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Abstract

In order to obtain sensible results from Lattice QCD that may be compared with exper-
iment, extrapolation to the continuum is crucial. This procedure, however, constitutes
a significant source of systematic and statistical errors, which one aims to minimize.
The well-established Symanzik improvement program systematically reduces the or-
der of cutoff effects, allowing for better control of the aforementioned errors, as well as
larger and thus more affordable lattice spacings. Applied to the Wilson fermion action,
it entails the addition of the Sheikholeslami–Wohlert term with the O(a) improvement
coefficient csw. In this work, a strategy is developed for the non-perturbative determi-
nation of csw in the theory with N f = 3 + 1 massive sea quarks. It is embedded in
a general, mass-dependent renormalization and improvement scheme, for which we
lay the foundations. The improvement condition, formulated by means of the PCAC
relation in the Schrödinger functional, is imposed along a line of constant physics
that is designed to be close to the physical mass of the charm quark. The aim of this
rather elaborate approach is to avoid large, mass-dependent O(a2) effects in future
large volume simulations with four dynamical quark species. The numerical results
are worked out using the tree-level improved Lüscher–Weisz gauge action. Since the
gradient flow coupling is employed in the definition of the line of constant physics, its
interdependence with the topological charge in regard to critical slowing down and
topology freezing is investigated in a supplemental study.

Keywords:
Lattice QCD, O(a) improvement, non-perturbative methods, charm quark

5





Zusammenfassung

Um aussagekräftige, mit dem Experiment vergleichbare Resultate aus Berechnungen
der Gitter-QCD zu erhalten, ist die Extrapolation zum Kontinuum unabdingbar. Diese
Prozedur stellt jedoch eine maßgebliche Quelle systematischer und statistischer Fehler
dar, die es zu minimieren gilt. Das bewährte Symanzik-Verbesserungsprogramm führt
zu einer systematischen Reduzierung der Ordnung von Cutoff-Effekten, die eine bes-
sere Kontrolle über die genannten Fehler sowie größere und damit erschwinglichere
Gitterabstände ermöglicht. Auf die Wilson-Fermionenwirkung bezogen bedarf es nur
des Hinzufügens des Sheikholeslami-Wohlert-Terms mit dem O(a)-Verbesserungsko-
effizienten csw. In der vorliegenden Arbeit wird eine Strategie zur nicht-perturbativen
Bestimmung dieses Koeffizienten in der Theorie mit N f = 3 + 1 massiven Seequarks
entwickelt. Diese ist in ein allgemeines, massenabhängiges Renormierungs- und Ver-
besserungsschema eingebettet, dessen Grundlagen dargelegt werden. Die Auferlegung
der Verbesserungsbedingung, bei der die PCAC-Relation im Schrödinger-Funktional
Verwendung findet, geschieht entlang einer Linie konstanter Physik, welche dem
Charm-Quark näherungsweise seine physikalische Masse zuordnet. Dieser vergleichs-
weise aufwendige Ansatz hat zum Ziel, große, massenabhängige O(a2)-Effekte in
zukünftigen Simulationen im großen Volumen mit vier dynamischen Quarkspezies
zu vermeiden. Die numerischen Resultate dieser Arbeit werden unter Verwendung
der tree-level-verbesserten Lüscher-Weisz-Eichwirkung gewonnen. Da die sogenannte
Gradient-Flow-Kopplung bei der Definition der Linie konstanter Physik Verwendung
findet, wird in einer zusätzlichen Untersuchung die Wechselbeziehung dieser Kopp-
lung mit der Topologischen Ladung beleuchtet, insbesondere im Bezug auf die unter
den Namen Critical Slowing Down und Topology Freezing bekannten Phänomene.

Schlagwörter:
Gitter-QCD, O(a)-Verbesserung, nicht-perturbative Methoden, Charm-Quark
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1 Introduction

Elementary particle physics deals with the most fundamental building blocks of matter
and the way they interact. It explores the very basic laws of nature and tackles far-
reaching questions about the development of the universe. Our current knowledge
is comprised in the Standard Model of particle physics (SM), which consists of a set of
quantum field theories that describe the electromagnetic, weak and strong interaction
between elementary particles. Their basic properties are compiled in tab. 1.1, and the
particles involved in the SM are illustrated in fig. 1.1. Fundamental constituents of
matter in the narrow sense are fermions of spin 1/2, the quarks and leptons, for both
of which there exist 6 different types, called flavors. While quarks are subject to all
interactions, leptons participate only in the electromagnetic and weak interaction. For
both quarks and leptons, one distinguishes 3 generations of specific flavor pairs that
predominantly appear together in (flavor-changing) processes of the weak interaction.
In addition, the SM contains gauge bosons of spin 1, which mediate the forces between
the aforementioned fermions. For the strong, weak and electromagnetic interaction,
these are gluons g, the W and Z bosons, and the photon γ, respectively.

One of the fundamental principles which guides the interactions between the ele-
mentary particles is gauge invariance. The postulation of invariance of the action under
local gauge transformations of the form1

SU(3)c × SU(2)L ×U(1)Y (1.1)

not only requires the existence of the gauge fields, but also presents a determining
factor that governs the interactions we observe in nature. An immediate consequence
of gauge invariance is that the gauge fields are massless. The photon and the gluon
are found to be massless in nature indeed. In contrast, the W and Z bosons have a
considerable non-vanishing mass, which is responsible for the relatively short range of
the weak force. An explanation for this is given by spontaneous breaking of the elec-
troweak symmetry SU(2)L ×U(1)Y in terms of the Higgs mechanism. The involved

1The indices c, L, Y stand for “color”, “left” (referring to the chirality of the particles that carry weak
isospin) and the “weak hypercharge”, respectively. Compare to tab. 1.1.
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Interaction Strong interaction Weak interaction Electromagnetism

Theory Quantum
chromodynamics

Glashow–Salam–Weinberg theory
SU(2)L ×U(1)Y

↪→ SSM→ Quantum
electrodynamics

Charge Color (r,g,b) Weak isospin Electromagnetic
charge

Gauge group SU(3)c SU(2)L U(1)Q

Gauge fields (#) g (8) W, Z (3) γ (1)

Quarks yes yes yes
Leptons no yes yes

Range ≈ 1 fm
(confinement)

≈ 0.1 fm (massive
gauge bosons)

∞

Relative strength 1 10−5 1/137
CPT C,P,T CP, T C,P,T

Physical
phenomena

Binding of
atomic nuclei

Radioactive decay of
atomic nuclei

Binding of atoms,
optics, electricity

Table 1.1: The interactions and theories of the Standard Model of particle physics. Gravity, the
4th known interaction and its corresponding theory, general relativity, is not part of
the SM.

the fundamental parameters of QCD, the renormalization group invariant masses and
the Λ parameter, which is one of the major objectives of the ALPHA Collaboration
(see [6] for an overview).

Simulations in Lattice QCD are necessarily carried out in finite spacetime, and in
general at unphysically large quark (or equivalently, meson) masses for reasons of
affordability. This can be accounted for by a set of extrapolations. First, the infinite vol-
ume limit V → ∞ is taken, although in practice finite spacetime effects are sufficiently
suppressed if the correlation length of the lowest energy bound state, the pion, fits
well into the lattice (mπ L & 4). Second, the pion masses are extrapolated to the phys-
ical point, which by reference to the chiral symmetry of the QCD Lagrangian in the
massless limit is called chiral extrapolation. Finally, in order to get results comparable
with experiment, the continuum limit needs to be taken, i.e. the lattice spacing a is
sent to zero, a→ 0.

The discretization of the theory leaves room for different formulations on the lattice,
and there exist a number of approaches, each with certain advantages and disadvan-
tages. However, all of them are constrained by the requirement to yield the contin-
uum theory if the lattice spacing is removed, such that there is no arbitrariness in the

15



1 Introduction

Figure 1.2: Left: Comparison of the continuum limit, taken in the (unimproved) Wilson theory
and the improved theory [10]. Right: Continuum limits of different observables
in the improved theory [11]. The figures are taken from the respective references.
Physical quantities are given in units of the string tension σ ≈ (465 MeV)2 [12] and
the Sommer scale r0 ≈ 0.5 fm [13], i.e. a ∼ 0.1 fm roughly corresponds to a2σ ∼ 0.05
and (a/r0)

2 ∼ 0.04.

continuum limit. The Wilson formulation of Lattice QCD is the most straight forward
discretization and a computationally favorable choice, but suffers from cutoff effects of
first order in the lattice spacing. In order to be able to continuum extrapolate with rea-
sonable uncertainties, very small lattice spacings are in principle required, which are
however computationally expensive and usually unaffordable. Fortunately, the well-
established Symanzik improvement program [7–9] represents a systematic method to get
rid of discretization effects to leading order O(a) in the lattice spacing, rendering the
remaining effects smaller at small a and thus enabling a smoother extrapolation to the
continuum, with better control of systematic errors. The gain from this is exemplarily
depicted in fig. 1.2.

Since the inclusion of dynamical quarks poses another huge computational chal-
lenge, simulations in Lattice QCD were conducted in the approximation of no (N f = 0,
quenched) or fewer (e.g. N f = 2) dynamical quark flavors in the past. Despite being a
rather rough approximation, these computations led to remarkably good results, see
e.g. [14]. This is due to the fact that for the low energy observables usually considered
in Lattice QCD, the physical effects of dynamical quark flavors decrease in importance
as their mass increases. However, for a full description of the strong interaction and
high accuracy comparison with experimental data, the dynamical effects also of the
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heavier flavors (strange, charm) need to be taken into account. Advances in computa-
tional power and algorithmic techniques have allowed to gradually approach this goal
in recent years.

The present work is the first step towards Lattice QCD simulations with N f = 4
dynamical quark flavors within the effort of the ALPHA Collaboration. It covers the im-
provement of the Wilson fermion action, for which the improvement coefficient csw [15]
as a function of the bare coupling g2

0 needs to be determined non-perturbatively. This
has been done before for various numbers of up to N f = 3 massless, dynamical quark
flavors and different actions [16–22]. However, the inclusion of the charm quark poses
a new challenge, due to the unprecedented order of magnitude of mass-dependent
cutoff effects. This will be accommodated by switching to a mass-dependent renor-
malization and improvement scheme. Within this framework, csw will not only be
determined under use of massive Wilson fermions, but the strategy is also adapted
in the sense that the improvement condition is imposed at a line of constant physics
(LCP). The fixation of the volume is realized in terms of the gradient flow coupling. As
a supplemental study to the main topic, we investigate it with regard to critical slow-
ing down, which refers to the well-known insufficiency of the Hybrid Monte Carlo
algorithm to tunnel between topological sectors as the continuum limit is approached.

The thesis is structured as follows. After a brief summary of the foundations of
quantum chromodynamics in sec. 2, its formulation on the lattice is discussed in sec. 3,
with an emphasis on the aspects that are important for our purposes. This is followed
by a discussion in sec. 4 of Monte Carlo simulations and the associated numerical
techniques that find application in this work. After a presentation of the Schrödinger
functional in sec. 5, the gradient flow coupling and the topological charge are subject
of sec. 6. The interplay of those two quantities, in particular how the gradient flow
coupling is affected by critical slowing down, is investigated in the quenched approx-
imation in sec. 7. The subsequent two chapters are then devoted to the Symanzik
improvement of Lattice QCD with four dynamical quark flavors. First, in sec. 8, the
framework of a massive scheme is discussed. Finally, in sec. 9, the determination of
csw within this scheme is presented. We close with a summary in sec. 10.
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2 Quantum chromodynamics

2.1 Color, SU(3)c and the QCD Lagrangian

Quantum chromodynamics is the theory of strongly interacting particles, i.e. quarks
and gluons. At its foundation is the notion of the color degree of freedom, which
is supported by experimental evidence of several kinds. First, the existence of color
reconciles the appearance of certain baryons with the Pauli principle. The ∆++, for
instance, possesses both a symmetric spatial and spin wave function. The additional
color degree of freedom ensures that the overall wave function is antisymmetric as
required for baryons, through the antisymmetric color wavefunction

|qqq〉 = 1√
6

εabc|qaqbqc〉 , (2.1)

where the color indices a, b, c = 1, 2, 3 are summed over. Correspondingly, color-
symmetric meson wavefunctions are given by

|qq〉 = 1√
3

∑
c
|qcqc〉 . (2.2)

The bound states’ wavefunctions (2.1, 2.2) are invariant under global SU(3)c transfor-
mations, i.e. they are color-neutral. In analogy to chromatics, one labels the 3 new
degrees of freedom red, green and blue, and the color-neutral hadrons are called
white. In principle, antisymmetric baryon color wave functions could also be real-
ized with a different number Nc of colors. However, the color factor Nc = 3 enters
experimental observables like for instance the decay width Γ(π0 → 2γ), the branching
fraction B(τ− → e−νeντ) and the cross section ratio R = σ(e++e−→hadrons)

σ(e++e−→µ++µ−) . Moreover,
the renormalizability of the Glashow–Salam–Weinberg theory can only be achieved if
the contributions of all leptons and quarks to the Adler–Bell–Jackiw (ABJ) anomaly
[23, 24] in the electroweak sector cancel each other. This requires an equal number of
leptons and quarks (lepton-quark symmetry) in connection with Nc = 3 [25].

As massive fermions, quarks are described mathematically by Dirac spinors ψ, ψ. In
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2 Quantum chromodynamics

Generation Flavor Mass Qem

I
up (u) 2.3+0.7

−0.5 MeV +2/3
down (d) 4.8+0.5

−0.3 MeV −1/3

II
charm (c) 1.275± 0.025 GeV +2/3
strange (s) 95± 5 MeV −1/3

III
top (t) 173.21± 0.51± 0.71 GeV +2/3
bottom (b) 4.18± 0.03 GeV −1/3

Table 2.1: Electromagnetic charge and renormalized masses [26] of the quarks in the Standard
Model. While the top quark mass corresponds to the so-called direct measurement,
the other masses mi are given in the MS scheme at a renormalization scale µ = 2 GeV
(i=u,d,s) and µ = mi (i=c,b).

accordance with Nc = 3, each of those carries a color index c ∈ {1, 2, 3}, as well as a
Dirac index α ∈ {1, 2, 3, 4} and a flavor index f ∈ {1, . . . , N f }, where N f is the number
of quark flavors in the theory. Furthermore, the quark fields are functions of space
and time, indicated in the continuum by the spacetime coordinates x = (x0, x1, x2, x3):

ψ(x) ≡ ψ( f )(x)c
α . (2.3)

The color and flavor indices are often summed over, in which case they will usually be
suppressed in favor of the matrix-vector notation shown on the left hand side of (2.3).
The Dirac equation, which describes the free propagation of the quark fields, emerges
as the Euler-Lagrange equation from the free quark Lagrangian

Lfree
F [ψ, ψ] = ψ(x)

(
iγµ∂µ −M

)
ψ(x) , (2.4)

where γµ are the gamma matrices and

M = diag(m0,1, . . . , m0,N f ) = diag(m0,u, m0,d, . . .) (2.5)

is the matrix of bare quark masses m0,i in flavor space. The corresponding renormal-
ized masses of the 6 different quark flavors in the SM are collected in tab. 2.1

The fundamental principle which rules the construction of interaction terms is the
postulation of invariance under local SU(3)c gauge transformations Ω(x) in color
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2.1 Color, SU(3)c and the QCD Lagrangian

space (cf. app. A.1):

ψ → ψ′(x) = Ω(x) ψ(x) (2.6)

ψ → ψ
′
(x) = ψ(x) Ω(x)† . (2.7)

In order for the QCD Lagrangian to be invariant under (2.6, 2.7), L′F = LF, the ordi-
nary derivative ∂µ in (2.4) needs to be replaced by a covariant derivative Dµ with the
transformation property

Dµ(x) → D′µ(x) = Ω(x)Dµ(x)Ω(x)† , (2.8)

which together with (2.6) implies

Dµψ(x) → D′µψ′(x) = Ω(x) Dµψ(x) , (2.9)

i.e. Dµψ transforms the same way as ψ. The required behavior (2.8) can only be
achieved by introducing a coupling of the quark fields to gluon (or gauge) fields Aµ,
parametrized1 by g0:

Dµ(x) = ∂µ+ig0 Aµ(x) . (2.10)

The continuum gluon fields are represented at each spacetime point x by a traceless,
hermitean 3× 3 color matrix

Aµ(x) ≡ Aµ(x)cd . (2.11)

As an element of the algebra su(3), Aµ may be represented in the basis of SU(3)
generators (see app. A.1):

Aµ(x) = Aa
µ(x)Ta . (2.12)

The Lorentz index µ = 1, 2, 3, 4 reflects the fact that there is one component per space-
time direction. The covariance of Dµ (cf. (2.8)), is fulfilled by having the gluon fields
transform according to the adjoint representation of SU(3),

A′µ(x) = Ω(x)Aµ(x)Ω(x)†+
i

g0

(
∂µΩ(x)

)
Ω(x)† . (2.13)

Consequently, the interaction of the quark fields with the gluon fields is incorporated

1Note that the sign in (2.10) is a matter of convention, which propagates to (2.13) and (2.16). The
opposite choice is also widely used in the literature.
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2 Quantum chromodynamics

Figure 2.1: Gluon self-interaction in the form of 3- and 4-
gluon vertices which emerge from LG (2.15).
The figure has been created under use of the
feynMF package [27].

in

LF[ψ, ψ, A] = ψ(x)
(
iγµDµ −M

)
ψ(x) . (2.14)

In addition, the kinetic terms of the gluon fields are contained in

LG[A] = −1
2

tr
[
FµνFµν

]
, (2.15)

where tr is the trace in color space, and Fµν is the gluon field strength tensor

Fµν(x) = − i
g0
[Dµ(x), Dν(x)] (2.16a)

= ∂µ Aν(x)− ∂ν Aµ(x)+ig0[Aµ(x), Aν(x)] (2.16b)

= ∂µ Aν(x)− ∂ν Aµ(x)−g0 f abc Aa
µ(x)Ab

ν(x)Tc , (2.16c)

where in the last step we used the non-vanishing commutator of the generators, see
(A.3) in app. A.1. In particular, (2.16) incorporates the coupling of gluons to them-
selves, which in connection with (2.15) leads to self-interacting terms that correspond
to the Feynman diagrams displayed in fig. 2.1. This is a new feature compared to
quantum electrodynamics (QED), reflecting the non-Abelian nature of the gauge group
SU(3). It has severe phenomenological implications, which we are going to describe
in sec. 2.3. Gauge invariance of LG (2.15) is ensured as the field strength tensor trans-
forms covariantly, too:

F′µν(x) = Ω(x)Fµν(x)Ω(x)† . (2.17)

Finally, in order for the gluon propagator to be well-defined, in the continuum one
needs a gauge fixing term

Lgf[A] = − 1
2ξ

(
∂µ Aµ

)2 . (2.18)
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2.2 Chiral symmetry

The full Lagrangian of QCD2 thus reads

LQCD[ψ, ψ, A] = LF[ψ, ψ, A] + LG[A] + Lgf[A] , (2.19)

with the individual parts given in (2.14), (2.15) and (2.18), respectively.
Apart from the gauge principle, it is based on Lorentz invariance and renormal-

izability. In particular, the latter restricts the interaction terms in LQCD to a mass
dimension of ≤ 4. In addition to the local SU(3)c symmetry, LQCD is invariant under
the global transformations C (charge conjugation), P (parity) and T (time reversal),
cf. tab. 1.1. However, in principle, an additional term

LΘ = Θ
g2

0
16π2 tr

[
F̃µνFµν

]
(2.20)

with F̃µν = 1
2 εµναβFαβ is allowed by the aforementioned principles. It would violate

P, T, and (due to the CPT theorem) also the combined transformation CP. Since CP
violation would manifest itself in an electric dipole moment of the neutron, which can
be ruled out by experimental data up to a very small value, the parameter Θ can be
restricted to |Θ| ≤ 10−10 [26]. The unanswered question of why the strong interaction
does not seem to break CP is called the strong CP problem. In any case, as the Θ angle
is so small, we may ignore LΘ in the following.

2.2 Chiral symmetry

The QCD Lagrangian exhibits (approximate) global flavor symmetries, which depend
on the nature of the quark masses and have important phenomenological conse-
quences. In the massless case, the left- and right-hand components of the spinor ψ,
defined by

ψR = P+ψ, ψL = P−ψ, ψR = ψP−, ψL = ψP+ (2.21)

in terms of the projection operator P± = 1±γ5
2 and γ5 = iγ0γ1γ2γ3, decouple, and the

fermionic Lagrangian L0
F ≡ LF|M=0 cf. (2.14) becomes

L0
F = ψLγµDµψL + ψRγµDµψR . (2.22)

2We here ignore the Faddeev-Popov ghosts, which deal with the issue of unphysical, longitudinal
degrees of freedom of the gluon fields.
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2 Quantum chromodynamics

The chiral components can thus be transformed independently, i.e. L0
F is invariant

under chiral transformations (see app. A.1) of the form

U(N f ) f L ×U(N f ) f R = SU(N f ) f L × SU(N f ) f R ×U(1) f L ×U(1) f R . (2.23)

Here, the subscripts L and R indicate transformations on the left- and right-handed
fields, and the subscript f emphasizes that we now deal with transformations in flavor
space in contrast to the color space associated with gauge transformations. The
combinations of left- and right-handed transformations in (2.23) may be rewritten in
terms of vector and axial transformations as

SU(N f ) f V × ”SU(N f )
”
f A ×U(1) f V ×U(1) f A , (2.24)

see app. A.1 for details and notation. The underlying reason for the symmetry under
axial transformations is that the Dirac operator, D ≡ γµDµ, anticommutes with γ5:

{γ5, D} = 0 . (2.25)

Details on the gamma matrices can be found in app. A.2.
If one includes degenerate masses in the Lagrangian, the axial symmetries are broken

explicitly, while the subgroup SU(N f ) f V remains valid for N f = Ndeg
f degenerate

quark flavors:

SU(Ndeg
f ) f V ×U(1) f V . (2.26)

Due to mu ≈ md, the isospin symmetry SU(2) f V is a very good approximate sym-
metry, and even remnants of SU(3) f V are reasonably manifested in hadron physics.
The conserved quantities associated with SU(2) f V and U(1) f V are isospin and baryon
number, respectively. The observation of hadron multiplets (cf. fig. 2.2), the lightest of
which are approximately degenerate in mass, confirm that SU(N f ) f V is an (approx-
imate) symmetry not just of the Lagrangian, but also the ground state3 and hence
the full theory, i.e it is realized in the Wigner–Weyl mode. For non-degenerate masses,
SU(N f ) f V breaks down to an N f -fold U(1) f V symmetry, one for each flavor, such that
the corresponding flavor quantum numbers are still conserved.

Since the masses of the up and down, and to lesser extent also the strange quark
are quite small, the axial symmetries ”SU(N f )

”
f A and U(1) f A might still be satisfied

3Specifically, Qa
V |0〉 = 0 for the vector charges Qa

V with a = 1, . . . , N2
f − 1.
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2.2 Chiral symmetry

Figure 2.2: SU(3) f V multiplet of approximately mass-
degenerate pseudoscalar mesons. The quark-
antiquark bound states build an octet (black)
and a singlet (gray) according to 3⊗ 3 = 8⊕ 1.
They can be classified by the eigenvalues hyper-
charge Y and isospin I3.

approximately. However, there is convincing evidence that they—despite being sym-
metries of the (massless) Lagrangian—are realized differently in nature. First, full
”SU(N f )

”
f A axial symmetry would imply the occurrence of parity doublets. Instead,

the masses of the nucleon N and its negative parity partner N? are found to be quite
different [26]:

mN ≈ 940 MeV, mN? ≈ 1535 MeV . (2.27)

Second, the three pions, π± and π0, are exceptionally light compared to all other
mesons. An explanation for both these observations is that chiral symmetry is sponta-
neously broken,

SU(N f ) f L × SU(N f ) f R
SSM−−→ SU(N f ) f V , (2.28)

i.e. ”SU(N f )
”
f A axial symmetry is realized in the Nambu–Goldstone mode and does not

leave the ground state invariant4. This is reflected by the non-vanishing expectation
value of the quark condensate,

〈
ψψ
〉
6= 0 , (2.29)

which transforms like a mass term. In that case, the pions can be identified with the
N2

f − 1 massless Goldstone bosons with pseudoscalar (JP = 0−) quantum numbers
predicted by the Goldstone theorem.

Finally, even in the massless case, the axial current corresponding to U(1) f A is
not conserved on the quantum level due to non-vanishing contributions of the ABJ
anomaly5 (cf. sec. 2.1 and sec. 6.2.1) in QCD. An overview on the realization of chiral

4Specifically, Qa
A |0〉 6= 0 for the axial charges Qa

A with a = 1, . . . , N2
f − 1.

5In the context of QCD, it is usually referred to as chiral anomaly.
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2 Quantum chromodynamics

SU(N f ) f V
”SU(N f )

”
f A U(1) f V U(1) f A

massless full theory only LF full theory only LF

mass-degenerate full theory — full theory —
arbitrary masses → U(1) f V — full theory —

mode Wigner–
Weyl

Nambu–
Goldstone

Wigner–
Weyl

explicitly broken
(chiral anomaly)

conserved
quantum
number

Isospin,
Flavor

— Baryon
number

—

related
phenomenology

Hadron
multiplets

Goldstone
bosons

baryon–
antibaryon
(a)symmetry

π0 → γγ,
η′ mass

Table 2.2: Overview on chiral symmetry in QCD and its realization in nature.

symmetry in QCD is given in tab. 2.2.

2.3 Asymptotic freedom and confinement

The QCD Lagrangian contains N f + 1 parameters, the bare coupling g0 and the bare
masses mi with i ∈ {1, . . . , N f }. In order to get sensible results from any QCD cal-
culation, the theory needs to be renormalized. This necessitates the introduction of
a dimensionful renormalization scale µ, and involves the replacement of the bare pa-
rameters in favor of renormalized quantities, a renormalized coupling g(µ) and renor-
malized masses mi(µ). Irrespective of the renormalization scheme, however, physical
observables P do not depend on the unphysical renormalization scale µ. This is ex-
pressed in the renormalization group equation (RGE):

[
µ ∂µ + β(g) ∂g + miτ(g) ∂mi

]
P(µ, g, mi) = 0 . (2.30)

The β and τ functions are logarithmic derivatives of the renormalized coupling and
the renormalized masses, respectively:

β(g) = µ ∂µg(µ) (2.31)

miτ(g) = µ ∂µmi(µ) . (2.32)
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2.3 Asymptotic freedom and confinement

Given their perturbative expansions,

β(g) = −g3 (b0 + g2b1 + . . .
)

(2.33)

and τ(g) = −g2 (d0 + g2d1 + . . .
)

, (2.34)

the following special solutions of the RGE can be found:

Λ = µ (b0g2)
− b1

2b2
0 e
− 1

2b0g2 exp
{
−
∫ g

0
dx
[

1
β(x)

+
1

b0x3 −
b1

b2
0x

]}
(2.35)

Mi = mi (2b0g2)
− d0

2b0 exp
{
−
∫ g

0
dx
[

τ(x)
β(x)

− d0

b0x

]}
. (2.36)

These are called renormalization group invariants (RGI). They are independent of µ, since
a variation of µ is compensated by simultaneous variations of g(µ) and mi(µ). For this
reason, they can be considered the fundamental parameters of QCD. While the RGI
masses Mi are scheme-independent,

M′i = Mi , (2.37)

the Λ parameter in two different renormalization schemes,

Λ′ = Λ exp

{
c(1)αs

2b0

}
, (2.38)

is related by the one-loop coefficient of

α′s(µ) = αs(µ)
(

1 + c(1)αs αs(µ) + . . .
)

, (2.39)

where αs(µ) = g2(µ)/(4π). The perturbative expansion (2.33) for β used in (2.35)
leads to the following running of the coupling for large energies6:

g2(µ)
µ→∞
=

1

b0 log
(

µ2

Λ2

) +
b1

b3
0

log
(

log
(

µ2

Λ2

))
[
log
(

µ2

Λ2

)]2 + . . . (2.40)

6We here use the terms energy and renormalization scale interchangeably, since for the description of
high-energy (scattering) processes, µ is usually set to the typical energy scale of the system in order
to ensure a fast convergence of the perturbative expansion.

27



2 Quantum chromodynamics

Figure 2.3: Measurements of αs(µ) in the
MS scheme at different en-
ergy scales µ = Q. The curves
represent the QCD prediction
with the combined world av-
erage value of αs(MZ) as in-
put. The figure is taken from
[26].

QCD αs(Mz) = 0.1185 ± 0.0006
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Note that this result can also be derived straight forwardly from higher order correc-
tions to the coupling in perturbative QCD, see e.g. [28]. Remarkably, the lowest order
coefficients,

b0 =
1

(4π)2

[
11
3

Nc −
2
3

N f

]
(2.41)

b1 =
1

(4π)4

[
34
3

N2
c −

(
13
3

Nc −
1
N

)
N f

]
(2.42)

d0 =
1

(4π)2

3
(

N2
c − 1

)
Nc

, (2.43)

are scheme-independent. In particular, Nc = 3 and N f = 6 imply b0, b1 > 0, and hence
β(g) < 0 (cf. (2.33)), or equivalently (cf. (2.40))

g2(µ)→ 0 for µ→ ∞ . (2.44)

This is the mathematical expression of the important phenomenon called asymptotic
freedom, which was first discovered in [29, 30]. It states that strongly interacting par-
ticles are free in the limit of very high energies. Note that this behavior is strongly
based on the self-interaction of gluons, cf. fig. 2.1, which appear in form of the Nc-
dependent terms in b0, b1. It can be understood in the way that the amplification of
the effective coupling at small distance by vacuum polarizations of quark-antiquark
pairs, known already from QED, is overcompensated by polarizations of virtual gluon
pairs. Asymptotic freedom is the foundation of the applicability of perturbation theory
for the description of high energy QCD processes, studied e.g. at the Large Hadron
Collider.

While the running of the coupling αs(µ) with the energy is determined in QCD by
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2.3 Asymptotic freedom and confinement

0 0.2 0.4 0.6 0.8 r [fm]

−0.5

0

0.5

V(r) [GeV]

perturbation theory

Figure 2.4: Static potential V(r) as a function of the quark-
antiquark distance r as computed in [32], con-
verted into physical units by setting the Som-
mer scale [13] to r0 = 0.5 fm. The figure is
taken from [33].

the beta function, its absolute value needs to be fixed by experiment. Measurements of
various kinds at different scales can be evolved to and compared at a reference scale,
which is usually taken to be the Z boson mass. This serves as a highly non-trivial test
of QCD, see fig. 2.3.

At low energies, the renormalization group predicts that the renormalized coupling
gets large. This provides an indication of why colored states like quarks or gluons
are not observed as free particles. Obviously, at a distance of roughly the diameter
of a hadron, a very strong force effectively binds them into color-neutral hadrons,
cf. (2.1, 2.2). This phenomenon is known as confinement and cannot be quantitatively
described with perturbative methods as the large coupling renders these useless in the
low energy sector. It requires non-perturbative approaches like Lattice QCD, which we
will address in the next section. Although confinement is not yet resolved definitely,
computations in Lattice QCD lead to a linearly rising term7 in the quark-antiquark
potential,

V(r) = A +
B
r
+ σr , (2.45)

see fig. 2.4, and therefore give a semi-quantitative understanding of it.
Altogether, the wealth of phenomena and the accuracy with which these can be de-

scribed impressively confirm QCD as the fundamental theory of the strong interaction,
and in the end the principle of gauge invariance that it relies on.

7This result may also be found analytically in the strong coupling limit, cf. e.g. [31].
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3 Quantum chromodynamics on the
lattice

Lattice QCD is a straight forward non-perturbative approach to QCD based on the
path integral formalism, which goes back to the work of Kenneth G. Wilson [34]. In
the continuum, the correlation function of an arbitrary combination O of operators is
formally given by

〈O〉 = 1
Z

∫
D[ψ, ψ, A] eiSQCD [ψ,ψ,A] O[ψ, ψ, A] . (3.1)

Here, SQCD =
∫

d4x LQCD is the action associated with the QCD Lagrangian (2.19),
O on the right hand side is a functional of the fields which corresponds to the op-
erator O on the left hand side, the measure D[ψ, ψ, A] ≡ D[ψ]D[ψ]D[A] represents
an infinite-dimensional integration over all possible field configurations in spacetime,
and Z =

∫
D[ψ, ψ, A] eiSQCD [ψ,ψ,A] is the partition function of QCD.

The functional integral (3.1) as such is neither well-defined nor accessible to nu-
merical evaluation. However, it can be regularized by introduction of a discretized
spacetime lattice, where the measure becomes a finite product over the lattice sites.
The details of this procedure will be discussed in the upcoming sections 3.1-3.4. As-
suming we have a finite functional integral, the Boltzmann factor in (3.1) may still
wildly oscillate as the fields are varied. A remedy for this is obtained by performing a
Wick rotation, i.e. switching from real time t to imaginary time τ,

t = −iτ , (3.2)

and corresponding rotation of the contour of integration in the path integral. This is
equivalent to a transition from Minkowski to Euclidean space,

−ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3 = dτ2 + dx2

1 + dx2
2 + dx2

3 , (3.3)

where the problem of the oscillating Boltzmann factor in (3.1) is cured as one gets rid
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3 Quantum chromodynamics on the lattice

Minkowski → Euclidean Ref.

metric gµν = (1,−1,−1,−1) → δµν = (1, 1, 1, 1) app. A.2
coordinates x = (t,~x) → xE = (−iτ,~x) (3.2)

derivative (∂0, ∂j) → (i∂E
0 , ∂E

j ) (3.6)

gluon field (A0, Aj) → (iAE
0 , AE

j ) (3.7)

cov. derivative (D0, Dj) → (iDE
0 , DE

j )

γ matrices (γ0, γj) → (γE
0 ,−iγE

j ) (3.8)

Table 3.1: Transition from Minkowski space to Euclidean space.

of the imaginary factor:

iSQCD = i
∫

d4x LQCD(t) = −
∫

d4xE LE
QCD(τ) = −SE

QCD , (3.4)

with d4xE ≡ d3xdτ. The Euclidean QCD Lagrangian defined by (3.4),

LE
QCD = −LQCD , (3.5)

can be easily derived from its Minkowski counterpart (cf. (2.14, 2.15, 2.19)). Under
consideration that the temporal derivatives translate to Euclidean space according to

∂0 =
∂

∂t
= i

∂

∂τ
= i∂E

0 , (3.6)

it is useful to apply two reparametrizations in order to obtain LE
QCD in a compact form

that is reminiscent of its Minkowski counterpart. First, in order to adapt the gluon
fields to the above derivatives, one introduces Euclidean gluon fields defined by

A0 = iAE
0 and Aj = AE

j , j = 1, 2, 3 . (3.7)

Second, with regard to the fermionic part of the action, Euclidean gamma matrices γE
µ

are introduced, see app. A.2, which are related to the Minkowski gamma matrices by

γ0 = γE
0 and γj = −iγE

j , j = 1, 2, 3 . (3.8)

An overview on the transition from Minkowski space to Euclidean space is given in
tab. 3.1.

With regard to the lattice discretization of the Euclidean action, it turns out to be
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3.1 Naive fermion action

convenient in addition to absorb the bare coupling in the gluon fields,

g0 AE
µ → AE

µ , (3.9)

such that the covariant derivative (cf. (2.10)) and the field strength tensor (cf. (2.16))
read

DE
µ = ∂E

µ + iAE
µ and FE

µν = −i[DE
µ (x), DE

ν (x)] . (3.10)

With these ingredients, (3.5)-(3.10), the fermionic part of the Euclidean QCD action
becomes

SE
F [ψ, ψ, A] =

∫
d4xE ψ(x)

(
γE

µ DE
µ +M

)
ψ(x) , (3.11)

whereas the gauge part can be written as

SE
G[A] =

1
2g2

0

∫
d4xE tr

[
FE

µνFE
µν

]
. (3.12)

Note that from here on, the superscript “E” will be dropped everywhere as we will
exclusively work in Euclidean space.

In this work, the theory with four dynamical quark flavors is usually considered,
where the bare mass matrix (2.5) acquires the form

M = diag(m0,u, m0,d, m0,s, m0,c) . (3.13)

We will differentiate between degenerate (m0,u = m0,d = m0,s = m0,c) and non-degenerate
(m0,u 6= m0,d 6= m0,s 6= m0,c) masses. While for the former case the notation N f = 4 is
well-established, we introduce the notation N f = 4∗ for the general latter case here, to which
all of the following will correspond to, unless noted otherwise.

3.1 Naive fermion action

Lattice QCD is formulated on discretized Euclidean spacetime, which in our case will
be a hypercubic lattice

X = {xµ = anµ | µ = 0, . . . , 3 ; nµ ∈ Z} , (3.14)
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3 Quantum chromodynamics on the lattice

where a is the lattice spacing. The discretization of the fermion spinors ψ, ψ is straight
forward, they are simply placed on the lattice sites. In order to write down the free
fermion action, cf. (3.11) with Dµ → ∂µ, one simply needs to substitute the spacetime
integral by the sum over the lattice sites,∫

d4x → a4 ∑
x∈X

, (3.15)

and the derivative by a discretized symmetric expression (cf. app. A.3)

∂µψ(x) → ∂̃µψ(x) =
1
2a

[ψ(x + aµ̂)− ψ(x− aµ̂)] , (3.16)

where µ̂ denotes a unit vector in direction µ. The free fermion action on the lattice
thus becomes

Sfree
F [ψ, ψ] = a4 ∑

x
ψ(x)

(
∑
µ

γµ∂̃µ +M
)

ψ(x)

= a4 ∑
x

ψ(x)

(
∑
µ

γµ
ψ(x + aµ̂)− ψ(x− aµ̂)

2a
+Mψ(x)

)
. (3.17)

Note that here, and from now on, we use the abbreviations ∑x ≡ ∑x∈X and ∑µ ≡ ∑3
µ=0.

The gauge fields are introduced like in the continuum, based on the principle that
the fermion action shall be invariant under local gauge transformations Ω(x) ∈ SU(3),
where we now have x ∈ X. The bilinear ψ(x)ψ(x + aµ̂) as it appears in (3.17), neglect-
ing γµ for the moment as it is trivial in color space, transforms like (cf. (2.6, 2.7))

ψ(x)ψ(x + aµ̂) → ψ(x) Ω(x)† Ω(x + aµ̂) ψ(x + aµ̂) . (3.18)

If the fermion fields couple to a directed field Uµ(x), which transforms as

Uµ(x)→ Ω(x)Uµ(x)Ω†(x + aµ̂) , (3.19)

the expression

ψ(x)Uµ(x)ψ(x + aµ̂) (3.20)

is gauge invariant. The same holds for the combination ψ(x)Uµ(x − aµ̂)†ψ(x − aµ̂).
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3.1 Naive fermion action

Hence, introducing the convenient notation

U−µ(x) ≡ Uµ(x− aµ̂)† , (3.21)

the gauge invariant fermion action reads

SF[ψ, ψ, U] = a4 ∑
x

ψ(x)

(
∑
µ

γµ
Uµ(x)ψ(x + aµ̂)−U−µ(x)ψ(x− aµ̂)

2a
+Mψ(x)

)
.

(3.22)

In terms of the Dirac operator

D = ∑
µ

{
γµ∇̃µ

}
=

1
2 ∑

µ

{
γµ

(
∇∗µ +∇µ

)}
, (3.23)

which employs a symmetric combination ∇̃µ of the covariant forward and backward
derivatives (see also app. A.3),

∇µψ =
1
a
[
Uµ(x) ψ(x + aµ̂)− ψ(x)

]
(3.24a)

∇∗µψ =
1
a
[
ψ(x)−U−µ(x) ψ(x− aµ̂)

]
, (3.24b)

it can be written in a very compact way:

SF[ψ, ψ, U] = a4 ∑
x

ψ(x) (D +M)ψ(x) . (3.25)

This so-called naive fermion action approximates the continuum fermion action (3.11)
with leading order discretization errors of only O(a2), due to the use of the symmetric
(covariant) derivative. It is the basis for more sophisticated forms of lattice fermion
actions like the Wilson fermion action, which we will address in sec. 3.3.

The nature of the lattice gauge fields Uµ differs from the continuum case. From
(3.19), one immediately infers that Uµ(x) must be an element of the gauge group
SU(3), unlike the continuum counterparts Aµ(x), which belong to the algebra su(3).
The two are related by

Uµ(x) = exp
(
iaAµ(x)

)
, (3.26)

where aAµ(x) can be considered a lattice approximation of the continuum integral of
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3 Quantum chromodynamics on the lattice

Figure 3.1: Illustration of different lattice gauge field quantities. The dashed lines represent the
µν hyperplane of a lattice with lattice spacing a. The arrows show the orientation
of the link variables, and the dots stand for xstart or xend. (I) The link variable Uµ(x),
(3.26). (II) Product P[U] of link variables along a general path P , (3.27). (III) Product
Pcl[U] of link variables along a closed loop Pcl, (3.29). The illustrated rectangular
shape in two dimensions is called Wilson loop. (IV) Plaquette variable Uµν(x) as the
shortest, non-trivial, closed loop of link variables on the lattice, (3.30).

Aµ(x) along the link from x and x + µ. Accordingly, Uµ(x) is called link variable1,
see fig. 3.1. Evidently, (3.26) employed in the naive fermion action (3.22) yields the
continuum fermion action (3.11) in the limit a→ 0, as stated above.

3.2 Wilson gauge action

We now turn to the discussion of the lattice gauge action. Any such action has to be
build up from gauge invariant combinations of link variables. We note that the product

P[U] = ∏
(x,µ)∈P

Uµ(x) (3.27)

of link variables along any path P from the lattice site xstart to the lattice site xend

transforms as

P[U]→ Ω(xstart) P[U] Ω†(xend) . (3.28)

This is due to the fact that if each link is transformed according to (3.19), the transfor-
mation matrix Ω† at the end point of one link cancels with the transformation matrix
Ω at the starting point of the next link on the path (cf. fig. 3.1). For the special case

1or gauge transporter
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3.2 Wilson gauge action

of closed loops Pcl, where xstart = xend, one may hence construct a gauge invariant
product of link variables by taking the overall trace tr in color space:

tr
[

Pcl[U]

]
→ tr

[
Pcl[U]

]
. (3.29)

The shortest, non-trivial, closed loop is the plaquette, also depicted in fig. 3.1. The
corresponding plaquette variable is defined as2

Uµν(x) = Uµ(x) Uν(x + aµ̂) Uµ(x + aν̂)† Uν(x)† . (3.30)

In order to construct a lattice gauge action from tr[Uµν(x)] that turns into the contin-
uum gauge action (3.12) in the naive continuum limit a → 0, i.e. whose leading term
in the lattice spacing is

a4

2g2
0

∑
x

∑
µ,ν

tr
[
FµνFµν

]
, (3.31)

we need to express Uµν(x) in terms of the continuum gauge fields Aµ. This can be
done by using (3.26) for each of the four link variables, combination of the exponential
functions by iterative application of the Baker–Campbell–Hausdorff formula,

exp(A) exp(B) = exp(A + B +
1
2
[A, B] + . . .) , (3.32)

and Taylor expansion of the continuum gauge fields Aµ around the spacetime point x.
One finds

Uµν(x) = exp
(
ia2Fµν(x) + O(a3)

)
= 1+ ia2Fµν(x) + O(a3) . (3.33)

Note that tr[Uµν(x)] already contains the O(a4) term of (3.31) we are seeking for. The
task now is to alter this expression in such a way that the contributions up to and
including O(a3) vanish. While tr[Uµν(x)] → tr[1−Uµν(x)] makes the constant disap-
pear, the other terms vanish if the real part of the trace is taken. Indeed, from

tr[Uµν(x)]? = tr[U†
µν(x)] = tr[Uνµ(x)] (3.34)

2Note that e.g. Uν(x)† = U−ν(x + aν̂), see (3.21).
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3 Quantum chromodynamics on the lattice

follows

Re tr[1−Uµν(x)] =
1
2
(
tr[1−Uµν(x)] + tr[1−Uµν(x)]?

)
(3.34)
=

1
2
(
tr[1−Uµν(x)] + tr[1−Uνµ(x)]

)
=

ia2

2
tr[Fµν(x) + Fνµ(x)] + O(a3) , (3.35)

where the leading O(a2) term vanishes due to the antisymmetry of the field strength
tensor. The O(a3) terms cancel each other similarly, whereas the O(a4) term remains
unaltered by the restriction to the real part. Hence, the so-called Wilson gauge action

SW
G [U] =

2
g2

0
∑
x

∑
µ<ν

Re tr[1−Uµν(x)] . (3.36)

fulfills the requirement to lead to (3.31) in the limit a→ 0. It is customary to use

2 ∑
µ<ν

Re tr
[
Uµν(x)

] (3.34)
= ∑

µ,ν
tr
[
Uµν(x)

]
(3.37)

to replace the sum ∑µ<ν over all unoriented plaquettes in (3.36) by the sum ∑µ,ν over all
oriented plaquettes,

SW
G [U] =

1
g2

0
∑
x

∑
µ,ν

tr[1−Uµν(x)] . (3.38)

Furthermore, if the set of all oriented plaquettes is denoted by S0, the Wilson gauge
action (3.38) may be written under use of ∑x ∑µ,ν Uµν(x) ≡ ∑C∈S0

U(C) as

SW
G [U] =

1
g2

0
∑
C∈S0

tr[1−U(C)] . (3.39)

In the literature, both formulations are widely used, in terms of unoriented plaquettes,
(3.36), or oriented plaquettes, (3.38) and (3.39).

From further terms in the expansion of the exponential in (3.33), we conclude that
the discretization error of (3.36, 3.38, 3.39) is—as for the naive fermion action (3.25)—
of the order O(a2), i.e. additional terms come with a factor a6. In sec. 3.8, we will
encounter another lattice gauge action, whose discretization error is further reduced.
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3.3 Wilson fermion action

We now further pursue the discussion of fermions on the lattice, starting from the
naive fermion action obtained in sec. 3.1,

SF[ψ, ψ, U] = a4 ∑
x

ψ(x) (D +M)ψ(x) , (3.25)

with3 D =
1
2 ∑

µ

{
γµ

(
∇∗µ +∇µ

)}
. (3.23)

The action as such suffers from the so-called fermion doubling problem. To explain this,
it is sufficient to consider the free naive fermion action of one quark flavor with mass
m0, i.e. we set ∇̃µ → ∂̃µ andM→ m0. We consider the free fermion propagator in mo-
mentum space, which can be found by taking the inverse of the Fourier transformed
Dirac operator. It reads

D̃(p)−1 =

(
m0 + ia−1 ∑

µ

γµ sin
(
apµ

))−1

=
m0 − ia−1 ∑µ γµ sin

(
apµ

)
m2

0 + a−2 ∑µ sin2 (apµ

) , (3.40)

where the momenta apµ may assume 2π/L equidistant values in the range −π ≤
apµ ≤ π. While for a → 0, this propagator correctly reproduces the physical pole,
there are 15 additional singularities. For m0 = 0, these unphysical so-called doublers
are found when apµ ∈ {0, π} ∀µ.

A possible solution to get rid of the doublers is to add an extra Wilson term to the
momentum space Dirac operator, cf. (3.40):

D̃W(p) = m0 + ia−1 ∑
µ

γµ sin
(
apµ

)
+ a−1 ∑

µ

(
1− cos(apµ)

)
. (3.41)

This term effectively constitutes an additional mass term,

m0 → m0 +
2l
a

, (3.42)

where l is the number of momentum components with apµ = π. Hence, while the
physical pole remains the same, the doublers decouple from the theory for a → 0 as
they become infinitely heavy. The massless Wilson–Dirac operator, which incorporates

3Note that throughout this work, if equations are being reused, they are labelled according to their first
appearance.
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the Wilson term, can be written as (cf. (3.23))

DW =
1
2 ∑

µ

{
γµ

(
∇∗µ +∇µ

)
− a∇∗µ∇µ

}
, (3.43)

where the interaction has been switched on again now. The corresponding Wilson
fermion action SW

F for N f = 4∗ then assumes a form very similar to (3.25),

SW
F [ψ, ψ, U] = a4 ∑

x
ψ(x) (DW +M)ψ(x) . (3.44)

It respects the global symmetries C,P and T. Moreover, the Wilson–Dirac operator is
γ5-hermitean,

(γ5DW)† = γ5DW , (3.45)

which will be important for its use in Monte Carlo simulations, to be discussed in
sec. 4.4.

However, there are also two prices one has to pay for the removal of the fermion
doublers. First, it is obvious from (3.43) that the extra Wilson term induces cutoff
effects of the order O(a), which compared to the naive fermion action (3.25) is a change
for the worse. The O(a2) scaling to the continuum can be restored with the help of
the Symanzik improvement program, whose basic idea is described in sec. 3.7, and
whose application to the case of N f = 4∗ non-degenerate, massive Wilson fermions is
the main topic of this thesis, see sec. 8 and 9.

Second, the Wilson–Dirac operator explicitly breaks chiral symmetry on the lattice,
because the Wilson term is a 1 in Dirac space and hence does not anticommute with
γ5, cf. (2.25). This is in accordance with the Nielsen–Ninomiya theorem [35–37], which
states that it is impossible to both conserve chiral symmetry on the lattice and remove
the doublers. The breaking of chiral symmetry by Wilson fermions has far-reaching
consequences. They concern the quark mass renormalization as well as the considera-
tion of dynamical quark effects in the numerical computation of Euclidean correlation
functions, as we will see in detail in sec. 3.5 and sec. 4, respectively.
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3.4 From Euclidean correlation functions to physical
observables

Having discussed the fermion and gauge fields on the lattice, we may now return to
the Euclidean correlation functions in the path integral formalism. The lattice equiva-
lent to the continuum expression (3.1) is

〈O〉 = 1
Z

∫
D[ψ, ψ, U] e−S[ψ,ψ,U]O[ψ, ψ, U] , (3.46)

where

Z =
∫
D[ψ, ψ, U] e−S[ψ,ψ,U] (3.47)

is again the partition function. S[ψ, ψ, U] summarizes the Wilson gauge (3.36) and
Wilson fermion (3.44) action,

S[ψ, ψ, U] ≡ SW[ψ, ψ, U] = SW
G [U] + SW

F [ψ, ψ, U] , (3.48)

although the following holds for any valid discretized action. The measuresD[ψ, ψ, U] =

D[ψ, ψ]D[U] are now finite products of the fermion and link variables:

D[ψ, ψ] = ∏
x

∏
f ,α,c

dψ( f )(x)α
c dψ

( f )
(x)α

c (3.49)

D[U] = ∏
x

∏
µ

dUµ(x) . (3.50)

The gauge invariant (dUµ(x) = d(Ω(x) Uµ(x) Ω(x + µ̂)) and normalized (
∫

dUµ 1 =

1) so-called Haar measure dUµ(x) integrates the link variables over the whole com-
pact group manifold SU(3). One usually works with gauge invariant observables
O[ψ, ψ, U], so that also 〈O〉 is gauge invariant.

Correlation functions like (3.46) can be numerically evaluated within the framework
of Monte Carlo simulations, which will be explained in detail in sec. 4. Under use of
the canonical operator formalism, the results may be used to extract physical observ-
ables like the energy spectrum of the theory. As hadron masses are conceptually the
simplest quantities to obtain from lattice computations, we concentrate on those for
the moment. If OH and OH are interpolators which correspond to the Hilbert space
operators ÔH and Ô†

H that are able to annihilate or create some hadron, the spectral
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3 Quantum chromodynamics on the lattice

Figure 3.2: Extraction of the pion mass Eπ = mπ

from an N f = 2 + 1 simulation on
a 128 × 643 lattice carried out in the
course of the CLS effort [38]. The ex-
cited state contributions at small x0/a
are taken account here by the fit shown
in red. meff is given in lattice units (a
set to unity). The figure is taken from
[38].
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decomposition of the propagator of these interpolators reads4

C(x0) =
〈
OH(x0) OH(0)

〉
= ∑

k

〈
0|ÔH |k

〉〈
k|Ô†

H |0
〉

e−x0Ek (3.51a)

∼ e−x0EH
(

1 + O(e−x0∆E)
)

, (3.51b)

where EH is the energy of the considered hadron, and ∆E denotes the energy gap
to the first excited state with the same quantum numbers. From the behavior for
large Euclidean time x0 = n0 · a, where n0 ∈ [0, T/a] labels the time slice number, the
energy of the ground state in units of the lattice spacing, aEH, can be derived. For this
purpose, one considers an effective mass5 ameff(x0) = log

(
C(x0)

C(x0+1)

)
, which reaches a

plateau for sufficiently large x0, when the excited state contributions have abated and
the ground state dominates. An example is shown in fig. 3.2. The value of aEH may
be obtained from a fit to ameff. It depends on the bare parameters of the theory,

aEH ≡ aEH(g0, am0,u, am0,s, am0,c) , (3.52)

which are at this moment unspecified. In order to arrive at physical predictions Econt
H

for EH in the continuum, the main steps to be taken are the following:

1. Scale setting: The lattice spacing a is determined. This allows to relate dimen-
sionless numbers (like aEH) to quantities in physical units (like EH).

2. Renormalization: The bare parameters are eliminated in favor of physical observ-
ables under use of experimental input.

4We ignore technical aspects like momentum projection and smearing here.
5Note that the propagation in x0 and T − x0 is often identical up a possible minus sign, in which case

meff is usually defined in terms of typical cosh or sinh functions.
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3.4 From Euclidean correlation functions to physical observables

3. Continuum extrapolation: The limit a→ 0 is taken, while the lattice volume is kept
large enough for finite volume effects to be small.

We are going to discuss the individual steps in detail in the following. Although one
principally follows the above order, they are intrinsically tied to each other and can
often not be considered truly isolated in practice.

The basic method to set the scale at a given bare coupling g0 is to use a phenomeno-
logical scale as input, say the proton mass mexp

p , and identify with it the ground state
energy Ep = mp obtained on the lattice by use of a proton interpolator in (3.51):

a =
amp

mexp
p

. (3.53)

The proton mass here serves as a simple example. It is actually more common to
use other phenomenological scales with more favorable properties (good statistical
precision, small systematic uncertainties, weak quark mass dependence), like e.g. the
Ω mass or pseudoscalar decay constants fπ, fK. Also, the use of the Sommer scale r0

or its variation r1, defined in terms of the static quark-antiquark potential (cf. (2.45)),
have been prominently employed. More recently, various gradient flow observables
(to be discussed in sec. 6.1) have emerged, which stand out due to the combination of
excellent statistical properties and the absence of excited state contributions with the
associated systematic errors. An overview on the most commonly used scales is given
in [39]. For simplicity, nevertheless, we will proceed assuming the scale was set with
the proton mass.

For the (basic) renormalization of the theory, it requires additional phenomenological
scales which together are sensitive6 to all bare masses in the theory. Usually one
employs pseudoscalar meson masses, for instance those of the pion, the K- and the D-
meson. Depending on the bare coupling g0, the bare masses mi = mi(g0) are adjusted
such that the theory reproduces physical values for those observables. With the scale
set by the proton mass, this can be achieved by tuning to physical mass ratios:

amh

amp
=

mexp
h

mexp
p

, h = π, K, D . (3.54)

Once the bare masses mi(g0) are fixed by this, the energy spectrum (aEH)(g0) can be

6While all observables are intrinsically dependent on the sea quark masses (in case those are un-
quenched), by sensitive we here mean that the respective quark masses enter the observables via
valence quarks. Moreover, the observables should be independent in the sense that they depend differ-
ently on the quark masses.

43



3 Quantum chromodynamics on the lattice

computed for any hadron H 6= p, π, K, D at a given g0. Subsequently, with the lattice
spacing a(g0) known from scale setting, physical predictions for EH can be made in
the continuum limit,

Econt
H

mexp
p

= lim
a→0

aEH

amp
(g0) , (3.55)

providing a non-perturbative solution of the relativistic bound state problem. Since
small quark masses are associated with increased numerical effort, as we will see in
detail in sec. 4.7 and the end of the current section, one often simulates at unphysi-
cally large up and down (or equivalently pion) masses and extrapolates to the physical
ones. This procedure, called chiral extrapolation as the physical point lies at (almost)
vanishing masses, may be conducted simultaneously with the continuum extrapola-
tion.

The continuum limit is reached for g0 → 0. This can be derived from the insight that
a physical observable7 P = P(g0, a) should be independent of a in the limit a → 0.
Consequently, a change in a needs to be compensated by a simultaneous change in
g0(a), which may again (cf. (2.30)) be expressed in a renormalization group equation:

[
a ∂a − β(g0) ∂g0

]
P(g0, a) = 0 . (3.56)

The beta function is defined here with a relative minus sign in comparison to (2.31),

β(g0) = −a ∂ag0(a) . (3.57)

The perturbative expansion of β(g0) around g0 = 0 is completely equivalent to (2.33),
and the special solution Λ can again be found, by formally replacing µ → 1/a and
g2 → g2

0 in (2.35):

Λ =
1
a
(b0g2

0)
− b1

2b2
0 e
− 1

2b0g2
0
(
1 + O(g2

0)
)

. (3.58)

It relates the lattice spacing a to the bare coupling g2
0, and leads to the asymptotic scaling

g2
0 ∼ 1/ log (aΛ) for a→ 0 . (3.59)

Note that the continuum limit g0 → 0 coincides with a critical point of the system, at

7We consider pure gauge theory here for brevity. The discussion may be extended to QCD, in which
case the bare masses are dependent on the lattice spacing as well, m0,i(a) with i ∈ {u, d, s, c}.
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which the correlation length ξ = 1/(amπ) diverges. The pion governs the correlation
length in its capacity as the lightest hadron in the theory. As such, it also rules the
finite volume effects, which for an observable P are determined by the ratio of the
lattice extent8 L/a to the correlation length ξ:

P|V=∞ − P|V=L4 = O(e−mπ L) , (3.60)

where (L/a) /ξ = mπ L was used. In principle, one has to take the infinite volume limit
for observables as well. However, due to the exponential decrease of finite volume
effects, (3.60), they can be neglected if mπ L is sufficiently large. As a rule of thumb,
this is the case for mπ L & 4. Note that the smaller the pion mass, the larger the lattice
volume has to be in order to fulfill this requirement. This provides another reason
why simulations at low pion masses are expensive.

3.5 Renormalization of the bare parameters

The hadron masses EH are the simplest quantities one may compute on the lattice.
Other physical observables are derived from the matrix elements in (3.51a), or in gen-
eral from Euclidean correlators with composite operators of various kinds. These
require an additional renormalization on top of the previously encountered hadron
spectrum renormalization. We postpone the discussion of this matter to the next sec-
tion.

Meanwhile, we focus on the renormalization of the bare coupling and the bare
masses. The necessity to consider this arises for various reasons. It allows, for instance,
to make predictions for the strong coupling g2(µ) (cf. fig. 2.3) and the renormalized
quark masses mi(µ), or equivalently the RGIs Λ [40–44] and Mi [45], see (2.35) and
(2.36), respectively. This is done by computation of the renormalized quantity under
use of low energy experimental input (scale setting, cf. sec. 3.4), and evolution to high
energies, where it may be converted to a commonly used renormalization scheme in
the continuum, like MS. Moreover, the notion of a renormalized coupling or mass
may be employed to keep the physics on the lattice fixed, e.g. in terms of a line of con-
stant physics. We denote renormalized quantities on the lattice with a subscript R (in
contrast to the overbar used in the continuum), and—until further notice—work exclu-
sively in a mass-independent renormalization scheme, where the renormalization constants
depend only on the bare coupling and the renormalization scale aµ, Z ≡ Z(g2

0, aµ).

8We assume a hypercubic lattice with V = T × L3 = L4 here.
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In principle, the renormalization of the bare parameters reads

g2
R = Zg(g2

0, aµ) g2
0 (3.61)

mi
R = Zm(g2

0, aµ) m0,i , (3.62)

where the definition of the renormalization constants Z and the scale µ depend on the
scheme. In sec. 5, we will encounter the Schrödinger functional, in terms of which a
renormalized coupling g2

R can be defined. The above principle mass renormalization
prescription has to be altered in the Wilson formulation of Lattice QCD, due to the
breaking of chiral symmetry, cf. sec. 3.3. As explained in detail in app. D and app. E,
the bare mass matrixM (3.13) may be decomposed in a flavor singlet mass and flavor
non-singlet mass components, which renormalize differently, with renormalization
constants Zm0(g2

0, aµ) and Zm(g2
0, aµ), respectively. Note, however, that their depen-

dence on the renormalization scale µ is the same, such that the ratio

rm(g2
0) =

Zm0(g2
0, aµ)

Zm(g2
0, aµ)

(3.63)

is µ-independent. Furthermore, the singlet quark mass is subject to an additive renor-
malization, which manifests itself in the appearance of the so-called critical mass
mcrit ≡ mcrit(g2

0). Emphasizing its dependence on g2
0, one also speaks of the critical

line in the space spanned by the bare mass and the bare coupling. In terms of the
matrix

M = diag(mq,u, mq,d, mq,s, mq,c) (3.64)

of bare subtracted quark masses

mq,i = m0,i −mcrit , (3.65)

the quark mass renormalization in the generic case of N f = 4∗ Wilson fermions can be
written as9

mi
R = Zm(g2

0, aµ)
[
mq,i +

(
rm(g2

0)− 1
)

Tr [M] /N f
]

. (3.66)

The derivation of this formula can be found in app. E.1. As a consequence, the renor-

9Note that in contrast to the trace tr in color space, see e.g. (3.29), the trace in flavor space is denoted by
Tr.
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malized quark mass mi
R vanishes if all the bare subtracted quark masses become zero:

mq,j = 0 ∀ j ∈ {1, . . . , N f } ⇒ mi
R = 0 . (3.67)

For the special case of N f = 4 degenerate masses10, (3.66) reduces to

mR = Zm0(g2
0, aµ) mq . (3.68)

We close this section with the introduction of the so-called hopping parameters, which
are closely related to the bare (subtracted) quark masses. By explicitly writing out all
the terms in the Wilson–Dirac operator (3.43), the Wilson fermion action (3.44) may be
cast into the form

SW
F [ψ, ψ, U] = a4 ∑

i=u,d,s,c
∑
x,y

ψ
(i)
(x) Ci (1− κi H) ψ(i)(y) , (3.69a)

with

Ci = m0,i +
4
a

(3.69b)

κi =
1

2(am0,i + 4)
(3.69c)

H(x, y) =
±4

∑
µ=±1

(
1− γµ

)
Uµ(x)δx+µ̂,y , (3.69d)

where in (3.69d) the convenient notation γ−µ = −γµ is used. The irrelevant con-
stants Ci can be absorbed in a redefinition of the quark fields, ψ(i) →

√
Ciψ

(i) and
ψ
(i) → ψ

(i)√Ci. The term H(x, y) is called hopping matrix as it incorporates all near-
est neighbor terms. Accordingly, κi are the hopping parameters, which are often used
instead of the bare masses m0,i in practice. The quark propagator D−1

W , for instance,
may be expanded in a series of powers of κi, the hopping expansion, which is useful
especially for large masses. The critical mass mcrit defines the critical hopping parameter
κcrit, and the bare subtracted quark masses (3.65) may be written as

mq,i =
1
2a

[
1
κi
− 1

κcrit

]
. (3.70)

10The flavor index may be dropped in that case.
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3.6 Renormalization of bilinears and the PCAC mass

We now proceed our discussion with the renormalization of composite operators in
the general case of N f = 4∗ in a mass-independent scheme, as announced in the
previous section. We concentrate on quark bilinears, namely the vector current Vµ,
the scalar density S, the axial current Aµ, and the pseudoscalar density11 P. These
are generally of interest e.g. in flavor physics for the determination of hadronic matrix
elements and decay constants. Of particular importance for our purposes will be the
axial and pseudoscalar currents, and the PCAC relation that relates those, as will be
discussed below. The currents are defined in terms of the fermion fields as

Vc
µ(x) = ψ(x) γµ Tc ψ(x) (3.71)

Sc(x) = ψ(x) Tc ψ(x) (3.72)

Ac
µ(x) = ψ(x) γµγ5Tc ψ(x) (3.73)

Pc(x) = ψ(x) γ5Tc ψ(x) . (3.74)

Here, they are represented in the generator basis (cf. app. B), Tc extended by T0 =

1/N f . Correspondingly, the components are labelled by c ∈ {0, . . . , N2
f − 1}. We will

also frequently employ the bilinears in the flavor basis (cf. app. B), where the above
currents φ = Vµ, S, Aµ, P with their respective elements Γ = γµ,1, γµγ5, γ5 of the
Clifford Algebra read

φij = ψ
i
(x) Γ ψj(x) , (3.75)

with i, j ∈ {1, . . . , N f }.
In the framework of chiral Ward identities, which are subject of app. C, it can be

argued that the pseudoscalar density and the axial current, of which we consider off-
diagonal (j 6= i) components exclusively, renormalize according to

(AR)
ij
µ = ZA(g2

0) Aij
µ (3.76)

(PR)
ij = ZP(g2

0, aµ) Pij , (3.77)

and the scale-independent renormalization of the axial current vanishes in the contin-
uum limit, ZA(g2

0) → 1 for g2
0 → 0. Moreover, the chiral Ward identities themselves

state that the vector and axial current, Vµ and Aµ, are (partially) conserved. Of partic-

11We will also use the expression "pseudoscalar current".
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ular importance for us will be the PCAC relation:

∂µ Aij
µ(x) = 2m0,ij Pij(x) . (3.78)

where m0,ij = 1
2

(
m0,i + m0,j

)
is the average bare mass of the quark flavors i and j.

Equation (3.78) is an operator relation, which is exact in the continuum. It may well
be written in terms of an expectation value with an operator O,

∂̃µ

〈
Aij

µ(x) O
〉
= 2m0,ij

〈
Pij(x) O

〉
. (3.79)

where O is arbitrary apart from the restriction that its support shall not contain x. On
the lattice (and after renormalization), the relation is violated due to the breaking of
chiral symmetry in the Wilson formulation (cf. app. C):

∂̃µ

〈
(AR)

ij
µ(x) OR

〉
= (mi

R + mj
R)
〈

Pij
R (x) OR

〉
+ O(a) . (C.13b)

Isolation of the masses on one side of the equation, and application of the respective
renormalization prescriptions for the currents, (3.76) and (3.77), leads to

mij
R =

ZA(g2
0)

ZP(g2
0, aµ)

∂̃µ

〈
Aij

µ(x) O
〉

2
〈

Pij(x) O
〉 + O(a) , (3.80)

where mij
R = 1

2

(
mi

R + mj
R

)
is the obvious renormalized counterpart of the average

bare mass m0,ij. Note that the renormalization of the operator O drops out in the ratio
above. Equation (3.80) suggests the definition of the so-called bare PCAC mass:

mij
PCAC(x) =

∂̃µ

〈
Aij

µ(x) O
〉

2
〈

Pij(x) O
〉 . (3.81)

After introduction of an improved version mij
PCAC,I with reduced cutoff effects in the

upcoming sec. 3.7, we will concretize the notion of the PCAC mass in the framework
of the Schrödinger functional in sec. 5.3. The dependence of mij

PCAC on the spacetime
coordinate x, the operator O, and any other parameter that enters the above correlation
functions, is a pure lattice artifact. In connection with (3.80), this will play a central
role in the determination of the improvement coefficient csw, to be discussed in sec. 9.
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3.7 Symanzik improvement program in N f = 4

As explained in sec. 3.4, the continuum extrapolation of results obtained at finite lattice
spacing is crucial in order to make predictions suitable for comparison with experi-
ment. Cutoff effects depend on the employed action as well as the observable under
consideration and may differ substantially. In general, their leading order is O(a),
i.e. the continuum is approached linearly for sufficiently small lattice spacings. For a
connected renormalized n-point correlation function, given in terms of a local gauge-
invariant composite operator φ(x) as12

Gn(x1, . . . , xn) =
(
Zφ

)n 〈φ(x1) . . . φ(xn)〉 , (3.82)

this may formally be expressed by

Gn(x1, . . . , xn)
∣∣

a 6=0 = Gn(x1, . . . , xn)
∣∣

a=0 + O(a) . (3.83)

The size of the cutoff effects has impact on the statistical error of the continuum extrap-
olated value. Even more importantly, an uncertainty in their functional dependence on
the lattice spacing introduces a systematic error which makes the extrapolation more
difficult and in the worst case may impair its reliability. Hence, it is of utter impor-
tance to have the cutoff effects under control. Of considerable help in that sense is to
reduce the overall cutoff effects to the order O(a2). The absence of linear order cutoff
effects renders the extrapolation smoother and reduces its ambiguousness. This holds
in particular as cutoff effects which come in powers of the lattice spacing larger than
two, vanish fast for small (but affordable) lattice spacings. In turn, this reduces the
need for expensive simulations at very small lattice spacings.

The discretization effects in (3.83) stem from two distinct sources. On the one hand,
from the discretized actions in the path integral, on the other hand, from the dis-
cretized representations of the operators. Only if these two ingredients exhibit O(a2)

cutoff effects individually, the ones of the correlation function in (3.83) are of this order,
too. The Symanzik improvement program [7–9] is a well-established systematic approach
to achieve this.

12We assume that operator mixing under renormalization is absent.
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3.7 Symanzik improvement program in N f = 4

Symanzik effective theory and on-shell improvement

We discuss the basic idea behind the Symanzik improvement program in the following,
restricting ourselves to the case of N f = 4 degenerate quark flavors, for which the bare
mass matrix M (cf. (3.13)) and the related bare subtracted mass matrix M (cf. (3.64))
are written as

M = m0 · 14 and M = mq · 14 . (3.84)

The extension to N f = 4∗ non-degenerate quark flavors is subject of sec. 8. The lattice
framework is defined by the Wilson gauge SW

G [U] (3.36) and Wilson fermion action
SW

F [ψ, ψ, U] (3.44), which are combined in S[ψ, ψ, U], as in (3.48). Symanzik improve-
ment is based on the observation that—sufficiently close to the continuum—the lattice
theory may be described in terms of the local so-called Symanzik effective theory (SET),
with the action

Seff = S0 + aS1 + a2S2 + O(a3) . (3.85)

Here, S0 is the well-known continuum action, while the correction terms are regarded
as operator insertions in the continuum theory. They are of the form

Sd =
∫

d4x Ld(x) , (3.86)

where Ld are linear combinations of local, gauge-invariant composite fields of dimen-
sion 4 + d that respect also the global symmetries of the theory. We will specify L1

below. Similarly, the renormalized lattice fields Zφφ(x) are described in the SET by
effective operators φd of dimension dim(φd) = dim(φ0) + d:

φeff = φ0 + aφ1 + a2φ2 + O(a3) . (3.87)

The correlation function (3.82) in the SET assumes the form

Gn,eff(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉cont

+ a
∫

d4y 〈φ0(x1) . . . φ0(xn) L1(y)〉cont

+ a
n

∑
k=1
〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉cont + O(a2) , (3.88)
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3 Quantum chromodynamics on the lattice

where the subscript “cont” indicates that the continuum action S0 is employed in the
evaluation of the expectation values.

We restrict our discussion to on-shell quantities that can be derived from those cor-
relation functions Gn (3.82) which only include fields φ at a physical distance to one
another, x1 6= x2 6= . . . 6= xn. In that case, the contact terms that arise from the integra-
tion over y in (3.88) may be absorbed in the definition of the field φ1. Consequently,
the term L1(y) can be considered independent, and the equations of motions may be
used to substantially simplify it. To see this concretely, we write down the Symanzik
effective Lagrangian to first order, which reads [46]

LSym = L0 + aL1 = L0
Sym + Lm

Sym , (3.89a)

with13

L0
Sym =

1
4

FµνFµν + ψ /Dψ

+ aρ1 ψDµDµψ

+ aρ2 ψiσµνFµνψ

(3.89b)

and

Lm
Sym = mqψψ

+ aσ1 m2
q ψψ

+ aσ5 mq tr[FµνFµν]

+ aσ6 mq ψ /Dψ , (3.89c)

where σµν = i
2 [γµ, γν]. It is split here into a mass-independent L0

Sym and a mass-
dependent part Lm

Sym for convenience. Note that purely gluonic terms beyond the
continuum gauge action are at least of dimension 6 and do not need to be taken
into account to the considered order. Moreover, the prefactors of the fermionic O(a0)

terms in (3.89) are set to one. The normalization of the kinetic term can be achieved
by rescaling of the fermion fields. In contrast, the mass mq as it appears in Lm

Sym,
is understood to be related to the one in (3.84) by a multiplicative renormalization.
Following standard practice, however, this difference is neglected here. The terms
with ρ1 and σ6, which involve covariant derivatives, can be eliminated under use of
the Dirac equation, i.e. they can be converted to terms which are already present in
the effective Lagrangian.

We consider the effective bilinears φ = Aµ, P (cf. (3.73, 3.74)) next. The principle
which underlies the construction of improvement terms φ1 is the same as for the action,
they have to maintain the behavior of the respective currents under the symmetry

13The somewhat peculiar enumeration of the improvement coefficients here serves as preparation for the
extension to non-degenerate masses, which leads to additional mass-dependent terms, as we will see
in sec. 8.
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3.7 Symanzik improvement program in N f = 4

transformations of the theory. Up to O(a), the terms which fulfill this criterion for the
effective axial and pseudoscalar currents are14 [46]:

(ASym)c
µ = Ac

µ + aω0 ψγ5TcDµψ + aω1 mq Ac
µ + aω5 ψγ5TciσµνDνψ (3.90)

(PSym)c = Pc + aω′1 mqPc (3.91)

Here, the term with ω5 can be eliminated.

Improved lattice action

The insights from the SET pave the way to the improvement of the scaling behavior of
both the lattice action and the lattice operator representations. In order to let the O(a)
terms in the Symanzik expansion vanish, one simply needs to add discretized versions
of the Symanzik terms to the respective lattice quantities, with suitable improvement
coefficients c. Those depend on the lattice spacing, or equivalently the bare coupling,
c ≡ c(g2

0).
For on-shell improvement of the Wilson fermion and gauge action, the O(a) counter-

terms that have to be taken into account can be read off from (3.89):

LF,I = ψDWψ + m0ψψ

+ acsw ψ
i
4

σµνFµνψ

+ ac1 m2
qψψ (3.92a)

and

LG,I = LG[U]

+ ac5 mq tr[FµνFµν] .

(3.92b)

Here, LG[U] is the Lagrangian associated with the gauge action, whose scaling behav-
ior as discussed in sec. 3.2 is

SG =: a4 ∑
x
LG[U] =

a4

2g2
0

∑
x

tr[FµνFµν] + O(a2) . (3.93)

Note that the mass-dependent improvement terms in (3.92) could just as well contain
the bare mass m0 instead of the bare subtracted mass mq, as the difference (mcrit) can
be absorbed in the improvement coefficients c1 and c5. However, mq is advantageous
in view of the conjunction of O(a) improvement with renormalization, to be discussed
in the following. The mass-dependent improvement terms are both proportional to
terms that already appear in the unimproved Lagrangian and may thus be absorbed

14See footnote 13.
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in the bare parameters. While this is straight forward for the bare mass, cf. (3.92a), in
the case of the bare coupling it may readily be seen under use of (3.93):

LG,I =

(
1

2g2
0
+ ac5 mq

)
tr[FµνFµν] + O(a2)

=
1

2g2
0

(
1 + 2ac5g2

0 mq
)

tr[FµνFµν] + O(a2)

=
1

2g2
0

1
1− 2ac5g2

0 mq
tr[FµνFµν] + O(a2)

= LG
∣∣

g2
0→g2

0(1−2ac5g2
0 mq)

. (3.94)

One introduces the improvement coefficients

bm = σ1 and bg = −2σ5 · g2
0 , (3.95)

such that the absorption reads

g2
0 → g̃2

0 = g2
0
(
1 + abg(g2

0)mq
)

(3.96)

mq → m̃q = mq
(
1 + abm(g2

0)mq
)

. (3.97)

In this form, the O(a) corrections may be accounted for in the renormalization of the
bare parameters (cf. (3.61, 3.68)):

g2
R = Zg(g̃2

0, aµ) g̃2
0 (3.98)

mR = Zm0(g̃2
0, aµ) m̃q . (3.99)

We stress that this is again the mass-independent renormalization scheme here. The
significance of the above formulas lies in the fact that for fixed renormalized quan-
tities (e.g. if the continuum limit is taken), the modified bare parameters scale mass-
independently, whereas the scaling of the ordinary bare parameters is mass-dependent
if O(a) improvement is to be achieved. Accordingly, if the masses are varied, the bare
coupling needs to be varied simultaneously in order to keep g̃2

0 and hence the lattice
spacing fixed.

Under the provision of (3.96)-(3.99), the O(a) improved Wilson action reads

SW
I [ψ, ψ, U] = SW

G [U] + SW
F [ψ, ψ, U] + δSsw[ψ, ψ, U] , (3.100)
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Figure 3.3: Illustration of the term Qµν(x) as given in
(3.102b), which enters the clover discretiza-
tion F(clov)

µν of the gluon field tensor (3.102a).

where the only remaining improvement term in the action is the Sheikholeslami–Wohlert
term,

δSsw[ψ, ψ, U] = a5csw(g2
0) ∑

x
ψ(x)

i
4

σµνFµν(x)ψ(x) . (3.101)

The coefficient csw(g2
0) is called the Sheikholeslami–Wohlert coefficient. There is some

arbitrariness in the discretization of the field strength tensor in (3.101), which does not
affect the considered order of improvement though. A particular, frequently employed
lattice representation is

F(clov)
µν (x) = − 1

8a2

(
Qµν(x)−Qνµ(x)

)
(3.102a)

with15

Qµν(x) = Uµ,ν(x) + Uν,−µ(x) + U−µ,−ν(x) + U−ν,µ(x) . (3.102b)

Due to the shape of Qµν(x) provided by the involved plaquettes, illustrated in fig. 3.3,
it is referred to as clover term.

Improved bilinears and PCAC mass

For the improvement of the axial and pseudoscalar current, there is only one term that
needs to be considered [46]:

(AI)
c
µ = Ac

µ + acA(g2
0) ∂̃µPc (3.103)

(PI)
c = Pc (3.104)

15Note that in the literature, the definition of Qµν(x) is often such that its indices are interchanged.
Correspondingly, in that case, a relative minus sign appears in (3.102a), and the orientation of the
plaquettes in fig. 3.3 is reversed.
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3 Quantum chromodynamics on the lattice

This is because the terms which correspond to ω1, ω′1 in (3.90) and (3.91) may again be
incorporated by means of the renormalization prescription (cf. (3.76, 3.77)):

(ARI)
c
µ = ZA(g̃2

0)
[
1 + abA(g2

0) mq
]
(AI)

c
µ (3.105)

(PRI)
c = ZP(g̃2

0, aµ)
[
1 + abP(g2

0) mq
]

Pc . (3.106)

It is now straightforward to translate the renormalization in terms of the PCAC mass
in the unimproved N f = 4∗ case, (3.80), to the improved N f = 4 theory. It reads

mR =
ZA(g̃2

0)

ZP(g̃2
0, aµ)

1 + abA(g2
0) mq

1 + abP(g2
0) mq

mPCAC,I(x) + O(a2) , (3.107)

in terms of the improved PCAC mass (cf. (3.81)),

mPCAC,I(x) =
∂̃µ

〈
(AI)µ (x) O

〉
2 〈P(x) O〉 . (3.108)

Note that the currents, although written without flavor indices due to the degeneracy,
are still understood to be non-singlet currents.

All the renormalization and improvement coefficients in principle depend on g̃2
0.

Concerning the encountered improvement coefficients csw, cA and bg, bm, bA, bP, how-
ever, the difference made by the use of the original and the modified bare coupling is
of the order O(a2). We keep g2

0 as their argument to emphasize that all expressions are
set up to improve the theory up to O(a) only.

There exist non-perturbative as well as perturbative determinations for them, which
in general depend on the number N f of flavors in the theory and the gauge action
which is employed. We will return to this issue in sec. 3.9, when we have another,
improved gauge action at our disposal. This so-called tree-level improved Lüscher–Weisz
gauge action is subject of the upcoming section.

3.8 Tree-level improved Lüscher–Weisz gauge action

The scaling violations of the Wilson gauge action are of order O(a2). According to
the Symanzik improvement program, one may add operators of dimension 6 to the
gauge action in order to reduce the order of cutoff effects as the continuum limit
is approached. These operators are given by the products U(C) of 6 link variables
along closed loops C ∈ Si (i = 1, 2, 3), where Si is the set of all rectangles (i = 1),
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3.8 Tree-level improved Lüscher–Weisz gauge action

Figure 3.4: Elementary closed loops from which improved gauge actions are built up in addi-
tion to the plaquette depicted in fig. 3.1. From left to right: rectangle (i = 1), chair
(i = 2), parallelogram (i = 3).

bent rectangles or chairs (i = 2) and parallelograms (i = 3) on the lattice, see fig. 3.4.
Together with the set of all oriented plaquettes, S0, an improved lattice gauge action
may conveniently be written as

SW,I
G [U] =

1
g2

0

3

∑
i=0

ci(g2
0) ∑
C∈Si

tr[1−U(C)] . (3.109)

Note that the unimproved Wilson gauge action SW
G (cf. (3.39)) is recovered from (3.109)

for c0 = 1 and c1 = c2 = c3 = 0. The improvement coefficient are subject to the nor-
malization condition

c0(g2
0) + 8 c1(g2

0) + 16 c2(g2
0) + 8 c3(g2

0) = 1 , (3.110)

which is a convention that can always be enforced. In [47], it was argued that on-
shell improvement (cf. sec. 3.7) provides two more constraints on the improvement
conditions. To fix all the improvement coefficients, c2(g2

0) = 0 is a particularly suitable
choice, for which the remaining coefficients were calculated at tree-level order16 in
perturbation theory. They read [47]

c0 ≡ c0(g2
0 = 0) = 5/3 (3.111a)

c1 ≡ c1(g2
0 = 0) = −1/12 (3.111b)

c2 ≡ c2(g2
0 = 0) = 0 (3.111c)

c3 ≡ c3(g2
0 = 0) = 0 . (3.111d)

16For a computation of the next order in perturbation theory, see [48].
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The coefficients (3.111a, 3.111b) define the tree-level improved Symanzik or Lüscher–Weisz
gauge action, which can be written as

SLW
G [U] =

1
g2

0
∑

i=0,1
ci ∑
C∈Si

tr[1−U(C)] . (3.112)

Its use leads to scaling violations of the order O(a2g2
0). We emphasize that Si is under-

stood to contain all oriented loops, and (3.112) may also be found in the literature as a
sum over all unoriented loops with an additional occurrence of 2 Re, see the discussion
at the end of sec. 3.2.

3.9 Results for improvement coefficients

3.9.1 csw

The improvement coefficient csw with its perturbative expansion

csw(g2
0) = c(0)sw + c(1)sw g2

0 + O(g4
0) (3.113a)

depends on the employed gauge action. The tree-level coefficient

c(0)sw = 1 (3.113b)

is universal, however, and has been computed along with the one-loop coefficient c(1)sw

for the Wilson gauge action SW
G in [49, 50]. The numerical value of the counterpart

for the tree-level improved Lüscher–Weisz gauge action SLW
G is known from [51]. They

read

c(1)sw =

0.2659(1) for SG = SW
G

0.196(6) for SG = SLW
G .

(3.113c)

Non-perturbative results for csw were obtained by the ALPHA Collaboration with var-
ious numbers of massless, dynamic quark flavors, and under use of both the Wilson
gauge action and the tree-level improved Lüscher–Weisz gauge action. Details on the
strategies employed in these works as well as a compilation of their findings can be
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found in app. F.1. For N f = 2 in connection with SW
G , the result reads [17]

csw(g2
0) =

1− 0.454g2
0 − 0.175g4

0 + 0.012g6
0 + 0.045g8

0

1− 0.720g2
0

for β ≥ 5.2 . (3.114)

3.9.2 cA

The perturbative expansion is similar to (3.113a) for the improvement coefficient cA, the
difference being that it vanishes at tree-level [52],

cA(g2
0) = c(1)A g2

0 + O(g4
0) . (3.115a)

The leading one-loop coefficient c(1)A was obtained for the Wilson gauge action first in
[50] and rederived with improved accuracy in [53]. The case of the tree-level improved
Lüscher–Weisz gauge action has again been covered in [51]. The results are

c(1)A =

−0.005680(2)× CF for SG = SW
G

−0.004525(25)× CF for SG = SLW
G ,

(3.115b)

with CF = 4/3 (cf. (A.12)).
The non-perturbative determinations of cA, again performed for different numbers of

massless, dynamic quark flavors and both the gauge actions, SW
G and SLW

G , are covered
in app. F.2. The result for N f = 2 in connection with SW

G reads [54]

cA(g2
0) = −0.00756g2

0 ×
1− 0.4485g2

0

1− 0.8098g2
0

for 0.98 ≤ g2
0 ≤ 1.16 . (3.116)

3.9.3 bg, bm, bA, bP

For the improvement coefficients bg, bm, bA, bP and their respective perturbative expan-
sions,

bX(g2
0) = b(0)X + b(1)X g2

0 + O(g4
0) , (3.117)

the parameters are known up to one-loop order, see tab. 3.2. Note that the numerical
one-loop expression of the combination bA − bP as it appears in (3.107) is quite small,
namely [53]

bA − bP = −0.00093(8) · g2
0 + O(g4

0) . (3.118)

59



3 Quantum chromodynamics on the lattice

X b(0)X Ref. b(1)X Ref.

g 0 [46] 0.012000(2) · N f [46]
m − 1

2 [50] −0.07217(2) · CF [53]
A 1 [50, 52] 0.11414(4) · CF [53]
P 1 [50, 52] 0.11484(2) · CF [53]

Table 3.2: Coefficients of the perturbative expansions (3.117) of bX ∈ {bg, bm, bA, bP}.

It was computed also non-perturbatively, along with bm and the renormalization con-
stant Z (cf. (E.17)), in N f = 0 [55–57] as well as N f = 2 [58].

Regarding bg, there exist no non-perturbative results for any gauge action17. Note,
however, that the fact that it is associated with sea quark effects is reflected in both, the
fact that it vanishes at tree-level order (in accordance with (3.95)), and the occurrence
of the explicit factor N f in b(1)g , see tab. 3.2.

17This is a significant restriction in large volume simulations with massive sea quarks, where one needs
to adopt a strategy to keep g̃2

0 and thus the lattice spacing fixed (cf. sec. 3.7) without the knowledge
of bg, see e.g. [38, 59].
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4 Monte Carlo simulations and numerical
techniques

In this section, we cover the numerical simulation of Euclidean correlation functions,
which we recall here for convenience:

〈O〉 = 1
Z

∫
D[ψ, ψ, U] e−S[ψ,ψ,U]O[ψ, ψ, U] , (3.46)

with

Z =
∫
D[ψ, ψ, U] e−S[ψ,ψ,U] . (3.47)

The different statistics of the fermion and boson fields demand substantially different
methods for the numerical integration of the respective degrees of freedom. Hence, it
is useful to split off the fermionic part of the integration:

〈O〉 = 1
Z

∫
D[U] e−SG [U] ZF[U] 〈O〉F [U] , (4.1)

where

〈O〉F[U] =
1

ZF[U]

∫
D[ψ, ψ] e−SF [ψ,ψ,U]O[ψ, ψ, U] (4.2)

contains the integration over the fermionic degrees of freedom and

ZF[U] =
∫
D[ψ, ψ] e−SF [ψ,ψ,U] (4.3)

is the fermionic partition function. Note that SF will from now on always represent
the Wilson fermion action (3.44), whereas SG may be either the Wilson gauge (3.36) or
tree-level improved Lüscher–Weisz gauge action (3.112).

We will explore the techniques to evaluate the different parts of the functional in-
tegral (4.1) step by step. In sec. 4.1, we consider the implementation of the fermionic
degrees of freedom in the path integral. We will learn that the fermionic expectation
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value (4.2) can be explicitly computed, whereas the partition function (4.3) is treated
numerically together with the gauge field integration in the framework of Monte Carlo
simulations. These will be explained in detail in the subsequent sections. First, in
sec. 4.2 and sec. 4.3, under complete neglect of the fermionic contributions included in
ZF. The contributions of the different flavors and the techniques they require will then
be incorporated gradually in sec. 4.4-4.6. After a brief survey on important numerical
techniques in sec. 4.7-4.9, we will finally summarize the estimation of statistical errors
using the so-called gamma method in sec. 4.10.

4.1 Fermions in the path integral

We first consider the fermionic path integral

〈O〉F[U] =
1

ZF[U]

∫
D[ψ, ψ] e−SF [ψ,ψ,U]O[ψ, ψ, U] . (4.2)

The operator O may involve products of fermion fields ψ and ψ, which need to obey
Fermi statistics, i.e. an interchange of any two components of ψ or ψ is required to
produce a minus sign. To implement this, one needs anti-commuting Grassmann
variables ηi and η̄i, one for each component of ψ and ψ, respectively:

ηiηj = −ηjηi , η̄iη̄j = −η̄jη̄i , η̄iηj = −ηjη̄i , (4.4)

with

i, j ∈ {1, . . . , Ncomp = 12N f |X|} (4.5)

given in terms of the number |X| of lattice sites, cf. (3.14). For a given gauge configu-
ration U, the fermionic expectation value (4.2) may be computed in closed form with
the help of Wick’s theorem for Grassmann variables:

〈
ηi1 η j1 . . . ηin η jn

〉
F
=

1
ZF

∫ Ncomp

∏
k=1

dηkdηk ηi1 η j1 . . . ηin η jn exp

(
−

Ncomp

∑
l,m=1

ηl Dlmηm

)
= ∑

P
sign(P) (D−1)i1 jP1

. . . (D−1)in jPn
. (4.6)
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Here, the sum runs over all possible permutations P(1, . . . , n) = (p1, . . . , pn) of the
numbers 1, . . . , n. The massive Wilson–Dirac operator (cf. (3.13, 3.43))

D = DW +M (4.7)

with its Ncomp× Ncomp components is equipped with multi-indices, which stand short
for a set of four indices labelling spacetime coordinates as well as Dirac, color and
flavor components, e.g. i1 = (x, α, a, f ). A proof of the above formula, which employs
the generating functional for fermions, can be found e.g. in [31].

As an example of its application, we consider the hadron correlator
〈
OH(t) OH(0)

〉
already encountered in (3.51). For the specific case of the correlator of the operators

Oπ+(x) = d(x)γ5u(x) (4.8a)

Oπ+(y) = Oπ−(y) = u(x)γ5d(x), (4.8b)

between two spacetime points x, y ∈ X, one finds

〈
Oπ+(x) Oπ+(y)

〉
F =

〈
d(x)γ5u(x) u(y)γ5d(y)

〉
F

= (γ5)α1β1(γ5)α2β2

〈
d(x)α1

c1
u(x)β1

c1 u(y)α2
c2

d(y)β2
c2

〉
F

= −(γ5)α1β1(γ5)α2β2

〈
u(x)β1

c1 u(y)α2
c2

〉
u

〈
d(y)β2

c2 d(x)α1
c1

〉
d

= −tr
[
γ5 D−1

u (x|y) γ5 D−1
d (y|x)

]
. (4.9)

In the third line the order of the Grassmann variables was changed and the fermion
expectation value was factorized in flavor contributions. Subsequently, the Wick theo-
rem (4.6) was applied. The notation of the quark propagators indicates that the flavor
and spacetime indices are fixed, whereas the other indices are summed over by the
trace tr that is to be understood in both color and Dirac space here. The pion propaga-
tor in the form (4.9) may be computed numerically for a given gauge configuration U.
Note that the correlator with mere time dependence, (3.51), which in the case at hand
is suitable to extract the pion mass, is found by momentum projection of (4.9).

The fermionic partition function ZF (4.3) in terms of the Grassmann variables reads

ZF =
∫ Ncomp

∏
k=1

dηkdηk exp

(
−

Ncomp

∑
l,m=1

ηl Dlmηm

)
.

The Matthews-Salam formula [60, 61] allows to integrate out the fermionic degrees of
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4 Monte Carlo simulations and numerical techniques

freedom in the partition function and write it as a fermion determinant:

ZF = det[D] . (4.10)

It is convenient for later use to split the partition function in contributions of different
flavors:

ZF = ∏
f

det[D f ] , (4.11)

with D f now being matrices of the size 12|X| × 12|X|. The path integral (4.1) under
use of (4.11) reads

〈O〉 = 1
Z

∫
D[U] e−SG [U] ∏

f
det[D f ] 〈O〉F [U] , (4.12a)

where the partition function with the fermions integrated out assumes the form

Z =
∫
D[U] e−SG [U] ∏

f
det[D f ] . (4.12b)

The splitting of the fermionic part into a fermion determinant and the fermionic ex-
pectation value can physically be interpreted as follows. The fermion determinant

∏ f det[D f ] represents dynamical sea quark effects, i.e. it describes the creation and
annihilation of virtual quark-antiquark pairs. This viewpoint is suggested by investi-
gation of the hopping expansion (see sec. 3.3) for the determinant, see e.g. [31]. The
fermionic expectation value 〈O〉F [U] describes the propagation of the state defined by
O under the interaction with the external gauge field U, which is itself affected by
the aforementioned dynamical quark effects. In the case of our example (4.9), it is the
valence quarks of a pion(-like) state that interact with U.

The question arises of how to treat the fermion determinant mathematically. A direct
determination of det[D f ], which formally has (12|X|)! terms, is absolutely out of reach
regarding the computational costs that are of the order1 O((12|X|)3). Historically,
the first Lattice QCD computations were for this reason performed in the quenched
approximation, where the sea quark effects are simply ignored:

ZF = ∏
f

det[D f ]→ 1 . (4.13)

1This refers to the use of Gaussian elimination.
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They may be included nowadays by assignment of the fermion determinant to the
Boltzmann weight factor of the gauge field, e−SG [U], in the framework of Monte Carlo
simulations. However, since this is both computationally expensive and technically
involved, the consideration of the different flavors has been done stepwise. Depending
on the dynamical quark content of the theory, one speaks of N f = 0 (quenched) and
N f = 2 (including mass-degenerate up and down quarks), for instance. In the case
where strange and charm quark flavors with different masses add to the theory, it is
labelled by N f = 2 + 1 or N f = 2 + 1 + 1.

We follow the historical route and begin the discussion of Monte Carlo simulations
ignoring dynamical quark effects. As we gradually move on to the full theory with
four quark flavors, we will take account of more sophisticated numerical techniques.

4.2 Markov chain Monte Carlo simulations

In the N f = 0 theory without dynamical fermions, the full path integral (4.12) reduces
to

〈O〉N f =0 =
1

ZG

∫
D[U] e−SG [U] 〈O〉F [U] (4.14)

with

ZG =
∫
D[U] e−SG [U] . (4.15)

Quarks may only appear as valence (or spectator) quarks in 〈O〉F. In pure gauge
theory, the fermion expectation value simplifies to 〈O〉F [U] = O[U]. From counting
the link variables in

D[U] = ∏
x

∏
µ

dUµ(x) , (3.50)

we conclude that the above integral is of dimension2 4 times the number of lattice sites,
i.e. d = 4 · (L/a)4 on a hypercubic lattice of size L/a in each of the four directions.
In practical situations one virtually always faces L/a ≥ 8, which means d ≥ 214 =

16384. Those integrals cannot to be solved analytically, and they are also way too
high-dimensional for standard numerical integration methods (e.g. Simpson) to work.

A technique to compute them numerically is provided by Monte Carlo simulations.

2We ignore the different components of the links here for simplicity.
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These are based on the principle of importance sampling. One creates an ensemble

{U(n) | n = 1, . . . , Ncf} (4.16)

of Ncf gauge field configurations U(n), each of them being a specific choice of Uµ(x) at
all (x, µ), which are sampled from the space of all gauge configurations according to
the probability distribution given by the Boltzmann factor:

P(U) =
1

ZG
e−SG [U] . (4.17)

In the limit of an infinitely large ensemble, the path integral becomes the arithmetic
mean of the observable evaluated on the Ncf sample configurations3:

〈O〉N f =0 =
1

ZG

∫
D[U] e−SG [U] 〈O〉F [U

(n)]

= lim
Ncf→∞

1
Ncf

Ncf

∑
n=1
〈O〉F [U

(n)] . (4.18)

In practice, this exact expression is approximated by the estimator

O =
1

Ncf

Ncf

∑
n=1
〈O〉F [U

(n)] ≈ 〈O〉N f =0 , (4.19)

whose statistical error is proportional to4 1/
√

Ncf, as we will see in sec. 4.10.
The gauge configurations cannot be importance sampled directly as the many link

variables are coupled via the action. Instead, one uses a Markov chain. Starting from
one configuration U(1)

th , one generates a stochastic sequence of gauge configurations,

U(1)
th → U(2)

th → . . .→ U(Nth)
th  U(1) → . . .→ U(Ncf) . (4.20)

The transition amplitude T(U → U′), which is equal to the probability of a configu-
ration U to be transformed into a configuration U′ in one Monte Carlo step, needs to
fulfill a few conditions in order to guarantee that the ensemble represents the aspired
probability distribution. Apart from the trivial statements reflecting that T(U → U′)

3This holds if P has a finite first moment.
4This holds if P has a finite second moment.
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is a normalized probability distribution,

I) 0 ≤ T(U → U′) ≤ 1 (4.21)

II) ∑
U′

T(U → U′) = 1 , (4.22)

the so-called balance condition is crucial:

III) ∑
U

T(U → U′)P(U) = ∑
U

T(U′ → U)P(U′) . (4.23)

The left hand side is the total probability to find U′ after a Monte Carlo step, whereas
the right hand side is equal to the total probability to hop out of U′. Note that due
to (4.22), the right hand side of (4.23) is the same as P(U′). Hence, once the prob-
ability distribution is obtained, the balance condition ensures that the Markov chain
maintains it and the system is in equilibrium. However, the start configuration U(1)

th

itself is often not selected with the very probability P(U), in which case the system is
not in equilibrium from the start. Fortunately though, it can be shown (see e.g. [62])
that the balance condition5 leads to the equilibrium distribution after a finite number
of Markov chain steps. This phase is called thermalization, and the Nth gauge config-
urations sampled before the equilibrium is reached, marked with a subscript “th” in
(4.20), are usually discarded. A fourth crucial condition is ergodicity:

IV) ∀ U, U′ ∃ n ∈N : Tn(U → U′) > 0 . (4.24)

Here, Tn is the transition probability to get from U to U′ in n Monte Carlo steps.
Ergodicity makes sure that the whole configuration space is accessible for the Markov
chain. Finally, we note that instead of III), many Monte Carlo algorithms implement
the stronger so-called detailed balance condition

IIIb) T(U → U′)P(U) = T(U′ → U)P(U′) , (4.25)

which obviously implies III).

5in combination with ergodicity, see below.
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4.3 Metropolis algorithm

The simplest algorithm which fulfills the detailed balance condition (4.25) is the
Metropolis algorithm [63]. It evolves a configuration U to U′ in two steps:

• A candidate configuration U′ is chosen with a selection probability TS(U → U′).

• U′ is accepted with the acceptance probability

TA(U → U′) = min
(

1,
TS(U′ → U) exp (−S[U′])
TS(U → U′) exp (−S[U])

)
. (4.26)

If U′ is rejected, one reuses U in the Markov chain, U′ = U.

It can easily be shown that the total transition amplitude T = TS · TA obtained this
way indeed satisfies the detailed balance condition:

T(U → U′) P(U) = TS(U → U′) min
(

1,
TS(U′ → U) exp (−S[U′])
TS(U → U′) exp (−S[U])

)
exp (−S[U])

= min
(
TS(U → U′) exp (−S[U]) , TS(U′ → U) exp

(
−S[U′]

))
= TS(U′ → U) min

(
TS(U → U′) exp (−S[U])

TS(U′ → U) exp (−S[U′])
, 1
)

exp (−S[U])

= T(U′ → U) P(U′) . (4.27)

In pure gauge theory with the Wilson gauge action SG (3.36), one usually conducts
the above steps individually for a single link, Uµ(x) to U′µ(x). Hence, the Metropolis
Monte Carlo algorithm is called local. After a so-called sweep through the lattice,
where one repeats this update procedure for every link, one obtains the configuration
U′ from U. The proposal for a concerned link, Uµ(x)→ U′µ(x), can be found by

U′µ(x) = XUµ(x) , (4.28)

where X ∈ SU(3) is a random element in the vicinity of 1. If X and X−1 are proposed
with equal probability, the selection probability is symmetric:

TS(Uµ(x)→ U′µ(x)) = TS(U′µ(x)→ Uµ(x)) . (4.29)

In that case, (4.26) simplifies to

TA(Uµ → U′µ) = min (1, exp (−∆SG)) (4.30)
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with

∆SG = ∆SG[U′µ(x)]− ∆SG[Uµ(x)] . (4.31)

Note that ∆SG can be computed locally, since all but one link stay the same and only
six of the plaquettes which are summed over in SG are affected. From (4.30), we see
that a change in the action is always accepted if the action decreases or remains the
same, whereas a new configuration with an increased action is accepted occasionally.
This is in accordance with the principle that the path integral receives most of its
contributions from configurations which (nearly) minimize the action, while quantum
fluctuations are accounted for as well.

For completeness, we mention that there exist other update procedures which have
been applied for gauge fields. Among them are the heat bath algorithm [64], over-
relaxation [65, 66], the microcanonical update [67], the Langevin method [68, 69] and
the Hybrid Monte Carlo algorithm [70]. The latter, also suitable for simulations with
dynamical fermions, is the most widely-used algorithm in Lattice QCD nowadays and
will be the one we focus on in this work.

4.4 Pseudofermions

On our way to the path integral in the full theory, (4.12), we now move on from the
quenched approximation (4.14) to the N f = 2 theory,

〈O〉N f =0 → 〈O〉N f =2 , (4.32)

by including the fermion determinant for the up and down quark in the Monte Carlo
integration:

e−SG [U] → e−SG [U] ∏
f=u,d

det[D f ] . (4.33)

In order for the interpretation of the right hand side of (4.33) as a Boltzmann weight to
be possible, the product of fermion determinants obviously needs to be real and non-
negative. The former is ensured by the fact that the massive Wilson–Dirac operator
D f = DW + m f for any flavor f is γ5-hermitean, see (3.45):

det[D f ]
? = det[D†

f ] = det[γ5D f γ5] = det[D f ] (4.34)
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Correspondingly, the eigenvalues of a γ5-hermitean operator are either real or come in
complex conjugate pairs. The non-negativity, however, is not ensured due to the break-
ing of chiral symmetry by the Wilson discretization6. This problem is circumvented in
different ways for the different quarks. For the light up and down quarks, one makes
use of the fact that these are to a very good approximation mass-degenerate, in which
case one finds that their contributions together are strictly non-negative:

∏
f=u,d

det[D f ] ≥ 0 . (4.35)

The inclusion of the heavier strange and charm quark works on a different basis and
the discussion of this is postponed to sec. 4.6. Meanwhile, we will concentrate on
N f = 2 as outlined at the beginning of this section. We note that the product of
fermion determinants for the two degenerate flavors, Du = Dd, can be summarized as

∏
f=u,d

det[D f ] = det[Du]det[D†
u] = det[DuD†

u] , (4.36)

where in the first step the γ5-hermiticity was used again. The fermion determinant
can be numerically implemented avoiding anti-commuting Grassmann variables, with
the help of so-called pseudofermions. These are bosonic degrees of freedom represented
by complex numbers φ = φR + iφI with 12|X| components (cf. (4.5)), which may be
used to replace the integral over Grassmann variables by [72]

det[DuD†
u] = π−Ncomp

∫
D[φ] e−φ†(DuD†

u)
−1φ , (4.37)

where

SPF,ud[U, φ] = φ†(DuD†
u)
−1φ (4.38)

is the pseudofermion action. The approach is based on a formal analogy of the Gaussian
integrals of fermions and bosons, provided that all the eigenvalues of the (normal
and thus diagonalizable) operator in the determinant are positive, in which case the
integral on the right hand side of (4.37) converges. This condition is fulfilled for the
combination of a Dirac operator and its adjoint, whose appearance, as we stress again,
is based on the even number of degenerate quark flavors, see (4.36). Under use of the

6It can in fact be shown that for Ginsparg-Wilson fermions [71], which respect chiral symmetry on the
lattice, the eigenvalues λ of the associated Dirac operator lie on a circle in the complex half-plane
with Re λ ≥ 0.
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above equations, (4.37) and (4.38), the path integral average in N f = 2 may be written
as

〈O〉N f =2 =
1
Z

∫
D[U]D[φ] e−S[U,φ] 〈O〉F [U] , (4.39)

where

S[U, φ] = SG[U] + SPF,ud[U, φ] (4.40)

summarizes both the gauge and the pseudofermion action, the abbreviation D[φ] =
D[φR]D[φI ] is used, and

Z =
∫
D[U]D[φ] e−S[U,φ] (4.41)

is the gauge and pseudofermion field partition function. The trade-off for the use
of pseudofermion fields that one has to take into account is that in contrast to the
local gauge action SG, the pseudofermion action SPF,ud (4.38) is highly non-local as it
contains the inverse of DuD†

u. Somewhat simplifying, the computer time to determine
the inverse is proportional to the lattice volume V = (L/a)4, which makes a factor
V2 for a whole sweep over the lattice. Hence, in a local Monte Carlo algorithm like
the Metropolis, the computation of the change of the total action after a local update
U → U′, (cf. (4.30, 4.31))

exp (−∆S) = exp
(
−S[U′, φ′] + S[U, φ]

)
= exp

(
−SG[U′] + SG[U]

)
exp

(
−SPF[U′, φ′] + SPF[U, φ]

)
, (4.42)

would become very expensive. Updating all the fields globally by the Metropolis
algorithm would not lead to a gain as it would compromise the acceptance rate.

Obviously, the pseudofermion fields require new techniques. A very effective Monte
Carlo algorithm which updates the configurations globally in a specific way is the
aforementioned Hybrid Monte Carlo algorithm, which we are going to describe next.

4.5 Hybrid Monte Carlo

The Hybrid Monte Carlo (HMC) algorithm [70] combines the so-called molecular dy-
namics evolution with a Metropolis acceptance/rejection step. The idea is that can-
didate gauge field configurations U′ for a global update are created from U by nu-
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merical integration of the classical equations of motion in order to keep the change in
the action small, which allows for large steps in configuration space with a reasonable
acceptance probability. For convenience, we use anti-hermitean generators T̃a = iTa

(see app. A.1) in the following. Link variables may be written in terms of those as

Uµ(x) = exp
(
uµ(x)

)
∈ SU(3) , (4.43)

with

uµ(x) =
8

∑
a=1

u(a)
µ (x) T̃a ∈ su(3) , u(a)

µ (x) ∈ R . (4.44)

One then introduces conjugate momenta

πµ(x) =
8

∑
a=1

π
(a)
µ (x) T̃a ∈ su(3) , π

(a)
µ (x) ∈ R , (4.45)

which allow to reformulate the expectation value (4.39) according to

〈O〉N f =2 =

∫
D[U]D[φ] exp (−S[U, φ]) 〈O〉F [U]∫

D[U]D[φ] exp (−S[U, φ])

=

∫
D[U]D[φ]D[π] exp

(
− 1

2 π2 − S[U, φ]
)
〈O〉F [U]∫

D[U]D[φ]D[π] exp
(
− 1

2 π2 − S[U, φ]
) , (4.46)

where

π2 = ∑
x,µ,a

π
(a)
µ (x) π

(a)
µ (x) . (4.47)

While the introduction of these auxiliary fields does not change the physical content
of the theory, (4.46) may be interpreted as a statistical system with the Hamiltonian

H[π, U, φ] =
1
2

π2 + S[U, φ] . (4.48)

Since this is reminiscent of the classical description of a molecular gas, the associated
Hamilton equations—expressed here in terms of Uµ(x) instead of uµ(x)—

�
πµ(x) = −T̃a ∂a

x,µS[U, φ] =: −F[U, φ] (4.49a)
�

Uµ(x) = πµ(x) Uµ(x) , (4.49b)
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are also called molecular dynamics equations. The derivatives on the left hand sides of
(4.49a) and (4.49b) are understood to be with respect to the molecular dynamics (com-
puter) time tm in which the configurations are evolved. The force F[U, φ] on the right
hand side of (4.49a), formally a derivative with respect to the SU(3) group element
Uµ(x), is defined as follows:

∂S[U, φ]

∂Uµ(x)
= T̃a ∂S[eωU, φ]

∂ωa
µ(x)

∣∣∣∣
ω=0
≡ T̃a ∂a

x,µS[U, φ] . (4.50)

Based on (4.49a) and (4.49b), the individual steps to obtain a gauge configuration U′

from U in the HMC algorithm, including the contributions of the pseudofermions in
N f = 2, are the following:

1. The pseudofermion integral is evaluated by importance sampling, i.e. one selects
a complex vector φ with the selection probability

P(φ) ∼ exp
(
−φ†

(
DuD†

u

)−1
φ

)
(4.51)

for the given gauge field U. In practice, this is done by randomly choosing a
complex vector χ from the Gaussian distribution P(χ) ∼ exp

(
−χ†χ

)
, such that

φ = Duχ follows (4.51).

2. One selects a set7 of 8 · 4 · |X| conjugate momenta π
(a)
µ (x) from the Gaussian

distribution

P(π) ∼ exp
(
−1

2
π2
)

. (4.52)

3. Both the link field U and the conjugate field π are evolved in tm via integration
of the molecular dynamics equations, yielding a candidate configuration U′ as
well as π′ after a certain molecular dynamics time t′m. The standard choice for
the integration length which defines this Monte Carlo step is t′m = 2, called
2 molecular dynamics units (MDU). The use of the Hamilton equations in principle
restricts the produced configurations to a hypersurface of constant energy in
phase space. However, the numerical integration is necessarily performed in
discrete steps and hence leads to a non-vanishing value of ∆H through numerical
errors.

7Recall that |X| denotes the number of lattice sites, cf. (4.5).
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Figure 4.1: Illustration of the leapfrog integration.

4. The candidate configuration (U′, π′) is accepted or rejected just as in the
Metropolis algorithm, with an acceptance probability

TA(π, U → π′, U′) = min (1, exp (−∆H)) , (4.53a)

where

∆H = H[π′, U′, φ]− H[π, U, φ] . (4.53b)

We stress here that the pseudofermion field φ is not part of the molecular dy-
namics evolution, but affects the acceptance probability via (4.53b).

After this outline, we now have to define the way the molecular dynamics equa-
tions are integrated numerically. The basic method to evolve an initial configuration
(π, U) = (π(tm), U(tm)) to a new configuration (π′, U′) = (π(tm + t′m), U(tm + t′m)) is
the leapfrog integration. The evolution of (4.49a) and (4.49b) is split into small steps of
the size ε = t′m/Nm,

Iπ(ε) : π(tm) −→ π(tm + ε) = π(tm)− εF[U, φ]
∣∣
tm

(4.54a)

IU(ε) : U(tm) −→ U(tm + ε) = eεπ(tm)U(tm) , (4.54b)

and the gauge field configuration U and the field π are integrated alternatingly. One
begins with a half step Iπ(ε/2), then applies IU(ε) and Iπ(ε), both (Nm − 1) times,
and closes with another full step IU(ε) and a half step Iπ(ε/2):

π(0)  π( 1
2 ε) −→ π( 3

2 ε) −→ . . .  π(Nmε)

U(0) −→ U(ε) −→ . . . . . . −→ U(Nmε) .
(4.55)

The procedure is illustrated in fig. 4.1. It is equivalent to an Nm-fold application of the
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elementary leapfrog integrator

LF(ε) = Iπ(
1
2

ε) IU(ε) Iπ(
1
2

ε) , (4.56)

and the interlacing of (4.54a) and (4.54b) leads to an error of only O(ε3) in the inte-
gration of such a step. It ensures reversibility of the Monte Carlo step, as the selection
probability TS = Tm in the molecular dynamics evolution follows

Tm(π, U → π′, U′) = Tm(−π′, U′ → −π, U) , (4.57)

i.e. a configuration evolved from U to U′ by integration of the MD equations with con-
jugate momentum π is evolved back to itself if the opposite conjugate momentum −π

is used in the subsequent step. This can easily be verified by explicit application of the
leapfrog integration steps (4.54a) and (4.54b). Reversibility is crucial for the fulfillment
of the detailed balance condition, the proof of which we address in the following. The
total transition probability for the step U → U′ is obtained by integrating over all π, π′

(we ignore the pseudofermion fields φ here):

T(U → U′) =
∫

D[π]D[π′] TA(π, U → π′, U′) Tm(π, U → π′, U′) e−
1
2 π2

. (4.58)

The acceptance probability (4.53a) may be reformulated as

TA(π, U → π′, U′) = min

(
1,

e−π′2−S[U′]

e−π2−S[U]

)

=
e−π′2−S[U′]

e−π2−S[U]
·min

(
1,

e−(−π)2−S[U]

e−(−π′)2−S[U′]

)

=
e−π′2−S[U′]

e−π2−S[U]
· TA(−π′, U′ → −π, U) . (4.59)

Using this together with the reversibility of the molecular dynamics evolution, (4.57),
the total transition probability (4.58) multiplied by e−S[U] becomes

e−S[U]T(U → U′)

=
∫

D[π]D[π′] TA(−π′, U′ → −π, U) Tm(−π′, U′ → −π, U) e−
1
2 π′2−S[U′]

=
∫

D[π]D[π′] TA(π
′, U′ → π, U) Tm(π

′, U′ → π, U) e−
1
2 π′2−S[U′]

= e−S[U′]T(U′ → U) , (4.60)
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where in the second step the invariance of the integration measure under sign change
was used. Hence, the detailed balance condition (4.25) is indeed fulfilled, and the
HMC is an exact algorithm.

The acceptance rate Pacc of the algorithm is governed by the number Nm of inte-
gration steps by which the integration interval t′m is divided. A fine-grit integration
with large Nm leads to large Pacc, but is also associated with large computational costs.
These effects need to be balanced in order for the algorithm to be most efficient. The
optimal Nm depends on the parameters of the simulation, like e.g. the lattice size L/a,
the bare parameters and the number N f of dynamical fermions in the theory. Even
more importantly, it would differ substantially for the contributions of the gauge and
pseudofermion action to the force F[U, φ] in (4.54a) if these were considered in isola-
tion. The way individual step scales for the different forces can be achieved will be
described in sec. 4.9.

We finally remark that, although the HMC is currently the most widely used algo-
rithm in simulations of dynamical fermions, it may also effectively be applied in the
quenched approximation or pure gauge theory. In the upcoming section, we describe
an extension of the HMC which allows the inclusion of the strange and charm quark
in Monte Carlo simulations.

4.6 Rational Hybrid Monte Carlo

In sec. 4.4, we have argued that the combination DuD†
u of the operator Du and its

adjoint allows to implement the fermion determinant for the up and down quarks by
pseudofermions φ. For the strange and the charm quark there is no (nearly) mass-
degenerate other quark flavor which would allow for such an approach. However,
the relatively large masses for those quarks lead to a substantial mass gap in the
eigenvalue spectrum, such that the weight of configurations in the functional integral
that lead to a negative determinant is negligible. Consequently, one may replace D f

( f = s, c in the following) by the hermitean, non-negative operator |Q f |, defined by

D f → |Q f | =
(

Q f Q†
f

)1/2
with Q f = γ5D f , (4.61)

without changing the outcome of the simulations. This allows to replace the respective
fermion determinant by a pseudofermion integral again (cf. (4.37)), which under use

76



4.6 Rational Hybrid Monte Carlo

of (4.61) may be written as

det[D f ] ∼
∫
D[φ] e−φ†|Q f |−1

φ . (4.62)

However, the operator combination
∣∣Q f

∣∣−1 is not directly applicable as it contains a
square root, which is why it gets approximated by a rational function8 R f , such that
|Q f |R f ≈ const. Instead of (4.62), one then uses

det[D f ] = W f · det[R f ]
−1 , (4.63a)

where the pseudofermion integration

det[R f ]
−1 ∼

∫
D[φ] e−SPF, f [U,φ] (4.63b)

with

SPF, f [U, φ1, φ2] = φ† R f φ (4.63c)

is included in the path integral, whereas the correction term

W f = det[D f R f ] ∼
∫
D[φ′] e−φ′†(|Q f |R f )

−1
φ′ (4.63d)

is treated as a reweighting factor. This means that the path integral expectation val-
ues are evaluated in the modified theory with the replacement det[D f ] → det[R f ]

−1,
〈·〉mod, from which the original path integral expectation value 〈·〉 can be regained via

〈O〉 = 〈
OW〉mod
〈W〉mod

. (4.64)

Here, W = ∏ f W f is the total reweighting factor for all quark flavors f that are im-
plemented in the simulation as described above. This approach is called the Rational
Hybrid Monte Carlo (RHMC) [74, 75]. The rational functions R f ≈ (Q f Q†

f )
−1/2 can be

built from the Zolotarev rational function of degree n,

Rn,ε(y) = Aε
(y + a1,ε)(y + a3,ε) . . . (y + a2n−1,ε)

(y + a2,ε)(y + a4,ε) . . . (y + a2n,ε)
, (4.65)

8Other approximations, e.g. by polynomial functions [73] are possible, too.

77



4 Monte Carlo simulations and numerical techniques

which provides an optimal approximation of the function y−1/2 in the range y ∈ [ε, 1]
for some ε > 0. The corresponding (positive) coefficients {Aε, a1,ε, . . . , a2n,ε} as well as
the relative deviation9

δ = max
ε≤y≤1

∣∣∣1− y1/2Rn,ε(y)
∣∣∣ (4.66)

that they minimize may be found analytically. If the spectral range of Q f Q†
f is given by

[r2
f ,a, r2

f ,b] with r f ,a > 0, the optimal rational approximation R f for (Q f Q†
f )
−1/2 reads10

R f = r−1
f ,b Rn,ε(r−2

f ,b Q f Q†
f ) , (4.67)

with ε = (r f ,a/r f ,b)
2. An example which demonstrates the approximation of the exact

function by R f , taken from a real RHMC simulation, can be found in fig. 4.2. The
accuracy of the rational approximation manifests itself in the smallness of fluctuations
of the reweighting factors W f (cf. (4.63d)), which may be estimated stochastically [76,
77] by

W f ,N =
1
N

N

∑
j=1

e−η†
j,e(|Q f |R f )

−1
ηj,e N→∞−−−→ W f (4.68)

under use of N independent, random, and normally distributed pseudofermion fields
ηj,e defined on the even lattice sites11. It may be argued [77] that a single random
source, N = 1, is already sufficient for a proper estimation of W f if the maximal
relative deviation δ obeys

12 Ne δ2 . 10−4 , (4.69)

where Ne denotes the number of even lattice sites12.
With the RHMC for the strange and charm quark at hand, one is finally able to

evaluate the full path integral (4.12) for the general case of N f = 2 + 1 + 1 quark

9We follow standard notation here. Note however, that the relative deviation δ actually depends on the
degree n of the Zolotarev rational function, i.e. δ ≡ δn.

10R f ≡ Rn, f , see footnote 9.
11This statement refers to the case where even-odd preconditioning is applied to the fermion determi-

nant, see (4.96) in sec. 4.7.
12See footnote 11.
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Figure 4.2: Left: Zolotarev rational approximation Rs ((4.67), blue) of degree n = 6 for
(QsQ†

s )
−1/2 (red) as it appears in the pseudofermion representation of the strange

quark determinant, see (4.62). The operator QsQ†
s is formally replaced by a real

variable, and the example is taken from an actual simulation on a T/a = L/a = 12
lattice with a dynamical strange-like quark (cf. sec. 9). The spectrum of QsQ†

s was
found to lie between r2

s,a = 0.52 and r2
s,b = 6.52, which is also the range of the real

variable QsQ†
s displayed above. Right: Relative deviation 1− (QsQ†

s )
1/2Rs of the

approximation Rs from the exact expression (QsQ†
s )
−1/2, as it appears in (4.66).

The dashed blue lines represent ±δ.
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flavors with degenerate up and down quark:

〈O〉 ≡ 〈O〉N f =2+1+1 =
〈OW〉N f =2+1+1, mod

〈W〉mod
, (4.70)

with

〈O〉N f =2+1+1, mod =
1
Z

∫
D[U]D[φ] e−S[U,φ] 〈O〉F [U] . (4.71)

The action is split into the different contributions (cf. (3.36, 3.112, 4.38, 4.63c))

S[U, φ] = SG[U] + SPF,ud[U, φud] + SPF,s[U, φs] + SPF,c[U, φc] (4.72)

with a number of different pseudofermion fields whose measures are all collectively
abbreviated by D[φ] here, such that the partition function as before reads

Z =
∫
D[U]D[φ] e−S[U,φ] . (4.73)

Note that in applications where the strange and the charm quark are mass-degenerate
(for instance in the massless N f = 4 theory), they can be treated just like the up and
down quark as described in sec. 4.4, without the need to use the RHMC.

The remainder of this section is mainly devoted to the question of optimizing the
efficiency of the algorithm, sec. 4.7-4.9, and will be concluded with the topic of auto-
correlations and error estimation in sec. 4.10.

4.7 Solver and even-odd preconditioning

The Monte Carlo simulations outlined in the previous sections involve the multiple
computation of the force F[U, φ] as it appears in (4.49a) and (4.54a). The pseud-
ofermion parts of the force (cf. (4.72)), in particular, contain derivatives of either the
inverse massive Dirac operator D−1

f ( f ∈ {u, d}, cf. (4.38)), or the rational approxima-
tion R f ( f ∈ {s, c}, cf. (4.63c)), applied on the pseudofermion field φ, respectively. In
both cases, Dirac equations need to be solved. While this is obvious for f ∈ {u, d}, it
may be readily seen for f ∈ {s, c} if the Zolotarev rational function (4.65) in R f (4.67)
is expanded in partial fractions,

Rn,ε(y) = A
(

1 +
r2

y + a2
+ . . . +

r2n

y + a2n

)
, (4.74)
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with positive residues r2k due to A > 0 and a1 > a2 > . . . > a2n > 0 (see e.g. [78]).
The application of the different partial fractions with y = r−2

f ,b Q f Q†
f (cf. (4.67)) in the

denominators then amounts to finding the solutions ψk of(
Q f Q†

f + r2
f ,ba2k

)
ψk = r2

f ,bφ , k ∈ {1, . . . , n} . (4.75)

Solving the Dirac equations is the most time-consuming part of the algorithm. Conse-
quently, a lot of effort has been put into the advancement of suitable solvers and the
optimization of their efficiency. We will only cover a few basics here and refer to the
literature, e.g. [79], for details.

Solver

We consider the general Dirac equation

A f ψ = η , (4.76)

and aim to solve it for ψ. In accordance with the discussion above, A f may be the
massive Dirac operator D f of flavor f with its 12|X| × 12|X| components (cf. (4.11)), or
the combination of the hermitean counterpart Q f = γ5D f (cf. (4.61)) as it appears on
the left hand side of (4.75) in the framework of the RHMC. The most effective approach
to a large linear system like (4.76) is to solve it iteratively, i.e. by the successive creation
of approximate solutions ψ(1), ψ(2), . . . , built such that ψ(n) minimizes the residue

r(n) = A f ψ(n) − η (4.77)

in Krylov space Kn, defined by

Kn = span
(

η, A f η, . . . ,
(

A f
)n

η
)

. (4.78)

The procedure is stopped once the convergence criterion

||r(final)|| < ε ||η|| (4.79)

is fulfilled for some ψ(k) = ψ(final) after the k-th iteration. The convergence rate is
governed by the condition number, which in the case of A f = D f is given by the largest
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Abbreviation Prerequisite for A f Minimized norm recurrence

CG hermitean, positive definite || · ||A f short

CR hermitean || · ||2 short
GCR none (of the above) || · ||2 long

Table 4.1: Overview on some iterative solvers which may be employed in Lattice QCD. The
abbreviations CG, CR and GCR stand for conjugate gradient, conjugate residual
and generalized conjugate residual, respectively.

and smallest eigenvalues λmax and λmin of the operator D†
f D f :

κ(D f ) =
√

λmax/λmin . (4.80)

This becomes an issue for both small lattice spacings and small quark masses, as the
condition number for D f is proportional to the inverse of those:

κ(D f ) ∼ 1/(am f ) . (4.81)

Together with the choice of ε, it also determines a bound for the relative deviation of
the found approximate solution from the exact one,

||ψ− ψ(final)||
||ψ|| < ε κ(A f ) . (4.82)

Hence, in total, a large condition number makes more iterations necessary and limits
the accuracy of any approximate solution (together with machine precision).

There is a list of solvers that are slight variations of one another, suitable for different
cases depending on the properties of the matrix to solve on the left hand side of (4.76).
An overview is given in tab. 4.1. The conjugate gradient (CG) algorithm employs the
function

Q(x) =
1
2
〈x, x〉A f

− 〈x, η〉 , (4.83)

whose minimum is the solution ψ sought for. Here, 〈·, ·〉 represent the standard scalar
product and 〈x, y〉A f

=
〈

A f x, y
〉

the one which corresponds to A f . An iteration starts

from the last approximate solution x(i) (or an initial guess x(0)). One calculates the
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corresponding residue r(0), and constructs the search direction vector

p(i) = r(i) + βi−1 p(i−1) (4.84)

with

βi−1 =


〈r(i),r(i)〉
〈r(i−1),r(i−1)〉 , i ≥ 1

0 , i = 0 .
(4.85)

The next approximate solution in the iteration is taken to be

x(i+1) = x(i) + αi p(i) , (4.86)

where

αi =

〈
r(i), r(i)

〉
〈

A f p(i), p(i)
〉 (4.87)

is determined by the condition that that Q(x(i) + αi p(i)) is minimized. The algorithm
gets its name from the fact that the residue r is the gradient of the function Q. Adding
the βi−1 term in (4.84) ensures that the p’s are conjugate to one another, i.e. p(i) ⊥ Ap(j)

∀ j 6= i, which is a requirement for (4.87) to exist.
The only changes of the conjugate residual (CR) with respect to the CG are

βi−1 =

〈
~r(i), A f~r(i)

〉
〈
~r(i−1), A f~r(i−1)

〉 , i ≥ 1 , (4.88a)

and αi =

〈
~r(i), A f~r(i)

〉
〈

A f~p(i), A f~p(i)
〉 . (4.88b)

Here, it is the residuals that are conjugate to one another instead of the search direction
vectors. While the CG works for a positive definite, hermitean matrix and is optimized
for the minimization of the scalar product 〈.〉A f

, the CR does not require positive
definiteness, and is optimized for the scalar product 〈.〉. The generalized conjugate
residual (GCR) has no prerequisites on the matrix, but the solutions ψ(n) are determined
recursively, which is why in practice the algorithm needs to be restarted with the last
approximate solution from time to time. Note that the above methods only require the
application of A f on a vector as well as the determination of scalar products.
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They can be combined with deflation. The guiding principle of this method is to
separate the low and high modes of the operator and treat them differently. The
deflated system with the high modes can be solved as before, but is equipped with an
improved condition number since its minimal eigenvalue is larger compared to the
original system, see (4.80). The solution of the deflation system is found otherwise, in
the case of a hermitean A f in principle e.g. by explicit calculation of the eigenvectors.
We refer to [78] for details.

Finally, we note that equations like (4.75) can be solved for all k simultaneously with
so-called multi-shift solvers [80], as the right hand sides of the equations are the same.
A review of this matter is given in [77].

Even-odd preconditioning

The solving of the Dirac equation (4.76) can be accelerated by the use of precondition-
ing. In general13, this involves a matrix M that is cheap to invert and similar to A f ,
e.g. in the sense that the small eigenvalues of M and A f are the same. In that case, the
spectral properties (4.80) of M−1 A f are more favorable than those of A f , which leads
to a faster convergence towards the solution of the preconditioned Dirac equation:

M−1 A f ψ = M−1 η (4.89)

A particular type of preconditioning which makes use of the fact that the Dirac oper-
ator is a sparse matrix with non-vanishing contributions only for identical or neigh-
boring lattice sites (cf. (3.69)), is the so-called even-odd preconditioning. Classifying the
lattice sites as even or odd, depending on the sum of their respective coordinates,

∑4
i=1 xi, the sites are reordered such that the Dirac matrix and the vectors in (4.89) read

A f =

Aee
f Aeo

f

Aoe
f Aoo

f

 , ψ =

ψe

ψo

 , η =

ηe

ηo

 . (4.90)

While the off-diagonal parts of A f incorporate the hopping terms, (3.69d), the diagonal
parts Aee

f and Aoo
f only contain the mass part of the Dirac operator, (3.69b). As such,

they are themselves diagonal and trivially invertible. The even-odd preconditioning

13We consider only left-preconditioning here.
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matrix

M−1 =

1 −Aeo
f (Aoo

f )
−1

0 0

 (4.91)

is hence cheap to build, and the combination M−1 A f on the left hand side of (4.89)
assumes the form

M−1 A f =

Â f 0

0 0

 , (4.92)

with

Â f = Aee
f − Aeo

f (Aoo
f )
−1 Aoe

f . (4.93)

The preconditioned Dirac equation (4.89) thus becomes an equation only for ψe,

Â f ψe = ηe − Aeo
f (Aoo

f )
−1 ηo . (4.94)

Once the solution ψe of this equation is found, it leads to the remaining components
ψo via the second row of the original Dirac equation (4.76),

ψo = (Aoo
f )
−1
(

ηo − Aoe
f ψe

)
. (4.95)

Apart from its use in solvers, even-odd preconditioning may also serve to improve the
performance of the HMC algorithm. To this end, the determinant of the Dirac operator
is decomposed according to

det
[
A f
]
= det

[
Aee

f

]
det

[
Aoo

f

]
det

[
(Aee

f )
−1 Â f

]
, (4.96)

where the first two determinants are easy to evaluate.

4.8 Hasenbusch frequency splitting

A way to improve the performance of the pseudofermion integration for the up and
down quark, (4.37), is to introduce a mass parameter µ2 and split the corresponding
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determinant (4.36) according to [81, 82]

det
[

DuD†
u

]
= det

[
DuD†

u + µ2
]
· det

[
DuD†

u
DuD†

u + µ2

]
. (4.97)

Each of the determinant factors gets implemented by different pseudofermion fields
φ1 and φ2 with the action (cf. (4.38)):

SPF[U, φ] = φ†
1(DuD†

u + µ2)−1φ1 + φ†
2 (DuD†

u + µ2)(DuD†
u)
−1︸ ︷︷ ︸

1+µ2(DuD†
u)
−1

φ2 . (4.98)

The factorization separates the contributions of eigenvalues λ of DD† which are larger
than µ2 from those which are smaller, and improves the condition number (4.80) for
both factors with respect to the original pseudofermion representation. As this leads
to smaller residues (4.77), the splitting reduces the fluctuations of the pseudofermion
force along the molecular dynamics trajectory, and thus allows for coarser integra-
tion steps associated with lower computational costs at constant numerical error. The
parameter µ2 may be tuned for efficiency, and depending on the specifics of the simu-
lation, it may also be useful to split the pseudofermion determinant in more than two
factors. Moreover, as was pointed out in [83], the contributions from the different fac-
tors are quite different in size, which may be made use of in the framework of multiple
time scale integration, to be described in sec. 4.9. Since the term (DuD†

u + µ2) in the φ2

pseudofermion action plays the role of the preconditioning matrix M−1 in (4.89), the
approach is also called mass preconditioning.

Twisted mass reweighting

Finally, we remark that there exists a related method called twisted mass reweighting
[76]. The Wilson–Dirac operator is not protected against near-zero modes in the case of
very light up and down quarks, which may lead to instabilities in the HMC algorithm.
This can be averted by introduction of an infrared regulator µ in a similar manner to
(4.97), or variations thereof:

det
[

D†
uDu

]
→ det

[
D†

uDu + µ2
]

(4.99)

or det
[

D†
uDu

]
→ det

[
(D†

uDu + µ2)2(D†
uDu + 2µ2)−1

]
. (4.100)
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While the modified determinant enters the HMC and improves its performance, the
term which corrects for this,

W1 = det
[

D†
uDu · (D†

uDu + µ2)−1
]

(4.101)

or W2 = det
[

D†
uDu · (D†

uDu + µ2)−2(D†
uDu + 2µ2)

]
, (4.102)

can be estimated stochastically in a manner similar to the case of the RHMC (cf. (4.68)).
In contrast to the Hasenbusch frequency splitting, W1 or W2 is also treated as a
reweighting factor (cf. (4.64)), whose fluctuations are modest in case that µ is cho-
sen appropriately. This holds especially for W2 as the contributions of modes of the
Dirac operator with large eigenvalues are strongly suppressed [76].

4.9 Multiple time scale integration

In sec. 4.5, we have discussed the leapfrog method which integrates the molecular dy-
namics equation for the conjugate momenta π and the gauge configuration U alternat-
ingly. This method can be refined in two ways in order to make the integration more
efficient. The first one is multiple time scale integration [84]. The force F[U, φ] which
determines the update of π, see (4.54a), gets contributions from different sources, e.g
the gauge action, the pseudofermion action of the up and down quark, the rationally
approximated pseudofermion action, and different parts of the fermion determinant
in case Hasenbusch frequency splitting (sec. 4.8) is applied. The contributions of these
different actions are usually not only of different orders of magnitude, but also differ
substantially regarding the effort to compute them (sec. 4.7). Hence, it is generally
advantageous to integrate the different forces on individual time scales. To this end,
one divides the integration interval t′m hierarchically, with step sizes

ε2 = t′m/N2 (4.103a)

ε1 = t′m/(N1N2) (4.103b)

ε0 = t′m/(N0N1N2) . (4.103c)

As the gauge force is the main contribution, it is integrated with the finest step size
ε0. The other forces are smaller, but more expensive to compute, so they are usually
distributed on the other scales. A whole Monte Carlo step with the leapfrog integra-
tion on multiple time scales is performed by the following sequence of elementary
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Figure 4.3: Illustration of multiple time scale integration on two levels with N1 = 2, N0 = 4
and the leapfrog as elementary integrator. This corresponds to (4.104) without the
occurrence of the coarsest level (Iπ(

1
2 ε2), N2 → 1). As an example, the pseud-

ofermion forces are integrated on the coarse scale (ε1, red) and the gauge force on
the fine scale (ε0, blue), indicated by the superscripts F and G. Compare to fig.4.1.

integrators (cf. (4.56)):Iπ(
1
2

ε2)

{
Iπ(

1
2

ε1)

{
Iπ(

1
2

ε0) IU(ε0) Iπ(
1
2

ε0)

}N0

Iπ(
1
2

ε1)

}N1

Iπ(
1
2

ε2)


N2

.

(4.104)

This scheme is also depicted in fig. 4.3. The second way to possibly improve the effi-
ciency of the integration is the use of more sophisticated elementary integrators than
the leapfrog. One of them is the so-called Omelyan–Mryglod–Folk (OMF) integrator
of 2nd order [85]:

OMF2,λ(ε) = Iπ(λε) IU(
1
2

ε) Iπ((1− 2λ)ε) IU(
1
2

ε) Iπ(λε) . (4.105)

This is a generalization of the leapfrog, to which it reduces for the special cases of
λ = 1/2 and λ = 1/4:

OMF2,1/2(ε) = LF(ε) (4.106a)

OMF2,1/4(ε) = {LF(ε/2)}2 . (4.106b)

Note also that, for any 0 < λ < 1/2, the OMF integrator of 2nd order updates the
gauge field twice. Furthermore, an OMF integrator of 4th order may as well be ap-
plied, which updates the gauge field five times.

We complete our discussion with the remark that the methods to increase the ef-
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ficiency of the HMC algorithm discussed here, namely even-odd preconditioning,
Hasenbusch frequency splitting, twisted mass reweighting, and multiple time scale
integration all go hand in hand and may well be used together. There exist further
techniques (e.g. domain decomposition [86], cf. sec. 9.5) which are not covered here as
they find no application in this work.

4.10 Autocorrelation and error estimation

So far, we have described in detail the way the estimator (cf. (4.19))

O =
1

Ncf

Ncf

∑
n=1

O[U(n)] (4.107)

for the path integral average 〈O〉 (cf. (3.46)) is obtained from an ensemble {U(1), . . . ,
U(Ncf)} of configurations importance sampled with the help of Monte Carlo simula-
tions. We now discuss the error analysis for this Monte Carlo estimator.

If the configurations were statistically independent, the standard deviation or error
∆O of the above estimator would simply be given by

∆O =
1√
Ncf

σO , (4.108)

where

σ2
O =

1
Ncf − 1

Ncf

∑
i=1

(
Oi −O

)2
(4.109)

is the variance of the ensemble. However, while the steps in a Markov chain (cf. (4.20))
are independent in the sense that a produced configuration U′ can only be traced back
to its direct predecessor and does not know about any previous configurations, the
length of a Monte Carlo trajectory in configuration space is limited. In general this
leads to a correlation of subsequently produced configurations, which is reflected to
different extent in different observables O. Since it is a correlation between configu-
rations of one and the same Markov chain, one speaks of autocorrelation. It increases
the uncertainty ∆O for the estimate and needs to be taken into account in the error
analysis. A quantitative treatment is provided by the autocorrelation function for the
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observable O,

ΓO(tm) = 〈O(i) O(i+tm)〉 − 〈O(i)〉〈O(i+tm)〉 , (4.110)

where the notation O(i) = O[U(i)] is used. As indicated, the autocorrelation function
is translation invariant, i.e. it depends only on the difference tm of the Monte Carlo
time of two configurations. Moreover, note that ΓO(tm = 0) = σ2

O. The effect of
autocorrelations can thus be disentangled from ordinary statistical fluctuations by the
use of the normalized autocorrelation function Γnorm

O (tm), which for large tm decreases
exponentially:

Γnorm
O (tm) :=

ΓO(tm)

ΓO(0)
∼ exp

(
− tm

τO,exp

)
, (4.111)

where τO,exp is the exponential autocorrelation time for O which encodes the capability
of the algorithm to efficiently sample the observable O. For a quantitative analysis of
autocorrelations, one uses the related integrated autocorrelation time

τO,int =
1
2
+

∞

∑
tm=1

Γnorm
O (tm) ≈

∫ ∞

0
dtm e−tm/τO,exp

τO,exp�1
= τO,exp , (4.112)

which can be obtained from the normalized autocorrelation function Γnorm
O (tm). The

error estimate which corrects for the autocorrelation is then given in terms of the
integrated autocorrelation time by

∆O =

√
2 τO,int√

Ncf
σO . (4.113)

Note that this allows for the interpretation that the ensemble effectively contains
Nindep. = Ncf/ (2τO,int) independent configurations.

The inclusion of the autocorrelation with the above formulas relies on the assump-
tion that the autocorrelation function can be explicitly and reliably estimated. A
method which accomplishes this is the so-called gamma method [87, 88]. It uses

ΓO(tm) =
1

N − tm

N−tm

∑
t′m=1

[
Otm+t′m −O

] [
Ot′m −O

]
. (4.114)

as an estimate for the autocorrelation function (4.110). The summation in (4.112) is
truncated at a window W, which is chosen such that the statistical error of the esti-
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mators (4.114) is balanced against the systematic error from the truncation itself. The
optimal choice for W can be automatically obtained under the assumption that

τO,exp = Sτ · τO,int (4.115)

for some parameter Sτ. It should be given such that the autocorrelation function (4.114)
visibly builds a plateau without summing up too much noise, and can be adjusted if
necessary. For most systems and observables, Sτ ≈ 2 is a reasonable choice.

The gamma method can be extended to derived observables F, which are functions of
a number of primary observables like O above, now labelled by an index α:

F ≡ f (Oα) . (4.116)

Estimators F for them are obtained from those of the primary observables according
to F = f (Oα) , and the corresponding errors can be found under use of the partial
derivatives fα = ∂ f

∂Oα
as

ΓF(tm) = ∑
αβ

fα fβΓαβ(tm) (4.117)

Here, Γαβ is the obvious extension of the autocorrelation function (4.110) to two differ-
ent primary observables Oα and Oβ,

Γαβ(tm) = 〈O(i)
α O(i+tm)

β 〉 − 〈O(i)
α 〉〈O(i+tm)

β 〉 , (4.118)

and the estimator (4.114) is modified accordingly. Moreover, replica can easily be
included, allow for consistency checks and may in addition be used to cancel the
leading bias in the estimator for F. For details, we refer to [88]. Finally, we note
that in [89], it was shown how contributions from slow modes may be incorporated
in the autocorrelation function even if they are not directly detectable (cf. sec. 6.2.2).
Other approaches for error analyses, which handle the autocorrelation only implicitly
however, are binning, statistical bootstrap and the jackknife method.
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where C and C′ are classical gauge fields, and Λ(~x) ∈ SU(3) is a time-independent
local gauge transformation which transforms the fields according to1 (cf. (2.13, 3.9))

A′k(~x) = Λ(~x)Ak(~x)Λ(~x)† −
(
∂µΛ(~x)

)
Λ(~x)† . (5.2)

In space, the periodic boundary conditions imply

Ak(x + Lk̂) = Ak(x) (5.3a)

Λ(~x + Lk̂) = Λ(~x) (5.3b)

for k = 1, 2, 3, where k̂ is a unit vector in the corresponding spatial direction. The
partition function

Z[C, C′] =
∫

D[Λ]
∫

D[A] exp {−SG[A]} (5.4)

involves the products D[A] = ∏~x,µ,a dAa
µ and D[Λ] = ∏~x dΛ(~x) of Haar measures,

and the gauge action SG[A] as given in (3.12). In the quantum mechanical Schrödinger
representation, Z[C, C′] can be interpreted (cf. [90]) as the transition amplitude from
the state |C〉 to the state |C′〉, and the appearance of Λ in (5.1) and (5.4) plays the
role of the projector onto the physical (i.e. gauge invariant) subspace of Hilbert space.
Accordingly, the partition function is a gauge invariant functional of the boundary
gauge fields,

Z[CΩ, C′Ω
′
] = Z[C, C′] , (5.5)

referred to as the Schrödinger functional.

Induced background field

If the coupling g2
0 is small, the Schrödinger functional is dominated by fields close to

the (in general multiple) minima of the action. Let us assume for the moment that the
boundary fields C, C′ lead to a unique minimum. In that case, the associated (boundary
induced) background field Bµ is unique as well, up to gauge transformations Ω which
preserve the boundary conditions:

SG[A] > SG[B] ∀A 6= BΩ , (5.6)

1 Note that in accordance with the original literature, we work with anti-hermitean instead of hermitean
gauge fields here, see app. A.1.
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5.1 The Schrödinger functional in the continuum

where BΩ denotes all possible gauge transforms of B. The boundary fields are usually
taken to be constant diagonal matrices [90]

C(′)
k =

i
L

diag
(

φ
(′)
1 , φ

(′)
2 , φ

(′)
3

)
, (5.7)

where the angles φ
(′)
i are subject to the conditions

3

∑
i=1

φi =
3

∑
i=1

φ′i = 0 , (5.8)

so that the boundary fields are elements of the algebra su(3). If they are required to
belong to the so-called fundamental domain, defined by

φ1 < φ2 < φ3 and |φ3 − φ1| < 2π , (5.9)

the above statement about the uniqueness of the minimal action and the associated
background field is fulfilled [90]. The background field induced by (5.7) linearly inter-
polates between the boundaries,

B0(x) = 0 , Bk(x) =
x0C′k + (T − x0)Ck

T
, k = 1, 2, 3 , (5.10)

and represents a constant color-electric field as the only non-vanishing components of
the associated field tensor are

F0k = ∂0Bk =
(
C′k − Ck

)
/T , k = 1, 2, 3 . (5.11)

Hence, it is also referred to as Abelian background field. The boundary conditions (5.7)
preserve spatial translation invariance, a feature which for various reasons is useful
in the context of correlation functions formulated by means of the Schrödinger func-
tional, as we will see in detail in sec. 5.3.

The Schrödinger functional as a renormalization scheme

Due to (5.6), the effective action2

Γ[B] = − log Z[C, C′] (5.12)

2B and C, C′ may be used interchangeably as arguments, since there is a one-to-one correspondence
between them.
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may be perturbatively saddle point expanded for weak couplings g2
0 around B, accord-

ing to

Γ[B] =
1
g2

0
Γ0[B] + Γ1[B] + g2

0Γ1[B] + . . . . (5.13)

Under use of this, it was first argued in [90] that the SF is finite after renormalization
of the bare parameters3 (cf. sec. 3.5). This property lays the ground for its use as a finite
volume renormalization scheme, in which a renormalized coupling may be defined via
the variation of the action with the boundary fields. More precisely, with the specific
choices [40]

φ1 = η − π

3
φ′1 = −φ1 −

4π

3

φ2 = −1
2

η φ′2 = −φ3 +
2π

3
(5.14)

φ3 = −1
2

η +
π

3
φ′3 = −φ2 +

2π

3
,

the non-perturbatively defined Schrödinger functional coupling reads

g2
SF(L) =

Γ′0[B]
Γ′[B]

∣∣∣∣
η=0

, (5.15)

where the derivatives are to be understood with respect to η. The numerator of (5.15) is
given analytically, and the denominator can be estimated as a path integral expectation
value (cf. (5.4, 5.12)),

Γ′[B] ≡ ∂Γ[B]
∂η

=

〈
∂SG

∂η

〉
. (5.16)

As indicated in (5.15), the only scale which enters the SF coupling is L. The coupling
has prominently been used for the non-perturbative determination of the Λ parameter
from hadronic low-energy input within the effort of the ALPHA Collaboration [40–
44, 95]. A direct approach on the lattice would have to satisfy

a� µ−1 � m−1
H � L (5.17)

3Actually, this has explicitly been shown only in perturbation theory to finite order, see also [93, 94],
but it was confirmed by numerous non-perturbative computations.
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5.1 The Schrödinger functional in the continuum

Lmax = O(
1
2

fm) : HS −→ SF(µ = 1/Lmax)

↓

SF(µ = 2/Lmax)

↓

•

•

•

↓

SF(µ = 2n/Lmax)

PT: ↓

DIS, jet-physics, at s = M2
Z

PT←− ΛQCD

Figure 5.2: Illustration of the ALPHA
Collaboration strategy to
determine the Λ parameter
from low-energy phe-
nomenological input under
use of the SF coupling (5.15).
The figure is taken from [6].
HS, PT and DIS stand for
hadronic scheme, perturba-
tion theory and deep inelastic
scattering, respectively. The
Lambda parameter Λ is
denoted by ΛQCD.

in order to avoid large discretization and finite size effects. Direct compliance with
these conditions, however, is not feasible regarding the computational costs. This
multiscale problem can be overcome by finite size scaling, where the renormalization
scale is identified with the inverse of the spatial extent of the SF,

µ = 1/L . (5.18)

The SF coupling is computed at some large Lmax, which is put in relation to a hadron
mass in a hadronic renormalization scheme, as explained in sec. 3.4. Subsequently,
g2

SF(Lmax) is evolved to high energies (i.e. Lmin) under use of the so-called step scaling
function, which is a non-perturbatively defined finite step analog of the β function
(2.31). The Λ parameter can then be derived from g2

SF(Lmin), see (2.35). Finally, given
the perturbative expansion of the SF coupling, Λ may be converted to the MS scheme
via (2.38). The procedure is illustrated in fig. 5.2.

Inclusion of quarks

The SF was extended from the pure Yang–Mills theory to QCD in [91]. The inclusion
of quarks in accordance with the quantum mechanical interpretation described above
can be obtained by imposing the following Dirichlet boundary conditions in time:

P+ ψ(x)|x0=0 = ρ(~x) P− ψ(x)|x0=T = ρ′(~x) (5.19a)

ψ(x) P−|x0=0 = ρ(~x) ψ(x) P+|x0=T = ρ′(~x) , (5.19b)
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5 The Schrödinger functional

with P± = 1
2 (1+ γ0). Only half of the fermion components are specified, as the

Dirac equation has a unique solution in that case. In principle, the fermion fields at
the boundaries introduce additional counterterms4 in the action [91]. However, for
vanishing boundary fields,

ρ = ρ = ρ′ = ρ′ = 0 , (5.20)

no further renormalization apart from the one of the bare parameters is required, as
before without quarks. The most general boundary conditions in space are given by

ψ(x + Lk̂) = exp { iθk} ψ(x) (5.21a)

ψ(x + Lk̂) = exp {−iθk} ψ(x) . (5.21b)

The phases (or fermion angles) θk respect the periodicity of bilinears, and are usually
chosen identically, θ ≡ θ1 = θ2 = θ3. In that case, the SF reads (cf. (5.4))

Z[C, C′] = Z[C, ρ, ρ, C′, ρ′, ρ]|ρ=ρ=ρ′=ρ′=0 =
∫

D[ψ, ψ, A] exp
{
−S[ψ, ψ, A]

}
, (5.22)

where S[ψ, ψ, A] comprises the fermion as well as the gauge action, (2.14) and (2.15),
respectively.

It has been pointed out in [91] that the fermionic boundary conditions introduce a
finite gap in the spectrum of the Dirac operator. For the special case of C = C′ = 0
and θ = 0, the smallest eigenvalue of the massless and free squared Dirac operator
D2, which amounts to D†

uDu on the lattice (cf. (4.36)), is given by [91]

λ2
min =

( π

2T

)2
. (5.23)

As explained in sec. 4.7, this largely facilitates the numerical simulation of Wilson
fermions (cf. (4.80)), and the associated feasibility to simulate massless fermions allows
to use the SF as a mass-independent renormalization scheme. Such a scheme has the
advantage of mass-independent and thus simpler renormalization group equations
(cf. sec. 8), and the fact that all quarks in the theory are mass-degenerate makes their
numerical implementation easier. First, only one quark mass has to be tuned, and
second, in the case of N f = 2, 4, one may simulate doublets and hence avoid the more
expensive use of the RHMC, see sec. 4.6.

4These appear in QCD in contrast to the pure Yang–Mills theory due to the presence of gauge invariant
composite fields of dimension 3.
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5.2 The Schrödinger functional on the lattice

Boundary conditions

Given the discussion in the previous section, the formulation of the SF on the lattice is
straightforward. The boundary conditions for the fermion fields in time and space stay
the same, (5.19) and (5.21). The introduction of the fermion phase angle θ is equivalent
to substituting

Uk(x)→ λ Uk(x) with λ = exp (iθa/L) (5.24)

in the gauge covariant derivatives∇µ and∇∗µ (3.24) as they appear in the Wilson–Dirac
operator (3.43), see e.g. [46] for details. The boundary conditions for the continuum
gauge fields Aµ translate to those of the lattice gauge fields Uµ via

Uk(x)|x0=0 = exp {aCk} (5.25a)

Uk(x)|x0=T = exp
{

aC′k
}

, (5.25b)

where C(′)
k is the same as in (5.7), and

Uµ(x + Lk̂) = Uµ(x) . (5.26)

Accordingly, the lattice background field (cf. (5.10)) reads

Vµ(x) = exp
{

aBµ(x)
}

, (5.27)

and the partition function (5.22) assumes the familiar form

Z[C, C′] =
∫

D[ψ, ψ, U] exp
{
−S[ψ, ψ, U]

}
. (5.28)

Actions and (boundary) improvement in the Schrödinger functional

In order to write down the various actions in the framework of the SF, it is convenient
to extend the definition of the fermion and gauge fields to the outside of the SF cylin-
der, where they are set to 0 and 1, respectively. For the fermion fields, this includes
the components at the boundaries which were not explicitly specified in (5.19). In that
case, the respective actions may be written again as a sum over all spacetime points,
and the Wilson fermion action in fact simply maintains the form given in (3.44). The
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5 The Schrödinger functional

gauge actions, in contrast, get slightly modified at the boundaries, where the purely
spatial plaquettes and—if present—rectangles are weighted with certain factors for
convenience, see below. In the formulation of the improved action on the lattice, the
clover term (3.101) is restricted to the bulk of the SF:

δSsw[ψ, ψ, U] = a5
T−a

∑
x0=a

∑
~x

ψ(x)
i
4

σµνFµνψ(x) . (5.29)

For full improvement, however, one also needs to account for the effects of the bound-
aries in the form of boundary counterterms δSG,b and δSF,b. The full O(a) improved
lattice action in the SF then reads

SSF
I [ψ, ψ, U] = SW

G [U] + δSG,b[U] + SF[ψ, ψ, U] + δSF,b[ψ, ψ, U] + δSsw[ψ, ψ, U] . (5.30)

To obtain the counterterms, one constructs the most general irrelevant boundary terms
in the Symanzik effective action first, similar to the procedure described in sec. 3.7.
These are generally of the form [46]

Sk = lim
ε→0

∫
d3~x

{
Bd(~x)|x0=ε + B′d(~x)|x0=T−ε

}
, (5.31)

where B(′)
d are local composite fields of dimension 3 + d at the respective boundaries.

The boundary fermion field counterterms that enter B(′)
1 can be reduced under use

of the equations of motion and symmetry considerations. The corresponding lattice
counterterms read [46]

δSF,b[U] = a4 ∑
~x

{
(c̃s − 1)

[
Os(~x)−O′s(~x)

]
+ (c̃t − 1)

[
Ot(~x)−O′t(~x)

] }
, (5.32)

with

Os(~x) = ρ(~x) γk∇̃k ρ(~x) (5.32a)

O′s(~x) = ρ′(~x) γk∇̃k ρ′(~x) (5.32b)

Ot(~x) =
{

ψ(y)
(

P+∇∗0 +
←−∇ ∗0 P−

)
ψ(y)

}
y=(a,~x)

(5.32c)

O′t(~x) =
{

ψ(y)
(

P+∇0 +
←−∇ 0P−

)
ψ(y)

}
y=(T−a,~x)

. (5.32d)
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The pure gluon boundary fields that correspond to B(′)
1 are

tr {Fkl Fkl} and tr {F0kF0k} , (5.33)

with k, l = 1, 2, 3. One way to account for them in the improved lattice theory is, for
instance, to add the boundary gauge counterterms [90]

δSG,b[U] =
1

2g2
0
(cs − 1)∑

Cs

tr[1−U(Cs)]

+
1
g2

0
(ct − 1)∑

Ct

tr[1−U(Ct)] , (5.34)

where Cs and Ct are space- and time-like oriented plaquettes at the boundaries, re-
spectively. However, as we will see below, discretizations in terms of plaquettes and
rectangles are also useful when these are present in the original action, which is the
case for the Lüscher–Weisz gauge action (cf. sec. 3.8).

While the fermion counterterms in (5.32) are considered in the Wilson–Dirac oper-
ator, the boundary improvement terms δSG,b can be incorporated in the gauge action
SG by introducing weight factors w0(C) and w1(C) for the oriented plaquettes S0 and
rectangles S1, respectively. The boundary improved SF Wilson gauge action (cf. (3.39))
then becomes

SW,SF
G [U] = SW

G [U] + δSG,b[U] =
1
g2

0
∑
C∈S0

w0(C)tr[1−U(C)] , (5.35)

where under consideration of (5.34), the weight factor depends on the location of the
plaquette C as follows:

w0(C) =


1
2 cs(g2

0) if C ∈ boundary

ct(g2
0) if exactly 1 link of C ∈ boundary

1 otherwise .

(5.36)

For cs = ct = 1, one obtains the unimproved SF Wilson gauge action SW
G [U]. In the

case of the Abelian boundary gauge fields (5.7), the spatial counterterms in (5.32) and
(5.34) do not contribute, i.e. improvement is compatible with cs = c̃s = 1. Concerning
the temporal improvement coefficients, 2-loop results [90, 94, 96, 97] for ct and 1-loop
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results [50, 53] for c̃t are available:

ct(g2
0) = 1 +

[
−0.08900(5) + 0.0191410(1) N f

]
g2

0

+
[
−0.0294(3) + 0.002(1) N f + 0.0000(1) N2

f

]
g4

0 + O(g6
0) (5.37a)

c̃t(g2
0) = 1− 0.01795(2) g2

0 + O(g4
0) . (5.37b)

We consider the boundary improved SF tree-level improved Lüscher–Weisz gauge action
next:

SLW,SF
G [U] = SLW

G [U] + δSG,b[U] =
1
g2

0
∑

i=0,1
ci ∑
C∈Si

wi(C)tr[1−U(C)] . (5.38)

If the counterterms are again expressed solely in terms of plaquettes, (5.34), one finds

w0(C) =


1
2 cs(g2

0) if C ∈ boundary

ct(g2
0) if exactly 1 link of C ∈ boundary

1 otherwise ,

(5.36)

as for the Wilson gauge action, while the rectangles remain unchanged:

w1(C) =


0 if C ∈ boundary

1 if exactly 2 links of C ∈ boundary

1 otherwise .

(5.39)

Referring to [51], this amounts to Choice A5. Another option is Choice B, defined by the
weight factors [51]

w0(C) =


1
2 cs(g2

0) if C ∈ boundary

ct(g2
0) if exactly 1 link of C ∈ boundary

1 otherwise

(5.40)

5Note that we have defined cs(g2
0) in a slightly different way compared to [51], for the purpose of

similarity to the case of the Wilson gauge action. The difference is a factor 2c0, which is however
irrelevant here, as will become clear from the discussion below.
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and

w1(C) =


1/2 if C ∈ boundary

3/2 if exactly 2 links of C ∈ boundary

1 otherwise

(5.41)

Note that in comparison to its original definition [51], the weights for the spatial loops
at the boundaries have been altered here, following the implementation of the SF in the
openQCD software package [77, 98] (documented also e.g. in [22]). Since the boundary
fields are fixed in the SF, this merely adds an irrelevant constant term to the action. For
the same reason, and the use of Abelian boundary gauge fields, cs(g2

0) is simply set to
one. The only significant difference between Choice A and B is the weight of the rect-
angles with 2 spatial links at the boundary. Accordingly, the boundary improvement
coefficients ct(g2

0) that concern the corresponding plaquettes are different (already at
tree-level). The advantage of Choice B, on which we will focus from now on, is that
it allows to express the SF background field analytically, which is useful for perturba-
tive computations. The tree-level value of ct(g2

0) is 1 [51]. The corresponding 1-loop
coefficient for Choice B has in principle first been worked out in [99] under use of the
N f -dependent part of the 1-loop coefficient [96] as given in (5.37a), but for a varia-
tion for which an additional improvement associated with the rectangles appears. The
1-loop formula which corresponds directly to Choice B as it is defined above reads6

ct(g2
0) = 1 +

[
−0.001782 + 0.0191410

3N f

5

]
· g2

0 + O(g4
0) . (5.42a)

The fermionic boundary improvement coefficient is not known beyond tree-level for
the Lüscher–Weisz gauge action in connection with Choice B:

c̃t(g2
0) = 1 + O(g2

0) . (5.42b)

Finally, we remark that an important feature of Abelian background fields (cf. (5.7))
is that their use leads to particularly small cutoff effects once O(a) improvement as
described above is established [90].

6The difference in (5.42a) compared to [99] is merely a factor c0 = 5/3 in the N f -independent part, and
a factor (c0)

−1 = 3/5 in the N f -dependent part of the 1-loop coefficient.
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5.3 Schrödinger functional correlation functions

Fermion fields at the boundaries of the SF are created by functional derivatives with
respect to the fermion boundary fields (5.19):

ζ(~x) = a−3 δ

δρ(~x)
, ζ(~x) = −a−3 δ

δρ(~x)
, (5.43a)

ζ ′(~x) = a−3 δ

δρ′(~x)
, ζ

′
(~x) = −a−3 δ

δρ′(~x)
. (5.43b)

As part of an operator O ≡ O(ζ, ζ ′, ζ, ζ
′
), these act on the Boltzmann factor in the path

integral expectation value

〈O〉 =
[

1
Z

∫
D[ψ, ψ, U] O(ζ, ζ ′, ζ, ζ

′
) exp

{
−S[ψ, ψ, U]

}]
ρ=ρ′=ρ=ρ′=0

. (5.44)

Of particular importance are

O ji = a6 ∑
~y,~z

ζ
j
(~y) γ5 ζ i(~z) (5.45a)

and O′ji = a6 ∑
~y,~z

ζ
′j
(~y) γ5 ζ ′i(~z) , (5.45b)

which represent a pseudoscalar quark-antiquark state at the boundaries x0 = 0 and
x0 = T, respectively. These states are of definite, zero momentum, due to the sum-
mation over the boundaries in (5.45) in connection with the gluon field boundary
conditions (5.7) that preserve spatial translation invariance (cf. sec. 5.1).

Under application of O ji, O′ji, and currents which are suitable to create or annihilate
pseudoscalar states in the bulk (x0 6= 0, T) of the SF, namely ∂µ Aij

µ and Pij (cf. (3.73,
3.74, 3.75)), particularly useful, non-vanishing transition amplitudes can be built. The
Schrödinger functional correlation functions (SFCFs) read

f ij
A(x0) = −1

2

〈
Aij

0 (x) O ji
〉

(5.46)

f ij
P (x0) = −1

2

〈
Pij(x) O ji

〉
, (5.47)
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sec. 3.6 as

mij
PCAC(x) =

∂̃µ

〈
Aij

µ(x) O
〉

2
〈

Pij(x) O
〉 , (3.81)

with an arbitrary operator O. From the discussion above, it is clear that the operator
O ji (5.45a) is a particularly useful choice in the Schrödinger functional. It renders the
correlation functions in (3.81) space-independent, and therefore also leads to vanishing
spatial derivatives in the numerator. The PCAC mass in that case depends only on
time, and may be expressed in terms of the axial (5.46) and pseudoscalar (5.47) SFCFs
as

mij
PCAC(x0) =

∂̃0

〈
Aij

0 (x) O ji
〉

2
〈

Pij(x) O ji
〉 =

∂̃0 f ij
A(x0)

2 f ij
P (x0)

. (5.51)

Accordingly, the backward PCAC mass is defined in the SF by

m′ijPCAC(x0) =
∂̃0

〈
O′ji A′ij0 (x)

〉
2
〈
O′ji P′ij(x)

〉 =
∂̃0 f ′ijA (T − x0)

2 f ′ijP (T − x0)
. (5.52)

One may proceed very similarly for the improved PCAC mass (3.108), introduced in
sec. 3.7. As it is expressed in terms of the improved axial current (AI)

ij
0 , cf. (3.103), it

is convenient to define the associated improved axial correlation function,

f ij
A,I(x0) = f ij

A(x0) + acA∂̃0 f ij
P (x0) , (5.53)

in terms of which the improved PCAC mass reads

mij
PCAC,I(x0) =

∂̃0

〈
(AI)

ij
0 (x) O ji

〉
2
〈

Pij(x) O ji
〉 =

∂̃0 f ij
A,I(x0)

2 f ij
P (x0)

=
∂̃0 f ij

A(x0) + acA∂̃2
0 f ij

P (x0)

2 f ij
P (x0)

. (5.54)

Note that the renormalization pattern of the PCAC mass stays the same in the Schrödinger
functional framework. In the improved case and N f = 4, this means

mR =
ZA(g̃2

0)

ZP(g̃2
0, aµ)

1 + abA(g2
0) mq

1 + abP(g2
0) mq

mPCAC,I(x0) + O(a2) , (5.55)

the only difference to (3.107) being the very definition of mPCAC,I.
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6 The gradient flow coupling and the
topological charge

6.1 The gradient flow coupling

The gradient flow (GF) considers the gauge fields in an additional 5th dimension, in
which the fundamental fields Aµ(x) (continuum) or Uµ(x) (lattice) are evolved in a
specific way along the so-called flow time t. It has gained in importance in recent
years, based on the insight that the gauge fields at positive flow time t > 0 do not
require renormalization [101–103]. This allows to probe the theory in many interesting
ways. Among many applications (see e.g. [104] for a review), it in particular leads
to a definition of the renormalized gradient flow coupling in terms of the Schrödinger
functional [101, 105], which we will address in detail below. The coupling, for instance,
together with step scaling [106], became part of the ALPHA Collaboration strategy to
determine the Λ parameter in N f = 3 [43, 44]. Important advances were also made in
the field of scale setting, where the new gradient flow scales t0 [101] and w0 [107] play
an important role (see [39] for an overview).

We first discuss general properties of the gradient flow and its coupling in the con-
tinuum (sec. 6.1.1), before we move on to the formulation on the lattice (sec. 6.1.2).

6.1.1 The Yang–Mills gradient flow

The Yang–Mills gradient flow Bµ(x, t) of the fundamental SU(3) gauge field Aµ is de-
fined by the non-linear flow equation [101]

∂tBµ(x, t) = DνGνµ(x, t) , Bµ(x, 0) = Aµ(x) , (6.1)
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6 The gradient flow coupling and the topological charge

where t ≥ 0 denotes the flow time, and with1

Dµ = ∂µ +
[
Bµ, ·

]
and Gµν = ∂µBν − ∂νBµ + [Bµ, Bν] . (6.2)

As the right hand side of (6.1) obeys

DνGνµ ∼ −
δSG[B]

δBµ
, (6.3)

where SG is the pure (Yang–Mills) gauge action that corresponds to (2.15), the flow
equation evolves the gauge field towards a local minimum of the action. As has been
argued in [101], this may be understood by the fact that the flow effectively constitutes
a smoothing2 of the gauge field over a range

√
8t. One remarkable feature of this

procedure is the fact that the gauge field Bµ at t > 0 is renormalized, rendering expec-
tation values of local, gauge-invariant quantities finite. While this was later proven for
the general case of correlation functions of smoothed gauge fields in [102], it was first
shown for the particular case of the energy density (cf. (3.12, A.16))

〈E(x, t)〉 = −1
2
〈
tr
[
Gµν(x, t)Gµν(x, t)

]〉
=

1
4

〈
Ga

µν(x, t)Ga
µν(x, t)

〉
(6.4)

in [101]. Specifically, in terms of the running coupling α(µ) = g2
MS(µ)/(4π) in the MS

scheme at a renormalization scale µ = 1/
√

8t, the perturbative expansion

t2 〈E(x, t)〉 = 3(N2 − 1)
32π

α(µ)
[
1 + c′1α(µ) + O(α2)

]
(6.5)

with a finite coefficient c′1 has been derived in infinite volume.
The energy density at positive flow time may be used to define a non-perturbative

gradient flow coupling in finite volume. In order to be able to study the running of the
GF coupling, just as for the SF coupling, finite size scaling (cf. (5.18)) is applied, i.e. the
given renormalization scale runs with the size L of the box,

µ =
1√
8t

=
1

cL
, (6.6)

1Apparent differences with respect to the previously considered covariant derivative and field strength
tensor, (3.10), are due to the use of anti-hermitean generators T̃a, see app. A.1, which is standard in the
present context [101].

2The precise meaning of this statement is given in [101]. Somewhat simplifying, the gauge field Bµ(x, t)
emerges from a term ∼ e−(x−y)2/(2r2/4) Aµ(y) with r =

√
8t, integrated over y.
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6.1 The gradient flow coupling

where the smoothing fraction c represents the fraction of the box over which the gauge
field is averaged. This approach was implemented in a periodic box [108] and in the
Schrödinger functional [105]. In the latter case, the GF coupling is defined as

g2
GF(L) = N−1 · t2 〈E(x0, t)〉

∣∣x0=T/2
t=c2L2/8 . (6.7)

Note that due to the broken translational invariance in time direction, the energy
density becomes explicitly dependent on x0. The normalization factor N−1 in (6.7)
ensures g2

GF = g2
0 +O(g4

0), and may be obtained from the leading order contribution of
the perturbative expansion of 〈E(x0, t)〉 in the SF, similar to (6.5). Apart from the size L
of the SF box, N−1 implicitly depends on the smoothing fraction c, the ratio ρ = T/L,
the boundary fields φ, as well as—since the SF breaks translational invariance in the
time direction—the time slice x0:

N ≡ N (c, ρ, x0, φ) . (6.8)

In addition, there is a dependence3 of the GF coupling on the fermionic phase angle
θ, which has been observed to be weak [105], however. Note that as indicated in (6.7),
the time slice x0 is always fixed to the center of the lattice. Hence, in summary, to
complete the definition of the GF coupling, it suffices to specify the SF parameters
as well as c. We will return to this in the upcoming discussion of the gradient flow
coupling on the lattice.

Finally, we mention that it is also possible to define the GF coupling in terms of the
spatial components

〈
Ga

ik(t)G
a
ik(t)

〉
of the energy density only, see e.g. [105].

6.1.2 The gradient flow coupling on the lattice

On the lattice, the flow Vµ(x, t) associated with the lattice gauge links Uµ(x) is defined
by

a2 ∂tVµ(x, t) = −g2
0

{
T̃a∂a

x,µSflow[V]
}

Vµ(x, t) , Vµ(x, 0) = Uµ(x) , (6.9)

which replaces (6.1). The derivative ∂a
x,µ takes values in the Lie-algebra su(3) and is

defined to act on an arbitrary function of the link variable Uµ(x) as

∂a
x,µ f (Uµ(x)) =

d
ds

f (esT̃a
Uµ(x))|s=0 . (6.10)

3Note that in perturbation theory, the dependence arises beyond tree-level order.
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6 The gradient flow coupling and the topological charge

For a complete definition of the gradient flow coupling on the lattice, three discretiza-
tions need to be chosen:

D1. The gauge action SG

The gauge action SG that is used (possibly in connection with the Wilson fermion
action SW

F (3.44)) to produce the fundamental gauge field configurations Uµ(x).

D2. The flow action Sflow

The flow action Sflow (cf. (6.9)) may be any discretization of the gauge action SG,
independent of the choice in D1. For Sflow = SW

G (3.36) and Sflow = SLW
G (3.112),

the flow Vµ is referred to as Wilson flow or Lüscher–Weisz flow, respectively.

D3. The energy density E
Two valid choices for the discretization of the energy density (6.4), that both
involve the replacement Uµ(x)→ Vµ(x, t), are4

E(plaq)(x0, t) = 2 ∑
µ<ν

Re tr[1−Vµν(x0, t)] (6.11)

and E(clov)(x0, t) = −1
2

tr
[

G(clov)
µν (x0, t)G(clov)

µν (x0, t)
]

. (6.12)

The first option is based on (3.36) with the obvious generalization of the pla-
quette, Uµν(x) → Vµν(x, t), while the second option is the (symmetric) clover
definition with the straight forward generalization of the clover term (3.102),
F(clov)

µν (x)→ G(clov)
µν (x, t).

The three choices determine the intrinsic cutoff effects of the gradient flow coupling,
together with the parameters already present in the continuum formulation. Accord-
ingly, the normalization N (cf. (6.8)) on the lattice depends on those, too. It has been
worked out in [105] for the case of

SG = SW
G , Sflow = SW

G and E = E(clov) (6.13)

in conjunction with vanishing boundary fields, φ = φ′ = 0 (5.7). In the same work,
the gradient flow coupling has been investigated non-perturbatively for the above three
choices, (6.13), on N f = 2 ensembles at L ∼ 0.4 fm. Smoothing fractions in the range
c ∈ [0.3, 0.5] have turned out to be convenient, as their use leads to high statistical
precision at affordable cost (especially for c . 0.3) and modest cutoff effects (especially

4The expressions are understood to be averaged over the spatial components.
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6.2 The topological charge

for c & 0.5). These properties make the GF coupling particularly interesting as an
alternative to the traditional SF coupling.

Furthermore, the gradient flow coupling was shown to exhibit a rather weak mass
dependence [105]. In accordance with the fact that the quark masses enter only as sea
quarks, the gradient flow coupling depends to a fairly good approximation only on the
trace of the mass matrix. While this is suggested by data displayed for instance in [39],
it has also been shown to be true for flow observables up to NLO in chiral perturbation
theory [109]. Finally, we mention that the Symanzik improvement program to obtain
O(a2) cutoff effects may be applied for flow observables. With regard to Sflow, the
Zeuthen flow [110, 111] has been developed to serve this purpose.

6.2 The topological charge

6.2.1 The topological charge in the continuum

The winding number for a simple model

For simplicity, we consider a U(1) gauge field A in space R,

A : R→ u(1) ∼= R (6.14)

and restrict ourselves to pure gauge configurations first, i.e. configurations that are
related to the vacuum by gauge transformations (cf. (2.13)),

A(x) =
i
e
(∂xΩ(x))Ω†(x) =

−1
e

α′(x) with Ω(x) = eiα(x) ∈ U(1) . (6.15)

Without loss of generality, we impose limx→±∞ Ω(x) = 1, which by (6.15) is equivalent
to

lim
x→±∞

α(x) = 2πn± with n± ∈ Z . (6.16)

One then finds

1
2π

∫ ∞

−∞
dx A(x) ∼ 1

2π

∫ ∞

−∞
dx α′(x) = n+ − n− ≡ n ∈ Z . (6.17a)

For the graphic interpretation of this result, it is convenient to use a stereographic pro-
jection of R to the unit circle S1, which may be parametrized by the angle φ, see fig. 6.1.
The gauge field A(x) is then fully specified by α(φ), and (6.17a) can be written as

111



6 The gradient flow coupling and the topological charge

Figure 6.1: Stereographic projection of R → S1,
x 7→ x′. The image of this map-
ping equals S1 without the north
pole (N). It may be compactified by
identification of N with x → ±∞
and parametrized by the angle φ ∈
[0, 2π].

Figure 6.2: Illustration of homotopy classes of different winding number n. As indicated in
green, the position of the displayed unit vectors is given by φ, whereas their orien-
tation is determined by α. The above representatives obey α = n · φ.

1
2π

∫ 2π

0
dφ α′(φ) = n+ − n− ≡ n ∈ Z . (6.17b)

In this formulation, it is obvious that n counts the number of rotations the unit vector
field that represents α receives as one moves around the circle (from φ = 0 to φ = 2π).
For this reason, it is called winding number. It is a topological invariant that divides the
space of all possible vacuum gauge field configurations into topological equivalence
classes, so-called homotopy classes. Elements of the same class may be continuously
transformed into each other, while this is not true for elements of two distinct classes.
The simplest representatives of the homotopy classes with winding number n are those
with α = n · φ as shown in fig. 6.2.

The generalization to non-vacuum gauge fields A is straight forward, as these satisfy
(6.15) in the limit x → ±∞, which is a corollary from the finiteness of the (Euclidean)
action. Consequently, they may be classified by the winding number n as well. How-
ever, away from the boundaries x → ±∞ of the compactified R, or equivalently away
from the north pole N of S1, they cannot be specified merely in terms of α, in contrast
to the pure gauge fields. The general space of gauge field configurations is in fact
connected, but two pure gauge configurations of different n can not be continuously
transformed into each other without leaving pure gauge (with zero action).
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6.2 The topological charge

The topological charge in continuum QCD

The concept of the winding number may be generalized to the case of QCD5. Instead
of (6.14), the gauge fields correspond to a mapping

Aµ : R4 → su(3) . (6.18)

The equivalent to the winding number n (6.17a) is the topological charge

Qtop =
∫

d4x q(x) =
1

16π2

∫
d4x tr

[
Fµν F̃µν

]
, (6.19a)

where

F̃µν =
1
2

εµνρσFρσ (6.19b)

denotes the dual field strength tensor and q is the topological charge density. In analogy to
(6.17a), the topological charge can be expressed as the spacetime integral over a total
derivative, namely of the Chern–Simons current [112]

Kµ(A) =
1

16π2 εµνρσ

(
Aa

ν∂ρ Aa
σ +

1
3

f abc Aa
ν Ab

ρ Ac
σ

)
, (6.20)

which subsequently may be reformulated under use of Gauss’ law as a surface integral
over the boundary of R4, or equivalently the infinitely large three-sphere S3

∞,

Qtop =
∫

d4x ∂µKµ(A) =
∫

S3
∞

d3σ K⊥(A) ∈ Z . (6.21)

Instantons and the instanton bound

Instantons are non-vacuum gauge field configurations of topological charge Qtop =

±1 that minimize the (Euclidean) action. As such, they mediate tunneling processes
through the finite action barrier between the topologically distinct pure gauge sectors
described above. To obtain them, one may reformulate the gauge action (3.12) as (see
e.g. [113])

SG =
1

2g2
0

∫
d4x

{
tr
[(

Fµν(x)∓ F̃µν(x)
)2
]
± tr

[
Fµν(x)F̃µν(x)

]}
. (6.22)

5Note that—in contrast to the continuum QCD discussion in sec. 2.1—we work in Euclidean space here
to facilitate the transition to the lattice.
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6 The gradient flow coupling and the topological charge

The non-negative first term vanishes for an (anti-)dual field strength tensor

FI
µν = ±F̃I

µν . (6.23)

The self-dual solutions [114, 115] satisfy the classical Yang–Mills equation of motion,
DµFI

µν = 0, can be shown to be strongly located in spacetime6 (see e.g. [116]) and
are identified with pseudo-particles, the (anti-)instantons. Their action is given by (see
e.g. [117])

SI
G =

8π

g2
0

. (6.24)

On the other hand, the action (6.22) under use of (6.19a) and (6.23) becomes

SI
G = ±8π2

g2
0

QI
top =

8π2

g2
0
|QI

top| , (6.25)

where in the last step the topological charge

QI
top = ±1 (6.26)

of the (anti-)instanton, which follows from comparison with (6.24), has been used. A
general gauge configuration may contain several (anti-)instantons. Note, however, that
these can compensate each other with regard to the (global) topological charge. An
equal number of instantons and anti-instantons, for instance, yields Qtop = 0. This
leads to the inequality

SG ≥
8π2

g2
0

[#(instantons) + #(anti-instantons)] ≥ 8π2

g2
0
|Qtop| , (6.27)

which is called instanton bound for the action SG of a gauge configuration with topo-
logical charge Qtop.

Distribution of the topological charge and the chiral anomaly

The QCD path integral is symmetric with respect to the topological charge, which
expresses itself in a vanishing expectation value,

〈
Qtop

〉
= 0 . (6.28)

6 Accordingly, they represent an “instantaneous” event in spacetime.
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6.2 The topological charge

The width of its distribution increases with the physical volume, which is linked to an
increasing opportunity for (anti-)instantons to appear. This circumstance is considered
in the topological susceptibility

χtop =

〈
Q2

top

〉
V

=
1
V

∫
d4x

∫
d4y 〈q(x)q(y)〉 , (6.29)

which in general depends on the number N f of quark flavors, their masses M (cf.
(3.13)), and the considered volume7 V.

The topological charge plays an important role in the context of the chiral anomaly
(cf. sec. 2.2). This is most prominently expressed by the (Atiyah–Singer) index theorem
[119], which states that, in analogy to (6.17), the topological charge is given by the
index of the Dirac operator, defined as the difference of the number of its left- and
right-handed zero modes:

index(D) = nL − nR = Qtop . (6.30)

The possibility of the index to be different from zero—and hence in the end the topo-
logical structure of the QCD vacuum—can be shown to lead to the chiral anomaly (see
e.g. [120]). Another demonstration of the intertwining of topological charge and the
chiral anomaly is the Witten–Veneziano formula [121, 122], that attributes the exception-
ally large η′ mass to the non-vanishing of the topological susceptibility, χtop 6= 0.

6.2.2 The topological charge on the lattice

Discretization in terms of the flow

The naive discretization of the topological charge Qtop and susceptibility χtop merely
consists of the choice of a discretization of the field strength tensor Fµν. This, how-
ever, leads to non-integrable short-distance singularities, which prevent a well-defined
continuum limit for χtop, see e.g. [123].

While different approaches to solve this issue have been developed, see e.g. [123,
124], the gradient flow provides a particularly elegant remedy by defining the topo-

7Note that the infinite volume limit is often considered (finite size effects for affordable physical vol-
umes are usually found to be small compared to statistical errors). Quenched simulations lead to
limV→∞ χtop ≈ (190 MeV)4, see e.g. [118].
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6 The gradient flow coupling and the topological charge

Figure 6.3: Qualitative sketch of the expected distri-
bution of the topological charge. The
physical volume V determines the width
of the enfolding normal distribution (solid
black), while the width of the distribu-
tions9 that belong to a certain sector (in
the sense of (6.32)) is set by the lattice
spacing a (dashed blue).
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logical charge8 in terms of fields at positive flow time [101]:

Qtop(t) = −
a4

16π2 ∑
x

tr
[

G(clov)
µν (x, t)G̃(clov)

µν (x, t)
]

, (6.31)

where G(clov)
µν is the smoothed counterpart of F(clov)

µν known from (6.12). This definition
has led to a smooth continuum extrapolation of χtop and results similar to other ap-
proaches [125]. Furthermore, the topological charge is expected to approximate integer
values as the continuum is approached. Together with the aforementioned increase of〈

Q2
top

〉
with the physical volume V, this leads to the expected distribution of Qtop on

the lattice illustrated in fig. 6.3.
The flow also provides an understanding of how the disjoint topological sectors

(cf. sec. 6.2.1) emerge in the continuum limit [101], while on the lattice the gauge field
space is connected and the topological charge is to some extent ambiguous. First, it is
known that fields which satisfy

h < 0.067 , (6.32a)

where

h = max
xµν

sµν(x) with sµν(x) = Re tr
[
1−Uµν(x)

]
(6.32b)

is a measure for the smoothness of the field U, belong to disjoint topological sectors

8Note that we again adopt the convention of anti-hermitean generators in the framework of the gradient
flow (cf. footnote 1), which explains the relative minus sign between (6.19a) and (6.31).

9Note that these distributions are affected by cutoff effects and neither need to be normal nor centered
around an integer. The situation displayed in the figure is idealized.
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also on the lattice [126, 127]. Moreover, the gradient flow defines a one-to-one map-
ping between Uµ(x) and Vµ(x, t) [128], which allows to transfer the topological sector
classification of U to V and vice versa. Finally, as has been shown for N f = 0 [101]
and N f = 2 [129], the probability Ph>0.067 for a gauge configuration V in fixed volume
to violate the bound (6.32) scales as

Ph>0.067 ∼ a6 . (6.33)

Hence, altogether, the limit a→ 0 entails the division of the topological sectors.

The topological charge and the HMC

The observed suppression of the relative weight of configurations between the sectors,
(6.33), is a consequence of the increasing action barriers between the topological sectors
as the lattice spacing is reduced. This also has severe implications in regard to the use
of the Hybrid Monte Carlo algorithm. Transitions from one sector to another need
to pass through a configuration with large action, which corresponds to a large error
∆H in the numerical integration (cf. (4.53)) that is unlikely to be accepted. In that
case, tunneling between different sectors is strongly suppressed, and Monte Carlo
simulations may get stuck in a topological sector, which is known as topology freezing.
Furthermore, the autocorrelation of the topological charge tends to become very large.
This phenomenon, which is referred to as critical slowing down, is in principle expected
for any observable as the continuum limit is approached. However, the topological
charge is notorious for the severity by which it is affected, as it couples strongly to
slow modes of the Dirac operator. This is quantitatively captured by the dynamical
critical exponent z, defined by10

τint ∼ a−z , (6.34)

which was found to be11 z = 5 for the topological charge and z ≈ 1 for Wilson loops
[89], and is expected to be z = 2 for flow observables [130].

The effects of topology freezing and critical slowing down may to some extent be
compensated by very large ensembles. However, at some point in the limit a→ 0, they
inevitably lead to a violation of ergodicity (cf. (4.24)), and an insufficiency of the HMC
to correctly sample the different topological sectors. In that case, the distribution of the
10Considering a factor a−4 for the increase of lattice sites, and a factor a−1 for the decrease in Monte

Carlo step size, the cost of the simulation at constant volume scales as a−z−5.
11Note that z depends not only on the observable, but also on the theory and the update algorithm.
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6 The gradient flow coupling and the topological charge

topological charge observed in Monte Carlo simulations does not reflect the weights
of the different topological sectors in the path integral. This, however, may lead to
biased Monte Carlo estimates, in particular for observables which correlate with the
topological charge. We will see this explicitly for the gradient flow coupling in sec. 7.
In addition, the topological charge, in the usual capacity of the evaluated observable
with the largest autocorrelation, is suited to give an estimate for the global exponential
autocorrelation time τexp = maxO τO,exp (cf. (4.111)). This serves as a check for the
sufficiency of the thermalization Nth, as well as the size Ncf of an ensemble needed to
correctly estimate autocorrelations, and hence errors for any observable. In fact, τexp

may also be directly applied to improve the latter [89].
Finally, we remark that there is a way to reduce the problem of critical slowing

down, by use of open boundary conditions [98] to compute e.g. the hadron spectrum
in large volume simulations. However, since the present work focuses on Schrödinger
functional boundary conditions, we do not go into details here.
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7 Critical slowing down and the gradient
flow coupling in the Schrödinger
functional

In [105], the GF coupling has been investigated on the lattice for N f = 2 ensembles at
a physical volume with L ∼ 0.4 fm. The path integral is in that case largely dominated
by the trivial topological sector (Qtop = 0) and contributions from other sectors can
be considered negligible. In contrast, according to the discussion in sec. 6.2, sectors of
non-vanishing topological charge are expected to contribute in larger volumes, which
brings up the question about the well-known problems of topology freezing and crit-
ical slowing down. The aim of this section is to investigate whether and how the
determination of the gradient flow coupling is affected by these phenomena. To this
end, at fixed volume with L ∼ 0.8 fm, we investigate both the gradient flow coupling
and the topological charge on the lattice, analyze the dependence of the former on the
latter, and extrapolate to the continuum to obtain g2

GF(L). Most of the results appeared
in [131], which the presentation here follows quite closely.

7.1 Setup of the numerical simulations

In order to be able to produce large statistics, we perform simulations in pure SU(3)
Yang–Mills theory (i.e. N f = 0) with the Wilson gauge action SG (3.38). We choose
SF boundary conditions with vanishing boundary fields, φ = φ′ = 0 (5.7), and fix the
physical volume in terms of the Sommer scale r0 (cf. sec. 3.4):

L = r0/0.563 ∼ 0.8 fm . (7.1)

This defines the line of constant physics at which we simulate with the lattice sizes
L/a ∈ {8, 12, 16, 20, 24}. The corresponding bare couplings (β = 6/g2

0) are determined
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7 Critical slowing down and the gradient flow coupling in the Schrödinger functional

under use of [32]

log (a/r0) = −1.6804− 1.7331(β− 6) + 0.7849(β− 6)2 − 0.4428(β− 6)3 , (7.2)

and can be found along with further parameters of the simulation in tab. 7.1. We
use the HMC of the openQCD package1 [77, 98] and the contained implementation of
Schrödinger functional boundary conditions, as well as the 2-loop value of ct (cf. (5.37a))
for O(a) improvement. Each produced configuration is evolved by adaptive integra-
tion (see e.g. [105]) of the flow equation (6.9) with Sflow = SG, including flow times
t that correspond to c ∈ {0.3, 0.5}. Afterwards, on the smoothed configurations, the
topological charge

Qtop(t) = −
a4

16π2 ∑
x

tr
[

G(clov)
µν (x, t)G̃(clov)

µν (x, t)
]

(6.31)

and the GF coupling

g2
GF(L) = N−1 · t2 〈E(x0, t)〉

∣∣x0=T/2
t=c2L2/8 (6.7)

with E(x0, t) ≡ E(clov)(x0, t) = −1
2

tr
[

G(clov)
µν (x0, t)G(clov)

µν (x0, t)
]

(6.12)

are measured using the clover discretization (3.102) for the field strength Gµν. Statis-
tical errors are computed throughout under use of the gamma method (cf. sec. 4.10)
with help of the UWerr package [88].

7.2 Histories and (auto)correlations

7.2.1 The topological charge

Histories of the topological charge are shown in fig. 7.1 for c = 0.3. As expected
from the discussion in sec. 6.2, the topological charge tends to assume values that are
closer to integers for smaller lattice spacings. For lattices up to L/a = 16, one observes
that non-trivial configurations appear to cluster more and more as the lattice gets finer.
This goes together with an increasing integrated autocorrelation time that corresponds
to severe critical slowing down with a dynamical critical exponent of z > 2 (cf. (6.34)),
displayed in fig. 7.2. Moreover, for the largest lattices L/a ∈ {20, 24}, configurations
from non-trivial sectors appear less often, see tab. 7.2. However, the autocorrelations

1Version 1.2.
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7.2 Histories and (auto)correlations

L/a β Ncf τmeas

8 5.9032 80000 6
12 6.1410 80000 6
16 6.3413 40000 6
20 6.5119 15000 12
24 6.6552 7000 12

Table 7.1: Parameters of the numerical sim-
ulations. Ncf is the amount of
configurations used for the mea-
surements, and τmeas denotes the
Monte Carlo time between two
consecutive of those configurations
in MDU.

a

L/a c = 0.3 c = 0.5
8 98.66( 8) 98.94( 8)

12 98.19(20) 98.45(19)
16 98.46(62) 98.56(61)
20 *99.91( 3) *99.96( 2)
24 *99.52(36) *99.54(36)

Table 7.2: Fraction δε
Qtop,0 of configura-

tions with topological charge
Qtop ≤ ε = 0.5 (cf. (7.5)), given in
percent. The values denoted with
an asterisk are biased.
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Figure 7.1: Histories (in excerpts) of Qtop, for c = 0.3. The plots in red, orange, green and blue
correspond to L/a = 12, 16, 20, 24, respectively.
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7 Critical slowing down and the gradient flow coupling in the Schrödinger functional
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Figure 7.2: Integrated autocorrelation time of the topological charge Qtop (top) and the (modi-
fied) gradient flow coupling (bottom), multiplied by (a/L)2 and in units of 2 MDU.
The left (right) panel corresponds to c = 0.3 (c = 0.5).
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GF. Bottom: Correlation of g2

GF and Qtop. All plots are shown
exemplarily for L/a = 12. The left (right) panel corresponds to c = 0.3 (c = 0.5).
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7.2 Histories and (auto)correlations

of Qtop are obviously largely underestimated (cf. fig. 7.2), from which we infer that the
ensembles are not large enough to sample the topological sectors correctly.

7.2.2 The gradient flow coupling

The histories of the quantity N−1t2E, whose expectation value is the gradient flow
coupling g2

GF, exhibit a certain amount of exceptionally large values, see fig. 7.3. This
phenomenon is more pronounced the larger c is chosen, and goes along with an in-
creasing correlation between the gradient flow coupling and the (absolute value of
the) topological charge, also displayed in fig. 7.3, and expressed in the correlation
coefficient (cf. (H.14))

cor(g2
GF, |Qtop|) =

0.26 for c = 0.3

0.62 for c = 0.5 .
(7.3)

In particular, the large values of N−1t2E stem to a high amount from configurations
of non-vanishing topological charge. In turn, the correct sampling of the topological
sectors becomes a necessity in order to obtain correct results. However, as we have
seen in sec. 7.2.1, this requirement is not fulfilled for the two largest lattices, which
means that the results for g2

GF on these lattices are biased.

7.2.3 The modified gradient flow coupling

In order to assess the impact of the non-trivial topological sectors and their insufficient
sampling on the determination of g2

GF, we consider a modified GF coupling, which
has the same perturbative expansion but takes into account only gauge configurations
from the trivial sector:

g2
GF,0 = N−1 t2 〈E(t) δQtop,0〉

〈δQtop,0〉

∣∣∣∣
t=c2L2/8

. (7.4)

On the lattice, where we have non-integer values of Qtop, all configurations with
|Qtop| ≤ ε and ε ∈ {0.1, 0.2, . . . , 0.5} are considered to belong to the trivial sector,
i.e. we replace

δQtop,0 → δε
Qtop,0 = Θ(Qtop + ε)Θ(ε−Qtop) (7.5)

in (7.4). The results for L/a = 12 can be seen in fig. 7.4. The contributions from
non-trivial sectors do make a difference, and the effect is stronger for large c due
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7 Critical slowing down and the gradient flow coupling in the Schrödinger functional
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Figure 7.4: Modified gradient flow coupling g2
GF,0 for L/a = 12 against the range ε, where ε ≤

0.5 can serve as definition of the trivial sector on the lattice. Results for larger ε take
into account configurations which are considered non-trivial, but are nevertheless
shown in gray for completeness. The point at ε = 1 corresponds to the original
definition g2

GF of the gradient flow coupling. Left: c = 0.3. Right: c = 0.5.

to the larger correlation discussed in sec. 7.2.2. Moreover, we see that the particular
choice of ε has no big influence on the modified gradient flow coupling. We will use
ε = 0.5 in the following. In fig. 7.2, we compare the integrated autocorrelation time
for the gradient flow coupling in its original and modified form. We find that the
original coupling is affected by the bad sampling towards the continuum, which is
particularly pronounced in the case of c = 0.5. In contrast, the modified coupling
does suffer less severely from critical slowing down and its autocorrelation scales with
z ≈ 2 as expected (cf. (6.34)). In that sense, the modified gradient flow coupling can
be considered to be safer.

7.3 Results

The full set of results for the two couplings g2
GF and g2

GF,0 is listed in tab. 7.3. On the
coarser lattices (L/a ∈ {8, 12, 16}), the simulations show a clear difference between the
two definitions. This suggests that in the studied volume (L ∼ 0.8 fm), topologically
non-trivial configurations play a role in accurately determining the value of g2

GF. On
the two finer lattices (L/a ∈ {20, 24}), we do not observe a difference due to the critical
slowing down that affects the determination of the original coupling.

Since the results for g2
GF on the finer lattices (L/a ∈ {20, 24}) are biased, we con-

duct the continuum extrapolation only for g2
GF,0. To compare data of different lattice

spacings we have to take into account an additional error being introduced by the way
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7.3 Results

c = 0.3 c = 0.5
L/a g2

GF g2
GF,0 g2

GF g2
GF,0

8 5.647(13)(52) 5.631(13)(51) 19.313(121)(146) 19.140(14)(126)
12 5.894(15)(52) 5.875(14)(51) 10.243(143)(146) 19.983(23)(126)
16 5.924(10)(52) 5.908(18)(51) 10.487(117)(146) 10.255(54)(126)
20 *5.845(10)(52) 5.845(10)(51) *10.135(174)(146) 10.132(74)(126)
24 *5.818(28)(52) 5.810(17)(51) *10.128(123)(146) 10.021(96)(126)

∞ *5.818(62) 5.820(58) *10.156(258) 10.179(210)

Table 7.3: Results for the (modified) gradient flow coupling and its continuum extrapolation.
The first error is statistical, the second one stems from the uncertainty associated
with the fixing of the physical volume. Biased values are denoted with an asterisk.
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Figure 7.5: Continuum extrapolation of the modified gradient flow coupling (crosses). The
unbiased data for the gradient flow coupling is also shown (open circles), the points
being slightly shifted to the right for convenience. Statistical errors are displayed in
color, errors from the line of constant physics in gray. Left: c = 0.3. Right: c = 0.5.

the physical volume was fixed, (7.2)2. This uncertainty turns out to be larger than the
statistical errors (see tab. 7.3). We find that the data with L/a > 8 is well described by
a fit linear in (a/L)2, see fig. 7.5.

Hence, in conclusion, the modified gradient flow coupling g2
GF,0, unlike its original

counterpart g2
GF, is not affected by the bad topology sampling in the studied volume.

2The error on a/r0(β) depends on β, but for simplicity we propagate its maximum value of 1% [32]
globally.
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8 Symanzik improvement for N f = 4∗

massive, non-degenerate Wilson
fermions

Before we begin the discussion of Symanzik improvement, we compile the main for-
mulas which define the unimproved N f = 4∗ theory of non-degenerate quark masses.

The Wilson fermion action (3.44) can be rewritten as

SW
F [ψ, ψ, U] = a4 ∑

x
ψ(DW + M + mcrit)ψ , (8.1)

where DW is the massless Wilson–Dirac operator,

DW =
1
2 ∑

µ

{
γµ

(
∇∗µ +∇µ

)
− a∇∗µ∇µ

}
, (3.43)

while the matrix

M = diag(mq,u, mq,d, mq,s, mq,c) (3.64)

incorporates the bare subtracted quark masses

mq,i = m0,i −mcrit =
1
2a

[
1
κi
− 1

κcrit

]
. (3.65, 3.70)

For completeness, we recall the Wilson and the tree-level improved Lüscher–Weisz
gauge action,

SW
G [U] =

1
g2

0
· ∑

C∈S0

tr[1−U(C)] (3.39)

and SLW
G [U] =

1
g2

0
∑

i=0,1
ci ∑
C∈Si

tr[1−U(C)] , (3.112)
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8 Symanzik improvement for N f = 4∗ massive, non-degenerate Wilson fermions

whose SF boundary improved counterparts, SW,SF
G and SLW,SF

G , are given in (5.35) and
(5.38), respectively.

The discretization errors of the different actions are of order O(a) for SW
F , O(a2) for

SW
G , and O(a2g2

0) for SLW
G , as we have seen in sec. 3.3, sec. 3.2 and sec. 3.8, respectively.

Following the lines of sec. 3.7 (which refers to N f = 4), one needs to improve both
the Wilson fermion action and the bilinears in order for cutoff effects in correlation
functions with bilinears to be of order O(a2). The way this can be accomplished for
N f = 4∗ massive fermions is the subject of the present section. Although the choice of
the gauge action will affect numerical results (in sec. 9), it plays no role in laying the
theoretical foundations for improvement. Hence, unless otherwise noted, SG will be
left unspecified here. The full lattice action is given by S = SW

F + SG.
We begin with the construction of mass-dependent improvement terms in the

Symanzik effective theory, sec. 8.1. Subsequently, in sec. 8.2, we consider the corre-
sponding improvement in the underlying lattice theory, in a mass-independent renor-
malization and improvement scheme. After addressing the drawbacks of such a
scheme in conjunction with the presence of a dynamical charm quark, we discuss
generic mass-dependent schemes in sec. 8.3 and how they circumvent the problems.
Finally, in sec. 8.4, we specify the concrete mass-dependent scheme in which the de-
termination of csw, to be described in sec. 9, will take place.

8.1 Symanzik effective theory

8.1.1 Spurionic symmetry

As described in sec. 3.7, the terms in the Symanzik effective theory are constructed
such that they obey all the symmetries of the original lattice theory, in particular gauge
symmetry, time reversal, parity and charge conjugation. An aspect which adds up to
this in the case of the non-degenerate mass matrix in N f = 4∗, is that the associated
explicit SU(4) f V flavor symmetry breaking should happen in the Symanzik effective
theory exactly in the way it does in the original theory. In other words, SU(4) f V should
be recovered for the special case of N f = 4 degenerate masses. This may be achieved
by imposing the spurionic vector symmetry (D.1) described in app. D, written here in
terms of the bare subtracted mass matrix:

M → M′ = VMV† , V ∈ SU(4) f V . (8.2)
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8.1 Symanzik effective theory

The most general mass-dependent improvement terms may then be constructed for
both the action and bilinears by requiring them to maintain the behavior of the original
terms under all symmetry transformations, in particular SU(4) f V . Concerning the
action, this means invariance,

S V→ S , (8.3)

while bilinears in general transform covariantly.

O V→ O′ ≡ O[ψ′, ψ
′, U] , (8.4)

where ψ′ = Vψ and ψ
′
= ψV† are the transformed fields. In that case, the Green

functions of operators O as path integral averages,

〈O〉 = 1
Z

∫
D[ψ, ψ, U] e−S[ψ,ψ,U]O[ψ, ψ, U] , (3.46)

also transform covariantly:

〈
O
〉 V→

〈
O′
〉

. (8.5)

A similar approach has been used in the context of chiral perturbation theory [132]. We
stress again, however, that (8.3)-(8.5) is not the actual transformation behavior for non-
degenerate masses. Rather, it would be the behavior if the mass matrix transformed
according to (8.2). This is the case for degenerate quarks only, however.

In the following, we construct the improvement terms for N f = 4∗ explicitly. Note
that, as this is a straight extension to the case of N f = 4 described in sec. 3.7, many
comments on the procedure found there hold for the present case without changes
and will thus not be repeated here. The changes from N f = 4 to N f = 4∗ concern the
mass-dependent improvement terms only. They go back to the fact that apart from the
bare subtracted mass matrix M, terms that incorporate the trace Tr[M] may appear as
well. Obviously, this term is also invariant under (8.2). For the previously considered
case of N f = 4 degenerate masses, however, the terms with and without trace were
proportional to each other,

Tr[M]14 = N f mq14 = N f M , (8.6)

so that there was no need to consider them independently. In contrast, regarding non-
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8 Symanzik improvement for N f = 4∗ massive, non-degenerate Wilson fermions

degenerate masses now, we have to account for this difference. This leads to quite a
few additional terms, as we will see below. Note that most of the results have been
published in a slightly different form before [133].

8.1.2 Symanzik effective action

We begin with the construction of the Symanzik effective action. Splitting the effec-
tive Lagrangian into a mass-dependent and a mass-independent part like in N f = 4
(cf. sec. 3.7),

LSym = L0
Sym + LM

Sym , (8.7a)

it reads

L0
Sym =

1
4

FµνFµν + ψ /Dψ

+ aρ1 ψDµDµψ

+ aρ2 ψiσµνFµνψ

(8.7b)

and

LM
Sym = ψMψ

+ ρ Tr[M] ψψ

+ aσ1 ψM2ψ

+ aσ2 Tr[M] ψMψ

+ aσ3 Tr[M2] ψψ

+ aσ4 (Tr[M])2 ψψ

+ aσ5 Tr[M] tr[FµνFµν]

+ aσ6 ψ /DMψ

+ aσ7 Tr[M] ψ /Dψ . (8.7c)

Note that the N f = 4 expression (3.89) is recovered under use of (8.6). In particular,
the terms with σ1−4 and those with σ6−7 reduce to one term, respectively. The terms
with ρ1 and σ6−7 can be eliminated in the case of on-shell improvement under use of
/D2 = D2 + 1

2 σµνFµν and the Euclidean space Dirac equation to leading order O(a0),

( /D + M + ρ Tr[M])ψ = 0 . (8.8)

We show an example explicitly. The ρ1 term in (8.7b) may be rewritten as

ψDµDµψ = ψ

(
/D2 − 1

2
σµνFµν

)
ψ = ψ

(
(M + ρ Tr[M])2 − 1

2
σµνFµν

)
ψ , (8.9)
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8.1 Symanzik effective theory

where the term involving the field strength tensor already appears in (8.7b) with ρ2,
while the others are present in (8.7c) with σ1, σ2, σ4. Similarly, one may get rid of the σ6

and σ7 terms. Note that alternatively, the latter can be eliminated by a mass-dependent
rescaling of the fermion fields:

ψ→ (1− aσ6M− aσ7Tr[M]) ψ . (8.10)

This way, the σ6 and σ7 terms are cancelled by the rescaling of ψ /Dψ in (8.7b), while the
additional terms associated with the rescaling of ψMψ and ρ Tr[M]ψψ in (8.7c) can be
absorbed in the coefficients σ1, σ2, σ4. The Symanzik effective Lagrangian (8.7) hence
becomes

LSym =
1
4

FµνFµν + ψ /Dψ

+ ψMψ + ρ Tr[M] ψψ

+ aρ2 ψiσµνFµνψ

+ aσ1 ψM2ψ

+ aσ2 Tr[M] ψMψ

+ aσ3 Tr[M2] ψψ

+ aσ4 (Tr[M])2 ψψ

+ aσ5 Tr[M] tr[FµνFµν] . (8.11)

Note that although we have used the notation M here, the mass matrix in the Symanzik
effective theory actually differs from (3.64) by a multiplicative renormalization. We
will consider the corresponding improvement terms for the lattice action in sec. 8.2.1.

8.1.3 Symanzik effective bilinears

Axial current

We consider the axial current first. For the construction of the improvement terms,
we employ the generator basis, see sec. 3.6 and app. B.1, in terms of which the axial
current may be written as

Ac
µ(x) = ψ(x) γµγ5Tc ψ(x) , c ∈ {0, . . . , 15} . (3.73)
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8 Symanzik improvement for N f = 4∗ massive, non-degenerate Wilson fermions

It is convenient to work in this basis, as it naturally allows to take into account the
different behavior of the different components under SU(4) f V flavor transformations.
The component with c = 0 is the flavor singlet current. The 15 other components,
the flavor non-singlet currents, divide into 3 neutral (c = 3, 8, 15) and 12 charged cur-
rents. The names neutral/charged refer to the behavior of those non-singlet currents
under charge conjugation. The neutral currents transform trivially due to their diag-
onal generators, whereas the charged currents with non-diagonal generators do not,
see app. B.3. For the transformation of the generators under V ∈ SU(4) f V flavor
transformations, we introduce the notation

V†TcV = Rcd(V)Td . (8.12)

Note that in particular R00(V) = 1 and R0d(V) = 0 ∀ d 6= 0. For the transformation
of the axial current, we find

Ac
µ = ψγµγ5Tcψ

V→ ψV†γµγ5TcVψ = Rcd(V)Ad
µ , (8.13)

i.e. the 15 flavor non-singlet currents Ac
µ with c 6= 0 transform according to the adjoint

representation of SU(4), whereas A0
µ is invariant as stated above. Following the dis-

cussion of sec. 8.1.1, the terms in the Symanzik effective operator have to maintain the
transformation behavior (8.13) of the axial current under spurionic vector symmetry
(8.2).

For the flavor non-singlet currents (c 6= 0), the Symanzik effective expansion reads

(ASym)c
µ = Ac

µ + a ·
(

ω0∂µPc + ω1Tr[M]Ac
µ + ω2ψγµγ5 {Tc, M}ψ + ω3Tr[Tc M]A0

µ

)
.

(8.14a)

In contrast to (3.90), we have immediately dropped the ω5 term here. The terms with
ω2 and ω3 are relevant for non-degenerate masses only. In N f = 4, the one with
ω2 can be absorbed in the ω1 term, while the ω3 term vanishes. Moreover, the two
terms contained in the anticommutator of (8.14a) are a priori independent. They have
to contribute with equal weight, however, due to charge conjugation symmetry (see
app. B.3). In the case of the flavor singlet current (c = 0), one ends up with only two
mass-dependent improvement terms,

(ASym)0
µ = A0

µ + a ·
(

ω0∂µP0 + ω1Tr[M]A0
µ + ω2Tr[MAµ]

)
. (8.14b)
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8.2 O(a) improvement in the mass-independent renormalization scheme

The term with ω2 corresponds directly to the one with ω2 in (8.14a), and again ac-
counts for non-degeneracy. It has been reformulated in terms of Aµ, which is the
4 × 4-matrix that incorporates all the currents (cf. (B.2b) in app. B). There is no ω3

term, since the flavor singlet equivalent to the ω3 term in (8.14a) is already given by
the ω1 term. In app. B.2, the required behavior under SU(4) f V is explicitly verified for
the O(a) terms in (8.14).

Pseudoscalar current

For the pseudoscalar current P, the mass-dependent O(a) terms (8.14a) and (8.14b) are
very similar, the only difference being the replacement

γµγ5 → γ5 (8.15)

in all terms. Moreover, as is well known from N f = 4, a mass-independent improve-
ment term (similar to the one with ω0 in (8.14a)) does not appear in the expression of
the Symanzik effective pseudoscalar current, see (3.91). Hence, we find

(PSym)c = Pc + a ·
(
ω′1Tr[M]Pc + ω′2ψγ5 {Tc, M}ψ + ω′3Tr[Tc M]P0) (8.16a)

and (PSym)0 = P0 + a ·
(
ω′1Tr[M]P0 + ω′2Tr[MP]

)
(8.16b)

for the flavor non-singlets and singlet, respectively.

8.2 O(a) improvement in the mass-independent
renormalization scheme

8.2.1 Improvement of the Wilson action

The improved lattice action can be derived from the Symanzik effective action (8.11)
by replacing all the continuum terms by discretized counterterms, cf. sec. 3.7. The
O(a) improved lattice action reads

S = a4 ∑
x
(LF,I + LG,I) (8.17a)
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8 Symanzik improvement for N f = 4∗ massive, non-degenerate Wilson fermions

with

LF,I = ψDWψ + ψMψ

+ acsw ψ
i
4

σµνFµνψ

+ ac1 ψM2ψ

+ ac2 Tr[M]ψMψ

+ ac3 Tr[M2]ψψ

+ ac4 (Tr[M])2ψψ (8.17b)

and

LG,I = LG[U]

+ ac5 Tr[M] tr[FµνFµν] .

(8.17c)

We stress that the improvement coefficients csw and c1−5 all depend explicitly on the
bare coupling g2

0. Note that LF,I does not contain an expression which directly cor-
responds to the ρ term in the Symanzik effective action (8.11). This is because the
appearance of the ρ term reflects the difference between the flavor singlet and non-
singlet masses, which is taken into account in the renormalization prescription, as we
will see below.

Similar to the case of N f = 4, all but the csw term may be absorbed in the bare
parameters and accounted for in the renormalization prescription of those. The ab-
sorption of the c5 term in the bare coupling is completely equivalent to (3.94) and can
literally be taken over, except for the replacement mq → Tr[M]:

LG,I = LG
∣∣

g2
0→g2

0(1−2ac5g2
0 Tr[M])

. (8.18)

With the abbreviation

bg = −2c5N f · g2
0 , (8.19)

the modified bare coupling (cf. (3.95)) reads

g2
0 → g̃2

0 = g2
0
(
1 + abg(g2

0) Tr[M]/N f
)

, (8.20)

and its renormalization is equivalent to the N f = 4 case (cf. (3.98)):

g2
R = Zg(g̃2

0, aµ) g̃2
0 . (8.21)

The absorption of the fermionic improvement terms c1−4 is slightly more complicated
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8.2 O(a) improvement in the mass-independent renormalization scheme

in N f = 4∗ than in N f = 4 (cf. (3.97))1:

mq,i → m̃q,i = mq,i + ac1m2
q,i + ac2Tr[M]mq,i + ac3Tr[M2] + ac4(Tr[M])2 . (8.22)

After introducing a new set of improvement coefficients,

bm = c1 , dm = c1 + N f c3 , (8.23a)

bm = c2 , dm = c2 + N f c4 , (8.23b)

the reparametrization of the bare quark masses (8.22) becomes

mq,i → m̃q,i = mq,i + abmm2
q,i + abmTr[M]mq,i

+ a (dm − bm)
Tr[M2]

N f
+ a

(
dm − bm

) (Tr[M])2

N f
. (8.24)

The coefficients bm, bm and dm, dm correspond to flavor non-singlet and singlet im-
provement terms, respectively2. In contrast to the N f = 4 case considered in sec. 3.7,
in N f = 4∗ one has to differentiate for each of those between dynamical quark loop
(bm, dm) and valence quark (bm, dm) effects, see also [133]. The form (8.24) is more con-
venient in the context of renormalization, because the flavor non-singlet and singlet
improvement terms renormalize differently (cf. (3.63, 3.66, E.1, E.2)). The renormalized
improved quark masses thus read [133]

mi
R = Zm(g̃2

0, aµ)

[
mq,i +

(
rm(g̃2

0)− 1
) Tr[M]

N f
+ a ·

{
bm(g2

0)m
2
q,i + bm(g2

0)Tr[M]mq,i

+
(

rm(g2
0)dm(g2

0)− bm(g2
0)
) Tr[M2]

N f
+
(

rm(g2
0)dm(g2

0)− bm(g2
0)
) (Tr[M])2

N f

}]
,

(8.25)

where we show the dependence on the (modified) bare coupling explicitly again here,
restricting ourselves to contributions which affect the order O(a). The above formula is
explicitly derived in app. E.2. Note that the appearance of the mass-dependent O(a0)

renormalization term is related to the one of the ρ term in (8.11).
Together with (8.20), (8.21), (8.24) and (8.25), the action for N f = 4∗ in the

mass-independent renormalization and improvement scheme again requires only the
Sheikholeslami–Wohlert term for O(a) improvement. We recall it here for convenience

1The dependence on the bare coupling g2
0 is suppressed for a moment.

2For the singlet, this can easily be seen by taking the sum over all quark flavors, ∑i m̃q,i.
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(cf. (3.100, 3.101)):

SW
I [ψ, ψ, U] = SW

G [U] + SW
F [ψ, ψ, U] + δSsw[ψ, ψ, U] , (8.26)

with

δSsw[ψ, ψ, U] = a5csw(g2
0) ∑

x
ψ(x)

i
4

σµνFµν(x)ψ(x) . (8.27)

The lattice field strength tensor Fµν is chosen to be the clover term F(clov)
µν (3.102) as

before.

8.2.2 Improvement of bilinears

The improved bilinears on the lattice, first considered for non-degenerate masses in
[133], can easily be derived from the effective bilinears given in (8.14) and (8.16).

Axial current (generator basis)

After replacing the continuum expressions by lattice counterparts and relabelling3 the
coefficients, the renormalized axial currents (cf. (8.14)) read

(ARI)
c
µ = ZA(g̃2

0)

[
Ac

µ + a ·
(

cA(g2
0)∂̃µPc + bA(g2

0)Tr[M]Ac
µ + bA(g2

0)
1
2

ψγµγ5 {Tc, M}ψ

+ fA(g2
0)Tr[Tc M]A0

µ

)]
(8.28a)

(ARI)
0
µ = ZA(g̃2

0, aµ)

[
A0

µ + a ·
(

cA(g2
0)∂̃µP0 + dA(g2

0)Tr[M]A0
µ + dA(g2

0)Tr[MAµ]

)]
.

(8.28b)

Note that similar to the case of the masses, (8.25), the flavor non-singlet and singlet
contributions renormalize differently4. The flavor singlet renormalization constant ZA

can be expressed in terms of the flavor non-singlet counterpart as (see e.g. [133])

ZA(g̃2
0, aµ) = ZA(g̃2

0) · rA(g̃2
0, aµ) . (8.29)

We briefly comment on the significance of the improvement terms in (8.28). First

3We follow the notation employed in [133].
4Furthermore, dynamical and valence quark effects are distinguished by the notation of the improve-

ment coefficients, bA, dA and bA, dA, as in the case of the quark masses, cf. (8.24).
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8.2 O(a) improvement in the mass-independent renormalization scheme

of all, for the charged flavor non-singlet currents (c 6= 3, 8, 15), the fA term does not
contribute, because the associated generators have zeros on the diagonal and M is a
diagonal matrix. Moreover, the mass dependence of the bA, dA terms is enclosed in the
explicit factor Tr[M], which reflects the fact that these terms represent sea quark (loop)
contributions. One may therefore conclude that they contribute only at a higher order
in perturbation theory. The mass dependence of the other terms, in contrast, stems
from the valence quark propagators involved in the axial current.

Axial current (flavor basis)

For practical use, it is often more convenient to work in the flavor basis, see (3.75).
The 12 off-diagonal currents (i 6= j) are linear combinations of the 12 charged flavor
non-singlet currents in the generator basis (cf. (B.2b)):

Aij
µ =

(
∑

c 6=0,3,8,15
Ac

µTc

)ij

. (8.30)

The quantities in the sum on the right hand side share the same renormalization and
improvement properties, (8.28a). Hence, in the flavor basis, the off-diagonal renormal-
ized and improved flavor current can be written as

(ARI)
ij
µ =ZA(g̃2

0)×[
Aij

µ + a ·
(

cA(g2
0)∂̃µPij + bA(g2

0)Tr[M]Aij
µ +

bA(g2
0)

2
ψγµγ5

{
∆ij, M

}
ψ

)]
.

(8.31)

We can simplify the expression under use of{
∆ij, M

}
= ∆ij M + M∆ij = ∆ijmq,j + mq,i∆ij = (mq,i + mq,j) ∆ij , (8.32)

and—since it is valid only up to O(a2) anyway—factorize it according to

(ARI)
ij
µ =ZA(g̃2

0)×[
1 + abA(g2

0)Tr[M] + a
bA(g2

0)

2
(mq,i + mq,j)

] [
Aij

µ + acA(g2
0)∂̃µPij

]
. (8.33)

In this convenient form, the improved axial current (3.103) as well as the mass effects
are factored out, and the renormalized and improvement axial current resembles the
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one in N f = 4, cf. (3.105). Alternatively, in the bA term, one may replace the average
bare subtracted quark mass by the PCAC mass5,

1
2
(mq,i + mq,j) → mij

PCAC . (8.34)

In contrast to the simple off-diagonal case, the diagonal flavor currents (i = j) are
linear combinations of uncharged flavor non-singlet currents (c = 3, 8, 15) and the flavor
singlet current (c = 0), e.g.

Aii
µ =

(
∑

c=0,3,8,15
Ac

µTc

)ii

= ∑
c=0,3,8,15

Ac
µ (T

c)ii . (8.35)

Due to the different renormalization and improvement pattern of the singlet and non-
singlet contributions, (8.28a) and (8.28b), the behavior of Aii

µ is more involved. How-
ever, we do not pursue its discussion here, as we will only deploy off-diagonal cur-
rents.

Pseudoscalar current (generator and flavor basis)

For completeness, we also mention the renormalized and improved pseudoscalar cur-
rent in the generator basis (cf. (8.16)),

(PRI)
c = ZP(g̃2

0, aµ)

[
Pc + a ·

(
bP(g2

0)Tr[M]Pc + bP(g2
0)

1
2

ψγµγ5 {Tc, M}ψ

+ fP(g2
0)Tr[Tc M]P0

)]
(8.36a)

(PRI)
0 = ZP(g̃2

0, aµ)

[
P0 + a ·

(
dP(g2

0)Tr[M]P0 + dP(g2
0)Tr[MP]

)]
, (8.36b)

and the corresponding off-diagonal components in the flavor basis (cf. (8.33)),

(PRI)
ij = ZP(g̃2

0, aµ)

[
1 + a · bP(g2

0)Tr[M] + a · bP(g2
0)

2
(mq,i + mq,j)

]
Pij . (8.37)

5This is because they are related by a finite renormalization, see (E.16, E.17), which can be absorbed in
the improvement coefficients.
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8.2.3 Problems in the presence of a massive charm quark

In the previous sections, we have obtained the expressions for the renormalized and
O(a) improved action and bilinears for non-degenerate N f = 4∗ Wilson fermions in
a mass-independent scheme. The main advantages of such a scheme, responsible for its
wide use, are that it facilitates both the determination of renormalization constants
and improvement coefficients as well as the renormalization group equations which
govern the scale evolution of renormalized parameters (cf. sec. 2.3). Moreover, it is
the natural scheme to study explicitly the effects of non-vanishing masses, as these are
analytically expressed in the formulas, see e.g. (8.20, 8.21) and (8.25).

We now examine the applicability of a mass-independent scheme in (large volume)
lattice simulations at physical quark masses in N f = 4∗, i.e. including the charm quark.
The crucial factor here is the size of the mass terms which multiply the improvement
coefficients. For typical lattice spacings a ≤ 0.1 fm, assuming6 mq,s ≈ 100 MeV and
mq,c ≈ 1 GeV (cf. tab. 2.1), these terms are roughly of the sizes

amq,s . 0.05 (8.38a)

and amq,c . 0.5 . (8.38b)

In N f ≤ 3 simulations with small lattice spacings and quark masses, where (8.38a)
holds for all the dynamical quarks, a viable way to account for the small mass-
dependent improvement terms is to treat their coefficients perturbatively7 (or even ne-
glect them). In N f = 4∗, however, the effects of terms containing amq,c in the improved
theory are expected to be numerically much more important8, due to (8.38b), thus
requiring a non-perturbative treatment of the associated improvement coefficients. In
consideration of the numerous appearance of those for non-degenerate quark flavors,
cf. (8.20), (8.25), (8.31) and (8.37), this, however, seems unfeasible.

There is another, related issue which concerns the propagation of the unavoid-
able uncertainties in both the improvement coefficients and renormalization constants.
These are amplified in N f = 4∗ by the large charm mass and thus are likely to lead
to significant errors. The issue arises at the O(a0) level in the context of quark mass

6The exact values depend on the renormalization scheme and scale, but this is not of importance for the
qualitative statement to be made here.

7Note that this does not necessarily hold for observables that include charm valence quarks. An example
is given in [133].

8Note that it is well-known that O(a)-improvement in the mass-independent scheme breaks down if
amq,c ≈ 1, see e.g. [57, 134], so that (8.38b) can already be considered possibly threatening. We
assume, however, that this is not the case here.
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renormalization in the Wilson formulation already, where we have

mi
R = Zm(g2

0, aµ)
[
mq,i +

(
rm(g2

0)− 1
)

Tr [M] /N f
]

, (3.66)

with the ratio of the flavor singlet and non-singlet renormalization constants,

rm(g2
0) =

Zm0(g2
0, aµ)

Zm(g2
0, aµ)

. (3.63)

Although the corrections of rm(g2
0) to 1 are of order O(g4

0), they may be of significant
magnitude and require a non-perturbative treatment, see app. E in [95]. In the presence
of a heavy dynamical charm quark, they get blown up by a factor

Tr[M]
(8.38)
≈ mq,c . (8.39)

Therefore, even a small error in rm(g2
0) may lead to a huge error in mi

R.
At the next order in the lattice spacing, a similar situation emerges for the improved

quark mass of any flavor i, which may be written as (cf. (8.22)),

m̃q,i = mq,i + ac1 m2
q,i + ac2 mq,imq,c + a (c3 + c4)m2

q,c

+ O(amq,jmq,k) with j 6= k; j, k ∈ {u, d, s, c} . (8.40)

Here, the charm mass appears quadratically in association with two (i 6= c) or four
(i = c) improvement coefficients ci. The relative corrections are particularly large for
the light masses with i = u, d:

m̃q,u
(8.40)
= mq,u + . . . + a (c3 + c4)m2

q,c
(8.38b)
≈ (c3 + c4)mq,c . (8.41)

Consequently, for observables in the light sector (that do not involve charm valence
quarks), the large charm mass cutoff and renormalization effects and assigned un-
certainties in the mass-independent scheme would likely surpass the small physical
effects of a massive dynamical charm quark (see e.g. [135]) that one is interested in.

In summary, a mass-independent renormalization and improvement scheme is inap-
propriate to describe the effects of a dynamical charm quark in the framework of the
N f = 4∗ theory, due to the large number of improvement coefficients for which a
non-perturbative treatment is needed, as well as the amplification of uncertainties that
concerns light observables in particular. In the next section, we will discuss a mass-
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8.3 O(a) improvement in the mass-dependent renormalization scheme

dependent renormalization and improvement scheme which avoids these problems.

8.3 O(a) improvement in the mass-dependent
renormalization scheme

In the mass-independent renormalization scheme used so far, the renormalization condi-
tions are imposed at vanishing masses, i.e. in the massless theory. Correspondingly,
apart from a possible dependence on the renormalization scale aµ, all the renormal-
ization constants depend only on g2

0, or g̃2
0 in the improved theory:

Z ≡ Z(g̃2
0) . (8.42)

In the mass-dependent renormalization scheme, the mass-dependent improvement terms
are shifted from an explicit appearance in the renormalization prescriptions to an
implicit appearance in the renormalization constants, for which the renormalization
conditions are imposed at finite masses:

Z̃ ≡ Z̃(g2
0, aM) . (8.43)

The absorption of all mass effects is reflected in the notation Z̃, and makes the use of
g̃2

0 as its argument obsolete. It is instructive to reconsider explicitly the improvement of
the Wilson action and the bilinears in the mass-dependent scheme, to see how it avoids
the problems discussed in sec. 8.2.3.

8.3.1 Improvement of the coupling

In the unimproved theory, the renormalization of the coupling reads

g2
R = Zg(g2

0, aµ) g2
0 , (3.61)

irrespective of the renormalization scheme. In the improved theory and the mass-
independent scheme, we found

g2
R

(8.21)
= Zg(g̃2

0, aµ) g̃2
0

(8.20)
= Zg(g̃2

0, aµ) (1 + abg(g2
0)Tr[M]/N f ) g2

0 . (8.44)
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We stress that Zg is the same function (determined by the same renormalization con-
dition) as in (3.61), only the argument at which it is evaluated changes. In contrast, in
the mass-dependent scheme, (8.44) becomes

g2
R = Z̃g(g2

0, aTr [M] , aµ) g2
0 . (8.45)

Note that the masses enter the renormalization constant via sea quarks (cf. (8.44)). The
comparison of these rather simple renormalization prescriptions illustrate the advan-
tages and disadvantages of the two different schemes. First, the mass-dependent scheme
involves only one constant. Second, the renormalization constant Z̃g may be employed
directly at the non-vanishing masses aTr [M] one is interested in. In this way, one
avoids the situation in the mass-independent scheme, where the need to connect the
massive theory with the massless theory (by the functional mass dependence as it is
explicitly contained e.g. in (8.44)) may introduce large uncertainties, as discussed in
sec. 8.2.3. On the other hand, the explicit information on the mass-dependence gets
lost in the mass-dependent scheme9. Moreover, the imposition of the renormalization
conditions is certainly more involved at finite masses.

8.3.2 Improvement of bilinears

In the mass-independent scheme, the renormalized and improved off-diagonal axial
current has been derived in sec. 8.2.2:

(ARI)
ij
µ =ZA(g̃2

0)×[
1 + a · bA(g2

0)Tr[M] + a · bA(g2
0)

2
(mq,i + mq,j)

] [
Aij

µ + a · cA(g2
0)∂µPij

]
.

(8.33)

In the mass-dependent scheme, the term with bA is absorbed in the renormalization
constant, such that (8.33) becomes

(ARI)
ij
µ = Z̃A(g2

0, aTr [M])

[
1 + a · bA(g2

0)

2
(mq,i + mq,j)

] [
Aij

µ + a · cA(g2
0)∂µPij

]
.

(8.46a)

9This statement refers to the situation where Z̃g is known only for one specific aTr [M].
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This form is convenient especially for light valence quarks (i, j 6= c), for which the bA

term is rather small and may be treated as before in N f ≤ 3. Alternatively, also the bA

term could be absorbed, at the cost of the renormalization constant becoming (valence
quark) flavor dependent:

(ARI)
ij
µ = Z̃ij

A(g2
0, aM)

[
Aij

µ + a · cA(g2
0)∂µPij

]
. (8.46b)

The corresponding equations for the pseudoscalar current read

(PRI)
ij = Z̃P(g2

0, aTr [M])

[
1 + a · bP(g2

0)

2
(mq,i + mq,j)

]
Pij (8.47a)

and (PRI)
ij = Z̃ij

P(g2
0, aM)Pij . (8.47b)

8.3.3 Improvement of the quark mass

We finally consider the renormalization of the quark masses, and recall that the unim-
proved expression in the mass-independent scheme reads

mi
R = Zm(g2

0, aµ)
[
mq,i +

(
rm(g2

0)− 1
)

Tr [M] /N f
]

. (3.66)

In the mass-dependent scheme, the dimensionful term that comes with Tr[M] can—
for instance—be attributed to the critical mass, which in that case becomes mass-
dependent:

mM
crit(g2

0, Tr [M]) = mcrit(g2
0)−

(
rm(g2

0)− 1
)

Tr [M] /N f . (8.48)

The mass renormalization (3.66) may then be written as

mi
R = Zm(g2

0, aµ)
[
m0,i −mM

crit(g2
0, Tr [M])

]
. (8.49)

The improved version in the mass-independent scheme is obtained from (3.66) by
the replacements g2

0 → g̃2
0 and mq,i → m̃q,i, and given in (8.25). The improvement

terms may, like in the previously discussed case of the coupling, be absorbed in the
renormalization constants (see app. E.4 for an explicit derivation):

mi
R = Z̃m(g2

0, aTr [M] , aµ)
(
1 + abm(g2

0)mq,i
) [

m0,i − m̃M
crit(g2

0, Tr [M])

]
. (8.50a)
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The above form might be useful in the case of light quarks, if the bm(g2
0) term can be

handled properly. Its advantage is that it preserves the flavor-independence of the
renormalization constants, as well as the mere dependence of those on the trace of the
quark masses, Tr [M]. Alternatively, in particular with i = c in mind, one may absorb
the bm(g2

0) term as well (cf. (8.46b)),

mi
R = Z̃i

m(g2
0, aM, aµ)

[
m0,i − m̃M

crit(g2
0, Tr [M])

]
, (8.50b)

which however goes along with a loss of the aforementioned features. Note that the
mass-dependent (improved) critical mass in (8.49, 8.50) reduces to the ordinary critical
mass in the case of massless quarks, (cf. (8.48) and app. E.4):

m̃M
crit(g2

0, 0) = mM
crit(g2

0, 0) = mcrit(g2
0) . (8.51)

With the bilinear currents in the mass-dependent scheme at hand, see sec. 8.3.2, the
renormalization of the quark mass may also be formulated by means of the PCAC
mass (cf. (5.55)),

mij
R =

Z̃A(g2
0, aTr [M])

Z̃P(g2
0, aTr [M] , aµ)

[
1 + a ·

(
b̂A(g2

0)− b̂P(g2
0)
)

mij
PCAC,I

]
mij

PCAC,I(x0) + O(a2) ,

(8.52)

where the replacement (8.34) has been exercised10 to eliminate the bare masses. The
renormalized strange quark mass, for instance, may then be obtained from the linear
combination

ms
R = mus

R −
1
2

mud
R

=
Z̃A(g2

0, aTr [M])

Z̃P(g2
0, aTr [M] , aµ)

{ [
1 + a ·

(
b̂A(g2

0)− b̂P(g2
0)
)

mus
PCAC,I

]
mus

PCAC,I

− 1
2
[
1 + a ·

(
b̂A(g2

0)− b̂P(g2
0)
)

mud
PCAC,I

]
mud

PCAC,I

}
+ O(a2) ,

(8.53)

where the up and down quark are assumed to be degenerate.

10The notation b̂ of the improvement coefficients indicates that these differ from the ones which multiply
the bare subtracted masses, cf. (8.46b, 8.47b) and footnote 5. Moreover, note that the difference
between the use of mij

PCAC and mij
PCAC,I in the improvement terms merely affects the order O(a2).
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8.3.4 Improvement coefficients in the mass-dependent scheme

So far, we have considered only the renormalization constants in the mass-dependent
scheme. This is in accordance with the fact that we have always examined renor-
malized and improved quantities up to order O(a) only. As announced in sec. 3.7, the
improvement coefficients csw, cA, as well as e.g. bg, bm, bA, bP, do in the massive N f = 4∗

theory in fact depend on the modified bare coupling g̃2
0 = (1 + abg(g2

0)Tr[M]/N f ) g2
0

instead of g2
0, which has been disregarded as the difference affects merely the order

O(a2). For the improvement coefficient cA as it appears in (8.46), for instance, one
finds

c̃A(g2
0, aM)︸ ︷︷ ︸

=̂ cA(g̃2
0)

= c̃A(g2
0, 0)︸ ︷︷ ︸

=̂ cA(g2
0)

+a ∑
i

mq,i
∂c̃A

∂(amq,i)
(g2

0, 0) + O(a2) , (8.54)

where the dependence on the bare coupling and the masses has been separated in
the notation. In the presence of a massive charm quark, the size of the O(a2) mass
effects may be large, very similar to the O(a) mass effects considered in the framework
of renormalization before. Hence, although strictly speaking not necessary for O(a)
improvement, it is a self-evident approach to avoid the explicit introduction of large
charm mass cutoff effects to the order O(a2) that would go along with the use of
cA(g2

0, 0), and to treat also the improvement coefficients in a mass-dependent scheme.
The same argumentation holds for the only remaining improvement coefficient in the
action,

c̃sw ≡ c̃sw(g2
0, aM) , (8.55)

which we consider at finite masses as well. Hence, in summary, all the renormalization
constants and the improvement coefficients become dependent on the quark masses
aM in the mass-dependent scheme:

Z → Z̃(g2
0, aTr [M] , (aµ)) (8.56a)

c→ c̃(g2
0, aTr [M]) . (8.56b)

Note that the above tilde notation will be dropped in the following.
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8.4 Determination of improvement coefficients in N f = 3 + 1

The mass-dependent scheme in N f = 4∗ described in the previous section schedules
the determination of the renormalization constants and improvement coefficients as
functions of all the quark masses, i.e.

aM = diag(amq,u, amq,d, amq,s, amq,c) (8.57)

in (8.56). Recall, however, that the main objective of the mass-dependent scheme was
to avoid the expansion in the large charm mass amq,c. In order to simplify things, one
might consider intermediate schemes in which some of the lighter masses are set to
zero again. For instance, the massive charm scheme, where the renormalization constants
and improvement coefficients depend on the charm mass only:

aM→ diag(0, 0, 0, amq,c) . (8.58)

Another option is the massive charm and strange scheme, where

aM→ diag(0, 0, amq,s, amq,c) . (8.59)

Concerning the renormalization constants Z̃(g2
0, aM, (aµ)), these choices are equiv-

alent to neglecting all the improvement terms with amq,u, amq,d, and, in the case of
(8.58), amq,s. Consequently, O(a) improvement would not be fulfilled strictly anymore,
although the effects would be rather small. Of course, they could also be treated
separately (e.g. in a perturbative manner).

In the case of the improvement coefficients, where (as discussed before) mass effects
concern the overall order O(a2) only, we decide to impose the improvement conditions
in N f = 3 + 1, where the up, down and strange quark are mass-degenerate light
quarks,

aM→ diag(amq,l , amq,l , amq,l , amq,c) . (8.60)

In other words, restricting ourselves to csw in the following, we will determine

csw = csw(g2
0, amq,l , amq,c) . (8.61)

In comparison to (8.57), which we understand to correspond to N f = 2 + 1 + 1 un-
der neglect of isospin breaking, the number of mass parameters is reduced by one,
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which—as will become clear in sec. 9—will simplify the determination of csw signifi-
cantly.

In principle, it would be desirable to vary all the bare parameters g2
0, amq,l , amq,c and

find an interpolating formula for csw in this 3-dimensional space. However, as this is
not practicable, instead we fix the light and charm mass to (approximately) physical
values11 indicated by an asterisk,

amq,l → am?
q,l , amq,c → am?

q,c , (8.62)

and interpolate only in g2
0:

csw = csw(g2
0, am?

q,l , am?
q,c) . (8.63)

With these two approximations at hand,

csw(g2
0, aM)

N f =3+1
−−−−→ csw(g2

0, amq,l , amq,c)
fix−−−→

masses
csw(g2

0, am?
q,l , am?

q,c) , (8.64)

the existing O(a2) cutoff effects are modified explicitly by terms proportional to

a2(mq,u −m?
q,l) , a2(mq,d −m?

q,l) , a2(mq,s −m?
q,l) , a2(mq,c −m?

q,c) . (8.65)

Obviously, the relevant point here is to ensure that the charm mass is fixed accurately,
so that the difference mq,c −m?

q,c does not become too large in (large volume) simula-
tions at or close to the physical point.

11The exact meaning of this statement will be clarified in sec. 9.1.
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The improvement coefficient csw has been determined as a function of the bare cou-
pling g2

0 for various numbers of massless, dynamical quark flavors and different ac-
tions before [16–22]. The improvement condition by which it is defined is set up in the
framework of the Schrödinger functional (cf. sec. 5), and has essentially been deployed
in the same way1 it was originally proposed in [46]. The associated Sheikholeslami–
Wohlert term has found successful application in the improvement of simulations with
massless quarks (e.g. [136] with N f = 4) or light quarks (e.g. [38, 137] with N f = 3).
As explained in the previous section, the mass-dependent improvement terms of order
O(amq,l) can in these cases be treated perturbatively or even be neglected due to the
smallness of amq,l , cf. (8.38a).

The present work, designed to be applied in simulations with a massive charm
quark, differs from the previous cases in two fundamental aspects. First of all, the
determination is performed with massive, dynamical quarks for the reasons explained
in sec. 8. Second, the size of the SF box is kept constant. In the aforementioned previ-
ous simulations (see app. F for a review), in contrast, it was the lattice resolution that
was held fixed. These two new aspects go hand in hand, and are taken into account
together by a line of constant physics (LCP). While this approach has substantial advan-
tages to be discussed further below, its technical implementation is considerably more
involved. Numerical results will be obtained under use of the tree-level improved
Lüscher–Weisz gauge action,

SG = SLW
G . (9.1)

In the next section, sec. 9.1, we specify the line of constant physics, which in partic-
ular fixes the quark masses am?

q,l and am?
q,c (cf. (8.62)). Its definition is completed in

sec. 9.2 by numerical input from the N f = 2 theory, and the strategy to tune the bare

1This holds up to small deviations of technical nature.
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

parameters to it is described in sec. 9.3. Subsequently, in sec. 9.4, the improvement
condition which determines csw(g2

0) along this LCP is discussed. Afterwards, we sum-
marize the procedure in sec. 9.5 and specify some technical details of our numerical
simulations. Finally, in sec. 9.6, we present results. A short account of the subject has
been published in [138] already.

9.1 Line of constant physics

In sec. 8.4, it has been outlined that csw will be determined in N f = 3 + 1 at fixed
quark masses,

csw = csw(g2
0, am?

q,l , am?
q,c) . (8.63)

This will be given a specific meaning in the following, by relating the bare masses to
the relevant physical scales. In the N f = 3+ 1 theory, and in a finite volume like in the
case of the Schrödinger functional, these are the temporal and spatial extents T, L of
the lattice and the RGI masses Ml and Mc of the light and charm quark, respectively.
Until further notice, we restrict the discussion to lattices with T = L only. For reasons which
will become clear in sec. 9.4 (when the improvement condition for csw is discussed), we
will—somewhat unconventionally—use the notation T instead of L in the upcoming
discussion.

9.1.1 Fixing of the physical scales

On the lattice, the bare parameters g2
0, amq,l and amq,c may be considered functions

of the three continuum scales T, Ml and Mc. These functions are governed by the
theory (N f ), the lattice resolution T/a, and renormalization constants Z. Under the
reasonable assumption that the mapping

(T ⊗Ml ⊗Mc)
N f , T/a; Z
−−−−−−→

(
g2

0 ⊗ amq,l ⊗ amq,c
)

(9.2)

is injective2, the scales uniquely determine the bare parameters. Hence, the light and
the charm bare subtracted masses, amq,l and amq,c, may be assigned values am?

q,l and

2This only needs to be ensured in a relevant area in the vicinity of the physical masses.
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am?
q,c that correspond to (approximately) physical RGI masses M?

l and M?
c :

T

TM?
l

TM?
c


T/a
=⇒


g2

0

am?
q,l

am?
q,c .

(9.3)

This is the exact meaning of (8.62) in sec. 8.4. In order to fix Ml and Mc in physical
units, however, the setting of the scale T is required (cf. sec. 3.4).

Fixed lattice resolution approach

In principle, one could choose g2
0 at one’s discretion for some fixed T/a, and ad-

just κl and κc such that—under knowledge of the scale T (as well as renormalization
constants)—the dimensionless products TMl and TMc assume the aspired values TM?

l

and TM?
c :

TM?
l

TM?
c

 T/a, g2
0===⇒

 am?
q,l

am?
q,c .

(9.4)

Apart from issues concerning the practical implementation of this fixed lattice resolution
approach at finite masses, which we will get back to below, it is conceptually advan-
tageous for the determination of csw to fix all the relevant physical scales, including
T. The reason3 for this is related to the fact that csw (just like any other improvement
coefficient) is ambiguous to the order O(a), even at fixed bare parameters4. To explain
this, first note that so far, we have suppressed the explicit dependence on the lattice
resolution a/T. Including it, we get

csw ≡ csw(g2
0, a/T, amq,l , amq,c)

≡ cM
sw(g2

0, a/T, aMl , aMc) , (9.5)

where in the second line, we used the physical mass scales as arguments, which is re-
flected in the superscript M of the new function name. In addition to what is shown in
(9.5), csw depends on the chosen improvement condition and its kinematic parameters
(cf. sec. 9.4). In perturbation theory, however, where the improvement coefficient csw

3The upcoming discussion is based on [92].
4See (8.54) for the impact of different masses.
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

is expanded in g2
0,

cM
sw(g2

0, a/T, aMl , aMc) = cM(0)
sw (a/T, aMl , aMc) + g2

0 cM(1)
sw (a/T, aMl , aMc) + O(g4

0) ,
(9.6)

the coefficients cM(0)
sw (0, 0, 0) and cM(1)

sw (0, 0, 0) are unique. Consequently, if (and only
if) all the scales and the improvement condition are kept constant, csw is unique in
the limit g2

0 → 0 (or a → 0). In that case, as opposed to the fixed lattice resolution
approach, one avoids the explicit introduction of O(a) cutoff effects in csw already at
tree level in perturbation theory, which may possibly get large in the non-perturbative
regime (g2

0 � 0).

Line of constant physics approach

For these reasons, we introduce the conditions

T = T? (9.7a)

TMl = T?M?
l (9.7b)

TMc = T?M?
c (9.7c)

to fix all the physical scales to particular values T?, M?
l and M?

c , which will be spec-
ified later. The above equations define the line of constant physics (LCP) at which the
improvement condition for csw will be imposed. This terminology refers to the tra-
jectory in bare parameter space defined by the scales, on which the corresponding
physics remains unchanged as the lattice resolution is varied. A direct implication of
(9.7a) is that the lattice spacing a changes with5 T?/a. As T?/a is bound to integer
values, and is even further constrained due to practical considerations (see sec. 9.5.1),
the lattice spacing may only assume specific, discrete values, see fig. 9.1. The same
holds for the bare parameters:

T?

T?M?
l

T?M?
c


T?/a
==⇒


g2?

0

am?
q,l

am?
q,c .

(9.8)

5Here and in the following, if the volume is fixed by the line of constant physics, this will be emphasized
by the notation T?/a for the lattice resolution, instead of T/a.

6I would like to thank Patrick Fritzsch, who provided me with templates for this figure.
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in large scale simulations with massive fermions (see e.g. [38]).

9.1.2 Implicit definition of the LCP in N f = 2

There are two qualifications to be added to the definition of the LCP. First, the quanti-
ties Ms,phys and Mc,phys are unknown in the N f = 3 + 1 theory, which is why we have
to make use of the estimates from the N f = 2 theory. Hence, (9.10) gets replaced by

M?
l = M(N f =2)

s,phys /3 (9.11a)

M?
c = M(N f =2)

c,phys . (9.11b)

Second, the direct realization of the line of constant physics in terms of the quantities
T? (not yet specified), M?

l (cf. (9.11a)) and M?
c (cf. (9.11b)) on the lattice, see (9.8),

requires the knowledge of scale setting as well as the mass renormalization constants.
Since again none of this is available in N f = 3 + 1, we need to resort to N f = 2 results
here as well, which leads to the bare parameters7 g2?

0 , κ?l , κ?c (within N f = 2). For the
implementation of the LCP in N f = 3 + 1, it is convenient to define three independent
lattice quantities Φ1, Φ2, Φ3, that are easily accessible functions of the bare parameters
only8:

Φi ≡ Φi(g2
0, κl , κc) , i = 1, 2, 3 . (9.12)

In particular, their computation should require no external input like e.g. renormal-
ization constants9. In the N f = 2 theory, one may translate the LCP to a specific point
Φ?

1 , Φ?
2 , Φ?

3 in the image of the functions Φi. To this end, one evaluates Φi(g2?
0 , κ?l , κ?c )

at different lattice resolutions T?/a and extrapolates to the continuum. The obtained
values Φ?

i directly correspond to T?, M?
l and M?

c (within N f = 2), and do in partic-
ular not depend on the specifics of the lattice discretization due to universality. The
implementation of the described procedure is subject of sec. 9.2.

In N f = 3 + 1, the LCP conditions (9.7) then get replaced by

Φ1 = Φ?
1 , Φ2 = Φ?

2 , Φ3 = Φ?
3 , (9.13)

7In the present context, the hopping parameters are frequently used instead of the bare subtracted
masses.

8Note that the dependencies in (9.12) hold for both N f = 2 and N f = 3 + 1, although in the former case
the masses enter only via valence quark masses.

9Recall that these are not available in N f = 3 + 1.
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T?
N f =2

//

((

  

g2?
0 (a/T?)

N f =2
//

))

##

Φ1(a/T?)
cont. lim. // Φ?

1

N f =3+1
//

''

  

g2?
0 (a/T?)

M?
l

// κ?l (a/T?) //

))

Φ2(a/T?) // Φ?
2

//

77

((

κ?l (a/T?)

M?
c

// κ?c (a/T?) // Φ3(a/T?) // Φ?
3

//

>>

66

κ?c (a/T?)

Figure 9.2: Illustration of the strategy to establish an implicit LCP in N f = 3+ 1. The first three
steps leading to Φ?

i are conducted in N f = 2, the last one in N f = 3 + 1. The solid
arrows show the main dependencies of the parameters, whereas the dotted arrows
denote unavoidable minor dependencies. The dashed arrow is a weak dependence
minimized by the chosen definition of Φ3 (see (9.23b) and fig. G.2). The wiggly
arrows symbolize continuum limits.

which implicitly defines the bare parameters (within N f = 3+ 1), depending on T?/a.
The whole strategy and the dependencies of the involved quantities are illustrated in
fig. 9.2. We emphasize again that the implicit definition of the LCP avoids scale setting
and mass renormalization in N f = 3 + 1. The price to pay for this is that the resulting
LCP will not exactly correspond to the values of the (physical) input quantities T?, M?

l

and M?
c , as the translation to Φ?

i was conducted in N f = 2. Nevertheless, we expect
this effect, which—as was explained before (cf. sec. 8.4 and (8.65))—concerns csw only
at the order O(a), to be reasonably small. Having described the inevitable detour by
means of the N f = 2 theory, we are now ready to understand why the fixed lattice
resolution approach, in addition to its conceptual drawbacks, is also highly unfeasible,
as has been alleged above. At fixed T/a, one would have to deal with different values
of T while keeping M?

l and M?
c at their physical values. The quite elaborate (cf. sec. 9.2)

N f = 2 translation of T?, M?
l and M?

c to Φ?
i would have to be performed once for each

T (or equivalently g2
0), which is certainly very cumbersome to implement.

The missing ingredients to complete the LCP are the definitions of Φi and T?, which
we are going to address in the remainder of this section. For the selection of suitable
Φi, the following criteria should be taken into account:

C1. They should be finite volume quantities defined by means of the Schrödinger
functional, since this is computationally cheap (cf. sec. 5.1) and convenient, in
particular as the SF is also the framework in which the improvement condition
on csw will be formulated.
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

As such, they will (like Φ?
i in the continuum) generally depend on the details of the

Schrödinger functional, in particular the boundary conditions φ, φ′ for the gauge fields
(5.7) and the fermionic boundary angle θ (5.21). We here anticipate our choices. These
are vanishing boundary conditions,

φ = φ′ = 0 , (9.14)

while

θ =

0.5 for N f = 2

0 for N f = 3 + 1
(9.15)

is chosen differently for the different theories. This is because we will reuse existing
N f = 2 ensembles that correspond to (9.14) and (9.15), see sec. 9.2, while we employ
a vanishing fermionic boundary angle for the determination of csw, as before in [16,
17, 21, 22]. The alteration of the LCP by the change in θ is expected to be negligible
compared to the aforementioned effects on the LCP that result from the involvement
of N f = 2 results in its implicit definition.

C2. Since on the lattice the Φi are determined by the bare parameters of the theory,
see (9.12), they should preferably be chosen such that they are independent of one
another, with each of them depending strongly on one of the bare parameters but
only weakly on the others, see fig. 9.2. The better this requirement is fulfilled,
the simpler will be the tuning of the bare parameters to the LCP in N f = 3 + 1.

C3. The quantities should have good statistical properties (good signal-to-noise ratio,
small autocorrelations, . . .) and mild cutoff effects.

Keeping these aspects in mind, we now turn to the pending definitions of Φi and the
specification of T?.

• Φ1

As the first quantity to implicitly fix T, Ml and Mc, we choose the gradient flow cou-
pling introduced in sec. 6.1:

Φ1 = g2
GF . (9.16)
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9.1 Line of constant physics

As explained there, and indicated in (6.7), it mainly depends on T and is expected
to be only weakly dependent on Ml and Mc (cf. criterion C2) due to the findings in
[39, 105, 109]. Moreover, it has proven to provide excellent statistical precision, while
its cutoff effects are modest [105] (cf. criterion C3). Note that in accordance with the
discussion in sec. 6.1, g2

GF is only weakly sensitive to θ and therefore expected not to
be significantly affected by the ambiguity (9.15). To complete its definition, several
parameters need to be specified. The smoothing fraction c which links the flow time t
to the size T = L of the box, see (6.6) and (6.7), is taken to be

c = 0.3 , (9.17)

which puts the emphasis slightly more on statistical precision than small cutoff effects
(cf. sec. 6.1). Next, the discretized action Sflow that governs the evolution of the gauge
fields in flow time, see (6.9), needs to be chosen. We stress again that this choice is
independent from the gauge action SG that is used in the Boltzmann factor of the path
integral (4.1), as the links Uµ(x) of the gauge configurations sampled with SG merely
provide the starting point Vµ(x, 0) of the flow. We use the Wilson flow,

Sflow = SW
G , (9.18)

for which the the normalizationN−1 (cf. (6.7)) in the Schrödinger functional is known10

in combination with vanishing boundary conditions from [105]. Finally, the discretiza-
tion of the field strength tensor Gµν which enters g2

GF via the energy density (6.4) must
be specified. We use the symmetric clover definition (6.12),

E = E(clov) . (9.19)

• Φ2 and Φ3

We define effective meson masses (EMM) by

Γij ≡ Γij
A = −∂̃0 log

(
f ij
A,I(x0)

) ∣∣
x0=T/2 , i, j ∈ {l, c} , (9.20)

10In the meantime, the normalization has also been calculated for other options, see for instance [110,
111, 139], but neither this nor the implementation of other flow actions than (9.18) in the utilized
openQCD code had been available at the time this work was started.
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where f ij
A,I is the improved Schrödinger functional correlation function of the axial

current given in (5.53). Its spectral decomposition (cf. (3.51)) reads

f ij
A,I(x0)

(5.46)∼
〈

Aij
0 (x) O ji

〉
∼

〈
0|Aij

0 |PS
〉 〈

PS|O ji|i0
〉

e−x0mij
PS ·
(

1 + O(e−x0∆Eij
PS)
)
+ O(a) , (9.21)

where PS stands for the pseudoscalar ground state of valence quark flavors ij and i0
denotes the SF boundary state with vacuum quantum numbers, see e.g. [140, 141].
Employing (9.21) in (9.20), one finds

Γij = mij
PS + O(e−T/2·∆Eij

PS) + O(a) . (9.22)

If the volume T is sufficiently large for contributions ∆Eij
PS from excited states to be

negligible, the EMM are close to (infinite volume) masses of pseudoscalar mesons with
valence (anti-)quark flavors i and j. As such, they may well serve to fix Ml , Mc on the
lattice. In order to obtain quantities that depend primarily on either Ml or Mc, but only
weakly on the respective other RGI mass (cf. criterion C2), we choose the combinations

Φ2 = T · Γsu (9.23a)

Φ3 = T ·
(

Γsc − 1
2

Γsu
)

. (9.23b)

The subtraction of 1
2 Φ2 in (9.23b) is aimed at cancelling the leading influence of Ml in

Φ3 (cf. fig. 9.2). The effectiveness of this measure is studied in N f = 2, see app. G.3.
Note that for dimensional reasons, however, the explicit appearance of the scale T
(which is already captured by Φ1) in Φ2 and Φ3 is unavoidable. The notation Γsu is
employed to emphasize that the axial current in (9.20) is defined as the non-singlet
axial current of two distinct (but otherwise arbitrarily chosen from u, d, s) flavors with
equal, light mass.

Note that the above argumentation, in particular (9.21) and (9.22), holds equally
well for Γij

P with the pseudoscalar correlation function fP. As both operators have
the same pseudoscalar quantum numbers, the corresponding effective meson masses
approach the same meson masses mij

PS in the large volume
(

O(e−T/2·∆Eij
PS)

T→∞−−−→ 0
)

and continuum
(

O(a) a→0−−→ 0
)

limit. The advantage of Γij
A is that in the chiral limit,
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mij
PS → 0, the excited state contributions vanish also for finite T:

lim
a→0

Γij
A|chiral limit = 0 (9.24a)

lim
a→0

Γij
P|chiral limit 6= 0 . (9.24b)

The underlying reason for this is the PCAC relation (3.79), which renders Γij
A propor-

tional to the quark masses11,

Γij
A =

∂0

〈
Aij

0 (x) O ji
〉

〈
Aij

0 (x) O ji
〉 =

(
m0,i + m0,j

)
·

〈
Pij(x) O ji

〉
〈

Aij
0 (x) O ji

〉 , (9.25)

which is not the case for Γij
P. Consequently, if the involved quark masses are small as

in the case of Φ2, Γij
A is more sensitive to the bare masses than Γij

P, which allows to
tune Φ2 with an improved accuracy. This may be seen in app. G.3, where a detailed
numerical discussion of the mass dependence of the effective meson masses is given.

There are several choices to be made which have impact on the size of the dis-
cretization effects in (9.22). The first one is the use of the improved correlation function
f ij
A,I already indicated in the above equations. Although this is not a necessity for the

determination of csw, as the difference with respect to the use of the unimproved cor-
relation function f ij

A is merely an O(a2) effect, the knowledge of the 1-loop coefficient
c(1)A (cf. (3.115)) may be applied, while some non-perturbative results on cA are also
available (cf. app. F.2). We will come back to the use of cA, discussed separately for
N f = 2 and N f = 3 + 1, in sec. 9.2.4 and sec. 9.3.

Second, different discretizations of Γij and the involved logarithmic derivative (cf.
(9.20)) are possible, covered in detail in app. G.1. We opt for

Γij = Γij
(1) = −

1
2a

log

(
f ij
A,I(x0 + a)

f ij
A,I(x0 − a)

) ∣∣∣∣
x0=T/2

(9.26)

over Γij
(2) as given in (G.1), to avoid an explicit introduction of cutoff effects, see (G.5)

and (G.6).

11We consider the continuum here.
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• T?

Having specified the LCP in its explicit form (9.7) with the associated mass scales
(9.11), and its implicit form (9.13) in terms of the three quantities Φi (9.16, 9.23a,
9.23b), the only missing ingredient to complete its definition is the scale T?.

It is advantageous to establish the LCP in a rather large volume to minimize excited
state contributions to the EMM, cf. (9.21). However, if the volume gets too large, the
signal strength of the Φi gets impaired. Moreover, regarding the determination of
Φ1, the effects of critical slowing down and topology freezing (cf. sec. 6.2.2) possibly
become threatening (cf. sec. 7), and the size of the cutoff effects becomes significant
[105]. A good compromise is

T? ∼ 0.8 fm . (9.27)

This particular value is chosen because corresponding N f = 2 ensembles (9.27) already
exist and may be reused. These will provide the exact definition of T?, to be described
in detail in sec. 9.2. We close this section with the remark that the LCP as defined above
replaces the improvement point Mud(T/2, T/4) !

= 0 in previous determinations of csw

with massless quarks at fixed lattice resolution, cf. (F.1) in app. F. In the upcoming
section, we will determine the values Φ?

i in N f = 2 by which the LCP is characterized.

9.2 Determination of Φ? in N f = 2

The determination of the values Φ?
i has been outlined in sec. 9.1, cf. (9.13) and fig. 9.2.

They are defined as the continuum extrapolated values of the quantities Φi (cf. (9.16,
9.23a, 9.23b)) in massless N f = 2 with the scales12 T, Ml , Mc set to T? (9.27) and the
(partly) physical N f = 2 RGI masses M?

l (9.11a) and M?
c (9.11b), respectively:

Φ?
1 = lim

a/T→0

[
g2

GF

]
N f =2, T=T?

(9.28a)

Φ?
2 = lim

a/T→0

[
T · Γss̃

]
N f =2, T=T?, Ml=M?

l

(9.28b)

Φ?
3 = lim

a/T→0

[
T ·
(

Γsc − 1
2

Γss̃
) ]

N f =2, T=T?, Ml=M?
l , Mc=M?

c

. (9.28c)

12We remind the reader that all the Schrödinger functional parameters employed here were specified in
sec. 9.1. In particular, the spatial size of the lattice is equal to its temporal size, T = L.
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# notation dynamics mass

1 u dynamical massless
2 d dynamical massless
3 s or l quenched light
4 c quenched charm

# notation dynamics mass

1 u or l dynamical light
2 d or l dynamical light
3 s or l dynamical light
4 c dynamical charm

Table 9.1: Basic properties and notation used for the different quark flavors present in the
N f = 2 (left) and N f = 3 + 1 (right) theories. The definition of light and charm mass
in N f = 2 is straight forward, expressed by (9.11a) and (9.11b), respectively. In
N f = 3 + 1, however, the exact meaning of this terminology is given by the tuning
of the masses to the LCP (9.13), which implies that the light and charm quarks are to
be understood as light- and charmlike quarks, respectively. Recall that in this context
light always means one third of the strange mass, cf. (9.11a).

Note that in contrast to N f = 3 + 1, only the (quenched) strange quark corresponds to
a light flavor with index l in N f = 2, while the (dynamical) up and down quarks are
massless. Accordingly, the EMM with two light valence quarks are labelled with the
superscript ss̃ instead of su (cf. (9.23)). The tilde notation here indicates the unaltered
consideration of non-singlet axial current components. An overview on the notation of
the quark flavors in the different theories and their basic properties is given in tab. 9.1.
In the following, we present the N f = 2 ensembles which provide the exact definition
of T?. These will be deployed for the determination of Φ?

i subsequently.

9.2.1 Scale setting and ensembles in N f = 2

In [95, 142], a typical hadronic scale L1 has been implicitly defined through a LCP in
N f = 2, formulated in terms of the Schrödinger functional coupling (cf. (5.15)):

g2
SF(L1) = 4.484 , L1mud

PCAC = 0 . (9.29)

Here, mud
PCAC refers to the PCAC mass of the degenerate up and down quark13, cf. (5.51).

In the course of [142], the bare parameters (β, κ) were tuned to the LCP (9.29) for a
couple of lattice resolutions, leading to a set of ensembles that correspond to

L1 with L1/a ∈ {6, 8, 10, 12, 16} . (9.30)

13Note that the PCAC mass without explicit declaration of a time argument always corresponds to the
center of the lattice, i.e. mud

PCAC ≡ mud
PCAC(x0)|x0=T/2.
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

L2/a β κcrit τmeas g2
SF(L1) amud

PCAC

12 5.2638 0.135985 6 4.423(75) -0.01154(83)
16 5.4689 0.136700 6 4.473(83) -0.00424(24)
20 5.6190 0.136785 6 4.49(10) -0.00257(11)
24 5.7580 0.136623 6 4.501(91) +0.00067(7)
32 5.9631 0.136422 10 4.40(10) -0.00096(4)

Table 9.2: Properties of the N f = 2 ensembles corresponding to the lattice extent L2 created in
the course of [142]. The numbers are taken from the same reference. τmeas denotes
the Monte Carlo time between two consecutive measurements, given in MDU. Note
that the observables g2

SF and amud
PCAC both refer to the related ensembles with L1 =

L2/2, cf. (9.30) and (9.31).

At the very same bare parameters, a second set of ensembles with twice the volume,
i.e.

L2 = 2L1 with L2/a ∈ {12, 16, 20, 24, 32} (9.31)

was created, which corresponds to a scaling step with respect to (9.30). The extent
T1 or T2 of the SF box in time is the same as the one in space for all of the above
ensembles,

T1 = L1 and T2 = L2 . (9.32)

The main properties of the ensembles in the larger volume are compiled in tab. 9.2.
The fact that they were generated with vanishing boundary conditions and under use
of θ = 0.5 is reflected in (9.14) and (9.15). Moreover, the Wilson gauge action

SG = SW
G (9.33)

was employed. While this does not directly affect the continuum extrapolated values
Φ?

i due to universality, it is relevant for O(a) improvement, which is implemented for
the action S = SW

F + SW
G by the use of the non-perturbative result for csw (cf. tab. F.1

in app. F), as well as the perturbative 2-loop and 1-loop expressions for ct and c̃t,
respectively (cf. (5.37)).

The results of [95] directly relate a physical value to L1. In this work, the scale in
N f = 2 has been set for a range of inverse bare parameters β′ ∈ {5.2, 5.3, 5.5} under
use of the kaon decay constant fK, based on the principle described in sec. 3.4. The
knowledge of the scale fK can be transferred to the knowledge of the scale L1 by
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9.2 Determination of Φ? in N f = 2

building the product L1 fK = L1
a · a fK and extrapolating to the continuum. However,

since the lattice resolutions at the LCP are known for slightly different values of β

(cf. tab. 9.2), the values L1/a first need to be interpolated to the β′ at which a fK has
been computed14. In doing so, one finds [95]

L1 fK = 0.315(8)(2) , (9.34)

where the first and second error refer to statistical and systematic uncertainties, re-
spectively. Together with fK,phys = 155 MeV (as used in [95]), this allows to identify
the scale L1, which approximates to

L1 ∼ 0.4 fm . (9.35)

It is convenient to reuse the existing N f = 2 ensembles. For the reasons described at
the end of sec. 9.1, we opt for the ones in the larger volume. The previously stated
value T? ∼ 0.8 fm (cf. (9.27)) thus results from

T? = L2 = 2L1 , (9.36)

the exact definition of these scales being provided by the LCP (9.29). In order to clearly
distinguish between the different theories, we use the notation T? in the case of N f = 3 + 1,
whereas the same physical scale will be denoted by L2 in the framework of N f = 2. Note
that apart from the need to produce new configurations, our approach of reusing
the ensembles also avoids the interpolation of the bare coupling g2

0 as a function of
the lattice spacing, which due to the restrictions on the lattice resolution would be
necessary if a value slightly different from L2 was chosen.

9.2.2 Fixing the RGI masses on the lattice

While Φ?
1 (9.28a) may be computed directly with the help of the N f = 2 ensembles

(sec. 9.2.3), the observables Φ?
2 (9.28b) and Φ?

3 (9.28c) involve valence quarks at fixed

14 Actually, in advance of this step, the hopping parameters were retuned in [95] for the lattice resolutions
L1/a ∈ {6, 8, 12} (cf. tab. 9.2) and g2

SF was computed with higher statistics in order to improve the
matching of the LCP and the overall precision. The resulting small deviations of the Schrödinger
functional coupling from the aspired LCP were then translated to values of L1/a that differ slightly
from the integer values used in [142] (cf. tab. 9.2).
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

RGI masses, which we recall here for convenience:

M?
l = M(N f =2)

s,phys /3 (9.11a)

M?
c = M(N f =2)

c,phys . (9.11b)

After extracting the values of the dimensionless combinations

z?i = L2M?
i , i ∈ {l, c} , (9.37)

from available results in the literature in the following, we will relate those to the
associated hopping parameters κ?i of the aforementioned valence quarks, which enter
the evaluation of Φ?

2 (sec. 9.2.4) and Φ?
3 (sec. 9.2.5) in practice.

The RGI strange quark mass in N f = 2 is given in units of the kaon decay constant by
[95]

M(N f =2)
s,phys

fK
= 0.887(19)(7) , (9.38)

which together with (9.11a) and (9.37), as well as the values of L1 fK (9.34) and L1 =

L2/2 (9.36) leads to

z?l =
L2M(N f =2)

s,phys

3
=

2
3
· L1 fK ·

M(N f =2)
s,phys

fK
= 0.186(7) . (9.39)

The dimensionless RGI charm quark mass in N f = 2, in contrast, is derived indirectly
according to

z?c = z?b ·
z?c
z?b

, (9.40)

from the dimensionless RGI bottom quark mass, that is readily available from an
N f = 2 HQET analysis of the ALPHA Collaboration [143],

z?b = L2M(N f =2)
b,phys = 2L1M(N f =2)

b,phys = 26.50(52) . (9.41)
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9.2 Determination of Φ? in N f = 2

The converting ratio

z?b
z?c

=
Mb,phys

Mc,phys
(9.42a)

can either be obtained from quenched simulations of the ALPHA Collaboration [144,
145],

r0M(N f =0)
b,phys = 17.38(28)

r0M(N f =0)
c,phys = 4.055(58)

 ⇒ z?b
z?c

∣∣∣∣
ALPHA

= 4.29(9) , (9.42b)

or taken from the HPQCD Collaboration [146],

z?b
z?c

∣∣∣∣
HPQCD

= 4.51(4) . (9.42c)

Employing the average value of

z?b
z?c

= 4.40 (9.42d)

together with (9.40) and (9.41) leads to

z?c = 6.0 . (9.43)

Note that a similar result on z?c is obtained directly under use of (cf. (9.27))

L2 ≈ 4 GeV−1 . (9.44a)

from [147], where

M(N f =2)
c,phys = 1.51(4) GeV (9.44b)

is given in physical units.
As announced earlier, we now derive the relation of z?i to the associated hopping

parameters κ?i (g2
0) for the bare couplings g2

0 = 6/β given in tab. 9.2. M?
i is related

to the renormalized mass mi?
R by (E.12) in terms of the scale-dependent but flavor-

independent conversion factor h, see (E.11). The renormalized mass mi?
R itself can be

expressed in terms of the bare subtracted quark mass m?
q,i via the flavor-independent

renormalization constant Zm, see (E.14). Taking into consideration that we work in
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

massless N f = 2 now, such that one may replace g̃2
0 → g2

0 in all renormalization
constants (cf. the discussion in app. E), and finite size scaling (cf. (5.18))

µ = 1/L1 (9.45)

associated with the Schrödinger functional is employed, the corresponding equations,
(E.11) and (E.14), may be written as

h(1/L1) = M/mR(1/L1) (9.46)

and

M?
i = h(1/L1) Zm(g2

0, a/L1)
[
1 + abm(g2

0)m
?
q,i

]
m?

q,i . (9.47)

Note that while the particular scale (9.45) is in principle irrelevant in the sense that
the product hZm is scale-independent, it is self-evident to use L1 with regard to the
evaluation of the single factors, in particular Zm, as it is directly intertwined with the
bare couplings in question via the LCP (9.29). After solving (9.47) for m?

q,i,

m?
q,i =

−1±
√

1 + 4abm(g2
0)

M?
i

h(1/L1)Zm(g2
0,a/L1)

2abm(g2
0)

, (9.48)

and using the positive solution m?
q,i > 0, the hopping parameters (cf. (3.70)) become

κ?i =

{
1

κcrit
+ 2am?

q,i

}−1

=

{
1

κcrit(g2
0)
− 1

bm(g2
0)

(
1−

√
1 + 4abm(g2

0)
M?

i
h(1/L1)Zm(g2

0, a/L1)

)}−1

. (9.49)

Since there are no direct results for Zm(g2
0, a/L1) available, one uses

Z(g2
0) =

Zm(g2
0, a/L1) ZP(g2

0, a/L1)

ZA(g2
0)

(9.50)

to replace it by the renormalization constants ZA, ZP and Z that appear in connection
with the PCAC mass (cf. (E.17)). In terms of the dimensionless RGI masses z?i (9.37),
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L2/a β κcrit bm Z ZA ZP h κ?l κ?c

12 5.2638 0.135985 -0.5240 0.9710 0.7754 0.5068

1.308

0.135689 0.125521
16 5.4689 0.136700 -0.6532 1.0530 0.7909 0.5110 0.136496 0.129520
20 5.6190 0.136785 -0.7087 1.0854 0.8010 0.5125 0.136628 0.131342
24 5.7580 0.136623 -0.7422 1.1048 0.8096 0.5186 0.136495 0.132221
32 5.9631 0.136422 -0.7715 1.1223 0.8211 0.5188 0.136329 0.133278

Table 9.3: Improvement coefficient bm and renormalization constants associated with the LCP
in the volume L1, taken from the references mentioned in the main text, either
directly or by application of interpolating formulas given therein. The last two
columns show the resulting hopping parameters associated with the RGI masses
M?

l (9.11a) and M?
c (9.11b), respectively, according to (9.51).

the final formula to be applied then reads

κ?i =

{
1

κcrit(g2
0)
− 1

bm(g2
0)

(
1−

√
1 + 4bm(g2

0)
ZP(g2

0, a/L1)

ZA(g2
0) · Z(g2

0)

a
L2

z?i
h(1/L1)

)}−1

.

(9.51)

In N f = 2, non-perturbative results for a range of bare couplings exist for bm(g2
0) and

Z(g2
0) [58], as well as ZA(g2

0) [148]. Moreover, specifically for the LCP, i.e. the relevant
bare couplings g2

0 = 6/β, the volume L1 and the lattice resolutions L1/a, we know
κcrit(g2

0) from [142], while ZP(g2
0, a/L1) and the conversion factor

h(1/L1) = 1.308(16) (9.52)

are given in [95]. This way, from (9.51), we get the hopping parameters κ?l , κ?c associated
with the central values of the RGI masses z?l , z?c , given in (9.39) and (9.43), respectively.
The results are listed in tab. 9.3.

9.2.3 Determination of Φ?
1

We now turn to the determination of Φ?
1 , whose definition we recall for convenience:

Φ?
1 = lim

a/T→0

[
g2

GF

]
N f =2, T=L2

(9.28a)
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

L2/a ens. Ncf g2
GF τint Qfit

12 A12 301 8.59(6) 1.4(2)
16 A16 100 7.85(8) 1.8(6)
20 A20 19 7.64(25) 3(2)
24 B24 1000 7.54(7) 14(4)
32 B32 700 7.45(10) 29(9)

∞ without L2/a = 12 7.31(10) 0.99
∞ with L2/a = 12 7.19(7) 0.45

Table 9.4: Results for the GF coupling in N f = 2, determined in the SF at fixed L2 ∼ 0.8 fm. τint

is given in units of 2 MDU, where τmeas as given in tab. 9.2 for the different lattice
sizes has been taken into account. The values of τint for L2/a = 12, 16 are to be
considered upper bounds, following from the fact that τint in units of τmeas = 6 MDU
is compatible with no autocorrelation at all.

Given some specific subsets15 (cf. tab. 9.2) of the respective existing N f = 2 ensembles,
labelled by AL2/a and BL2/a (cf. tab. 9.4), we evaluate the GF coupling g2

GF (6.7) by
integrating the flow equation16 (6.9). The results are listed in tab. 9.4 and illustrated
in fig. 9.3. Due to the implementation of O(a) improvement (cf. sec. 9.2.1), we expect
the leading cutoff effects in g2

GF to be quadratic in the lattice spacing, and thus employ
the fit17 ansatz

g2
GF = Φ?

1 + s1 · (a/L2)
2 (9.53)

to extract Φ?
1 . The value for L2/a = 12 seems to deviate from this behavior, suggesting

that it is affected by higher order cutoff effects. This has also been observed in [105] for
the same lattice spacing, in half the physical volume fixed by the very same LCP (9.30),
i.e. L1/a = 6. It is reasonable to exclude this point from the continuum extrapolation,
which then leads to

Φ?
1 = 7.31(10) . (9.54)

15For L2/a = 12, 16, 20, MC histories of g2
GF for ensemble subsets A12, A16, A20 with somewhat peculiar

numbers of configurations Ncf - see tab. 9.4 - were readily available from work done in the course
of [105] These have been used here. Regarding L2/a = 24, 32, we employed relatively large subsets
B24, B32 to achieve sufficient statistics, compared to the ensemble subsets C12, C16, C20, C24, C32 which
will be used in connection with the determination of Φ?

2 , Φ?
3 , see sec. 9.2.4 and sec. 9.2.5, respectively.

16An adaptive integrator (see e.g. [105]) was deployed here.
17Fit details like the fit parameters, their covariance matrix and the quality of the fit are listed in tab. H.1,

see app. H.3.
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Figure 9.3: The GF coupling and its continuum extrapolation (9.53), which leads to Φ?
1 ((9.54),

black). The fit excludes the data for L/a = 12 (red).

Since we do not know about the GF coupling and its cutoff effects in the N f = 3 + 1
theory, a rough determination like (9.54) is sufficient for our purposes, and we take its
central value for the definition of the LCP.

9.2.4 Determination of Φ?
2

Next, we consider

Φ?
2 = lim

a/T→0

[
T · Γss̃

]
N f =2, T=L2, Ml=M?

l

. (9.28b)

For the determination of L2Γss̃, we again use certain subsets of the N f = 2 ensembles,
labelled by CL2/a (cf. tab. 9.5). The incorporated improved axial current correlation
function fA,I (cf. (9.20)) is evaluated under use of the valence quark hopping param-
eters κ?l , listed in tab. 9.3, as well as the improvement coefficient cA that is available
non-perturbatively for the relevant case of N f = 2 and the Wilson gauge action SW

G ,
see (3.116). This ensures full O(a) improvement, i.e. cutoff effects in L2Γss̃ are again
expected to be of order O(a2).

However, we observe that the results for L2Γss̃, which can be found in tab. 9.5 and
fig. 9.4, can not be reconciled with this behavior, making a reasonable continuum
extrapolation impossible. A very similar pattern appears for L2Γud, calculated with
κ = κcrit in the chiral limit, from which we know that it is supposed to vanish in the
continuum, see (9.24a). We attribute this behavior to the imprecise tuning of amud

PCAC

169



9 Determination of csw for N f = 3 + 1 massive Wilson fermions

L2/a ens. Ncf L2Γss̃ L2Γud L2Γss̃
cor τint Qfit

12 C12 500 1.41(7) 0.76(6) 0.65(1) 4(1)
16 C16 500 0.79(6) 0.11(5) 0.68(1) 7(2)
20 C20 180 0.51(4) -0.15(4) 0.66(2) 9(4)
24 C24 500 0.79(3) 0.19(3) 0.60(1) 17(6)
32 C32 180 0.48(2) -0.14(2) 0.62(1) 8(3)

∞ without L2/a = 12 0.59(1) 0.01
∞ with L2/a = 12 0.61(1) 0.00

Table 9.5: Results of the N f = 2 runs to determine L2Γss̃
cor at z?l = L2M?

l . The parameters β,
κcrit and τmeas associated with the ensembles are listed in tab. 9.2, while κ?l can be
found in tab. 9.3. τint corresponds to the quantity L2Γss̃

cor, and is given in units of
2 MDU under consideration of τmeas (cf. tab. 9.2).
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Figure 9.4: Top: L2Γss̃ at z?l = L2M?
l (filled circles) and L2Γud at zu = zd = 0 (open circles).

Bottom: L2Γss̃
cor and its continuum extrapolation (9.56), which leads to Φ?

2 ((9.57),
black). The point for L2/a = 12 (red) is excluded.
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9.2 Determination of Φ? in N f = 2

to zero, see tab. 9.2, and define a corrected quantity

L2Γss̃
cor = L2

(
Γss̃ − Γud

)
(9.55)

that differs from L2Γss̃ only by cutoff effects. As one can see in fig. 9.4, L2Γss̃
cor shows

an improved behavior, and is therefore used for the continuum extrapolation to Φ?
2 . A

fit18 quadratic in a/L2,

L2Γss̃
cor = Φ?

2 + s2 · (a/L2)
2 , (9.56)

gives19

Φ?
2 = 0.59(1) . (9.57)

Note that again the L2/a = 12 value is not taken into account. As a side remark, we
mention that the alternative discretization Γij

(2) of the light EMM gives very similar

results to the case of Γij = Γij
(1) (cf. (9.26)), both on the lattice (L2Γss̃

cor) and in the
continuum (Φ?

2). Details can be found in app. G.2. The same holds if the unimproved
axial correlation function (cA → 0) is used for the effective meson masses, see app. G.4.

9.2.5 Determination of Φ?
3

Finally,

Φ?
3 = lim

a/T→0

[
T ·
(

Γsc − 1
2

Γss̃
) ]

N f =2, T=L2, Ml=M?
l , Mc=M?

c

, (9.28c)

is determined very similarly to the case of Φ?
2 , on the ensembles CL2/a. We again use

the quantities which correct for the massless sea quark contributions,

L2Γsc
cor = L2

(
Γsc − Γud

)
(9.58)

L2Γss̃
cor = L2

(
Γss̃ − Γud

)
, (9.55)

18See footnote 17.
19The quality of the fit, Qfit = 0.01, is quite poor. This is partly due to the obviously underestimated

autocorrelation for L2/a = 32 and the associated error, see tab. 9.5. However, as explained before, a
rough determination of the continuum extrapolated value Φ?

2 is sufficient for our purposes, so that
we make do with the situation.
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L2/a ens. Ncf L2Γsc L2

(
Γsc

cor − 1
2 Γss̃

cor

)
τint Qfit

12 C12 500 7.40(7) 6.32(3) 3(1)
16 C16 500 6.94(10) 6.49(4) 7(2)
20 C20 180 6.55(7) 6.37(6) 8(3)
24 C24 500 6.64(6) 6.15(5) 18(6)
32 C32 180 6.28(5) 6.11(4) 14(6)

∞ without L2/a = 12 5.96(5) 0.30
∞ with L2/a = 12 6.17(4) 0.00

Table 9.6: Results of the N f = 2 runs to determine L2(Γsc
cor − 1

2 Γss̃
cor) at z?l = L2M?

l and z?c =

L2M?
c . While the parameters β, κcrit, τmeas, κ?l and κ?c are given in tab. 9.2 and

tab. 9.3, the results on Γss̃ and Γud are the same as in tab. 9.5. τint corresponds to
the quantity L2(Γsc

cor − 1
2 Γss̃

cor), and is given in units of 2 MDU under consideration
of τmeas (cf. tab. 9.2).

such that in total, the quantity of interest becomes

L2

(
Γsc

cor −
1
2

Γss̃
cor

)
= L2

(
Γsc − 1

2
Γss̃ − 1

2
Γud
)

. (9.59)

Note that in comparison to (9.55), the correction is only half as large in absolute size.
The results are shown in tab. 9.6 and fig. 9.5. The usual fit20 ansatz,

L2

(
Γsc

cor −
1
2

Γss̃
cor

)
= Φ?

3 + s3 · (a/L2)
2 , (9.60)

without consideration of the L/a = 12 result, yields21

Φ?
3 = 5.96(5) . (9.61)

In contrast to the case of Φ?
2 , the use of the alternative discretization Γij

(2) instead of

Γij = Γij
(1) gives quite different results on the lattice. These relative cutoff effects, inves-

tigated in detail in app. G.2, become significant as they enter here in combination with
the charm mass. However, we find (cf. (G.9)) Φ?

3,(2) = 5.94(5) with Γij
(2), i.e. agreement

between the two definitions in the continuum, as expected. The same holds if Γij is
considered with the unimproved axial current (cA → 0). As one can see in detail in
app. G.4, this has a small effect on the lattice results, which vanishes as the continuum

20See footnote 17.
21Footnote 19 applies here as well, for Φ?

3 .
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Figure 9.5: L2
(
Γsc

cor − Γss̃
cor/2

)
and its continuum extrapolation (9.60), which leads to Φ?

3 ((9.61),
black). The point for L/a = 12 (red) is again excluded from the fit.

limit is taken.

9.3 Tuning to the line of constant physics

In the previous two sections, we have defined a LCP,

Φ1 = Φ?
1 , Φ2 = Φ?

2 , Φ3 = Φ?
3 , (9.13)

in terms of the three quantities

Φ1 = g2
GF(T) , Φ2 = T · Γsu , Φ3 = T ·

(
Γsc − 1

2
Γsu
)

, (9.16, 9.23a, 9.23b)

by fixing the values

Φ?
1 = 7.31 , Φ?

2 = 0.59 , Φ?
3 = 5.96 (9.54, 9.57, 9.61)

from numerical input of the N f = 2 theory. We are now in the position to implement
this LCP in N f = 3 + 1 with the tree-level improved Lüscher–Weisz gauge action SLW

G ,
which, as discussed in sec. 8.4 and the introduction to the present sec. 9, is the starting
point for the determination of

csw = csw(g2
0, am?

q,l , am?
q,c) (8.63)
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

at fixed, non-vanishing quark masses, to be discussed in sec. 9.4. Affiliated with the
LCP is the use of the same SF extent in time and space,

T = L , (9.62)

see (9.32). SF boundary improvement in terms of the improvement coefficients ct and
c̃t is implemented perturbatively like in N f = 2 (see sec. 9.2.1 and (5.37)). However,
in the present case of the gauge action SLW

G , these are only known to 1-loop and tree-
level order, respectively (cf. (5.42)). The lattice setup is completed by the fermion
boundary angle θ = 0 as outlined in (9.15). Details on the algorithmic implementation
of the MC simulations will be discussed in sec. 9.5. Once a representative ensemble
of gauge configurations is generated, the practical evaluation of the quantities Φi in
N f = 3 + 1 on those is straight forward. There are merely two changes with respect
to the previously considered N f = 2 case to be accounted for. First, the gradient flow
coupling g2

GF acquires a different normalization22 N−1 due to the use of SG = SLW
G

(9.1) as gauge action, see (6.13) and the discussion in sec. 6.1.2. Second, while the
EMM (cf. (9.26) and (5.53)) that appear in Φ2 and Φ3 were defined in terms of the non-
perturbatively available cA (cf. (3.116) and sec. 9.2.4) in N f = 2, we use the perturbative
1-loop expression (3.115) in N f = 3 + 1.

The task to be addressed in the following is to adjust the bare parameters such that
the quantities Φi ≡ Φi(g2

0, κl , κc) assume the values Φ?
i prescribed by the LCP (9.13).

This poses a classical optimization problem of a function

~Φ : R3 → R3 ,
(

g2
0, κl , κc

)
7→ (Φ1, Φ2, Φ3) . (9.63)

The tuning of the bare parameters, however, needs to (and can only be) carried out up
to a certain precision. The tolerated deviations of Φi from Φ?

i have to be well defined,
which is subject of sec. 9.3.1. After reformulation of the optimization problem in
sec. 9.3.2, our strategy to solve it will be discussed in sec. 9.3.3 and sec. 9.3.4. Finally,
we discuss the error estimation of the obtained bare parameters at the line of constant
physics in sec. 9.3.5, and conclude in sec. 9.3.6.

9.3.1 Imposed precision

We aim to match the physical quantities T?, M?
l , M?

c with a certain precision. Introduc-
ing the vector notation X = (X1, X2, X3) = (T, Ml , Mc), they are represented by X?

i ,

22I am grateful to Alberto Ramos for providing me with the numbers.
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9.3 Tuning to the line of constant physics

while δXi = Xi−X?
i are the actual deviations, and ‖δXi‖ denotes the (maximal) allowed

deviations:

|δXi| ≤ ‖δXi‖ , i ∈ {1, 2, 3} . (9.64)

As explained in sec. 8.4, it is particularly important to fix the charm mass on the lattice,
i.e. to fix T and Mc rather restrictively, whereas the precision required for Ml is of less
importance. The allowed deviations are thus set to

‖δT‖
T?

,
‖δMc‖

M?
c

= 5% and
‖δMl‖

M?
l

= 11% . (9.65)

In the following, they will be translated to allowed deviations of Φ1, Φ2, Φ3,

(‖δT‖, ‖δMl‖, ‖δMc‖) −→ (‖δΦ1‖, ‖δΦ2‖, ‖δΦ3‖) . (9.66)

Since each Φi can be considered as a function Φi ≡ Φi (T, Ml , Mc), each deviation δΦi

gets contributions from all the deviations δXi:

δΦi =
∂Φi

∂T
δT +

∂Φi

∂Ml
δMl +

∂Φi

∂Mc
δMc =

3

∑
j=1

∂Φi

∂Xj
δXj . (9.67)

Higher order terms will be neglected, and the derivatives are always understood to be
evaluated at the LCP, e.g.

∂Φi

∂Xj
≡ ∂Φi

∂Xj

∣∣∣∣
X=X?

, i, j ∈ {1, 2, 3} . (9.68)

The maximal allowed deviations, unlike the deviations themselves, can not compen-
sate each other, i.e. one has to assume the most unfavorable addition of deviations:

‖δΦi‖ =
∣∣∣∣∂Φi

∂T

∣∣∣∣ ‖δT‖+
∣∣∣∣ ∂Φi

∂Ml

∣∣∣∣ ‖δMl‖+
∣∣∣∣ ∂Φi

∂Mc

∣∣∣∣ ‖δMc‖ =
3

∑
j=1

∣∣∣∣∂Φi

∂Xj

∣∣∣∣ ‖δXj‖ . (9.69)

The quantities Φi were constructed such that they depend mainly on Xi (see criterion
C2 in sec. 9.1), so that ∣∣∣∣∂Φi

∂Xi

∣∣∣∣ ‖δXi‖ �
∣∣∣∣∂Φi

∂Xj

∣∣∣∣ ‖δXj‖ for j 6= i (9.70)
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is supposedly fulfilled. For this reason, and in order to avoid the involvement of off-
diagonal derivatives, we propagate only the main error, and approximate the allowed
deviations by

‖δΦapprox
i ‖ =

∣∣∣∣∂Φi

∂Xi

∣∣∣∣ ‖δXi‖ ≤ ‖δΦi‖ . (9.71)

The inequality holds because only positive terms are dropped in the approximation,
cf. (9.69). We will employ ‖δΦapprox

i ‖ as upper bounds for the modulus of the devi-
ations δΦi from the tuning point. This is a stronger criterion which implies that the
tuning target (9.65) for the physical quantities is fulfilled just like the original criterion:

|δΦi| ≤ ‖δΦapprox
i ‖ ⇒ |δΦi| ≤ ‖δΦi‖ ⇔ |δXi| ≤ ‖δXi‖ . (9.72)

We will determine ‖δΦapprox
i ‖ for i ∈ {1, 2, 3} via (9.71) in the following.

1) δT → δΦ1

In order to determine ‖δΦapprox
1 ‖ and the involved derivative

∣∣∣ ∂Φ1
∂T

∣∣∣
T=T?

, we need the

functional relationship of the gradient flow coupling Φ1 = g2
GF and T. It is given in per-

turbation theory at large energies by (2.40), which to lowest order in the Schrödinger
functional with finite size scaling µ = 1/T (cf. (5.18)) becomes

1
Φ1

= −2b0 log (TΛ) + . . . . (9.73a)

The corresponding differential reads

d
(

1
Φ1

)
= −2b0

dT
T

, (9.73b)

so that the aspired relative maximal allowed deviation of T (cf. (9.65)) translates to an
absolute maximal allowed deviation of 1/Φ1. Hence, we use this quantity instead of Φ1

to formulate a precision condition, to ensure that T associated with the outcome of the
tuning procedure is symmetrically distributed around T? in the statistical limit. From
(9.71) and (9.73b), we find an allowed deviation of the function 1/Φ1 that in relative
terms amounts to

‖δ (1/Φ1)
approx ‖

1/Φ?
1

= 2b0 Φ?
1
‖δT‖

T?
≈ 4% , (9.74)
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where b0 ≈ 5.277 · 10−2 from (2.41) with N f = 4, Φ?
1 = 7.31 from (9.54) and ‖δT‖

T? = 5 %
from (9.65) was used. Note that the above use of perturbation theory up to an energy
scale as low as µ ≈ 1

T? ≈ 1
0.8 fm ≈ 250 MeV is justified by the slow running of the

gradient flow coupling, see [149].

2) δMl → δΦ2 and δMc → δΦ3

In contrast to the previously considered case, the derivatives
∣∣∣ ∂Φ2

∂Ml

∣∣∣
Ml=M?

l

and
∣∣∣ ∂Φ3

∂Mc

∣∣∣
Mc=M?

c

cannot be assessed with analytical methods. Instead, we use our estimates from
N f = 2, listed in tab. G.4 of app. G.3:∣∣∣∣ ∂Φ2

∂Ml

∣∣∣∣
Ml=M?

l

!
=

∂

∂Ml

(
lim
a→0

L2Γss̃
)∣∣∣∣

N f =2, zl=z?l

=2.95(3) · T? (9.75a)∣∣∣∣ ∂Φ3

∂Mc

∣∣∣∣
Mc=M?

c

!
=

∂

∂Mc

(
lim
a→0

L2

(
Γsc − 1

2
Γss̃
))∣∣∣∣

N f =2, zl=z?l , zc=z?c

=0.78(1) · T? (9.75b)

Together with the target precisions (9.65), this leads to the relative allowed deviations

‖δΦapprox
2 ‖
Φ?

2
=

1
Φ?

2
· 2.95 T? · 0.11 M?

l ≈ 10% (9.76a)

‖δΦapprox
3 ‖
Φ?

3
=

1
Φ?

3
· 0.78 T? · 0.05 M?

c ≈ 4% (9.76b)

where z?l = T?M?
l = 0.186 and z?c = T?M?

c = 6.0 was used, see (9.39) and (9.43),
respectively.

9.3.2 Reformulation of the optimization problem

An optimization problem like the one outlined in the introduction of this section,
where one is interested in the point where the function ~Φ assumes a specific value
~Φ? = (Φ?

1 , Φ?
2 , Φ?

3), is usually trivially reconsidered as the search for the point where
the function ~Φ − ~Φ? vanishes. However, in our case, it should in addition be taken
into account that the function 1/Φ1 is to be considered instead of Φ1. It is convenient
in practice to consider the following distance functions,

D1(Φ1) = −
1/Φ1 − 1/Φ?

1
1/Φ?

1
, D2(Φ2) =

Φ2 −Φ?
2

Φ?
2

, D3(Φ3) =
Φ3 −Φ?

3
Φ?

3
, (9.77)
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which not only vanish at the aspired line of constant physics

Di(Φ?
i ) = 0 , (9.78)

but in terms of which the fulfillment of the relative allowed deviations (9.74) and (9.76)
may also neatly be expressed as (cf. (9.72))

|D1| ≤ 4% , |D2| ≤ 10% , |D3| ≤ 4% . (9.79a)

The sign convention in the definition of D1 is chosen to ensure that D1 and Φ1 −
Φ?

1 have the same sign. Hence, D1 monotonically increases with T (cf. (9.73)), just
as D2 and D3 monotonically increase with Ml and Mc (cf. (9.75)), respectively. An
aspect which has not been taken into account so far are the statistical errors of Φi

that propagate to statistical errors of the distance functions Di. We do require the
tuning criteria (9.79a) to be fulfilled also if those are added to the mean value in an
unfavorable way, i.e. we replace

|Di| → |Di|+ |∆Di| (9.79b)

in (9.79a). The optimization problem is then reformulated in terms of the function23

(cf. (9.63))

~D : R3 → R3 ,
(

g2
0, κl , κc

)
7→ (D1, D2, D3) . (9.80)

Although the aspired tuning point is well defined by (9.78) and (9.79), it is crucial for
the optimization procedure to assess the total distance of a point in bare parameter
space that does not yet fulfill the tuning criteria. To achieve this, a (scalar) global
distance function

D : R3 → R ,
(

g2
0, κl , κc

)
7→ D (9.81)

has to be defined, which should

1. be positive semidefinite: D(Φ1, Φ2, Φ3) ≥ 0 .

2. vanish at and only at the LCP: D(Φ1, Φ2, Φ3) = 0 ⇔ Di(Φi) = 0 ∀i .

23Note that here and in the following, we will frequently use Φi and the bare parameters interchangeably
as arguments of the distance functions. Although being a slight abuse of notation, the meaning of
this is obvious as the mapping ~Φ (cf. (9.63)) provides a one-to-one correspondence between these two
sets of parameters.
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3. monotonically increase with the modulus of Di .

This suggests the basic form

D(Φ1, Φ2, Φ3) = f
(

w1 · (D1(Φ1))
2 + w2 · (D2(Φ2))

2 + w3 · (D3(Φ3))
2
)

, (9.82)

where the factors wi > 0 weigh the individual distance functions in a certain way, and
f : R≥0 → R≥0 is any function that preserves the above criteria. It seems useful to
account for the difference in the tolerated relative allowed deviations, cf. (9.79a), i.e. to
ensure an equal treatment of the relative deviations of 1/Φ1, Φ2, Φ3, by considering

D(Φ1, Φ2, Φ3) =

√
w · (D1(Φ1))

2 + (D2(Φ2))
2 + w · (D3(Φ3))

2 (9.83a)

with w = (10/4)2 . (9.83b)

The chosen overall factor in combination with the square root ensures that D is an
upper bound for the individual distance functions, Di(Φi) ≤ D(Φ1, Φ2, Φ3) ∀i, with
equality D2 = D in the case of D1 = D3 = 0. Furthermore, D and maxi Di(Φi) are
of the same order of magnitude. The particular choice of f and wi will affect the rate
of convergence of the iterative tuning procedure in which D → 0 is minimized, to
be described in the upcoming section. Note, however, that the actual tuning criteria
continue to be expressed in terms of the individual distance functions Di, via (9.79).

9.3.3 Iterative solution of the optimization problem

Each evaluation of ~Φ (or equivalently ~D) at some point in bare parameter space, from
now on denoted by

~x =
(

g2
0, κl , κc

)
, (9.84)

requires its own MC simulation. Since this is rather expensive in N f = 3 + 1, an
effective iterative optimization technique is desired, to keep the computational effort
of the tuning small. This requirement gains even more in importance since, as we will
learn in sec. 9.4, the tuning will need to be conducted about

#(lattice sizes)︸ ︷︷ ︸
5

× #(average no. of csw per lattice size)︸ ︷︷ ︸
O(5)

= O(25) (9.85)

times. Our iterative approach schedules the following steps:
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

S0. Computation of Di at some initial guess ~xinitial and in its vicinity.

S1. Interpolation of the data for D by a fit function Dfit.

S2. Minimization24 of
∣∣Dfit

∣∣ leads to bare parameters ~xmin.

S3. Computation of Di at (and possibly in the vicinity of) the bare parameters ~xmin.

S4. If tuning criteria are not yet reached, return to step S1.

With regard to step S0, reasonable initial guesses ~xinitial may be obtained by inter- or
extrapolation of previous results at other parameters (T/a and csw). We will return to
this in sec. 9.6.1. Furthermore, the suitability and effectiveness of different approaches
concerning step S1 and S2 depend on the properties of the function to be optimized.
We will discuss our strategy concerning this matter in the following two sections.

9.3.4 Step S1: Interpolation of data

Direct fit Dfit
dir of the global distance function D

As a first, direct approach to the interpolation of D scheduled in step S1, we aim to
use 3-dimensional Taylor polynomials of order 1 or 2 around a central point ~x(0) to
approximate the data D:

Dfit
dir(~x, F) = F0 + F′ ·

(
~x−~x(0)

)
+

1
2

(
~x−~x(0)

)T
F′′
(
~x−~x(0)

)
. (9.86)

For this scalar function, we have 1 fit parameter F0 to zeroth order, a gradient vector F′

of 3 fit parameters
(

F1, F2, F3) to first order, and an additional Hessian matrix F′′, i.e. a
symmetric matrix of second derivatives with 6 fit parameters

(
F4, . . . , F9) to second

order. We summarize all these parameters by

F =
{

F0, F1, . . . , F3, F4, . . . , F9
}

. (9.87)

There are two features that make the application of this kind of fit difficult, both
related to the form of the global distance function D, (9.83a), which is basically the sum
over the squared individual distance functions Di. First, each Di, like the associated
Φi, is strongly dependent and monotonically increasing with exactly one of the bare

24In principle, one is interested in the one and only zero of D, approximated by Dfit. In practice, however,
Dfit may not possess a zero, which is why we use a more general minimization condition here. Note,
furthermore, that a zero of Dfit

dir—introduced in (9.86)—may also not be unique. These issues will be
discussed further in sec. 9.3.5.
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9.3 Tuning to the line of constant physics

parameters, xi, while it is by construction expected to rather weakly depend on the
others. The data for Di, however, shows that there is in fact a significant overlap of
dependencies on the bare parameters, as a result of criterion C2 (cf. sec. 9.1) not being
adequately fulfilled. This leads to a slightly more complicated dependence of D on
the bare parameters, and presumably impedes the direct fit of D. Second, and more
importantly, there is an issue related to the involved squares. Even if the Di were
perfectly independent, and under the assumption that each of the them is adequately
approximated by a Taylor polynomial of first or second order, one automatically needs
a Taylor polynomial of higher order to obtain an equally valid fit for D. In turn, a direct
fit of D in terms of a Taylor polynomial of first or second order like (9.86) is often not
feasible. In practice, this manifests itself as follows. If there are Ndata < 11 data points
and only a linear Taylor polynomial with 4 fit parameters can be used, the quality
of the fit is very poor and it serves at most as a very rough approximation. In the
case of Ndata ≥ 11 data points, a quadratic Taylor polynomial may be applied, which
usually leads to slightly more reasonable fit results, but only if the data is restricted to
a relatively small area in bare parameter space. An example will be provided below.

Composite Fit Dfit
com based on the individual distance functions Di

In view of this, it may be more useful in general to resort to fits of the individual
distance functions Di, which have a much simpler dependence on the bare parameters:

Dfit
i (~x, Fi) = F0

i + F′i ·
(
~x−~x(0)

)
+

1
2

(
~x−~x(0)

)T
F′′i
(
~x−~x(0)

)
. (9.88)

These approximations are used to construct a composite fit Dfit
com of the global distance

function (cf. (9.83)):

Dfit
com(~x, F1, F2, F3) =

√
w ·
(

Dfit
1 (~x, F1)

)2
+
(

Dfit
2 (~x, F2)

)2
+ w ·

(
Dfit

3 (~x, F3)
)2 , (9.89)

where we have summarized the fit parameters of each individual distance function by

Fi =
{

F0
i , F1

i , . . . , F3
i , F4

i , . . . , F9
i

}
. (9.90)

Practical implementation

In practice, for a given set of data Di({~x1, . . . ,~xN}), all possible Taylor fits are consid-
ered, by varying
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• the central point ~x(0) ∈ {~x1, . . . ,~xN} of the Taylor expansion.

• the number of points Nfit included in the fit, with 4 ≤ Nfit ≤ Ndata.

• the order of the Taylor polynomial (second order only if Nfit ≥ 11).

• the fit type, Dfit
dir or Dfit

com.

Mainly based on χ2 and the related fit qualities Qfit (cf. app. H), but also under consid-
eration of the range covered by the ingoing data, one of those fits is selected. Consis-
tent with the previous discussion, the best results, expressed by large Qfit and manifest
in a fast convergence of the algorithm, are in general obtained under use of the point
closest to the LCP as the central point, i.e. ~x(0) = ~xm with D(~xm) < D(~xi) ∀ i 6= m,
a number Nfit ≥ 11 that allows for second order Taylor polynomials Dfit

i employed to
approximate the individual distance function, which result in Dfit

com. As an example, in
fig. 9.6, the direct fit Dfit

dir as well as the individual and composite fits Dfit
i and Dfit

com

are shown, together with Nfit = Ndata = 12 data points taken from calculations at
T/a = 16, csw = 1.7. As one can see, the individual fits Dfit

i of second order describe
the respective data rather well, Qfit(Dfit

1 ) = 0.40, Qfit(Dfit
2 ) = 0.82, Qfit(Dfit

3 ) = 0.28.
This transfers to Dfit

com, which (like the global distance function) is dominated by D2,
even if one takes into account the increased weight of D1 and D3 by the factor w
(cf. (9.83)). In contrast, the data for D is only moderately well described by the direct
fit, Qfit(Dfit

dir) = 0.09.
Although clearly superior in quality concerning the description of data, Dfit

com also
has disadvantages in comparison to Dfit

dir, to be discussed next.

9.3.5 Step S2: Fit minimization and error estimates

In the subsequent second step of an iteration, the absolute value of the respective fit
function Dfit(~x) = Dfit

dir(~x, F) or Dfit(~x) = Dfit
com(~x, F1, F2, F3) as an approximation of D

is minimized, leading to the point

~xmin = arg min
~x

∣∣∣Dfit(~x)
∣∣∣ , (9.91)

which comes into consideration for fulfilling the tuning criteria (cf. step S3 and S4).
~xmin is obtained numerically under use of standard optimization algorithms. In our
case, we apply the (quasi-)Newton method, which is broadly applicable25 to the mini-

25Note that in the case of Dfit = Dfit
dir, ~xmin is accessible analytically as well, due to the linearity of the fit

parameters (cf. (H.5) in app. H.). This, however, is not the case for Dfit = Dfit
com.
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Figure 9.6: Illustration of data (left panel) and data embedded in the corresponding fit func-
tions (right panel) for the last iteration of the tuning procedure in the case of
T/a = 16, csw = 1.7. The central point of the Taylor expansion is ~x(0) = ~xmin,
and Nfit = Ndata = 12 points are taken into account, all of which are connected to
~x(0) by straight lines to guide the eye. The colormap on the right hand side encodes
the function values, respectively. Note that these vary substantially in magnitude
between the different Di and D.
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mization of all the fit functions presented in the previous section.
The reason why we refrain from imposing Dfit

dir = 0 directly is that this stronger
condition can in many cases not be met, i.e. one finds Dfit

dir(~x
min) 6= 0. This holds

especially if Dfit = Dfit
com is employed, which may be understood as follows. Dfit

com

is positive semidefinite by definition, as it is the sum of positive semidefinite terms(
Dfit

i

)2
. As such, it vanishes if and only if all Dfit

i vanish simultaneously. In theory,
each (unknown) exact function Di determines a hyperplane Di = 0 in bare parameter
space, and the three hyperplanes defined this way meet at exactly one point, the LCP,
which fulfills D = 0. However, already the tiniest deviation of a fit Dfit

i from the
corresponding real functional dependence Di makes the three hyperplanes Dfit

i = 0
not meet in a single point. Hence, the minimum ~xmin of Dfit

com generally leads to26

Dfit
com(~xmin) > 0 . (9.92)

In contrast, in the case of Dfit
dir, one usually does find

Dfit
dir(~x

min) = 0 , (9.93)

at the cost of ~xmin not being unique27 if a second order fit is employed, in which case it
is reasonable to select ~xmin such that the distance to the central point ~x(0) of the expan-
sion is minimal. Note that this behavior, in particular the occurrence of implausible
negative values Dfit

dir < 0 outside the region covered by data, can also be seen in fig. 9.6.
Although (9.92) does not pose a problem in principle, as it still iteratively minimizes
the distance to the LCP and may well lead to fulfillment of the tuning criteria, related
to this issue, amongst others, is the rather problematic estimation of errors of ~xmin, to
be discussed next.

Error propagation to ~xmin

The error estimates ∆~xmin are relevant mainly as they, with regard to step S3 of an
iteration, allow to evaluate the Di in a sensible range of the bare parameters if more
than the single computation at the best estimate ~xmin is wanted. Moreover, in principle,
if one was interested in matching the LCP exactly, one could continue the iterative
process until the proposal ~xmin is compatible with the best available data point, and

26If the fit qualities of Dfit
i are good enough, one may find a value Dfit

com(~xmin) that is compatible with
zero within errors though.

27Recall that ~xmin is defined as the zero of the absolute value of Dfit
dir, see (9.91). It is not unique in the case

when the quadratic form Dfit
dir itself has a negative minimum.
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9.3 Tuning to the line of constant physics

propagate the associated errors ∆~xmin to the results on csw. We will return to this issue
in sec. 9.3.6, after we discuss technical details of the error propagation itself in the
following.

Depending on the employed fit Dfit, the errors of the data D or Di are the basic
quantities that determine the errors of ~xmin. We denote the elements of the data sets
by Dj ≡ D(~xj) and Dj

i ≡ Di(~xj), respectively, with j ∈ {1, . . . , Ndata}. For simplicity,
we restrict the discussion to the former case of the global distance function D and
its direct fit Dfit

dir first. The errors ∆D translate to (correlated) errors ∆F of the fit
parameters (cf. (9.86)) according to

cov
(

Fκ, Fλ
)
= ∑

j,k

∂Fκ

∂Dj cov
(

Dj, Dk
) ∂Fλ

∂Dk

= ∑
j

∂Fκ

∂Dj︸︷︷︸
analytical

(
∆Dj

)2 ∂Fλ

∂Dj︸︷︷︸
analytical

, (9.94a)

where in the second step the independence of the data at different points in bare
parameter space,

cov
(

Dj, Dk
)
=
(

∆Dj
)2

δjk , (9.94b)

was used. The partial derivatives in (9.94a) are known analytically for the present case
of linear fit parameters, see (H.9) and (H.11) in app. H.2. Hence, also the above covari-
ance matrix of the fit parameters Fi can be obtained analytically. As these covariances
are propagated further via the fit function Dfit

dir to the errors28 ∆~xmin sought for,

(
∆xmin

α

)2
= ∑

κ,λ

∂xmin
α

∂Fκ︸ ︷︷ ︸
numerical

cov
(

Fκ, Fλ
)

︸ ︷︷ ︸
analytical

∂xmin
α

∂Fλ︸ ︷︷ ︸
numerical

, (9.94c)

this does not hold true anymore. In fact, due to the non-analytic nature of the depen-
dence of ~xmin on Fi via the minimization of the corresponding fit Dfit

dir, the derivatives
in (9.94c) can only be determined numerically. Of course, the nested equations (9.94a)

28We are only interested in the diagonal entries of the covariance matrix here.
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and (9.94c) can also be combined to

(
∆xmin

α

)2
= ∑

j

(
∂xmin

α

∂Dj

)2

︸ ︷︷ ︸
numerical

(
∆Dj

)2
, (9.95)

where the entire derivatives (that are composed of the derivatives occurring in (9.94))
are treated numerically. We will refer to (9.94) as semi-analytical and (9.95) as numerical
error propagation. The partial derivatives are evaluated numerically in a symmetric
way, such that the one that appears in (9.95), for instance, reads

∂xmin
α

∂Dj =
xmin

α

(
D1, . . . , Dj + d∆Dj, . . . , DN)− xmin

α

(
D1, . . . , Dj − d∆Dj, . . . , DN)

2d∆Dj .

(9.96)

The natural scale for the derivatives is given by d = 1, but this parameter may be
varied to check the numerical results for stability. Inserted in (9.95), we find

(
∆xmin

α

)2
=

1
4d2

N

∑
j=1

[
xmin

α

(
D1, . . . , Dj + d∆Dj, . . . , DN

)
−

xmin
α

(
D1, . . . , Dj − d∆Dj, . . . , DN

)]2
. (9.97)

The case of the individual fit functions Dfit
i is quite similar and emerges from (9.94)

and (9.95) after two changes. First, each appearance of Dj is to be replaced by ∑i Dj
i .

Second, the equivalent to the covariance matrix (9.94b) is

cov
(

Dj
i , Dk

l

)
=
(

∆Dj
i

)2
δjk δil . (9.98)

The occurrence of δil here is equivalent to the neglect of all cross correlations between
the different individual distance functions at one and the same ~xj, i.e. cov

(
Dj

i , Dj
l

)
!
= 0.

Although in reality, these certainly exist, their computation from cov
(

Φj
i , Φj

l

)
poses

additional effort which seems not to be justified, for reasons which will become clear
in sec. 9.3.6, where the discussion will be resumed. We find

(
∆xmin

α

)2
= ∑

i,j

(
∂xmin

α

∂Dj
i

)2

︸ ︷︷ ︸
numerical

(
∆Dj

i

)2
(9.99)
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∆D
(9.95)

(9.94a) // ∆F
numerical

semi-analytical
∆Dfit

dir

''

(9.94c)

''

∆~xmin

∆Di
(9.99)

// ∆Fi ∆Dfit
i ∆Dfit

com

7777

Figure 9.7: Propagation from the error of the data, either ∆D or ∆Di, to errors ∆~xmin of the iter-
ative estimate ~xmin of the point in bare parameter space that corresponds to the line
of constant physics, D = 0. For each case, the semi-analytical approach to evaluate
derivatives is represented by the outer path, whereas the fully numerical approach
is depicted by the inner path. Solid lines represent analytic error propagation,
whereas the error propagation along the dotted lines is conducted numerically. In-
termediately occurring quantities do explicitly enter the error analysis only if an
arrow points to them, i.e. ∆F or ∆Fi in the semi-analytical approach.

for the numerical error propagation.
The propagation of errors from ∆D or ∆Di to ∆~xmin as discussed above is illustrated

diagrammatically in fig. 9.7. We use the results of the fully numerical evaluation of
derivatives, (9.95) and (9.99), while the semi-analytical approach (e.g. (9.94)) may serve
as a cross check. Note, however, that the use of the individual data Dj

i suffers from

• the neglect of covariances, (9.98)

• ~xmin being the minimum (9.92) instead of the zero (9.93) of the fit function

• a factor 3 in the number of terms summed over, cf. (9.95) and (9.99).

This manifests itself in larger, less reliable, and more unstable (under variation of the
approach to estimate partial derivatives, as well as the parameter d, cf. (9.96)) error
estimates with respect to the use of Dj. Concerning the error analysis, Dfit

dir is thus
advantageous over Dfit

com.

9.3.6 Conclusions

The main properties of the two fit approaches Dfit = Dfit
dir and Dfit = Dfit

com, discussed
in the previous sections, are summarized in tab. 9.7, showing the complementary
advantages and disadvantages. While the requirement to accurately describe data is
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Dfit Qfit(Ndata < 10, d = 1) Qfit(Ndata ≥ 10, d = 2) Dfit(~xmin) Error propagation

Dfit
dir poor moderate = 0 good

Dfit
com moderate good 6= 0 poor

Table 9.7: Summary of general properties of the direct fit Dfit
dir (9.86) and the composite fit Dfit

com
(9.89). Ndata denotes the number of data points, which allow for the use of Taylor
polynomials of order d.

met primarily by Dfit
com, as we have learned in sec. 9.3.4, Dfit

dir is conceptually cleaner
and allows to properly estimate the errors ∆~xmin of the point at the LCP, according to
the discussion in sec. 9.3.5.

During the tuning procedure, the fit quality is more important than proper error
estimates. Consequently, the use of Dfit

com crucially accelerates its convergence. Dfit
dir is

not very useful in this regard, but may serve as a complement especially to estimate
the (order of) errors and assess a range in bare parameter space for the subsequent
search for the tuning point. If one aims at propagating the error ∆~xmin at the end
of the tuning procedure, one needs both a satisfying fit quality Qfit and a reliable
estimation of the error ∆~xmin. In principle, both Dfit

dir and Dfit
com (the latter without

the neglect of covariances, cf. (9.98)), may be applied. However, one would need to
gather a lot of high quality data in the immediate vicinity of the estimated LCP for
reliable fits. In comparison to our approach to simply abort the iterative procedure
once the tuning criteria (9.79) are fulfilled, this amounts to a huge additional effort.
This, however, is not justified because, as we will see in sec. 9.6.4, the obtained errors
∆~xmin, if propagated to csw, are presumably small compared to the errors that stem
from the determination of csw (in terms of an improvement condition, cf. sec. 9.4) itself.

9.4 Improvement condition

In this section, we discuss the strategy to determine csw at the bare parameters {g2
0, aM}

determined by the LCP, by formulation of an appropriate improvement condition
based on the PCAC relation, established in [46]. Although the presentation is tai-
lored to the massive N f = 3 + 1 theory, the difference to the massless case is—as will
become clear below—insignificant for its implementation.

As we know from sec. 3.6, sec. 3.7 and app. C, the PCAC relation is violated in the
Wilson regularized lattice theory due to the breaking of chiral symmetry by the Wilson
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term (3.43):

∂̃µ

〈
(ARI)

ij
µ (x) OR

〉
= 2mij

R

〈
(PRI)

ij (x) OR

〉
+ O(az) , (9.100)

or equivalently

mij
R =

∂̃µ

〈
(ARI)

ij
µ (x) OR

〉
2
〈
(PRI)

ij (x) OR

〉 + O(az) , (9.101)

which, very similarly to (3.80), amounts to a definition of the renormalized mass mij
R. In

the above equations, we have z = 1 in the unimproved and z = 2 in the improved
theory. Recall further that (AI)

ij
µ and (PI)

ij are the improved flavor non-singlet axial
and pseudoscalar current (cf. (3.73, 3.74, 3.75)) with quark flavors j 6= i, respectively,
as known from sec. 8. In contrast to the massless case considered before, there are
quite a few more improvement coefficients in the massive N f = 3 + 1 case, namely
bA, bA, bP, bg and csw, cA in the mass-independent scheme,

(ARI)
ij
µ = ZA(g2

0)

[
1 + a · bA(g2

0)Tr[M] + a · bA(g2
0)

2
(mq,i + mq,j)

] [
Aij

µ + a · cA(g2
0)∂µPij

]
(8.33)

(PRI)
ij = ZP(g2

0)

[
1 + a · bP(g2

0)Tr[M] + a · bP(g2
0)

2
(mq,i + mq,j)

]
Pij , (8.37)

but only csw, cA in the mass-dependent scheme (cf. (8.46b)):

(ARI)
ij
µ = Z̃ij

A(g2
0, aM)

[
Aij

µ + a · cA(g2
0, aM)∂µPij

]
(9.102)

(PRI)
ij = Z̃ij

P(g2
0, aM, aµ) Pij . (8.47b)

For the sake of brevity, we use the mass-dependent scheme in the following. How-
ever, the particular renormalization scheme does not play a role for the imposition of
the improvement condition, as we will see soon. Employing the Schrödinger func-
tional with its boundary operators as well as the associated Schrödinger functional
correlation functions, we find

mij
R =

Z̃ij
A(g2

0, aM)

Z̃ij
P(g2

0, aM, aµ)
·m(′)ij

PCAC,I(x0) + O(az) , (9.103)
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under use of the bare improved PCAC mass in the SF,

mij
PCAC,I(x0) =

∂̃0

〈
(AI)

ij
0 (x) O ji

〉
2
〈

Pij(x) O ji
〉 =

∂̃0 f ij
A,I(x0)

2 f ij
P (x)

=
∂̃0 f ij

A(x0) + acA∂̃2
0 f ij

P (x0)

2 f ij
P (x)

, (5.54)

or its primed (backward) counterpart m′ijPCAC,I (cf. (5.52)). Up to now, in all equations
for the PCAC masses, we have suppressed quite a few of its arguments. In the present
case, the improved PCAC mass mij

PCAC,I inherits a dependence on g2
0, aM, csw from the

action and on cA from AI. Moreover, it depends on x0 like the inserted currents, the
choice of the operator O ji or O′ji (the latter case being associated with m′ijPCAC,I), as well
as all the parameters of the Schrödinger functional, namely the temporal and spatial
sizes T and L, the boundary gauge fields Ck and C′k (cf. (5.7, 5.25)), and the fermion
angle θ (cf. (5.21)). If we summarize the latter parameters by

PSF = {x0,O ji, T, L, Ck, C′k, θ} , (9.104)

and the renormalization constants by

Z̃ij
mPCAC(g2

0, aM, aµ) =
Z̃ij

A(g2
0, aM)

Z̃ij
P(g2

0, aM, aµ)
, (9.105)

equation (9.103), with all arguments explicitly listed, becomes29

mij
R = Z̃ij

mPCAC(g2
0, aM, aµ) · mij

PCAC,I(g2
0, aM, csw, cA, PSF) + O(az) . (9.106)

The idea for the determination of the improvement coefficients csw and cA at given bare
parameters {g2

0, aM} is the following. If they assume the correct values, referred to as
csw,I and cA,I from now on, this implies z = 2 in (9.106) irrespective of the parameters
PSF. In other words, the dependence on PSF is a pure lattice artifact, which is required
to vanish up to O(a2) effects. This fact may in turn be used to adjust the improve-
ment coefficients such that both chiral symmetry is restored and the cutoff effects of
first order in the lattice spacing disappear in on-shell quantities. The PCAC relation is
particularly useful to this end, as it has been shown to suffer from large cutoff effects
both perturbatively [46] and non-perturbatively [150], rendering it particularly sensi-
tive to csw. Hence, one may formulate the following (principal) improvement condition

29Note that the case of primed backward PCAC masses, previously considered in (5.54), is included here
as part of PSF.
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to determine csw,I(g2
0, aM) and cA,I(g2

0, aM):

mij
PCAC,I(g2

0, aM, csw,I, cA,I, P(1)
SF )

!
= mij

PCAC,I( . . . , P(2)
SF )

!
= mij

PCAC,I( . . . , P(3)
SF ) . (9.107)

Regarding (9.106), this can be understood as one bare PCAC mass to eliminate the
numerical constant Z̃ij

mPCAC , and two more to fix the improvement coefficients csw,I

and cA,I. It is now obvious that the non-vanishing and non-degeneracy of the quark
masses in N f = 3 + 1 as well as the employed renormalization scheme and potential
improvement coefficients of the axial and pseudoscalar current, all encoded in Z̃ij

mPCAC ,
play no significant role in the procedure, as mentioned above.

From the many possibilities to probe the quark dynamics by variation of the differ-
ent parameters embodied in PSF, one needs to select one or two of those. It is beneficial
to use x0 and O(′)ij, as this choice requires merely one set of Monte Carlo simulations,
at all other parameters in PSF fixed. Hence, using the short notation again, one avails
oneself of

mij
PCAC,I(x0), m′ijPCAC,I(x0), mij

PCAC,I(y0), m′ijPCAC,I(y0) (9.108)

at two different time slices x0 6= y0. In order to avoid the need to simultaneously
vary csw and cA, it is convenient to consider the two principal conditions in (9.107)
separately. Moreover, instead of equating PCAC masses at different time slices x0 and
y0 (which would be necessary for (9.107)), particularly useful improvement conditions
[16] are imposed by the equations

I) mij
PCAC,I(y0)

!
= m′ijPCAC,I(y0) (9.109)

II) mij
PCAC,I(x0)

!
= m′ijPCAC,I(x0) , (9.110)

i.e. under consideration of all four PCAC masses listed in (9.108). In practice, the first
condition is used to determine cA,I. To this end, the PCAC mass is split according to

m(′)ij
PCAC,I(x0) = r(′)ij(x0) + cA s(′)ij(x0) (9.111a)

with30

r(′)ij(x0) =
1
2 (∂

?
0 + ∂0) f (′)ijA (x0)

2 f (′)ijP (x0)
and s(′)ij(x0) =

a∂∗0∂0 f (′)ijP (x0)

2 f (′)ijP (x0)
. (9.111b)

30Note that the second time derivative ∂̃2
0 is replaced here by ∂∗0∂0, cf. app. A.3.
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The improvement coefficient cA,I ≡ cA,I(y0) that leads to the fulfillment of (9.109) is
thus determined at the time slice y0 by

I’) cA,I(y0) = −
r′ij(y0)− rij(y0)

s′ij(y0)− sij(y0)
. (9.112)

The subsequent application of cA,I in (9.110) is expressed by the use of effective quark
masses (cf. (9.111a))

M(′)ij(x0, y0) = r(′)ij(x0) + cA,I(y0) s(′)ij(x0) , (9.113)

in terms of which the improvement condition for csw,I becomes

II’) ∆Mij(x0, y0) := Mij(x0, y0)−M′ij(x0, y0)
!
= 0 . (9.114)

Other improvement conditions are in principle possible, leading to different results
covered by the inevitable O(a) ambiguity of the improvement coefficients31. However,
the improvement condition (9.114) is characterized by its proximity to perturbation
theory, i.e. the tree-level value of ∆Mij(x0, y0) is very small [151] and the results for
csw,I stay rather close to their perturbative counterpart. This issue is further elucidated
in app. I.3, and is the reason why (9.114) has found successful application in previous
determinations of csw.

The two distinct valence quark flavors i and j that enter ∆Mij still have to be chosen.
In our case of N f = 3 + 1, these can have the mass either of the light quark, m?

q,l ,
or the charm quark, m?

q,c. Since we aim to improve primarily light quark physics,
i.e. correlation function where the charm quark enters only as a sea quark, we opt for
two light quarks. The improvement condition in its final form thus reads

∆Mud(x0, y0) = Mud(x0, y0)−M′ud(x0, y0)
!
= 0 . (9.115a)

The time slice arguments x0 and y0 also need to be specified. They should be far away
from the boundaries, but also from each other, so that

x0 =
3
4

T and y0 =
1
4

T (9.115b)

is a reasonable choice. Note that unlike in the case of previous determinations of csw,
cf. (F.3), we don’t use the tree-level value of ∆Mud on the right hand side of (9.115a).

31The effective quark mass Mij(x0, y0), for instance, depends on the definition of cA,I only at order O(a2).
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order in perturbation theory, such that the correlation functions entering the improve-
ment condition become insensitive to csw (which multiplies Fµν in the improved action)
to that order, see [46]. On the other hand, the background field in lattice units (a2Fµν)
should also not be too strong to avoid large lattice effects. A good compromise be-
tween the two criteria, which leads to a non-vanishing but small background field
(5.27), is given by the boundary conditions [16, 46]

(φ1, φ2, φ3) =
1
6
(−π, 0, π) (9.119a)

(φ′1, φ′2, φ′3) =
1
6
(−5π, 2π, 3π) , (9.119b)

cf. (5.7) and (5.25). These have proven to be useful in previous determinations of csw,
and will also be employed in this work. Concerning the SF boundary improvement
coefficients ct and c̃t as well as the boundary fermion angle, we stick to the perturbative
expressions as well as θ = 0 as employed in the tuning simulations, see sec. 9.3.

9.5 Setup of the numerical simulations

In this section, we provide information on the numerical simulations performed to
tune32 the bare parameters to the LCP (cf. sec. 9.3) and to impose the improvement33

condition (cf. sec. 9.4). For convenience, a condensed overview on the respective lat-
tice setups, gathered from the discussion given in previous chapters, can be found in
tab. 9.8.

General procedure and employed software

As has been explained in detail in sec. 4.1, the gauge field and fermion integrations
are treated separately, see (4.12). The production of representative gauge field config-
urations is executed under use of the openQCD package34 [77, 98] and the contained
implementation of Schrödinger functional boundary conditions. The gradient flow
coupling Φ1 = g2

GF is the only pure gauge field observable relevant for our purposes
(tuning). As such, its evaluation does not involve the integration of fermion fields, and
it can be measured “on the fly” by use of the built-in adaptive integrator (see e.g. [105]).
In contrast, the quantities Φ2, Φ3 (tuning) and mud

PCAC, Mud, ∆Mud (improvement) de-

32We will refer to the respective simulations as “tuning” or “improvement” simulations in the following.
33See footnote 32.
34Version 1.2.
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N f = 2 N f = 3 + 1 N f = 3 + 1 Ref.
(LCP) (LCP) (IMPR)

SG SW
G SLW

G SLW
G (9.33), (9.1)

Sflow SW
G SW

G SW
G (9.18)

T T? ∼ 0.8 fm T? ∼ 0.8 fm T? ∼ 0.8 fm (9.27)
L T T T/2 (9.32), (9.62), (9.118)
φ, φ′ 0 0 6= 0 (9.14), (9.119)
θ 0.5 0 0 (9.15)

csw NP — — (3.114)
ct 2-loop 1-loop 1-loop (5.37a), (5.42a)
c̃t 1-loop tree-level tree-level (5.37b), (5.42b)
cA NP 1-loop implicitly NP (3.116), (3.115)

Table 9.8: Comparison of the lattice setups (illustrated in fig. 9.1, fig. 9.8) and improvement
coefficients used in the N f = 2 and N f = 3 + 1 simulations. In the case of the latter,
we differentiate between the tuning (LCP) and the improvement (IMPR) runs. The
last column refers to the respective equations where details can be found. NP stands
for “non-perturbative”.

pend on the Schrödinger functional correlation functions introduced in sec. 5.3. The
fermion integration for the determination of those leads to propagators (cf. (4.9) and
[152]), whose computation is performed under use of the respective gauge field en-
sembles and with the help of the sfcf package35 [152]. The ensemble mean values
and error estimates are provided for all observables by the UWerr package [88] and
its implementation of the gamma method (cf. sec. 4.10). In this context, Φ1 = g2

GF is a
primary observable, while the other quantities are treated as derived observables.

In the following sec. 9.5.1, we present details on the algorithmic setup of our sim-
ulations. Afterwards, in sec. 9.5.2, we describe the way these are implemented in
practice.

9.5.1 Algorithmic setup

Although our simulations are of the type N f = 3 + 1 with respect to the masses of
the dynamical quarks, only two of the degenerate quarks (the up and down) may be
treated collectively in MC simulations, as has been discussed in sec. 4.4. The strange
and charm quark, in contrast, are implemented solely in terms of the RHMC and

35I am grateful to Christian Wittemeier, Jochen Heitger and Hubert Simma for providing me with the
code.
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the associated reweighting (sec. 4.6). Hence, from the algorithmic point of view, we
conduct N f = 2 + 1 + 1 simulations. The parameters that govern the performance of
the Markov chain Monte Carlo algorithm need to be chosen with care, in order for the
following requirements to be fulfilled. First, of course, it should be ensured that

#1. the computation of a MC step is fast and effective.

Moreover, as the computations will be rather expensive in N f = 2 + 1 + 1 anyway,

#2. the expectation value

Pacc =
〈

min
(

1, e−∆H
)〉

, (9.120)

of the acceptance probability (cf. (4.53)) should be rather large. We aim for

Pacc ∈ [0.90, 0.99] . (9.121)

However, an eye also has to be kept on feasibility, especially as the tuning procedure
schedules the simulation at many different points in bare parameter space (cf. sec. 9.3).
Hence,

#3. the amount of algorithmic parameters should be moderate to keep the associated
effort to adjust them small.

In the following, we will discuss the algorithmic choices one by one, ordered by their
affiliation to the different areas of a MC simulation covered in sec. 4.

RHMC (sec. 4.6)

For the correctness of the RHMC algorithm, the spectra [r2
f ,a, r2

f ,b] of the operators
Q f Q†

f with f ∈ {s, c} need to be accurately estimated, the practical implementation of
which will be discussed in sec. 9.5.2. Given that this is the case, the maximal relative
deviation δ of the rational approximation R f , cf. (4.66), decreases with the number n
of poles, while the numerical effort increases, cf. (4.75). We thus opt for the minimal
n that fulfills the condition (4.69). In practice, for the charm quark, n = 6 is virtually
always sufficient, while the strange quark requires either n = 6 or n = 8 (as we will
see in tab. 9.12 and tab. 9.13).
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9.5 Setup of the numerical simulations

T/a 8 12 16 20 24

µ 1.2 1.0 1.0 0.5 0.5

Table 9.9: Hasenbusch frequency splitting masses µ (cf. (4.97)) employed for the various lattice
sizes T/a.

Solvers (sec. 4.7)

We use the conjugate gradient (CG) for the degenerate flavors f ∈ {u, d}, and the multi-
shift conjugate gradient (MSCG) for the rationally approximated pseudofermion actions
of the flavors f ∈ {s, c}. The reason why we refrain from the more sophisticated
solvers described in sec. 4.7, is mainly that the computational gain turns out to be
small compared to the increased effort to tune the involved parameters. With regard
to the deflated solvers, this is arguably due to the use of SF boundary conditions and the
induced mass gap (cf. (5.23)), as well as the fact that the up and down masses in our
simulations are substantially far away from the chiral limit, close to which deflation is
most useful. The use of SAP solvers is not suitable for our lattices36.

Hasenbusch frequency splitting (sec. 4.8)

In order to empirically optimize the efficiency of the pseudofermion integration, sev-
eral test simulations with different versions of the splitting under use of various µ2

were performed. With all other parameters of the simulations held fixed, the accep-
tance as well as the MC time per trajectory were compared. Although the multiple
splitting of the up and down quark fermion determinant was also considered, it turned
out to be sufficient to use two factors as in (4.97). For simplicity, one and the same µ2

is employed for all simulations at a certain T/a. The results can be found in tab. 9.9.

Twisted mass reweighting (sec. 4.8)

The use of twisted mass reweighting is not necessary as the quark masses differ sig-
nificantly from zero (cf. (9.11)).

Multiple time scale integration (sec. 4.9)

The integration of the gluonic and the different fermionic forces is performed in the
framework of multiple time scale integration. For the sake of simplicity, i.e. with

36This is due to the fact that technically, in the openQCD code, an additional time slice is used for the
implementation of the Schrödinger functional.
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

T/a 8 12 16 20 24
L/a 8 4 12 6 16 8 20 10 24 12

Llocal 4 4 6 6 8 8 10 10 (6,4,4) 6

∏i ni 8 1 8 1 64 8 8 1 144 8

Table 9.10: Chosen degrees of parallelization for the different lattice sizes.

regard to requirement #3 above, a rather simple scheme with only two integration levels
is applied. While the gluonic force is integrated on a fine level with step size ε0, all the
fermionic forces are integrated uniformly on a coarser level with step size ε1. Actually,
since in both cases an OMF integrator of 4th order is applied throughout, the fixed choice
N0 = 1 already leads to an integration of the gauge field with an effective step size that
is five times smaller than the one of the fermion fields (see the discussion in sec. 4.9).
The only parameter then left to rule the integration scheme is N1 (cf. (4.103)).

Parallelization

Our simulations are carried out on lattices of the size (T/a)× (L/a)3 with (cf. tab. 9.8)

T/a ∈ {8, 12, 16, 20, 24} (9.122a)

and L/a ∈ {T/a, T/2a} . (9.122b)

They can be parallelized in the spatial directions37, if there exists a divisor Llocal/a ≥ 4
of L/a with Llocal = L/n and n > 1. In all but one case we choose an isotropic
parallelization, with the respective highest possible degree of parallelization, n3. Only
for T/a = L/a = 24, different Llocal for the different spatial directions are used. Our
selection is listed in tab. 9.10.

9.5.2 Practical implementation

Adjustment of algorithmic parameters

According to the discussion in the previous section, a simulation at some point ~x
in bare parameter space, irrespective of whether it is a tuning or improvement run,
requires the adjustment of the following parameters:

37Parallelization in the temporal direction is not possible due to the technical complication of a formal
additional time slice used in the openQCD code.

198



9.5 Setup of the numerical simulations

• Ranges [r f ,a, r f ,b] of the rational approximations with f ∈ {s, c}

• Number of poles n of the rational approximations

• Number of steps N1 that t′m is divided into for the integration of the forces F.

To do so, before the actual simulation, we create an ensemble which is relatively small
but sufficient to determine the acceptance probability Pacc (cf. (9.120)) as well as the
extrema of the spectra of QsQ†

s and QcQ†
c (cf. (4.61)). The latter is done under use of

the ms2 program, which is part of the openQCD package. It also provides the number
of poles n needed to fulfill the condition (4.69). With these informations at hand, the
number of poles and the ranges are adapted (the latter under use of a safety margin),
while N1 is adjusted by hand to increase or decrease the acceptance such that it is
expected to lie in the aspired range (9.121) according to requirement #2. This way, the
parameters are iteratively optimized until the results stabilize. In the process, each run
is started from the last configuration of the previous one, which serves the purpose of
a pre-thermalization. Afterwards, the actual simulation is started.

Reweighting

The RHMC reweighting factors W f ,1 (4.68) with f ∈ {s, c} are computed under use of
the program ms1 of the openQCD package. The total reweighting factor W = Ws,1 ·Wc,1

is implemented for each primary observable according to

〈O〉 = 〈
OW〉mod
〈W〉mod

. (4.64)

A derived observable, like for instance the (unimproved) PCAC mass mud
PCAC, is then

obtained by

mud
PCAC(x0)

(5.51)
=

∂̃0 f ud
A (x0)

2 f ud
P (x0)

=
∂̃0
〈

Aud
0 (x0) Odu〉

2 〈Pud(x0) Odu〉

=

〈
Aud

0 (x0 + a) Odu〉− 〈Aud
0 (x0 − a) Odu〉

4 〈Pud(x0) Odu〉
(4.64)
=

〈
Aud

0 (x0 + a) Odu W
〉

mod −
〈

Aud
0 (x0 − a) Odu W

〉
mod

4 〈Pud(x0) Odu W〉mod
. (9.123)

Note that the factor 〈W〉mod drops out in ratios of reweighted observables.
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

Quantity LCP IMPR Ref. Results

Algorithmic
e−∆H yes yes (4.53)
Pacc yes yes (9.120)

Basic

EP yes yes (I.7) app. I.4
Qtop yes yes (6.31) app. I.4
g2

GF, g2
GF,0 yes yes38 (6.7), (7.4) sec. 9.6.5

SFCF yes yes (5.46)-(5.49) app. I.3

LCP Φ1, Φ2, Φ3 yes no (9.16), (9.23) sec. 9.6.1

Masses

mij
PCAC yes yes (9.111a) sec. 9.6.5

RPCAC no yes (9.138) sec. 9.6.5
cA no yes (9.112) app. I.4
Mud no yes (9.113) sec. 9.6.2
∆Mud no yes (9.115) sec. 9.6.2

Table 9.11: Main observables obtained from the Monte Carlo simulations in the framework of
the tuning (LCP) and the imposition of the improvement condition (IMPR). The
definitions of the respective quantities are referred to in the second last column,
while the last column directs to the sections where the corresponding results (usu-
ally for all T/a and csw) are discussed.

Analyzed quantities

Several algorithmic and basic quantities are computed by default, while further spe-
cific observables are only evaluated either for the tuning or the improvement simula-
tions. An overview is given in tab. 9.11. The parameter Sτ (cf. (4.115)) that enters the
error analysis with UWerr is adjusted individually for each simulation and observ-
able, and usually lies in the range of Sτ ∈ [2, 10]. As an example, detailed results of
the simulations at39 T?/a = 24 and csw = 1.8 are shown in app. I.1.

Thermalization and replica

In the case of the tuning runs, a single simulation with nrep = 1 is sufficient and
convenient. This is because the question whether a promising run fulfills the tuning
criteria is often decided only as more statistics is accumulated (cf. (9.79b)). A single
run offers more flexibility with regard to continuation runs and facilitates the choice
of Nth.
38Since the normalization for the gradient flow coupling is not known for non-vanishing boundary

conditions (9.119), t2E(t) is considered here instead.
39We remind the reader that the notational use of T?/a indicates simulations at the line of constant

physics, while T/a denotes the lattice resolution in general, see footnote 5.
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9.6 Results

In contrast, for the improvement runs, significantly larger ensembles need to be gen-
erated to obtain sufficiently small errors, in which case replica are essential. Our
procedure involves two separate runs. First, a single thermalization run with nrep = 1,
where a certain number N(th)

th of configurations is discarded after visual inspection of
the histories of the observables listed in tab. 9.11, and in consideration of their autocor-
relations. Second, from the remaining ensemble, nrep = 8 configurations of maximal
distance to each other in Monte Carlo time are selected. These provide the starting
points for the nrep = 8 replica runs, from which the main results are derived. If the
distance between the start configurations is again large compared to the largest auto-
correlation, these can be considered independent, and the replica runs do in principle
not need to be thermalized. However, this is checked again, see app. I.2, and de-
pending on whether there is an indication of an incomplete thermalization, a certain
amount of configurations N(rep)

th is again discarded.
Finally, note that in all cases, a new simulation of the type nrep = 1 at certain

parameters T/a, L/a, csw, and ~x is preferably started from a configuration of a run
with the same T/a, L/a and similar csw and ~x.

9.6 Results

An overview on the created ensembles at the line of constant physics is given in
tab. 9.12 and tab. 9.13. The main results of the tuning40 to the LCP (sec. 9.1-9.3) and
the imposition of the improvement41 condition (sec. 9.4) are presented in sec. 9.6.1 and
sec. 9.6.2, respectively. The outcome for csw(g2

0) for the various lattice sizes is com-
binedly described by a Padé fit in sec. 9.6.3. In sec. 9.6.4, the results of the afore-
mentioned sections are revisited under consideration of errors due to the unavoidable
mismatch of the line of constant physics. This is followed by a check of cutoff effects of
a renormalization-independent ratio of PCAC masses and the gradient flow coupling
g2

GF in sec. 9.6.5. Finally, in app. I, we investigate the stability of the results (app. I.2),
the time dependence of the SFCF (app. I.3), as well as additional results for EP, Qtop,
and cA (app. I.4).
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

8

1.9 3500 94.1(1) 7 6: [0.10, 7.55] 6: [0.81, 7.99]
2.0 5000 92.9(1) 7 6: [0.09, 7.93] 6: [0.83, 8.34]
2.1 3000 91.3(2) 7 6: [0.08, 7.76] 6: [0.69, 8.29]
2.2 3000 95.5(1) 8 6: [0.09, 8.28] 6: [0.77, 8.52]
2.3 5500 94.0(1) 8 6: [0.08, 8.28] 6: [0.72, 8.52]
2.4 5000 92.2(2) 8 6: [0.09, 8.28] 6: [0.74, 8.52]

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

12

1.8 1400 96.2(2) 9 6: [0.07, 7.26] 6: [0.46, 7.46]
1.9 1400 94.1(3) 9 6: [0.07, 7.60] 6: [0.43, 7.61]
2.0 2100 92.2(3) 9 6: [0.06, 7.88] 6: [0.40, 8.08]
2.1 1300 89.0(5) 9 6: [0.06, 7.88] 6: [0.40, 8.08]
2.2 2000 87.0(4) 9 6: [0.08, 7.88] 6: [0.40, 8.08]

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

16

1.5 2300 89.2(5) 9 6: [0.06, 6.90] 6: [0.32, 7.00]
1.6 2500 87.1(4) 9 6: [0.05, 6.90] 6: [0.32, 7.00]
1.7 1400 84.8(5) 9 6: [0.05, 7.40] 6: [0.33, 7.57]
1.8 1400 87.7(5) 10 8: [0.05, 7.24] 6: [0.31, 7.32]
1.9 1500 84.9(5) 10 8: [0.04, 7.48] 6: [0.29, 7.58]
2.0 1800 87.9(5) 11 8: [0.05, 8.03] 6: [0.30, 7.74]

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

20

1.5 1300 91.7(3) 8 8: [0.05, 6.74] 6: [0.26, 6.85]
1.6 1200 96.2(2) 9 8: [0.04, 6.90] 6: [0.26, 7.04]
1.7 1300 95.4(2) 9 8: [0.05, 7.06] 6: [0.25, 7.16]
1.8 1500 93.9(2) 9 8: [0.04, 7.06] 6: [0.25, 7.16]
1.9 1500 92.4(3) 9 8: [0.04, 7.06] 6: [0.24, 7.16]

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

24

1.5 1500 95.7(2) 9 8: [0.04, 6.94] 6: [0.19, 7.02]
1.6 2000 94.1(2) 9 8: [0.03, 6.94] 6: [0.19, 7.02]
1.7 2000 93.2(3) 9 8: [0.03, 7.00] 6: [0.19, 7.10]
1.8 2000 96.5(1) 10 8: [0.03, 7.00] 6: [0.19, 7.10]

Table 9.12: Overview on the tuning ensembles at the line of constant physics. Ncf = nrep ×
Ncf/replicum gives the number of configurations, with the distance t′m between
two consecutive configurations being 2 MDU in all cases. Pacc is the acceptance
(9.121), N1 the integration step size (4.103), and n f : [r f ,a, r f ,b] denotes the number
of poles and the ranges of the rational approximations (sec. 4.6) that were used in
the simulations for the flavors f ∈ {s, c}. These may include a safety margin with
respect to the actually measured spectra. The bare parameters that correspond to
the ensembles can be found in tab. 9.14 and tab. 9.15.
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9.6 Results

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

8

1.9

8× 4000

96.13(3) 6 6: [0.22, 7.51] 6: [0.94, 7.87]
2.0 95.55(3) 6 6: [0.10, 8.10] 6: [0.80, 8.40]
2.1 94.81(4) 6 6: [0.08, 8.15] 6: [0.69, 8.51]
2.2 94.04(5) 6 6: [0.10, 8.28] 6: [0.77, 8.52]
2.3 93.11(5) 6 6: [0.11, 8.56] 6: [0.81, 8.98]
2.4 91.90(6) 6 6: [0.12, 8.80] 6: [0.81, 9.00]

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

12

1.8

8× 4000

91.69(6) 6 6: [0.07, 7.45] 6: [0.50, 7.70]
1.9 98.77(1) 8 6: [0.07, 7.60] 6: [0.43, 7.70]
2.0 99.41(1) 9 6: [0.06, 7.88] 6: [0.40, 8.08]
2.1 95.03(4) 7 8: [0.06, 8.33] 6: [0.44, 8.52]
2.2 94.09(5) 7 6: [0.08, 8.64] 6: [0.40, 8.87]

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

16

1.5

8× 4000

98.90(1) 8 6: [0.06, 6.90] 6: [0.32, 7.00]
1.6 99.52(1) 9 6: [0.06, 6.90] 6: [0.32, 7.00]
1.7 98.40(2) 8 8: [0.06, 7.42] 6: [0.31, 7.59]
1.8 98.03(2) 8 8: [0.06, 7.49] 6: [0.31, 7.64]
1.9 99.10(1) 9 8: [0.04, 7.54] 6: [0.29, 7.66]
2.0 99.48(1) 10 8: [0.05, 8.03] 6: [0.30, 7.74]

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

20

1.5

8× 3000

97.19(3) 8 8: [0.05, 6.74] 6: [0.26, 6.85]
1.6 96.51(3) 8 8: [0.06, 7.10] 6: [0.28, 7.20]
1.7 98.42(1) 9 8: [0.05, 7.20] 6: [0.24, 7.30]
1.8 98.08(2) 9 8: [0.05, 7.10] 6: [0.24, 7.20]
1.9 93.59(6) 8 8: [0.05, 7.50] 6: [0.24, 7.60]

T?/a csw Ncf Pacc N1 ns: [rs,a, rs,b] nc: [rc,a, rc,b]

24

1.5

8× 4000

98.61(1) 9 6: [0.05, 7.00] 6: [0.22, 7.10]
1.6 98.26(1) 9 8: [0.05, 7.00] 6: [0.20, 7.10]
1.7 94.06(4) 8 8: [0.05, 7.15] 6: [0.20, 7.20]
1.8 97.40(2) 9 8: [0.05, 7.50] 6: [0.20, 7.60]

Table 9.13: Overview on the improvement ensembles at the line of constant physics. Ncf =

nrep × Ncf/replicum gives the number of configurations, with the distance t′m be-
tween two consecutive configurations being 2 MDU in all cases. Pacc is the accep-
tance (9.121), N1 the integration step size (4.103), and n f : [r f ,a, r f ,b] denotes the
number of poles and the ranges of the rational approximations (sec. 4.6) that were
used in the simulations for the flavors f ∈ {s, c}. These may include a safety
margin with respect to the actually measured spectra. The bare parameters that
correspond to the ensembles can be found in tab. 9.14 and tab. 9.15.

203



9 Determination of csw for N f = 3 + 1 massive Wilson fermions

csw g2
0,L κl,L κc,L Φ1 Φ2 Φ3

1.9 1.7848 0.13741 0.12033 7.17(4) 0.59(3) 5.95(1)
2.0 1.8067 0.13645 0.11960 7.17(3) 0.56(2) 5.99(1)
2.1 1.8340 0.13560 0.11900 7.36(5) 0.61(3) 6.02(1)
2.2 1.8534 0.13450 0.11820 7.17(5) 0.60(3) 6.03(1)
2.3 1.8825 0.13369 0.11770 7.36(3) 0.62(2) 5.97(1)
2.4 1.9069 0.13278 0.11750 7.31(4) 0.57(3) 5.93(1)

(T?/a = 8)

csw g2
0,L κl,L κc,L Φ1 Φ2 Φ3

1.8 1.7334 0.13742 0.12776 7.13(5) 0.58(3) 5.93(2)
1.9 1.7600 0.13656 0.12714 7.26(4) 0.60(3) 5.92(2)
2.0 1.7876 0.13573 0.12653 7.35(5) 0.62(3) 5.99(3)
2.1 1.8152 0.13486 0.12591 7.29(6) 0.60(4) 5.93(3)
2.2 1.8423 0.13401 0.12529 7.42(7) 0.60(4) 5.91(3)

(T?/a = 12)

csw g2
0,L κl,L κc,L Φ1 Φ2 Φ3

1.5 1.6266 0.13918 0.13224 7.38(9) 0.56(2) 5.93(3)
1.6 1.6482 0.13825 0.13139 7.42(10) 0.61(2) 6.06(7)
1.7 1.6741 0.13741 0.13087 7.29(8) 0.59(2) 5.84(5)
1.8 1.7036 0.13661 0.13018 7.32(7) 0.57(2) 5.90(5)
1.9 1.7331 0.13582 0.12949 7.44(9) 0.59(2) 5.94(3)
2.0 1.7626 0.13503 0.12880 7.46(7) 0.59(2) 6.03(4)

(T?/a = 16)

csw g2
0,L κl,L κc,L Φ1 Φ2 Φ3

1.5 1.5868 0.13822 0.13287 7.20(7) 0.61(2) 5.91(8)
1.6 1.6153 0.13749 0.13240 7.30(10) 0.57(2) 5.91(5)
1.7 1.6434 0.13669 0.13178 7.29(7) 0.60(2) 5.85(5)
1.8 1.6714 0.13588 0.13126 7.49(5) 0.63(2) 5.81(6)
1.9 1.6993 0.13504 0.13046 7.36(9) 0.62(2) 5.81(8)

(T?/a = 20)

csw g2
0,L κl,L κc,L Φ1 Φ2 Φ3

1.5 1.5527 0.13751 0.13325 7.19(6) 0.62(2) 6.02(8)
1.6 1.5783 0.13672 0.13253 7.23(11) 0.59(1) 6.02(6)
1.7 1.6065 0.13595 0.13202 7.24(9) 0.62(2) 6.00(5)
1.8 1.6344 0.13515 0.13132 7.11(7) 0.56(1) 5.87(6)

(T?/a = 24)

Table 9.14: Results of the tuning to the line of constant physics. The bare parameters are
labelled with a subscript L.
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Figure 9.9: Accuracy of the tuning to the line of constant physics. The observables Φi (see
also tab. 9.14) and their autocorrelations are shown in the left and right panel, re-
spectively. The points are shifted horizontally depending on T?/a, but in all cases
correspond to the respective central values of the intervals separated by the dotted
vertical lines.

9.6.1 Tuning to the line of constant physics

The tuning results, i.e. the bare parameters ~xL = (g2
0,L, κl,L, κc,L) at the line of constant

physics and their associated values Φi are given in tab. 9.14. The achieved accuracy
of the tuning is illustrated in the left panel of fig. 9.9, where the ranges of Φi covered
by the plots correspond to the allowed deviations from the LCP, respectively. The
fulfillment of the tuning criteria is thus reflected by the fact that all data points with
their respective error bars fit into the plot range. The dependence of the LCP bare
parameters on csw, depicted in fig. 9.10, may well be described by linear fits whose
slope parameters are listed in the same figure.

Note that these fits42 were employed to estimate initial guesses ~xinitial for the tuning
procedure at a new csw and given T/a, cf. step S0 in the iterative tuning approach in
sec. 9.3. Fig. 9.11 shows an example of a second type of interpolation43 of the LCP
bare parameters, in T?/a at given csw, which has been made use of as well.

40See footnote 32.
41See footnote 32.
42Actually, precursors of those fits, with preliminary data.
43See footnote 42.
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

T?/a d
dcsw

g2
0,L

d
dcsw

κl,L
d

dcsw
κc,L

8 0.2449 −0.00929 −0.00590

12 0.2730 −0.00852 −0.00617

16 0.2755 −0.00825 −0.00674

20 0.2811 −0.00797 −0.00596

24 0.2733 −0.00785 −0.00630
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Figure 9.10: Results for the bare parameters tuned to the line of constant physics. Top left:
Linear slope parameters of the bare parameters at the LCP as a function of csw.
Top right: Bare coupling g2

0,L at the LCP. Bottom left: Light hopping parameter κl,L
at the LCP. Bottom right: Charm hopping parameter κc,L at the LCP.
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Figure 9.11: Dependences of g2
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tions to for csw = 1.8.
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Figure 9.12: Autocorrelations of T?∆Mud( 3
4 T?, 1

4 T?) (left) and T?Mud(T?/2, T?/4) (right) in the
improvement simulations. The points are shifted horizontally, cf. fig. 9.9.

9.6.2 Improvement condition: Individual and global linear fits

The results for T?∆Mud, in terms of which the improvement condition (9.115) is formu-
lated along the LCP, as well as additional quantities of interest are shown in tab. 9.15,
while the observed autocorrelations of T?∆Mud are illustrated in fig. 9.12.

Two different kinds of fits for T?∆Mud as a function of csw and T?/a are performed.
First, the individual fits,

T?∆Mud(csw, T?/a) = s(T
?/a) ·

[
csw − c(T

?/a)
sw,I

]
, (9.124a)

which consider each T?/a independently by a fit linear in csw, with a total of 10 fit
parameters. Second, the global fit, where only a single slope parameter s appears as
one of 6 fit parameters:

T?∆Mud(csw, T?/a) = s ·
( a

T?

)
·
[
csw − c(T

?/a)
sw,I

]
. (9.124b)

The respective fits are depicted in fig. 9.13.
For each lattice size T?/a, the fit parameter csw,I ≡ c(T

?/a)
sw,I directly provides the im-

provement coefficient at which the improvement condition T?∆Mud = 0 is fulfilled44.
Subsequent interpolations of the bare parameters to the respective csw,I, under use of
the linear fits shown in fig. 9.10, lead to the corresponding improvement point bare

44Note that this is not the case for (otherwise equivalent) linear fits of e.g. the form T?∆Mud(csw, T?/a)
= a(T

?/a) + b(T
?/a) · csw.
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(T?/a = 8)
csw g2

0,L κl,L κc,L t2E(t) [10−2] T?mud
PCAC T?Mud T?∆Mud

1.9 1.7848 0.13741 0.12033 3.831(4) 0.504(7) 0.684(25) 0.047(7)
2.0 1.8067 0.13645 0.11960 3.851(4) 0.491(8) 0.621(23) 0.028(7)
2.1 1.8340 0.13560 0.11900 3.895(5) 0.509(8) 0.707(32) 0.021(8)
2.2 1.8534 0.13450 0.11820 3.898(5) 0.516(8) 0.643(28) -0.014(8)
2.3 1.8825 0.13369 0.11770 3.945(6) 0.521(9) 0.724(30) -0.013(8)
2.4 1.9069 0.13278 0.11750 3.963(6) 0.521(10) 0.723(31) -0.016(9)

(T?/a = 12)
csw g2

0,L κl,L κc,L t2E(t) [10−2] T?mud
PCAC T?Mud T?∆Mud

1.8 1.7334 0.13742 0.12776 7.474(8) 0.247(4) 0.311(11) 0.032(4)
1.9 1.7600 0.13656 0.12714 7.576(8) 0.242(4) 0.306(9) 0.012(7)
2.0 1.7876 0.13573 0.12653 7.699(9) 0.237(4) 0.300(11) 0.020(5)
2.1 1.8152 0.13486 0.12591 7.837(10) 0.243(5) 0.300(10) -0.004(7)
2.2 1.8423 0.13401 0.12529 7.898(10) 0.223(4) 0.267(11) -0.011(6)

(T?/a = 16)
csw g2

0,L κl,L κc,L t2E(t) [10−2] T?mud
PCAC T?Mud T?∆Mud

1.5 1.6266 0.13918 0.13224 8.187(9) 0.160(3) 0.192(6) 0.026(3)
1.6 1.6482 0.13825 0.13139 8.213(9) 0.159(2) 0.164(5) 0.018(4)
1.7 1.6741 0.13741 0.13087 8.315(9) 0.156(2) 0.139(6) 0.014(3)
1.8 1.7036 0.13661 0.13018 8.466(9) 0.167(2) 0.144(6) 0.004(3)
1.9 1.7331 0.13582 0.12949 8.607(10) 0.165(3) 0.136(6) -0.008(3)
2.0 1.7626 0.13503 0.12880 8.735(11) 0.154(2) 0.113(6) -0.015(4)

(T?/a = 20)
csw g2

0,L κl,L κc,L t2E(t) [10−2] T?mud
PCAC T?Mud T?∆Mud

1.5 1.5868 0.13822 0.13287 8.365(13) 0.150(2) 0.153(5) 0.018(4)
1.6 1.6153 0.13749 0.13240 8.461(14) 0.131(2) 0.135(5) 0.006(3)
1.7 1.6434 0.13669 0.13178 8.569(12) 0.139(2) 0.117(5) -0.000(3)
1.8 1.6714 0.13588 0.13126 8.610(13) 0.132(3) 0.097(5) -0.003(3)
1.9 1.6993 0.13504 0.13046 8.703(16) 0.140(2) 0.093(5) -0.007(5)

(T?/a = 24)
csw g2

0,L κl,L κc,L t2E(t) [10−2] T?mud
PCAC T?Mud T?∆Mud

1.5 1.5527 0.13751 0.13325 8.353(13) 0.129(2) 0.135(4) 0.007(4)
1.6 1.5783 0.13672 0.13253 8.405(13) 0.120(1) 0.109(3) 0.011(2)
1.7 1.6065 0.13595 0.13202 8.463(12) 0.119(1) 0.092(3) -0.004(2)
1.8 1.6344 0.13515 0.13132 8.519(13) 0.113(2) 0.076(4) -0.007(2)

Table 9.15: Results of the improvement condition runs along the LCP.
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Figure 9.13: Main results for T?∆Mud of the improvement runs, as listed in tab. 9.15. The left
panel shows the individual linear fits (9.124a), whereas the global linear fit (9.124b)
is displayed in the right panel.
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T?/a csw,I Qfit g2
0,I κl,I κc,I

8 2.211(25) 0.21 1.8597 0.13450 0.11836
12 2.105(30) 0.12 1.8163 0.13482 0.12588
16 1.828(19) 0.73 1.7129 0.13640 0.12997
20 1.760(34) 0.47 1.6600 0.13619 0.13140
24 1.686(20) 0.01 1.6028 0.13605 0.13205

(individual)

T?/a csw,I Qfit g2
0,I κl,I κc,I

8 2.202(21) 0.15 1.8575 0.13459 0.11841
12 2.105(24) 0.12 1.8163 0.13482 0.12588
16 1.833(19) 0.68 1.7144 0.13636 0.12993
20 1.755(28) 0.46 1.6586 0.13623 0.13143
24 1.688(24) 0.01 1.6035 0.13603 0.13204

0.14

(global)

Table 9.16: Results of the respective interpolations to T?∆Mud = 0 for the individual (top) and
global (bottom) fit. While the actual Qfit of the global fit is given in the last row of
the associated table, the other values of Qfit were formally computed from the χ2

contribution of the corresponding T?/a data and ndof = 2 degrees of freedom for
a linear fit. The difference to the Qfit of the corresponding individual T?/a linear
fit may serve as a measure of how much the description of the individual T?/a
data decreases in quality if the global fit is used. The covariance matrices of the fit
parameters can be found in tab. H.1, see app. H.3.

parameters g2
0,I, κl,I, κc,I, via e.g.

g2
0,I = g2

0,L
∣∣
csw=0 +

dg2
0,L

dcsw
· csw,I . (9.125)

This is displayed for the case of the global fit in fig. 9.14. The overall results of the
imposition of the improvement condition are compiled in tab. 9.16.

We find that the individual and global fits lead to quite similar results. We continue
to consider both cases, and will use the more restrictive global fit in the end. It is
particularly valuable with regard to T?/a = 24, where data is available to a lesser
extent, see also app. I.2.
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fig. 9.13). Right: Magnification of the rectangle area shown on the left.

9.6.3 Padé fit of csw(g2
0)

The resulting combinations45 csw,I(g2
0,I) of both the individual and global linear fits

(cf. tab. 9.16) are now to be interpolated. Apart from describing the data well, the
fit function should incorporate the perturbative behavior of csw,I, given in (3.113a) and
(3.113c). To this end, we employ a Padé fit of the form

csw,I(g2
0,I) =

1 + ag2
0,I + bg4

0,I + cg6
0,I

1 + (a− 0.196)g2
0,I

. (9.126)

The global fit results lead to

a =−0.254(10) , b =−0.055(6) , c = +0.004(5) , (9.127)

with again very similar results for the individual fits. As the coefficient c is compatible
with zero, it is sufficient to use a Padé fit of second order, which gives

a = −0.257(7) , b =−0.050(4) . (9.128)

45We stick to the non-standard notation with the subscripts I for the moment, for clarity and consistency
with the previous discussion.
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Figure 9.16: Comparison of our result (9.129)
in N f = 3 + 1 (solid line) to the
non-perturbative determination of
csw(g2

0) in N f = 3 [22] (dash-dot
line), cf. tab. F.1 in app. F. The
dashed line represents the per-
turbative 1-loop formula for the
Lüscher–Weisz gauge action, see
(3.113c).
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The fit quality amounts to Qfit = 0.59, and the covariance matrix of the fit parameters
is listed in tab. H.1, see app. H.3. We hence quote the main result of our work46,

csw(g2
0) =

1− 0.257g2
0 − 0.050g4

0

1− 0.453g2
0

for 0 ≤ g2
0 ≤ 1.86 . (9.129)

It is illustrated in fig. 9.15, and compared to the previously obtained N f = 3 result for
csw(g2

0) in conjunction with the Lüscher–Weisz gauge action in fig. 9.16.

9.6.4 Errors from deviations from the LCP

So far, we have neglected the fact that the line of constant physics was hit only up to a
certain precision, defined by the tuning criteria (9.79). We will now semi-quantitatively
discuss how this mismatch affects the previously obtained results on csw(g2

0).
The fact that the bare parameters ~xL = (g2

0,L, κl,L, κc,L) only approximately corre-
spond to the LCP is expressed in the occurrence of errors47 ∆̃~xL = (∆̃g2

0,L, ∆̃κl,L, ∆̃κc,L),
that need to be propagated to errors ∆̃csw,I in addition to the statistical ones, ∆csw,I,
which stem from the imposition of the improvement condition. We restrict the dis-
cussion to ∆̃g2

0,L. In principle, it would be desirable to derive it from the first hand
principles described in sec. 9.3, i.e. as the error of ~xL = ~xmin in the last iteration of the
tuning procedure. However, not only is this out of reach, as we have discussed, but the
order of magnitude of ∆̃g2

0,L can also be estimated from the following considerations.
The dependence of g2

0,L on csw is obviously quite well compatible with a linear be-
havior, see fig. 9.10. If we consider the deviations from the fit function statistical, and

46We now switch to standard notation, csw,I → csw and g2
0,I → g2

0.
47We denote the errors by ∆̃ to differentiate them from previously occurring statistical errors, like ∆csw,I.
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T?/a g2
0,I ∆̃g2

0,L ∆̃g2
0,I

8 1.8575 0.0023 0.0010

12 1.8163 0.0003 0.0002

16 1.7144 0.0032 0.0014

20 1.6586 0.0002 0.0001

24 1.6035 0.0009 0.0005

Table 9.17: Estimates for uniform errors ∆̃g2
0,L from set-

ting χ2/ndof = 1 with regard to the linear
fits shown in fig. 9.10. The errors are trans-
ferred to g2

0,I, which is obtained by interpo-
lation to csw,I (cf. (9.132)). While the dis-
played central values g2

0,I correspond to the
global case (cf. tab. 9.16), the errors ∆̃g2

0,I are
the same for both fits.

assume χ2/ndof = 1 (cf. app. H.2), this determines the scale of uniform errors ∆̃g2
0,L.

The results of this estimation can be found in tab. 9.17. In the following, for some fixed
T?/a, we label the data at the different investigated values of csw in ascending order
by a subscript (j) with j = 1, . . . , Ncsw . For instance, at T?/a = 16, we have Ncsw = 6,
with j = 4 corresponding to csw = 1.8, i.e. g2

0,L,(4) = 1.7036 and T?∆Mud
(4) = 0.004,

cf. tab. 9.15. The whole set of bare couplings at the LCP is then denoted by

{g2
0,L} = {g2

0,L,(1), . . . , g2
0,L,(j), . . . , g2

0,L,(Ncsw )} . (9.130)

The errors ∆̃g2
0,L now propagate to the results csw(g2

0) in a twofold way. First, the im-
position of the improvement condition, (9.124), depends on the bare couplings {g2

0,L}
at the various csw at which T?∆Mud is determined,

csw,I ≡ csw,I
(
{g2

0,L}
)

. (9.131)

Second, the interpolation of g2
0,L to g2

0,I, see (9.125) and fig. 9.14, depends on {g2
0,L} via

both the linear fit parameters, and again csw,I:

g2
0,I = g2

0,L
∣∣
csw=0

({
g2

0,L
})

+
dg2

0,L

dcsw

({
g2

0,L
})
· csw,I

({
g2

0,L
})

. (9.132)

Consequently, the mismatch of the coupling, ∆̃g2
0,L, expresses itself in additional errors

∆̃csw,I and ∆̃g2
0,I, depicted in fig. 9.17. There exist correlations between the two due to

(9.132), but it is presumably sufficient to consider them independently to estimate the
size of their effects on the total error of csw,I, which will be done in the following for
the example of T?/a = 16.
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Figure 9.17: Illustration of the errors on csw,I

as a function of g2
0,I using the ex-

ample of T?/a = 16. The cen-
tral point and the statistical er-
ror ∆csw,I shown in black, as well
as the fit function are taken over
from fig. 9.15. The orange er-
ror bars represent the errors due
to the mismatch of the LCP, ∆̃g2

0,I
(cf. tab. 9.17) and ∆̃csw,I (cf. (9.135)).
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To estimate ∆̃csw,I, we investigate the dependence (9.131) by evaluating T?∆Mud
(j) again

at slight variations of the elements g2
0,L,(j) of {g2

0,L}, which after the usual interpolation
to csw,I give information on the derivatives in

∆̃csw,I =

√√√√∑
j

(
∂csw,I

∂g2
0,L,(j)

· ∆̃g2
0,L

)2

, (9.133)

where correlations are neglected. At T?/a = 16 and csw = 1.8, for instance, we find

∂csw,I

∂
(

T?∆Mud
(4)

) ∼ 3 and
∂
(

T?∆Mud
(4)

)
∂g2

0,L,(4)

∼ −0.5 , (9.134)

where the first quantity was computed for the case of the individual fit, and also for the
other j ∈ {1, . . . , Ncsw}. The evaluation of the second quantity needs much more effort
since additional Monte Carlo simulations at modified g2

0,L,(j) are required. Assuming,
somewhat simplifying, that its order of magnitude is the same for all j (or csw), together
with (9.133) and ∆̃g2

0,I = 0.0014 (see tab. 9.17), this leads to a rough estimate of

∆̃csw,I ∼ 0.005 . (9.135)

• ∆̃g2
0,I

The errors ∆̃g2
0,I are obtained via (9.132) from propagation of the errors of the fit pa-

rameters, ∆̃g2
0,L

∣∣
csw=0 and ∆̃

(
dg2

0,L/dcsw

)
, but neither ∆csw,I nor ∆̃csw,I, and are listed

in tab. 9.17. They may subsequently be transferred to additional contributions to the
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total error of csw,I under use of the Padé fit (9.129), according to (H.15). Irrespective of
the order of the Padé fit and the use of the global or individual fit results, one obtains∣∣∣∣∂csw,I

∂g2
0,I

∣∣∣∣
g2

0,I=1.7144
· ∆̃g2

0,I ∼ 0.003 , (9.136)

which hence, like ∆̃csw,I (9.135), turns out to be much smaller than the statistical error
(cf. tab. 9.16),

∆csw,I ∼ 0.019 . (9.137)

Conclusion

In conclusion, we find that under the given assumptions, the achieved precision of the
tuning to the LCP renders both the associated errors ∆̃csw,I and ∆̃g2

0,I dominated by the
statistical errors ∆csw,I that emerge from the imposition of the improvement condition.
Finally, we note that the errors ∆̃κl,L and ∆̃κc,L from the mismatch of the hopping
parameters contribute to ∆̃csw,I as well. This could be investigated in a similar way to
(9.133, 9.134, 9.135), but is assumed to be insignificant in comparison with (9.137), too.

9.6.5 Cutoff effects and cross checks

In this last section, we investigate two additional quantities, the PCAC mass ratio
RPCAC for the tuning and improvement simulations, as well as the gradient flow cou-
pling g2

GF (without normalization) for the improvement simulations. In particular, we
aim to

P0. check that the continuum results are in accordance with expectations

P1. verify the absence of O(a) cutoff effects and thus our results for csw

P2. investigate the size of remaining O(a2) cutoff effects.

PCAC mass ratio

If all the improvement coefficients assume proper values, defined by appropriate
improvement conditions (like (9.115) for csw), the cutoff effects of the renormalized
masses

mij
R = Z̃ij

mPCAC(g2
0, aM, aµ) · mij

PCAC,I(g2
0, aM, csw, cA, PSF) + O(az) (9.106)
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are of second order in the lattice spacing, z = 2. It is instructive to verify this behavior
by considering the PCAC mass ratio

RPCAC :=
2muc

PCAC,I(T
?/2)−mud

PCAC,I(T
?/2)

mcc̃
PCAC,I(T?/2)

= 1 + a (bA − bP)
mq,c

2
+ O(a2) . (9.138)

The expression on the right hand side follows from using (9.106), after which the

flavor-independent part of the renormalization constants
(

Z̃ij
mPCAC

)−1
, i.e. the ratio of

Z̃P and Z̃A (cf. (8.46, 8.47, 9.105)), drops out. Note that the masses of the up and
down quark were neglected on the O(a) level, amq,u, amq,d � amq,c and mu

R, md
R � mc

R.
Furthermore, the time slice x0 ∈ PSF, at which the unrenormalized PCAC masses are
taken, was specifically chosen as x0 = T?/2 here. Consequently, the deviation of
RPCAC from 1 is a pure lattice artifact that may be studied on the lattice under use
of PCAC masses of different flavors. Given the estimate amq,c . 0.5 (cf. (8.38b)) and
the available results for bA − bP in theories with different N f (cf. sec. 3.9), the size of
the O(a) term can be assumed to be rather small. If this is the case, a continuum
extrapolation of RPCAC linear in (a/T?)2 should be applicable.

This will be carried out in the following for both the tuning and the improvement
simulations. Although the latter are the very same simulations which determined48

csw,I (and cA,I) in the first place, the investigation is useful also with regard to P1 as
the improvement condition involves the PCAC masses at time slices x0 = 3T?/4 and
y0 = T?/4 (cf. (9.115b)), whereas the PCAC mass ratio RPCAC depends on the PCAC
mass in the center of the SF, x0 = T?/2 (cf. (9.138)). Even more importantly, RPCAC

involves the charm as a valence quark, in contrast to the PCAC masses which enter the
improvement condition. The tuning simulations, in contrast, are truly independent
of the determination of the improvement coefficients, and in addition employ a SF
with different boundary conditions and larger spatial extent, as has been explained in
sec. 9.4. Each case thus provides an independent check.

We begin with the evaluation of RPCAC for all combinations of {T?/a, csw}, the
results being listed in tab. 9.18 and tab. 9.19 for the tuning and improvement runs,
respectively. For each T?/a, an interpolation to the respective csw,I, displayed in the
left panel of fig. 9.18, leads to the PCAC mass ratios RPCAC,I at the improvement points,
to be found in tab. 9.20. These are finally extrapolated to the continuum, as depicted
in the right panel of fig. 9.18.

48We use the notation csw,I again for the coefficient that fulfills the improvement condition, to distinguish
it from values of csw at which the simulations took place, cf. footnotes 45 and 46.
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(T?/a = 8)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.9 1.7848 0.13741 0.12033 0.112(5) 2.020(5) 4.713(7) 0.8333(2)
2.0 1.8067 0.13645 0.11960 0.105(4) 2.009(4) 4.713(5) 0.8302(2)
2.1 1.8340 0.13560 0.11900 0.112(6) 2.002(6) 4.709(7) 0.8265(3)
2.2 1.8534 0.13450 0.11820 0.109(5) 1.991(4) 4.698(6) 0.8243(2)
2.3 1.8825 0.13369 0.11770 0.111(4) 1.933(4) 4.550(5) 0.8255(2)
2.4 1.9069 0.13278 0.11750 0.101(5) 1.891(5) 4.464(6) 0.8248(2)

(T?/a = 12)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.8 1.7334 0.13742 0.12776 0.101(6) 1.711(5) 3.620(5) 0.9171(3)
1.9 1.7600 0.13656 0.12714 0.103(4) 1.685(3) 3.572(4) 0.9147(3)
2.0 1.7876 0.13573 0.12653 0.101(5) 1.662(4) 3.526(5) 0.9139(2)
2.1 1.8152 0.13486 0.12591 0.098(6) 1.630(5) 3.464(6) 0.9129(4)
2.2 1.8423 0.13401 0.12529 0.096(6) 1.595(4) 3.396(4) 0.9112(3)

(T?/a = 16)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.5 1.6266 0.13918 0.13224 0.094(3) 1.612(3) 3.283(3) 0.9533(2)
1.6 1.6482 0.13825 0.13139 0.098(3) 1.620(2) 3.300(2) 0.9522(2)
1.7 1.6741 0.13741 0.13087 0.098(3) 1.564(3) 3.181(3) 0.9529(2)
1.8 1.7036 0.13661 0.13018 0.095(3) 1.553(3) 3.166(3) 0.9514(2)
1.9 1.7331 0.13582 0.12949 0.094(3) 1.541(3) 3.145(3) 0.9496(2)
2.0 1.7626 0.13503 0.12880 0.091(3) 1.524(3) 3.120(3) 0.9480(2)

(T?/a = 20)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.5 1.5868 0.13822 0.13287 0.106(3) 1.599(3) 3.193(3) 0.9681(2)
1.6 1.6153 0.13749 0.13240 0.094(3) 1.532(3) 3.065(3) 0.9693(2)
1.7 1.6434 0.13669 0.13178 0.096(2) 1.499(2) 2.995(2) 0.9691(1)
1.8 1.6714 0.13588 0.13126 0.095(2) 1.430(2) 2.851(2) 0.9698(2)
1.9 1.6993 0.13504 0.13046 0.095(2) 1.431(2) 2.856(2) 0.9687(2)

(T?/a = 24)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.5 1.5527 0.13751 0.13325 0.099(2) 1.552(2) 3.072(2) 0.9781(1)
1.6 1.5783 0.13672 0.13253 0.096(2) 1.541(2) 3.056(2) 0.9771(1)
1.7 1.6065 0.13595 0.13202 0.093(2) 1.464(2) 2.897(2) 0.9785(2)
1.8 1.6344 0.13515 0.13132 0.087(1) 1.438(1) 2.852(1) 0.9780(1)

Table 9.18: Results for the PCAC masses of different quark flavors and the mass ratio RPCAC

(cf. (9.138)) for the tuning runs.
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(T?/a = 8)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.9 1.7848 0.13741 0.12033 0.504(7) 3.119(8) 6.218(8) 0.9221(4)
2.0 1.8067 0.13645 0.11960 0.491(8) 3.100(9) 6.211(10) 0.9191(3)
2.1 1.8340 0.13560 0.11900 0.509(8) 3.105(9) 6.217(10) 0.9169(3)
2.2 1.8534 0.13450 0.11820 0.516(8) 3.101(8) 6.217(9) 0.9146(4)
2.3 1.8825 0.13369 0.11770 0.521(9) 3.073(9) 6.166(11) 0.9122(3)
2.4 1.9069 0.13278 0.11750 0.521(10) 2.972(10) 5.940(11) 0.9129(4)

(T?/a = 12)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.8 1.7334 0.13742 0.12776 0.247(4) 2.095(4) 4.144(5) 0.9514(3)
1.9 1.7600 0.13656 0.12714 0.242(4) 2.059(4) 4.078(5) 0.9505(3)
2.0 1.7876 0.13573 0.12653 0.237(4) 2.026(4) 4.020(4) 0.9489(3)
2.1 1.8152 0.13486 0.12591 0.243(5) 1.993(5) 3.950(5) 0.9473(3)
2.2 1.8423 0.13401 0.12529 0.223(4) 1.941(4) 3.865(5) 0.9465(3)

(T?/a = 16)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.5 1.6266 0.13918 0.13224 0.160(3) 1.799(3) 3.538(3) 0.9717(2)
1.6 1.6482 0.13825 0.13139 0.159(2) 1.799(3) 3.546(3) 0.9701(2)
1.7 1.6741 0.13741 0.13087 0.156(2) 1.740(3) 3.422(3) 0.9710(2)
1.8 1.7036 0.13661 0.13018 0.167(2) 1.739(3) 3.414(3) 0.9696(2)
1.9 1.7331 0.13582 0.12949 0.165(3) 1.727(3) 3.395(3) 0.9686(2)
2.0 1.7626 0.13503 0.12880 0.154(2) 1.698(3) 3.353(3) 0.9668(2)

(T?/a = 20)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.5 1.5868 0.13822 0.13287 0.150(2) 1.721(2) 3.359(3) 0.9804(1)
1.6 1.6153 0.13749 0.13240 0.131(2) 1.640(2) 3.213(3) 0.9803(2)
1.7 1.6434 0.13669 0.13178 0.139(2) 1.613(2) 3.149(3) 0.9802(2)
1.8 1.6714 0.13588 0.13126 0.132(3) 1.530(3) 2.987(3) 0.9807(2)
1.9 1.6993 0.13504 0.13046 0.140(2) 1.538(3) 2.998(3) 0.9794(3)

(T?/a = 24)
csw g2

0,L κl,L κc,L T?mud
PCAC T?muc

PCAC T?mcc̃
PCAC RPCAC

1.5 1.5527 0.13751 0.13325 0.129(2) 1.632(2) 3.179(2) 0.9858(1)
1.6 1.5783 0.13672 0.13253 0.120(1) 1.613(2) 3.154(2) 0.9850(2)
1.7 1.6065 0.13595 0.13202 0.119(1) 1.536(1) 2.995(2) 0.9859(1)
1.8 1.6344 0.13515 0.13132 0.113(2) 1.510(2) 2.948(2) 0.9856(1)

Table 9.19: Results for the PCAC masses of different quark flavors and the mass ratio RPCAC

(cf. (9.138)) for the improvement runs.
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9.6 Results

Figure 9.18: Left: PCAC mass ratio RPCAC (9.138) for the different combinations of {T?/a, csw},
and the respective linear interpolations (solid lines) for each T?/a. The vertical,
dashed lines indicate the improvement points csw,I determined by the global fit,
at which the O(a) improved PCAC mass ratios RPCAC,I are determined. Right:
Improved PCAC mass ratios RPCAC,I for the different lattice sizes T?/a and their
extrapolation to the continuum under neglect of T?/a = 8.
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global LCP IMPR
T?/a csw,I Qfit RPCAC,I Qfit RPCAC,I

8 2.202(21) 0.00 0.82679(9)(33) 0.00 0.91517(15)(33)
12 2.105(24) 0.06 0.91248(18)(34) 0.51 0.94759(18)(34)
16 1.833(19) 0.00 0.95035(9)(19) 0.00 0.96894(9)(19)
20 1.755(28) 0.00 0.96906(8)(5) 0.01 0.98013(11)(5)
24 1.688(24) 0.00 0.97784(7)(1) 0.00 0.98564(7)(1)

Qfit 0.00 0.00
∞ 0.99979(15) 0.99856(14)

Table 9.20: Results for the mass ratio RPCAC,I (9.138), interpolated to the improvement points
csw,I under use of the data shown in tab. 9.18 (tuning, LCP) and tab. 9.19 (improve-
ment, IMPR). The first error on RPCAC,I follows from the associated linear fit (cf. left
panel of fig. 9.18), whose fit quality is given in the previous column, respectively,
while the second error is due to the uncertainty of csw,I, determined by the global
fits. The combined errors are taken into account for the continuum extrapolations
(cf. right panel of fig. 9.18), for which the fit quality and the continuum values are
given in the last two rows. Note that the point at T?/a = 8 is not taken into account
here.

In the case of the global fits, the procedure yields

RPCAC,I(a/T? → 0) = 0.99979(15) for the tuning runs

and RPCAC,I(a/T? → 0) = 0.99856(14) for the measurement runs.
(9.139)

The results for the individual fits are almost identical. With regard to P0, we thus find
approximate agreement of the continuum limit of RPCAC,I with the expected value 1
(cf. (9.138)). The deviation is presumably due to the fact that the errors from the LCP
have not been taken into account. These are probably non-negligible especially in view
of the given large statistical precision of RPCAC, and propagate to the (first) error of
RPCAC,I. This would also explain why the fit quality of RPCAC as a linear function of
csw is quite bad in many cases, see tab. 9.20. Furthermore, the investigation reveals
a dominance of O(a2) cutoff effects. However, the dependence of RPCAC on csw is
negligible (at large T?/a) or weak (at small T?/a). Consequently, the continuum limit
RPCAC,I is almost insensitive to csw, and may thus not serve as a cross check of our
results for csw,I (cf. P1). Finally, referring to P2, we observe a moderate size of O(a2)

cutoff effects, which in view of the involvement of the charm quark might not be
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Figure 9.19: Left: t2E(t) for the different combinations of {T?/a, csw}, and the respective linear
interpolations (solid lines) for each T?/a. The vertical, dashed lines indicate the
improvement points csw,I determined by the global fit, at which the O(a) improved
t2E(t) are determined. Right: Improved t2E(t)I for the different lattice sizes T?/a
and their extrapolation to the continuum under neglect of T?/a = 8.

self-evident but is reassuring.

Gradient flow coupling

For the tuning to the LCP, the gradient flow coupling Φ1 = g2
GF was fixed to Φ?

1 . There
was no need to distinguish between T? and L as they were the same, i.e. we had
t = c2L2/8 = c2T?2/8 (cf. (6.7)). In the case of the improvement simulations, where
the spatial volume is reduced by a factor two with respect to the tuning simulations
(cf. (9.118)), we retain the scaling of the flow time by specifying t = c2T?2/8. However,
for the boundary conditions of the improvement simulations (cf. (9.119)), the normal-
ization of the gradient flow coupling is not known. Hence, we only display the results
for t2E(t) in the left panel of fig. 9.19, in combination with the smoothing fraction
c = 0.25 up to which measurements were taken. Interpolation to csw,I for each T?/a
leads to the data whose extrapolation to the continuum is shown in the right panel of
the same figure.

As for RPCAC, we assume that the error due to imprecise tuning to the LCP is not
negligible in view of the statistical precision of our data. With regard to P1 and P2,
we thus interpret the modest cutoff effects to be in accordance with (a/T?)2 scaling,
except for the case of T?/a = 8. The latter, however, may be understood by noting
that the ratio of the lattice spacing and the smoothing range, ε = a/

√
8t = a/(cT?) =

1/2, becomes large, see [149] for details. We find that t2E(t) also only rather weakly
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9 Determination of csw for N f = 3 + 1 massive Wilson fermions

depends on csw, which in combination with the limited quality of the data does not
allow for a precision test of our results for csw.

Finally, we remark that as the topological charge Qtop at c = 0.3 does not leave
the trivial sector (cf. app. I.4), the gradient flow coupling g2

GF associated with t2E(t)
basically equals the corresponding modified coupling g2

GF,0.
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10 Summary

In the first part of this work, the gradient flow coupling was investigated in pure SU(3)
Yang–Mills theory in a volume of approximately V ∼ (0.8 fm)4. A significant corre-
lation between the coupling and the topological charge was found, which increases in
strength with the smoothing fraction c. Simulations suffering from a bad sampling of
topological sectors and critical slowing down would lead to a biased determination of
g2

GF in the continuum. In contrast, the determination of an alternative definition for
the coupling, g2

GF,0, which takes into account only the trivial topological sector, is not
affected by the bad topology sampling in the studied volume.

The second, major part of this thesis was devoted to O(a) improvement of the Wil-
son fermion action in the N f = 4∗ theory of four non-degenerate, massive fermions.
Due to the large cutoff effects that go along with the charm quark mass, as well as
the numerous improvement terms that arise in the case of non-degeneracy, the previ-
ously expedient approach of a mass-independent renormalization and improvement
scheme had to be abandoned. We argued that a mass-dependent scheme is more suit-
able to accommodate the dynamical charm quark effects, and presented an outline of
the associated renormalization patterns of the bare parameters and bilinears. Within
this framework, the determination of the Sheikholeslami–Wohlert coefficient csw as the
first step of the Symanzik improvement program in N f = 4∗ was performed. The im-
provement condition was formulated in the Schrödinger functional with N f = 3 + 1
massive, dynamical quarks, which in comparison with N f = 4∗ represents a vast sim-
plification at the bearable cost of a rather insignificant introduction of small overall
O(a2) cutoff effects. It was imposed along a line of constant physics, which employs
the gradient flow coupling and effective meson masses, set up to implicitly fix the
volume of the Schrödinger functional as well as the light and charm quark masses.
The relation between these two sets of quantities was established under use of the
N f = 2 theory. The lattice extent was held constant at a value of T? ∼ 0.8 fm, chosen
large enough to ensure a good signal, while small enough to avoid the involvement
of non-trivial topological sectors and the associated problems of critical slowing down
and topology freezing that had been considered earlier. Both the use of massive Wil-
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10 Summary

son fermions and the fixed volume approach represent an innovation with respect to
previous determinations of csw with a smaller number of dynamical quark flavors.

Our numerical effort involved the tree-level improved Lüscher–Weisz gauge action.
The sensitivity of the quantity T?∆Mud (that is required to vanish by the improvement
condition) on csw was found to be satisfying even for the finest lattices, and the results
for the different lattice sizes could reasonably be described by a restrictive, global fit.
The main result of this work is expressed in the interpolating formula

csw(g2
0) =

1− 0.257g2
0 − 0.050g4

0

1− 0.453g2
0

for 0 ≤ g2
0 ≤ 1.86 . (9.129)

It builds the basis for further steps in the Symanzik improvement program, such as
the determination of cA, and may be employed in future large volume simulations
under inclusion of dynamical charm quark effects, to extract physical observables in
the continuum limit with severely reduced errors.
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A Notation

A.1 Groups and group transformations

The group SU(N)

SU(N) is the group of complex N × N matrices which are unitary,

ΩΩ† = Ω†Ω = 1 , (A.1)

and special, det Ω = 1. As a compact Lie group, its elements can be parametrized by

Ω = exp{iαaTa} , (A.2)

with αa ∈ R and a ∈ {1, . . . , N2− 1}. Here, Ta are hermitean, traceless N×N matrices,
the generators of the group, which obey the Lie Algebra

[Ta, Tb] = i f abcTc (A.3)

with totally antisymmetric SU(N) structure constants. For N = 2, these are equal to
the Levi–Civita tensor components εabc, while for N = 3 the non-vanishing compo-
nents are:

f 123 = 1, (A.4)

f 147 = f 246 = f 345 = f 516 = f 257 = f 637 =
1
2

, (A.5)

f 458 = f 678 =

√
3

2
. (A.6)

The anticommutator of the generators reads{
Ta, Tb

}
= dabcTc +

1
N

δab1N , (A.7)

where the coefficients dabc are totally symmetric.
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The generators are usually chosen as Ta = λa/2, where λa are the 3 Pauli matrices
for N = 2, and the 8 Gell-Mann matrices for N = 3:

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 , (A.8)

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , (A.9)

λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (A.10)

In particular, this implies the normalizations

TR = 1/2 (A.11)

and CF =
N2 − 1

2N
=

3/4 for N = 2

4/3 for N = 3
(A.12)

for the trace condition1 and the Casimir operator,

Tr[Ta · Tb] = TR · δab (A.13)

and TaTa = CF · 1N , (A.14)

respectively.
Instead of the hermitean generators Ta, one may also employ anti-hermitean genera-

tors T̃a, related by T̃a = iTa. Those obey

[T̃a, T̃b] = f abcT̃c (A.15)

and Tr[T̃a · T̃b] = −TR · δab , (A.16)

as follows immediately from (A.3) and (A.13).

1Note that in contrast to the main text, where tr and Tr denote the trace in color and flavor space,
respectively, the symbol Tr stands for the trace in general here.
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A.1 Groups and group transformations

Group transformations

In QCD, two particular group transformations are of fundamental importance. On the
one hand, these are the local gauge transformations

Ω(x) = exp(iαa(x)Ta) ∈ SU(Nc)c (A.17)

with Nc = 3. They act in color space—indicated by the subscript c—for instance on
the color components of a spinor ψ = (ψred, ψgreen, ψblue)

>. On the other hand, there
are several global flavor transformations, which are marked with a subscript f . These are

UL = exp{iαa
LTa} ∈ SU(N f ) f L (A.18a)

UR = exp{iαa
RTa} ∈ SU(N f ) f R (A.18b)

U(1)
L = exp{iαL} ∈ U(1) f L (A.18c)

U(1)
R = exp{iαR} ∈ U(1) f R , (A.18d)

which act only on the left- or right-handed components (cf. (2.21)), respectively:

ψ′L/R = UL/RψL/R and ψ
′
L/R = ψL/RU†

L/R . (A.19)

In N f = 4, we have ψL = (ψuL, ψdL, ψsL, ψcL)
> and ψR = (ψuR, ψdR, ψsR, ψcR)

>. Impor-
tant combined left- and right-handed transformations are the vector and axial trans-
formations, which are obtained from (A.18) by taking

αV = αL = αR and αA = −αL = αR , (A.20)

respectively. Acting on ψ = (ψu, ψd, ψs, ψc)> in the case of N f = 4, they amount to

V = exp{iαa
V Ta} ∈ SU(N f ) f V (A.21a)

A = exp{iαa
Aγ5Ta} ∈ ”SU(N f )

”
f A (A.21b)

V(1) = exp{iαV} ∈ U(1) f V (A.21c)

A(1) = exp{iαAγ5} ∈ U(1) f A , (A.21d)
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with

ψ′ = Vψ

ψ′ = Aψ
and

ψ
′
= ψV†

ψ
′
= ψA .

(A.22)

As indicated above, the transformations denoted by V, V(1) and A(1) form subgroups
of the chiral group (2.23), respectively. This is not the case for the axial, flavor mixing
transformations A. These form a coset of SU(N f ) f V , which is reflected by the use of
the notation ”SU(N f )

”
f A.

A.2 Gamma matrices

In Minkowski space with the metric gµν = diag(1,−1,−1,−1), the gamma matrices γµ

obey the anti-commutation relation

{γµ, γν} = 2gµν14 . (A.23)

For the matrix γ5 = iγ0γ1γ2γ3, the following equations hold:

{γ5, γµ} = 0 and γ2
5 = 1 . (A.24)

In Euclidean space, the gamma matrices are related to those in Minkowski space by

γE
0 = γ0 and γE

j = iγj , j = 1, 2, 3 . (A.25)

The anti-commutation relation (A.23) becomes

{γE
µ , γE

ν } = 2δµν14 , (A.26)

while (A.24) remains valid also for γE
5 = γE

0 γE
1 γE

2 γE
3 .

A.3 Discrete derivatives

We consider a smooth function f : R4 → R, whose derivatives in the continuum with
respect to the µ-direction are denoted by f ′, f ′′, and so forth. On a lattice with lattice
spacing a, discretizations of these derivatives may involve f (x + naµ̂) with n ∈ Z.
Straight forward discretizations of the first derivative f ′ are obtained by the forward and
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A.3 Discrete derivatives

backward lattice derivatives,

∂µ f (x) =
1
a
[ f (x + aµ̂)− f (x)] (A.27)

∂∗µ f (x) =
1
a
[ f (x)− f (x− aµ̂)] , (A.28)

respectively. They introduce discretization errors of the form O(a), as can readily be
seen by using the Taylor expansion

f (x± aµ̂) = f (x)± a f ′(x) +
a2

2
f ′′(x) + O(a3) (A.29)

in the above expressions. The situation is improved in the case of the symmetric lattice
derivative,

∂̃µ f (x) =
1
2

(
∂∗µ + ∂µ

)
f (x) =

1
2a

[ f (x + aµ̂)− f (x− aµ̂)] , (A.30)

which equals f ′ up to O(a2). Concerning the discretization of the second derivative f ′′,
the same order O(a2) of discretization effects is obtained by the use of

∂̃2
µ f (x0) =

1
(2a)2 [ f (x0 + 2aµ̂) − 2 f (x0) + f (x0 − 2aµ̂) ] (A.31)

and ∂∗µ∂µ f (x0) =
1
a2 [ f (x0 + aµ̂) − 2 f (x0) + f (x0 − aµ̂) ] . (A.32)

Obviously, the latter corresponds to the former with the replacement 2a→ a. It is thus
advantageous to use ∂∗µ∂µ f , as its leading discretization errors are reduced by a factor
four. Furthermore, it may be evaluated closer to the edges of a finite lattice.
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B The axial current

B.1 Representation in the flavor and the generator basis

We consider the axial current with N f flavors. While concrete expressions are shown
for N f = 2 for simplicity, the results will be applied in sec. 8.1.3 for N f = 4. In CN f×N f

regarded as a complex vector space, we define the flavor basis as matrices ∆ij with
components

(∆ij)kl =

1 if k = i, l = j

0 otherwise ,
(B.1a)

where i, j ∈ {1, . . . , N f }. The axial current in this basis reads

Aµ =
N f

∑
i,j=1

Aij
µ∆ij (N f =2)

=

A11
µ A12

µ

A21
µ A22

µ

 , (B.1b)

and its components are defined as

Aij
µ = ψγµγ5∆ijψ = ψ

i
γµγ5ψj , i, j ∈ {1, . . . , N f } . (B.1c)

In order to discuss the behavior of the axial current under SU(N f ) flavor transforma-
tions and renormalization, it is convenient to switch to the generator basis, which con-
sists of the generators of SU(N f ), Tc with c ∈ {1, . . . , N2

f − 1}, extended by T0 = 1/N f .
In N f = 2, for instance, it reads

T0 =
1
2

1 0

0 1

 , T1 =
1
2

0 1

1 0

 , T2 =
1
2

0 −i

i 0

 , T3 =
1
2

1 0

0 −1

 .

(B.2a)
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B The axial current

In this basis, the axial current becomes

Aµ =

N2
f−1

∑
c=0

Ac
µTc (N f =2)

=
1
2

 A0
µ + A3

µ A1
µ − iA2

µ

A1
µ + iA2

µ A0
µ − A3

µ

 , (B.2b)

and its components can be written as

Ac
µ = ψγµγ5Tcψ , c ∈ {0, . . . , N2

f − 1} . (B.2c)

B.2 The improved axial current under flavor transformations

Next, we discuss the behavior of the mass-dependent improvement terms of the axial
current, as listed in sec. 8.1.3, under SU(4) f V flavor transformations in the generator
basis, while charge conjugation is considered in app. B.3.

Under the generalized, vector spurionic SU(4) f V transformations (cf. (8.2))

ψ
V→ Vψ , ψ

V→ ψV† and M V→ VMV† , (B.3)

with the notation

V†TcV = Rcd(V)Td , (8.12)

the bilinear combinations as they appear in (8.14a) and (8.14b) behave like the axial
current:

Ac
µ

V→ Rcd(V)Ad
µ . (8.13)

We show this explicitly for the examples of the ω0 and ω1 terms in (8.14a):

∂µPc = ∂µ

(
ψγ5Tcψ

)
V→ ∂µ

(
ψV†γ5TcVψ

)
= ∂µ

(
Rcd(V)ψγ5Tdψ

)
= Rcd(V) ∂µPd (B.4a)

and

Tr[M]Ac
µ

V→ Tr[VMV†] Rcd(V) Ad
µ

= Rcd(V) Tr[M]Ac
µ .

(B.4b)

Note that the SU(4) f V matrices V and V† act in flavor space and therefore commute
with the Dirac matrices γµ and γ5.
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B.3 The improved axial current under charge conjugation

B.3 The improved axial current under charge conjugation

Under charge conjugation, the axial current in the continuum transforms as

Ac
µ = ψγµγ5Tcψ

C→ ψγµγ5[Tc]Tψ , (B.5)

where the superscript T denotes the transposed matrix. It immediately follows that
those components whose generators Tc are diagonal, are invariant under charge con-
jugation. They are hence referred to as neutral currents, see sec. 8.1.3.

Regarding the improvement terms in N f = 4∗, the ones with the coefficient ω2 in
(8.14a) transform as (M = MT)

ψγµγ5Tc Mψ
C→ ψγµγ5M[Tc]Tψ (B.6a)

and ψγµγ5MTcψ
C→ ψγµγ5[Tc]TMψ . (B.6b)

As Tc and M do not commute for non-degenerate masses, the individual terms do not
transform like Ac

µ under charge conjugation. However, the sum of both terms does:

ψγµγ5 {Tc, M}ψ
C→ ψγµγ5

{
[Tc]T, M

}
ψ . (B.7a)

The other linear combination, the difference of the two original terms, does not trans-
form like Ac

µ:

ψγµγ5 [Tc, M]ψ
C→ −ψγµγ5

[
[Tc]T, M

]
ψ . (B.7b)

Since the Wilson formulation of Lattice QCD is required to be charge symmetric,
ψγµγ5 [Tc, M]ψ is not included in the Symanzik effective axial current (8.14a).
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C Chiral Ward identities

Ward identities may be derived by application of symmetry transformations on the
fields in the path integral. These lead to relations between different classical currents,
which are reinterpreted as operator relations in the quantum theory. While they hold
exact in the continuum, they may be violated by cutoff effects on the lattice, depending
on whether the lattice regularization respects or violates the respective symmetry.

We briefly sketch the derivation of the chiral Ward identities in the lattice regularized
theory, loosely following [153]. Consider a multilocal operator O(x1, . . . , xn) of quark
and gluon fields at the sites x1 6= x2 6= . . . 6= xn. Its expectation value (cf. (3.46)),

〈O(x1, . . . , xn)〉 =
1

Z[ψ, ψ, U]

∫
D[ψ, ψ, U] e−S[ψ,ψ,U]O(x1, . . . , xn) , (C.1)

is invariant under local SU(N f ) f L× SU(N f ) f R transformations, i.e. (A.18a) and (A.18b)
with the replacements αa

L/R → αa
L/R(x), as these merely constitute a change of integra-

tion variables. Hence, now considering the two special kinds of vector (X = V) and
axial (X = A) transformations, one finds

δ

δαa
X(x)

〈O(x1, . . . , xn)〉 = 0 , (C.2)

or equivalently 〈
δO(x1, . . . , xn)

δαa
X(x)

〉
=

〈
O(x1, . . . , xn)

δSW
F

δαa
X(x)

〉
. (C.3)

If the expressions in (C.3) are explicitly written out, the equations for two different fla-
vor indices a may be combined such that the non-singlet, so-called point-split currents1

Ṽij
µ (x) and Ãij

µ(x) with j 6= i (cf. (3.75)) emerge for the vector and axial transforma-
tion, respectively. For the specific choice O(x1, x2) = ψi(x1)ψj(x2), it can be shown
that the terms that stem from the left hand side of (C.3) yield propagators, present
only if x = x1 or x = x2. The remainder from the right hand side of (C.3) contains

1These involve fields at x and the nearest neighbor points, see [153].

237



C Chiral Ward identities

terms which combine either the point-split vector current Ṽij
µ (x) with the scalar den-

sity Sij(x), or the point-split axial current with the pseudoscalar density Pij(x). In
the latter case of the axial transformation, the variation of the Wilson term yields an
additional O(a) contribution with an operator Oij

W5 of dimension five:

X = V : − δ(x2 − x)
〈
ψi(x1)ψi(x2)

〉
− δ(x1 − x)

〈
ψj(x1)ψj(x2)

〉
= ∂̃µ

〈
Ṽij

µ (x) O
〉
− (m0,i −m0,j)

〈
Sij(x) O

〉
. (C.4)

X = A : − δ(x2 − x)
〈
ψi(x1)ψi(x2)

〉
γ5 − δ(x1 − x)γ5

〈
ψj(x1)ψj(x2)

〉
= ∂̃µ

〈
Ãij

µ(x) O
〉
− (m0,i + m0,j)

〈
Pij(x) O

〉
− a

〈
Oij

W5 O
〉

. (C.5)

Although of higher order in the lattice spacing, the operator Oij
W5 may under renor-

malization mix with operators of lower order, namely those already present on the
right hand side of (C.5) [154]:

[
Oij

W5

]
R
= Z5

[
Oij

W5 +
1
a

{
(ZÃ − 1) ∂̃µ Ãij

µ(x) +
(
mi + mj

)
Pij
}]

. (C.6)

Hence, by using (C.6) in (C.5) to replace Oij
W5, additional terms arise at leading order,

and (C.5) may be cast into the form

X = A : − δ(x2 − x)
〈
ψi(x1)ψi(x2)

〉
γ5 − δ(x1 − x)γ5

〈
ψj(x1)ψj(x2)

〉
= ZÃ ∂̃µ

〈
Ãij

µ(x) O
〉
− (mi

PCAC + mj
PCAC)

〈
Pij(x) O

〉
+ O(a) . (C.7)

The bare PCAC mass2 mi
PCAC is related to the ordinary bare mass m0,i by

mi
PCAC = m0,i −mi , (C.8)

where the mixing coefficients mi are regular functions of the bare parameters of mass-
dimension one, mi =

w(g2
0,aM)
a [154].

Several important conclusions may be drawn from (C.4) and (C.7), and the obser-
vation that the propagators on the left hand sides of these equations are finite and

2Note that the definition here differs by cutoff effects from mi
PCAC, the quantity employed in the main

text (cf. e.g. (3.81)).
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renormalized after multiplication with the field renormalization constants. The first
implication concerns the renormalization of the (point-split) vector and axial current.
In the special case of degenerate bare masses m0,i and m0,j (X = V) or vanishing
PCAC masses mi

PCAC and mj
PCAC (X = A), this embodies that the respective correla-

tion functions with Ṽij
µ or Ãij

µ have to be finite and renormalized as well. Hence, while
the point-split vector current Ṽij

µ requires no renormalization, the point-split axial cur-
rent Ãij

µ is renormalized by a finite and scale-independent factor, i.e. subject to a pure
lattice renormalization that vanishes in the continuum (no-renormalization theorem
[155, 156]):

ZṼ = 1 , ZÃ(g2
0) = 1 + O(a) . (C.9)

Furthermore, it may be argued [154] that the difference between the point-split cur-
rents and their respective local counterparts is finite, allowing to replace the former
by the latter in (C.4) and (C.7), in conjunction with the finite lattice renormalizations
constants (cf. (3.76))

ZV(g2
0) = 1 + O(a) , ZA(g2

0) = 1 + O(a) . (C.10)

A second implication of (C.4) and (C.7) in the situation where field renormalization
has rendered the left hand sides finite applies to the renormalization of the scalar and
pseudoscalar density. The fact that the total derivative of the point-split vector or axial
current vanishes after integration over x implies relations between the renormalization
constants that appear on the respective finite right hand sides, namely

Zm(g2
0, aµ) = ZS(g2

0, aµ)−1 (C.11a)

ZmPCAC(g2
0, aµ) = ZP(g2

0, aµ)−1 , (C.11b)

up to finite contributions. This behavior is reflected e.g. in (3.107) and (E.15).
A third and immediate consequence of (C.4) and (C.7) emerges in the special case of

x 6= x1, x2, which leads to the chiral lattice Ward identities. For the vector current
(X = V), this is the PCVC relation (Partially Conserved Vector Current),

ZV ∂̃µ

〈
Vij

µ (x) O
〉

= (m0,i −m0,j)
〈

Sij(x) O
〉

. (C.12a)
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C Chiral Ward identities

Application of (C.11a) allows to write this equation as3

∂̃µ

〈
(VR)

ij
µ(x) OR

〉
= (mi

R −mj
R) ·

〈
(SR)

ij(x) OR

〉
. (C.12b)

The vector current is hence conserved for degenerate masses, mi
R = mj

R, and the relation
is exactly fulfilled as the lattice regularization respects SU(N f ) f V symmetry.

For the axial current (X = A), the PCAC relation (Partially Conserved Axial Current)
reads

ZA ∂̃µ

〈
Aij

µ(x) O
〉

= (mi
PCAC + mj

PCAC)
〈

Pij(x) O
〉

+ O(a) . (C.13a)

It may be written under use of (C.11b) in terms of renormalized quantities as

∂̃µ

〈
(AR)

ij
µ(x) OR

〉
= (mi

R + mj
R) ·

〈
Pij

R (x) OR

〉
+ O(a) . (C.13b)

The PCAC relation is thus violated on the lattice, in accordance with the breaking of
chiral symmetry by the Wilson term, cf. sec. 3.3.

Note that, although the explicitly given terms in (C.4), (C.5) and (C.7) refer to the
special choice of the operator O taken above, the chiral lattice Ward identities (C.12)
and (C.13) hold generally for any multilocal operator O with fields at sites different
from x. Moreover, we wish to emphasize again that all of the above holds in the case
of non-singlet currents (j 6= i). The singlet case, affected by the chiral ABJ anomaly
(cf. sec. 2.2), can be considered separately in terms of an anomalous chiral Ward iden-
tity, which is however not of importance here.

3Note that even for non-degenerate masses, the difference of two bare masses renormalizes multiplica-
tively with Zm(g2

0, aµ). This can be readily seen from (3.66).
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D Spurionic chiral symmetry

We have seen in the main text that chiral symmetry is broken in several ways. Beside
the spontaneous breaking that goes along with the non-vanishing expectation value of
the quark condensate (sec. 2.2), this happens explicitly on the level of the Lagrangian
in a twofold way. First, by non-vanishing and even more so by non-degenerate quark
masses (sec. 2.2), and second, by the Wilson regularization on the lattice (see sec. 3.3).
In order to disentangle these two sources of explicit symmetry breaking, it is instruc-
tive to consider spurionic chiral transformations, under which the bare mass matrix (3.13)
is assigned the behavior

M→M′ = V MV† , V ∈ SU(N f ) f V (D.1)

M→M′ = A†MA† , A ∈ ”SU(N f )
”
f A . (D.2)

Evidently, in combination with the transformations of the fields, (A.22), the mass term
ψMψ in the action then obeys a generalized, spurionic chiral symmetry, irrespective of
the nature of the mass matrix M. This allows to consider the effects of the Wilson
term in isolation. Concretely, the imposition of (spurionic) vector symmetry (D.1)
is relevant for the construction of the Symanzik effective theory in the case of non-
degenerate, massive quarks, sec. 8.1, while the breaking of (spurionic) axial symmetry
(D.2) has important consequences for the quark mass renormalization in the Wilson
formulation, which will be discussed in app. E.

In preparation for the latter, we now study the behavior of the quark masses under
spurionic chiral symmetry transformations for the specific case of N f = 4∗ in more
detail, following the lines of [153]. It is useful to decompose the bare mass matrix
(3.13) into an SU(4) f V flavor singlet and non-singlet part [133]:

M = mav · 14 +
15

∑
c=1

m̂cλc . (D.3)

This is a generalization ofM, from which the physical case can be retrieved by restrict-
ing the generalized Gell-Mann matrices in the sum to the diagonal ones, c = 3, 8, 15.
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D Spurionic chiral symmetry

Using Tr[λa] = 0 and the trace property (A.13), one finds

mav =
1
4

Tr[M] (D.4)

m̂a =
1
2

Tr[Mλa] . (D.5)

Under infinitesimal spurionic vector transformations (D.1), the masses transform as

mav → mav (D.6)

m̂a → m̂a − f abcαbm̂c , (D.7)

where the explicit form (A.21a) of V ∈ SU(4) f V with (A.20) and the commutator (A.3)
of the Gell-Mann matrices were used. Under infinitesimal spurionic axial transforma-
tions (D.2) with A ∈ ”SU(4)”

f A as given in (A.21b), one finds

mav → mav −
2i
4

αcm̂c (D.8)

m̂a → m̂a − dabcαbm̂c − iαamav , (D.9)

Hence, under spurionic vector transformations, the average mass is a singlet, whereas
the non-singlet mass components form an adjoint multiplet. In contrast, under spuri-
onic axial transformations, the flavor singlet and non-singlet mass components trans-
form into each other.
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E Quark mass renormalization

The observed behavior of the generalized mass M under spurionic vector transfor-
mations, (D.6) and (D.7), and spurionic axial transformations, (D.8) and (D.9), has
important consequences for the renormalization of quark masses in the Wilson reg-
ularization. The vector transformations leave room for different multiplicative renor-
malizations of the singlet mass mav and the non-singlet mass components m̂c. More-
over, the invariance of mav allows this term to mix with the identity 1, which makes
it subject to an additive renormalization that manifests itself in the appearance of the
critical mass mcrit:

m̂c
R = Zm(g2

0, aµ) m̂c (E.1)

mR,av = Zm0(g2
0, aµ) [mav −mcrit] , (E.2)

This rather complicated renormalization pattern would become obsolete if spurionic
axial symmetry was respected, as the mixing of all the mass components under these
transformations would enforce a uniform, multiplicative renormalization. However,
since this spurionic axial symmetry is explicitly violated by the Wilson formulation
of Lattice QCD, there is no constraint which prevents the masses from renormalizing
according to (E.1) and (E.2).

E.1 Unimproved N f = 4∗ theory

We consider the physical case again, where the bare mass matrix (3.13) is split into
(cf. (D.3))

M = mav · 14 + ∑
c=3,8,15

m̂cλc , (E.3)
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E Quark mass renormalization

i.e. the sum in the non-singlet part now only involves diagonal generators λc. The
individual masses accordingly read

m0,i = mav + ∑
c=3,8,15

m̂cλc
ii . (E.4)

Taking into account that the two parts renormalize differently, the renormalized quark
mass of flavor i may be defined in terms of the matrix

M = diag(mq,u, mq,d, mq,s, mq,c) (3.64)

of bare subtracted quark masses

mq,i = m0,i −mcrit (3.65)

as follows [133]:

mi
R = mR,av + ∑

c
m̂c

Rλc
ii

(E.1,E.2)
= Zm0(g2

0, aµ) [mav −mcrit] + Zm(g2
0, aµ)∑

c
m̂cλc

ii

(E.4,3.65)
= Zm0(g2

0, aµ) [mav −mcrit] + Zm(g2
0, aµ)

((
mq,i + mcrit

)
−mav

)
= Zm(g2

0, aµ)

[
Zm0(g2

0, aµ)

Zm(g2
0, aµ)

[mav −mcrit] +
(
mq,i − [mav −mcrit]

)]
= Zm(g2

0, aµ)

[
mq,i +

(
Zm0(g2

0, aµ)

Zm(g2
0, aµ)

− 1
)
[mav −mcrit]

]
(E.6)
= Zm(g2

0, aµ)

[
mq,i +

(
Zm0(g2

0, aµ)

Zm(g2
0, aµ)

− 1
)

Tr[M]/N f

]
, (E.5)

where in the last step

mav −mcrit =

(
∑

i
m0,i

)
/N f −mcrit = Tr[M]/N f . (E.6)

was used. The ratio of the flavor singlet and non-singlet renormalization constant is
usually abbreviated by

rm(g2
0) =

Zm0(g2
0, aµ)

Zm(g2
0, aµ)

, (3.63)
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E.2 Improved N f = 4∗ theory

such that (E.5) becomes

mi
R = Zm(g2

0, aµ)
[
mq,i +

(
rm(g2

0)− 1
)

Tr [M] /N f
]

. (3.66)

E.2 Improved N f = 4∗ theory

For the O(a) improved expression of mi
R, one has to replace g2

0 → g̃2
0 and mq,i → m̃q,i

(cf. (8.20, 8.22)) in (3.66):

mi
R = Zm(g̃2

0, aµ)
[
m̃q,i +

(
rm(g̃2

0)− 1
)

Tr
[

M̃
]

/N f

]
, (E.7)

where (cf. (3.64)) M̃ = diag(m̃q,u, m̃q,d, m̃q,s, m̃q,c). In that case, after a little algebra,

m̃q,i +
(
rm(g̃2

0)− 1
)

Tr
[

M̃
]

/N f

=

[
mq,i + ac1m2

q,i + ac2Tr[M]mq,i + ac3Tr[M2] + ac4(Tr[M])2
]
+

rm(g̃2
0)− 1

N f
×[

Tr[M] + ac1Tr[M2] + ac2(Tr[M])2 + ac3N f Tr[M2] + ac4N f (Tr[M])2
]

= mq,i +
(
rm(g̃2

0)− 1
) Tr[M]

N f
+ a
[

c1m2
q,i + c2Tr[M]mq,i

+

(
c3 +

rm(g2
0)− 1

N f

(
c1 + N f c3

))
Tr[M2]

+

(
c4 +

rm(g2
0)− 1

N f

(
c2 + N f c4

))
(Tr[M])2

]
= mq,i +

(
rm(g̃2

0)− 1
) Tr[M]

N f
+ a
[

c1m2
q,i + c2Tr[M]mq,i

+
(
rm(g2

0)
(
c1 + N f c3

)
− c1

) Tr[M2]

N f

+
(
rm(g2

0)
(
c2 + N f c4

)
− c2

) (Tr[M])2

N f

]
, (E.8)
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E Quark mass renormalization

one finds

mi
R = Zm(g̃2

0, aµ)

[
mq,i +

(
rm(g̃2

0)− 1
) Tr[M]

N f
+ a ·

{
bm(g2

0)m
2
q,i + bm(g2

0)Tr[M]mq,i

+
(

rm(g2
0)dm(g2

0)− bm(g2
0)
) Tr[M2]

N f
+
(

rm(g2
0)dm(g2

0)− bm(g2
0)
) (Tr[M])2

N f

}]
.

(8.25)

The new coefficients are related to the old ones by

bm = c1 , dm = c1 + N f c3 , (8.23a)

bm = c2 , dm = c2 + N f c4 . (8.23b)

While the renormalized quark masses mi
R on the lattice depend on the bare (improved)

coupling g̃2
0 and the renormalization scale µ, their continuum extrapolated counter-

parts

mi(µ) = lim
a→0

mi
R(g̃2

0, aµ) (E.10)

are related to the scale-independent continuum RGI masses Mi via the flavor-
independent conversion factor (cf. (2.36))

h(µ) = M/m(µ) , (E.11)

which in particular cancels the µ-dependence of mi,

Mi = h(µ) ·mi(µ) . (E.12)

E.3 Improved N f = 4 and massless N f = 2 theories

We now consider the renormalization of the quark mass, (8.25), for two special cases.
On the one hand, the theory with N f = 4 degenerate masses, cf. (3.84), and on the other
hand, the massless N f = 2 case, where in addition to the dynamical, massless up and
down quarks, one treats the strange and charm quark in the quenched approximation,
cf. tab. 9.1.

In N f = 4, after use of Tr[M] = N f mq, Tr[M2] = N f m2
q and (Tr[M])2 = N2

f m2
q, the bm

and bm terms vanish, while the dm term may be absorbed in the one with dm. Hence,
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E.3 Improved N f = 4 and massless N f = 2 theories

(8.25) reduces to

mR = Zm0(g̃2
0, aµ)

[
1 + adm(g2

0)mq
]

mq . (E.13)

In the case of N f = 2, one has to differentiate in (8.25) between the effects of dynam-
ical and valence quarks. The former are embodied in the appearance of the flavor trace
of the bare subtracted mass matrix, which vanishes by definition, Tr[M] = 0. Thus,
the renormalization prescription reads

mi
R = Zm(g2

0, aµ)
[
1 + abm(g2

0)mq,i
]

mq,i , (E.14)

for a valence quark of flavor i. Note that the use of the improved bare coupling g̃2
0 as

an argument of Zm is not necessary, since it is equal to g2
0 for massless sea quarks, see

(3.96).
As we have seen in sec. 3.6, a renormalized mass may also be formulated in terms

of the PCAC mass. With its improved version in N f = 4 given in (3.107), for N f = 2
we find

mi
R =

ZA(g2
0)

ZP(g2
0, aµ)

1 + abA(g2
0) mq,i

1 + abP(g2
0) mq,i

miĩ
PCAC,I(x) + O(a2) , (E.15)

where the tilde notation indicates the involvement of non-singlet currents. The two
equations (E.14) and (E.15) relate the improved PCAC mass miĩ

PCAC,I and the bare sub-
tracted mass mq,i according to

miĩ
PCAC,I =

Zm(g2
0, aµ) ZP(g2

0, aµ)

ZA(g2
0)

[
1 +

(
bm(g2

0) + bP(g2
0)− bA(g2

0)
)

amq,i
]

mq,i + O(a2) ,

(E.16)

where in N f = 2 the cases i = s, c of the valence strange and charm quark are of
particular interest. Finally, we note that the overall renormalization factor

Z(g2
0) =

Zm(g2
0, aµ) ZP(g2

0, aµ)

ZA(g2
0)

, (E.17)

as it appears in (E.16), is finite and independent of the renormalization scale µ, since
the divergent parts of Zm and ZP cancel each other.
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E Quark mass renormalization

E.4 Improved N f = 4∗ theory in a mass-dependent scheme

In order to perform the transition of the mass renormalization prescription from the
mass-independent to the mass-dependent scheme, (8.25) may be reformulated so as
to disentangle the sea quark effects (that come with a trace) from the flavor-specific
terms (that come with mq,i). Adding and subtracting two terms with constants f and
f , we write

mi
R = Zm(g̃2

0, aµ)

[ (
1 + a f bm(g2

0)mq,i + a f bm(g2
0)Tr[M]

)
mq,i +

(
rm(g̃2

0)− 1
) Tr[M]

N f

+ a ·
{
(1− f ) bm(g2

0)m
2
q,i +

(
1− f

)
bm(g2

0)Tr[M]mq,i

+
(

rm(g2
0)dm(g2

0)− bm(g2
0)
) Tr[M2]

N f
+
(

rm(g2
0)dm(g2

0)− bm(g2
0)
) (Tr[M])2

N f

}]
,

(E.18)

and factoring out leads to

mi
R = Zm(g̃2

0, aµ)
(

1 + a f bm(g2
0)mq,i + a f bm(g2

0)Tr[M]
) [

mq,i +
(
rm(g̃2

0)− 1
) Tr[M]

N f

+ a ·
{
(1− f ) bm(g2

0)m
2
q,i +

(
1− f + f

)
bm(g2

0)Tr[M]mq,i

+
(

rm(g2
0)dm(g2

0)− bm(g2
0)
) Tr[M2]

N f

+
(

rm(g2
0)
(

dm(g2
0)− f bm(g2

0)
)
+
(

f − 1
)

bm(g2
0)
) (Tr[M])2

N f

}]
. (E.19)

In order to make the terms in the second line disappear, f = 1 and f = 2 is cho-
sen, and all the remaining O(a) terms may in analogy to (8.49) be absorbed in the
mass-dependent critical mass mM

crit (8.48), which is considered in the notation m̃M
crit.

Additional factorization of the term in the first line leads to

mi
R = Zm(g̃2

0, aµ)
(

1 + 2abm(g2
0)Tr[M]

) (
1 + abm(g2

0)mq,i
) [

m0,i − m̃M
crit(g2

0, Tr [M])

]
= Z̃m(g2

0, aTr [M] , aµ)
(
1 + abm(g2

0)mq,i
) [

m0,i − m̃M
crit(g2

0, Tr [M])

]
(8.50a)

where in the last step, the sea quark contributions were absorbed in the renormaliza-
tion constant Z̃m(g2

0, aTr [M] , aµ) in a similar way to (8.44, 8.45).
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F Previous non-perturbative determinations of csw and cA

conjunction with the use of massless quarks1, it makes the setting of a scale obsolete.
It also conveniently avoids the problem of critical slowing down (cf. sec. 6.2.2) for
small g2

0. Finally, as discussed in sec. 9.4, the slope in ∆Mud (cf. 9.115a) as a function
of csw is larger in small volumes, leading to a clearer signal. This also simplifies the
determination of csw at small bare couplings.

However, as a matter of principle, the fixed L/a approach gives rise to potentially
large O(a) ambiguities in csw, see e.g. [92]. Hence, csw is properly defined only at a
LCP, and the fixed L/a approach has to be considered an approximation. Its validity
is usually checked by a single simulation at L/a = 16, where the weakness of the
dependence of csw on L/a is verified.

Improvement condition

Instead of the LCP (9.7), it is the improvement point

Mud(T/2, T/4) !
= 0 , (F.1)

defined in terms of the effective quark mass (9.113), that determines the hopping pa-
rameter κ, of which there is only one due to the degeneracy. The improvement condition
is formulated very similarly to (9.115) in terms of

∆Mud(3T/4, T/4) = Mud(3T/4, T/4)−M′ud(3T/4, T/4) . (F.2)

However, instead of requiring this quantity to vanish, one fixes it to its tree-level value

∆Mud(3T/4, T/4) !
= ∆Mud(0)(3T/4, T/4) , (F.3)

to ensure csw(0) = 1. csw is only weakly dependent on a possible mismatch in (F.1).
Hence, a rough tuning of κ to the improvement point is sufficient.

The work on N f = 3 is special concerning two aspects. First of all, as mentioned
before, the Lüscher–Weisz gauge action (3.112) is used instead of the Wilson plaquette
gauge action (3.39). Secondly, for technical reasons that is the use of version2 1.0 of the
openQCD code, lattices of temporal size T = 2L− a were employed, such that—since

1These can be tuned without the knowledge of a scale, cf. (F.1).
2We remind the reader that version 1.2 is used in the present work, see sec. 9.5.
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F.2 cA

Ref. SG N f result range of validity

[16] SW
G 0 csw(g2

0) = 1−0.656g2
0−0.152g4

0−0.054g6
0

1−0.922g2
0

0 ≤ g2
0 ≤ 1

[17] SW
G 2 csw(g2

0) = 1−0.454g2
0−0.175g4

0+0.012g6
0+0.045g8

0
1−0.720g2

0
β ≥ 5.2

[22] SLW
G 3 csw(g2

0) = 1−0.1921g2
0−0.1378g4

0+0.0717g6
0

1−0.3881 g2
0

β ≥ 3.3

[21] SW
G 4 csw(g2

0) = 1−0.1372g2
0−0.1641g4

0+0.1679g6
0

1−0.4031g2
0

0 ≤ g2
0 ≤ 1.2

Table F.1: Results for csw(g2
0) from previous works.

T/2 is not an integer—instead of (F.1),

1
2
(M(L, L/2) + M(L− a, L/2)) = 0 (F.4)

is used.

Results

The results of the previous determinations of csw are compiled in tab. F.1 and partly
illustrated along with the main result of the present work in fig. 9.16. The formulas
incorporate the perturbative behavior of csw, given by (3.113a) and (3.113c), in a fashion
very similar to (9.126).

For completeness, we note that further results on csw exist, namely in connection
with the Wilson gauge action SW

G and N f = 3 [18], the so-called RG-improved gauge
action and N f = 0, 2, 3 [19], as well as N f = 3 stout-smeared fermions and the tree-
level improved Lüscher–Weisz gauge action [20].

F.2 cA

Within the ALPHA Collaboration, non-perturbative results on cA were obtained for
massless quarks and the Wilson gauge action in N f = 0 [16], N f = 2 [54], and the
Lüscher–Weisz gauge action in N f = 3 [141].

In all of those cases, the associated non-perturbative results for csw were employed,
see app. F.1, but more suitable improvement conditions on which cA is more sensitive
than the one designed for csw (cf. sec. 9.4) were chosen. In particular, these incorpo-
rate vanishing boundary fields (cf. (9.14)). In the case of N f = 0, the improvement
condition entails a variation of the fermion angle θ (cf. (5.21)) within the fixed L/a
approach (cf. app. F.1). The works on N f = 2 and N f = 3 differ from this, as they
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F Previous non-perturbative determinations of csw and cA

both feature a line of constant physics, which fixes the volume of the SF. In addition,
based on the work of [157], the improvement condition in those cases is formulated
in terms of a variation of the boundary states, designed such that exclusively either
the pseudoscalar ground or first excited state contributes. Finally, we note that in the
case of N f = 3, the results were projected onto the trivial topological sector, due to
topology freezing for small lattice spacings, in a fashion very similar to the one de-
scribed in sec. 7. We refer to the original publications and (3.116) for further details and
numerical results. For completeness, we remark that cA was also non-perturbatively
determined in the case of N f = 3 and the so-called Iwasaki gauge action [158].
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G Effective meson masses on the lattice

The quantities

Φ2 = T · Γsu (9.23a)

Φ3 = T ·
(

Γsc − 1
2

Γsu
)

, (9.23b)

are defined in terms of the effective meson masses

Γij ≡ Γij
A = −∂̃0 log

(
f ij
A,I(x0)

) ∣∣
x0=T/2 , i, j ∈ {l, c} , (9.20)

with

f ij
A,I(x0) = f ij

A(x0) + acA∂̃0 f ij
P (x0) . (5.53)

G.1 Discretizations of Γ

The symmetric derivative ∂̃0 (cf. (A.30)) in (9.20) can either be applied to the loga-
rithmic function as a whole, or on f ij

A,I after using the chain rule. We label the two

resulting discretizations Γij
(1) and Γij

(2), respectively:

Γij
(1) = −

1
2a

log

(
f ij
A,I(x0 + a)

f ij
A,I(x0 − a)

) ∣∣∣∣
x0=T/2

(9.26)

Γij
(2) = −

∂̃0 f ij
A,I(x0)

f ij
A,I(x0)

∣∣∣∣
x0=T/2

. (G.1)
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G Effective meson masses on the lattice

The explicit expressions can easily be obtained under use of (A.30) and (5.53). They
read

Γij
(1) = −

1
2a

log

 f ij
A(

T
2 + a) + cA

2

[
f ij
P (

T
2 + 2a)− f ij

P (
T
2 )
]

f ij
A(

T
2 − a) + cA

2

[
f ij
P (

T
2 )− f ij

P (
T
2 − 2a)

]
 ∣∣∣∣

x0=T/2
(G.2)

and

Γij
(2) = −

1
2a
·

[
f ij
A(

T
2 + a)− f ij

A(
T
2 − a)

]
+ 2cA

[
f ij
P (

T
2 + a)− 2 f ij

P (
T
2 ) + f ij

P (
T
2 − a)

]
f ij
A(

T
2 ) +

cA
2

[
f ij
P (

T
2 + a)− f ij

P (
T
2 − a)

] .

(G.3)

Note that in (G.3), the alternative discretization ∂∗0∂0 (cf. (A.32)) of the second deriva-
tive has been used instead of ∂̃2

0.
The difference between the two quantities Γij

(1) and Γij
(2) is a pure lattice artifact.

On the one hand, they both inherit discretization errors from the correlation function
f ij
A,I (cf. (9.21))—which themselves stem from the discretized action and the operator
O ji (cf. (5.46)). On the other hand, the respective discretizations of the logarithmic
derivative introduce further cutoff effects. The latter can be investigated in isolation
by ignoring the former in the approximation of no excited states (cf. (9.21),(9.22)), that
is by using

f ij
A,I(x0) ∼ e−mij

PS·x0 . (G.4)

In doing so, we find

Γij
(1) = − 1

2a
log

(
f ij
A(x0 + a)

f ij
A(x0 − a)

) ∣∣∣∣
x0=T/2

(G.4)
= − 1

2a
log
(

e−2amij
PS

)
= mij

PS (G.5)

and

Γij
(2) = −

∂̃0 f ij
A(x0)

f (x0)

∣∣∣∣
x0=T/2

(G.4)
=

1
a

sinh
(

amij
PS

)
= mij

PS

(
1 +

1
6
(amij

PS)
2 + O(a4)

)
. (G.6)
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G.2 Results for Φ?
2 and Φ?

3 under use of Γ(2)

L2/a ens. Ncf L2Γss̃
(2) L2Γud

(2) L2Γss̃
(2),cor τint Qfit

12 C12 500 1.42(7) 0.76(6) 0.66(1) 5(1)
16 C16 500 0.80(6) 0.11(5) 0.69(1) 7(2)
20 C20 180 0.51(4) -0.15(4) 0.66(2) 9(4)
24 C24 500 0.79(3) 0.19(3) 0.60(1) 17(6)
32 C32 180 0.48(2) -0.14(2) 0.62(1) 8(3)

∞ without L2/a = 12 0.59(1) 0.01
∞ with L2/a = 12 0.61(1) 0.00

Table G.1: Results of the N f = 2 runs to determine L2Γss̃
(2),cor at z?l = L2M?

l under use of the

alternative discretization Γij
(2) (cf. (G.1)). See tab. 9.5 for further explanations and

comparison to the results obtained with Γij = Γij
(1).

Hence, the discretization of the logarithmic derivative as used in Γij
(1) introduces no

explicit errors in the absence of excited states, as opposed to the one in Γij
(2). For this

reason, we use

Γij ≡ Γij
(1) (G.7)

as mentioned in the main text, cf. (9.26). The relative cutoff effects between the two
discretizations, apparent in (G.5) and (G.6), will be investigated explicitly in the N f = 2
theory in app. G.2.

G.2 Results for Φ?
2 and Φ?

3 under use of Γ(2)

The quantities Φ?
2 and Φ?

3 have been determined in sec. 9.2.4 and sec. 9.2.5 as the
continuum extrapolated values of the specific effective meson masses given in (9.28b)
and (9.28c), respectively, under use of the standard discretization Γij = Γij

(1) (cf. (9.26)).

We here provide the results obtained with the alternative discretization Γij
(2) (cf. (G.1)),

and check for agreement between the two definitions in the continuum.

The light EMM Γss̃
(2),cor and Φ?

2,(2)

The results for L2Γss̃
(2),cor by use of the discretization Γij

(2) are listed in tab. G.1. The dif-

ference from the standard lattice discretization Γij = Γij
(1) is insignificant. Accordingly,
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G Effective meson masses on the lattice

L2/a ens. Ncf L2Γsc
(2) L2

(
Γsc
(2),cor −

1
2 Γ(2),cor

ss̃

)
τint Qfit

12 C12 500 7.95(8) 6.86(4) 4(1)
16 C16 500 7.20(10) 6.75(5) 7(2)
20 C20 180 6.69(8) 6.51(7) 9(4)
24 C24 500 6.73(6) 6.24(5) 18(7)
32 C32 180 6.33(5) 6.16(4) 13(5)

∞ without L2/a = 12 5.94(5) 0.36
∞ with L2/a = 12 6.10(4) 0.00

L2Γsc
(2−1),cor

0.553(15)
0.265(9)
0.145(6)
0.096(3)
0.051(3)

Table G.2: Left: Results of the N f = 2 runs to determine L2(Γsc
(2),cor −

1
2 Γss̃

(2),cor) at z?l = L2M?
l

and z?c = L2M?
c under use of the alternative discretization Γij

(2) (cf. (G.1)). See tab. 9.6

for further explanations and comparison to the results obtained with Γij = Γij
(1).

Right: Results for L2Γsc
(2−1),cor, which incorporates the relative cutoff effects of the

two discretizations, cf. (G.10) and fig. G.1.

the continuum extrapolation leads to

Φ?
2,(2) = 0.59(1) , (G.8)

which is exactly the same as Φ?
2 (cf. (9.57)).

The charm EMM Γsc
(2),cor and Φ?

3,(2)

Similarly, the results for L2

(
Γsc
(2),cor − Γss̃

(2),cor

)
by use of the discretization Γij

(2) are listed

in tab. G.2, and illustrated together with those obtained with Γij = Γij
(1) in the left panel

of fig. G.1.
The continuum extrapolated value

Φ?
3,(2) = 5.94(5) (G.9)

is again well in accordance with Φ?
3 , see (9.61), as expected. However, in this case,

the results on the lattice differ significantly for the two definitions. This comes as no
surprise as the respective cutoff effects scale with the masses of the valence quarks,
or equivalently, the pseudoscalar mass mij

PS in the approximation of no excited states.
This is true also for the difference between Γij

(1) and Γij
(2), which by comparison of (G.5)
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G.2 Results for Φ?
2 and Φ?

3 under use of Γ(2)
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Figure G.1: Left: L2

(
Γsc
(d),cor −

1
2 Γss̃

(d),cor

)
for the two discretizations d = 1, 2 of the effective

meson masses, as listed in tab. 9.6 and tab. G.2, respectively. The fits, linear in
(a/L2)

2, are illustrated by the solid and the dashed line for d = 1 and d = 2,
respectively. The continuum extrapolated value Φ?

3,(2) for d = 2 (shown as the
empty black squared symbol) is slightly shifted to the right for convenience. Right:
Difference L2Γsc

(2−1),cor (cf. (G.10) of the two discretizations of the effective meson

masses. The solid line illustrates the fit given in (G.11), quadratic in (a/L2)
2, while

the dashed line represents the associated tangent with the slope parameter a1. The
dotted line shows a fit linear in (a/L2)

2. The data for L2/a = 12 (red) is not taken
into account in any of the above fits.
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G Effective meson masses on the lattice

and (G.6) amounts to

L2Γij
(2−1) ≡ L2Γij

(2) − L2Γij
(1) =

1
6

(
L2mij

PS

)3
(

a
L2

)2

+ O(a4) . (G.10)

The relative cutoff effects between the two discretizations are thus quite small in the
case of the light quarks that enter L2Γss̃

(d),cor, but larger if the charm is involved as in
the case of the quantity L2(Γsc

(d),cor−
1
2 Γss̃

(d),cor). In the right panel of fig. G.1, the relative
cutoff effects (G.10) are displayed for L2Γsc

(d). We find that the data may indeed well be
described by a fit quadratic in (a/L2)2:

L2Γij
(2−1) = a0 + a1(a/L2)

2 + a2(a/L2)
4 (G.11a)

with

a0 = 0.005(11) , a1 = 40(11) , a2 = 68(25) · 102 . (G.11b)

The slope parameter a1 = 1
6

(
L2mij

PS

)3
of this fit together with the approximately

known scale L2 ≈ 4 GeV−1 (cf. (9.44a)) allows to estimate the mass

msc
PS ≈ 1.55 GeV (G.12)

of a pseudoscalar meson with a light and a charm valence (anti-)quark in N f = 2.
This serves as a cross check, as it is roughly of the order of the masses [26] of the
D-mesons D0(1865), D+(1870) and D+

s (1968), whose valence quark content is cū, cd̄
and cs̄, respectively. If the relative cutoff effects are modelled by a fit linear in (a/L2)2

(shown as the dotted line in fig. G.1), the same procedure yields an even better value
of

msc
PS ≈ 1.86 GeV . (G.13)

Note, however, that the quality of the fit in that case is worse as the curvature obviously
present in the data is not taken into account, and the continuum extrapolated value is
not compatible with zero as for the quadratic fit (cf. a0 in (G.11b)).
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G.3 Mass dependence of the effective meson masses ΓA, ΓP in N f = 2

G.3 Mass dependence of the effective meson masses ΓA, ΓP

in N f = 2

Since we know the relation between the RGI masses and the hopping parameters in
N f = 2 (cf. sec. 9.2.2), this theory allows to study the dependence of the quantities

L2 · Γss̃ and L2 ·
(

Γsc − 1
2

Γss̃
)

, (G.14)

in terms of which Φ?
2 and Φ?

3 are defined (cf. (9.28)), on the light and charm quark
masses. As explained in sec. 9.1, the definition of the effective meson masses incorpo-
rates the axial current,

Γij ≡ Γij
A = −∂̃0 log

(
f ij
A,I(x0)

) ∣∣
x0=T/2 , i, j ∈ {l, c} , (9.20)

and we will compare this to the use of the pseudoscalar density in the similar quantity

Γij
P = −∂̃0 log

(
f ij
P (x0)

) ∣∣
x0=T/2 , i, j ∈ {l, c} . (G.15)

To this end, we compute both Γij
A and Γij

P under use of the N f = 2 ensembles (cf. sec.
9.2.1) at the dimensionless RGI masses zi = L2Mi in the combinations

(zl , zc) with zl < zc (G.16)

and

zl , zc ∈ {0, z?l , 3z?l , 0.5z?c , 0.9z?c , z?c , 1.1z?c} . (G.17)

The results for the respective continuum extrapolated values are given in tab. G.3 and
depicted in fig. G.2.

We find that the deviation of ΓA and ΓP plays a role only if both the masses of the
involved valence quarks are small, i.e. zl in the case of Γss̃. Once there is a heavy
(charm-like) quark involved, the difference becomes insignificant. This is in com-
pliance with the behavior expected from the discussion in sec. 9.1, see (9.24). The
dependence of the quantities (G.14) on the dimensionless RGI masses zl and zc under
use of the pseudoscalar density, Γ ≡ ΓP, may very well be described by linear func-
tions. An effective description of the data for Γss̃

A at small zl is achieved if the deviation
from Γss̃

P is modelled by a third order polynomial fixed to the values Γss̃
A(zl = 0) = 0
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G Effective meson masses on the lattice

zl lima→0 L2Γss̃
A Qfit lima→0 L2Γss̃

P Qfit

0 0 2.07(12) 0.84
z?l 0.59(1) 0.01 2.30(11) 0.73

3z?l 1.60(2) 0.04 2.79(10) 0.52
0.5z?c 6.17(5) 0.31 6.29(7) 0.04
0.9z?c 9.82(5) 0.12 9.82(5) 0.00

z?c 10.69(5) 0.07 10.69(5) 0.00

zl lima→0 L2

(
Γsc

A −
1
2 Γss̃

A

)
Qfit lima→0 L2

(
Γsc

P −
1
2 Γss̃

P

)
Qfit

0 6.10(5) 0.22 5.28(5) 0.01
z?l 5.96(5) 0.30 5.30(4) 0.01

3z?l 5.76(4) 0.37 5.31(4) 0.01
0.5z?c 5.39(3) 0.13 5.30(3) 0.00
0.9z?c 5.35(3) 0.07 5.29(3) 0.00

z?c 5.35(3) 0.07 5.29(3) 0.00

zc lima→0 L2

(
Γsc

A −
1
2 Γss̃

A

)
Qfit lima→0 L2

(
Γsc

P −
1
2 Γss̃

P

)
Qfit

z?l 0.29(1) 0.01 1.10(5) 0.76
3z?l 0.83(1) 0.03 1.33(5) 0.53

0.5z?c 3.46(4) 0.21 3.07(4) 0.04
0.9z?c 5.49(5) 0.30 4.85(4) 0.01

z?c 5.96(5) 0.30 5.30(4) 0.01
1.1z?c 6.43(5) 0.30 5.73(4) 0.01

Table G.3: Dependence of lima→0 L2Γss̃
φ on the light quark mass zl (top), lima→0 L2

(
Γsc

φ − 1
2 Γss̃

φ

)
on the light quark mass zl (middle) and lima→0 L2

(
Γsc

φ − 1
2 Γss̃

φ

)
on the charm quark

mass zc (bottom). All quantities are shown for φ = A and φ = P and with the
respective other quark mass held fixed to zi = z?i with i = l or i = c. Qfit gives the
quality of the continuum extrapolations, which in the case of φ = A were conducted
under use of the corrected quantity Γij

A ≡ Γij
cor (cf. (9.55)). Some errors of the results

for φ = P are assumingly underestimated due to the poor fit quality, especially for
large masses.
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Figure G.2: Continuum extrapolated values of L2Γss̃
φ (left) as well as L2(Γsc

φ − 1
2 Γss̃

φ ) and L2Γsc
φ

(right) for φ = A, P as a function of the light mass zl = L2Ml of the strange-like
quark flavor s (top) and the mass zc = L2Mc of the charm-like quark flavor (bottom).
The respective other quark mass is held fixed to z?c (top) and z?l (bottom). The points
that correspond to Φ?

2 and Φ?
3 are highlighted in red and green, respectively.
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G Effective meson masses on the lattice

φ A P

∂
∂zl

(
lima→0 L2Γss̃

φ

) ∣∣∣∣
zl=z?l ,zc=z?c

2.95(3) 1.45(1)

∂
∂zl

(
lima→0 L2

(
Γsc

φ − 1
2 Γss̃

φ

))∣∣∣∣
zl=z?l ,zc=z?c

-0.71(2) -0.002(6)

∂
∂zc

(
lima→0 L2

(
Γsc

φ − 1
2 Γss̃

φ

))∣∣∣∣
zl=z?l ,zc=z?c

0.78(1) 0.73(1)

Table G.4: Dependence of the quantities L2Γss̃
φ and L2

(
Γsc

φ − 1
2 Γss̃

φ

)
on the dimensionless RGI

masses zl and zc at the points zl = z?l , zc = z?c that define the LCP, under use of the
0th component of the axial current (Γ ≡ ΓA) and the pseudoscalar density (Γ ≡ ΓP).

and Γss̃
A(zl = z?c ) = Γss̃

P (zl = z?c ), see fig. G.2. A very similar approach describes the
dependence of Γsc

A on zc.
As explained in sec. 9.1, see (9.23), it is advantageous with regard to the tuning in

N f = 3+ 1 (sec. 9.3) for L2Γss̃
φ to strongly depend on zl , and L2

(
Γsc

φ − 1
2 Γss̃

φ

)
to strongly

(weakly) depend on zc (zl). The partial derivatives of these quantities1 with respect to
zl and zc at the LCP are shown in tab. G.4 for both the cases φ = A and φ = P. We
find that the wanted dependencies of L2Γss̃

φ on zl as well as L2

(
Γsc

φ − 1
2 Γss̃

φ

)
on zc are

stronger for φ = A than φ = P. The axial current is thus better suited to determine
Φ?

2 (in N f = 2) and fix Φ2 to it (in N f = 3 + 1). However, this comes at the cost

that L2

(
Γsc

φ − 1
2 Γss̃

φ

)
does unwantedly depend also on zl for φ = A, which is not the

case for φ = P. The subtraction of half the light EMM Γss̃ from Γsc serves its purpose
to minimize the dependence on zl , perfectly for φ = P, while the resulting quantity
drops by ∼ 12 % from zl = 0 to zl = z?c in the case of the axial current. This might
be a disadvantage with regard to the effort of the tuning of Φ3 to Φ?

3 in N f = 3 + 1.
Nevertheless, we opt for the use of the axial current.

G.4 ΓA with unimproved axial current correlation function in
N f = 2

In this section, the continuum extrapolations of the quantities L2Γss̃
cor and L2(Γsc

cor −
1
2 Γss̃

cor), which lead to Φ?
2 and Φ?

3 , respectively, are considered with the unimproved axial
current correlation function fA employed in the EMM Γ, i.e. with cA → 0. The results

1Due to the fixed volume, ∂L2 = 0, the derivatives with respect to the RGI Masses Mi may be retrieved
under use of ∂(L2Γ)

∂zi
=

∂(L2Γ)
(∂L2)Mi+L2(∂Mi)

= 1
L2

∂(L2Γ)
∂Mi

.
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G.4 ΓA with unimproved axial current correlation function in N f = 2

L2/a ens. L2Γss̃
cor Qfit L2Γss̃

0,cor Qfit

12 C12 0.65(1) 0.63(1)
16 C16 0.68(1) 0.67(1)
20 C20 0.66(2) 0.65(2)
24 C24 0.60(1) 0.60(1)
32 C32 0.62(1) 0.62(1)

∞ 0.59(1) 0.01 0.59(1) 0.01

L2/a ens. L2

(
Γsc

cor − 1
2 Γss̃

cor

)
Qfit L2

(
Γsc

0,cor −
1
2 Γss̃

0,cor

)
Qfit

12 C12 6.32(3) 6.25(3)
16 C16 6.49(4) 6.45(4)
20 C20 6.37(6) 6.34(6)
24 C24 6.15(5) 6.13(5)
32 C32 6.11(4) 6.10(4)

∞ 5.96(5) 0.30 5.96(5) 0.31

Table G.5: Additional results of the N f = 2 runs on L2Γss̃
cor (top) and L2(L2Γsc

cor − 1
2 L2Γss̃

cor)

(bottom) with the improved and unimproved axial correlation function, fA,I and fA,
respectively. In the latter case, the EMM are labelled with a subscript 0. Compare
to tab. 9.5 and tab. 9.6. The data for L2/a = 12 is excluded from the continuum
extrapolations.

are compared to the original ones of sec. 9.2.4 and sec. 9.2.5 in tab. G.5. The effects
on the lattice results are rather small in size, and significant only for L2(Γsc

cor − 1
2 Γss̃

cor),
illustrated in fig. G.3. The cutoff effects are still in accordance with an O(a2) behavior.
In both cases, the alteration does not affect the continuum extrapolated values, as
anticipated.
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G Effective meson masses on the lattice

Figure G.3: L2

(
Γsc

cor − 1
2 Γss̃

cor

)
as shown in

fig. 9.5 (filled symbols), compared
to the same quantity with cA set
to zero (empty symbols). The fits,
linear in (a/L2)

2, are illustrated
by the solid and the dashed line
for the non-perturbative cA and
cA = 0, respectively. The contin-
uum extrapolated value in the case
of cA = 0 (shown as the empty
black squared symbol) is slightly
shifted to the right for convenience.
The data for L2/a = 12 (red) is not
taken into account in the fits.
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H Fit methods

The present chapter briefly covers the description of data by fit functions. Although
most of the presented methods constitute established textbook knowledge, we include
them here for completeness, to set our notation, and to ensure transparency of our
results. The presentation is mostly based on [159, 160].

We consider an N-tuple of data (y1, . . . yN) with errors (σ1, . . . σN) at points
(x1, . . . xN) in D dimensions, yn, σn ∈ R and xn ∈ RD. These are to be described
by a fit function

f : RD ×R → R , (x, c) 7→ f (x, c) (H.1)

with a number of P fit parameters c = (c1, . . . , cP).

H.1 Optimal fit parameters by χ2 minimization

The optimal fit function is defined by the parameters c that minimize the χ2 function,

χ2 : RP → R , c 7→ χ2(c) (H.2)

with

χ2(c) =
N

∑
n=1

(yn − f (xn, c))2

σ2
n

. (H.3)

The minimum of χ2 is given at the point where its gradient vanishes1, which leads to
P equations for the P fit parameters sought for:

∂χ2

∂cp
= −2

N

∑
n=1

(yn − f (xn, c))
σ2

n

∂ f (xn, c)
∂cp

= 0 , p ∈ {1, . . . , P} . (H.4)

1χ2 possesses a global minimum as it is restricted from below. Possibly existing local minima do play a
role if the fit parameters are non-linear, see below.
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H Fit methods

In the case of linear fit parameters, where the fit function may be written as

f (x, c) =
P

∑
q=1

cq fq(x) , (H.5)

the partial derivatives ∂ f
∂cp

(xn; c) = fp(xn) depend on xn only, such that the equations
(H.4) become

P

∑
q=1

N

∑
n=1

fp(xn)

σ2
n

fq(xn) · cq =
N

∑
n=1

fp(xn)

σ2
n

yn , p ∈ {1, . . . , P} . (H.6)

This linear system can be written in matrix form as

Ac = b , (H.7a)

where

Apq =
N

∑
n=1

fp(xn)

σ2
n

fq(xn) , bp =
N

∑
n=1

fp(xn)

σ2
n

yn . (H.7b)

Note that A ≡ A({xi}, {σi}) and b ≡ b({xi}, {yi}, {σi}). The optimal fit parameters in
the linear case (H.5) are thus simply given by c = A−1b. In the more general case of
non-linear fit parameters, the equations (H.4) are coupled, do not necessarily possess
a unique solution and may not be solved analytically. Instead, one employs numerical
non-linear optimization techniques (cf. sec. 9.3).

H.2 Error analysis and fit quality

With the optimal fit parameters given, their covariance matrix, which encodes the
uncertainties and mutual correlations needs to be determined. Its inverse, to first
order in the deviation from the optimal fit parameters, is given by the curvature2 of
χ2, i.e. one half times the Hesse matrix:

cov−1(cp, cq) =
1
2

∂χ2(c)
∂cp ∂cq

. (H.8)

2Note, however, that in the general case of non-linear fit parameters, a P-dimensional paraboloid not
necessarily has to be a good approximation of χ2 around the minimum, in which case better approx-
imations need to be applied to render the method more precisely (e.g. “profile likelihood method”).
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H.2 Error analysis and fit quality

This corresponds to the notion that the uncertainties are smaller the larger the cur-
vature. For non-linear fit parameters, again, the Hesse matrix can only be computed
numerically. In the special case of linear fit parameters, in contrast, the covariance may
analytically be obtained from the covariance matrix cov(yn, ym) of the data by linear
error propagation:

cov(cp, cq) = cov((A−1)pp′ bp′ , (A−1)qq′ bq′)

= (A−1)pp′ ∑
n,m

fp′(xn) fq′(xm)

σ2
n σ2

m
(A−1)qq′ cov(yn, ym)︸ ︷︷ ︸

σ2
nδnm

= (A−1)pp′ Ap′q′ (A−1)qq′

= (A−1)pq . (H.9)

Note that we have assumed uncorrelated data {yi} here, in the second line. The result
is in accordance with (H.8):

1
2

∂χ2(c)
∂cp ∂cq

(H.4)
=

1
2

∂

∂cq

[
−2

N

∑
n=1

(yn − f (xn; c))
σ2

n

∂ f (xn; c)
∂cp

]
=

N

∑
n=1

fq(xn)

σ2
n

fp(xn) = Apq .

(H.10)

Moreover, (H.9) is equivalent to the generic and possibly more familiar expression

cov(cp, cq) = ∑
n,m

∂cp

∂yn
· cov(yn, ym) ·

∂cq

∂ym
, (H.11)

as can readily be seen by application of (H.7) to the second line of (H.9).
The standard errors of the cp’s are easily retrieved from the diagonal elements of

(H.9):

σp =
√

cov(cp, cp) =
√
(A−1)pp . (H.12)

More generally, the uncertainty ∆ f ≡ σf of any function f that depends on the fit
parameters c, in particular the one of the fit function itself, may be derived by lin-
ear propagation of the fit parameter errors under consideration of their correlations,
similar to (H.11):

(∆ f )2 (x, c) = ∑
p,q

∂ f (x, c)
∂cp

· cov(cp, cq) ·
∂ f (x, c)

∂cq
. (H.13)
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A useful measure which disregards the absolute size of the variances is the correlation

cor(cp, cq) =
cov(cp, cq)√

cov(cp, cp) · cov(cq, cq)
. (H.14)

Errors σx,i in the variables xi, if they are independent of those of yi (i.e. cor
(
σx,i, σj

)
=

0 ∀ i, j ∈ {1, . . . , N}), can be projected under use of the partial derivatives of the fit
function f with respect to the components of x:

σ2
tot,i = σ2

i +
(

f ′(xi) · σx,i
)2 . (H.15)

As the fit function and thus f ′(xi) depends on the deployed errors σi, the fitting proce-
dure should then be repeated with σtot,i and possibly iterated until f ′(xi) and therefore
σtot,i is stable.

Once the optimal fit parameters are determined, one should evaluate the compati-
bility of the data with the model chosen to describe it. To this end, one considers the
expected distribution of χ2 for n ∈ {1, . . . , N} independent, random variables ỹn with
individual, normal probability distributions

Pf (xn),σn(ỹn) =
1√

2πσn
e
− (ỹn− f (xn))2

2σ2
n , (H.16)

whose expectation values and errors are given by the fit function f (xn) and the errors
σn of yn, respectively. The probability pdf(χ2, N) for a certain χ2 > 0 to occur in this
setting can be obtained by integration over the product of those individual distribu-
tions:

pdf(χ2, N) =
∫

dỹ

[
N

∏
n=1

Pf (xn),σn(ỹn)

]
δ(χ2(ỹ)− χ2) =

(χ2)N/2−1 · e−χ2/2

2N/2 Γ(N/2)
. (H.17)

The probability for a χ2 smaller than a value χ2
? to occur is given by the cumulative

probability cdf(χ2
?, N), while its counterpart

Qfit(χ
2
?, N) = 1−

∫ χ2
?

0
dχ2 pdf(χ2, N)︸ ︷︷ ︸

cdf(χ2
?,N)

=
∫ ∞

χ2
?

dχ2 pdf(χ2, N) (H.18)

provides the probability for χ2 > χ2
?.

As the expectation value of χ2 is monotonically increasing with N, it is instructive
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Figure H.1: Left: Probability distribution function pdf(χ2, N) as defined in (H.17). Right: Fit
quality function Qfit(χ

2, N) as defined in (H.18).

to consider the quantity χ2/N, which for large N approximates a normal distribution
whose expectation value and width behave like

〈
χ2/N

〉
≈ 1 , σχ2/N ≈

2√
N

. (H.19)

The distributions of χ2/N and the associated Qfit are depicted for different degrees of
freedom N in fig. H.1.

In the case where the data {yn, σn} determines the fit function f and the associated
χ2

fit, the quantity Qfit(χ
2
fit, ·) provides the probability of statistically distributed data

with χ2 > χ2
fit to occur under the assumption that the fit function represents the

correct model. However, the number of degrees of freedom is in that case diminished
by the number of fit parameters,

ndof = N − P , (H.20)

which can be understood in the way that this very number of data points is needed to
fix the parameters. Hence,

Qfit(χ
2
fit, ndof) =

∫ ∞

χ2
fit

dχ2 pdf(χ2, ndof) (H.21)

is used as a measure to estimate the quality of the fit, with a large value indicating a
large probability for the fit function to constitute a valid model.

If the data {yi} is given without errors {σi}, these are first set to one, so that each

269



H Fit methods

data point has the same weight in the determination of the optimal fit parameters. The
covariance matrix cov(cp, cq) of the fit parameters may then be estimated by scaling
the errors {σi} such that instead of the minimized χ2

fit/ndof one obtains the expectation

value, i.e.
〈
χ2

fit/ndof
〉 !
= 1. However, even if constant σi is a valid assumption and the

fit model is correct, the procedure leads to biased error estimates due to the presence
of statistical fluctuations of χ2

fit/ndof around 1. As the size of these fluctuations follows
(H.19), the resulting fit parameter error estimates are more reliable the larger ndof, and
should be considered with care especially if ndof is small. In addition, the opportunity
to assess the quality of the fit via Qfit (H.21) is not given in the case of missing data
errors {σi}.

H.3 Details on performed fits

In the present work, the optimal fit parameters and their covariance matrix in the case
of all linear or linearizable fit functions were analytically calculated as described in
sec. H.1. The non-linear Padé fit results (sec. 9.6.3) were conducted with the python
package kafe [160], which under the surface applies the TMinuit class of the ROOT
package [161]. All results were subjected to an independent cross check under use
of the (non-linear) curve_fit routine, which is part of the SciPy library [162]. In
tab. H.1, we list the respective covariance matrices of the fit parameters for complete-
ness.
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H.3 Details on performed fits

ref. fit function misc fit parameters covariance matrix Qfit

(9.53) g2
GF(a2)

Φ?
1 = 7.31

s1 = 136.20

 0.0105 −3.6863

−3.6863 1628.2

 0.99

(9.56) L2Γss̃
cor(a2)

Φ?
2 = 0.59

s2 = 22.82

 0.0001 −0.0513

−0.0513 28.607

 0.01

(9.60) L2

(
Γsc

cor − 1
2 Γss̃

cor

)
(a2)

Φ?
3 = 5.96

s3 = 135.67

 0.0025 −0.8833

−0.8833 398.22

 0.30

(9.124a) T?∆Mud(csw) T?/a = 8
c(8)sw,I = 2.211

s(8) = −0.141

6.3 2.1

2.1 3.5

 · 10−4 0.21

(9.124a) T?∆Mud(csw) T?/a = 12
c(12)

sw,I = 2.105

s(12) = −0.105

9.2 3.2

3.2 2.6

 · 10−4 0.12

(9.124a) T?∆Mud(csw) T?/a = 16
c(16)

sw,I = 1.828

s(16) = −0.083

3.5 0.7

0.7 0.7

 · 10−4 0.73

(9.124a) T?∆Mud(csw) T?/a = 20
c(20)

sw,I = 1.760

s(20) = −0.059

11.6 2.2

2.2 1.6

 · 10−4 0.47

(9.124a) T?∆Mud(csw) T?/a = 24
c(24)

sw,I = 1.686

s(24) = −0.063

4.1 0.3

0.3 1.6

 · 10−4 0.01

(9.124b) T?∆Mud(csw) global

c(24)
sw,I = 1.688

c(20)
sw,I = 1.755

c(16)
sw,I = 1.833

c(12)
sw,I = 2.105

c(8)sw,I = 2.202

s = −1.257


59.2 0.5 0.6 0.8 0.5 7.6

0.5 77.3 2.9 4.0 2.4 38.7

0.6 2.9 34.3 5.0 3.0 48.2

0.8 4.0 5.0 59.1 4.1 66.2

0.5 2.4 3.0 4.1 42.2 39.3

7.6 38.7 48.2 66.2 39.3 638.2


·10−5

0.14

(9.126) csw,I(g2
0,I)

global

2nd order

a = −0.257

b = −0.050

6.2 3.6

3.6 2.1

 · 10−5 0.59

Table H.1: Fit parameters and their associated covariance matrices for the most important fits
employed in this work. The first column of the table refers to the respective explicit
forms of the fit functions listed in the second column. The covariance matrices are
ordered according to the shown order of the fit parameters, i.e. the element in the
first column and row is the variance of the first fit parameter etc.
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I Additional results and checks

I.1 Detailed results of the simulations (example)

In this section, we provide detailed results of the numerical simulations described in
sec. 9, for the quantities listed in tab. 9.11. We use the runs at T?/a = 24 and csw = 1.8
as an example. The results of the tuning simulation are listed in tab. I.1. Monte Carlo
histories of selected observables (and the impact of different Nth for Φi) are shown in
fig. I.1 and fig. I.2. The corresponding results of the improvement simulations can be
found in tab. I.2, fig. I.3 and fig. I.4. Furthermore, fig. I.5 gives information on the
stability of the results with regard to the thermalization (i.e. the choice of N(rep)

th ) and
replica, see also app. I.2.
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Figure I.1: MC histories and histograms of e−∆H , normalized RHMC reweighting factors, and
the topological charge Qtop.
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I Additional results and checks

Tuning (LCP) (LCP)

• Algorithmic & Basic

Ncf 3000 (2 MDU)

N(th)
th 1000

N1 10

Sτ 4-10

Result τint[2 MDU]

Pacc (96.54 ± 0.12) % 0.53 ± 0.04

EP 1.79778 ± 0.00003 1.78 ± 0.25

exp(−∆H) 0.9994 ± 0.0020 0.49 ± 0.02

• Rational approximation

n ra – rb spectrum [ms2] max(W) [ms1]

Ds 8 2.60e-02 – 7.00e+00 3.81e-02 – 6.31e+00 8.66e-02

Dc 6 1.90e-01 – 7.10e+00 2.07e-01 – 6.37e+00 3.93e-02

• Topological charge & GF coupling

c = 0.3

Result τint[2 MDU]

Qtop -0.0014 ± 0.0012 1.54 ± 0.31

Q2
top 0.0010 ± 0.0010 1.50 ± 0.30

δε
Qtop,0 (99.8 ± 0.2) % 1.50 ± 0.30

g2
GF 7.11 ± 0.07 12.79 ± 6.07

g2
GF,0 7.11 ± 0.07 12.85 ± 6.10

• Main results

Result Di[%] τint[2 MDU]

Φ1 7.11± 0.07 −2.8± 1.0 12.79± 6.07

Φ2 0.56± 0.01 −4.9± 2.3 1.77± 0.41

Φ3 5.87± 0.06 −1.5± 1.0 33.52± 20.44

Table I.1: Detailed results for the tuning run at T?/a = 24, L/a = 24, csw = 1.8 and g2
0 =

1.6344, κl = 0.13515, κc = 0.13132 (cf. tab. 9.14).
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I.1 Detailed results of the simulations (example)
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Figure I.2: MC histories and histograms of the primary observable Φ1 (left panel). The figures
in the right panel show the expectation values of bins of 200 configurations (top)
and the overall expectation value in dependence of Nth (bottom) for Φ1, Φ2 and Φ3.
The configurations which were in the end discarded due to the choice of Nth are
shown in gray.
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I Additional results and checks

Improvement (IMPR) (IMPR)

• Algorithmic & Basic

Ncf 8x4000 (2 MDU)

N(rep)
th 0

N1 9

Sτ 4-10

Result τint[2 MDU] Qrep

Pacc (97.40 ± 0.02) % 0.50 ± 0.01 0.56

EP 1.79768 ± 0.00002 1.92 ± 0.08 0.70

exp(−∆H) 1.0003 ± 0.0004 0.49 ± 0.01 0.82

• Rational approximation

n ra – rb spectrum [ms2] max(W) [ms1]

Ds 8 5.00e-02 – 7.50e+00 7.47e-02 – 6.11e+00 1.74e-02

Dc 6 2.00e-01 – 7.60e+00 2.30e-01 – 6.20e+00 1.55e-02

• Topological charge & GF coupling

c = 0.3

Result τint[2 MDU] Qrep

Qtop 0.0001 ± 0.0001 1.08 ± 0.06 0.14

Q2
top 0.0002 ± 0.0001 0.80 ± 0.04 0.20

δε
Qtop,0 (100.0 ± 0.0) % 0.79 ± 0.03 0.14〈
t2E(t)

〉
(8.52 ± 0.01)·10−2 5.19 ± 0.60 0.31〈

t2E(t)
〉
|Qtop=0 (8.52 ± 0.01)·10−2 5.19 ± 0.60 0.31

• Main results

Result T?/a · Result τint[2 MDU] Qrep

aMud(T/2, T/4) 0.0031 ± 0.0002 0.076 ± 0.004 1.11 ± 0.09 0.15

a∆Mud(3T/4, T/4) -0.0003 ± 0.0001 -0.007 ± 0.002 0.85 ± 0.06 0.80

Table I.2: Detailed results for the improvement run at T?/a = 24, L/a = 12, csw = 1.8 and
g2

0 = 1.6344, κl = 0.13515, κc = 0.13132 (cf. tab. 9.15).

276



I.1 Detailed results of the simulations (example)
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Figure I.3: MC histories and histograms of e−∆H , normalized RHMC reweighting factors, and
the topological charge Qtop.
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Figure I.4: MC history and histogram of t2E(t) for one replicum (left panel). The figures in the
right panel show the expectation values of bins of 200 configurations (top) and the
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Figure I.5: The quantities a∆Mud, aMud and t2E(t) (top left), their autocorrelations τint (top
right), and their replica qualities Qrep (bottom right) in dependence of the thermal-

ization N(rep)
th . For the eventual choice of N(rep)

th , filled circles are used, and the
results of the single replica are compared (bottom left).

I.2 Stability of results for T?∆Mud and csw,I

Thermalization stability

First, we check the thermalization for the quantity T?∆Mud. To this end, the results
of the thermalization run (nrep = 1, N(th)

th 6= 0) are compared with those of the replica
runs without additional thermalization (nrep = 8, N(rep)

th = 0), cf. the discussion in
sec. 9.5.2. If both ensembles are fully thermalized, their results should be in agreement
up to statistical deviations. In the left panel of fig. I.6, the difference

δth,rep =
T?∆Mud,th − T?∆Mud,rep√(

δ (T?∆Mud,th)
)2

+
(
δ
(
T?∆Mud,rep

) )2
(I.1)
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I.2 Stability of results for T?∆Mud and csw,I
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Figure I.6: Stability of the results for T?∆Mud without additional thermalization of the replica,

N(rep)
th = 0. The left panel shows the deviation δth,rep of the results from the thermal-

ization and replica runs, (I.1), whereas the quality Qrep of the replica distributions
is displayed in the right panel.

is shown for all runs. The probability Q(null-hypothesis) for statistical deviations
to be larger or equal to the ones observed are also displayed for each T?/a in the
figure. In the right panel, the quality of the replica distribution for T?∆Mud is shown.
We emphasize again that the displayed results are all obtained without an additional
thermalization of the replica, i.e. N(rep)

th = 0. In the cases1 of |δth,rep| > 2 or Qrep < 0.10,
this number was increased to exclude biased results due to incomplete thermalization.

Fit stability

We investigate the stability of the individual fits of T?∆Mud as a function of csw, shown
in the left panel of fig. 9.13. To this end, we examine χ2/ndof, the fit quality Qfit and
the improvement point csw,I in the case where 1 or 2 data points are excluded from
the fit. The results can be found in fig. I.7. The aforementioned quantities under
consideration of all points in the fit are shown as squared dots (at x = 3.5). The circled
dots, in contrast, correspond to the case of data points taken away from the margins,
according to the table in fig. I.7. Hence, the further a circled dot is plotted on the left
hand side in fig. I.7, i.e. the smaller the x, the more “left-leaning” is the fit, and vice
versa. For the judgment of the data, one should keep in mind that, since the different
fits (≡ different x) take into account a different number of data points, the meaning of
χ2/ndof varies slightly, in the sense that the more data points are involved, the more
likely it should be to get χ2/ndof ≈ 1 (cf. (H.19)). This effect is taken into account

1Concretely, this concerns (T?/a, csw) = (8, 2.0), (12, 2.2), (20, 1.8), cf. fig. I.6.
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Figure I.7: The table shows the number of points taken away from the left (small csw) and right
(large csw) side in the fits of T?∆Mud, and the corresponding value of x at which the
results can be found as circled dots in the neighboring figures. These illustrate the
stability of the fits, with respect to csw,I (top right), χ2/ndof (bottom left), Qfit (bottom
right). The original results with the respective full data sets are shown as solid lines
at x = 3.5, and error bands in the case of csw,I.

by Qfit. We find that both the fit quality and the stability are mostly satisfying. The
exception at T?/a = 24 is partly due to fact that only four data points enter the fit,
and is a reason why the global fit (9.124b) is used in the end, cf. sec. 9.6.2.

I.3 Time dependence of Schrödinger functional correlation
functions

In fig. I.8 and fig. I.9, we compare the time dependences of the SFCFs fA and fP and
quantities derived thereof, for the cases of

T/a = 8, csw = 2.4, g2
0 = 1.9069 (I.2a)

and T/a = 16, csw = 1.7, g2
0 = 1.6741 . (I.2b)
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I.3 Time dependence of Schrödinger functional correlation functions

For the sake of brevity, we constrain ourselves to the improvement simulations. The
first and second derivative of fA and fP are shown since they enter rud, sud and thus
mud

PCAC,I (9.111) with perturbative cA (3.115), as well as cA (9.112) and Mud (9.113). The
respective primed counterparts are illustrated as well. One observes that the SFCFs
and their derivatives are affected by boundary effects. At y0 = T/4, which is relevant
for the imposition of the improvement condition (9.114), this concerns the coarsest
lattice T/a = 8 the most, and is responsible for the weak occurrence of a plateau in
the plots of mud

PCAC,I and Mud. However, we generally find

rud(x0) ≈ r′ud(x0) and mud
PCAC,I(x0) ≈ m′ud

PCAC,I(x0) (I.3)

for both x0 = T/4 and x0 = 3T/4. The imposition of the improvement conditions on
cA (9.109) and csw (9.114) lead to

Mud(x0) = M′ud(x0) . (I.4)

at x0 = T/4 and x0 = 3T/4, respectively. This can be seen in the case of the T/a = 8
simulation, where csw ≈ csw,I, along with the approximate fulfillment of (9.116a). Con-
sequently, the transition from cA = 0 (in rud) or the perturbative use of cA (in mud

PCAC,I)
to the non-perturbatively improved cA,I (in Mud) is a rather small step, ensuring that
the order of magnitude of cA,I is roughly similar to the perturbative estimate. Hence,
the O(a) effects that accompany our choice of the non-perturbative improvement con-
dition are reasonably small. The same holds for csw,I.

In contrast, the values of rud and mud
PCAC,I differ significantly between x0 = T/4 and

x0 = 3T/4, especially for large lattice spacings (T/a = 8):

rud(x0) 6= rud(y0) and mud
PCAC,I(x0) 6= mud

PCAC,I(y0) , (I.5)

and similarly for the primed counterparts. Hence, the above argumentation is unlikely
to be true for an alternative improvement condition that enforces Mud to be equal at
different time slices, like e.g.

Mud(x0) = Mud(y0) . (I.6)
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Figure I.8: x0-dependence of Schrödinger functional correlation functions and derived observ-
ables that are relevant for the imposition of the improvement condition on csw, for
the case of T?/a = 8 and csw = 2.4. Note that all quantities employ the flavor
combination ud.
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Figure I.9: x0-dependence of Schrödinger functional correlation functions and derived observ-
ables that are relevant for the imposition of the improvement condition on csw, for
the case of T?/a = 16 and csw = 1.7. Note that all quantities employ the flavor
combination ud.
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I Additional results and checks

Figure I.10: Results for the average plaquette
EP (I.7) in the case of the tuning
(LCP, filled circles) and improve-
ment (IMPR, empty circles) runs.
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I.4 Additional quantities (EP, Qtop, cA)

Average plaquette

The average plaquette2

EP = 〈SP〉 /(6|X|) (I.7)

is defined as the expectation value of the sum of plaquette variables (cf. (3.30))

SP = ∑
x

∑
µ<ν

Re tr[Uµν(x)] , (I.8)

as it also appears in the Wilson gauge action (3.36), divided by the number 6|X| of
terms summed over (cf. (3.14)). The results of our simulations are compiled in fig. I.10.

Topological charge

The results for the expectation values of the topological charge Qtop (6.31), its sec-
ond moment Q2

top (cf. (6.29)), and the fraction δε
Qtop,0 (7.5) of configurations that are

attributed to the trivial topological sector, are shown for c = 0.3 in fig. I.11, while the
corresponding autocorrelations can be found in fig. I.12.

We find that the expectation value of Qtop is compatible with zero in all cases (except
at T/a = 12, L/a = 12, csw = 2.2). Apart from the tuning simulations at T/a = 8, 12,
virtually all configurations of the respective ensembles belong to the trivial sector.

2Note that while the normalization of EP is a matter of convention, we follow the definition employed
in the openQCD package.
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Figure I.11: Qtop, Q2
top and δε

Qtop,0 with ε = 0.5 for the tuning (left panel) and improvement
(right panel) simulations and c = 0.3. The horizontal black line in the plots at the
bottom corresponds to 100 %.
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Figure I.12: Autocorrelations of the quantities shown in fig. I.11.
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Figure I.13: Results from the improvement simulations for cA,I as given by (9.112). The points
are shifted horizontally, cf. fig. 9.9.

Improvement coefficient cA,I

The improvement coefficient cA,I, defined by (9.112), is shown in fig. I.13. Note that
strictly speaking, the displayed cA,I were evaluated at values of csw that do not cor-
respond to csw,I. Hence, the unique real improvement coefficient cA,I = cA,I|csw,I , that
together with csw,I fulfills both the equations (9.112) and (9.115) is obtained by inter-
polation to csw,I. Without going into further details here, one may anticipate that those
cA,I|csw,I lie in a reasonable range below the perturbative estimates for T ≥ 16, while
they are rather far off for T < 16. These are supposedly cutoff effects that are rooted
in the very definition of cA,I used for the determination of csw,I. For a proper determi-
nation of the improvement coefficient cA, it is more useful to adapt a strategy similar
to the one described in app. F.2.
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