344 | 1054,8169 | 1018,8551            | 1040,8376 |
|      | 30:5 | 882,7904 | 887,7463 | 868,8111 | 873,7670 | 1030,8187 | 1052,8012 | 1016,8395            | 1038,8220 |

|      | 20.0 | 000 7747 | 005 7000 | 000 7054 | 074 7544 | 4000 0004 | 4050 7050 | 4044 0000 | 4000 0000 |
|------|------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
|      | 30:6 | 880,7747 | 885,7306 | 866,7954 | 8/1,/514 | 1028,8031 | 1050,7856 | 1014,8238 | 1036,8063 |
|      | 32:4 | 912,8373 | 917,7932 | 898,8580 | 903,8140 | 1060,8657 | 1082,8482 | 1046,8864 | 1068,8689 |
|      | 32:5 | 910,8217 | 915,7776 | 896,8424 | 901,7983 | 1058,8500 | 1080,8325 | 1044,8708 | 1066,8533 |
|      | 32:6 | 908,8060 | 913,7619 | 894,8267 | 899,7827 | 1056,8344 | 1078,8169 | 1042,8551 | 1064,8376 |
|      | 34:5 | 938,8530 | 943,8089 | 924,8737 | 929,8296 | 1086,8813 | 1108,8638 | 1072,9021 | 1094,8846 |
|      | 34:6 | 936,8373 | 941,7932 | 922,8580 | 927,8140 | 1084,8657 | 1106,8482 | 1070,8864 | 1092,8689 |
| 24:2 | 24:2 | 802,7278 | 807,6837 | 788,7485 | 793,7044 | 950,7561  | 972,7386  | 936,7769  | 958,7594  |
|      | 24:4 | 798,6965 | 803,6524 | 784,7172 | 789,6731 | 946,7248  | 968,7073  | 932,7456  | 954,7281  |
|      | 24:5 | 796,6808 | 801,6367 | 782,7015 | 787,6575 | 944,7092  | 966,6917  | 930,7299  | 952,7124  |
|      | 24:6 | 794,6652 | 799,6211 | 780,6859 | 785,6418 | 942,6935  | 964,6760  | 928,7143  | 950,6968  |
|      | 26:3 | 828,7434 | 833,6993 | 814,7641 | 819,7201 | 976,7718  | 998,7543  | 962,7925  | 984,7750  |
|      | 26:4 | 826,7278 | 831,6837 | 812,7485 | 817,7044 | 974,7561  | 996,7386  | 960,7769  | 982,7594  |
|      | 26:5 | 824,7121 | 829,6680 | 810,7328 | 815,6888 | 972,7405  | 994,7230  | 958,7612  | 980,7437  |
|      | 28:4 | 854,7591 | 859,7150 | 840,7798 | 845,7357 | 1002,7874 | 1024,7699 | 988,8082  | 1010,7907 |
|      | 28:5 | 852,7434 | 857.6993 | 838,7641 | 843,7201 | 1000.7718 | 1022,7543 | 986,7925  | 1008,7750 |
|      | 28:6 | 850,7278 | 855,6837 | 836,7485 | 841,7044 | 998,7561  | 1020,7386 | 984,7769  | 1006,7594 |
|      | 30:4 | 882,7904 | 887.7463 | 868,8111 | 873,7670 | 1030.8187 | 1052.8012 | 1016.8395 | 1038,8220 |
|      | 30:5 | 880,7747 | 885,7306 | 866,7954 | 871,7514 | 1028,8031 | 1050,7856 | 1014,8238 | 1036,8063 |
|      | 30:6 | 878,7591 | 883,7150 | 864,7798 | 869.7357 | 1026,7874 | 1048,7699 | 1012,8082 | 1034,7907 |
|      | 32:4 | 910 8217 | 915 7776 | 896 8424 | 901 7983 | 1058 8500 | 1080 8325 | 1044 8708 | 1066 8533 |
|      | 32.5 | 908 8060 | 913 7619 | 894 8267 | 899 7827 | 1056 8344 | 1078 8169 | 1042 8551 | 1064 8376 |
|      | 32.6 | 906 7904 | 911 7463 | 892 8111 | 897 7670 | 1054 8187 | 1076 8012 | 1040 8395 | 1062 8220 |
|      | 34.5 | 936 8373 | 941 7932 | 922,8580 | 927 8140 | 1084 8657 | 1106 8482 | 1070 8864 | 1092 8689 |
|      | 34:6 | 934,8217 | 939,7776 | 920,8424 | 925,7983 | 1082,8500 | 1104,8325 | 1068,8708 | 1090,8533 |
| 24.4 | 24.4 | 704 6650 | 700 6011 | 700 6050 | 705 6440 | 042 6025  | 064 6760  | 000 7140  | 050 6069  |
| 24.4 | 24.4 | 794,0052 | 799,0211 | 780,0859 | 703,0410 | 942,0933  | 904,0700  | 920,7143  | 950,0900  |
|      | 24:5 | 792,0490 | 797,0004 | 770,0702 | 703,0202 | 940,0779  | 902,0004  | 920,0900  | 940,0011  |
|      | 24:0 | 790,0339 | 790,0090 | 770,0540 | 701,0105 | 930,0022  | 900,0447  | 924,0030  | 940,0000  |
|      | 26:3 | 824,7121 | 829,0080 | 810,7328 | 815,0888 | 972,7405  | 994,7230  | 958,7612  | 980,7437  |
|      | 26:4 | 822,0905 | 827,0524 | 808,7172 | 813,0731 | 970,7248  | 992,7073  | 956,7456  | 9/8,/281  |
|      | 26:5 | 820,6808 | 825,6367 | 806,7015 | 811,6575 | 968,7092  | 990,6917  | 954,7299  | 976,7124  |
|      | 28:4 | 850,7278 | 855,6837 | 830,7485 | 841,7044 | 998,7501  | 1020,7380 | 984,7769  | 1006,7594 |
|      | 28:5 | 848,7121 | 853,6680 | 834,7328 | 839,6888 | 996,7405  | 1018,7230 | 982,7612  | 1004,7437 |
|      | 28:6 | 846,6965 | 851,6524 | 832,7172 | 837,6731 | 994,7248  | 1016,7073 | 980,7456  | 1002,7281 |
|      | 30:4 | 878,7591 | 883,7150 | 864,7798 | 869,7357 | 1026,7874 | 1048,7699 | 1012,8082 | 1034,7907 |
|      | 30:5 | 876,7434 | 881,6993 | 862,7641 | 867,7201 | 1024,7718 | 1046,7543 | 1010,7925 | 1032,7750 |
|      | 30:6 | 874,7278 | 879,6837 | 860,7485 | 865,7044 | 1022,7561 | 1044,7386 | 1008,7769 | 1030,7594 |
|      | 32:4 | 906,7904 | 911,7463 | 892,8111 | 897,7670 | 1054,8187 | 1076,8012 | 1040,8395 | 1062,8220 |
|      | 32:5 | 904,7747 | 909,7306 | 890,7954 | 895,7514 | 1052,8031 | 1074,7856 | 1038,8238 | 1060,8063 |
|      | 32:6 | 902,7591 | 907,7150 | 888,7798 | 893,7357 | 1050,7874 | 1072,7699 | 1036,8082 | 1058,7907 |
|      | 34:5 | 932,8060 | 937,7619 | 918,8267 | 923,7827 | 1080,8344 | 1102,8169 | 1066,8551 | 1088,8376 |
|      | 34:6 | 930,7904 | 935,7463 | 916,8111 | 921,7670 | 1078,8187 | 1100,8012 | 1064,8395 | 1086,8220 |
| 24:5 | 24:5 | 790,6339 | 795,5898 | 776,6546 | 781,6105 | 938,6622  | 960,6447  | 924,6830  | 946,6655  |
|      | 24:6 | 788,6182 | 793,5741 | 774,6389 | 779,5949 | 936,6466  | 958,6291  | 922,6673  | 944,6498  |
|      | 26:3 | 822,6965 | 827,6524 | 808,7172 | 813,6731 | 970,7248  | 992,7073  | 956,7456  | 978,7281  |
|      | 26:4 | 820,6808 | 825,6367 | 806,7015 | 811,6575 | 968,7092  | 990,6917  | 954,7299  | 976,7124  |
|      | 26:5 | 818,6652 | 823,6211 | 804,6859 | 809,6418 | 966,6935  | 988,6760  | 952,7143  | 974,6968  |

| 24.6         25.7         25.8         368.6965         833.660         833.6715         996.7405         1018.7230         987.7455         10007.721           25.6         844.6965         844.6965         844.6965         844.6965         844.6965         844.6965         844.6965         844.6965         844.6965         842.712         833.6751         996.7405         1102.7751         987.7453         1100.7225         11032.7753           30.6         874.727.8         879.6837         860.7445         885.7044         1022.7561         10007.712         1028.7437           30.6         877.712         907.7160         887.738         883.7388         813.2848         1102.7455         11032.7594         1006.7712         1028.7437           32.5         900.7444         906.830         986.7744         1042.7230         1006.7712         1028.7437           34.6         920.7747         907.306         904.7954         883.7367         1042.7718         1042.7230         1006.7812         1008.7755           34.6         920.7747         903.7306         914.7954         917.716         988.706         966.714         907.744         907.742         907.749         908.700         966.714         907.743         907.742                                                                                                                                                                                    |      |      |          |          |          |          |           |           |           |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
| 22.4         84.7 1/21         853.6680         892.712         833.6688         996.7426         1018.7230         982.7812         1004.7437           28.6         844.6806         849.6367         833.0715         833.6675         992.7920         1014.6617         976.7299         1000.7281           30.6         877.4727         877.8637         880.7461         885.7044         1022.7716         1044.7385         1000.7769         1033.7593           30.6         877.4717         907.7306         880.7464         885.7514         1052.7514         1004.7285         1008.7769         1033.6584           32.5         902.7747         907.7306         880.7954         883.7557         1055.7514         1055.0751         1008.6021         1068.6023         1066.8057           34.6         928.7747         907.7306         980.7954         981.7514         1055.0751         1002.8022         1068.6023         1068.6023         1068.6023         1088.6023         1068.6025         1068.6025         1068.6025         1068.6025         1062.8238         1068.6025         1062.8238         1088.602         1072.744         974.6088           24.6         786.6026         926.6134         922.6517         942.6342         942.6342         942.6342<                                                                                                                                                                    |      |      |          |          |          |          |           |           |           |           |
| 28:5         846.6965         831.6524         832.7172         837.6731         997.7246         1014.0917         990.7456         1002.7281           30:4         876.7434         831.6937         830.677         830.677         1024.7171         1044.738         1008.7769         1032.7561           30:5         877.718         177.659         857.7434         881.6933         862.7441         887.7201         1024.7718         1044.7384         1008.7719         1033.7594           31:6         877.7121         877.6639         885.7283         889.7581         1020.7411         1044.7384         1008.7612         1058.7802           32:6         900.7434         905.6903         886.7641         891.7211         1078.8187         1070.7433         1064.822         1058.7802           32:6         900.7434         905.6903         886.7641         891.7211         1078.8187         1070.7433         1062.8238         1064.822           32:6         900.7434         905.6903         886.7641         891.7657         980.811         1997.7443         194.7299         996.7448           32:6         900.7434         905.6903         885.7701         1078.8167         980.6908         997.4748         197.743         986.7463<                                                                                                                                                                                     |      | 28:4 | 848,7121 | 853,6680 | 834,7328 | 839,6888 | 996,7405  | 1018,7230 | 982,7612  | 1004,7437 |
| 28.6         844,8808         849,6367         833,7215         835,6575         992,7092         1014,61917         978,7299         1000,7124           30.5         874,7278         879,6837         860,7481         867,7201         1024,7718         1004,7438         1010,7225         1033,7250           30.5         872,7121         877,6803         883,7284         883,6888         102,7465         1034,7253         1008,7769         1033,623         1000,7125         1033,623         1000,0122         1036,7125         1033,623         1000,0033         1034,623         1000,0125         1034,623         1000,0125         1034,623         1006,0033         1034,623         1066,0105         1034,623         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1064,8053         1060,8053         1012,8743         1064,8053         1064,8053         1062,8733         1060,7745         <                                                                                                              |      | 28:5 | 846,6965 | 851,6524 | 832,7172 | 837,6731 | 994,7248  | 1016,7073 | 980,7456  | 1002,7281 |
| 30:4         876,743         81,6933         862,7441         887,7201         1024,778         1044,736         1010,7925         1032,759           30:6         872,7121         877,6803         865,734         863,5868         1020,7674         1024,759         1038,789         1033,759           32:5         900,77150         888,7788         883,7357         100,7744         1072,7699         1038,682         1006,7710           34:5         930,784         955,7433         916,5111         928,7781         1077,743         1074,7869         1038,682         1066,7803           34:5         930,794         955,7433         916,5111         928,7779         934,8107         1008,786         1062,7828         1066,2283         1064,8355           34:6         928,7774         933,7305         911,6751         1076,8031         906,917         942,8342         1064,8055           24:6         786,6026         771,5535         772,6233         777,772         934,809         956,6134         920,6517         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342         942,8342<                                                                                                                                                                             |      | 28:6 | 844,6808 | 849,6367 | 830,7015 | 835,6575 | 992,7092  | 1014,6917 | 978,7299  | 1000,7124 |
| 30:5         874,7278         879,6837         860,7485         865,7044         1022,7561         1044,7386         1008,7769         1030,7594           32:4         904,7747         309,7306         880,7954         883,685         1020,7405         1034,7326         1038,6238         1008,0803           32:6         900,7434         905,6993         886,7614         893,7357         1056,7874         1022,76961         1036,6082         1036,7759           34:6         933,7004         933,7403         916,6111         921,7701         1078,8151         1100,81715         1048,7783         1064,7765         1044,7326         1066,7765           34:6         933,7304         914,7954         91,7514         917,7514         1070,7543         005,617         94,8309           24:6         785,6024         791,5555         777,62633         777,5792         94,4809         966,6134         900,6917         94,7249         976,7124           26:5         816,6662         851,6524         823,617         800,7428         996,8035         988,8700         952,7143         974,9568           26:5         816,6663         851,6524         833,614         900,6917         994,7249         900,7918         947,2611         922,86859<                                                                                                                                                                                     |      | 30:4 | 876,7434 | 881,6993 | 862,7641 | 867,7201 | 1024,7718 | 1046,7543 | 1010,7925 | 1032,7750 |
| 30:6         877,7121         877,6880         858,7328         883,8888         1002,7405         1042,7230         1006,7612         1028,7437           32:5         900,7744         900,7150         888,7798         893,7357         1005,7874         1072,7696         1036,6082         1006,8761           34:6         930,7904         935,7463         916,8111         921,7777         1078,8187         1100,8012         1064,4335         1086,8220           34:6         930,7904         935,7463         916,8111         921,7777         1077,8187         1100,8012         1064,4335         1086,8220           24:6         786,6026         791,5585         772,6233         777,5792         994,8070         966,6134         202,0617         942,6342           26:4         816,6692         823,6211         804,6895         809,6418         986,6703         986,6704         950,9917         977,228         944,6773         986,6604         950,9917         972,8413         974,6968           25:5         816,6495         821,6524         832,7172         837,6731         994,7248         1016,773         980,7604         950,7714         928,6604         950,9917         927,8114         928,787         900,7743         900,7751 <td< th=""><th></th><th>30:5</th><th>874,7278</th><th>879,6837</th><th>860,7485</th><th>865,7044</th><th>1022,7561</th><th>1044,7386</th><th>1008,7769</th><th>1030,7594</th></td<> |      | 30:5 | 874,7278 | 879,6837 | 860,7485 | 865,7044 | 1022,7561 | 1044,7386 | 1008,7769 | 1030,7594 |
| 32:4         904,7747         909,7366         880,7784         885,7514         1052,8031         1074,7856         1038,8238         1066,8052           32:5         900,7434         905,6993         886,7784         891,7201         1078,7769         1032,7269         1038,8022         1056,7897           34:6         930,7940         935,77463         916,8111         921,777         933,7306         914,7954         919,7514         1076,8031         1068,7362         1066,8325         1066,8220         1064,8395         1066,8220         1064,8395         1066,8220         1094,8053         1064,8395         1064,8395         1064,8395         1064,8395         1064,8395         1064,8395         1064,8395         1064,8395         1064,8395         1064,8395         1064,8395         956,8134         920,8517         954,234         956,8134         920,8517         954,7289         976,744         966,970         956,770         964,777         986,8004         950,6986         972,8611         928,820         900,6917         954,773         980,746         1002,7281         976,743         986,760         980,760         957,744         980,760         957,741         976,743         980,760         957,741         972,759         1002,7761         1022,761         1047,738<                                                                                                                           |      | 30:6 | 872,7121 | 877,6680 | 858,7328 | 863,6888 | 1020,7405 | 1042,7230 | 1006,7612 | 1028,7437 |
| 32:5         902,7591         907,7150         888,7786         893,7357         1050,7674         1072,7699         1038,8022         1058,7307           34:5         930,7904         935,7463         916,8111         921,7770         1078,8187         1100,8012         1064,8395         1066,2233         1064,8033         1066,2233         1077,5792         934,6309         956,6134         920,617         942,6342           24:6         786,6026         791,5585         772,6233         777,5792         934,6309         956,6134         920,6517         942,6342           26:3         820,6808         825,6367         806,7015         811,6575         996,6703         956,6700         952,7143         974,49668           26:5         816,6495         821,8054         802,7172         807,622         994,6773         996,6604         950,6986         972,8611           26:5         816,6495         821,8054         802,7118         804,7268         1016,6775         916,6604         950,6986         1002,7281           26:5         816,6495         821,8054         802,7112         837,6771         894,7284         1016,7739         906,7465         1002,7281           26:5         867,7212         887,7818         803,7357 </th <th></th> <th>32:4</th> <th>904,7747</th> <th>909,7306</th> <th>890,7954</th> <th>895,7514</th> <th>1052,8031</th> <th>1074,7856</th> <th>1038,8238</th> <th>1060,8063</th>      |      | 32:4 | 904,7747 | 909,7306 | 890,7954 | 895,7514 | 1052,8031 | 1074,7856 | 1038,8238 | 1060,8063 |
| 32:6         900,7434         905,6933         886,7641         891,7201         1048,7718         1070,7543         1034,7225         1066,8220           34:6         922,7747         933,7306         914,7954         919,7514         1076,8031         1098,7856         1066,8220         1064,8395         1066,8220           24:6         24.6         786,6026         771,5525         772,6233         777,5722         934,6309         956,6134         920,6517         942,6342           26:4         816,6552         823,6211         804,6859         809,6418         966,6935         988,6760         952,7143         974,696           28:4         846,6995         851,6524         832,7712         837,6731         994,728         1016,7073         980,7456         1000,728           28:4         844,6895         831,6647         830,7015         833,6675         992,7020         1014,6917         978,729         1000,7714         986,6604         950,7133         980,703         980,713         980,703         980,713         980,703         980,713         980,703         980,713         980,703         980,713         980,703         980,714         980,6035         1012,7661         976,7143         998,6982         1000,7754         1000,77                                                                                                                                                                     |      | 32:5 | 902,7591 | 907,7150 | 888,7798 | 893,7357 | 1050,7874 | 1072,7699 | 1036,8082 | 1058,7907 |
| 34:5         930,7904         935,7463         916,8111         921,7670         1076,8187         1100,8012         1064,8395         1066,8395           24:6         24:6         796,0026         791,5685         772,6233         777,5792         934,6309         956,6134         920,6517         942,6342           24:6         24:6         820,6606         820,5367         800,7015         811,6675         988,7092         990,6917         984,7299         976,7124           26:3         820,6606         821,6524         802,6702         807,6731         984,7248         016,073         980,7465         0002,7281           28:4         846,6652         847,671         833,76731         984,7474         016,073         980,7465         0100,713         980,7465           28:5         816,6458         851,6524         833,7172         853,6575         982,7082         1014,6917         978,7133         980,7456         1000,713         1003,7145           28:6         874,671         853,6575         982,7082         1014,6917         978,7133         980,7456         1002,7281           28:5         874,721         874,680         886,7741         833,7671         102,7748         102,7763         100,773         100                                                                                                                                                                                              |      | 32:6 | 900,7434 | 905,6993 | 886,7641 | 891,7201 | 1048,7718 | 1070,7543 | 1034,7925 | 1056,7750 |
| 34:6         928,7747         933,7306         914,7954         919,7514         1076,8031         1098,7856         1062,8238         1094,8053           24:6         786,6026         791,5585         772,6223         777,5792         934,6309         956,6134         920,6517         942,6342           26:6         818,6652         823,6211         804,8659         809,6418         966,6935         988,6760         952,7143         974,7268           26:4         818,6652         821,6524         832,7172         837,6731         994,7248         1016,7073         980,7456         1002,7281           28:4         846,6965         851,6524         832,7172         837,6731         994,7248         1016,7073         980,7456         1002,7281           28:5         844,6868         849,687         833,011         828,7870         997,712         837,6731         994,7248         1016,7073         980,7456         1002,7281           30:6         872,7121         877,6837         880,7456         865,7141         1022,7651         1044,7336         1003,7769         1033,728           30:6         872,7121         877,7168         888,7784         893,7357         1057,774         1072,7699         1036,8062         1056,7769 <th></th> <th>34:5</th> <th>930,7904</th> <th>935,7463</th> <th>916,8111</th> <th>921,7670</th> <th>1078,8187</th> <th>1100,8012</th> <th>1064,8395</th> <th>1086,8220</th>            |      | 34:5 | 930,7904 | 935,7463 | 916,8111 | 921,7670 | 1078,8187 | 1100,8012 | 1064,8395 | 1086,8220 |
| 24:6         24:6         786.6028         791.5585         772.572         934.6309         956.6134         920.6517         942.942           26:3         820.6608         825.6367         806,7015         811.6575         968,7092         990.6917         954,7299         977,7124           26:3         816.6425         823.6211         804,6535         898,6760         988,6760         952,7143         974,6914           26:5         816.6495         821.0054         802,6702         807,622         964,779         986,6604         950,6936         972,7143         974,6911           26:5         844,6805         849,6367         830,7015         835,6575         992,7092         1014,8917         977,729         1000,7124           30:4         874,727         879,8637         860,7445         886,704         1022,7661         1044,7366         1008,7769         1030,7694           30:6         870,6865         875,6524         866,7172         881,6731         1018,7248         1040,7073         1004,7456         1022,7661         1044,7366         1002,7761         1022,7641         1024,7830         1034,7925         1056,770           32:5         900,7434         905,66837         868,7744         881,7201                                                                                                                                                                                                |      | 34:6 | 928,7747 | 933,7306 | 914,7954 | 919,7514 | 1076,8031 | 1098,7856 | 1062,8238 | 1084,8063 |
| 26:3         820,6808         822,6367         806,7015         811,6575         968,7002         990,6917         954,7299         976,7124           26:4         816,6652         822,6021         804,6859         809,6418         966,6935         988,6760         952,7143         974,6988           26:5         816,6495         821,6054         802,6702         807,6571         994,7248         1016,0703         980,7456         1002,7281           28:6         844,6808         849,6367         830,715         833,6418         990,6935         1012,6760         976,7143         996,6968           30:4         874,7278         879,6837         860,7485         865,7044         1022,7561         1044,7386         1006,7612         1028,7437           30:6         870,6955         875,6524         866,7172         861,6731         1018,7748         1040,7073         1004,7456         1022,7591           32:6         900,7434         905,6983         886,7641         891,7201         1048,7718         1072,7691         1034,7292         1056,775           34:6         928,7747         933,7366         914,7954         919,7514         1074,7874         1072,7691         1034,7292         1056,7743           34:6                                                                                                                                                                                                       | 24:6 | 24:6 | 786,6026 | 791,5585 | 772,6233 | 777,5792 | 934,6309  | 956,6134  | 920,6517  | 942,6342  |
| 26:4         818,6652         823,6211         804,6659         809,6418         966,6935         988,6700         952,7143         974,6968           26:5         816,6495         821,6054         832,7172         837,6731         994,7248         1016,7073         980,7456         1002,7281           28:6         844,6695         844,669         842,6652         844,669         842,6652         844,669         847,6211         828,6659         833,6414         990,69935         1012,6760         976,7143         998,6964           30:6         872,7121         877,6680         858,7228         863,6888         1002,7405         1044,7364         1006,7769         1030,7594           30:6         870,7591         907,7150         888,7786         893,7357         1050,7874         1072,7699         1038,6082         1056,7750           32:6         898,7278         903,837         884,7485         899,7274         1033,7096         1044,7954         1096,7699         1066,8082         1068,7759           32:6         898,7278         903,8306         914,7954         919,7514         1046,7699         1066,8082         1008,7769           32:6         926,7591         931,7150         912,7798         917,7357         1074,787                                                                                                                                                                                     |      | 26:3 | 820,6808 | 825,6367 | 806,7015 | 811,6575 | 968,7092  | 990,6917  | 954,7299  | 976,7124  |
| 26:5         816,6495         821,6054         802,6702         807,6731         994,7248         1016,7073         980,7456         1002,7281           28:5         844,6808         849,6367         830,7115         835,6575         992,7092         1014,6917         978,7299         1000,7124           28:5         844,6808         849,6367         830,7115         835,6575         992,7092         1014,6917         978,713         996,968           30:4         874,7278         879,6837         860,7485         885,7044         1002,7601         1044,7386         1008,7769         1030,7594           30:6         870,6965         875,6524         866,7712         881,6731         1018,7743         1004,7733         1004,7735         1004,7745         1024,7252         1056,7750           32:5         900,7744         903,6837         886,7641         891,7201         1048,7761         1002,7769         1034,7825         1056,7750           32:6         988,7278         993,7357         1074,7831         1098,7865         1002,27769         1054,752         1056,7750           32:6         986,7747         983,733         986,7641         883,7357         1074,7874         1096,7699         988,8082         1010,7907                                                                                                                                                                                              |      | 26:4 | 818,6652 | 823,6211 | 804,6859 | 809,6418 | 966,6935  | 988,6760  | 952,7143  | 974,6968  |
| 28:4         846,6965         851,6524         832,7172         837,6731         994,7248         1016,7073         980,7456         1002,7281           28:5         844,808         849,6367         830,0715         835,6575         992,7092         1014,6617         978,729         1000,7124           28:6         842,6652         847,6211         828,8859         833,418         990,6935         1012,6760         976,7143         998,6968           30:5         872,7121         877,6860         858,7328         883,6888         1020,7405         1042,7230         1006,7612         1028,7437           30:6         870,6965         875,6524         866,7178         883,7357         1050,7674         1072,7598         1036,8062         1056,790           32:5         900,7434         905,6993         886,7641         891,721         1048,7118         1070,7543         1032,7769         1054,7594           34:6         928,7591         931,7150         941,7954         917,7514         1076,8031         1098,7856         1062,2238         1084,9063           34:5         928,7591         931,7150         840,7798         845,7357         1002,7674         1022,7699         988,8082         1010,7907           26:3                                                                                                                                                                                                     |      | 26:5 | 816,6495 | 821,6054 | 802,6702 | 807,6262 | 964,6779  | 986,6604  | 950,6986  | 972,6811  |
| 28:5         844,6808         849,6367         830,7015         835,6575         992,7092         1014,6917         978,7299         1000,7124           28:6         842,6652         847,6211         828,6859         833,6418         990,6935         1012,6760         976,7143         998,6984           30:5         872,7121         877,6860         858,7328         863,6888         102,7405         1044,7386         1008,7769         1032,7594           30:6         877,6791         907,7150         885,778         803,7357         1050,7744         1072,7643         1034,7255         1056,7750           32:5         900,7434         905,6933         886,7641         891,7201         1048,7718         1070,7543         1034,7255         1056,7750           32:6         898,7278         903,6837         884,7495         891,701         1048,7786         1070,7543         1034,7255         1056,7250           34:6         926,7591         931,7150         912,7798         917,357         1074,7874         1098,7866         1062,8228         1094,803           34:6         926,7591         931,7150         912,7798         847,7357         1002,7674         1024,7699         988,8082         10104,797           26:5                                                                                                                                                                                                   |      | 28:4 | 846,6965 | 851,6524 | 832,7172 | 837,6731 | 994,7248  | 1016,7073 | 980,7456  | 1002,7281 |
| 26:6         842,6652         847,6211         828,6859         833,6418         990,6935         1012,6760         976,7143         998,6968           30:6         872,7121         877,6880         858,7328         868,6888         1020,7405         1044,7386         1006,7769         1030,7594           30:6         870,6965         875,6524         856,7172         881,6731         1018,7248         1040,7073         1004,7456         1026,7281           32:4         900,7434         905,6993         886,7641         891,7201         1044,7718         1070,7543         1034,7925         1056,7503           34:6         926,7591         933,7306         914,7954         919,7151         1074,8744         1096,7581         1068,7385         1062,2238         1084,8063           34:6         926,7591         931,7150         914,7954         919,7157         1074,874         1096,7699         966,0802         1010,7907           26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,8082         1010,7907           26:4         852,7434         857,6933         838,7445         841,7041         996,7561         1022,7543         986,7925         1008,754                                                                                                                                                                                              |      | 28:5 | 844,6808 | 849,6367 | 830,7015 | 835,6575 | 992,7092  | 1014,6917 | 978,7299  | 1000,7124 |
| 30:4         874,7278         879,6837         860,7485         865,7044         1022,7561         1044,7386         1008,7769         1030,7594           30:6         877,6680         855,8728         863,6888         1020,7405         1042,7230         1006,7612         1022,7437           30:6         870,6965         875,6524         856,7172         861,6731         1018,7248         1040,7073         1004,7456         1026,7281           32:5         900,7434         905,6993         866,7611         891,7201         1044,718         1070,7543         1034,7925         1056,750           32:6         898,7278         903,8637         884,7485         899,7044         1046,7561         1068,7386         1032,7769         1054,7594           34:5         928,7747         933,700         914,7954         917,757         1074,7874         1096,7699         988,6082         1010,7907           26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,6082         1010,8075           26:5         850,7278         855,6837         836,7641         843,7201         1000,7784         1024,7699         988,6082         1010,8075           26:5         857,7591 </th <th></th> <th>28:6</th> <th>842,6652</th> <th>847,6211</th> <th>828,6859</th> <th>833,6418</th> <th>990,6935</th> <th>1012,6760</th> <th>976,7143</th> <th>998,6968</th>                 |      | 28:6 | 842,6652 | 847,6211 | 828,6859 | 833,6418 | 990,6935  | 1012,6760 | 976,7143  | 998,6968  |
| 30:5         872,7121         877,6860         888,7328         863,6888         1020,7405         1042,7230         1006,7612         1028,7437           30:6         877,6624         856,7172         861,6731         1018,7248         1040,7073         1004,7456         1028,7437           32:4         902,7591         907,7150         888,7798         893,7357         1050,7874         1072,7699         1036,8082         1058,7907           32:5         900,7434         905,6933         884,7485         889,7044         1044,7718         1070,7543         1034,7925         1056,7750           34:6         926,7591         931,7150         912,7798         917,7157         1074,7874         1096,7699         1060,8082         1082,7907           26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,8082         1010,7907           26:4         852,7424         857,6933         836,7641         843,7201         1000,7718         1022,7543         986,7925         1008,7750           26:5         850,7278         855,6837         836,7485         841,7044         998,7561         1022,7543         986,7925         1008,7750           28:5         878,759                                                                                                                                                                                             |      | 30:4 | 874,7278 | 879,6837 | 860,7485 | 865,7044 | 1022,7561 | 1044,7386 | 1008,7769 | 1030,7594 |
| 30:6         870,6965         875,6524         856,7172         861,6731         1018,7248         1040,7073         1004,7456         1026,7281           32:4         900,7434         905,6993         886,7764         891,7201         1048,7718         1070,7543         1032,7769         1054,7593           32:5         900,7434         905,6993         886,7641         891,7201         1048,7718         1070,7543         1032,7769         1054,7594           34:5         928,7747         933,7306         914,7954         919,7514         1076,8031         1098,7856         1062,2238         1084,8053           34:6         926,7591         891,7150         840,7798         845,7357         1002,7874         1096,7699         988,8082         1010,7907           26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1022,7699         988,8082         1010,7907           26:5         850,7278         855,6837         836,7445         841,7044         998,7561         1020,7386         984,7769         1008,7750           28:4         880,7747         885,7306         866,7954         871,7514         1028,031         1050,7856         1014,8238         1036,0633           28:4                                                                                                                                                                                             |      | 30:5 | 872,7121 | 877,6680 | 858,7328 | 863,6888 | 1020,7405 | 1042,7230 | 1006,7612 | 1028,7437 |
| 32:4         902,7591         907,7150         888,7987         893,7357         1050,7874         1072,7699         1036,8082         1068,7907           32:5         900,7434         905,6993         886,741         891,7201         1048,7718         1070,7543         1032,7769         1054,7594           34:5         928,7747         933,7306         914,7954         919,7514         1076,8031         1098,7856         1062,8238         1084,8063           34:6         926,7591         931,7150         912,7798         917,757         1074,7874         1098,7699         988,8082         1010,7907           26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,8082         1010,7907           26:4         852,7434         857,6993         838,741         843,7201         1000,7716         1022,7543         986,7925         1008,7594           26:5         850,7278         855,6837         836,7485         811,7044         998,7561         1020,7386         984,7769         1006,7594           28:5         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:6 <th></th> <th>30:6</th> <th>870,6965</th> <th>875,6524</th> <th>856,7172</th> <th>861,6731</th> <th>1018,7248</th> <th>1040,7073</th> <th>1004,7456</th> <th>1026,7281</th>                    |      | 30:6 | 870,6965 | 875,6524 | 856,7172 | 861,6731 | 1018,7248 | 1040,7073 | 1004,7456 | 1026,7281 |
| 32:5         900,7434         905,6993         886,7641         891,7201         1048,7718         1070,7543         1034,7925         1056,7750           32:6         898,7278         903,8837         884,7485         899,7044         1046,7561         1068,7366         1032,7769         1054,750           34:5         926,7591         931,7150         912,7798         917,7357         1074,7874         1096,7699         988,8082         1010,7907           26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,8082         1010,7907           26:4         850,7278         855,6837         838,7641         843,7201         1000,7718         1022,7543         986,7925         1008,7594           28:4         880,7747         885,7306         866,7954         871,7514         1028,8031         1050,7856         1014,8238         1038,803           28:5         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           30:4         908,8060         913,7619         894,2667         899,7827         1056,8344         1078,8169         1042,8551         1068,2822           30:5                                                                                                                                                                                             |      | 32:4 | 902,7591 | 907,7150 | 888,7798 | 893,7357 | 1050,7874 | 1072,7699 | 1036,8082 | 1058,7907 |
| 32:6         898,7278         903,6837         884,7485         889,7044         1046,7561         1068,7386         1032,7769         1054,7594           34:5         926,7591         931,7150         912,7798         917,7357         1074,7874         1096,7699         1060,8082         1082,7907           26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,8082         1010,7907           26:4         852,7434         857,6993         838,7641         843,7201         1000,7718         1022,7543         986,7925         1008,7750           26:5         850,7278         855,6837         836,7445         841,7044         998,7561         1022,7543         986,7925         1008,7760           28:4         880,7747         885,7306         866,7954         871,7514         1028,8031         1050,7856         1014,8238         1036,8063           28:5         878,7591         883,7150         844,7798         869,7357         1024,7874         1048,7699         1012,8082         1034,7907           30:4         908,8060         913,7619         894,2267         899,7827         1056,8344         1078,8169         1042,8551         1066,8373           30:                                                                                                                                                                                             |      | 32:5 | 900,7434 | 905,6993 | 886,7641 | 891,7201 | 1048,7718 | 1070,7543 | 1034,7925 | 1056,7750 |
| 34:5         928,7747         933,7306         914,7954         919,7514         1076,8031         1098,7856         1062,8238         1084,8063           34:6         926,7591         931,7150         912,7798         917,7357         1074,7874         1096,7699         988,8082         1000,700           26:3         26:4         852,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,8082         1000,7750           26:5         850,7278         855,6837         836,7485         841,7044         998,7661         1022,7348         984,7769         1006,7594           28:4         880,7747         885,7306         866,7954         871,7514         1028,8031         1050,7856         1014,8238         1036,8063           28:5         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7543         1011,2802         1033,7907           28:6         876,7344         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,2855         1032,7854           30:4         908,8060         913,7619         894,8267         899,7827         1056,8344         1076,8012         1040,3395         1062,8220                                                                                                                                                                                               |      | 32:6 | 898,7278 | 903,6837 | 884,7485 | 889,7044 | 1046,7561 | 1068,7386 | 1032,7769 | 1054,7594 |
| 34:6         926,7591         931,7150         912,7798         917,7357         1074,7874         1096,7699         1060,8082         1082,7907           26:3         26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,8082         1010,7907           26:4         852,7434         857,6993         838,7641         843,7201         1000,7718         1022,7543         986,7925         1008,7750           26:5         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,8063           28:5         878,7591         883,7150         866,7954         871,7514         1028,8031         1050,7586         1014,8238         1036,8063           28:6         876,7591         883,7150         864,7798         869,7357         1024,7718         1046,7543         1010,925         1032,7750           30:4         908,8060         913,7619         894,8267         899,7827         1056,8344         1076,8012         1040,8385         1068,8283         1066,8682           30:5         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8385         1                                                                                                                                                                                     |      | 34:5 | 928,7747 | 933,7306 | 914,7954 | 919,7514 | 1076,8031 | 1098,7856 | 1062,8238 | 1084,8063 |
| 26:3         26:3         854,7591         859,7150         840,7798         845,7357         1002,7874         1024,7699         988,8082         1010,7907           26:4         852,7434         857,6993         838,7641         843,7201         1000,7718         1022,7543         986,7925         1008,7750           26:5         850,7278         855,6837         836,7485         841,7044         998,7661         1020,7386         984,7769         1006,7594           28:4         880,7747         885,7306         666,7954         871,7514         1026,7874         1048,7699         1012,8082         1034,7907           28:6         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           30:4         908,8069         913,7619         894,8267         899,7827         1056,8344         1076,8012         1040,8395         1062,822           30:6         904,7747         909,7306         890,7554         895,7514         1052,8031         1074,7856         1038,8238         1060,8063           32:4         936,8373         941,7932         922,8580         927,8140         1084,8657         1106,8482         1070,8864         1092,8689                                                                                                                                                                                               |      | 34:6 | 926,7591 | 931,7150 | 912,7798 | 917,7357 | 1074,7874 | 1096,7699 | 1060,8082 | 1082,7907 |
| 26:4         852,7434         857,6993         838,7641         843,7201         1000,7718         1022,7543         966,7925         1008,7750           26:5         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           28:4         880,7747         885,7306         866,7954         871,7514         1028,8031         1050,7856         1014,8238         1036,8063           28:5         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:6         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           30:4         908,8060         913,7619         894,8267         899,7827         1056,8344         1078,8169         1042,8551         1064,8376           30:5         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220           30:6         904,7747         909,7306         890,7954         895,7514         1052,8031         1074,8356         1038,8238         1060,8033           32                                                                                                                                                                                             | 26:3 | 26:3 | 854,7591 | 859,7150 | 840,7798 | 845,7357 | 1002,7874 | 1024,7699 | 988,8082  | 1010,7907 |
| 26:5         850,7278         856,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           28:4         880,7747         885,7306         866,7954         871,7514         1028,8031         1050,7856         1014,8238         1036,8063           28:5         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:6         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           30:4         908,8060         913,7619         894,8267         899,7827         1056,8344         1078,8169         1042,8551         1064,8376           30:5         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220           30:6         904,7747         909,7306         890,7954         895,7514         1052,8031         1074,825         1088,8238         1060,8063           32:4         936,8373         941,7932         922,8580         927,8140         1084,8657         1106,8482         1070,8864         1092,8683           32                                                                                                                                                                                             |      | 26:4 | 852,7434 | 857,6993 | 838,7641 | 843,7201 | 1000,7718 | 1022,7543 | 986,7925  | 1008,7750 |
| 28:4         880,7747         885,7306         866,7954         871,7514         1028,8031         1050,7856         1014,8238         1036,8063           28:5         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:6         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           30:4         908,8060         913,7619         894,8267         899,7827         1056,8344         1078,8169         1042,8551         1064,8376           30:5         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220           30:6         904,7747         909,7306         890,7954         895,7514         1052,8031         1074,7856         1038,8238         1060,8063           32:4         938,8373         941,7932         922,8580         927,8140         1084,8657         1106,8482         1070,8864         1092,8689           32:5         934,8217         939,7776         920,8424         925,7983         1082,8500         1104,8325         1068,8708         1090,8533 <td< th=""><th></th><th>26:5</th><th>850,7278</th><th>855,6837</th><th>836,7485</th><th>841,7044</th><th>998,7561</th><th>1020,7386</th><th>984,7769</th><th>1006,7594</th></td<>                     |      | 26:5 | 850,7278 | 855,6837 | 836,7485 | 841,7044 | 998,7561  | 1020,7386 | 984,7769  | 1006,7594 |
| 28:5         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:6         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           30:4         908,8060         913,7619         894,8267         899,7827         1056,8344         1078,8169         1042,8551         1064,8376           30:5         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220           30:6         904,7747         909,7306         890,7954         895,7514         1052,8031         1074,7856         1038,8238         1060,8063           32:4         936,8373         941,7932         922,8580         927,8140         1084,8657         1106,8482         1070,8864         1092,8689           32:6         932,8060         937,7619         918,8267         923,7827         1082,8500         1104,8325         1066,8551         1088,8376           32:6         962,8530         967,8089         948,8737         953,8296         1110,8813         1132,8638         1096,9021         1118,8846 <th< th=""><th></th><th>28:4</th><th>880,7747</th><th>885,7306</th><th>866,7954</th><th>871,7514</th><th>1028,8031</th><th>1050,7856</th><th>1014,8238</th><th>1036,8063</th></th<>                   |      | 28:4 | 880,7747 | 885,7306 | 866,7954 | 871,7514 | 1028,8031 | 1050,7856 | 1014,8238 | 1036,8063 |
| 28:6         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           30:4         908,8060         913,7619         894,8267         899,7827         1056,8344         1078,8169         1042,8551         1064,8376           30:5         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220           30:6         904,7747         909,7306         890,7954         895,7514         1052,8031         1074,7856         1038,8238         1060,8063           32:4         936,8373         941,7932         922,8580         927,8140         1084,8657         1106,8482         1070,8864         1092,8689           32:6         932,8060         937,7619         918,8267         923,7827         1080,8344         1102,8169         1066,8551         1088,8376           34:5         962,8530         967,8089         948,8737         953,8296         1110,8813         1132,8638         1096,9021         1118,8846           34:6         960,8373         965,7932         946,8580         951,8140         1108,8657         1130,8482         1094,8864         1116,8689 <td< th=""><th></th><th>28:5</th><th>878,7591</th><th>883,7150</th><th>864,7798</th><th>869,7357</th><th>1026,7874</th><th>1048,7699</th><th>1012,8082</th><th>1034,7907</th></td<>                   |      | 28:5 | 878,7591 | 883,7150 | 864,7798 | 869,7357 | 1026,7874 | 1048,7699 | 1012,8082 | 1034,7907 |
| 30:4         908,8060         913,7619         894,8267         899,7827         1056,8344         1078,8169         1042,8551         1064,8376           30:5         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220           30:6         904,7747         909,7306         890,7954         895,7514         1052,8031         1074,7856         1038,8238         1060,8063           32:4         936,8373         941,7932         922,8580         927,8140         1084,8657         1106,8482         1070,8864         1092,6689           32:6         932,8060         937,7619         918,8267         923,7827         1080,8344         1102,8169         1066,8551         1088,8376           34:5         962,8530         967,8089         948,8737         953,8296         1110,8813         1132,8638         1096,9021         1118,8846           34:6         960,8373         965,7932         946,8580         951,8140         1108,8657         1130,8482         1094,8864         116,8689           26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           26                                                                                                                                                                                             |      | 28:6 | 876,7434 | 881,6993 | 862,7641 | 867,7201 | 1024,7718 | 1046,7543 | 1010,7925 | 1032,7750 |
| 30:5         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220           30:6         904,7747         909,7306         890,7954         895,7514         1052,8031         1074,7856         1038,8238         1060,8063           32:4         936,8373         941,7932         922,8580         927,8140         1084,8657         1106,8482         1070,8864         1092,8689           32:5         934,8217         939,7776         920,8424         925,7983         1082,8500         1104,8325         1066,8571         1088,8378           32:6         932,8060         937,7619         918,8267         923,7827         1080,8344         1102,8169         1066,8551         1088,8376           34:5         962,8530         967,8089         948,8737         953,8296         1110,8813         1132,8638         1096,9021         1118,8846           34:6         960,8373         965,7932         946,8580         951,8140         1108,8657         1130,8482         1094,8864         1116,8689           26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           2                                                                                                                                                                                             |      | 30:4 | 908,8060 | 913,7619 | 894,8267 | 899,7827 | 1056,8344 | 1078,8169 | 1042,8551 | 1064,8376 |
| 30:6         904,7747         909,7306         890,7954         895,7514         1052,8031         1074,7856         1038,8238         1060,8063           32:4         936,8373         941,7932         922,8580         927,8140         1084,8657         1106,8482         1070,8864         1092,8689           32:5         934,8217         939,7776         920,8424         925,7983         1082,8500         1104,8325         1068,8708         1090,8533           32:6         932,8060         937,7619         918,8267         923,7827         1080,8344         1102,8169         1066,8551         1088,8376           34:5         962,8530         967,8089         948,8737         953,8296         1110,8813         1132,8638         1096,9021         1118,8846           34:6         960,8373         965,7932         946,8580         951,8140         1108,8657         1130,8482         1094,8864         1116,8689           26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           26:                                                                                                                                                                                             |      | 30:5 | 906,7904 | 911,7463 | 892,8111 | 897,7670 | 1054,8187 | 1076,8012 | 1040,8395 | 1062,8220 |
| 32:4       936,8373       941,7932       922,8580       927,8140       1084,8657       1106,8482       1070,8864       1092,8689         32:5       934,8217       939,7776       920,8424       925,7983       1082,8500       1104,8325       1068,8708       1090,8533         32:6       932,8060       937,7619       918,8267       923,7827       1080,8344       1102,8169       1066,8551       1088,8376         34:5       962,8530       967,8089       948,8737       953,8296       1110,8813       1132,8638       1096,9021       1118,8846         34:6       960,8373       965,7932       946,8580       951,8140       1108,8657       1130,8482       1094,8864       1116,8689         26:4       850,7278       855,6837       836,7485       841,7044       998,7561       1020,7386       984,7769       1006,7594         26:5       848,7121       853,6680       834,7328       839,6888       996,7405       1018,7230       982,7612       1004,7437         28:4       878,7591       883,7150       864,7798       869,7357       1026,7874       1048,7699       1012,8082       1034,7907         28:5       876,7434       881,6993       862,7641       867,7201       1024,7718 <t< th=""><th></th><th>30:6</th><th>904,7747</th><th>909,7306</th><th>890,7954</th><th>895,7514</th><th>1052,8031</th><th>1074,7856</th><th>1038,8238</th><th>1060,8063</th></t<>                                                                              |      | 30:6 | 904,7747 | 909,7306 | 890,7954 | 895,7514 | 1052,8031 | 1074,7856 | 1038,8238 | 1060,8063 |
| 32:5         934,8217         939,7776         920,8424         925,7983         1082,8500         1104,8325         1068,8708         1090,8533           32:6         932,8060         937,7619         918,8267         923,7827         1080,8344         1102,8169         1066,8551         1088,8376           34:5         962,8530         967,8089         948,8737         953,8296         1110,8813         1132,8638         1096,9021         1118,8846           34:6         960,8373         965,7932         946,8580         951,8140         1108,8657         1130,8482         1094,8864         1116,8689           26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           26:5         848,7121         853,6680         834,7328         839,6888         996,7405         1018,7230         982,7612         1004,7437           28:4         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7543         1012,8082         1034,7907           28:5         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           28:                                                                                                                                                                                             |      | 32:4 | 936,8373 | 941,7932 | 922,8580 | 927,8140 | 1084,8657 | 1106,8482 | 1070,8864 | 1092,8689 |
| 32:6         932,8060         937,7619         918,8267         923,7827         1080,8344         1102,8169         1066,8551         1088,8376           34:5         962,8530         967,8089         948,8737         953,8296         1110,8813         1132,8638         1096,9021         1118,8846           34:6         960,8373         965,7932         946,8580         951,8140         1108,8657         1130,8482         1094,8864         1116,8689           26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           26:5         848,7121         853,6680         834,7328         839,6888         996,7405         1018,7230         982,7612         1004,7437           28:4         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:5         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           28:6         874,7278         879,6837         860,7485         865,7044         1022,7561         1044,7386         1008,7769         1030,7594           30:                                                                                                                                                                                             |      | 32:5 | 934,8217 | 939,7776 | 920,8424 | 925,7983 | 1082,8500 | 1104,8325 | 1068,8708 | 1090,8533 |
| 34:5         962,8530         967,8089         948,8737         953,8296         1110,8813         1132,8638         1096,9021         1118,8846           34:6         960,8373         965,7932         946,8580         951,8140         1108,8657         1130,8482         1094,8864         1116,8689           26:4         26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           26:5         848,7121         853,6680         834,7328         839,6888         996,7405         1018,7230         982,7612         1004,7437           28:4         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:5         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           28:6         874,7278         879,6837         860,7485         865,7044         1022,7561         1044,7386         1008,7769         1030,7594           30:4         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220 </th <th></th> <th>32:6</th> <th>932,8060</th> <th>937,7619</th> <th>918,8267</th> <th>923,7827</th> <th>1080,8344</th> <th>1102,8169</th> <th>1066,8551</th> <th>1088,8376</th>             |      | 32:6 | 932,8060 | 937,7619 | 918,8267 | 923,7827 | 1080,8344 | 1102,8169 | 1066,8551 | 1088,8376 |
| 34:6         960,8373         965,7932         946,8580         951,8140         1108,8657         1130,8482         1094,8864         1116,8689           26:4         26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           26:5         848,7121         853,6680         834,7328         839,6888         996,7405         1018,7230         982,7612         1004,7437           28:4         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:5         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7504           28:6         874,7278         879,6837         860,7485         865,7044         1022,7561         1044,7386         1008,7769         1030,7594           30:4         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220                                                                                                                                                                                                                                                                                                                                                         |      | 34:5 | 962,8530 | 967,8089 | 948,8737 | 953,8296 | 1110,8813 | 1132,8638 | 1096,9021 | 1118,8846 |
| 26:4         26:4         850,7278         855,6837         836,7485         841,7044         998,7561         1020,7386         984,7769         1006,7594           26:5         848,7121         853,6680         834,7328         839,6888         996,7405         1018,7230         982,7612         1004,7437           28:4         878,7591         883,7150         864,7798         869,7357         1026,7874         1048,7699         1012,8082         1034,7907           28:5         876,7434         881,6993         862,7641         867,7201         1024,7718         1046,7543         1010,7925         1032,7750           28:6         874,7278         879,6837         860,7485         865,7044         1022,7561         1044,7386         1008,7769         1030,7594           30:4         906,7904         911,7463         892,8111         897,7670         1054,8187         1076,8012         1040,8395         1062,8220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 34:6 | 960,8373 | 965,7932 | 946,8580 | 951,8140 | 1108,8657 | 1130,8482 | 1094,8864 | 1116,8689 |
| 26:5848,7121853,6680834,7328839,6888996,74051018,7230982,76121004,743728:4878,7591883,7150864,7798869,73571026,78741048,76991012,80821034,790728:5876,7434881,6993862,7641867,72011024,77181046,75431010,79251032,775028:6874,7278879,6837860,7485865,70441022,75611044,73861008,77691030,759430:4906,7904911,7463892,8111897,76701054,81871076,80121040,83951062,8220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26:4 | 26:4 | 850,7278 | 855,6837 | 836,7485 | 841,7044 | 998,7561  | 1020,7386 | 984,7769  | 1006,7594 |
| 28:4878,7591883,7150864,7798869,73571026,78741048,76991012,80821034,790728:5876,7434881,6993862,7641867,72011024,77181046,75431010,79251032,775028:6874,7278879,6837860,7485865,70441022,75611044,73861008,77691030,759430:4906,7904911,7463892,8111897,76701054,81871076,80121040,83951062,8220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 26:5 | 848,7121 | 853,6680 | 834,7328 | 839,6888 | 996,7405  | 1018,7230 | 982,7612  | 1004,7437 |
| 28:5876,7434881,6993862,7641867,72011024,77181046,75431010,79251032,775028:6874,7278879,6837860,7485865,70441022,75611044,73861008,77691030,759430:4906,7904911,7463892,8111897,76701054,81871076,80121040,83951062,8220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 28:4 | 878,7591 | 883,7150 | 864,7798 | 869,7357 | 1026,7874 | 1048,7699 | 1012,8082 | 1034,7907 |
| 28:6874,7278879,6837860,7485865,70441022,75611044,73861008,77691030,759430:4906,7904911,7463892,8111897,76701054,81871076,80121040,83951062,8220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 28:5 | 876,7434 | 881,6993 | 862,7641 | 867,7201 | 1024,7718 | 1046,7543 | 1010,7925 | 1032,7750 |
| <b>30:4</b> 906,7904 911,7463 892,8111 897,7670 1054,8187 1076,8012 1040,8395 1062,8220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 28:6 | 874,7278 | 879,6837 | 860,7485 | 865,7044 | 1022,7561 | 1044,7386 | 1008,7769 | 1030,7594 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 30:4 | 906,7904 | 911,7463 | 892,8111 | 897,7670 | 1054,8187 | 1076,8012 | 1040,8395 | 1062,8220 |

|      |      |          |          |          |          |           |           |           | (000 0000 |
|------|------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|
|      | 30:5 | 904,7747 | 909,7306 | 890,7954 | 895,7514 | 1052,8031 | 1074,7856 | 1038,8238 | 1060,8063 |
|      | 30:6 | 902,7591 | 907,7150 | 888,7798 | 893,7357 | 1050,7874 | 1072,7699 | 1036,8082 | 1058,7907 |
|      | 32:4 | 934,8217 | 939,7776 | 920,8424 | 925,7983 | 1082,8500 | 1104,8325 | 1068,8708 | 1090,8533 |
|      | 32:5 | 932,8060 | 937,7619 | 918,8267 | 923,7827 | 1080,8344 | 1102,8169 | 1066,8551 | 1088,8376 |
|      | 32:6 | 930,7904 | 935,7463 | 916,8111 | 921,7670 | 1078,8187 | 1100,8012 | 1064,8395 | 1086,8220 |
|      | 34:5 | 936,8373 | 941,7932 | 922,8580 | 927,8140 | 1084,8657 | 1106,8482 | 1070,8864 | 1092,8689 |
|      | 34:6 | 934,8217 | 939,7776 | 920,8424 | 925,7983 | 1082,8500 | 1104,8325 | 1068,8708 | 1090,8533 |
| 26:5 | 26:5 | 846,6965 | 851,6524 | 832,7172 | 837,6731 | 994,7248  | 1016,7073 | 980,7456  | 1002,7281 |
|      | 28:4 | 876,7434 | 881,6993 | 862,7641 | 867,7201 | 1024,7718 | 1046,7543 | 1010,7925 | 1032,7750 |
|      | 28:5 | 874,7278 | 879,6837 | 860,7485 | 865,7044 | 1022,7561 | 1044,7386 | 1008,7769 | 1030,7594 |
|      | 28:6 | 872,7121 | 877,6680 | 858,7328 | 863,6888 | 1020,7405 | 1042,7230 | 1006,7612 | 1028,7437 |
|      | 30:4 | 904,7747 | 909,7306 | 890,7954 | 895,7514 | 1052,8031 | 1074,7856 | 1038,8238 | 1060,8063 |
|      | 30:5 | 902,7591 | 907,7150 | 888,7798 | 893,7357 | 1050,7874 | 1072,7699 | 1036,8082 | 1058,7907 |
|      | 30:6 | 900,7434 | 905,6993 | 886,7641 | 891,7201 | 1048,7718 | 1070,7543 | 1034,7925 | 1056,7750 |
|      | 32:4 | 932,8060 | 937,7619 | 918,8267 | 923,7827 | 1080,8344 | 1102,8169 | 1066,8551 | 1088,8376 |
|      | 32:5 | 930,7904 | 935,7463 | 916,8111 | 921,7670 | 1078,8187 | 1100,8012 | 1064,8395 | 1086,8220 |
|      | 32:6 | 928,7747 | 933,7306 | 914,7954 | 919,7514 | 1076,8031 | 1098,7856 | 1062,8238 | 1084,8063 |
|      | 34:5 | 958,8217 | 963,7776 | 944,8424 | 949,7983 | 1106,8500 | 1128,8325 | 1092,8708 | 1114,8533 |
|      | 34:6 | 956,8060 | 961,7619 | 942,8267 | 947,7827 | 1104,8344 | 1126,8169 | 1090,8551 | 1112,8376 |
| 28:4 | 28:4 | 906,7904 | 911,7463 | 892,8111 | 897,7670 | 1054,8187 | 1076,8012 | 1040,8395 | 1062,8220 |
|      | 28:5 | 904,7747 | 909,7306 | 890,7954 | 895,7514 | 1052,8031 | 1074,7856 | 1038,8238 | 1060,8063 |
|      | 28:6 | 902,7591 | 907.7150 | 888,7798 | 893,7357 | 1050,7874 | 1072,7699 | 1036.8082 | 1058,7907 |
|      | 30:4 | 934,8217 | 939,7776 | 920,8424 | 925,7983 | 1082,8500 | 1104,8325 | 1068,8708 | 1090,8533 |
|      | 30:5 | 932,8060 | 937,7619 | 918,8267 | 923,7827 | 1080,8344 | 1102,8169 | 1066,8551 | 1088,8376 |
|      | 30:6 | 930,7904 | 935,7463 | 916,8111 | 921,7670 | 1078,8187 | 1100,8012 | 1064,8395 | 1086,8220 |
|      | 32:4 | 938,8530 | 943,8089 | 924,8737 | 929,8296 | 1086,8813 | 1108,8638 | 1072,9021 | 1094,8846 |
|      | 32:5 | 960,8373 | 965,7932 | 946,8580 | 951,8140 | 1108,8657 | 1130,8482 | 1094,8864 | 1116,8689 |
|      | 32:6 | 958,8217 | 963,7776 | 944,8424 | 949,7983 | 1106,8500 | 1128,8325 | 1092,8708 | 1114,8533 |
|      | 34:5 | 988,8686 | 993,8245 | 974,8893 | 979,8453 | 1136,8970 | 1158,8795 | 1122,9177 | 1144,9002 |
|      | 34:6 | 986,8530 | 991,8089 | 972,8737 | 977,8296 | 1134,8813 | 1156,8638 | 1120,9021 | 1142,8846 |
| 28:5 | 28:5 | 902,7591 | 907,7150 | 888,7798 | 893,7357 | 1050,7874 | 1072,7699 | 1036,8082 | 1058,7907 |
|      | 28:6 | 900,7434 | 905,6993 | 886,7641 | 891,7201 | 1048,7718 | 1070,7543 | 1034,7925 | 1056,7750 |
|      | 30:4 | 932,8060 | 937,7619 | 918,8267 | 923,7827 | 1080,8344 | 1102,8169 | 1066,8551 | 1088,8376 |
|      | 30:5 | 930,7904 | 935,7463 | 916.8111 | 921,7670 | 1078.8187 | 1100.8012 | 1064.8395 | 1086.8220 |
|      | 30:6 | 928,7747 | 933.7306 | 914,7954 | 919.7514 | 1076.8031 | 1098,7856 | 1062.8238 | 1084,8063 |
|      | 32:4 | 960.8373 | 965,7932 | 946.8580 | 951.8140 | 1108.8657 | 1130.8482 | 1094.8864 | 1116.8689 |
|      | 32:5 | 958.8217 | 963.7776 | 944.8424 | 949,7983 | 1106.8500 | 1128.8325 | 1092.8708 | 1114,8533 |
|      | 32:6 | 956,8060 | 961,7619 | 942.8267 | 947,7827 | 1104,8344 | 1126,8169 | 1090.8551 | 1112,8376 |
|      | 34:5 | 962.8530 | 967.8089 | 948.8737 | 953,8296 | 1110.8813 | 1132.8638 | 1096,9021 | 1118,8846 |
|      | 34:6 | 960,8373 | 965,7932 | 946,8580 | 951,8140 | 1108,8657 | 1130,8482 | 1094,8864 | 1116,8689 |
| 28:6 | 28:6 | 898.7278 | 903,6837 | 884,7485 | 889.7044 | 1046.7561 | 1068,7386 | 1032.7769 | 1054.7594 |
|      | 30:4 | 930,7904 | 935.7463 | 916.8111 | 921,7670 | 1078.8187 | 1100.8012 | 1064.8395 | 1086.8220 |
|      | 30:5 | 928,7747 | 933.7306 | 914,7954 | 919.7514 | 1076.8031 | 1098.7856 | 1062.8238 | 1084.8063 |
|      | 30:6 | 926,7591 | 931.7150 | 912,7798 | 917,7357 | 1074,7874 | 1096,7699 | 1060.8082 | 1082.7907 |
|      | 32:4 | 958,8217 | 963,7776 | 944,8424 | 949,7983 | 1106,8500 | 1128,8325 | 1092,8708 | 1114,8533 |
|      |      |          |          |          |          |           |           |           |           |

|      | 32:5 | 956,8060  | 961,7619  | 942,8267  | 947,7827  | 1104,8344 | 1126,8169 | 1090,8551 | 1112,8376 |
|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|      | 32:6 | 954,7904  | 959,7463  | 940,8111  | 945,7670  | 1102,8187 | 1124,8012 | 1088,8395 | 1110,8220 |
|      | 34:5 | 984,8373  | 989,7932  | 970,8580  | 975,8140  | 1132,8657 | 1154,8482 | 1118,8864 | 1140,8689 |
|      | 34:6 | 982,8217  | 987,7776  | 968,8424  | 973,7983  | 1130,8500 | 1152,8325 | 1116,8708 | 1138,8533 |
|      |      |           | ,         | ) -       | ,         |           | - ,       | -,        | ,         |
| 30:4 | 30:4 | 986,8530  | 991,8089  | 972,8737  | 977,8296  | 1134,8813 | 1156,8638 | 1120,9021 | 1142,8846 |
|      | 30:5 | 984,8373  | 989,7932  | 970,8580  | 975,8140  | 1132,8657 | 1154,8482 | 1118,8864 | 1140,8689 |
|      | 30:6 | 982,8217  | 987,7776  | 968,8424  | 973,7983  | 1130,8500 | 1152,8325 | 1116,8708 | 1138,8533 |
|      | 32:4 | 990,8843  | 995,8402  | 976,9050  | 981,8609  | 1138,9126 | 1160,8951 | 1124,9334 | 1146,9159 |
|      | 32:5 | 988,8686  | 993,8245  | 974,8893  | 979,8453  | 1136,8970 | 1158,8795 | 1122,9177 | 1144,9002 |
|      | 32:6 | 986,8530  | 991,8089  | 972,8737  | 977,8296  | 1134,8813 | 1156,8638 | 1120,9021 | 1142,8846 |
|      | 34:5 | 1016,8999 | 1021,8558 | 1002,9206 | 1007,8766 | 1164,9283 | 1186,9108 | 1150,9490 | 1172,9315 |
|      | 34:6 | 1014,8843 | 1019,8402 | 1000,9050 | 1005,8609 | 1162,9126 | 1184,8951 | 1148,9334 | 1170,9159 |
| 30:5 | 30:5 | 958,8217  | 963,7776  | 944,8424  | 949,7983  | 1106,8500 | 1128,8325 | 1092,8708 | 1114,8533 |
|      | 30:6 | 956,8060  | 961,7619  | 942,8267  | 947,7827  | 1104,8344 | 1126,8169 | 1090,8551 | 1112,8376 |
|      | 32:4 | 988,8686  | 993,8245  | 974,8893  | 979,8453  | 1136,8970 | 1158,8795 | 1122,9177 | 1144,9002 |
|      | 32:5 | 986,8530  | 991,8089  | 972,8737  | 977,8296  | 1134,8813 | 1156,8638 | 1120,9021 | 1142,8846 |
|      | 32:6 | 984,8373  | 989,7932  | 970,8580  | 975,8140  | 1132,8657 | 1154,8482 | 1118,8864 | 1140,8689 |
|      | 34:5 | 1014,8843 | 1019,8402 | 1000,9050 | 1005,8609 | 1162,9126 | 1184,8951 | 1148,9334 | 1170,9159 |
|      | 34:6 | 1012,8686 | 1017,8245 | 998,8893  | 1003,8453 | 1160,8970 | 1182,8795 | 1146,9177 | 1168,9002 |
| 30:6 | 30:6 | 954,7904  | 959,7463  | 940,8111  | 945,7670  | 1102,8187 | 1124,8012 | 1088,8395 | 1110,8220 |
|      | 32:4 | 986,8530  | 991,8089  | 972,8737  | 977,8296  | 1134,8813 | 1156,8638 | 1120,9021 | 1142,8846 |
|      | 32:5 | 984,8373  | 989,7932  | 970,8580  | 975,8140  | 1132,8657 | 1154,8482 | 1118,8864 | 1140,8689 |
|      | 32:6 | 982,8217  | 987,7776  | 968,8424  | 973,7983  | 1130,8500 | 1152,8325 | 1116,8708 | 1138,8533 |
|      | 34:5 | 1012,8686 | 1017,8245 | 998,8893  | 1003,8453 | 1160,8970 | 1182,8795 | 1146,9177 | 1168,9002 |
|      | 34:6 | 1010,8530 | 1015,8089 | 996,8737  | 1001,8296 | 1158,8813 | 1180,8638 | 1144,9021 | 1166,8846 |
| 32:4 | 32:4 | 1018,9156 | 1023,8715 | 1004,9363 | 1009,8922 | 1166,9439 | 1188,9264 | 1152,9647 | 1174,9472 |
|      | 32:5 | 1016,8999 | 1021,8558 | 1002,9206 | 1007,8766 | 1164,9283 | 1186,9108 | 1150,9490 | 1172,9315 |
|      | 32:6 | 1014,8843 | 1019,8402 | 1000,9050 | 1005,8609 | 1162,9126 | 1184,8951 | 1148,9334 | 1170,9159 |
|      | 34:5 | 1044,9312 | 1049,8871 | 1030,9519 | 1035,9079 | 1192,9596 | 1214,9421 | 1178,9803 | 1200,9628 |
|      | 34:6 | 1042,9156 | 1047,8715 | 1028,9363 | 1033,8922 | 1190,9439 | 1212,9264 | 1176,9647 | 1198,9472 |
| 32:5 | 32:5 | 1014,8843 | 1019,8402 | 1000,9050 | 1005,8609 | 1162,9126 | 1184,8951 | 1148,9334 | 1170,9159 |
|      | 32:6 | 1012,8686 | 1017,8245 | 998,8893  | 1003,8453 | 1160,8970 | 1182,8795 | 1146,9177 | 1168,9002 |
|      | 34:5 | 1042,9156 | 1047,8715 | 1028,9363 | 1033,8922 | 1190,9439 | 1212,9264 | 1176,9647 | 1198,9472 |
|      | 34:6 | 1040,8999 | 1045,8558 | 1026,9206 | 1031,8766 | 1188,9283 | 1210,9108 | 1174,9490 | 1196,9315 |
| 32:6 | 32:6 | 1010,8530 | 1015,8089 | 996,8737  | 1001,8296 | 1158,8813 | 1180,8638 | 1144,9021 | 1166,8846 |
|      | 34:5 | 1040,8999 | 1045,8558 | 1026,9206 | 1031,8766 | 1188,9283 | 1210,9108 | 1174,9490 | 1196,9315 |
|      | 34:6 | 1038,8843 | 1043,8402 | 1024,9050 | 1029,8609 | 1186,9126 | 1208,8951 | 1172,9334 | 1194,9159 |
| 34:5 | 34:5 | 1070,9469 | 1075,9028 | 1056,9676 | 1061,9235 | 1218,9752 | 1240,9577 | 1204,9960 | 1226,9785 |
|      | 34:6 | 1068,9312 | 1073,8871 | 1054,9519 | 1059,9079 | 1216,9596 | 1238,9421 | 1202,9803 | 1224,9628 |
| 34:6 | 34:6 | 1066,9156 | 1071,8715 | 1052,9363 | 1057,8922 | 1214,9439 | 1236,9264 | 1200,9647 | 1222,9472 |
|      |      |           |           |           |           |           |           |           |           |

#### 8.1.2 Deskriptive Statistiken

Statistische Kennzahlen zu den jeweils durchgeführten Experimenten (siehe 8.1.3).

(Abkürzungen: [N] – gültige Fallzahl, [MW] – Mittelwert, [STABW] – Standardabweichung, [MIN] – minimaler Wert, [MAX] – maximaler Wert, [MED] – Median: der mittlere Wert in der Rangordnung, hier liegen 50% der geordneten Werte. [25%] - erstes Quartil, hier liegen 25% der geordneten Werte, [75%] - drittes Quartil, hier liegen 75% der geordneten Werte).

| Gesamtmotilität nach 48 h TRT-30 min (TRT-30, 48 h) |    |       |       |       |       |       |       |       |  |  |  |
|-----------------------------------------------------|----|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|                                                     | Ν  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |  |  |  |
| K 6°C                                               | 16 | 55,59 | 12,69 | 56,20 | 21,46 | 78,20 | 49,85 | 62,92 |  |  |  |
| K 17⁰C                                              | 16 | 74,34 | 9,04  | 74,88 | 58,82 | 87,42 | 70,51 | 79,80 |  |  |  |
| 16:1                                                | 16 | 66,27 | 13,38 | 65,26 | 26,20 | 86,38 | 62,06 | 75,75 |  |  |  |
| 18:1                                                | 16 | 60,05 | 16,84 | 63,46 | 14,25 | 80,49 | 54,01 | 70,41 |  |  |  |
| 20:5                                                | 16 | 55,81 | 12,32 | 53,82 | 23,18 | 79,53 | 50,67 | 64,22 |  |  |  |
| 18:2                                                | 16 | 62,26 | 14,68 | 63,72 | 17,99 | 82,52 | 57,62 | 70,96 |  |  |  |
| 18:3                                                | 16 | 62,20 | 14,01 | 62,02 | 20,56 | 79,26 | 56,65 | 71,76 |  |  |  |

| Prog. Motilität nach 48 h TRT-30 min (TRT-30, 48 h) |    |       |       |       |       |       |       |       |  |  |  |
|-----------------------------------------------------|----|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|                                                     | N  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |  |  |  |
| K 6°C                                               | 16 | 49,71 | 13,58 | 49,24 | 16,59 | 76,16 | 43,97 | 58,96 |  |  |  |
| K 17⁰C                                              | 16 | 69,58 | 10,93 | 71,72 | 50,31 | 86,00 | 63,68 | 75,32 |  |  |  |
| 16:1                                                | 16 | 59,55 | 14,78 | 59,06 | 19,31 | 83,44 | 52,47 | 70,57 |  |  |  |
| 18:1                                                | 16 | 53,47 | 17,60 | 53,06 | 8,11  | 78,02 | 45,95 | 64,51 |  |  |  |
| 20:5                                                | 16 | 50,61 | 13,33 | 49,35 | 18,88 | 78,62 | 42,55 | 61,40 |  |  |  |
| 18:2                                                | 16 | 56,22 | 15,25 | 57,55 | 14,01 | 81,01 | 50,60 | 64,58 |  |  |  |
| 18:3                                                | 16 | 55,74 | 15,41 | 54,05 | 14,43 | 77,13 | 49,21 | 65,73 |  |  |  |

#### Gesamtmotilität nach 48 h TRT-300 min (TRT-300, 48 h)

|        | N  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |
|--------|----|-------|-------|-------|-------|-------|-------|-------|
| K 6°C  | 16 | 33,00 | 17,69 | 28,57 | 8,01  | 68,14 | 20,20 | 46,76 |
| K 17⁰C | 16 | 50,49 | 18,26 | 52,59 | 11,63 | 78,16 | 41,03 | 61,26 |
| 16:1   | 16 | 49,88 | 16,33 | 47,72 | 17,19 | 73,39 | 39,12 | 65,05 |
| 18:1   | 16 | 48,98 | 13,95 | 47,34 | 25,48 | 72,89 | 39,36 | 60,69 |
| 20:5   | 16 | 44,73 | 14,99 | 47,26 | 21,01 | 71,47 | 33,82 | 54,81 |
| 18:2   | 16 | 52,82 | 11,61 | 53,47 | 35,14 | 73,33 | 42,86 | 59,44 |
| 18:3   | 16 | 49,22 | 14,13 | 46,93 | 21,43 | 73,81 | 42,41 | 60,06 |

#### Prog. Motilität 48 h TRT-300 min (TRT-300, 48 h)

|        | Ν  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |  |
|--------|----|-------|-------|-------|-------|-------|-------|-------|--|
| K 6°C  | 16 | 29,47 | 17,09 | 25,93 | 6,85  | 63,73 | 15,48 | 42,00 |  |
| K 17⁰C | 16 | 46,11 | 18,43 | 49,18 | 10,67 | 75,63 | 34,39 | 57,40 |  |
| 16:1   | 16 | 45,67 | 16,26 | 42,41 | 15,52 | 70,60 | 34,04 | 60,74 |  |
| 18:1   | 16 | 43,91 | 13,67 | 41,44 | 21,67 | 67,64 | 34,65 | 53,57 |  |
| 20:5   | 16 | 40,20 | 15,03 | 40,10 | 16,51 | 68,32 | 30,07 | 49,58 |  |
| 18:2   | 16 | 47,90 | 11,77 | 47,94 | 29,13 | 70,74 | 38,07 | 55,57 |  |
| 18:3   | 16 | 44,46 | 14,16 | 41,98 | 19,57 | 70,57 | 36,23 | 56,05 |  |

#### Gesamtmotilität 168 h TRT-30 min (TRT-30, 168 h)

|        | N  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |
|--------|----|-------|-------|-------|-------|-------|-------|-------|
| K 6°C  | 13 | 49,26 | 13,79 | 47,95 | 19,20 | 71,56 | 45,17 | 55,42 |
| K 17⁰C | 13 | 70,94 | 10,32 | 69,57 | 52,54 | 88,21 | 66,07 | 75,10 |
| 16:1   | 13 | 62,57 | 16,07 | 64,30 | 18,65 | 86,39 | 59,61 | 68,84 |
| 18:1   | 13 | 48,71 | 19,58 | 50,48 | 7,17  | 79,90 | 41,41 | 58,12 |
| 20:5   | 13 | 52,00 | 16,52 | 52,14 | 16,58 | 75,73 | 40,60 | 61,46 |
| 18:2   | 13 | 54,76 | 17,17 | 57,56 | 10,59 | 79,58 | 49,50 | 62,20 |
| 18:3   | 13 | 56,56 | 17,82 | 59,14 | 12,33 | 82,24 | 49,73 | 65,59 |
| Prog. | Motilität | 168 h | TRT-30 min | (TRT-30,                              | 168 h) |
|-------|-----------|-------|------------|---------------------------------------|--------|
|       |           |       |            | ···· ·· · · · · · · · · · · · · · · · |        |

|        |    |       |       |       |       | , ,   |       |       |
|--------|----|-------|-------|-------|-------|-------|-------|-------|
|        | Ν  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |
| K 6°C  | 13 | 44,62 | 14,52 | 43,86 | 17,03 | 70,61 | 35,69 | 51,98 |
| K 17°C | 13 | 67,18 | 11,24 | 66,94 | 47,46 | 86,82 | 61,45 | 72,20 |
| 16:1   | 13 | 57,24 | 16,16 | 57,61 | 17,44 | 83,54 | 49,70 | 64,86 |
| 18:1   | 13 | 44,21 | 18,94 | 45,91 | 6,68  | 77,56 | 33,97 | 50,00 |
| 20:5   | 13 | 46,75 | 17,05 | 45,40 | 13,71 | 73,11 | 36,07 | 56,92 |
| 18:2   | 13 | 49,73 | 17,10 | 51,21 | 8,83  | 76,75 | 45,72 | 56,11 |
| 18:3   | 13 | 51,98 | 17,42 | 53,56 | 11,32 | 79,05 | 43,63 | 60,89 |

#### Gesamtmotilität 168 h TRT-300 min (TRT-300, 168 h)

|        | N  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |
|--------|----|-------|-------|-------|-------|-------|-------|-------|
| K 6°C  | 13 | 31,09 | 20,29 | 24,86 | 2,16  | 71,36 | 18,16 | 39,04 |
| K 17⁰C | 13 | 45,35 | 19,66 | 38,52 | 9,30  | 72,11 | 34,21 | 64,39 |
| 16:1   | 13 | 41,57 | 18,30 | 38,95 | 9,70  | 71,92 | 28,56 | 53,15 |
| 18:1   | 13 | 37,51 | 17,27 | 31,17 | 15,83 | 75,54 | 28,45 | 41,68 |
| 20:5   | 13 | 36,11 | 17,37 | 36,29 | 9,53  | 62,26 | 26,98 | 43,63 |
| 18:2   | 13 | 41,66 | 16,32 | 39,42 | 17,80 | 76,61 | 35,25 | 46,98 |
| 18:3   | 13 | 38,89 | 21,31 | 36,66 | 7,53  | 68,56 | 23,39 | 54,31 |

#### Prog. Motilität 168 h 300 min (TRT-300, 168 h)

|        | Ν  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |
|--------|----|-------|-------|-------|-------|-------|-------|-------|
| K 6°C  | 13 | 28,65 | 19,87 | 23,76 | 1,62  | 68,58 | 16,08 | 35,09 |
| K 17⁰C | 13 | 41,69 | 19,36 | 35,76 | 7,97  | 68,30 | 27,43 | 59,51 |
| 16:1   | 13 | 37,78 | 17,99 | 36,10 | 6,80  | 69,52 | 24,22 | 48,59 |
| 18:1   | 13 | 33,67 | 16,89 | 28,19 | 13,71 | 72,57 | 24,60 | 37,61 |
| 20:5   | 13 | 32,61 | 16,86 | 31,71 | 6,13  | 58,72 | 24,30 | 39,91 |
| 18:2   | 13 | 38,34 | 16,38 | 34,26 | 16,27 | 74,30 | 32,18 | 42,41 |
| 18:3   | 13 | 36,05 | 20,54 | 34,63 | 5,90  | 66,75 | 21,83 | 50,32 |

### Vitalitätstest, Rh123/PI nach 72 h

|        | Ν  | MW    | STABW | MED   | MIN   | MAX   | 25%   | 75%   |
|--------|----|-------|-------|-------|-------|-------|-------|-------|
| K 6°C  | 16 | 59,62 | 12,05 | 61,25 | 36,48 | 85,77 | 50,71 | 67,35 |
| K 17ºC | 16 | 78,23 | 5,66  | 78,35 | 66,58 | 89,93 | 74,84 | 80,75 |
| 16:1   | 16 | 70,53 | 10,59 | 71,36 | 47,56 | 89,50 | 62,49 | 78,82 |
| 18:1   | 16 | 72,05 | 10,55 | 75,03 | 50,57 | 89,97 | 65,04 | 78,43 |
| 20:5   | 16 | 61,40 | 12,83 | 65,30 | 30,13 | 84,58 | 51,70 | 68,61 |
| 18:2   | 16 | 68,11 | 11,54 | 69,72 | 42,30 | 89,75 | 59,11 | 75,80 |
| 18:3   | 16 | 67,85 | 14,71 | 70,88 | 26,84 | 85,60 | 60,83 | 77,85 |

### Akrosomdefekter Spermatozoen nach 24 h

|        | Ν  | MW  | STABW | MED | MIN | MAX  | 25% | 75% |
|--------|----|-----|-------|-----|-----|------|-----|-----|
| K 6°C  | 16 | 7,0 | 2,6   | 6,5 | 3,5 | 12,0 | 5,3 | 8,5 |
| K 17°C | 16 | 4,8 | 1,7   | 4,8 | 1,5 | 7,5  | 3,5 | 6,0 |
| 16:1   | 16 | 5,8 | 3,2   | 5,0 | 2,0 | 16,0 | 4,0 | 6,8 |
| 18:1   | 16 | 6,6 | 2,7   | 6,5 | 2,5 | 12,5 | 4,8 | 8,3 |
| 20:5   | 16 | 6,7 | 3,0   | 5,8 | 2,5 | 15,0 | 5,0 | 8,5 |
| 18:2   | 16 | 6,5 | 1,9   | 6,8 | 3,5 | 10,0 | 5,0 | 8,0 |
| 18:3   | 16 | 6,0 | 1,5   | 6,0 | 3,0 | 9,5  | 5,0 | 6,5 |

### Akrosomdefekter Spermatozoen nach 72 h

|        | N  | MW   | STABW | MED | MIN | MAX  | 25% | 75%  |
|--------|----|------|-------|-----|-----|------|-----|------|
| K 6°C  | 16 | 10,3 | 5,2   | 9,3 | 4,0 | 27,5 | 8,5 | 10,5 |
| K 17ºC | 16 | 6,5  | 3,2   | 6,0 | 2,0 | 16,0 | 5,5 | 7,0  |
| 16:1   | 16 | 7,3  | 3,0   | 6,8 | 3,0 | 13,0 | 4,8 | 8,8  |
| 18:1   | 16 | 8,5  | 3,1   | 8,8 | 3,5 | 15,0 | 6,5 | 10,5 |
| 20:5   | 16 | 9,7  | 3,7   | 9,5 | 4,0 | 17,0 | 7,5 | 11,0 |
| 18:2   | 16 | 9,3  | 3,6   | 8,8 | 4,5 | 16,0 | 6,5 | 12,5 |
| 18:3   | 16 | 8,2  | 2,6   | 8,5 | 2,5 | 13,0 | 6,5 | 10,0 |

# 8.1.3 Ausführliche Darstellung der Testergebnisse

| Vergleich/Test                                            | Gruppenvergleich | N  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon nach<br>Bonferroni-Holm-<br>Adjustierung |
|-----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Vergleich der beiden unbehandelten                | K 17°C - K 6°C   | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander         | 16:1 - K 6ºC     | 16 | 0,00              | 8,50              | 0,000                                           | _                        |                                                               |
|                                                           | 18:1 - K 6ºC     | 16 | 6,40              | 9,45              | 0,064                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten            | 20:5 - K 6°C     | 16 | 9,50              | 7,90              | 0,597                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                   | 18:2 - K 6°C     | 16 | 3,50              | 9,21              | 0,001                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                          | 18:3 - K 6°C     | 16 | 2,00              | 8,93              | 0,000                                           | _                        |                                                               |
|                                                           | 16:1 - K 17⁰C    | 16 | 9,07              | 4,50              | 0,001                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten            | 18:1 - K 17⁰C    | 16 | 8,93              | 2,00              | 0,000                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                  | 20:5 - K 17°C    | 16 | 8,50              | 0,00              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                          | 18:2 - K 17ºC    | 16 | 9,50              | 1,50              | 0,000                                           |                          |                                                               |
|                                                           | 18:3 - K 17ºC    | 16 | 9,50              | 1,50              | 0,000                                           |                          |                                                               |
|                                                           | 18:1 - 16:1      | 16 | 9,62              | 3,67              | 0,002                                           |                          | 0,012                                                         |
|                                                           | 20:5 - 16:1      | 16 | 8,50              | 0,00              | 0,000                                           |                          | 0,000                                                         |
| <b>T</b> (04.)4 1.1 1 1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1     | 18:2 - 16:1      | 16 | 9,31              | 5,00              | 0,004                                           |                          | 0,021                                                         |
| lest <sup>°</sup> 4: Vergleich der unterschiedlichen      | 18:3 - 16:1      | 16 | 8,33              | 11,00             | 0,002                                           |                          | 0,012                                                         |
| Supplementierungsvanamen untereinander                    | 20:5 - 18:1      | 16 | 8,00              | 10,67             | 0,065                                           | 0.000                    | 0,262                                                         |
| Test°5: wenn im Test 4 n < 0 05 festgestellt wurde        | 18:2 - 18:1      | 16 | 8,50              | 8,50              | 0,404                                           | 0,000                    | 0,807                                                         |
| dann wurde <i>a posteriori</i> Post-Hoc-Test durchgeführt | 18:3 - 18:1      | 16 | 7,67              | 9,00              | 0,274                                           |                          | 0,823                                                         |
|                                                           | 18:2 - 20:5      | 16 | 8,00              | 8,53              | 0,001                                           |                          | 0,006                                                         |
|                                                           | 18:3 - 20:5      | 16 | 2,50              | 9,36              | 0,000                                           |                          | 0,003                                                         |
|                                                           | 18:3 - 18:2      | 16 | 11,67             | 6,60              | 0,929                                           |                          | 0,929                                                         |

# Tabelle A1. TRT-30 min nach 48 h (Gesamtmotilität)

| Tabelle A2. TRT | -30 min nach | 48 h (progressiv | ve Motilität) |
|-----------------|--------------|------------------|---------------|
|-----------------|--------------|------------------|---------------|

| Vergleich/Test                                            | Gruppenvergleich | N  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon nach<br>Bonferroni-Holm-<br>Adjustierung |
|-----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Vergleich der beiden unbehandelten                | K 17°C - K 6°C   | 16 | 0,00              | 8,50              | 0,000                                           | _                        |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander         | 16:1 - K 6°C     | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
|                                                           | 18:1 - K 6°C     | 16 | 9,50              | 8,17              | 0,130                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten            | 20:5 - K 6°C     | 16 | 7,29              | 9,44              | 0,404                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                   | 18:2 - K 6°C     | 16 | 1,50              | 9,50              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                          | 18:3 - K 6°C     | 16 | 2,67              | 9,85              | 0,001                                           |                          |                                                               |
|                                                           | 16:1 - K 17⁰C    | 16 | 9,29              | 3,00              | 0,000                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten            | 18:1 - K 17ºC    | 16 | 9,00              | 1,00              | 0,000                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                  | 20:5 - K 17°C    | 16 | 8,50              | 0,00              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                          | 18:2 - K 17ºC    | 16 | 9,00              | 1,00              | 0,000                                           |                          |                                                               |
|                                                           | 18:3 - K 17ºC    | 16 | 9,50              | 1,50              | 0,000                                           |                          |                                                               |
|                                                           | 18:1 - 16:1      | 16 | 10,17             | 3,50              | 0,003                                           |                          | 0,023                                                         |
|                                                           | 20:5 - 16:1      | 16 | 8,50              | 0,00              | 0,000                                           |                          | 0,000                                                         |
| <b>T</b> (04.)( 1.1.1. ( 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1    | 18:2 - 16:1      | 16 | 8,54              | 8,33              | 0,025                                           |                          | 0,150                                                         |
| lest <sup>°</sup> 4: Vergleich der unterschiedlichen      | 18:3 - 16:1      | 16 | 10,09             | 5,00              | 0,025                                           |                          | 0,148                                                         |
| Supplementierungsvanamen untereinander                    | 20:5 - 18:1      | 16 | 7,83              | 10,50             | 0,193                                           | 0.000                    | 0,578                                                         |
| Test°5: wenn im Test 4 n < 0.05 festgestellt wurde        | 18:2 - 18:1      | 16 | 8,40              | 8,55              | 0,193                                           | 0,000                    | 0,578                                                         |
| dann wurde <i>a posteriori</i> Post-Hoc-Test durchgeführt | 18:3 - 18:1      | 16 | 10,25             | 7,92              | 0,175                                           |                          | 0,701                                                         |
|                                                           | 18:2 - 20:5      | 16 | 5,50              | 8,93              | 0,002                                           |                          | 0,013                                                         |
|                                                           | 18:3 - 20:5      | 16 | 5,00              | 9,00              | 0,001                                           |                          | 0,012                                                         |
|                                                           | 18:3 - 18:2      | 16 | 10,29             | 7,11              | 0,860                                           |                          | 0,860                                                         |

| Tabelle A3 | . TRT-300 | min nach 48 | h | (Gesamtmotilität) | ) |
|------------|-----------|-------------|---|-------------------|---|
|------------|-----------|-------------|---|-------------------|---|

| Vergleich/Test                                            | Gruppenvergleich | N  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon nach<br>Bonferroni-Holm-<br>Adjustierung |
|-----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Veraleich der beiden unbehandelten                | K 17ºC - K 6ºC   | 16 | 1,00              | 9,00              | 0,000                                           | _                        |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander         | 16:1 - K 6°C     | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
|                                                           | 18:1 - K 6°C     | 16 | 2,00              | 8,93              | 0,000                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten            | 20:5 - K 6°C     | 16 | 3,50              | 9,21              | 0,001                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                   | 18:2 - K 6°C     | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                          | 18:3 - K 6°C     | 16 | 2,50              | 9,36              | 0,000                                           |                          |                                                               |
|                                                           | 16:1 - K 17⁰C    | 16 | 9,57              | 7,67              | 0,980                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten            | 18:1 - K 17ºC    | 16 | 8,56              | 8,43              | 0,669                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                  | 20:5 - K 17°C    | 16 | 9,70              | 6,50              | 0,144                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                          | 18:2 - K 17ºC    | 16 | 7,50              | 9,50              | 0,706                                           |                          |                                                               |
|                                                           | 18:3 - K 17ºC    | 16 | 7,80              | 9,67              | 0,632                                           |                          |                                                               |
|                                                           | 18:1 - 16:1      | 16 | 8,56              | 8,43              | 0,669                                           |                          | 1,000                                                         |
|                                                           | 20:5 - 16:1      | 16 | 9,27              | 4,50              | 0,015                                           |                          | 0,136                                                         |
|                                                           | 18:2 - 16:1      | 16 | 7,00              | 9,67              | 0,348                                           |                          | 1,000                                                         |
| l est <sup>-</sup> 4: Vergleich der unterschiedlichen     | 18:3 - 16:1      | 16 | 7,50              | 10,17             | 0,744                                           |                          | 1,000                                                         |
| Supplementierungsvanamen untereinander                    | 20:5 - 18:1      | 16 | 8,83              | 7,50              | 0,051                                           | 0.027*                   | 0,355                                                         |
| Test°5: wenn im Test 4 n < 0.05 festgestellt wurde        | 18:2 - 18:1      | 16 | 7,17              | 9,30              | 0,211                                           | 0,027                    | 1,000                                                         |
| dann wurde <i>a posteriori</i> Post-Hoc-Test durchgeführt | 18:3 - 18:1      | 16 | 8,38              | 8,63              | 0,980                                           |                          | 0,980                                                         |
|                                                           | 18:2 - 20:5      | 16 | 4,00              | 9,54              | 0,002                                           |                          | 0,021                                                         |
|                                                           | 18:3 - 20:5      | 16 | 7,25              | 8,92              | 0,044                                           |                          | 0,354                                                         |
|                                                           | 18:3 - 18:2      | 16 | 9,09              | 7,20              | 0,105                                           |                          | 0,628                                                         |

\* Monte-Carlo-Simulation

| Tabelle A4. | . TRT-300 min | nach 48 h | (progressive | Motilität) |
|-------------|---------------|-----------|--------------|------------|
|-------------|---------------|-----------|--------------|------------|

| Vergleich/Test                                            | Gruppenvergleich | N  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon nach<br>Bonferroni-Holm-<br>Adjustierung |
|-----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Vergleich der beiden unbehandelten                | K 17°C - K 6°C   | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander         | 16:1 - K 6°C     | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
|                                                           | 18:1 - K 6ºC     | 16 | 1,50              | 9,50              | 0,000                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten            | 20:5 - K 6°C     | 16 | 3,50              | 9,21              | 0,001                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                   | 18:2 - K 6°C     | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                          | 18:3 - K 6°C     | 16 | 2,00              | 9,43              | 0,000                                           |                          |                                                               |
|                                                           | 16:1 - K 17ºC    | 16 | 8,25              | 8,75              | 0,940                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten            | 18:1 - K 17ºC    | 16 | 9,00              | 7,86              | 0,528                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                  | 20:5 - K 17°C    | 16 | 8,91              | 7,60              | 0,130                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                          | 18:2 - K 17ºC    | 16 | 8,43              | 8,56              | 0,669                                           |                          |                                                               |
|                                                           | 18:3 - K 17ºC    | 16 | 8,22              | 8,86              | 0,782                                           |                          |                                                               |
|                                                           | 18:1 - 16:1      | 16 | 9,22              | 7,57              | 0,464                                           |                          |                                                               |
|                                                           | 20:5 - 16:1      | 16 | 10,64             | 3,80              | 0,009                                           |                          |                                                               |
| <b>T</b> (04.)( 1.1.1.1. ( 1.1.1.1.1.1.1.1.1.1.1.1.1.1    | 18:2 - 16:1      | 16 | 8,17              | 8,70              | 0,348                                           |                          |                                                               |
| l est <sup>°</sup> 4: Vergleich der unterschiedlichen     | 18:3 - 16:1      | 16 | 9,11              | 7,71              | 0,495                                           |                          |                                                               |
| Supplementierungsvanamen untereinander                    | 20:5 - 18:1      | 16 | 9,64              | 6,00              | 0,051                                           | 0.060                    | Post-Hoc dürfen nicht                                         |
| Test°5: wenn im Test 4 n < 0.05 festgestellt wurde        | 18:2 - 18:1      | 16 | 6,00              | 10,00             | 0,105                                           | 0,000                    | interpretiert werden                                          |
| dann wurde <i>a posteriori</i> Post-Hoc-Test durchgeführt | 18:3 - 18:1      | 16 | 7,63              | 9,38              | 0,744                                           |                          |                                                               |
|                                                           | 18:2 - 20:5      | 16 | 5,33              | 9,23              | 0,005                                           |                          |                                                               |
|                                                           | 18:3 - 20:5      | 16 | 7,50              | 8,83              | 0,051                                           |                          |                                                               |
|                                                           | 18:3 - 18:2      | 16 | 9,70              | 6,50              | 0,144                                           |                          |                                                               |

| Tabelle A5. TRT-30 min nach 168 h | (Gesamtmotilität) |
|-----------------------------------|-------------------|
|-----------------------------------|-------------------|

| Vergleich/Test                                                                | Gruppenvergleich | N  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon nach<br>Bonferroni-Holm-<br>Adjustierung |
|-------------------------------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Veraleich der beiden unbehandelten                                    | K 17°C - K 6°C   | 13 | 0,00              | 7,00              | 0,000                                           | _                        |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander                             | 16:1 - K 6°C     | 13 | 1,00              | 7,50              | 0,000                                           |                          |                                                               |
|                                                                               | 18:1 - K 6°C     | 13 | 8,33              | 5,86              | 0,787                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten                                | 20:5 - K 6°C     | 13 | 5,80              | 7,75              | 0,273                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                                       | 18:2 - K 6°C     | 13 | 5,25              | 7,78              | 0,094                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                                              | 18:3 - K 6°C     | 13 | 4,50              | 7,45              | 0,008                                           | _                        |                                                               |
|                                                                               | 16:1 - K 17ºC    | 13 | 7,50              | 1,00              | 0,000                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten                                | 18:1 - K 17ºC    | 13 | 7,00              | 0,00              | 0,000                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                                      | 20:5 - K 17ºC    | 13 | 7,50              | 1,00              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                                              | 18:2 - K 17ºC    | 13 | 7,50              | 1,00              | 0,000                                           |                          |                                                               |
|                                                                               | 18:3 - K 17ºC    | 13 | 8,00              | 1,50              | 0,001                                           |                          |                                                               |
|                                                                               | 18:1 - 16:1      | 13 | 7,50              | 1,00              | 0,000                                           |                          | 0,005                                                         |
|                                                                               | 20:5 - 16:1      | 13 | 7,17              | 5,00              | 0,002                                           |                          | 0,022                                                         |
| Toot <sup>o</sup> 4. Maralaiah dar untarachiadliahan                          | 18:2 - 16:1      | 13 | 7,82              | 2,50              | 0,002                                           |                          | 0,022                                                         |
| Supplementiorungsvarianten unterschiedlichen                                  | 18:3 - 16:1      | 13 | 8,50              | 2,00              | 0,003                                           |                          | 0,024                                                         |
| Supplementierungsvanamen untereinander                                        | 20:5 - 18:1      | 13 | 6,40              | 7,38              | 0,376                                           | 0 000                    | 0,751                                                         |
| Test <sup>o</sup> 5 <sup>,</sup> wenn im Test 4 $p < 0.05$ festgestellt wurde | 18:2 - 18:1      | 13 | 5,33              | 7,50              | 0,040                                           | 0,000                    | 0,199                                                         |
| dann wurde <i>a posteriori</i> Post-Hoc-Test durchgeführt                     | 18:3 - 18:1      | 13 | 7,00              | 7,00              | 0,005                                           |                          | 0,028                                                         |
|                                                                               | 18:2 - 20:5      | 13 | 9,00              | 6,40              | 0,216                                           |                          | 0,649                                                         |
|                                                                               | 18:3 - 20:5      | 13 | 7,00              | 7,00              | 0,094                                           |                          | 0,377                                                         |
|                                                                               | 18:3 - 18:2      | 13 | 8,38              | 6,39              | 0,424                                           |                          | 0,424                                                         |

| Tabelle A6 | 5. TRT-30 min nach | 168 h | (progressive | Motilität) |
|------------|--------------------|-------|--------------|------------|
|------------|--------------------|-------|--------------|------------|

| Vergleich/Test                                           | Gruppenvergleich | N  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon nach<br>Bonferroni-Holm-<br>Adjustierung |
|----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Vergleich der beiden unbehandelten               | K 17°C - K 6°C   | 13 | 0,00              | 7,00              | 0,000                                           | _                        |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander        | 16:1 - K 6°C     | 13 | 0,00              | 7,00              | 0,000                                           |                          |                                                               |
|                                                          | 18:1 - K 6°C     | 13 | 8,00              | 6,14              | 0,893                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten           | 20:5 - K 6°C     | 13 | 7,00              | 7,00              | 0,497                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                  | 18:2 - K 6°C     | 13 | 5,50              | 7,67              | 0,110                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:3 - K 6°C     | 13 | 4,00              | 7,55              | 0,006                                           | _                        |                                                               |
|                                                          | 16:1 - K 17°C    | 13 | 7,00              | 0,00              | 0,000                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten           | 18:1 - K 17ºC    | 13 | 7,00              | 0,00              | 0,000                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                 | 20:5 - K 17°C    | 13 | 7,50              | 1,00              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:2 - K 17ºC    | 13 | 7,50              | 1,00              | 0,000                                           |                          |                                                               |
|                                                          | 18:3 - K 17ºC    | 13 | 7,50              | 1,00              | 0,000                                           |                          |                                                               |
|                                                          | 18:1 - 16:1      | 13 | 7,50              | 1,00              | 0,000                                           |                          | 0,005                                                         |
|                                                          | 20:5 - 16:1      | 13 | 7,00              | 7,00              | 0,005                                           |                          | 0,037                                                         |
| Test°4: Vergleich der unterschiedlichen                  | 18:2 - 16:1      | 13 | 7,64              | 3,50              | 0,005                                           |                          | 0,037                                                         |
| Supplementierungsvarianten untereinander                 | 18:3 - 16:1      | 13 | 7,70              | 4,67              | 0,027                                           |                          | 0,160                                                         |
|                                                          | 20:5 - 18:1      | 13 | 6,00              | 7,86              | 0,542                                           | 0.000                    | 0,542                                                         |
| Test°5: wenn im Test 4 p $\leq$ 0,05 festgestellt wurde, | 18:2 - 18:1      | 13 | 5,33              | 7,50              | 0,040                                           | 0,000                    | 0,199                                                         |
| dann wurde a posteriori Post-Hoc-Test                    | 18:3 - 18:1      | 13 | 3,00              | 7,73              | 0,003                                           |                          | 0,031                                                         |
| durchgeführt                                             | 18:2 - 20:5      | 13 | 6,40              | 7,38              | 0,376                                           |                          | 0,751                                                         |
|                                                          | 18:3 - 20:5      | 13 | 6,33              | 7,20              | 0,068                                           |                          | 0,272                                                         |
|                                                          | 18:3 - 18:2      | 13 | 7,75              | 6,67              | 0,340                                           |                          | 1,000                                                         |

| Tabelle A7. TRT-300 min nach 168 h | (Gesamtmotilität) |
|------------------------------------|-------------------|
|------------------------------------|-------------------|

| Vergleich/Test                                           | Gruppenvergleich | Ν  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon nach<br>Bonferroni-Holm-<br>Adjustierung |
|----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Vergleich der beiden unbehandelten               | K 17°C - K 6°C   | 13 | 13,00             | 6,50              | 0,021                                           |                          |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander        | 16:1 - K 6ºC     | 13 | 13,00             | 6,50              | 0,021                                           |                          |                                                               |
|                                                          | 18:1 - K 6ºC     | 13 | 6,33              | 7,20              | 0,068                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten           | 20:5 - K 6°C     | 13 | 6,00              | 7,30              | 0,057                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                  | 18:2 - K 6°C     | 13 | 13,00             | 6,50              | 0,021                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:3 - K 6°C     | 13 | 4,60              | 8,50              | 0,127                                           | _                        |                                                               |
|                                                          | 16:1 - K 17ºC    | 13 | 8,38              | 4,80              | 0,146                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten           | 18:1 - K 17ºC    | 13 | 8,22              | 4,25              | 0,048                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                 | 20:5 - K 17°C    | 13 | 8,20              | 3,00              | 0,008                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:2 - K 17ºC    | 13 | 8,14              | 5,67              | 0,455                                           |                          |                                                               |
|                                                          | 18:3 - K 17ºC    | 13 | 7,44              | 6,00              | 0,146                                           |                          |                                                               |
|                                                          | 18:1 - 16:1      | 13 | 7,75              | 5,80              | 0,273                                           |                          |                                                               |
|                                                          | 20:5 - 16:1      | 13 | 9,25              | 3,40              | 0,048                                           |                          |                                                               |
| Test°4: Veraleich der unterschiedlichen                  | 18:2 - 16:1      | 13 | 6,83              | 7,14              | 0,787                                           |                          |                                                               |
| Supplementierungsvarianten untereinander                 | 18:3 - 16:1      | 13 | 7,13              | 6,80              | 0,455                                           |                          |                                                               |
|                                                          | 20:5 - 18:1      | 13 | 7,25              | 6,60              | 0,414                                           | 0.078                    | Post-Hoc dürfen nicht                                         |
| Test°5: wenn im Test 4 p $\leq$ 0,05 festgestellt wurde, | 18:2 - 18:1      | 13 | 7,00              | 7,00              | 0,094                                           | 0,070                    | interpretiert werden                                          |
| dann wurde a posteriori Post-Hoc-Test                    | 18:3 - 18:1      | 13 | 8,75              | 6,22              | 0,497                                           |                          |                                                               |
| durchgeführt                                             | 18:2 - 20:5      | 13 | 8,00              | 6,82              | 0,038                                           |                          |                                                               |
|                                                          | 18:3 - 20:5      | 13 | 8,33              | 6,60              | 0,168                                           |                          |                                                               |
|                                                          | 18:3 - 18:2      | 13 | 8,29              | 5,50              | 0,414                                           |                          |                                                               |

| Tabelle A8 | . TRT-300 m | in nach 168 | 3 h (prog | gressive Motilit | ät) |
|------------|-------------|-------------|-----------|------------------|-----|
|------------|-------------|-------------|-----------|------------------|-----|

| Vergleich/Test                                           | Gruppenvergleich | N  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon nach<br>Bonferroni-Holm-<br>Adjustierung |
|----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Vergleich der beiden unbehandelten               | K 17°C - K 6°C   | 13 | 13,00             | 6,50              | 0,021                                           | _                        |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander        | 16:1 - K 6ºC     | 13 | 13,00             | 6,50              | 0,021                                           |                          |                                                               |
| •                                                        | 18:1 - K 6ºC     | 13 | 4,75              | 8,00              | 0,068                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten           | 20:5 - K 6°C     | 13 | 6,33              | 7,20              | 0,068                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                  | 18:2 - K 6°C     | 13 | 13,00             | 6,50              | 0,021                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:3 - K 6°C     | 13 | 5,25              | 7,78              | 0,094                                           | _                        |                                                               |
|                                                          | 16:1 - K 17°C    | 13 | 7,39              | 6,13              | 0,152                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten           | 18:1 - K 17ºC    | 13 | 8,11              | 4,50              | 0,057                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                 | 20:5 - K 17°C    | 13 | 8,10              | 3,33              | 0,010                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:2 - K 17ºC    | 13 | 7,57              | 6,33              | 0,635                                           |                          |                                                               |
|                                                          | 18:3 - K 17°C    | 13 | 7,33              | 6,25              | 0,168                                           |                          |                                                               |
|                                                          | 18:1 - 16:1      | 13 | 8,13              | 5,20              | 0,191                                           |                          |                                                               |
|                                                          | 20:5 - 16:1      | 13 | 8,11              | 4,50              | 0,057                                           |                          |                                                               |
| Test°4: Vergleich der unterschiedlichen                  | 18:2 - 16:1      | 13 | 7,20              | 6,88              | 0,542                                           |                          |                                                               |
| Supplementierungsvarianten untereinander                 | 18:3 - 16:1      | 13 | 7,57              | 6,33              | 0,635                                           |                          |                                                               |
|                                                          | 20:5 - 18:1      | 13 | 6,63              | 7,60              | 0,635                                           | 0.082                    | Post-Hoc dürfen nicht                                         |
| Test°5: wenn im Test 4 p $\leq$ 0,05 festgestellt wurde, | 18:2 - 18:1      | 13 | 4,75              | 8,00              | 0,068                                           | 0,002                    | interpretiert werden                                          |
| dann wurde <i>a posteriori</i> Post-Hoc-Test             | 18:3 - 18:1      | 13 | 6,00              | 7,63              | 0,305                                           |                          |                                                               |
| durchgeführt                                             | 18:2 - 20:5      | 13 | 7,50              | 6,91              | 0,033                                           |                          |                                                               |
|                                                          | 18:3 - 20:5      | 13 | 6,67              | 7,10              | 0,080                                           |                          |                                                               |
|                                                          | 18:3 - 18:2      | 13 | 8,29              | 5,50              | 0,414                                           |                          |                                                               |

## ANHANG

## Tabelle A9. Vitalitätstest Rh123 / PI nach 72h

| Vergleich/Test                                           | Gruppenvergleich | Ν  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon<br>nach Bonferroni-Holm-<br>Adjustierung |
|----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Vergleich der beiden unbehandelten               | K 17°C - K 6°C   | 16 | 0,00              | 8,50              | 0,000                                           | _                        |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander        | 16:1 - K 6°C     | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
|                                                          | 18:1 - K 6°C     | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten           | 20:5 - K 6°C     | 16 | 8,25              | 8,58              | 0,072                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                  | 18:2 - K 6°C     | 16 | 0,00              | 8,50              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:3 - K 6°C     | 16 | 4,00              | 9,14              | 0,001                                           | _                        |                                                               |
|                                                          | 16:1 - K 17°C    | 16 | 8,80              | 4,00              | 0,000                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten           | 18:1 - K 17°C    | 16 | 9,83              | 4,50              | 0,008                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                 | 20:5 - K 17°C    | 16 | 8,50              | 0,00              | 0,000                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:2 - K 17°C    | 16 | 8,87              | 3,00              | 0,000                                           |                          |                                                               |
|                                                          | 18:3 - K 17°C    | 16 | 9,14              | 4,00              | 0,001                                           |                          |                                                               |
|                                                          | 18:1 - 16:1      | 16 | 9,80              | 7,91              | 0,348                                           |                          | 0,697                                                         |
|                                                          | 20:5 - 16:1      | 16 | 9,00              | 1,00              | 0,000                                           |                          | 0,001                                                         |
| Test°4: Vergleich der unterschiedlichen                  | 18:2 - 16:1      | 16 | 8,46              | 8,67              | 0,028                                           |                          | 0,140                                                         |
| Supplementierungsvarianten untereinander                 | 18:3 - 16:1      | 16 | 9,50              | 6,83              | 0,175                                           |                          | 0,526                                                         |
|                                                          | 20:5 - 18:1      | 16 | 9,00              | 1,00              | 0,000                                           | 0 000                    | 0,001                                                         |
| Test°5: wenn im Test 4 p $\leq$ 0,05 festgestellt wurde, | 18:2 - 18:1      | 16 | 8,64              | 7,50              | 0,004                                           | 0,000                    | 0,025                                                         |
| dann wurde <i>a posteriori</i> Post-Hoc-Test             | 18:3 - 18:1      | 16 | 10,20             | 5,67              | 0,083                                           |                          | 0,333                                                         |
| durchgeführt                                             | 18:2 - 20:5      | 16 | 0,00              | 8,50              | 0,000                                           |                          | 0,000                                                         |
|                                                          | 18:3 - 20:5      | 16 | 3,50              | 9,21              | 0,001                                           |                          | 0,004                                                         |
|                                                          | 18:3 - 18:2      | 16 | 8,86              | 8,22              | 0,782                                           |                          | 0,782                                                         |

## ANHANG

# Tabelle A10. Akrosomaler Defekte nach 24 h

| Vergleich/Test                                           | Gruppenvergleich | N  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon<br>nach Bonferroni-Holm-<br>Adjustierung |
|----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|
| Test°1: Vergleich der beiden unbehandelten               | K 17°C - K 6°C   | 16 | 8,00              | 0,00              | 0,000                                           | _                        |                                                               |
| Kontrollproben bei 6 C und bei 17°C untereinander        | 16:1 - K 6°C     | 16 | 7,96              | 12,25             | 0,022                                           |                          |                                                               |
|                                                          | 18:1 - K 6°C     | 16 | 7,72              | 8,42              | 0,609                                           |                          |                                                               |
| Test°3: paarweiser Vergleich der unbehandelten           | 20:5 - K 6°C     | 16 | 8,31              | 7,64              | 0,731                                           |                          |                                                               |
| Kontrollproben (6°C) mit den jeweiligen                  | 18:2 - K 6ºC     | 16 | 7,69              | 7,25              | 0,593                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:3 - K 6ºC     | 16 | 8,25              | 5,00              | 0,158                                           | _                        |                                                               |
|                                                          | 16:1 - K 17ºC    | 16 | 6,42              | 9,06              | 0,230                                           |                          |                                                               |
| Test°2: paarweiser Vergleich der unbehandelten           | 18:1 - K 17ºC    | 16 | 6,67              | 8,92              | 0,010                                           |                          |                                                               |
| Kontrollproben (17°C) mit den jeweiligen                 | 20:5 - K 17°C    | 16 | 6,33              | 8,42              | 0,018                                           |                          |                                                               |
| Supplementierungsvarianten (6°C)                         | 18:2 - K 17ºC    | 16 | 4,00              | 8,45              | 0,008                                           |                          |                                                               |
|                                                          | 18:3 - K 17ºC    | 16 | 5,83              | 8,54              | 0,012                                           |                          |                                                               |
|                                                          | 18:1 - 16:1      | 16 | 7,20              | 8,40              | 0,184                                           |                          |                                                               |
|                                                          | 20:5 - 16:1      | 16 | 6,90              | 9,23              | 0,082                                           |                          |                                                               |
| Test°4: Vergleich der unterschiedlichen                  | 18:2 - 16:1      | 16 | 9,75              | 8,08              | 0,138                                           |                          |                                                               |
| Supplementierungsvarianten untereinander                 | 18:3 - 16:1      | 16 | 7,50              | 9,10              | 0,246                                           |                          |                                                               |
|                                                          | 20:5 - 18:1      | 16 | 6,86              | 8,14              | 0,793                                           | 0.306*                   | Post-Hoc dürfen nicht                                         |
| Test°5: wenn im Test 4 p $\leq$ 0,05 festgestellt wurde, | 18:2 - 18:1      | 16 | 8,86              | 8,22              | 0,770                                           | 0,000                    | interpretiert werden                                          |
| dann wurde <i>a posteriori</i> Post-Hoc-Test             | 18:3 - 18:1      | 16 | 8,40              | 8,67              | 0,424                                           |                          |                                                               |
| durchgeführt                                             | 18:2 - 20:5      | 16 | 7,21              | 7,79              | 0,911                                           |                          |                                                               |
|                                                          | 18:3 - 20:5      | 16 | 8,64              | 6,36              | 0,637                                           |                          |                                                               |
|                                                          | 18:3 - 18:2      | 16 | 9,61              | 7,07              | 0,353                                           |                          |                                                               |

Als **Nullhypothese** wurde angenommen, dass die Proben sich in ihrem untersuchten physiologischen Status nicht unterscheiden. Als **Alternativhypothese** wurde definiert, dass die Proben Unterschiede in ihrem physiologischen Status aufweisen. Es wurde festgelegt, der Test liefert nur dann signifikante Unterschiede, wenn  $p \le 0.05$ . Für hochsignifikante Unterschiede wurde  $p \le 0.001$  festgelegt. Bei einem Signifikanzwert von  $p \le 0.05$  wurde die Nullhypothese verworfen und die Alternativhypothese galt als statistisch gesichert.

\* Monte-Carlo-Simulation

## ANHANG

## Tabelle A11. Akrosomaler Defekte nach 72 h

| Vergleich/Test                                           | Gruppenvergleich | Ν  | negative<br>Ränge | positive<br>Ränge | Signifikanz<br>Wilcoxon<br>ohne<br>Adjustierung | Signifikanz<br>Friedmann | Signifikanz Wilcoxon<br>nach Bonferroni-Holm-<br>Adjustierung |  |
|----------------------------------------------------------|------------------|----|-------------------|-------------------|-------------------------------------------------|--------------------------|---------------------------------------------------------------|--|
| Test°1: Vergleich der beiden unbehandelten               | K 17°C - K 6°C   | 16 | 8,54              | 8,25              | 0,005                                           | _                        |                                                               |  |
| Kontrollproben bei 6 C und bei 17°C untereinander        | 16:1 - K 6°C     | 16 | 8,75              | 5,00              | 0,008                                           |                          |                                                               |  |
|                                                          | 18:1 - K 6°C     | 16 | 8,95              | 7,50              | 0,119                                           |                          |                                                               |  |
| Test°3: paarweiser Vergleich der unbehandelten           | 20:5 - K 6°C     | 16 | 7,89              | 8,17              | 0,552                                           |                          |                                                               |  |
| Kontrollproben (6°C) mit den jeweiligen                  | 18:2 - K 6°C     | 16 | 8,10              | 9,17              | 0,519                                           |                          |                                                               |  |
| Supplementierungsvarianten (6°C)                         | 18:3 - K 6°C     | 16 | 7,95              | 6,38              | 0,093                                           | _                        |                                                               |  |
|                                                          | 16:1 - K 17°C    | 16 | 8,50              | 7,23              | 0,094                                           |                          |                                                               |  |
| Test°2: paarweiser Vergleich der unbehandelten           | 18:1 - K 17°C    | 16 | 5,88              | 8,77              | 0,037                                           |                          |                                                               |  |
| Kontrollproben (17°C) mit den jeweiligen                 | 20:5 - K 17°C    | 16 | 7,00              | 8,15              | 0,006                                           |                          |                                                               |  |
| Supplementierungsvarianten (6°C)                         | 18:2 - K 17°C    | 16 | 4,83              | 8,23              | 0,014                                           |                          |                                                               |  |
|                                                          | 18:3 - K 17°C    | 16 | 7,67              | 7,45              | 0,066                                           |                          |                                                               |  |
|                                                          | 18:1 - 16:1      | 16 | 7,63              | 8,14              | 0,096                                           |                          | 0,482                                                         |  |
|                                                          | 20:5 - 16:1      | 16 | 8,25              | 8,54              | 0,005                                           |                          | 0,053                                                         |  |
| Test°4: Vergleich der unterschiedlichen                  | 18:2 - 16:1      | 16 | 8,83              | 8,42              | 0,029                                           |                          | 0,231                                                         |  |
| Supplementierungsvarianten untereinander                 | 18:3 - 16:1      | 16 | 6,40              | 8,11              | 0,209                                           |                          | 0,834                                                         |  |
|                                                          | 20:5 - 18:1      | 16 | 6,33              | 7,20              | 0,065                                           | 0.007*                   | 0,455                                                         |  |
| Test°5: wenn im Test 4 p $\leq$ 0,05 festgestellt wurde, | 18:2 - 18:1      | 16 | 6,58              | 8,19              | 0,433                                           | 0,007                    | 1,000                                                         |  |
| dann wurde <i>a posteriori</i> Post-Hoc-Test             | 18:3 - 18:1      | 16 | 9,70              | 7,15              | 0,532                                           |                          | 1,000                                                         |  |
| durchgeführt                                             | 18:2 - 20:5      | 16 | 9,69              | 7,31              | 0,638                                           |                          | 0,638                                                         |  |
|                                                          | 18:3 - 20:5      | 16 | 10,23             | 4,70              | 0,019                                           |                          | 0,171                                                         |  |
|                                                          | 18:3 - 18:2      | 16 | 9,41              | 6,50              | 0,068                                           |                          | 0,406                                                         |  |

Als **Nullhypothese** wurde angenommen, dass die Proben sich in ihrem untersuchten physiologischen Status nicht unterscheiden. Als **Alternativhypothese** wurde definiert, dass die Proben Unterschiede in ihrem physiologischen Status aufweisen. Es wurde festgelegt, der Test liefert nur dann signifikante Unterschiede, wenn  $p \le 0.05$ . Für hochsignifikante Unterschiede wurde  $p \le 0.001$  festgelegt. Bei einem Signifikanzwert von  $p \le 0.05$  wurde die Nullhypothese verworfen und die Alternativhypothese galt als statistisch gesichert.

\* Monte-Carlo-Simulation

# 8.1.4 Darstellung eines Boxplot-Diagramms



### Abbildung 42: Aufbau eines Boxplot-Diagramms

Die Ergebnisse sind als Boxplots mit dem höchsten  $(x_{max})$  bzw. niedrigsten  $(x_{min})$  gemessenen Wert (Whisker), dem Interquartilbereich zwischen dem 1. und 3. Quartil (Box) und dem Medianwert dargestellt. Die Box verläuft vom oberen 75%-Quartil (Q3) zum unteren 25%-Quartil (Q1). Das mittlere 50%-Quartil (Q2, Median) ist in der Box eingezeichnet. Die Box verläuft zwischen dem oberen (Q3) und dem unteren (Q1) Quartil und entspricht dem Interquartilbereich (IQR). Als Ausreißer werden die Werte, die das Q3 bzw. das Q1 um mehr als das 1,5-fache des IQR über- bzw. unterschreiten, klassifiziert (Quelle: http://wikia.com/wiki/Box-Plot). Der Faktor 1,5 zur Definierung der Ausreißer basiert auf der Annahme einer Normalverteilung der zugrunde liegenden Messwerte. Sie werden mit einem Kreis und der Nummer des entsprechenden Datensatzes gekennzeichnet. Bei dem in der Abbildung beispielshaft dargestellten Ausreißer entspricht die Nummer des Datensatzes dem Individuum 8. Ausführliche Information sind Krummenauer *et al.* (2007) zu entnehmen.

(Nr. des entsprechenden Datensatzes)

Die Klassifikation der Ausreißer ist sowohl von der Verteilung als auch von Streuung der Messwerte Interquartilbereichs abhängig (Chambers et al., 1983; Gather and Pawlitschko, 2006; Kuhnt and Pawlitschko, 2005).

# 8.1.5 Anzahl von zu erhebenden physiologischen Parametern

|    | 48 h   |         | 48 h   |         | 168 h  |         | 168 h  |         | 72 h     | 24 h    | 72 h    |
|----|--------|---------|--------|---------|--------|---------|--------|---------|----------|---------|---------|
| Ν  | TRT-30 | TRT-300 | TRT-30 | TRT-300 | TRT-30 | TRT-300 | TRT-30 | TRT-300 | Rh123/PI | Akrosom | Akrosom |
|    | MOT    | MOT     | PMOT   | PMOT    | MOT    | MOT     | PMOT   | PMOT    |          | defekte | defekte |
| 1  | 1      | 2       | 3      | 4       | 5      | 6       | 7      | 8       | 9        | 10      | 11      |
| 2  | 12     | 13      | 14     | 15      | 16     | 17      | 18     | 19      | 20       | 21      | 22      |
| 3  | 23     | 24      | 25     | 26      | 27     | 28      | 29     | 30      | 31       | 32      | 33      |
| 4  | 34     | 35      | 36     | 37      | 38     | 39      | 40     | 41      | 42       | 43      | 44      |
| 5  | 45     | 46      | 47     | 48      | 49     | 50      | 51     | 52      | 53       | 54      | 55      |
| 6  | 56     | 57      | 58     | 59      | 60     | 61      | 62     | 63      | 64       | 65      | 66      |
| 7  | 67     | 68      | 69     | 70      | 71     | 72      | 73     | 74      | 75       | 76      | 77      |
| 8  | 78     | 79      | 80     | 81      | 82     | 83      | 84     | 85      | 86       | 87      | 88      |
| 9  | 89     | 90      | 91     | 92      | 93     | 94      | 95     | 96      | 97       | 98      | 99      |
| 10 | 100    | 101     | 102    | 103     | 104    | 105     | 106    | 107     | 108      | 109     | 110     |
| 11 | 111    | 112     | 113    | 114     | 115    | 116     | 117    | 118     | 119      | 120     | 121     |
| 12 | 122    | 123     | 124    | 125     | 126    | 127     | 128    | 129     | 130      | 131     | 132     |
| 13 | 133    | 134     | 135    | 136     | 137    | 138     | 139    | 140     | 141      | 142     | 143     |
| 14 | 144    | 145     | 146    | 147     | 148    | 149     | 150    | 151     | 152      | 153     | 154     |
| 15 | 155    | 156     | 157    | 158     | 159    | 160     | 161    | 162     | 163      | 164     | 165     |
| 16 | 166    | 167     | 168    | 169     | 170    | 171     | 172    | 173     | 174      | 175     | 176     |

Tabelle 12: Stichprobengröße, Anzahl der zu erhebenden physiologischen Parametern

N: Stichprobengröße (Anzahl der zu untersuchenden Ejakulaten, fett gedruckt); 24 h, 48 h, 72 h, 168 h: Zeitpunkte der Untersuchung; Untersuchungen der physiologischen Parameter (grau unterlegt): TRT-30-MOT - Erfassung der gesamtmotilen *Spermatozoen* in TRT-30, TRT-300-MOT - Erfassung der progressivmotilen *Spermatozoen* in TRT-30, TRT-300-PMOT - Erfassung der vitalen *Spermatozoen*, Akrosomdefekte: Erfassung der akrosomdefekten *Spermatozoen*.

Anzahl der zu erhebenden physiologischen Parametern beträgt 176 je Inkubationsvariante (16 Individuen × 11 Untersuchungen). Die Untersuchung von zwei Kontrollproben (6°C und 17°C) und zusätzlich fünf Supplementierungsvarianten bei eine Stichprobengröße von N=16 ergibt somit 176 × 7 = 1232 zu ergebenden Datensätze.