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Abstract

Long run neutrality restrictions have been widely used to identify structural

shocks in VAR models. This paper revisits the seminal paper by Blanchard

and Quah (1989), and investigates their identification scheme. We use struc-

tural VAR models with smoothly changing covariances for identification of

shocks. The resulted impulse responses are economically meaningful. For-

mal test results reject the long-run neutrality of demand shocks.
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1 Introduction

In their seminal paper, Blanchard and Quah (1989) propose to identify de-

mand and supply disturbances based on the assumption that the aggregate

demand shocks have no long run effects on output. Long run neutrality re-

strictions have since been widely used to identify structural shocks in VAR

models. Examples include Gali (1999) and Francis and Ramey (2005).

However, the assumption of long-run neutrality of aggregate demand

shocks is not beyond doubt. Blanchard and Quah (1989) themselves raise

concerns that this assumption might not be correct. Through capital accu-

mulation or learning by doing, the demand disturbances can lead to long-

lasting effects on output. Recently, Keating (2013) finds that the aggre-

gate demand shock had long-run effects on output in the pre-World War I

economies.

In order to shed more light on this issue, in this paper we relax the long-

run neutrality assumption on demand shocks, and instead use information

from changes in volatility to identify shocks following a recently developed

method by Lütkepohl and Netšunajev (2014).1 This method is advantageous

to capture the volatility shifts in the data due to the Great Moderation.

Combing the distinct relative variances with the intuition that the demand

shocks push output and unemployment to opposite directions, we achieve

identification of the demand and supply shocks via heteroskedasticity. The

resulted impulse responses are similar to those by Blanchard and Quah

(1989). However, the demand shocks’ effects on output do not die out in the

long run. A formal test further show that the long-run neutrality restriction

is rejected by the data. These results suggest that supply shocks are not the

only sources of permanent shifts in output.

1 Other literature that use changes in volatility for identification include Rigobon

(2003), Lanne and Lütkepohl (2008) and Bacchiocchi and Fanelli (2015).
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2 Identification Strategies

2.1 Standard Structural Identification

In this subsection, we first show how shocks in a structural VAR model are

commonly identified. Consider the baseline VAR of order p (VAR(p)) of the

form:

yt = ν +A1yt−1 + · · · +Apyt−p + ut, (1)

where yt = (y1t, . . . , yKt)
′ is a vector of observable variables, the Ai are

(K ×K) coefficient matrices, ν is a (K × 1) constant term and the ut are

K-dimensional serially uncorrelated reduced form residuals with mean zero

and covariance matrix Σu. Suppose we denote the structural residuals by

εt. They can be obtained from the reduced form residuals ut by a linear

transformation:

ut = Bεt or εt = B−1ut. (2)

The matrix B contains the instantaneous effects of the structural shocks on

the observed variables.

To proceed with impulse response analysis or forecast error variance

decomposition, one has to first identify the shocks based on certain economic

assumptions. The standard approach is to impose restrictions on B (or on

objects incorporating B) to pin down the economic shocks of interest. These

restrictions may be zero restrictions indicating that a specific shock does not

have an instantaneous effect on a certain variable, or a restriction on the

long-run effects of a structural shock. In the setup by Blanchard and Quah

(1989), they are imposed on the matrix of long-run effects of structural

shocks that is given by:

Ξ∞ = (IK −A1 − · · · −Ap)
−1B,

assuming that the inverse exists.

2.2 Identification via Smoothly Changing Covariances

This paper follows the recently developed approach by Lütkepohl and Netšunajev

(2014) for identification of shocks. Instead of relying on the long run restric-
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tion by Blanchard and Quah (1989), we suppose that ut is a heteroskedastic

error term with smoothly changing covariances:

E(utu
′
t) = Ωt = (1 −G(γ, c, st))Σ1 +G(γ, c, st)Σ2 (3)

where Σ1 and Σ2 are distinct covariance matrices and G(γ, c, st) is a tran-

sition function. The function depends on a parameter (vector) γ and c as

well as a transition variable st. We model the transition in variances using

a logistic transition function proposed by Maddala (1977) with time being

the transition variable, i.e., st = t, so that we can capture endogenously the

volatility changes in the data known as the Great Moderation.

G(γ, c, t) = (1 + exp[− exp(γ)(t− c)])−1 (4)

with exp(γ) > 0 for all values of γ.

The transition of the volatility from the covariance matrix Σ1 to Σ2 can

be used for identification purposes. Consider the decomposition

Σ1 = BB′ and Σ2 = BΛB′, (5)

where Λ =diag(λ1, . . . , λK) is a diagonal matrix with positive diagonal ele-

ments. Apart from changes in sign of the columns of B this decomposition

is unique for a given ordering of the λi if these quantities are all distinct (see

Lütkepohl (1996, Section 6.1.2 (10)) or Theorem 7.6.4 in Horn and Johnson

(2013)). The diagonal elements of the Λ matrix can thus be interpreted

as variances of structural shocks in the final regime relative to the initial

regime. We refer to the smooth transition structural VAR model through

the acronym ST-SVAR(p) with p defining number of lags.

If the uniqueness conditions for B are satisfied, any restrictions imposed

on B or Ξ∞ in a conventional SVAR framework become over-identifying

and can be tested against the data. Various studies use likelihood ratio

tests for this purpose. For that reason the model shown here is suitable

to test formally the doubts on the long run neutrality of demand shocks

expressed by Blanchard and Quah (1989). The fit of the model to the data

will be discussed in the next section.
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3 Empirical Analysis of Demand and Supply Shocks

To analyze supply and demand shocks, we follow Blanchard and Quah

(1989) and consider the following two variables: yt = (∆GNPt, Ut)
′. Where

∆GNPt is the first differences in log GNP, and Ut is the level of unem-

ployment rate. Seasonally adjusted data are downloaded from the Federal

Reserve Bank of Saint Louis. The sample period covers from 1970Q1 to

2007 Q4.

3.1 Estimates of the ST-SVAR Model

Table 1: Comparison of models for yt = (GNPt, Ut)
′

Model logLT AIC SC

VAR(2) -190.609 407.219 446.357

ST-SVAR(2) -155.280 346.561 400.752

Notes: LT – likelihood function, AIC = −2 logLT + 2×no of free parameters, SC =

−2 logLT + log T×no of free parameters.

The estimation of the ST-SVAR model is performed with the algorithm

developed by Lütkepohl and Netšunajev (2014). We perform a grid search

over parameters c and γ, refining the grid in the neighborhood of the opti-

mum. Table 1 compares some summary statistics of the ST-SVAR(2) model

with those of the VAR(2) model.2 Both the Akaike and Schwarz information

criteria favor the choice of the ST-SVAR model.

Figure 1 shows the estimated transition function from the ST-SVAR

model. The estimated transition takes place in 1983Q1, which fits the timing

of the Great Moderation. Figure 2 shows the standardized residuals of the

ST-SVAR(2) model. They seem to be much more homogeneous compared

with those from the VAR(2) model shown in Figure 3. Bai and Perron

(2003) test further shows no breaks in the variance. The ST-SVAR model

seems to adequately fit the data.

2The lag length is chosen according to the Akaike information criteria.
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Figure 1: Estimated transition function of the ST-SVAR model
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Figure 2: Standardized residuals of the ST-SVAR(2) model
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Figure 3: Standardized residuals of the VAR(2) model.
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For identification of shocks, we need to check some estimated parameters

of the ST-SVAR model. Table 2 presents the estimated relative variances.
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They are all below one, indicating that a change to the low volatility state

occurs. The estimated variances look quite different, and the standard errors

of the estimates are relatively low. The variances are about two standard

errors apart from each other. Thus the data is informative on the two shocks,

and they can be identified by the means of their changing variances.

Table 2: Estimates of relative variances of the unrestricted ST-SVAR(2)

model

parameter estimate std.dev.

λ1 0.142 0.039

λ2 0.450 0.152

3.2 Impulse Responses and the Test on the Long-run Re-

striction

Figure 4 shows the impulse responses of the higher volatility state that are

resulted from the identification via changes in volatility. We label the first

shock as the aggregate demand shock because its effects on output and

unemployment go in the opposite directions, which is a stylized fact. In

contrast, the responses of output and unemployment are both positive after

an aggregate supply shock. The identified demand shocks have a hump-

shaped impact on both output and unemployment. After a positive supply

shock, the output increases steadily for around 5 years and then stays at

a plateau level. The response of the unemployment is initially positive but

declines to zero over time. In general, our impulse responses are in line with

those of Blanchard and Quah (1989), except that the impact of the demand

shock on output seems not to decay to zero over time.

Since our impulse response analysis shows evidence against the long run

restriction proposed by Blanchard and Quah (1989), we further test this

restriction statistically. We estimate the ST-SVAR model with the identi-

fying restriction imposed on the matrix of long run effects Ξ∞, making it

lower triangular. We next perform the likelihood ratio test of the restric-
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Figure 4: Impulse responses of the higher volatility state
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Notes: This graph shows the impulse responses of the higher volatility state obtained

from the unrestricted ST-SVAR model. Solid lines - point estimates, dashed lines -

68% confidence bands based on 1000 bootstrap replications.

tion, obtaining the test statistic of 5.389 and the p-value of 0.020. This is

strong evidence against the long run neutrality assumption of the demand

shocks’ effects on output. If the demand shocks are not long-run neutral,

permanent and transitory shocks identified à la Blanchard and Quah (1989)

are actually mixtures of different structural shocks.

4 Conclusions

This paper revisits the structural VAR model proposed in the seminal paper

by Blanchard and Quah (1989). Using a new identification method following

Lütkepohl and Netšunajev (2014), we are able to identify shocks without re-

lying on the long run neutrality assumption of demand shocks. Our impulse

response are economically interpretable. The estimated long run effects of

the demand shocks on output do not die out over time. Formal test results

on the long run restriction also provide evidence against it. Our findings

suggest that demand shocks may result in permanent changes in output. It

is recommendable for policy makers to take this into account for optimal
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policy decisions.
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