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Abstract

State-of-the-art cold atomic quantum sensors are currently about to outpace
their classical counterparts in precision and accuracy, but are still not exploiting
their full potential. Utilizing quantum-enhanced sensor technology such as matter
wave interferometers in the unique environment of microgravity will tremendously
increase their sensitivity, ultimately outperforming the most accurate ground-
based systems by several orders of magnitude. Microgravity platforms such as
drop towers, zero-g airplanes and sounding rockets are excellent testbeds for ad-
vanced interferometry experiments with quantum gases in space. In return, they
impose demanding requirements on the payload key technologies in terms of me-
chanical and thermal robustness, remote control, miniaturization and redundancy.

In this work, first interferometry experiments with degenerate quantum gases in
zero-g environment have been performed within the QUANTUS project. In more
than 250 free fall experiments operated at the drop tower in Bremen, preparation,
free evolution and phase coherence of a rubidium Bose-Einstein condensate (BEC)
on macroscopic timescales of up to 2 s have been explored. To this end, a BEC
interferometer using first-order Bragg diffraction was implemented in an atom-
chip based setup. Combined with delta-kick cooling (DKC) techniques to further
slow down the expansion of the atomic cloud, effective temperatures of about 1 nK
have been reached. With an asymmetrical Mach-Zehnder geometry, high-contrast
interferometric fringes were observed up to a total time in the interferometer of
2T = 677 ms.

Keywords: Matter wave interferometry, Bose-Einstein condensates, atom chip,
microgravity, drop tower, Bragg diffraction, delta-kick cooling, sounding rocket,
space
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Zusammenfassung

Quantensensoren auf Basis ultra-kalter Atome sind gegenwärtig auf dem Weg
ihre klassischen Pendants als Messintrumente sowohl in Präzision als auch in Ge-
nauigkeit zu überholen, obwohl ihr Potential noch immer nicht vollständig aus-
geschöpft ist. Die Anwendung von Quantensensortechnologie wie Materiewellen-
interferometern im Weltraum wird ihre Sensitivität weiter steigen lassen, sodass
sie potentiell die genauesten erdbasierten Systeme um mehere Größenordnungen
übertreffen könnten. Mikrogravitationsplattformen wie Falltürme, Parabelflugzeu-
ge und Höhenforschungsraketen stellen exzellente Testumgebungen für zukünftge
atominterferometrische Experimente im Weltraum dar. Andererseits erfordert ihre
Nutzung die Entwicklung von Schlüsseltechnologien, die hohe Standards in Bezug
auf mechanische und thermische Robustheit, Autonomie, Miniaturisierung und
Redundanz erfüllen müssen.

In der vorliegenden Arbeit wurden erste Interferometrieexperimente mit dege-
nerieten Quantengasen in Schwerelosigkeit im Rahmen des QUANTUS Projektes
durchgeführt. In mehr als 250 Freifall-Experimenten am Bremer Fallturm konnte
die Präparation, freie Entwicklung und Phasenkohärenz eines Rubidium Bose-
Einstein Kondensates (BEC) auf makroskopischen Zeitskalen von bis zu 2 s un-
tersucht werden. Dazu wurde ein BEC-Interferometer mittels Bragg-Strahlteilern
in einen Atomchip-basierten Aufbau implementiert. In Kombination mit dem Ver-
fahren der Delta-Kick Kühlung (DKC) konnte die Expansionsrate der Kondensate
weiter reduziert werden, was zur Beobachtung von effektiven Temperaturen im Be-
reich von 1 nK führte. In einem Interferometer mit asymetrischer Mach-Zehnder
Geometrie konnten Interferenzstreifen mit hohem Kontrast bis zu einer Verweil-
dauer von 2T = 677 ms untersucht werden.

Schlagwörter: Materiewelleninterferometrie, Bose-Einstein Kondensate, Atom-
chip, Mikrogravitation, Fallturm, Bragg Streuung, Delta-Kick Kühlung, Höhen-
forschungsrakete, Weltraum
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1 From quantum to cosmos - towards cold
atom sensors in space

Today, there is no conclusive quantum theory of gravitation. Deep conflicts exist be-
tween General Relativity (GR) and the quantum world, describing the macrocosm
classically and microscopic phenomena quantum-mechanically, respectively. Combin-
ing microscopic quantum sensors with the unique environment of space might be one
of the keys to open the so far locked door of quantum gravity [1].

Quantum sensors such as optical atomic clocks and matter wave interferometers
will broadly benefit from reduced gravity conditions offered by space-borne platforms
and open up new possibilities to study physical models within a wide range of sci-
entific fields. By pushing the performance beyond what is accessible on Earth, thus
investigating yet unexplored parameter regimes, these devices will support important
applications in the areas of Earth observation [2], navigation [3] and precision time-
keeping [4]. Highly accurate on-board frequency instrumentation (e.g. space-borne
optical clocks) will strongly contribute to determine the gravitational potential of our
planet [5]. The metric for Earth’s gravitational field will become a major subject of
investigation in future quantum based geodesy [6]. Due to the availability of long
distances and a low noise environment, recent proposals even suggest long baseline
interferometers with matter waves in space as the next generation of low frequency
gravitational wave detectors [7].

Moreover, cold atom based quantum sensors in microgravity will provide excellent
possibilities to address some of the most important questions of fundamental physics
and test their underlying principles with unprecedented precision [8, 9]. An environ-
ment with large spatial variations of velocity and gravitational potential is promising
for implementing a versatile quantum-based testbed investigating General Relativity
(GR). As one of the cornerstones of modern physics, GR is a classical theory based
on the Einstein Equivalence Principle (EEP) [10]. It consists of three pillars: the Uni-
versality of the Free Fall (UFF), the Local Position Invariance (LPI) and the Local
Lorentz Invariance (LLI). If these universality principles are valid, gravitational effects
can be described by a space-time metric as given by the Riemannian geometry [11],
for example.

UFF states that different test bodies will have the same free-fall acceleration in an
external gravitational field, their trajectories only depend on initial position and ve-
locity. Here, the infinitely long and periodic free fall in space sets promising conditions
for high-precision tests of the UFF. LLI, as an underlying symmetry of all current
physical theories, describes that the laws of physics of a non-gravitational experiment
are independent of the velocity and orientation of frame in which it is performed.
Measurements of the isotropy or velocity-independence of the speed of light aboard
a space-borne instrument can potentially benefit from large velocity variations on a
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1 From quantum to cosmos - towards cold atom sensors in space

highly elliptical orbit. The statement of LPI is, that the outcome of the experiment
is also independent of where and when in the universe it is performed. One possi-
ble test of LPI is a measurement of the gravitational redshift, which is the difference
of two frequency references placed at different heights in a static gravitational field.
Thus, large potential differences offered in space are promising for highly accurate
clock comparison tests.

Although being quite successful in describing phenomena in the macrocosm, EEP’s
classical and therefore fundamentally incomplete nature demands an extension to the
quantum world [1]. The search for unification of GR with quantum mechanics is a very
active research field, sometimes considered to be the holy grail of physics [12]. Several
attempts or extended theories addressing this problem predict violations of the basic
principles of GR [13, 14, 15].

Space-borne experiments with optical clocks and matter wave interferometers to
conceive different aspects of EEP, setting new limits on, or even observing violations
in given frameworks (e.g., the Standard-Model Extension (SME) [16]) will help to
complete our understanding of the interplay between quantum physics and gravity —
an important step towards the unification of all fundamental forces of nature. Since
this obviously still is quite a long way to go, tremendous effort have been made by
universities, space agencies, and private companies all over the world to develop and
establish quantum technology for space applications.

From QUANTUS to cosmos - towards UFF tests based on atom interferometry

This thesis was realized within QUANTUS, a German collaboration targeting the
long-term goal of studying cold quantum gas experiments on a space platform. As
an important step towards realizing coherent sources for ultra-cold atom experiments
under demanding conditions, this collaboration successfully demonstrated the first
observation of Bose-Einstein condensation in microgravity at the Bremen drop tower
[17]. The scientific and technological achievements have obviously been of great interest
for both, the atomic clock and atom interferometer community. Not at least by proving
that extremely sensitive laboratory equipment such as laser sources, stable optical
benches, ultra-high vacuum systems and control electronics can be integrated into
compact and robust payloads forming an autonomous ultra-cold matter lab within
small volumes (≤ 0.5 m3) and comparably low mass budgets (≤ 240 kg) [18, 19].

Independent of the general importance of the achieved results for the space-borne
quantum sensor community, one of the major scientific objectives of the QUANTUS
collaboration is a microgravity-enhanced test of the Universality of the Free Fall (UFF)
with a dual-species matter wave interferometer. Such a measurement would lead to a
direct determination of the Eötvös ratio η based on the quantum nature of particles,

η =
|aI − aII |

g
(1.1)

determining the normalized differential acceleration of two test matter wave packets
associated with individual accelerations aI and aII .

First UFF tests relying on the precision and accuracy of atom interferometric mea-
surements have been performed by comparing a cesium fountain interferometer with a

2



experiment test masses platform accuracy η ref.

Cs-AI / Stanford 133Cs & FG-5 lab 7.0(7.0) · 10−9 [20]
Rb-AI / Paris 87Rb & FG-5 lab 4.3(6.4) · 10−9 [21]
Rb-AI / Garching 87Rb & 85Rb lab 1.2(1.7) · 10−7 [22]
Rb-AI / ONERA 87Rb & 85Rb lab 1.2(3.2) · 10−7 [23]
ATLAS / Hannover 87Rb & 39K lab 0.3(5.4) · 10−7 [24]

10m tower / Stanford 87Rb & 85Rb 10 m fountain 1 · 10−15 [8]
Li-AI / Berkeley 6Li & 7Li lab 1 · 10−14 [26]
CERN/ Geneve 1H & 1H "big" lab 2 · 10−6 [41]
I.C.E / Bordeaux 87Rb & 40K zero-g airbus 5 · 10−11 [42]
QUANTUS / Hannover 87K & 41K drop tower 5 · 10−11 [43]
PRIMUS / Bremen 87K & 39K drop tower 5 · 10−11 [44]
STE-QUEST / ESA 87Rb & 85Rb satellite 2 · 10−15 [30]
QWEP / ESA 87Rb & 85Rb ISS 1 · 10−14 [31]

Table 1.1: Achieved (upper part) and targeted (lower part) accuracies of cold atom interfer-
ometry based measurements of the Universality of the Free Fall (UFF).

falling corner cube [20]. In this experiment, no deviation has been reported to a level of
η = 7 · 10−9. A similar but mobile setup even reached a slightly better agreement [21].

Pure quantum-based UFF tests in atom interferometers have been demonstrated
with 10−7 precision [22, 23, 24], which itself constitutes a major scientific achievement.
More importantly, a new generation of UFF tests is being prepared which aim for
measurement accuracies comparable to classical state-of-the-art tests [25, 8, 26] and
complementing them by means of possible violation parameters of the SME [16, 27].

Benchmark experiments in determining η are still given by lunar laser ranging [28]
and torsion balance [29] tests, achieving precisions in the lower 10−13 regime. Ul-
timately, operating dual-species interferometer devices in space might even lead to
higher performance, possibly enabling measurements of η down to an uncertainty of
at least 10−15 [30, 9, 31].

Together with currently proposed space tests based on classical bulk matter target-
ing at or even beyond the 10−15 level [32, 33, 34], these so far unmatched precision
measurements would consequently set new limits to the validity of EEP in mutual
agreement or, probably more interesting, find contradictory results. Operating mi-
croscopic quantum systems at macroscopic coordinates in space-time will shed some
light into yet unexplored regimes of low energy quantum phenomena [35, 14, 1] and
could potentially open the door to fundamental physics at the borderline between the
classical and the quantum [36, 37, 38]. In this sense, recent publications even propose
antimatter for an UFF test, representing a fundamentally different testframe beyond
classical theory [39, 40, 41].

Extensive research has already been undertaken aboard zero-g airplanes [45, 46] and
drop towers [12, 44, 17] as pathfinder experiments towards establishing matter wave
interferometers based on ultra-cold atoms in microgravity. As a next step towards
space, sounding rocket experiments are in preparation [47, 48]. They all rely on the
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1 From quantum to cosmos - towards cold atom sensors in space

benefits of a microgravity environment for matter wave interferometers. Before these
will be highlighted in general, and specifically for dual-species operation, we will shortly
introduce general applications of light-pulse interferometry and the basic measurement
principle of a gravimeter.

1.1 Atom interferometry

Nowadays, atom interferometers (AI) are utilized in a variety of applications and still
greatly contribute to the frontiers of precision measurements even on ground. Cooled
down to only some tens of a microkelvin, near the absolute zero of temperature, cold
clouds of atoms represent an ultra-sensitive and nearly perfect test matter wave for var-
ious interferometric measurements. Over the last decade, AI-based quantum sensors
have been developed rapidly and different measurement schemes have been demon-
strated and implemented for various high-precision measurements.

Among these, AIs are proven to be an extremely sensitive probe for inertial forces,
such as accelerations and rotations. By dropping cold clouds of atoms, the local gravita-
tional acceleration could be measured with an absolute uncertainty of ∆g/g ≈ 3 · 10−9

[49], and tiny rotations have been detected in Sagnac-type interferometers with sensi-
tivities usually better than 10−6rad/s

√
Hz [50, 51]. Gravity gradiometers have been

developed to measure the gravitational difference between two locations using a com-
mon reference frame. By rejecting non-inertial accelerations, these instruments cur-
rently lead to differential acceleration sensitivities of 4 · 10−9 g [2, 52].

Additional applications cover broad areas from metrology up to addressing general
research in fundamental physics [8], for example, an AI-based test of the Local Lorentz
Invariance [53]. Further developments of AIs led to a precise determination of physical
constants. Based on atomic recoil measurements [54, 55], the fine-structure constant α
has been measured with the current best relative uncertainty of 2.5 · 10−9. Moreover,
AIs provide an alternative method for measurements of the gravitational constant G
[56, 57]. By synchronizing an oscillator to the measured value of of h/m in a self-
referenced atom interferometer, it is even stated that AIs are suitable to build a novel
matter wave based clock [58].

As already mentioned, another field of research are atom interferometry based tests
of the Universality of the Free Fall (UFF). By tracking the free propagation of two dif-
ferent matter waves, the differential acceleration of quantum objects can be measured.
The basic measurement principle will be summarized in the following.

The free fall of atoms measured with light-pulse interferometers

For measuring the gravitational acceleration with cold atoms of a single species, the
Mach-Zehnder-type interferometer is commonly used (see Fig. 1.1, left). Here, cold
clouds of atoms serve as freely falling test masses whose change in position due to
gravity is read out via the interaction with appropriately designed laser waves. A
simplified picture allows these waves to be seen as a nano-scale ruler to which the
position of the atoms is being precisely monitored.

Consider an idealized two-level system, represented by two hyperfine ground states
of an alkali atom and a freely falling ensemble of atoms initially prepared in the same

4



1.1 Atom interferometry

Figure 1.1: Schematic of a cold-atom based Mach-Zehnder interferometer induced by stimu-
lated Raman transitions between two hyperfine ground states (left). In a dual-
species operation (right), vibration noise of the retro-reflecting mirror cancels out
in a differential measurement due to first order common-mode rejection [60, 42].

internal state. At t = 0 they are illuminated by a pair of counter-propagating laser
beams with wave vectors k1 and k2, driving two-photon Raman transitions between
the two hyperfine states1. In a gravimeter setup, they are commonly retro-reflected at
a reference mirror and gravity is pointing vertically along the direction of the beams.

The first pulse constitutes an atom-optical beam splitter which, intuitively, transfers
half of the atoms to the other hyperfine state and give them a momentum kick of h̄keff

due to photon recoil. The transferred momentum is associated with absorption of
photons from one light field and stimulated emission into the other beam (h̄keff =
h̄(k1 + k2)). Quantum mechanically speaking, the atomic wave function is put into
a coherent superposition of two internal and momentum states. The two clouds will
spatially separate during an interrogation time T and propagate along path A and B,
respectively (see Fig. 1.1, left).

The second pulse (t = T ) acts as a mirror, exchanging internal and momentum states
of the two atomic samples. After propagating for an additional time T, the two clouds
of atoms accumulate a phase difference by propagating along the different trajectories
and ideally overlap in one space-time point. Finally, a third laser pulse is applied at
t = 2T for coherent recombination of the two parts of the wave function.

Gravity and inertial forces in general influence the propagation of the atoms w.r.t.
to the interferometer laser fields, and at each of the three interaction zones, the local
laser phase is imprinted onto the atomic wave function [59]. The main contributions
to the phase difference between path A and path B can be given as

∆Φ = ∆Φpath + ∆Φlight + ∆Φsep, (1.2)

with the free evolution phase shift along the paths ∆Φpath, the phase shift resulting
from the interaction with the Raman light fields ∆Φlight, and a phase shift proportional

1A detailed description of Raman beam splitters can for example be found in [59]. Most importantly,
the Raman beams feature a frequency difference that equals the energetic splitting of the hyperfine
ground states.
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1 From quantum to cosmos - towards cold atom sensors in space

to the separation between the center-of-mass (COM) position of the wave packets at
the time of detection ∆Φsep. For a full description, see for example [20].

If we assume a homogenous gravitational field and neglect a possible separation
phase difference (∆Φpath ≡ 0, ∆Φlight ≫ ∆Φsep), we can describe the resulting phase
shift of an atomic gravimeter setup in first order to

∆Φ = (keffg − α)T 2 + φ0, (1.3)

with the effective wave vector of the interferometer light pulses keff, the local gravita-
tional acceleration g and the interrogation time T . We introduced α as a continuous
frequency chirp of the frequency difference canceling the time-varying Doppler shift of
the atoms due to their increasing velocity in free fall, and φ0 as a phase offset induced
by the last interferometer pulse.

This phase difference can precisely be read out by an analysis of the population of
one of the two hyperfine states (e.g. |2〉) at the output of the interferometer

P|2〉 ∼ P̄ +
C

2
cos(∆Φ), (1.4)

with mean state population P̄ and contrast C [61]. By adjusting α and φ0 such that the
phase difference is zero, one can determine the local gravitational acceleration g [59, 20].

The free fall of two-species matter waves and differential measurements

Using two atomic species in free fall with different masses mI and mII allows to
compare two independent measurements of g. This is made possible by creating a
mixture of two atomic species as an input state for the simultaneous operation of two
superimposed interferometers.

In such a dual-species AI, the prepared matter wave samples of both species will
be simultaneously interrogated by the same interferometer sequence. By using dilute
samples of non-interacting atoms or isotopes, the center-of-mass (COM) positions of
the test objects can be independently measured with high precision and subsequently
brought to coincidence. Thus, two accelerations gI and gII of two independent test
masses starting from exactly the same coordinate in space-time can be independently
read out with high precision (see Fig. 1.1, right). Each individual acceleration mea-
surement is limited by numerous systematic effects and noise sources such as laser
phase noise and vibrational noise of the reference mirror, here shown as δgvib.

However, they can be drastically suppressed in a differential measurement by using
(i) the same reference mirror for both interferometers and (ii) by using the same light
for coherent manipulation. Differential phase between interferometers using the same
light has shown to reject common-mode noise up to large scaling factors [52, 60]. If
different lasers for manipulation of the atomic test masses are necessary, e.g. different
species, the two interferometers do generally not share the same sensitivity. But even
in this case, it has been shown that a common-mode rejection can be achieved [42].

Before we highlight the general benefits of a microgravity environment for atom
interferometric measurements, we briefly discuss the intrinsic sensitivity scaling of a
Mach-Zehnder interferometer.
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Figure 1.2: Calculation of the quantum projection noise limited single-shot resolution δa of
an acceleration measurement (Mach-Zehnder configuration) for increasing inter-
rogation time T . Neglecting other noise sources, the principal resolution per shot
with C = 1 is given for different atom numbers N (solid, dashed, dotted lines)
and effective wave vectors (red, black, blue colors) according to Eq. 1.5

Scaling of the single-shot measurement resolution

Most important for evaluating the performance of a Mach-Zehnder interferometer un-
der space conditions is the intrinsic scaling of the measurement resolution. Therefore,
we relate the single-shot resolution of the phase measurement δΦ as inversely propor-
tional to the signal-to-noise ratio (SNR) of the detected fringes. Limited by quantum
projection noise only [62], our acceleration resolution δa follows accordingly:

δΦ ∝ 1

SNR
⇐⇒ δa ∝ 1

C
√
N

· 1

keff

· 1

T 2
, (1.5)

with the measurement contrast C, the detected atom number N , the effective wave-
vector keff, and the interrogation time T .

Obviously, the resolution will benefit from increasing N , enlarging the transferred
beam splitter momentum associated with keff and, most importantly, enhancing the in-
terrogation time T , which scales quadratically in the given expression. The single-shot
sensitivity for different atom numbers N and effective wave vectors keff is calculated
assuming interrogation times of up to T = 5 s (see Fig. 1.2), which is hardly to realize
on ground2. The 1/T 2 scaling rapidly increases the measurement resolution over sev-
eral orders of magnitude. The application of higher-order beam splitters increases the
resolution (see different colors), but they are more difficult to realize and to control
without introducing additional systematic effects.

In the next section, we see how these parameters can be addressed by conducting
the experiment in a microgravity environment.

2In fact, an atomic fountain with a height of about 100 m would be necessary to achieve corresponding
free fall times.
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1 From quantum to cosmos - towards cold atom sensors in space

1.2 Benefits of a space environment

The technology-readiness-level (TRL) of cold atom technology develops rapidly and the
number of research and development programs targeting at dedicated space missions is
continuously increasing. Depending on the specific experiment, space offers a multitude
of advantages of which the most common ones will be described in the following.

1. Unique environment of weightlessness

• Atoms can be cooled down to the lowest temperatures. One main limitation
of adiabatic cooling in conservative traps is given by the gravitational field
since the trapping potential must feature a gradient that is larger than the
gravitational force on the trapped atoms. This limits the applicability of
ultra-shallow traps for low energetic quantum ensembles on ground and will
at some point lead to significant atom loss. The absence of the gravitational
sag in a microgravity environment will potentially allow to surpass this
restriction without the need for levitating fields [63].

• Since mass-dependent effects on the trapping potentials are negligible, this
environment should in principle allow for perfect mode match of the different
types of atoms before being released for free fall. This prevents spatial
separation of the dual-species mixture and density variations across the
samples. Additionally, a better control over the center-of-mass (COM) of
mixed two component quantum gases allows for implementation of advanced
dual-species cooling methods, e.g., delta-kick cooling (DKC) [64, 65].

• After being released from trapping potentials, the atoms will accelerate due
to Earth’s gravitational field but experience a free fall environment together
with the ambient vacuum chamber. Thus, they will not hit the ground of
the chamber or a window and remain in the observation volume for several
seconds, effectively increasing the interaction times far beyond the typical
limits imposed by, for example, the maximum height of terrestrial instru-
ments. In space, interferometer times of 2T > 10 s are certainly within the
bounds of possibility. This results in an enhancement of the measurement
resolution of several orders of magnitude compared to standard ground-
based experiments. These are typically operating with in the regime of a
few hundreds of milliseconds (see Fig. 1.2).

• Moreover, long interrogation times can be realized even in small volumes,
if the atoms themselves are cold and launched slowly enough. This is a
big advantage, since the experimental apparatus can be miniaturized to a
certain level, thus offering higher intrinsic stability3.

2. Large and predictable gradients of velocity and gravity:

• Regardless of the fact whether the experiments are located in satellites, free
fliers, or other space vehicles, the missions can be designed in a fashion that
the atomic sensor is subjected to large spatial variations of velocity and the

3Not to speak about reduced launch costs for a compact and lightweight payload.
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1.2 Benefits of a space environment

gravitational potential. This depends on the specific orbit but once appro-
priately chosen, it allows to properly test significant constituents of GR.
For example, a gravitational redshift test of the Local Position Invariance
(LPI) [4] or velocity dependent forces in atom interferometers [66] to mea-
sure otherwise inaccessible parameters of the Standard Model Extension
(SME) [16].

3. Low vibration and gravity gradient noise:

• One major limiting factor in precision AI experiments are vibrations of
the reference mirror w.r.t the freely falling atoms. Microgravity potentially
offers a low-noise environment with residual vibrations at a 10−6g level.
Moreover, differential measurement schemes will additionally take advan-
tage from high a common-mode rejection [42, 30].

• Low background vibration will also contribute towards generating very cold
samples of atoms in very weak traps, since thermal excitations can be sup-
pressed. However, poorly designed scientific payloads and/or platforms may
suffer from residual vibrations limiting the net microgravity quality.

• Seismic surface waves induce density perturbations in the Earth which pro-
duce fluctuating gravitational forces on the AI test masses. In space as
a comparably "quite location", the influence of this Newtonian noise can
potentially be reduced to a negligible level.

As mentioned earlier and quantified by the measurement resolution (see Fig. 1.2), the
most important advantage for AI is related to the availability of otherwise inaccessible
regimes of interrogation time T . However, this is not only a question of the environment
but also of the properties of the atomic source.

Especially the spatial expansion rate of a cloud of atoms (associated with an effective
temperature) leads to very dilute samples of atoms after seconds of free expansion,
which are challenging to detect. Moreover, the atoms may leave the detection volume,
which results in a reduction of the measured signal and sensitivity (∆a ∼ 1/

√
N).

For laser-cooled atoms, typical temperatures of 1µK have been reached. Evaporative
cooling in conservative trapping potential was used to prepare matter waves at nK
temperatures. Here, a new state of matter occurs, the Bose-Einstein condensate [67,
68, 69], whose observation was awarded with the Nobel prize in 2001.

Bose-Einstein condensates as test masses for long-time interferometry

Recently, Bose-Einstein condensates (BEC) attracted great attention as a potential
atomic source for interferometry measurements. Instead of acting like millions of dis-
tinguishable point masses characterized by the classical Boltzmann distribution, ultra-
cold atoms in a BEC loose their identity and form a single macroscopic wave function.
This property makes a condensate to large extent similar to a laser in which photons
coherently occupy the same mode of the electromagnetic field.

Due to the resulting properties, degenerate quantum gases are promising for applica-
tions in atom optics, atom interferometry and precision measurements. Bose-Einstein
condensates feature very low momentum widths which are (i) mandatory for enhanced
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1 From quantum to cosmos - towards cold atom sensors in space

signal-to-noise ratios (SNR) in interferometers with large interrogation times [12, 25]
and (ii) advantageous for increased interferometric sensitivities by implementing large
momentum transfer beam splitters [70]. Low velocity spreading in combination with
high densities eventually making a nK cold BEC an ideal candidate to explore the full
potential of microgravity.

The process of releasing condensates from conservative traps relies on carefully op-
erating and controlling weak potentials. Due to this level of precision, BECs feature
good spatial localization and predictable center-of-mass (COM) motions which are im-
portant for reliable and reproducible experiments probing, for example, the free fall
of matter waves [9]. Moreover, BECs potentially enable one to surpass classical noise
limits by the implementation of squeezed states with reduced quantum uncertainty, as
already demonstrated in [71, 72].

The use of ultra-cold atoms was already proven to greatly enhance the measurement
sensitivity in long baseline interferomety in Earth-based apparatuses and to reduce
systematic errors (e.g., wave front distortions and inhomogeneous dephasing) due to
the condensate’s point-source character [25]. They have successfully been used in
free fall experiments [17] and light-pulse interferometers [12] operated at a drop tower
and are proposed sources for quantum gas experiments aboard the ISS [31] and on
satellites [30].

For justifying BECs one has also to trade against the obvious disadvantages for
precision measurements. Besides technical issues in building a reliable source of de-
generate gases, the most commonly stated is the lower achievable flux compared to
thermal or laser cooled sources. The lower the flux, the less atoms will participate in
the measurement which leads to a smaller precision and more noise due to insufficient
averaging. The second main downside is given by the effect of atomic interactions,
causing mean-field and collision shifts due to the high densities in BECs. If not per-
fectly controlled or reduced in dedicated preparation protocols, these bias terms will
decrease interferometric phase sensitivity and lead to systematic errors [9].

In the end, however, one can hardly omit the use of Bose-condensed sources due
to their excellent properties (e.g. expansion rate) for measurements at ultra-long
timescales.

1.3 Applications of atom interferometers and fundamental
science in space

Several space related missions with cold atom sensors have been proposed [73, 31, 9, 7,
74] and preparatory experiments in zero-g environment have already been performed
[45, 17, 46, 12] or are still under thorough investigation [42, 43]. Ultimately, a versatile
and highly precise quantum-enhanced testbed investigating GR in space is envisioned
in all of these mission proposals.

Besides testing the Universality of the Free Fall (UFF), the resolution enhancement
of atom interferometers can be used for a variety of different applications and ad-
dressing several fundamental physics questions with unprecedented precision. In part
because reduced gravity conditions allow more sensitive measurements, and in part
because space allows access to unique coordinates in space, gravity and time.
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The applications are truly interdisciplinary, covering diverse and important topics.
In the following, some of theses applications and foundational experiments will be
highlighted to emphasize the potential benefit of sending quantum sensors into space.

Precision gravity measurements

The resolution enhancement of space-borne matter wave interferometers can signifi-
cantly contribute to global gravity mapping and monitoring of dynamic processes in the
interplay between solid earth, ice and ocean [2, 75]. Admittedly, there have been high-
class missions dedicated to precision gravity measurements such as DLR’s CHAMP
(Challenging Minisatellite Payload) [76] and NASA’s GRACE (Gravity recovery and
Climate Experiment) [77]. They are based on on-board drag-free test masses or dis-
tance measurements between two satellites, respectively. ESA’s GOCE (Gravity Field
and Steady-State Ocean Circulation Explorer) mission, with a payload based on pre-
cise mechanical accelerometers, provided the most precise picture of the gravitational
field of the Earth so far [78].

An atom interferometer might be used for highly accurate gravity field mapping when
operated in space. Atom interferometry holds great promise for new gravity mapping
and monitoring capabilities, including higher measurement sensitivity, finer spatial
resolution, and temporal monitoring [2, 61]. Indeed, they have their own justification,
since important effects of mass on spatial and temporal determination of the geoid
cannot be detected within the on-going missions [79].

To distinguish the acceleration measurement of the atoms caused by Earth from ex-
ternally induced inertial effects, additional tracking information about the spacecraft’s
orientation is needed. In a gradiometer, differential acceleration measurements allow
to cancel common mode noise induced by the microgravity platform or vibrating parts
of the payload itself.4 Here, the gravitational difference between two locations can be
measured using a common reference frame, rejecting non-inertial accelerations. Two
acceleration measurements are thus performed simultaneously in two atom interferom-
eters, displaced by a distance d, but using the same Raman beams and thus only one
retro-reflecting mirror. The gravity gradient induced phase shift measured by two AIs
separated by the distance d along ~ez is determined by

∆g

∆z
=

∆φ1 − ∆φ2

keffT 2d
(1.6)

With such a configuration, differential acceleration sensitivities of 4 · 10−9 g/
√

Hz
have been achieved in laboratory experiments with an interferometer separation of
1.4 m [2, 52]. Sensitivities are expected to increase in space, as pointed out, by longer
interrogation times T and the use of degenerate quantum gases to longer maintain a
sufficient SNR.

Measurement of fundamental constants

In quantum mechanical equations of motion such as the Schrödinger or relativistic
Dirac equation, the mass of a particle is always linked to Planck’s constant through

4It also allows to cancel all other accelerations due to the validity of Einstein’s equivalence principle.
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1 From quantum to cosmos - towards cold atom sensors in space

h/m. A precise measurement of this fraction would generally allow to compare quan-
tum theories with experiment and thus contribute to the understanding of quantum
mechanics.

Atom interferometers in space open up exciting prospects of high precision measure-
ments of this fraction by a measurement of the recoil frequency ωr = h̄k2/2m of atoms
combined with an accurate measurement of the applied photon wavelength λ = 2π/k
[80]. High-precision recoil measurements are made possible due to long interrogation
times, for example, in a simultaneous conjugate AI where the measured phase shift
scales as ∆Φ ∼ ωrT [81].

Wavelength measurements on the opposite require a space-borne frequency comb
which is already developed for sounding rocket applications [82], thus yielding a com-
parably high technology-readiness-level (TRL).

Combined with the Rydberg constant R∞, the speed of light c, and the isotope’s
mass ratios m/me (with the electron mass me), this measurement can be used to
determine the fine structure constant α as [83, 54]

α2 =
2R∞

c
· m
me

h

m
. (1.7)

The fine structure constant plays a significant role in fundamental physics, and its
value has been determined by a variety of experiments. The precise determination of
α is a prerequisite for testing quantum electrodynamics (QED), and would allow to set
better limits to other dependent fundamental constants. Possible time variations of α
can be investigated, which would violate metric theories of gravitation such as GR [1].

The gravito-magnetic effect

Atom interferometers which measure rotations in a Sagnac configuration might be used
in a low-Earth orbit to measure geodetic effects and could potentially shed some more
light into the gravito-magnetic or Lense-Thirring effect.

Predicted by GR, the orbit of a small test body orbiting around a massive, rotat-
ing mass is slightly perturbed by the rotation [84]. Freely-falling gyroscopes orbiting
around Earth will thus experience this effect, also known as frame-dragging, whose pre-
cise determination would constitute a crucial test of GR. However, the effect created
by a slowly rotating object such as the Earth is extremely small [85]. Recent measure-
ments of classical gyroscopes aboard the Gravity Probe-B spacecraft could verify the
predicted frame-dragging drift rate, which constitutes a major scientific achievement,
but only to an accuracy of 19% [86].

Thanks to the enhancement of performance in microgravity, cold atom based gyro-
scopes might be considered for space-borne implementation. They have already proven
to be precise in determining small rotations in ground based measurements, with sensi-
tivities usually better than 10−6 rad/s

√
Hz [50, 51]. In a Mach-Zehnder interferometer

configuration, the induced phase shift due to rotations is given by

∆φrot = 2~Ω ·
(
~keff × ~vat

)
·T 2, (1.8)

with rotation rate ~Ω, effective wave vector ~keff and the atomic velocity ~vat. The scal-
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ing with T 2 again indicates the same advantages for gyroscopes of being operated in
microgravity as in case of gravi- or gradiometers.

To name one prominent example, the HYPER proposal aimed at implementing a
cold-atom based experiment into a drag-free environment and use this instrument as
a high precision gyroscope and accelerometer [87, 73]. This proposal was the first
to target at cold atom interferometers in space and would have allowed for precisely
monitoring the spacecrafts orientation and differences in the expected orbit around
Earth. Four atom interferometers combined to two Sagnac units to measure rotations
and accelerations in two orthogonal directions would have constituted the heart of the
scientific payload.

Gravitational wave detection

The detection of gravitational waves would be a fundamental breakthrough in our
understanding of how the universe began. If their existence is not directly confirmed
earlier [88], atom interferometry might be used to observe gravitational waves. Sources
of gravitational radiation can be, for example, white dwarfs, neutron stars or black
holes, which strongly radiate gravitational waves because they contain heavy stars
orbiting close to proximity [89].

These waves can be detected by recording the phase shift they induce in an atom
interferometric measurement by passing through the interrogation zone. Gravitational
waves (GW) induce space-time strains that lead to different traveling times between
the atom and the laser field and thus to a different phase shift. A cold atom based
GW detector can be designed to fill the gap between space-borne laser interferometer
detectors like LISA (strain sensitivity 10−19 @ frequency band 0.1 mHz - 0.1 Hz) [90]
and ground-based instruments like LIGO (10−23 @ 10 Hz - 10 kHz) [91].

As mentioned earlier, competitive sensors must be based on a differential measure-
ment scheme, since each phase shift can also be induced by vibrations and other ex-
ternal error sources. A possible concept might be the realization of two satellites
separated by a baseline L, each housing one atomic interferometer as proposed by the
AGIS-LEO mission [7]. Between the satellite, a pair of Raman laser beams oscillates
back and forth, thus inducing two-photon transitions in both interferometers. Besides
the noise-free environment, the great advantage of a space-borne AI based sensor is
the possibility of increasing L and thus increasing sensitivity of the detector.

According to the measurement setup proposed in [7], GWs induce a phase shift
between to atom interferometers separated by a baseline L along the propagation of
the beam splitter light, which follows as

∆ΦGW = 8keffhL sin4
(
ω

T/2

)(
7 + 8 cosωT

2

)
sinωt, (1.9)

with interrogation time T and effective wave vector keff of the interferometer and as
well as strain h and frequency ω of the gravitational wave traveling at the time t. In
order to observe a GW, the phaseshift must be measured during the oscillation of the
GW, requiring a sampling rate at least twice the GW frequency.

As stated in [7], a strain sensitivity of 10−18 in the 50 mHz - 10 Hz frequency band
might generally be achieved.
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1 From quantum to cosmos - towards cold atom sensors in space

Microgravity-enhanced quantum physics with ultra-cold Bose-Fermi mixtures

By operating a stationary microgravity platform with an ultra-cold atom laboratory,
condensates at extremely low temperatures and densities can be achieved by slowly de-
compressing the trap. This would lead to an enormous Fourier limited wave function as
an ideal starting point for high-precision atom interferometers. Moreover, the absence
of gravity is useful towards sympathetically cooling second species since microgravity
will allow to relax density dependent losses [92].

Besides probing the free fall, these ultra-cold two-component condensates can be
loaded in optical lattices, which, in microgravity, will feature a perfect periodicity
along all three dimensions [93]. This allows for high-precision tests of spinor dynamics
in Bose-Einstein condensates, which already have provided groundbreaking insight in
superfluidity [94]. By precisely controlling the lattice parameters, condensed matter
systems can be used to further probe quantum magnetism and exotic phases [95].

Jet Propulsion Laboratory (JPL) is developing NASA’s Cold Atom Laboratory
(CAL), a versatile facility for the study of ultra-cold quantum gases and mixtures
on-board the ISS [74]. The scientific payload comprises an atom chip based physics
package, enabling cold atom generation and versatile experiments with rubidium and
potassium atoms, mostly based on commercial-off-the-shelf (COTS) hardware and sub-
systems. It will enable research in a temperature and force-free environment inacces-
sible to terrestrial laboratories, and aims for interaction times in free fall of greater
than 5 s and temperatures below 100 pK [74].

The payload is designed to serve as multi-user facility and launch to the ISS is sched-
uled for early 2016 on a pressurized cargo vehicle in soft stowage. After integration
into an EXPRESS (EXpedite the Processing of Experiments to Space Station) rack,
the experiment remains operable for a nominal duration of 12 months. Within up to
5 years of extendable operation, CAL remains upgradable towards new subsystems for
enabling different research with ultra-cold atoms and mixtures in microgravity.

Testing the Universality of the Free Fall

The Space Time Explorer and Quantum Equivalence Space Test (STE-QUEST) mis-
sion [9, 30] proposal was a response to the call for medium-size (M-Class) missions
by ESA’s Cosmic Vision plan (2015-2025). Here, a satellite is proposed which will
operate in a highly elliptical orbit, hosting a a dual-species atom interferometer (ATI)
operated with two different isotopes of rubidium. A microwave clock based on laser
cooled cesium atoms and an optical link are considered as an optional payload.

Its scientific objectives mainly focus on testing fundamental aspects of the EEP with
unprecedented precision. Using the (optional) clock on the satellite in comparison with
a highly accurate ground-based network of clocks enables Earth and Sun gravitational
redshift tests with fractional uncertainties of 1 · 10−7 and 2 · 10−6, respectively. The
measurement of the differential acceleration between two different atomic isotopes
(87Rb and 85Rb) is carried out by a dual-species atom interferometer setup.

As a source for coherent matter waves, Bose-Einstein condensates will be generated
in a hybrid trap setup, consisting of an atom chip and a crossed optical dipole trap,
and simultaneously interrogated by a symmetric interferometer sequence. Here, the
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proposed mission duration of 5 years enables a determination of the Eötvös ratio to an
accuracy of 2 · 10−15 [30]. This is beyond state-of-the-art precision achieved by lunar
laser ranging [28] and torsion balance measurements [29].

As another mission proposal, the Quantum Test of the Weak Equivalence Principle
(QWEP) is designed to validate the technology for a matter wave sensor in space
through demonstration of differential atom interferometry and gravity gradiometry
[31]. It supports the investigation of the properties of condensed atomic samples in
microgravity. Ultimately, it aims at performing a WEP test with a dual-species setup
(87Rb and 85Rb) aboard the International Space Station (ISS).

1.4 Existing cold atom technology on microgravity platforms

We have seen that there are plenty of reasons to operate cold atom based interferome-
ters in space. Obviously, they first have to be brought there which requires dedicated
technology development programs as well as pioneering experiments based on terres-
trial microgravity platforms.

The first experiment operating with cold atoms in space is eventually ACES (Atomic
Clock Ensemble in Space) [4], which is expected to launch in 2016 [96]. It will operate
aboard the International Space Station (ISS). Even though its main instrument is
a cold atom based clock (PHARAO [97]) rather than an atom interferometer, we
will shortly review this pioneering mission before continuing to introduce projects
working on matter wave interferometry experiments aboard two established terrestrial
microgravity platforms.

The latter comprise a zero-g airplane and a drop tower, both of which state demand-
ing requirements on the payload key technologies in terms of mechanical and thermal
robustness, miniaturization, and power consumption. Proper operation of these in-
struments manifests the necessity of quantum technological maturity and sufficiently
high TRL of the key components.

ESA’s ACES mission aboard the ISS

The ACES mission aims for better tests of the gravitational redshift by comparing
a cold cesium (Cs) fountain clock (PHARAO) and a space hydrogen maser (SHM)
aboard the ISS with a network of ground-based clocks on Earth [4]. Establishing
clocks based on cold atoms in space itself represents an enormous improvement over
the present level of synchronization using the Global Position System (GPS). During
the planned mission duration of 18 months, the frequency stability requirement for the
main instrument PHARAO is less than 3 · 10−16 after one day of averaging [4].

One of the major constituents of Einstein’s Equivalence Principle can be tested
with accurate frequency standards in space. Local Position Invariance (LPI) states,
that the outcome of any non-gravitational experiment in a local, freely-falling frame is
independent of where or when the experiment is performed.

A possible test scenario of LPI is a measurement of the gravitational redshift, which
is the difference of two frequency references (e.g., atomic clocks) placed at different
heights in a static gravitational field. For example, a potential difference in the gravi-
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1 From quantum to cosmos - towards cold atom sensors in space

Figure 1.3: Schematic of common view (left) and non-common view (right) clock comparison
test as part of ESA’s Atomic Clock Ensemble in Space (ACES) mission aboard
the International Space Station (ISS). Adapted from [99].

tational field of ∆U between a clock and an observer leads to a shift of the ticking rate
of the clock measured by the observer of

∆ν

ν
= −∆U

c2
, (1.10)

with the speed of light c. According to EEP, this shift should be independent of the
nature of clocks and/or location of the experiment. Possible deviations can therefore
be parametrized with a violation parameter α as

∆ν

ν
= (1 + α)

∆U

c2
. (1.11)

A space-borne mission with modern atomic clocks in combination with ground-based
clocks has now two major advantages: (i) the accuracy and stability of cold atom based
clocks itself can be improved when operated in microgravity, (ii) the potential difference
between space-borne clocks and the ground network is very large and increases the
strength of a possible violation signature. The first advantage is based on the fact, that
the width of the measured atomic resonance in such clocks 5 is inversely proportional to
the time-of-flight of the atoms, ∆ν ∼ 1/T , which can reach large values in microgravity
when using cold atoms.

Direct comparisons with ground-based clocks (see Fig. 1.3) at a high level of stability
will be possible using both the common view (left) and the non-common view (right)
technique [99]. With this, ACES aims at better tests of the gravitational redshift
with 2 ppm sensitivity, time-dependance of fundamental constants (e.g., fine structure
constant) at a 10−17 level/year and tests addressing the anisotropy of light [4, 100]. As
the spacecraft turns, the direction along the microwave cavity turns and the frequency
could be influenced by any spatial dependance of the speed of light.

Given the velocity variations on orbit, ACEC might even be a candidate to realize

5The PHARAO clock is based on Ramsey’s method of separatory oscillating fields [98]
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Figure 1.4: Pictures of two established multi-user microgravity facilties: The International
Space Station (left) [104] and the Novespace zero-g airbus (right) [105].

a modern clock version of the Kennedy-Thorndike experiment [101].
The ISS (see Fig. 1.4, left) as an established multi-user microgravity platform will

continue its service as an orbital platform until at least 2024 [102]. It has a nearly
circular orbit with a varying altitude of about 250-460 km and an inclination of 51.6◦

to the equator [103]. Inside the station, the reduced-gravity quality is limited by
quasi-steady accelerations as well as structural and acoustic vibrations.

An active rack isolation system (ARIS) was designed to isolate payloads from the
external vibrations and by the same time hold them in place. With that, residual
vibrations are limited to about 6 · 10−4 g above 100 Hz. These conditions, must apply
at certain locations inside the ISS for at least 30 continuous days, 6 times a year [103],
summing up to a total time of reduced gravity of ∼ 180 days. Payloads are exposed
to an artificial atmosphere, and can be located in one of 37 international standard
payload racks (ISPR). The maximum weight of the payload is limited to 700 kg, power
supplies provide 12 kW and a thermal control system (TCS) is able to dissipate up to
1200 W [103].

The suited launcher vehicles impose tight requirements to the payload robustness,
including a random vibration test with 13 gRMS and shock tests up to 1500 g.

CNES I.C.E. experiment on a zero-g airplane

The I.C.E. (Coherent atom interferometry for space applications) experiment is a com-
pact and transportable atom interferometer, designed to test the Universality of Free-
Fall by comparing the free fall of rubidium and potassium atoms aboard a zero-g
airplane [45].

Degenerate gases of potassium (40K) and rubidium (87Rb) atoms will be generated
by evaporative cooling in a crossed optical dipole trap. After release, they will be
illuminated by a series of laser beams driving Raman transitions to form beam splitters
and mirrors for both matter wave packets simultaneously. The payload has been
specifically designed to withstand vibrations and temperature fluctuations in the plane,
and has been validated by operating the first airborne inertial sensor [46].

The experimental apparatus operates aboard a zero-g airbus (Novespace A300–0g,
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Figure 1.5: The Bremen drop tower from outside (left) and from inside along the drop tube
(right). In the latter picture, the drop capsule is lifted upwards while the deceler-
ation chamber is about to be positioned at the impact point. Copyright ZARM,
Universität Bremen.

see Fig. 1.4, right) [105], taking off from Bordeaux airport in France6. During phases
of parabolic flights which lasts for 20 s, the payload is objected to residual vibrations of
about 10−2 g. Accelerations are moderate, typically not exceeding 2.5 g in the ascent
phase or 9 g during hard landing [106]. During a flight campaign, up to 90 parabolas
can be made which results in a total time of reduced gravity of about 30 minutes [45].

DLR’s QUANTUS collaboration using drop tower and sounding rockets

The joint project QUANTUS is conducting research towards exploring degenerate
quantum gases and mixtures under the unique conditions of microgravity. Funded by
the German Space Agency (DLR), it is targeting the long-term goal of measuring the
Universality of the Free Fall (UFF) with matter waves in a dual-species interferometer.

Heading towards this goal, the successful observation of Bose-Einstein condensation
after 1 s of free expansion in microgravity was a major step towards realizing coherent
sources for ultra-cold atom experiments in microgravity [17]. These pathfinder ex-
periments with the first generation experiment QUANTUS-I have been carried out
by using the high-quality microgravity environment (10−6 g) of a drop tower, which
is operated by the Center of Applied Space Technology and Microgravity (ZARM) in
Bremen, Germany (see Fig. 1.5).

The payloads have to be integrated within small capsules, which then can be used in
a simple drop or an advanced catapult mode, offering 4.7 and 9.1 s of reduced gravity
time, respectively [107]. Therefore, the whole drop tower has to be evacuated, which
limits the repetition rate to a maximum of three drops a day. During acceleration and
recapture in a deceleration chamber (see Fig. 1.5, right), mechanical loads of up to 50 g
for a few hundreds of milliseconds require a proper mechanical design. The QUANTUS

6This airbus is also used by the German Space Agency (DLR) and the European Space Agency (ESA)
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1.4 Existing cold atom technology on microgravity platforms

Figure 1.6: Pictures of the pre-launch preparation of TEXUS-48 in the integration hall at
ESRANGE, Kiruna, Sweden (left, copyright DLR) and during ascent of TEXUS-
50 launched on April 12, 2013 (right).

collaboration has for the first time shown that an entire quantum gas experiment can
be integrated into compact and extremely robust payload forming an autonomous
ultra-cold matter lab within small volume and comparably low mass budget [18, 17].

To continue the path towards dual-species AI in microgravity, a second generation
atom-chip based experiment with ultra-cold degenerate rubidium (Rb) and potassium
(K) is currently being set up. QUANTUS-II is capable for catapult-launch operation
and aims for fundamental tests of the Universality of the Free Fall [43]. Subsystems
such as vacuum chamber, control electronics or the laser system have been highly
miniaturized. The latter has already been tested in the catapult mode to withstand
up to 30 g shock during operation and the entire experiment is expected to operate at
the drop tower in summer 2014.

As an important next stepping stone the sounding rocket mission MAIUS [47, 48]
is planned for a launch in late 2014. The payload will comprise an atom-optical exper-
iment able to generate BEC in space and conduct first AI tests in this environment.
Here, space is considered to begin at an altitude of 100 km, above the so-called Karman
line [108]7.

During the burning phase of the sounding rocket motors, high accelerations and
vibrations, DC shocks and thermal loads will affect the experiment. Thus, every com-
ponent and subsystem has to withstand a certain vibration spectrum, characterized by
the specific motors and mechanical assembly. Another aspect of qualification are large
temperature gradients, since the rocket is launched at environmental temperatures
well below 0 ◦C until air friction heats up the outer hull to approx. 200 ◦C. This puts
strong demands on the thermal design of the whole payload. Moreover, demanding
requirements are related to the long-term stability and reliability, since the payload

7This was defined by the Fédération Aéronautique Internationale (FAI), whereas for NASA space
begins at 50 miles above the ground [104].
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should not be touched nor adapted after final integration. Usually, this is more than
half a year prior to launch. Pictures of a sounding rocket payload in the integration
hall at ESRANGE8 (left, TEXUS-48) and of a similar rocket during the ascent phase
after takeoff (right, TEXUS-50) are shown in Fig. 1.6.

Quo vadis?

The presented motivation, already submitted proposals and on-going activities show
that there is deep scientific interest in establishing quantum sensors in space. Many
studies have been conducted by several national and international space agencies (e.g.,
DLR, CNES, ESA, NASA) and preparatory experiments are being operated in zero-g
airplanes and drop towers.

In this context, extensive research has been and currently still is undertaken towards
establishing matter wave interferometers in microgravity. This includes new scientific
methods as well as inevitable engineering and technological developments. Inertial
sensitive atom interferometers have already been demonstrated in microgravity with
moderate interrogation times (T ≤ 10 ms) by using laser-cooled atoms [46], but so far
not with degenerate gases. Given the unique properties of Bose-Einstein condensates
(e.g., coherence length and slow expansion), their utilization is inevitable for matter
wave interferometry at ultra-long time scales (T > 5 s).

1.5 Outline of this thesis

In this thesis, advanced cold atom technologies and methods have been developed
to finally demonstrate the first interferometer with Bose-Einstein condensates in mi-
crogravity. This required the preparatory implementation of necessary scientific tech-
niques as well as accompanying studies on ground which can essentially be summarized
in the following three experimental prerequisites (right side):

Free-fall interferometry with
Bose-Einstein condensates
in microgravity (see Ch. 5 )





Atom-chip-based source of non-magnetic
degenerate gases (see Ch. 2)

⋄

Bragg diffraction and open interferometers
with degenerate gases (see Ch. 3)

⋄

Delta-kick cooling as a tool for long
baseline atom interferometry (see Ch. 4)

Starting point for the achievements has been the QUANTUS-I setup presented in
[17]. This apparatus demonstrated first Bose-Einstein condensates in microgravity and
their free evolution of up to 1 s. However, anomalous expansion of atoms prepared in

8European Space and Sounding Rocket Range [109]
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the mF = 2 state led to the assumption of interactions with residual magnetic fields in
the tower. During dedicated drop campaigns investigating the influence of the latter,
a technical defect caused the destruction of the atom chip.

In the timeframe of this thesis, the QUANTUS-I experiment was re-assembled and
characterized in detail. As one important upgrade, an RF-induced adiabatic rapid
passage (ARP) was implemented on chip and optimized for the coherent transport of
atoms into the mF = 0 state. The new setup as well as the basic theory of Bose-
Einstein condensation with atom-chips will be presented in Ch. 2.

A compact Bragg laser system for coherent manipulation was built and integrated for
preparatory, ground-based matter wave interferometry experiments. Bragg diffraction
was used to form open (or asymmetric) interferometers of Ramsey- and Mach-Zehnder-
type, which have been operated to analyze the phase coherence of the condensate.
The influence of mean-field energy on the formation of spatial fringe pattern was
investigated in detail. This will be the focus of Ch. 3.

Delta kick cooling (DKC) was implemented in the atom-chip based setup to effec-
tively reduce the expansion rate of thermal as well as degenerate atomic ensembles.
We analyzed the influence of DKC on differently prepared atomic ensembles in time-of-
flight series and Bragg spectroscopy measurements. For the first time, we successfully
demonstrated the ground-based application of delta-kick cooled atoms in matter wave
interferometers. The main results will be summarized in Ch. 4.

With this advanced setup of QUANTUS-I, over 250 free fall experiments have been
carried out in dedicated measurement campaigns at the Bremen drop tower. We have
been analyzing the free evolution of delta-kick cooled atoms with expansion times of
up to 2 seconds. This constitutes the second largest free evolution time of cold atomic
quantum object reported so far (cf. [110]). Additionally, we investigated the applica-
bility of delta-kick cooled atoms as a coherent source for matter wave interferometry
on extended timescales. To this end, an asymmetric Mach-Zehnder interferometer in
microgravity was realized which led to the observation of high-contrast interferometric
fringes for interrogation times of up to 677 ms. The central outcomes will be discussed
in Ch. 5.

The thesis concludes with an outlook on the most recent developments and the next
steps towards space-borne matter wave interferometers in Ch. 6.

Last but not least...

Operating a highly miniaturized BEC machine during free fall in a 110 m height drop
tower is certainly not the task of a single person. Thus, the main results to be presented
in this thesis have been achieved in a joint effort of the working Ph.D. students (H.
Müntinga, H. Ahlers and A. Wenzlawski). This thesis compromises a selection of the
scientific outcomes of QUANTUS-I during this time, others of which are not, or only
very briefly described in this thesis since they are [111] or will be [112, 113] addressed
elsewhere.
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2 Atom-chip-based source of
non-magnetic degenerate gases

In this chapter, the basics of Bose-Einstein condensation of dilute quantum gases will
be presented and the theoretical background reviewed. Detailed studies can be found
elsewhere [114, 115, 116]. The following is meant to be (i) a brief overview about
the unique characteristics of a condensate and (ii) a summary on the experimental
techniques, that are needed to cool down an ultra-cold atomic sample to quantum
degeneracy. The latter will be described by introducing the QUANTUS-I apparatus, a
compact drop tower experiment generating 87Rb Bose-Einstein condensates on an atom
chip. This experiment successfully demonstrated the first Bose-Einstein condensation
under microgravity conditions in 2010 [17].

After a short historic overview, we start by discussing Bose-Einstein condensation
of an ideal gas in a harmonic trap, and focus on important properties like the critical
temperature and the fraction of atoms in the condensate (see Sec. 2.2.1). Interactions
between Bosons are taken into account when formulating the Gross-Pitaevskii (GP)
equation (see Sec. 2.2.2). This time-independent, non-linear Schrödinger equation can
be expanded for negligible kinetic energies leading to an approximation for the density
profile of a trapped gas (see Sec. 2.2.3).

Magnetic trapping of neutral atoms (see Sec. 2.3) will be briefly summarized, before
we present the QUANTUS-I apparatus (see Sec. 2.4) and the experimental procedures
to generate Bose-Einstein condensates on an atom- chip (see Sec. 2.5). Three important
magnetic trap configurations will be characterized in ground-based measurements by
evaluating the free expansion of atomic clouds and corresponding trapping frequencies
induced by dipole oscillations (see Sec. 2.6). The knowledge of the main parameters of
these matter wave sources are important for upcoming interferometric analysis of the
phase coherence and for optimizing delta-kick cooling.

The major error source of this experiment has been the interaction of magnetically
polarized atoms with residual magnetic fields during free expansion [17]. Therefore,
the implementation of an adiabatic rapid passage (ARP) for coherently transferring
atoms into the mF = 0 state (to first order magnetically insensitive) will be discussed
at the end of this chapter (see Sec. 2.7).

2.1 Bose-Einstein condensates in a nutshell

The statistical phenomenon of Bose-Einstein condensation was predicted quite some
time ago in 1924. As commonly known, this was a joint effort done by Satyendra Nath
Bose and Albert Einstein [117, 118]. More precisely, the Indian physicist sent a letter
to Einstein in 1924, in which he showed that Planck’s fundamental distribution law
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2 Atom-chip-based source of non-magnetic degenerate gases

A B C D

Figure 2.1: Schematic of the formation of a Bose-Einstein condensate adapted from [115]. A
thermal ensemble is classically associated with point particles moving at velocity
v in a volume with density n = d−3 (A). If the temperature is lowered, they can
be described as wave packets with an extension λdB (B), which start to spatially
overlap at the condensate temperature T = Tc (C). Approaching a temperature
of absolute zero, a pure condensate is expected to form (D).

for electromagnetic radiation [119] could completely be derived from photon statistics,
without the resort to the results from classical electrodynamics.

Even some time before that, Einstein confirmed Planck’s assumption that the elec-
tromagnetic field itself is quantized, with light quanta or photons as the discrete energy
packets. Triggered by the great importance of Boses work and inspired by the con-
sequences of Louis de Broglies interpretation of the wave nature of particles [120],
Einstein provided the full picture of quantum theory of bosonic particles in an ideal
gas. He published his results in two papers [118], where he also predicted a remarkable
phenomenon, the coherent condensation of atoms into one single quantum state. Since
this effect only occurs because of pure quantum statistics, one has to define certain
requirements for crossing the border between classical and quantum statistics.

One illustrative picture is that quantum effects need to be taken into account, when
the thermal de Broglie wavelength

λdB =

√
2πh̄2

mkBT
(2.1)

becomes comparable to the mean inter-particle distance n−1/3, with n as system’s
density. This relation underlines one of the most fascinating prediction of quantum
mechanics, that atoms should not only behave as discrete particles, but also as waves.
In other words, the de Broglie wavelength characterizes the degree of position uncer-
tainty associated with the thermal momentum distribution, which increases by lowering
the temperature T . Macroscopic quantum phenomena thus arise for n−1/3 ∼ λdB, or
in other words

nλ3
dB = n

(
2πh̄2

mkBT

)3/2

≥ 1. (2.2)

Fulfilling this condition leads to a spatial overlap of the particle wave functions. At
this point, particles start to loose their identity, become indistinguishable, and the
particle’s motion cannot be associated with their classical trajectory any more.

The Bose-Einstein condensate can thus be described by one single wave function,
inherently describing the properties of the whole macroscopic ensemble as one coherent
quantum mechanical object. According to Pauli’s exclusion principle, this is not possi-
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2.1 Bose-Einstein condensates in a nutshell

ble for Fermions following Fermi-Dirac statistics with an anti-symmetric wave function.
In terms of temperature, the above condition for Bosons can simply be rephrased to

T ≤ n2/3

(
2πh̄2

mkB

)
, (2.3)

illustrating that quantum behavior is inherently coupled to low temperature phenom-
ena. Under the normal conditions of everyday-life, the wave-like behavior is usually
obscured by energetic thermal motion of particles. At high temperatures, the thermal
de Broglie wavelength is small and the gas behaves classically.

However, the particle density of free electrons in metal, for example, is on the order
of 1022 cm−3. Thus macroscopic quantum properties (e.g., incompressibility and heat
capacity) can be seen already at room temperature, but there might be other systems
even better suited to adduce the evidence of creating that unique state of matter.

2.1.1 Degeneracy of a dilute gas of bosonic atoms

Due to the assumptions made above, cold atomic vapor systems have attracted great
attention for being an ideal physical system candidate for fulfilling Bose’s and Einstein’s
prediction.

The way towards ultra-low temperatures for quantum degeneracy was opened up
with the technique of laser cooling [121, 122]. Amongst others, application and ad-
vancement of the proposed methods led to first stop an atomic beam [123], to create
an optical molasses [124] and finally to confine atoms in a magneto-optical trap [125].
Cold atomic systems with temperatures in the µK regime have been investigated in
laboratories ever since the 1980s (first experiments on ions even earlier [126]) and al-
most perfectly represent the case of a weak interacting gas. Diluteness is one of the
key requirements since the formation of atomic and molecular clusters needs to be
suppressed while further reducing the temperature of the gas1. The latter is necessary
since densities and temperatures associated with laser cooling methods do not provide
phase space densities below the condensation requirement (Eq. 2.2). There was a need
for new scientific techniques to continue the path towards quantum degeneracy.

The first realization of a Bose-Einstein condensate has been reported in 1995 by
three research groups almost at the same time [67, 68, 69]. In a ground-breaking series
of experiments, researchers at the Joint Institute for Laboratory Astrophysics (JILA),
at the Rice University and at the Massachusetts Institute of Technology (MIT) were
able to cool down samples of dilute atomic gases to degeneracy by means of laser- and
subsequent evaporative cooling in a magnetic trap. Evaporative cooling relies on the
fact, that hot atoms are forced to exit the trap and subsequent re-thermalization of
the remaining ensemble leads to a lower temperature. This lead to atomic gases with
effective temperatures in the nK regime fulfilling the condensation requirement.

BECs of dilute atomic vapors are typically created in trapping potentials, which can
be approximated as harmonic in the trapping center. This is also the case for magnetic
potentials provided by an atom chip in the QUANTUS-I experiment. Thus, we now

1Most alkali gas BEC experiments operate at densities of about 1014 cm−3, thus requiring tempera-
tures well below 1 µK to reach degeneracy.
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2 Atom-chip-based source of non-magnetic degenerate gases

focus our discussion on the theoretical description of Bose-Einstein condensation in
harmonic traps.

2.2 Bose-Einstein condensation in a harmonic trap

The properties of a Bose gas in a harmonic trap will be reviewed based on [116]. In the
beginning, the treatment of an ideal gas in an anisotropic harmonic potential leads to
important expressions for the density of states, transition temperature and condensate
fraction.

2.2.1 Ideal Bose gas

Given a uniform non-interacting bosonic system, the occupation of states with a given
temperature T according to Bose-Einstein statistics is

f(ǫ) =
1

e(ǫ−µ)/kBT − 1
, (2.4)

with ǫ the energy of the single particle state and the chemical potential µ. The latter
can be understood as the energy equivalent, which is necessary to add an additional
particle to the ensemble. The total number of atoms thus is

Ntot = ǫ
∑

g(ǫ), (2.5)

with g(ǫ) as the density of states. Nature sets ǫ0 − µ > 0, since the chemical potential
µ must always be lower than the ground state energy to guarantee a non-negative
occupancy number of any state in the system. In the limes of an infinite number of
particles (e.g., N → ∞), one can rewrite the summation with an integral over the
density of states g(ǫ),

Ntot = N0 +Nthermal = N0 +

∫ ∞

0
f(ǫ)g(ǫ)dǫ, (2.6)

where we added the number of condensed atoms in the ground state N0 separately.
To calculate the number of atoms in the excited state, we have to derive the density
of states, which is dependent on shape and dimensionality of the trapping potential.

Density of states

The density of states depends on the potential, in which the atomic ensemble is
trapped. In the QUANTUS-I experiment, the Bose-Einstein condensate is formed in a
magnetic trap generated by high density currents through gold wires of an atom chip
(Sec. 2.4.2). Here, the three dimensional trapping potential can around its minimum
be safely approximated as harmonic,

Uext(x, y, z) =
m

2

(
ωxx

2 + ωyy
2 + ωzz

2
)
, (2.7)

with wi the trapping frequency along the ith direction. Neglecting the inter-particle
interactions of this bosonic system first, the many-body Hamiltonian is the sum of the
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2.2 Bose-Einstein condensation in a harmonic trap

single-particle Hamiltonians whose eigenvalues compromise the form

Enxnynz =

(
nx +

1

2

)
h̄ωx +

(
ny +

1

2

)
h̄ωy +

(
nz +

1

2

)
h̄ωz, (2.8)

with ni as non-negative integers. We are now able to determine the density of states
g(ǫ) by calculating the number of states G(ǫ) in our harmonic trapping potential

G(ǫ) =
1

h̄3ω1ω2ω3

∫ ǫ

0
dǫ1

∫ ǫ−ǫ1

0
dǫ2

∫ ǫ−ǫ1−ǫ2

0
dǫ3 =

ǫ3

6h̄3ω1ω2ω3
, (2.9)

and building

dG(ǫ)

dǫ
= g(ǫ) =

ǫ2

2h̄2ω1ω2ω3
. (2.10)

Transition temperature, leading order correction and condensate fraction

Based on the density of states, the number of non-condensed or thermal atoms in
Eq. 2.6 follows as

Nthermal =
1

2h̄3ωxωyωz

∫ ∞

0

ǫ2

e(ǫ−µ)/kBT − 1
dǫ. (2.11)

In the case of particle conservation, reducing the temperature T of the system means
that the chemical potential µ increases until it reaches the energy level of the ground
state ǫ0. The thermal distribution is "saturated" in the case of µ → ǫ0, corresponding
to a critical temperature TC . By evaluating the integral in Eq. 2.11, the number of all
atoms in the thermal distribution can be given as [116]

Nthermal = Ntot =
Γ(3)ζ(3)(kBTC)3

2h̄3 , (2.12)

with the Gamma function Γ(α) and Riemann’s Zeta-function ζ(α) =
∑∞

n=1 n
−α. In

the case of a zero ground state energy (e.g., ǫ → 0), we can find the BEC transition
temperature with ωho = (ωxωyωz)1/3 as

kBTC =
h̄ωhoN

1/3

ζ(3)1/3
≈ 0.94h̄ωhoN

1/3, (2.13)

which can be understood as the highest possible temperature associated with macro-
scopic occupancy of the ground sate. We see that there are two energy scales for an
ideal Bose gas in a harmonic trap, the average energy level spacing h̄ωho and the tran-
sition temperature kBTC . The typical level spacing in a harmonic oscillator potential
for condensation (e.g., ωho ∼ 2π · 500 Hz) is on the order of about a few nK, and with
an average atom number of 104, the transition temperature TC is expected for a few
hundreds of nK.

In real systems, however, experiments are always carried out with a finite system and
thus never reach the thermodynamic limit as implied above. Therefore, a correction to
the critical temperature originates from the ground state energy, whose non-zero value
cannot be neglected for finite particle numbers. For the three dimensional harmonic
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2 Atom-chip-based source of non-magnetic degenerate gases

oscillator, the ground state energy is ǫ0 = h̄/2(ωx+ωy +ωz), and the relative correction
in the calculation of the critical temperature is

δTC

TC
≈ 0.73

ωarith

ωho
N−1/3, (2.14)

with the geometric mean ωho = (ωxωyωz)1/3 and the arithmetic mean value ωarith =
(ωx + ωy + ωz)/3 of the corresponding trapping frequencies. This correction becomes
obviously more important for low particle numbers in the ensemble. Given typical
trapping frequencies of the atom-chip-based QUANTUS-I experiment with about 104

atoms in the condensate, the correction of the transition temperature is on the order
of δTC/TC ∼ 4%.

Having calculated the critical temperature, the number of condensed atoms in a
three-dimensional harmonic oscillator potential for temperatures below TC can be ex-
pressed as

N0 = Ntot −Nthermal = Ntotal

[
1 −

(
T

TC

)3
]
. (2.15)

Atomic wave-function and harmonic oscillator ground state size

For T < TC atoms start occupying the lowest single-particle state, constituting the
ground state of the system which can be described as a product state of the single
particle wave functions φ0

Φ(~r1, ~r2, ..., ~ri) =
∏

i

φ0(~ri). (2.16)

The corresponding density distribution n(~r), reflecting the shape of the ground state
wave function in the trap φ0, can be calculated as

n(~r) =

∣∣∣∣∣
∏

i

φ0(~ri)

∣∣∣∣∣

2

= N |φ0(~r)|2. (2.17)

For an anisotropic harmonic oscillator, the ground-state wave function can be written
as [116]

φ0(~r) =

(
mωho

πh̄

)3/4

exp

[
−m

2h̄
(ωxx

2 + ωyy
2 + ωzz

2)

]
, (2.18)

from which we can extract the average size of the Gaussian distribution in each di-
mension i, which we call the harmonic oscillator ground state size,

ai =

√
h̄

mωi
. (2.19)

Thus, for a system of non-interacting bosons in a harmonic trap, the condensate has
a Gaussian form with corresponding widths ai. The shape of the condensates changes
significantly if the atoms interact (see Sec. 2.2.3). For comparison, we consider a non-
condensed, thermal ensemble of atoms in an external harmonic potential Uext(x, y, z).
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2.2 Bose-Einstein condensation in a harmonic trap

The Gaussian width R of the classical Boltzmann distribution (nB ∝ e−U/kBT ) is larger
than ai,

R = ai

√
kBT

h̄ωi
. (2.20)

By calculating the Fourier transform of the ground state wave functions, we find that
the momentum width of a thermal cloud is again wider than the momentum width of
a BEC.

2.2.2 Interacting Bose gas and the Gross-Pitaevskii equation

Until this point, we have only considered ideal bosonic systems, but real systems are
always affected by particle interactions. These will now be included and the following
is based on the derivations made in [114, 127].

The grand canonical many-body Hamiltonian of N interacting Bosons under the
influence of an external potential Uext in second quantization is

Ĥ =

∫
d~rΨ̂†(~r)

[
− h̄2

2m
∆ + Uext

]
Ψ̂(~r)

+
1

2

∫
d~r ′d~rΨ̂†(~r)Ψ̂†(~r ′)Uint(~r − ~r ′)Ψ̂(~r ′)Ψ̂(~r),

(2.21)

with Ψ̂(~r) and Ψ̂†(~r) as bosonic field operators, which annihilate or create a particle
at the position ~r, and Uint as the two-body interaction potential. The field operators
satisfy the Heisenberg equation of motion.

Mean-field approaches are commonly developed to overcome the problem of solving
the full many-body Schrödinger equation for a large number of atoms, which in the
most cases are impracticable to calculate. A common prescription is the Bogoliubov
approximation, where the field operator Ψ̂(~r, t) is represented by a complex function
Φ(~r, t) defined as the expectation value of the field operator 〈Ψ̂(~r)〉 ≡ Φ(~r, t) and a
small perturbation having the physical meaning of thermal excitations like

Ψ̂(~r, t) = Φ(~r, t) + δΨ̂(~r, t). (2.22)

Φ(~r, t) is a classical field which can be chosen as the order parameter of the system
and is called the condensate’s wave function with a density of n0(~r, t) = |Φ(~r, t)|2. At
very low temperatures, thermal effects and excitations can be neglected, δΨ̂(~r, t) → 0.
Here, we can derive the equation for the wave function by using the time evolu-
tion of the field operator using the Heisenberg equations of motion ih̄δ/δtΨ̂(~r, t) =[
Ψ̂(~r, t), H

]
, resulting in

[
−h̄2

2m
∆ + Uext(~r) +

∫
d~r ′Φ∗(~r ′, t)Uint(~r − ~r ′)Φ(~r ′, t)

]
Φ(~r, t) = ih̄

∂

∂t
Φ(~r, t). (2.23)

For very dilute and cold gases the particles interact only through local s-wave scat-
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tering, meaning that two-body collisions play the dominant role. The interaction
potential Uint(~r

′ −~r) can therefore be replaced by an effective contact potential in the
form of

Uint(~r
′ − ~r) =

4πh̄2a

m
δ(~r ′ − ~r) = gδ(~r ′ − ~r), (2.24)

where the interaction strength g = 4πh̄2a/m depends only on a single atomic param-
eter, the scattering length a. This approach is valid, if the mean free pathlength of
an atom is much larger than the scattering length (d ≫ |a|), or taking the mean con-
densate density into account, n |a| ≪ 1. Using an effective contact potential here is
compatible with the replacement of Ψ̂(~r, t) with Φ(~r, t), leading to a system which is
completely described by a single wave function that fulfills the time-dependent Gross-
Pitaevskii (GP) equation

∂

∂t
Φ(~r, t) =

[
− h̄2

2m
∆ + Uext(~r) + g |Φ(~r)|2

]
Φ(~r). (2.25)

The ground state of the time-dependent GP equation, a pure Bose-Einstein con-
densate, can be described by separating the wave function in a position- and time-
dependent part

Φ(~r, t) = φ(~r)e−iµt/h̄, (2.26)

with µ as the chemical potential. Inserting Eq. 2.26 into 2.25 leads to the time-
independent GP equation

[
− h̄2

2m
∆ + Uext(~r) + gφ2(~r)

]
φ(~r) = µφ(~r). (2.27)

In a given external trapping potential, the density distribution n(~r) = φ(~r)2 is
determined by the fraction of kinetic and interaction energy. If we neglect particle in-
teraction again, this non-linear Schrödinger equation reduces to the usual Schrödinger
equation for the single particle Hamiltonian.

GP theory based on Eq. 2.27 today is the main tool for investigating trapped BECs.
The GP equation has the form of a mean-field equation where the order parameter
(condensate wave function) has to be calculated in a self-consistent way. For attractive
interactions, the condensates collapse, and for repulsive interaction, the GP equation
can be expanded for negligible kinetic energies.

2.2.3 Thomas-Fermi approximation

For a large number of repulsive interacting atoms (a > 0), we can neglect the kinetic
energy term completely, since the inter-atomic energy dominates the internal dynamics.
This is called the Thomas-Fermi approximation and can be used to describe the density
profile of the ground state according to [116] as

nT F (~r) =
∣∣∣Φ(~r)2

∣∣∣ = max

{
µ− Uext(~r)

g
, 0

}
. (2.28)
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This expression for the density profile is an inverted parabola with central density
of n(0) = µ/g, mirroring the shape of the external potential, which vanishes in each
direction for µ ≤ |Uext(~r)|. Assuming anisotropic, harmonic potentials of the form

Uext(x, y, z) =
m

2

(
ωxx

2 + ωyy
2 + ωzz

2
)
, (2.29)

we can determine the so-called Thomas-Fermi radius, which in the i-th dimension is
given by

Rtf
i =

1

ωi

√
2µ

m
. (2.30)

The normalization condition N =
∫
d~r|φ(~r)| of the wave function leads to an expres-

sion for the chemical potential µ

µ =
h̄ωho

2

(
15Na

√
mωho

h̄

)2/5

, (2.31)

with geometric mean of trapping frequencies ωho = (ωxωyωz)1/3, total number of atoms
N , and scattering length a [116]. By simply combining Eq. 2.30 and 2.31, we finally
obtain

Rtf
i =

(
15Nh̄2a

m2ωi
2

)1/5

. (2.32)

Unfortunately, the TF approximation itself is not valid for analyzing the free ex-
pansion of a condensate after release from the trapping potential. Once in free fall,
the internal energy is converted into kinetic energy and thus not negligible anymore.
First calculations towards the expansion of a condensate by changing the trapping
parameters or the external potential have been carried out by solving the GP equation
numerically accompanied by comparisons with real experimental data [128].

Another approach is based on classical scaling laws. Here, the dynamic of the macro-
scopic wave function is described in the evolution of three scaling parameters, which
are obtained by a suitable coordinate transformation [129, 130]. This method will be
used to predict the free expansion of condensates in extended free fall experiments at
the drop tower (Sec. 5.2).

But before we are able to analyze the temporal evolution of freely expanding con-
densates, we obviously have to trap atoms first. This will be discussed in the following
section.

2.3 Forming a magnetic trap for neutral atoms

The magnetic dipole interaction energy U of a paramagnetic atom in a given magnetic
field ~B is

U = −~µ · ~B = −µB cos θ, (2.33)
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2 Atom-chip-based source of non-magnetic degenerate gases

with ~µ being the magnetic moment and θ the angle between the magnetic moment and
the magnetic field orientation. This angle is stabilized by means of the rapid Larmor
precession of ~µ around the magnetic field direction with the frequency ωL = µB/h̄.
Quantum mechanically speaking, this becomes

U = gµBmF | ~B|, (2.34)

where g is the Landé factor, µB the Bohr magneton and mF the magnetic quantum
number associated with the projection of the total angular momentum ~L = ~µ/µBgF

onto the direction of ~B. In Eq. 2.34, we assume the external field to be sufficiently
small, so the energy of each unperturbed magnetic sublevel is linearly shifted with
respect to its hyperfine state (linear Zeeman effect).

Paramagnetic atoms therefore can be trapped making use of the interaction of the
magnetic moment with a spatially varying magnetic field, causing a magnetic dipole
force (Stern-Gerlach force) as

~FSG = −∇U = −gµBmF ∇| ~B|. (2.35)

Depending on the magnetic polarization of the atoms, we need to create a field
minimum or maximum to trap atoms and therefore the product of the magnetic quan-
tum number mF and the Landé factor gF allows to classify atoms in three distinct
categories:

• mF gF > 0: weak field seeker, whose energy increase with increasing magnetic
field strength. Therefore, the ~FSG is pointing toward a local minimum of the
external field,

• mF gF = 0: to first order insensitive to magnetic fields,

• mF gF < 0: strong field seeker, whose energy levels decreases with increasing
magnetic field strength.

Since there are no magnetic monopoles as Maxwell’s equations prohibit a magnetic
field maximum for static current configurations in free space (Earnshaw theorem), one
only can trap week field seekers in local magnetic minima. For a sufficient trapping
efficiency, these minima should maintain a non-zero value in all dimension, to avoid
one of the major loss channels.

Majorana losses

Atoms must maintain a given magnetic field orientation with respect to the local field,
otherwise losses occur if an atom changes its state from weak field seeking to strong
field seeking or even to a state with mF = 0. This process in known as Majorana
spin flips [131]. The trap is only stable, if the precessing atomic spin can follow the
changing magnetic field direction adiabatically. In order to maintain the projection of
the magnetic moment mF , only slow changes in the projection angle θ w.r.t. to the
Larmor frequency are allowed, leading to the condition

dθ

dt
< ωL. (2.36)
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The presence of spin flips would strongly limit the lifetime of the atoms. Static
magnetic traps can be classified by the magnitude of the magnetic field in the center
of the trap. Very simple magnetic traps have a zero field in the minimum, B0 = 0,
letting non-adiabatic Majorana transitions play a significant role, since losses occur
due to unavoidable spin flips. More advanced magnetic traps show a non-zero field
component in the minimum, B0 6= 0, and are usually used for cold atom and BEC
experiments. Two common magnetic field configurations, representing both cases, will
be introduced in the following.

2.3.1 Quadrupole trap

The Quadrupole trap provides a simple magnetic field configuration in which a local
field minimum can be realized. The magnetic field scales linearly in all dimensions
and may be created by a pair of coils implemented in anti-Helmholtz configuration.
With an axial symmetry along the z-direction, the magnetic field can be approximated
around the minimum by

~B(x, y, z) = B′




x
y

−2z


 . (2.37)

Obviously, the main disadvantage of this trap configuration is a zero field in the
minimum. To circumvent this, one may add a homogeneous magnetic field which is
rotating in the area perpendicular to the symmetry axis of the quadrupole coils, thus
forming a time-orbiting-average-potential (TOP) trap [67, 132]. Another method may
be to add a repulsive, optical dipole potential (blue-detuned to the atomic resonance)
which prohibits atoms from reaching the zero field [69].

2.3.2 Ioffe-Pritchard trap

A well known and extensively studied example of a magnetic trap with a local minimum
is the Ioffe-Pritchard trap (IPT), first discussed by Ioffe [133] and adapted to neutral
atoms by Pritchard [134, 135]. The IPT provides a quadratic confinement and has a
non-zero magnetic field in the trap center. Assuming an axially symmetric case, the
trapping field is given by [115, 136]

~B(r) = B0
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 . (2.38)

It can be created macroscopically with a complex coil assembly [69, 67] or simply
by overlapping the magnetic field of an appropriately bent, current carrying wire (e.g.,
atom chip) with an additional, external homogenous field (Sec. 2.4.2). Independent
of the technology, the center of the trapping potential for paramagnetic atoms can be
approximated as harmonic,

U(x, y, z) ≈ m

2

(
ωxx

2 + ωyy
2 + ωzz

2
)
, (2.39)
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with trapping frequencies in the axial (ωz) and radial (ωx = ωy ≡ ωrad) direction of

ωz =

√
µBgFmF

m
·
√
B′′, (2.40)

ωrad =

√
µBgFmF

m
·
√
B′2

B0
− B′′

2
. (2.41)

The axial trap steepness thus scales with the curvature of the magnetic field B′′ only,
whereas in the radial direction additionally the gradient B′ and the trap bottom B0

need to be considered. Strongly confined atoms are favorable for high collision rates,
necessary for fast re-thermalization during the evaporation process (Sec. 2.5.2).

After introducing the basics of Bose-Einstein condensation and standard principles of
magnetic trapping of neutral atoms, the QUANTUS-I apparatus and the experimental
sequence used to create degenerate gases with an atom chip will be presented.

2.4 The QUANTUS-I experiment

QUANTUS-I is a pathfinder experiment for exploring cold quantum gas technology
under the unique conditions of microgravity. It is part of the DLR funded joint project
QUANTUS2, targeting the long-term goal of studying space-borne quantum gas ex-
periments. As an accessible high-quality microgravity platform to perform cold atom
science in free fall, the drop tower in Bremen was chosen [107]. Therefore, an experi-
mental apparatus had to be developed and integrated into a small capsule [17, 137, 19].

A picture of the current drop capsule setup is shown in Fig. 2.2. Four aluminum
stringers enclosing six intermediate platforms made of an aluminum-wood composite
are fixed to the capsule bottom. From top to bottom, the scientific payload consists of
a laser system including control electronics, a computer control system for the experi-
mental sequences followed by the vacuum pump section. The heart of the experiment is
an UHV chamber including atom source and atom chip, powered by low-noise current
drivers. Another computer system for housekeeping data and monitoring is situated
right above the batteries.

The degree of sophistication of such a setup, high enough for any BEC apparatus,
is even more demanding in order to fulfill stringent requirements for operation in the
drop tower environment:

• Miniaturization. The experiment has to fit into a drop capsule with an effective
height of 1.73 m and a diameter of 0.6 m [107]. Thinking of a complete quantum
gas experiment, this naturally results in a high packing density which itself is
challenging regarding the construction of an UHV vacuum chamber and complex
laser system assemblies, or by effectively decouple cross-talking between electrical
components and ensuring sufficient thermal management.

• Robustness. After the free fall provided by dropping the capsule in an evac-
uated tube from a height of 110 m, the capsule is caught in a deceleration tube

2QUANTUS: Quantengase unter Schwerelosigkeit, DLR funded project which started in 2004
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2.4 The QUANTUS-I experiment

Figure 2.2: Photograph of the QUANTUS-I experiment capsule (without pressurized cover,
top lid plate and nose cone [107]). Subsystems from top to bottom: laser system,
NI-PXI control computer, vacuum pump section, UHV chamber with atom chip
and dispensers, atom chip current drivers, NI-PXI for housekeeping data, and
accumulators. This picture was taken in front of our laboratory at the ZARM in
Bremen.
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2 Atom-chip-based source of non-magnetic degenerate gases

containing polystyrene pellets. Accelerations with peak values up to 50 g stress
the mechanical structure and require a robust engineering and integration of the
subsystems.

• Temperature. During evacuation, the vacuum-tight capsule heats up since
most electronics remain switched on. Consequently cooling of sensitive parts of
the payload (especially laser sources and optical bench) is required. Therefore,
a dedicated thermal control system (TCS) was developed which typically limits
the temperature increase to about ∼ 3◦C.

• Mass. Since the payload mass is limited to 234 kg, lightweight constructions
had to be designed with the right choice of material and advanced engineering
techniques3.

• Low power consumption. The experiment has to be powered by batteries,
since no power supply interface is possible during free flight. They are imple-
mented at the bottom of the capsule, operating at 28 V DC voltage with a total
stored energy of 0.56 kWh.

• Remote control. A computer system (NI-PXI) for housekeeping data and
remote control is implemented at the bottom of the capsule. Before dropping
the experiment, control sequences (LabView routines) have to be uploaded via
remote control capability.

More detailed information about the drop tower requirements and the dropping
procedures are given in Ch. 5, where the free fall results will be reported, or can be
found elsewhere [107, 17].

During this thesis, the QUANTUS-I experiment has been fully re-assembled after
destruction of the atom chip in 2010. We will now shortly review the different subsys-
tems with focus on the atom chip and laser system, before the experimental procedures
will be described. Details on the experiment hardware and the payload can be found
in [137, 19].

2.4.1 Vacuum system and atom source

Ultra-cold quantum gas experiments require an ultra-high vacuum (UHV) in the
10−11 mbar regime. In QUANTUS-I, a compact single-chamber design made out of
non-magnetic steel and based on copper seals (CF-type) was realized. The background
pressure is a compromise between a fast loading rate of the MOT and a long lifetime
of the BEC [19]. Here, an ion getter pump (MECA2000, 20l/s) and a passive getter
(SAES) guarantee a background pressure of less than 10−11 mbar, ensuring sufficient
long lifetimes of the BEC (∼ 3 s) but limiting the MOT loading rate and therefore the
experimental cycle time (∼ 15 s). Additionally, a titanium sublimation pump with 3
filaments is integrated.

The atomic source are alkali metal dispensers (AMD) supplied by SAES Getters.
AMDs offer an efficient and compact source for depositing alkali vapors. The evapora-
tion rate is controlled by the amount of current sent through the wire shaped devices

3However, the QUANTUS-I payload already exceeds this value by roughly 100 kg
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2.4 The QUANTUS-I experiment

which are integrated below the atom chip. 87Rb was chosen for laser cooling and trap-
ping since it is paramagnetic, features a positive scattering length and highly mature
commercial-of-the-shelf (COTS) laser diodes and electro-optical components for laser
beam manipulation and switching can be used.

2.4.2 Atom chip and external magnetic fields

In QUANTUS-I, an atom chip is used to generate the field gradients necessary to cool
and trap rubidium quantum gases. The use of atom chips not only leads to a compact
design of UHV chambers, but generally greatly simplifies the apparatus needed to
produce ultra-cold atoms or Bose-Einstein condensates [138, 139], compared to the first
atom-optical experiments based on macroscopic traps [69, 67]. This miniaturization
is still part of an on-going technological progress and compromises an important step
towards robust application of quantum gas experiments.

Currents running through wires form magnetic field geometries which constitute
versatile potential landscapes for the atoms [140]. Atom chips only require modest
currents even for high field curvatures and thus high trapping frequencies, ∂2B/∂2r ∼
1/r3 which becomes large in the proximity of the chip. The distance between the wires
and the atomic ensemble can be chosen to be very small, typically on the order of about
100 µm, allowing for tightly confining magnetic potentials at a low power consumption
level.

Gold wires on a chip have a very good heat dissipation (which otherwise would
strongly limit the maximum currents on the chip and therefore the maximum mag-
netic field strength) and mechanical stability. The atom chip production enormously
benefits from the technology established for micro-chips, e.g. fabrication technologies,
electroplating and UV lithography [136].

In combination with external fields, they allow for nearly any current distribution
and magnetic field geometry that are still very hard or impossible to realize with con-
ventional technologies. These include diverse geometries for trapping and coherent
guiding of ultra-cold atoms [141], beam splitters for matter waves [142, 143], complex
RF dressed potentials for on-chip BEC manipulation [144], and integrated interfer-
ometers [145, 146]. Current developments focus on integrating optical, electrical, and
magnetic components into an atom chip scale subsystem for versatile fundamental and
applied physics experiments.

Straight conductor configuration

Many field geometries generated with macroscopic coils can be replaced by wire struc-
tures and a uniform magnetic bias field [136]. The principle of trapping atoms with a
simple straight conductor (sc), is to overlap a magnetic field arising through current
send through the wire with an external, homogenous field Bbias in such a way, that
the field amplitudes at a certain position above to the conductor cancel each other.
This waveguide geometry provides a conservative potential which traps atoms in two
dimensions, but allow them to move freely in the third one.

The magnitude of a radial symmetric field of a single, thin, infinitely long current
carrying wire is [136]
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I

Figure 2.3: Basic configuration of a two-dimensional quadrupole field. The radial symmetric
field of a straight wire (with current I) is overlapped with a homogenous bias
field ~Bbias = Bbias ·~ex, giving a zero field line at distance z0.

Bsc(z) =
µ0

2π
· I
z
, (2.42)

with the wire current I, the perpendicular distance to the straight wire z, and the
vacuum permeability µ0. Adding a homogenous magnetic bias field ~Bbias = Bbias ·~ex

perpendicular to the wire axis (see Fig. 2.3), forms a total magnetic field distribution
with the following magnitude, gradient and curvature

B(z) =
µ0

2π
· I
z

−Bbias, (2.43)

B′(z) = −µ0

2π
· I
z2
, (2.44)

B′′(z) =
µ0

2π
· I
z3
. (2.45)

In this configuration, a zero magnetic field line (B(z0) ≡ 0) at the given distance

z0 =
µ0

2π
· I

Bbias
(2.46)

is created, and the resulting field can be approximated as a two-dimensional quadrupole
in the vicinity of this line. No trapping is provided along the wire axis ~ey. This concept
is the very basis of a 2D trap for weak field seeking atoms [147] and has been used to
demonstrate atom guiding.

When superimposed with another homogenous field component (e.g. along the wire
axis with B0 ·~ey), the initial 2D quadrupole guide is formed into an 2D Ioffe-Pritchard
(IP) guide with a non-zero field in the minimum and a quadratic variation around the
trap center. The position of the trap bottom (Eq. 2.46) changes with the applied bias
field ~Bbias since higher fields move the trapped atoms closer to the wire.

Advanced configurations for three-dimensional trapping have been made possible
by, amongst others, dimple-type traps [140], simply bending a single wire in different
shapes, as explained in the following.
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2.4 The QUANTUS-I experiment

Figure 2.4: Schematic of the U-type and Z-type wire configuration (left) and photograph
of the QUANTUS-I atom chip surface (right). Indicated in red and green are
the wires constituting the U- and Z-type magnetic traps (in combination with a
magnetic bias field ~Bbias). More details in text.

U-type and Z-type wire configuration

Three-dimensional trapping by adding magnetic confinement along the direction of the
straight conductor field can be realized by appropriately bending a single wire. The
most common U-type and Z-type wire configuration are manifestations of a quadrupole
and Ioffe-Prichtard-type magnetic trap for neutral atoms, respectively.

Here, all segments carry the same current I as depicted in Fig. 2.4 (A). The re-
sulting magnetic field vectors are added to an additional, uniform bias field Bbias.
In both cases, the central wire segment together with Bbias forms a two-dimensional
quadrupole trap, whereas the bent parts (orthogonal to the central part) provide the
field components for axial confinement. In Fig. 2.4 (A), x- and z-axis can be referred
to as the strong axis, since the magnetic field gradient is strongest along this direction,
whereas confinement in the y-direction is comparably weak.

In the case of a U-type wire, the magnetic fields of the two bent wires cancel each
other at the trap center since they are pointing in opposite directions. The resulting
field configuration is of 3D quadrupole type, which has a zero field at the minimum
and rises linearly in the vicinity of it, and is preferably used for operating a magneto-
optical trap (MOT). In the case of a Z-type trap, the magnetic field components add
up to a finite value at the trap center, since they are pointing in the same direction.
This configuration constitutes the chip-based version of an Ioffe-Pritchard trap and is
used for magnetic trapping of atoms and subsequent BEC generation.

Both U-type (red) and Z-type (green) magnetic traps can be realized with the atom
chip used in QUANTUS-I, as depicted in Fig. 2.4 (B). For details on the used atom
chip see [137, 19].

External coil assemblies

Around the chamber a total number of four coil pairs are implemented. Three of
them are used for generating homogeneous bias-fields (K1, K2, Bias) whereas one
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macroscopic coil pair

MOT Bias (y) K1 (x) K2 (z)

field [G/A] - 10 1.75 1.5
gradient [G/cm A] 1.73 - 0.5 -

Table 2.1: Induced magnetic fields and gradients of the macroscopic coil assemblies (for geo-
metric orientation, see Fig. 2.6, right) used in the QUANTUS-I experiment [19].

pair (MOT) is used in a Anti-Helmholtz configuration (see Tab. 2.1). The latter is
being used for generating a quadrupole field necessary for a macroscopic MOT, before
the atoms are cooled and trapped with the magnetic field provided by the atom chip
only (see Sec. 2.5.1). Their design and implementation was realized as a trade-off
between proper optical access to the chamber, compactness of the overall assembly
and homogeneity of the resulting field configurations [19].

The homogeneous bias fields (K1, K2, and Bias) are used for compensation of resid-
ual fields (e.g., during the molasses phase), to shift the position of the MOT (e.g.,
mode overlap with magnetic trap) and finally to generate the offset fields for an atom-
chip-based Ioffe-Pritchard trap (Sec. 2.5.2). The geometrical configuration of these coil
pairs w.r.t the atom chip and the laser beams can be extracted from Fig. 2.6 (right).

2.4.3 Miniaturized diode laser system

Besides the necessary magnetic field configurations, the second key ingredient for atom
cooling and trapping is laser light. In QUANTUS-I, the laser system is based on
compact and robust modules using miniaturized opto-mechanical components and dis-
tributed feedback (DFB) diode lasers as sources [137]. Within such modules (see for
example right side of Fig. 2.5), the beam height is 20 mm. The housings are made
from aluminum alloys with high tensile strengths and all opto-mechanical components
have been designed for the highest possible mechanical stability by being (partially)
adjustable at the same time. The optical interface inter-connecting the modules and
the vacuum chambers is realized with polarization maintaining, single mode optical
fibers (e.g. SuK PMC-850-5,1-NA013-3-APC-400-P).

A more detailed description can be found in [137], we will now shortly review the
functionality of the system consisting of 4 distinct modules.

• The reference laser is based on a DFB diode (Eagleyard, EYP-DFB-0780-
00080-1500-TOC03-0000) which is stabilized 40 MHz below the |5S1/2, F = 3〉 →
|5P3/2F

′ = 4〉 transition of 85Rb (see yellow line in Fig. 2.5). The chosen isotope
has a relatively high natural abundance (∼ 72%) and the particular transition
additionally features the largest transition strength [148]. The error signal is
generated by means of modulation transfer spectroscopy (MTS) [149]. Therefore,
part of the laser beam is split into a weak probe and a strong pump beam, of which
the latter is modulated with a free-space electro-optical modulator (EOM), whose
resonance frequency is 7.4 MHz [137]. Both beams are overlapped in counter-
propagating directions within a rubidium vapor cell. After passing the cell, the
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probe beam is detected with heterodyne detection techniques. This laser module
has one optical output fiber (∼ 5 mW) which is guided to the switching and
distribution (SD) module, where beatnotes with both, cooling and repumping
lasers, are detected for offset lock stabilization.

• The module for laser cooling consists of a DFB-diode seeding a tapered ampli-
fier (Eagleyard, EYP-TPL-0780-01000-3006-CMT03-0000). Such MOPA (master-
oscillator power-amplifier) configurations are commonly used to reach higher out-
put power levels by preserving the frequency characteristics of the source. Typical
optical powers in the output fiber of around 140 mW are achieved. For frequency
stabilization, the cooling laser light is overlapped with the master laser light in
the SD module. An offset lock stabilization path regulates the frequency of the
cooling laser 2-3Γ red to the |5S1/2, F = 2〉 → |5P3/2F

′ = 3〉 transition of 87Rb.
Additionally, this laser is electronically tuned to optical pumping and detection
transitions (see red lines in Fig. 2.5).

• The repumping laser again is a single DFB diode, offset locked to the reference
laser to emit laser light resonant to the |5S1/2, F = 1〉 → |5P3/2F

′ = 2〉 transition
of 87Rb (blue line in Fig. 2.5). The optical fiber output provides about 11 mW.

• The light of the above mentioned modules is provided to the switching- and
distribution (SD) module. Besides generating the beat notes for offset lock
stabilization with fast photodiodes (Hamamatsu, G4176-03), it features optics
and acousto-optical modulators (AOM, Crystal Technology, 3080-125) to overlap
and switch cooling and repumping light for MOT operation and optical molasses.
An additional path serves for detection and optical pumping. Before coupled back
into fibers, all beams pass a mechanical shutter to avoid residual light coupled
into the fiber and subsequently guided to the atoms even when the AOMs are
switched off.

2.4.4 Control system and housekeeping data

For experimental control, data housekeeping and monitoring two commercially avail-
able computers (National Instruments, NI) operating with a real time system are
integrated within the drop capsule.

One of them is a standard equipment of the ZARM drop capsule [107], used for
triggering the capsule release process and monitoring of important physical properties
(e.g., temperature, pressure, acceleration) before, during and after the drop. The whole
experimental sequence and the laser stabilization routines run on the second computer
and are loaded into the memory via Ethernet (ground mode) or WLAN (drop mode).
For a detailed description of the computer system and the used software, see [19, 112].

2.4.5 Absorption detection of ultra-cold rubidium atoms

The information we want to extract from experiments are encoded in the atoms them-
selves, e.g., particle number, spatial width, contrast. Therefore, the atomic cloud is
detected destructively by a collimated laser beam pointing along the y-direction with
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Figure 2.5: Schematic of the rubidium D2-line hyperfine splitting and the used frequencies
in the experiment (left). Frequency values correspond to MHz (grey lines), the
four laser sources incl. functionality are distinguished in different colors. Exem-
plary pictures of a miniaturized MOPA system (upper right) and an MTS-based
reference laser (lower right) as used in the QUANTUS-I experiment are given.

a diameter of 20 mm, which is resonant to the |F = 2〉 → |F ′ = 3〉 transition of 87Rb.
Typically, the intensity was chosen to be 20% of the saturation intensity of this par-
ticular transition, resulting in a detection intensity of less than Idet = 0.5 mW/cm2.

In each absorption cycle, two successive images are taken with a 12 bit charge-
coupled-device (CCD) camera (Hamamatsu C8484-15G), whose surface-normal is anti-
parallel to the detection beam. The CCD camera features a pixel size of 6.45 µm, and
the detection beam is first collimated, then partly absorbed by the atoms and subse-
quently imaged with an aspheric lens (Linos G322307525) onto the CCD chip. The
system is designed for 1:1 imaging, but a slight magnification of M=1.03 was deter-
mined experimentally by analyzing the position of freely falling atoms.

The first picture is a shadow image of the atomic cloud and proportional to the
atomic density (Iat). The second one is a direct beam image in the absence of all
atoms, providing us with a beam intensity Ibeam. After correction with the camera’s
dark image (Idark), we can calculate the optical density to

D(x, z) = ln

[
Ibeam − Idark

Iat − Idark

]
. (2.47)

If the detection beam is aligned along the y-direction, the number of atoms N can
be calculated by integrating the optical density D along the two visible dimensions

N =
1

σ

∫
D(x, z)dxdz =

∫ [∫
n(x, y, z)dy

]
dxdz, (2.48)
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with the atomic density n(x, y, z). To finally calculate N , we need to know the atom-
light interaction cross-section given by

σ =
σ0

1 + Idet/Isat + 4δ2/Γ2
, (2.49)

with the resonant cross-section σ0, the detection intensity Idet, the saturation intensity
of the transition Isat, the detuning from resonance δ and the natural linewidth Γ [150].

A typical scan of the detection frequency is given in Fig. 2.9, showing the normalized
atom number dependent on the detection frequency detuning. The Gaussian part of
a fitted Voigt profile has a FWHM of 13.47(72) MHz. Hence, the observed width is
broader than Γ and associated with the spectral width of the detection laser (DFB-
type).

In order to extract more information besides atom numbers, one can fit different
distributions to the column densities (e.g., Gaussian distribution for thermal atoms,
Thomas-Fermi distribution for purely condensed samples, see Sec. 2.6). Furthermore,
we will introduce another type of fit-function for the analysis of spatial interference
patterns, which is based on two spatially overlapping Gaussian wave packets with a
modulation of the local density (Sec. 3.5.2).

But before we focus on the analysis of the spatial shape of ultra-cold clouds of atoms,
we have to prepare them.

2.5 Preparing Bose-Einstein condensates in QUANTUS-I

In this section, the preparation steps for generating a condensate will be briefly de-
scribed. The cycle starts by collecting atoms in a MOT, then they are transferred
into a magnetic potential provided by an atom chip and evaporatively cooled down to
degeneracy by means of RF-induced evaporation.

2.5.1 Two stage mirror-MOT with an atom chip

One necessary requirement to trap atoms is their motional energy to be lower than the
depth of the corresponding conservative trapping potential.

Laser cooling in a magneto-optical trap (MOT) is a standard technique to trap and
pre-cool atoms within a certain volume, reaching effective thermal energies limited only
by the recoil shift. It relies on directed radiation pressure forces which result in viscous
damping and average cooling of the sample. A magnetic field gradient (e.g., quadrupole
field) ensures a position dependent force, thus providing spatial confinement [124].
Rubidium atoms enter the trap via background vapor, controlled via the current of
the dispensers. They are mounted directly underneath the atom chip and are wired to
electrical feedthroughs via Kapton-coated wire and crimp connectors.

In a first step, a macroscopic pair of anti-Helmholtz coils is used for generating
the quadrupole field. After typical loading times of 10 s, about 1.6 · 107 atoms are
cooled and trapped. In a second step, the field provided by the macroscopic coils is
switched off, whereas current is sent through the U-type shaped wire and additional
bias field coils (Bbias), forming a chip-based 3D quadrupole field. During magnetic
field switching, the laser beams are turned of for 4 ms.
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Figure 2.6: Schematic of a mirror-based magneto-optical trap (left). The laser beams are
depicted as red arrows and labeled with their light helicity (σ+ and σ

−
). In

this geometry and in presence of a quadrupole field, atoms see pairs of counter-
propagating laser beams with orthogonal polarization in vicinity of the chip (two
additional beams forming a standard six beam MOT are drafted in grey). Orien-
tation of the compensation (K1 and K2) and bias field coils are depicted on the
right side. The Anti-Helmholtz coils are not shown here for better visibility.

The chip-based field has much steeper gradients (at smaller currents) for more precise
control of the trap, e.g., allowing to move the center of the chip-MOT towards the chip
and to positions, which are favorable for subsequent magnetic trap loading. The prior
loading in the macroscopic MOT is necessary, since the trapping volume of the chip-
MOT is much smaller, not suited to efficiently load atoms from the background directly.
After moving to the desired position, the chip-based MOT contains about N ∼ 1 · 107

atoms.
In both cases, the general principle of a mirror-MOT is used (Fig. 2.6, left). Instead

of six beams on three perpendicular axes such as in standard geometries, the mirror-
MOT configuration uses only four beams. Two of them (same helicity) are facing each
other along the y direction whereas the other two (opposite helicity) are brought into
the chamber from +45◦ and −45◦ in the x-z plane, respectively. In this configuration
[138, 139], laser beams from the diagonal telescopes get reflected at the HR-coated
dielectric layer of the surface of the atom chip and counter-propagate with each other.
Since each reflection from the chip changes the helicity, atoms see pairs of counter-
propagating laser beams with orthogonal polarization in vicinity of the chip, which is
necessary for MOT operation.

All MOT-beams in the QUANTUS-I experiment have a diameter of 20 mm with
roughly 15 mW of cooling light each, 4-5 Γ red-detuned to the cooling transition, and
about 3 mW of repumping light on resonance (distributed via diagonal telescopes only).

Optical molasses

Laser cooling is based on scattering photons, and the effective limit to the lowest
possible temperature which can be achieved, is kBTmin = h̄Γ/2, with the Boltzmann
constant kB and the natural linewidth of the alkali atom’s cooling transition Γ. For
87Rb, this leads to a Doppler limit of 145.6 µK [150].

To realize even colder temperatures for more efficient loading of the magnetic trap, a
molasses phase is applied at the end of the MOT-stage [151]. Here, all magnetic fields
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are switched off. The cooling laser intensity is linearly reduced to 25% of its value
during MOT operation, and the frequency is further red-detuned from resonance to
about 10 Γ. The repumping laser is shifted neither in intensity nor in detuning.

Low molasses temperatures can only be achieved if no ambient magnetic fields are
present. Therefore, (i) a magnetic shield is foreseen to passively protect from external
noise sources, and (ii) the three bias coil pairs are used to actively cancel the residual
fields in all dimensions.

This allows to finally prepare a sample with N ∼ 7 · 106 atoms at temperatures of
about T ∼ 20 µK.

2.5.2 Chip-based Ioffe-Pritchard trap

After preparation of a sufficiently cold cloud of atoms, we can load them into the
Ioffe-Pritchard trap. Since the atoms are non-polarized after molasses cooling and to
improve the loading efficiency, we transfer them into the mF = 2 state by means of
optical pumping.

Optical pumping and magnetic trap loading

Right after the optical molasses phase, optical pumping is applied to transfer the
atoms to the Zeeman level with the highest magnetic moment. Therefore, the cooling
laser (see Fig. 2.5) is tuned to be resonant to the |F = 2〉 → |F ′ = 2〉 transition and
illuminates the atoms for a short duration of about 700 µs in the absence of all other
laser beams. To obtain population trapping in the |F = 2,mF = 2〉 state, the beam is
circularly (σ+) polarized with respect to the quantization axis given by a homogeneous
magnetic field of about 8 G in the y direction.

Directly after optical pumping, the current of the Z-type trap (see. Fig 2.4) is
switched on together with a bias field (IZ = 2 A, Ibias = 0.8 A) to form a Ioffe-
Pritchard trap. An additional homogenous field provided by K1 (IK1 = 1.6 A) defines
the value of the magnetic field at the trap minimum. About N ∼ 4 · 106 atoms can be
loaded into the cigar-shaped potential without significant heating.

Evaporative cooling

Evaporative cooling is used to reduce the temperature of atoms well below the recoil
limit [69, 152, 153]. This technique adiabatically removes the hottest atoms from an
ensemble, by ensuring re-thermalisation due to elastic scattering at all times, thus
lowering the effective temperature. This is necessary to further increase the phase
space density until condensation occurs

ρ = nλ3
dB ≥ 2.613. (2.50)

In our chip-based magnetic trap, we use an RF field, which selectively induces spin
flips between trapped and untrapped states. As described in Sec. 2.3, trapping is a
result of the Zeeman splitting of the hyperfine ground state. Once trapped, atoms
with high kinetic energy can reach regions with high potential and thus experience a
larger energy shift due to ∆E = mF gFµB| ~B|.
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2 Atom-chip-based source of non-magnetic degenerate gases

∆t [ms] Iz [A] Ibias [A] IK1 [A] ωrad [Hz] νrf [MHz]

z-trap 1 0 2 0.8 1.6 2π · 260 -
z-trap 2 20 2 0.8 → 2.7 1.6 2π · 1300 -

290 2 2.7 → 6.5 1.6 2π · 7600
evap. 1 230 2 6.5 1.6 2π · 7600 40 → 4

20 2 6.5 → 5.5 1.6 2π · 5500

evap. 2 300 2 5.5 → 5 1.6 - 4 → 2.3

evap. 3 100 2
5 → 3.55

1.6
2π · 2500

2.3 → 1.99
evap. 4 300 2 1.6 1.99 → 1.83

condensate generation

decomp. 152 2 → 1.2 3.55 → 0.6 1.6 2π · 130 1.83 → 3

h-trap 250 1.2 0.6 → Ibias,h 1.6 ωrad,h -

condensate release

Table 2.2: Evaporation sequence with corresponding IP trap current configuration (IZ , Ibias,
and IK1), step duration ∆t, radial trapping frequencies ωrad [137] and radio fre-
quency νRF for forced evaporation. Differently shaped current ramps are used for
the specific steps [19], the RF ramps are linear.

The frequency of the RF radiation is chosen to be resonant with the most energetic
atoms near the edge of the trap and drives spin transitions of ∆mF = 1, therefore
hνRF = 1/2gFµB| ~B|. Atoms are repelled from the trap, when they end up in a high-
field seeking state. To continuously cool down the sample, the RF frequency is chirped
with decreasing temperature. With this run-away-evaporation, the phase space density
can be increased even with occurring losses in atom number [69, 152, 116].

The steepness of the trap determines the rate of inter-atomic collisions and therefore
places a fundamental limit on how fast the evaporation can be realized. This is crucial
for conducting experiments within the timescale of a drop experiment, which in the
case of QUANTUS-I is limited to about 4.7 s. Higher elastic scattering rates

τel = nσelv̄
√

2, (2.51)

with density n, s-wave scattering cross section σel, and mean relative velocity v̄ of the
gas, are favorable for fast re-thermalisation.

This is the reason for initial compression of the trap. On the other hand, the proba-
bility of inelastic collisions will increase with higher density (∼ n2) and particle losses
become more important, making the evaporation process inefficient. Therefore, the
density is controlled and balanced by smoothly opening the trap during the evapo-
ration process. By keeping the z-wire current at a constant value, the bias field can
be ramped down to decompress the trapping potential and to move the atoms further
away from the chip.
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2.5 Preparing Bose-Einstein condensates in QUANTUS-I

2.5.3 Experimental sequence for BEC generation

The actual experimental sequence of condensate generation by means of forced RF
evaporation is given in Tab. 2.2. If not indicated differently, all current ramps are
adiabatic w.r.t. the atomic motion and the RF sweeps are linear in time.

After the atoms are initially trapped in z-trap 1 (Iz = 2 A, Ibias = 0.8 A, and IK1 =
1.6 A) which is directly switched on after optical pumping, the trap is immediately
compressed in a first step lasting ∆t = 20 ms by ramping up the current of the bias coils
(Ibias = 0.8 → 2.7 A). The atoms are now trapped in z-trap 2 with ωrad = 2π · 1300 Hz.

With the beginning of the first evaporation ramp (νrf = 40 → 4 MHz), a second
compression follows (Ibias = 2.7 → 6.5 A) which leads to maximum trapping frequen-
cies along the fast axis of about 2π · 7.6 kHz. In the last 20 ms of evaporation ramp 1,
we already start to decompress the trap (Ibias = 6.5 → 5.5 A) to ωrad = 2π · 5.5 kHz.

Evaporation ramp 2 (νrf = 4 → 2.3 MHz) is executed synchronous to a smooth
adiabatic decompression for ∆t = 300 ms, ending up with Ibias = 5 A. During the last
two ramps, which in total last for ∆t = 400 ms, the trap is further opened (Ibias = 5 →
3.55 A). Finally, BEC is reached (νend

∼= 1.83 kHz) in a cigar-shaped potential with
radial trapping frequencies of 2π · 2500 Hz. The overall duration of magnetic trapping
and evaporative cooling to degeneracy sums up to 1240 ms.

After BEC generation, the RF frequency is ramped up again to reject any residual
thermal atoms while the trap is further decompressed4 (Ibias = 3.55 → 0.6 A). Finally,
the atoms are smoothly transferred into a final holding trap (h-trap) by only changing
the bias current to a distinct value Ibias,h. From here, the atoms can be released by
switching off all currents (Ibias,h = Iz = 0) except a homogeneous quantization field,
provided by the coil pair K1. In this thesis, the following three holding traps are used
in most experiments:

• Shallow trap: decompressed trapping potential resulting in the slowest expan-
sion in ground-based experiments with ωrad,h ∼ 2π · 40 Hz (Ibias,h = 0.36A).
Gravitational sag losses and trapping potential deformation occur for further
reduction of the bias field.

• Steep trap: fast expansion and fast conversion of mean-field energy, advan-
tageous for interference experiments with ωrad,h ∼ 2π · 130 Hz. This trap is
generated using Ibias,h = 0.6A

• Lens trap: very fast expansion with ωrad,h ∼ 2π · 350 Hz used for preparatory
experiments on delta-kick cooling in ground-based experiments, realized with
Ibias,h = 1A.

Independent of the final trap geometry, generated condensates in this experiment
contain roughly N = 104 atoms, which is about one magnitude lower than state-of-
the-art atom-chip experiments [154, 141].

4However, we typically end up with condensate fractions of 65% only.
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Figure 2.7: Exemplary measurement of the condensate fraction for different effective tem-
peratures. From A-C, the condensate fractions Nc/N have been measured to
be 6%, 34%, and 62% corresponding to end frequencies of evaporation νend of
1.875 MHz, 1.850 MHz, and 1.830 MHz. The integrated column density along the
z-direction has been fitted with a bi-modal function consisting of a Gaussian part
(red lines) and an inverted parabola (green lines).

Proof of condensate formation

The evidence of creating a condensate emerges from analyzing the expansion of the
atomic cloud via time-of-flight measurements, thus detecting the velocity distribution
of the expanding gas by means of absorption imaging.

By ramping down the effective expansion temperature of the ensemble, a sharp non-
Gaussian peak (inverted parabola) occurs both in the density and velocity distributions
super-imposed on the broader thermal (Gaussian) background, signalizing the phase
transition to a Bose-Einstein condensate. By further reducing the effective ensemble
temperature, the height of the condensate peak increases while the tails of the thermal
distribution are reduced until they completely vanish for a entirely pure condensate.

Such a typical evaporation process is depicted in Fig. 2.7. For different evaporation
end frequencies, the fraction of condensed to thermal atoms is evaluated by fitting
a bi-modal distribution based on the sum of a Gaussian (red line) and a Thomas-
Fermi (green line) function to the column density. Based on this fit, we extract the
atom number of the condensed and non-condensed part, respectively. We start with a
RF-frequency well above the transition frequency and continuously decrease to three
distinct final values. From A-C, the condensate fractions Nc/N have been measured to
be 6%, 34%, and 62% corresponding to evaporation end frequencies νend of 1.875 MHz,
1.850 MHz, and 1.830 MHz.

Magnetic trap lifetime measurements

Once transferred into the conservative trapping potential, collisions with background
atoms and three-body interactions result in an average heating of the ensemble and
lead to effective losses in atom number. This fundamentally limits the lifetime in the
magnetic trap. Especially for experiments on macroscopic timescales, a sufficient UHV
environment is necessary whose quality next to the atom chip is best approximated by
the magnetic trap lifetime.

Such lifetime measurements can be realized by detecting the number of atoms after a
certain time-of-flight for different trapping times. An example of such a measurement
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Figure 2.8: Typical measurement of the life-
time in a decompressed trap giv-
ing a two-body loss dominated
lifetime of t2b = 3.49(19) s.
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Figure 2.9: Scan of the detection frequency.
The Gaussian part of the fitted
Voigt profile gives a FWHM of
13.47(72) MHz.

is shown in Fig. 2.8 for the decompressed trap after BEC generation with ωrad =
2π · 130 Hz (see Tab. 2.2).

The atom number shows an exponential decay with two loss rates. Three-body
collisions clearly dominate the lifetime measurements in the beginning, whereas the
second timescale is characterized by two-body losses (e.g., collisions with background
atoms). Fitting a double exponential decay rate results in a two-body loss dominated
e−1 lifetime of t2b = 3.488(187) s, which is comparable with other atom-chip-based ex-
periments and sufficient for BEC generation including subsequent free fall experiments
at timescales of a drop experiment (see Sec. 5.1).

2.6 Characterizing magnetic trap configurations

If a trap is adiabatically opened, energy from a well isolated quantum system is ex-
tracted by means of a thermodynamic process. Consequently, very shallow trapping
potentials contain extremely cold clouds of atoms which expand much slower than a
gas released from a steep potential corresponding to high trapping frequencies.

With the QUANTUS-I atom chip setup, one can control the steepness of the trap
along the fast axis with the magnetic bias field Ibias (see Sec. 2.4.2) and already used
during the evaporation process (see Sec. 2.5.3). The trap minimum is also shifted,
which is not considered now but will be of importance later on (see Ch. 4).

The exact knowledge of the trapping frequencies and corresponding expansion rates
is important for preparing experiments with interfering Bose-Einstein condensates and
for the implementation of magnetic delta-kick cooling. As already mentioned, three
different holding traps (shallow, steep, lens) will be of importance in the experiments
of this thesis. Hence, we will measure the temperatures of different atomic ensembles
emerging from these traps and the corresponding trapping frequencies.

49



2 Atom-chip-based source of non-magnetic degenerate gases

2.6.1 Effective temperatures of expanding atomic clouds

In a classical gas, there is a direct link between momentum distribution and tempera-
ture. An approximation of the temperature of an evolving cloud of atoms can thus be
realized by evaluating a series of absorption images for different expansion times. From
each picture of such a time-of-flight measurement, the width σ of a thermal cloud can
be evaluated. By fitting

σ(t) =
√
σ2

0 + σ2
vt

2 (2.52)

to the measured temporal evolution, we can approximate the size of the cloud σ0 right
after the release [115].

More importantly, the velocity width σv can be extracted, which allows to calculate
the temperature in each dimension i according to

kBTi = mσ2
v,i, (2.53)

with the mass of atoms m and the Boltzmann constant kB.
For characterizing condensed sources, the shape of the spatial wings of the distribu-

tion ascribed to the thermal cloud (assuming not a pure condensate) is evaluated and
associated with the ensemble temperature. Therefore, a bi-modal distribution is fitted
to the column density to obtain the velocity width σv of the Gaussian part. This will
be done in the next section for differently prepared atomic ensembles.

Comparison of the shallow, steep, and lens trap configuration

Clouds of atoms released from the three trap configurations (shallow, steep, and lens)
are evaluated by time-of-flight series with expansion times from Ttof = 4 - 32 ms. For
each trapping potential, we additionally vary the temperature of the trapped gas by
means of forced RF evaporation. By changing the end-frequency of the last evaporation
ramp νend, six different ensembles between a purely thermal cloud (νend = 2 MHz),
and the purest achievable condensate5 (νend = 1.830 MHz) have been analyzed in
time-of-flight measurements. The results are given in Fig. 2.10.

In each graph for the shallow trap (upper left), steep trap (upper right) and lens
trap (lower left), the Gaussian widths in x- (squares) and z-direction (circles) of the
clouds are given for the six values of νend (different colors). Eq. 2.52 is separately
fitted to the widths along x- (solid line) and z-direction (dashed line) and from the fits
we obtain the velocity width σv and the initial cloud size σ0 in each direction. This
method is reliable in determining σv, which obviously dominates the expansion for
long time-of-flights. For short expansion times, however, cloud sizes are generally on
the order of the resolution limit of our detection system, which can be approximated
to about 15 µm. This consequently limits the accuracy of σ0, which therefore should
be calculated using the trapping frequencies (see Eq. 2.20).

Since the detection beam is oriented along the weak axis of an assumable cigar-
shaped potential, we expect nearly isotropic distributions. This could be verified for

5Here, the condensate fraction is about 60% (cf. Fig. 2.7). A typical measurement of the condensate
fraction in dependence of νend is also given in Fig. 3.22.
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Figure 2.10: Time-of-flight measurements of partially condensed clouds (evaporation end fre-
quencies νend scanned from 1.830 - 2.000 MHz) released from three different
holding trap potentials. The shallow trap is the standard laboratory trap and
generates our coldest ground based BEC (upper left). The steep trap is used to
generate BECs, which converts mean-field energy much faster for interferome-
try experiments (upper right). The lens trap yields the fastest expansion and is
used for our experiments with atom-chip-based delta-kick cooling (lower left).
The given widhts σi are rms values of the Gaussian part and corresponding
temperatures are summarized in the lower right graph. More details in text.

the steep and lens trap. For the shallow trap, our measurements indicate different
expansion rates in x- and z-direction. The comparably weaker potential shows a clear
asymmetry and is probably already deformed by gravity or other residual fields. This
will be verified by direct measurements of the trapping frequencies (see Sec. 2.6.2).

Temperature estimation

The velocity widths σv of the different ensembles have been extracted from the fits
and used in Eq. 2.53 to calculate the temperature. The results are plotted versus
the evaporation end-frequency in the lower right graph of Fig. 2.10. Temperatures
for the steep (red triangles) and lens (orange triangles) trap have been averaged over
x- and z-direction, since nearly isotropic temperatures have been determined from
the time-of-flight series. For the shallow trap, however, temperatures for both visible
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Figure 2.11: Measurement of the trapping frequencies in x- and z-direction for the shallow
(blue triangles), steep (red circles) and lens (black squares) trap. The COM
position of the condensates (in a.u.) is given for different holding times in the
corresponding trap. A sinusoidal function is fitted to each data set to extract
the oscillation frequency.

dimensions are depicted separately since they differ independently of the evaporation
end frequency νend by a fraction of Tz/Tx

∼= 0.66 (blue squares and circles).
The Statistical error of σv consequently leads to temperature errors, only given if

exceeding the size of the data points. This is the case for our coldest clouds of atoms
emerging from the shallow trap (νend = 1.830 − 1.860 MHz), the resulting error in
temperature is on the order of 40%, mainly caused the resolution limit of the detection
system as mentioned earlier.

By increasing the evaporation end frequency (νend → 2.0 MHz), all evaluated tem-
peratures increase proportional to the trapping frequencies of the holding traps. For
the steep and lens trap, the averaged temperatures increase isotropically for both di-
mensions to final values of Tave ≈ 355 nK, and Tave ≈ 570 nK, respectively. The
derived expansion temperatures for the shallow trap again visualize the asymmetry
with final values of Tx ≈ 156 nK and Tz ≈ 97 nK.

Another approach for temperature determination and cross-check of the observed
asymmetries of the shallow trap is based on the knowledge of the trapping frequencies.
The basic measurement principle of these will be introduced in the next section.

2.6.2 Direct measurement of the trapping frequencies

A simple method to measure trapping frequencies is to induce dipole oscillations of the
BEC in the trap and observe the center-of-mass (COM) position after different holding
times by taking images after a fixed time-of-flight [115]. The oscillations in the trap are
directly transferred into a COM displacement. Another method would be parametric
heating induced by AC field driven losses or other excitations in the trap [155].

Fig. 2.11 shows the COM position in x- and z-direction of BECs released from the
three trap configurations (shallow, steep, lens) after different holding times. For the
steep and lens trap, the holding time is scanned from thold = 0 − 30 ms, which has to
be increased to thold = 0 − 60 ms for the shallow trap to be able to observe a clear
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trap configuration ωx/2π [Hz] ωz/2π [Hz] ωy/2π [Hz]

shallow (Ibias = 0.36A) 46.56(1.32) 31.29(31) 17.8(1.1)
steep (Ibias = 0.6A) 131.48(45) 126.9(4) 17.6(9)
lens (Ibias = 1.0A) 343.46(36) 343.88(38) 48.9(5.3)

Table 2.3: Direct measurement of trapping frequencies by induced dipole oscillations in three
different magnetic traps. For x- and z-direction, the values are extracted from
the fits in Fig. 2.11. The values for the y-direction correspond to an individual
measurements, not shown here.

oscillation. The images are taken after a time-of-flight of Ttof = 31 ms, where the
clouds already have sizes well above the resolution limit.

We extract the value for the trapping frequency by fitting a sine-function to the eval-
uated COM positions in x- and z-direction. The results of three averaged measurements
are summarized in Tab. 2.3 and directly mirror the observations of the time-of-flight
measurements. The approximation of a cigar-shaped potential with ωx ≈ ωz ≡ ωrad

is only valid for the steep and lens trap configuration. The shallow trap shows an
asymmetry of ωz/ωx

∼= 0.67, corresponding to the already measured fraction of the
expansion temperature (Tz/Tx

∼= 0.66).
For detecting dipole oscillations in the y-direction, the detection system had to be

rebuilt. This individual measurement is not shown here, however the values for the
trapping frequency are given for completeness.

Temperature revisited

By measuring the trapping frequencies directly, the temperature of a freely expanding
cloud of atoms can be calculated with just one additional data point giving the width
at one single point in time [115]. With the Boltzmann constant kB, the temperature
in the i-th dimension follows as

kBTi = mσ2
i (t)

ω2
i

1 + ω2
i t

2
. (2.54)

This expression can now be used as an alternative approach and to cross-check the
temperature values based on time-of-flight measurements. With the evaluated spatial
widths σi after a time-of-flight of 32.2 ms for all configurations, temperatures derived
with Eq. 2.54 typically agree within better than 10% to the temperatures derived via
the expansion method and given in Fig. 2.10.

We now can prepare cold and ultra-cold clouds of atoms with various expansion tem-
peratures and predict their thermal expansion in ground-based measurements. Until
now, the atoms are prepared in the mF = 2 state, which is necessary for efficient trap-
ping and fast evaporation. However, these atoms are likely to interact with residual
magnetic fields.

To reduce the influence of these stray fields (especially at ultra-long timescales of
free expansion), an adiabatic rapid passage (ARP) as a coherent process to transfer
atoms into the mF = 0 state will be discussed next.
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2.7 Coherent on-chip transfer of atoms to a non-magnetic
state

Our previous expansion studies of Bose-Einstein condensates in microgravity showed
that residual magnetic fields in the drop tower interact with spin polarized atoms and
disturb the otherwise "free" evolution [17]. Center-of-mass (COM) motion as well as the
spatial width in one dimension did clearly not correspond to the theoretical predictions,
indicating external forces acting on the atoms. In order to verify the influences of
inhomogeneous magnetic fields, comparative expansion studies with atoms much less
sensitive to the stray fields (e.g., mF = 0) would be beneficial.

Therefore, we implemented an adiabatic rapid passage (ARP), a method to co-
herently transfers atoms between the Zeeman sublevels. Specifically, we optimized a
sequence to reliably transfer up to 90% of the atoms into the mF = 0 state.

2.7.1 Adiabatic rapid passage in the dressed state picture

An adiabatic rapid passage (ARP) is a very robust technique for coherent population
transfer between quantum mechanical states, e.g., Zeeman sublevels. Here, electro-
magnetic radiation is tuned above or below the resonance frequency of a particular
transition, and subsequently swept through the resonance. Alternatively, the radiation
frequency can be kept constant and the eigenenergies of the atomic states itself can
be tuned. An ARP process can be explained in the adiabatic frame of a dressed atom
picture, in which the Hamiltonian is given by

Ĥ =
h̄

2

(
−ǫ(t) Ω0(t)
Ω0(t) ǫ(t)

)
, (2.55)

where Ω0(t) corresponds to the Rabi frequency of the particular transition and ǫ(t) is
the effective detuning from resonance. This Hamiltonian yields the new eigenenergies

E1,2 = ±h̄/2
√
ǫ2 + Ω2, (2.56)

and the corresponding eigenvectors are linear combinations of the unpertubed states
|1〉 and |2〉 coupled with a transition strength Ω0 [137, 156]

φ± =
ǫ±

√
Ω2

0 + ǫ2
√

Ω2
0 +

(√
Ω2

0 + ǫ2 ± ǫ2
) |1〉 +

1√

1 +

(√
Ω2

0+ǫ2±ǫ2

Ω0

)2
|2〉 . (2.57)

An atom initially prepared in state |1〉 for positive detuning ǫ(t) > 0 transforms to
state |2〉 if the detuning is scanned to negative values ǫ(t) < 0. If the detuning again
is scanned from negative to positive values, we observe coherent re-population of |1〉.
An equal superposition state can be prepared for ǫ = 0.

The fraction of Rabi frequency Ω0 and effective detuning ǫ can be expressed by an
mixing angle

tan(2θ) = Ω0/ǫ, (2.58)
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2.7 Coherent on-chip transfer of atoms to a non-magnetic state

Figure 2.12: Simulation of dressed states and avoided crossings for the |F = 2〉 manifold of
87Rb (left). These are calculated with an offset field of 10.5 G and an applied
RF field of Ω0 = 2 kHz [157]. Here, different slopes correspond to different mF

states to which the atoms can be transferred to by scanning fend (indicated with
red circles). With the given parameters, the probability to find an atom in the
mF = 0 state is about 85% (right).

and this expression now allows us to rewrite the eigenvectors of the coupled system as

|φ+〉 = cos(θ) |1〉 + sin(θ) |2〉 , (2.59)

|φ−〉 = − sin(θ) |1〉 + cos(θ) |2〉 . (2.60)

The ARP process has to happen on carefully chosen timescales. It should be fast
enough compared to decoherence and system-related relaxation and at the same time
slow enough to fulfill the condition of adiabaticity. Especially optically induced ARPs
suffer from excitation leading to decoherence, which can be neglected for RF passages
between Zeeman sublevels of an atomic ground state.

Perfect efficiency is thus given if the condition of adiabaticity is fulfilled,
√

Ω2(t) + ǫ2(t) ≪ |Θ̇(t)|, (2.61)

with the phase angle Θ(t) = tan−1(ǫ(t)/Ω(t)). This means, that the angular frequency
of the torque vector has to be smaller than the angular frequency of the Bloch vector.

Implementation in an atom chip experiment

After laser cooling 87Rb atoms in a chip-MOT configuration, the atoms are optically
pumped into the |F = 2,mF = 2〉 for magnetic trapping. In this state, the condensate
is generated. The implementation of an ARP should thus be able to coherently transfer
atoms from |F = 2,mF = 2〉 to |F = 2,mF = 0〉 with low intrinsic losses. Therefore,
the atoms are released from the final magnetic trap and after some expansion time
being exposed to (i) a strong magnetic bias field and (ii) to a specifically designed RF
frequency chirp.

A strong homogenous magnetic field lifts the degeneracy between the different Zee-
man sublevels, which are again coupled via the present RF field. For generating the
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2 Atom-chip-based source of non-magnetic degenerate gases

bias field, compensation coils (K1) are used which are otherwise dedicated to control
and adapt the trap bottom of the chip-based IP-trap. For the RF sweep a 16 Bit arbi-
trary waveform generator is used (PXI 5421) with 100 MS/s sampling rate and 43 MHz
analog bandwidth, coupled to the z-wire of the atom chip, which is used as an on-chip
antenna to radiate RF.

Calculation of the ARP parameters

The specific choice of the magnetic bias fields determines the frequency range of the
RF sweep. The linear Zeeman splitting of the five sublevels of |F = 2〉 in a homogenous
magnetic field B can be approximated to [150, 156]

∆Elin(mF ) ≈ mF · h̄ωlin, (2.62)

with ωlin = 0.6998 MHz/G, Bohr magneton µB, Lande-factor gF and the Zeeman
quantum number. Following that, an applicable offset field of about 10.5 G requires
an RF chirp around 7.36 MHz to be on resonance with neighboring mF states, which
is easily accessible with our RF source. The quadratic Zeeman effect now shifts the
splittings between adjacent magnetic sublevels due to

∆Equad(mF ) ≈ (4 −m2
F )h̄ωquad/4, (2.63)

with ωquad = 286 Hz/G2 so that we can use the arising asymmetry to address the
resonances with carefully tuned RF chirps.

Fig. 2.12 (left) shows a simulation of the dressed states and avoided crossings for the
|F = 2〉 manifold of 87Rb. The calculations are done for an 10.5 G offset field and an
RF field coupling the mF states with a Rabi frequency of Ω0 = 2 kHz. The different
Zeeman sublevels correspond to different slopes. To end up in the (to first order)
magnetic insensitive mF = 0 state, two avoided crossings (mF = 2 → mF = 1, and
mF = 1 → mF = 0) need to be passed when the atoms are initially prepared in the
|F = 2,mf = 2〉 state.

For the given parameters, the probability to find atoms in the mF = 0 state can be
calculated to about 85% for an end frequency of fend = 7.36 MHz (Fig. 2.12, right).
In this graph, the transfer probabilities to the other Zeeman sub levels are not shown
for better visibility.

Transfer efficiencies in QUANTUS-I

The experimental results of ground-based measurements with the QUANTUS-I appa-
ratus are shown in Fig. 2.13. The condensate is released from the shallow trap with
ωi = 2π · (46, 18, 31) Hz and expands freely for 4 ms. During this expansion, a homoge-
nous magnetic field is ramped up, generated by the K1 coils. Given the magnetic coil
conversion factors (see Tab. 2.1), we applied a current of IK1 = 6 A to meet the previ-
ously simulated offset field of about 10.5 G. In the next 3.8 ms the RF sweep is applied,
until the bias field is again ramped down within 1 ms, closing the ARP sequence with
a total cycle time of about 9 ms.

The RF sweep started at a frequency of fstart = 7.7 MHz, which is well below any
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2.7 Coherent on-chip transfer of atoms to a non-magnetic state
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Figure 2.13: On-chip ARP between Zeemann sublevels of |F = 2〉. Shown is the transfer
efficiency into the different Zeeman states in dependence of the end frequency
of the RF chirp fend (left). Between the data points, dashed lines are added
to guide the eye and different colors represent the different mF states. The
applied magnetic bias field was 10.5 G and the duration of the RF sweep was
3 ms. The corresponding absorption images given for each different fend (right)
have been taken 25 ms after applying a Stern-Gerlach field to spatially separate
the different Zeeman levels. They are individually normalized and based on a
region-of-interest (ROI) which is adapted for better illustration. Highlighted in
the red box is the coherent transfer of 92% in the mF = 0 state.

resonance, and was smoothly chirped to variable final values of 7.7 MHz ≤ fend ≤
7.8 MHz at a constant RF amplitude6.

Coherent population transfer is observed for RF frequencies which are somewhat
larger than previously calculated for the given magnetic field configuration. The results
indicate an effectively higher bias field on the order of ∆B/B ≈ 5% which might be
ascribed to residual offset fields at the atoms position or an inaccuracy in the conversion
factor for the K1 magnetic coil assembly taken from [19].

To evaluate the population transfer efficiency for each fend, we normalized the num-
ber of atoms in the particular mF state to the total atom number (see open symbols
in Fig. 2.13). This is done by performing a Stern-Gerlach experiment right after the
ARP sequence. Therefore, we switch on the magnetic coils generally used for generat-
ing the field gradient for the macroscopic MOT. The different Zeemann states spatially
separate and allow for state-dependent atom number analysis. Transfer efficiencies are
typically > 80% in any of the Zeemann sublevels, but specifically we optimized the
population of the mF = 0 state with an efficiency of ∼ 90%.

On the right side of Fig. 2.13, corresponding absorption images are shown for dif-

6Before and after the 3.8 ms lasting RF sweep, the effective amplitude is linearly ramped up/down
within a duration of 0.1 ms
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2 Atom-chip-based source of non-magnetic degenerate gases

bias field fmF =2 fmF =1 fmF =0 fmF =−1 fmF =−2

K1 [A] [MHz] [MHz] [MHz] [MHz] [MHz]

10.5 ≤ 7.7047(8) 7.7252(5) 7.7443(4) 7.7597(4) ≥ 7.7752(6)
5.60 ≤ 4.1214(2) 4.1288(1) 4.1342(1) 4.1392(1) ≥ 4.1450(3)
2.60 ≤ 2.0669(4) 2.0680(3) 2.0694(2) 2.0708(3) ≥ 2,0723(3)

Table 2.4: Experimentally determined RF end frequencies fend for an on-chip adiabatic rapid
passage between the Zeeman sublevels of |F = 2〉 for different magnetic bias fields
10.5 G, 5.6 G, and 2.63 G. The corresponding transfer efficiencies in the mF = 0
state are 90%, 74%, and 56%, respectively.

ferent fend. Each absorption image is taken 25 ms after applying a Stern-Gerlach field
and individually normalized. The region-of-interest (ROI) has been adapted for better
illustration.

After additionally scanning the population transfer for lower K1 bias fields of 5.6 G
and 2.6 G, the center frequency for maximum population transfer into each sublevel
was approximated by fitting a Gaussian to the relative population distribution. The
results are given in Tab. 2.4. Obviously, the adressability of the sublevels for smaller
offset field suffers due to a smaller energetic splitting, such that the resonances overlap
in the frequency domain. Thus, for the offset fields of 5.6 G and 2.6 G, reduced transfer
efficiencies to the mF = 0 state of 74% and 56% occur.

2.8 Summary

In this chapter, the basics of Bose-Einstein condensation in harmonic traps generated
by the magnetic fields of an atom chip have been presented. This included the main
theoretical tools accompanied by a step-by-step description of the specific experimental
techniques to generate condensates with about 104 atoms in QUANTUS-I.7.

Moreover, the setup has been characterized with an emphasis on three important
magnetic trap configurations. The knowledge of the main parameters of which are
important for the upcoming interferometric analysis of the phase coherence and for
the optimization of delta-kick cooling.

As a major upgrade compared to the first setup of the QUANTUS-I payload de-
scribed in [17], an RF-induced adiabatic rapid passage (ARP) was implemented on
chip. Typically, up to 90% of the atoms could be coherently transferred into the
mF = 0 state. In earlier runs of this experiment, the interaction of magnetically sus-
ceptible atoms (mF = 2 state) with residual magnetic fields have been suspected to
be the main reason for anomalous expansion and center-of-mass (COM) motion of the
condensates.

With the succesful implementation of the on-chip ARP, we thus met one of the es-
sential requirements for unperturbed matter wave interferometers on extended time
scales in the drop tower:

7Note: A technical defect caused the destruction of the atom chip at the beginning of this thesis.
Thus, the atom chip had to be replaced and the QUANTUS-I experiment to be re-assembled first.
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2.8 Summary

Free-fall interferometry with
Bose-Einstein condensates
in microgravity (see Ch. 5)





Atom-chip-based source of non-magnetic
degenerate gases

⋄

Bragg diffraction and open interferometers
with degenerate gases (see Ch. 3)

⋄

Delta-kick cooling as a tool for long
baseline atom interferometry (see Ch. 4)

The next chapter will introduce optically-induced Bragg diffraction as a technique
to form matter wave beam splitters. After a theoretical description of light-matter
interactions leading to the important parameters of Bragg diffraction as a coherent
two-photon processes, a miniaturized, drop tower capable Bragg laser system will
be presented. The main part of the chapter will then focus on preparatory ground-
based studies of the phase coherence and mean-field interactions of the condensates
manipulated in open interferometers of Ramsey- and Mach-Zehnder type.
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3 Bragg diffraction and open
interferometers with degenerate gases

Ultra-cold clouds of atoms in the mF = 0 state are promising for unperturbed free ex-
pansion and microgravity-enhanced matter wave interferometry at targeted timescales
of about a second. But before we move to microgravity, a coherent manipulation
technique has to be implemented in the experiment, which can be used to form beam
splitters and combiners for matter waves. In principle, two types of beam splitters have
been commonly used in light-pulse atom interferometry, which are usually referred to
be of Bragg- or Raman-type [158, 159].

In both cases, the atomic cloud gets illuminated with an optical lattice and interacts
via two-photon Raman transitions. The initial wave function is placed into a coherent
superposition of different quantum states, and the major difference is given by the
nature of the addressed states. In Bragg diffraction, different momentum states (of
the same internal state) are coupled [160], whereas Raman diffraction is typically
implemented via two different hyperfine ground states [59]. In both cases the coupled
parts of the wave function spatially separate due to photon recoil, which can be used
to form interferometers based on the wave nature of particles.

Interferometers based on Bragg diffraction have the advantage of atoms remaining
in the same internal state. Differential effects such as AC Stark shifts and couplings
to residual electro-magnetic fields are negligible or highly suppressed. Multi-photon
transitions are possible [161], which lead to a higher momentum splitting and there-
fore paving the way for long baseline interferometers [162] and high-resolution spec-
troscopy [163].

On the other hand, they require atomic sources whose momentum width is smaller
than the transferred momentum of the Bragg resonance in order to obey spatial over-
lapping. This is mandatory for detection, since no state labeling can be used to dif-
ferentiate between the coupled states as usually done in Raman interferometry [59].
The velocity distribution of a BEC is largely smaller than the recoil velocity, making
condensed samples of atoms an ideal matter wave source for Bragg interferometry.

Bragg diffraction of condensed sources has been studied and used in a variety of
applications, i.e. to manipulate atomic samples in interferometers [164], for realizing
coherent frequency shifts [165] or amplification [166] of matter waves. Therefore, BECs
can be accelerated towards a standing light wave [167] or stationary condensates can be
diffracted by a moving lattice of near-resonant laser light [160]. It has been established
in spectroscopic applications to analyze the momentum distribution of degenerate gases
[168] and for measurements of the coherence length of condensates in the presence of
phase fluctuations [169].

After an intuitive description of Bragg diffraction in the momentum picture (see
Sec. 3.1), a simplified model of the atom as a discrete two-level system in a coherent
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electro-magnetic field is described to study the basic dynamics (see Sec. 3.2). From
that, a stimulated two-photon transition will be derived and important properties
discussed (see Sec. 3.2.2) before we present the implementation of Bragg scattering and
preparatory ground-based experiments in QUANTUS-I (see Sec. 3.4). In particular, we
discuss momentum-width related loss mechanisms in the scattering process and Bragg
spectroscopy, before the last section will focus on the realization of open interferometers
(see Sec. 3.5). These will be used to probe the phase evolution of freely expanding
condensates, for measurements of the coherence length and studies of the mean-field
driven influences on the emerging interference patterns.

3.1 Bragg scattering of atoms in the momentum picture

Back-scattering processes of the newly discovered x-rays from three dimensional crys-
talline structures were first observed in 1912 [170]. In the same year, W.H. Bragg
and W.L. Bragg developed a theory for the diffraction of electromagnetic radiation
off periodic structures [171], which was honored with the Nobel prize in 1915. The
periodic spacings of the crystals have been similar to the wavelength of the x-rays, and
scattered radiation constructively interfered for specific angles of incidence θb fulfilling
the Bragg condition

nλx = 2dcrys sin(θb), (3.1)

with diffraction order n, wavelength of the electromagnetic radiation λx and periodic
crystal spacing dcrys.

Such as electromagnetic waves can be scattered from solid crystalline structures,
atomic matter waves can be scattered from the periodic structure of a standing light
wave, i.e. cold atoms interacting with periodic optical potentials. Bragg diffraction of
atoms was first observed by a mono-energetic beam of sodium atoms scattered off a
standing light wave in 1988 [172].

Manipulating atoms in the same way as we manipulate light with optical elements
is usually called atom optics. The light crystal as an atom-optical element can be
realized by interfering two laser beams with wavelength λL at the position of the
atoms, resulting in a one-dimensional averaged intensity distribution

I(x) = 2cǫ0E
2
0 cos2(kx), (3.2)

with the speed of light c, the permittivity ǫ0 and the electric field’s amplitude E0. The
aforementioned spacing of the crystal dcrys now has to be replaced with the spacing of
an optical lattice (dlight = λL/2). For atoms with mass m and velocity v, we have to
use the thermal de Broglie wavelength λdB = 2πh̄/mv. The new resonance condition
therefore follows as

nλdB = λL sin(θb), (3.3)

which, for example, can be fulfilled by accelerating atoms towards a standing wave.
But in most cases of cold atomic physics experiments, the atoms are at rest while being
exposed to the optical lattice. Here, we have to introduce a moving, optical lattice by
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3.1 Bragg scattering of atoms in the momentum picture

Figure 3.1: Schematic of Bragg diffraction in the particle picture. Atoms interact with pho-
tons from two laser beams with frequency ω and ω + δ enclosing a crossing an-
gle ϑ. They can be coherently diffracted from momentum state |p0〉 = |0h̄k〉
to |pr〉 = |2h̄k sin(ϑ/2)〉 if the energy difference of the laser beams fulfills
h̄δ = p2

r/2m.

interfering two laser beams with a frequency difference δ, resulting in a time-dependent
intensity distribution

I(x) = 2cǫ0E
2
0 cos2(kx− δt/2). (3.4)

In a simplified picture, an atom now absorbs one photon from one of the laser beams
and subsequently gets coherently stimulated down to the ground state by interacting
with a photon from the other laser beam (see Fig. 3.1). In this stimulated two-photon
Raman process, the scattered atom will finally have a momentum of pr = 2h̄k sin(ϑ/2)
relative to the unscattered atoms in the BEC, when the laser beams with wave vector
k = 2π/λL (kω ≈ kω+δ ≡ k, since δ ≪ ω) are aligned with a crossing angle of ϑ.

To obey energy conservation during this Bragg diffraction process, the two laser
beams need to have a specific frequency difference δ, which is determined by the
effective energy difference between the two coupled ground states

∆E =
p2

r

2m
=

(2h̄k sin(ϑ/2))2

2m
= h̄((ω + δ) − ω) = h̄δ. (3.5)

In case of a non-zero center-of-mass (COM) motion, atoms with initial momentum
p0 lead to a modification of the above condition as

∆E =
(pr + p0)2 − p2

0

2m
=

(2h̄k sin(ϑ/2) +mv0)2 −m2v2
0

2m
= h̄δ. (3.6)

From Eq. 3.6, we finally get an expression for the frequency difference δ of the Bragg
laser beams

δ = 4ωr sin2(ϑ/2) + 2kv · sin(ϑ/2), (3.7)

with the recoil frequency ωr = h̄k2/m. In the QUANTUS-I setup, the angle of inci-
dence is ϑ = 180◦, thus laser beams are aligned anti-parallel. To fulfill the resonance
condition for a first-order Bragg diffraction process with resting (p0 = 0) 87Rb atoms,
the necessary frequency difference is δ = 4h̄k2/m = 4ωr = 2π · 15.08 kHz.
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3 Bragg diffraction and open interferometers with degenerate gases

3.2 Semi-classical description of Bragg diffraction

Treating Bragg diffraction in a simplified particle picture led us to define necessary
conditions for diffraction of matter waves off periodic light crystals. Now, to derive
useful expressions for the dynamics between photons and atoms, we first introduce the
simple case of an idealized two-level atom in a mono-chromatic electromagnetic field.
In a second step, we extend this treatment towards a coherent two-photon transition.

3.2.1 An electromagnetic field and a two-level atom

Let us assume a discrete two-level atom which is exposed to electromagnetic radia-
tion with frequency ω and an arbitrary phase φ, which we treat as a classical field
(semi-classical approach). To make predictions about the dynamics of the two-level
system, it is important to calculate the temporal evolution of the probabilities of an
atom being in state |1〉 or |2〉.
We start by writing down the Hamiltonian, neglecting coupling to the vacuum causing
decoherence due to spontaneous emission processes,

Ĥ(t) = Ĥ0 + ĤAL(t). (3.8)

The unperturbed part of the Hamiltonian Ĥ0 = h̄ω2|2〉〈2| + h̄ω1|1〉〈1| describes the
atomic energy levels. The light-matter-interactions perturbing the eigenfunctions of Ĥ0

are given by the time-dependent part ĤAL(t). A particle with a given dipole moment
~d = −q~r (electrical charge q) in an external electrical field ~E has a potential energy of

U = −~d · ~E. (3.9)

The wavelength of light is usually much larger than the size of an atom, λ ≫ a0.
Assuming the position of the atom ~R is kept constant during the interaction time,
variations of the phase are small and the amplitude of the electric field is uniform
over the size of the atom. This electrical dipole approximation thus neglects spatial
variations of the electric field, E(~r, t) ≈ E(~R, t) ≡ ~E(t).

With the polarization ~α, the electric field amplitude E0 and the frequency of the
light field ωL, the oscillating field at the atoms’ position therefore follows as

~E(t) = ~αE0 cos(ωLt), (3.10)

which determines the resulting interaction Hamiltonian to ĤAL(t) = −~d · ~E(t). The
total Hamiltonian of the system can now be written as

Ĥ(t) = Ĥ0 + ĤAL(t) = h̄ω2|2〉〈2| + h̄ω1|1〉〈1| − ~d · ~E(t). (3.11)

Time-dependent Schrödinger equation

The temporal evolution of the two level system can be described by a time-dependent
Schrödinger equation with the following ansatz for the wave function

ih̄
d

dt
|Ψ(t)〉 = ih̄

d

dt
(c2(t)|2〉 + c1(t)|1〉) = Ĥ|Ψ(t)〉, (3.12)
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2
E/

1

Figure 3.2: Schematic of a discrete two-level system under the presence of a non-resonant
light field ωL = ω− ǫ (left). Given a resonant Rabi frequency Ω0 and interaction
time t, calculations of the temporal occupation probability P2(t) for different
values of the detuning ǫ are given (right). Details in text.

where normalization requires 〈Ψ|Ψ〉 = |c2(t)|2 + |c1(t)|2 = 1.
With a frequency of the driving field ωL and ω2 −ω1 ≡ ω (see Fig. 3.2, left), Eq. 3.12

determines a system of coupled equations for the coefficients c1,2 [159],

d

dt
c1(t) = i

[
〈1|~d|2〉

]
~αE0

h̄
exp(−iωt) cos(ωLt)c2(t),

d

dt
c2(t) = i

[
〈2|~d|1〉

]
~αE0

h̄
exp(−iωt) cos(ωLt)c1(t).

(3.13)

The coupling strength of a particular transition is given by the dipole matrix element,
e.g., ~d12 = 〈1|~d|2〉, whose projection on the polarization of the light field we use to
introduce the Rabi frequency Ω12 ≡ 〈1|~d~α|2〉E0. With that, Eq. 3.13 can be rewritten
as

d

dt
c1(t) = i

Ω12

2
(exp(i(ωL − ω)t) + exp(−i(ωL + ω)t)) c2(t),

d

dt
c2(t) = i

Ω21

2
(exp(−i(ωL − ω)t) + exp(i(ωL + ω)t)) c1(t).

(3.14)

We now define a detuning of the driving light field from the two-level resonance
ǫ = ωL − ω (see Fig. 3.2, left), which is typically small compared to the transition
frequency itself, ǫ ≪ ω. Regarding the two level dynamics, the fast oscillating terms
in Eq. 3.14 can be neglected in the rotating wave approximation (RWA). Thus, our set
of equations simplifies with Ω12 = Ω21 ≡ Ω0 to

d

dt
c1(t) = i

Ω0

2
exp(−iǫt)c2(t),

d

dt
c2(t) = i

Ω0

2
exp(iǫt)c1(t).

(3.15)

65



3 Bragg diffraction and open interferometers with degenerate gases

Here, we (i) eliminate the time dependance of the exponential function and (ii)
transform the equations in a rotating system whose rotation frequency coincides with
the eigenfrequency ǫ of our atomic system [173]. This finally results in an expression
with new coefficients a1,2 and a time-independent Hamiltonian

d

dt

(
a1(t)
a2(t)

)
=
i

2

(
−ǫ Ω0

Ω0 ǫ

)(
a1(t)
a2(t)

)
. (3.16)

AC Stark shift

The energy shift of the eigenstates of the time-independent Hamiltonian in the presence
of a light field is called AC Stark shift

∆E1 =
h̄

2
(ǫ− Ω0),

∆E2 =
h̄

2
(Ω0 − ǫ).

(3.17)

Here, the energy shift of the so-called dressed states is symmetric and can be ex-
panded in terms of Ω0/ǫ (for ǫ ≫ Ω0),

∆E1 = −∆E2 =
h̄

2
(ǫ− Ω0) =

h̄

2

(
ǫ− ǫ

√
1 + (Ω0/ǫ)2

)
≈ −h̄Ω2

0

4ǫ
. (3.18)

In the case of a stimulated two-photon transition (see Sec. 3.2.2), the AC Stark shift
is not symmetric anymore, which leads to a differential energy shift.

Rabi oscillations

We can now prepare a two level system, where all atoms are in one state at the
beginning (e.g., a1(t = 0) = 1 and a2(t = 0) = 0) and derive the probability to find an
atom in state |1〉 or |2〉,

P1(t) = |a1(t)|2 =
Ω2

0

Ω2
ǫ

cos2
(

Ωǫ

2
t

)
=

Ω2
0

2Ω2
ǫ

[1 + cos(Ωǫt)] ,

P2(t) = |a2(t)|2 =
Ω2

0

Ω2
ǫ

sin2
(

Ωǫ

2
t

)
=

Ω2
0

2Ω2
ǫ

[1 − cos(Ωǫt)] ,

(3.19)

with the non-resonant Rabi frequency

Ωǫ =
√

Ω2
0 + ǫ2. (3.20)

These equations show the dynamics of an idealized two-level atom in an external
electromagnetic field. Without taking spontaneous emission effects into account (this
is the case for Ω0 ≫ Γ), the atom oscillates between the two states and we have to
distinguish between

• resonant interaction (ǫ = 0): the transition probability has a maximum am-
plitude and oscillates between 0 and 1, and
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• non-resonant interaction (ǫ 6= 0) : the transition probability is reduced and
the oscillation frequency itself is always higher than the resonant frequency ac-

cording to Ωǫ =
√

Ω2
0 + ǫ2.

These Rabi oscillations are depicted in Fig. 3.2 (right). A pulse area can be defined
where the population of the system in the case for ǫ = 0 is completely inverted,
Ω0 · τ = π. This is called a π-pulse. By realizing a pulse area of Ω0 · τ = π/2, a so
called π/2-pulse, the atoms are equally distributed between both states. For ǫ 6= 0,
the pulse areas are specified using Ωǫ.

Momentum of the atoms

If we now consider the atoms to have a certain momentum ~p, the spatial variation
of the electromagnetic field has to be considered, ~E(~r, t) = ~αE0 cos(~k ·~r − ωt) and
consequently the Hamiltonian must to be complemented with the kinetic energy term
as

Ĥ = h̄ω2|2〉〈2| + h̄ω1|1〉〈1| − ~d · ~E +
~p2

2m
. (3.21)

With a new set of eigenstates, |1, ~p〉 and |2, ~p+ h̄~k〉, the dynamics of the system with
external degrees of freedom are described by the wave function [174]

|ψ(t)〉 = c1,~p(t)|1, ~p〉 exp
[
−i
(
ω1 + |~p|2/2mh̄

)
t
]

+ c
2,~p+h̄~k

(t)|2, ~p+ h̄~k〉 exp
[
−i
(
ω2 + |~p+ h̄~k|2/2mh̄

)
t
]
.

(3.22)

In this new basis, the non-resonant Rabi frequency has to be calculated taking the
Doppler shift ~p ·~k/m and the photon recoil h̄|~k|2/2m into account. This leads to an
effective detuning ǫeff, which is now to be calculated as

ǫeff = ωL −
[
~p ·~k
m

+
h̄|~k|2
2m

]

≡ ωL − ω̄.

(3.23)

3.2.2 A stimulated Raman process between two momentum states

The derived expressions for the two-level dynamics in the previous section are based
on the assumption of negligible spontaneous processes. The involved states |1〉 and |2〉
have to have sufficiently long lifetimes τ , which at least are longer than the interaction
time with the driving laser fields. However, if |2〉 is associated with an excited state,
the population will rapidly decay (τ ∼ ns) into the ground state by randomly emitting
photons.

We now want to adapt this treatment to derive important quantities of a two-photon
process between long-living ground states. When a coherent transition between two
momentum states of the same ground states is realized, we call it Bragg diffraction
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3 Bragg diffraction and open interferometers with degenerate gases

Figure 3.3: Schematic of first-order Bragg diffraction as a two-photon Raman process coher-
ently coupling two momentum states |0h̄k〉 and |2h̄k〉 of the same ground state
|g〉. Two light fields (ω1 and ω2) are detuned from the excited state |e〉 and effec-
tively couple the momentum states via a virtual level |i〉. Both ground states lie
on the dispersion relation curve of a free particle, hence determining h̄δ = p2

r/2m.

[172, 160]. Transitions between two different atomic states (e.g., hyperfine ground
states of an alkali atom) will be referred to as Raman diffraction [59, 175].

In the QUANTUS-I experiment, Bragg diffraction will be implemented, a basic
schematic of which is given in Fig. 3.3. Here, one lattice beam couples the ground
state |g, 0h̄k〉 with a virtual level |i, 1h̄k〉, the second laser beam couples that virtual
level again with the ground state |g, 2h̄k〉. Since the absolute detuning ∆ w.r.t the
excited level is sufficiently large, the population of |e〉 as well as spontaneous emission
and scattering processes leading to decoherence can both be neglected.

We treat our problem as an idealized atom with two energy levels |g, 0h̄k〉 ≡ |1〉 and
|g, 2h̄k〉 ≡ |2〉, an effective two-level system whose energy difference is supposed to be
∆E = h̄δ = p2

r/2m (see Sec. 3.1). The latter determines the dispersion relation to be
of parabolic shape. Compared to the single-photon treatment, the atom now interacts
with an electromagnetic field composed of two frequencies,

~E(t) = ~E1(t) + ~E2(t) = ~αE1 cos(ω1t) + ~αE2 cos(ω2t). (3.24)

For Bragg diffraction the ratio of relative detuning between the laser frequencies
and their absolute frequency is negligibly small, δ/ω ≈ 0.01 ppb. To calculate the
eigenenergies, we approximate the laser fields to have the same wave vector norm as
| ~k1| ≈ |~k2| ≡ k. This results in the following eigenenergies of the two momentum states

E|1〉 = h̄ωg,

E|2〉 = h̄ωg +
(p0 + 2h̄k)2

2m
≡ h̄ω̄g.

(3.25)
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3.2 Semi-classical description of Bragg diffraction

The Hamiltonian has to consider interactions with both laser fields (see Fig. 3.3).
By neglecting three-photon processes [176], it can be written as

Ĥ = Ĥ0 + ĤAL

= h̄ωg |g, 0〉 〈g, 0| + h̄ω̄g |g, 2h̄k〉 〈g, 2h̄k|
+ h̄ω1 |i, h̄k1〉 〈i, h̄k1| + h̄ω2 |i, h̄k2〉 〈i, h̄k2| − ~d · ~E.

(3.26)

Analogously to Sec. 3.2.1, a superposition state can be used as an ansatz to solve
the time-dependent Schrödinger equation,

|Ψ(t)〉 = c1(t) |g, 0〉 + c2(t) |g, 2h̄k〉 + ci,1(t) |i, h̄k1〉
+ ci,2(t) |i, h̄k2〉 .

(3.27)

The resulting system of rate equations obtained in RWA can again be transformed
in a time-independent set of equations [174]. For the starting parameters c1(t = 0) = 1
and c2(t = 0) = 0, the populations of both states can be expressed as

P1(t) =
Ω2

eff

Ω2
eff + (ǫeff − δAC)2

cos2
[√

Ω2
eff + (ǫeff − δAC)2 · t/2

]
,

P2(t) =
Ω2

eff

Ω2
eff + (ǫeff − δAC)2

sin2
[√

Ω2
eff + (ǫeff − δAC)2 · t/2

]
.

(3.28)

We now discuss the important parameters of the equations given above.

• Effective Rabi frequency: Ωeff =
Ω1,1Ω2,2

2∆ , which is the resulting coupling
strength of the coherent two-photon transition |1, 0h̄k〉 → |i, 1h̄k〉 → |2, 2h̄k〉.
The detuning of the laser beams w.r.t to the excited state |e〉 is given by ∆.

• Single photon coupling strength: Ωl,m = −2 〈i| ~d |l〉Em/h̄, with l ∈ (1, 2)
being one of the two ground states, i the virtual level and m ∈ (1, 2) indicating
the two laser beams generating the optical lattice. Given the linewidth Γ of the
5S1/2 → 5P3/2 transition in 87Rb and laser beam intensity Im, one can calculate
the resonant single photon Rabi frequencies as Ωl,m =

√
6πc2ΓIm/h̄ω3

m.

• Effective two-photon transition detuning: ǫeff = ωeff −
[

~p ·~keff

m +
h̄|~keff|2

2m

]
≡

ωeff − δ̄, with frequency difference of the lattice beams ωeff = ω1 − ω2, effective
wave vector ~keff = ~k1 − ~k2 ≈ 2k, initial momentum ~p and mass m of the atoms.

• AC Stark shift of |g, 0h̄k〉 ≡ |1〉: ΩAC
|1〉 =

|Ω1,1|2

4∆ +
|Ω1,2|2

4(∆−ω̄) , caused by the
interaction of state |1〉 with both laser beams,

• AC Stark shift of |g, 2h̄k〉 ≡ |2〉: ΩAC
|2〉 =

|Ω2,1|2

4(∆+ω̄) +
|Ω2,2|2

4∆ , caused by the
interaction of state |2〉 with both laser beams,
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3 Bragg diffraction and open interferometers with degenerate gases

Figure 3.4: Schematic of n-th order Bragg diffraction as a stimulated 2n-photon Raman pro-
cess. Energy conservation requires h̄nδn = (2nh̄k)2/2m to coherently couple the
momentum states |0h̄k〉 and |2nh̄k〉. The energy levels are labeled by their trans-
verse momentum states which are displayed in units of h̄k. The corresponding
detunings to ground and excited state are given by ∆i.

• differential AC Stark shift: δAC = ΩAC
|2〉 − ΩAC

|1〉 .

Two-photon Raman transitions will give rise to Rabi oscillations with a Rabi fre-
quency of Ωeff, for example a π-pulse will ideally transfer all of the population from
one momentum state to the other. For Bragg diffraction ωeff/∆ ≈ 0.01 ppb, which
allows to approximate the effective Rabi frequency to

Ωeff =
Ω1,1Ω2,2

2∆
≈ Ω2

2∆
, (3.29)

with Ω1,1 = Ω2,2 ≡ Ω as the single photon Rabi frequency. In the case of a resonant
interaction (ǫeff = 0), Eq. 3.28 now simplify to the basic expressions

P1(t) = cos2[Ωeff · t/2] =
1

2
[1 + cos(Ωeff · t],

P2(t) = sin2[Ωeff · t/2] =
1

2
[1 − cos(Ωeff · t].

(3.30)

Higher-order Bragg diffraction

In a momentum picture, the above depicted process is described by an atom undergo-
ing a two-photon Raman process with corresponding momentum transfer of pr = 2h̄k.
We call this first-order Brag diffraction. It is also possible to transfer even higher mo-
mentum, i.e. 2nh̄k, which is called n-th order Bragg diffraction. For this process, again
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3.3 Bragg spectroscopy of atomic momentum distributions

an effective Rabi frequency can be derived [177]

Ωnth
eff =

Ω2n

21n−1∆1∆2...∆n−1
, (3.31)

where Ω0 is the single-photon Rabi frequency and ∆i are the detunings from any
virtual level as indicated in Fig. 3.4. Here, an atom prepared in momentum state
|g, 0h̄k〉 interacts via a 2n-photon transition, involving 2n-1 virtual levels, and will
subsequently end up in |g, 2nh̄k〉. Energy and momentum conservation of a moving
atom with initial momentum p0 leads to the following resonance condition

∆E =
(npr + p0)2 − p2

0

2m
=

(2nh̄k sin(ϑ/2) +mv0)2 −m2v2
0

2m
= h̄nδn (3.32)

With the recoil frequency ωr = h̄k2/m, the frequency difference between the laser
beams for n-th order Bragg diffraction results in

δn = 4nωr sin2(ϑ/2) + 2kv · sin(ϑ/2), (3.33)

thus scaling linearly with diffraction order n. To give an example, for ϑ = 180◦

(counter-propagating laser beams), a third order Bragg pulse for resting 87Rb atoms
(p0 = 0) would need an optical lattice with a frequency difference of δ3 = 12 ·ωr

∼=
2π · 45.24 kHz.

3.3 Bragg spectroscopy of atomic momentum distributions

Up to now we only assumed single atoms in the Bragg diffraction process. If the
detuning δ fulfills the resonance condition, resonant Rabi oscillations occur and the
atom can in principle be transferred into a final momentum state with a probability of
100%. But even a sub-recoil BEC has a non-vanishing expansion rate associated with
an effective momentum spread ∆prms. As a result, some atoms of the corresponding
distribution remain non-resonant by application of a Bragg lattice with fixed δ, and
would therefore oscillate with a reduced amplitude between the coupled states (see
Eq. 3.28).

This momentum selectivity can be used to individually address different velocity
classes of an atomic distribution by carefully adjusting δ. For Bragg diffraction with
n = 1 and ϑ = 180◦, Eq. 3.32 allows to formulate a resonance condition for atoms with
initial momentum p0,

p0(δ) =
mh̄δ

pr
− pr

2
= m

[
δ − 4(h̄k2/2m)

2k

]
. (3.34)

In a simplified picture, atoms fulfilling Eq. 3.34 get diffracted and spatially separate
from the un-diffracted part of the cloud, if the initial momentum spread of the cloud is
narrower than the value of transferred momentum (∆prms < pr). In that case we can
scan δ, measure the diffraction efficiency for a certain momentum class and analyze
the obtained distribution in momentum space. This is called Bragg spectroscopy (BS).

BS was demonstrated as a versatile instrument for investigating the evolution of

71



3 Bragg diffraction and open interferometers with degenerate gases

condensate wave functions [168, 160]. It has been used for measurements of the co-
herence length or phase fluctuations of trapped degenerate gases [169, 178], as well as
to analyze their excitation spectrum [179]. In this thesis, BS will be used to measure
the momentum width of freely expanding condensates released from differently steep
atom chip traps (see Sec. 3.4.3).

The observed spectrum in momentum space is given by the spectral response function
of the condensate [180, 168]. In other words, the shape of the measured distribution is a
convolution of the atomic clouds momentum distribution with the Fourier distribution
of the applied Bragg pulse. We will shortly discuss and quantify the implication of
finite Bragg pulses to the momentum selectivity in the next section.

3.3.1 Momentum selectivity and finite pulse duration

In order to realize specific pulse areas for controlled light-matter-interactions (see
Sec. 3.2.2) or to perform Bragg spectroscopy, the interaction time of atoms with the
Bragg lattice oscillating at δ is usually limited to finite pulse durations of τ . By a
Fourier transformation of the temporal intensity profile I(t) applied to the atoms, we
get the spectral distribution Ĩ(ω) of the Bragg pulse. For example, the intensity profile
I(t) of a Gaussian pulse is given as

I(t) = I0 exp

(
−4 ln 2

t2

∆τ2

)
(3.35)

with ∆τ as the FWHM width. Fourier transformation of I(t) yields

Ĩ(ω) =

∫
I(t) · exp(−iωt)dt = Ĩ0 exp

(
−∆τ2ω2

4 ln 2

)
. (3.36)

This can in principle be done for any envelope and leads to the formulation of the
time-bandwidth product (TBP)

[∆ω · ∆τ ]F W HM ≥ 4 ln 2, (3.37)

with the temporal FWHM of the pulse ∆τ and the corresponding spectral width of the
pulse ∆ω = 2π∆ν 1. This limitation is essentially a property of the Fourier transform
of the Bragg pulse envelope. Since there are other sources of broadening, the TBP is
often used for indicating how close a pulse is to the transform limit.

By using the definitions of the rms width for Gaussian shaped pulses, the TBP is
given as

[∆ω · ∆τ ]σ ≥ 1. (3.38)

A finite pulse duration thus determines a spectral width ∆ω ≡ ∆δ which according
to Eq. 3.34 can directly be translated into a momentum uncertainty of the Bragg
resonance. Let the atomic momentum distribution be characterized by a momentum
width ∆pat. In the limiting case of very long pulses (1/τ ≪ ∆pat), a narrow velocity

1For rectangular shaped pulses, the TBP is limited by ∆ω · ∆τ ≥ 2.783 [181], indicating a slightly
larger spectral width compared to equally long Gaussian shaped pulses
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3.4 Implementation of Bragg diffraction in QUANTUS-I

class can be scattered out of the initial atomic cloud. This is mandatory for Bragg
spectroscopy (BS) since only in this limit the scanned spectrum would properly reflect
the momentum distribution of the condensate. In the other limit of very short pulses
(1/τ ≫ ∆pat), the spectral width broadens such that, for example, all atoms of a
condensate can be diffracted at once. Here, BS would now measure the pulse width.

Ultimately, even shorter pulse durations will lead to scattering in neighboring mo-
mentum states, if the spectral width exceeds the resonance frequencies of higher-order
diffraction (see Eq. 3.33). This is called Raman-Nath scattering [182]. Since there is
no sharp transition between the Bragg and the Raman-Nath regime, and it might be
useful to approximate the pulse duration ensuring scattering in the Bragg regime. For
first-order (n=1) Bragg diffraction of 87Rb atoms, the energy uncertainty should not
exceed ∆Ẽ = h̄∆δ = 2h̄ωr. Assuming Gaussian shaped pulses with rms width ∆τ ,
this results in a lower bound for the pulse duration of ∆τ ≥ 1∆δ ≈ 21 µs to safely
operate in the Bragg regime.

3.4 Implementation of Bragg diffraction in QUANTUS-I

The QUANTUS-I experiment constitutes an atom-chip-based source of non-magnetic
degenerate gases with sub-recoil momentum distribution, an ideal starting point for
Bragg diffraction experiments. A drop-tower capable Bragg laser system based on
a distributed feedback (DFB) laser diode will be presented as well as ground-based
experimental results of

• Rabi oscillations to determine the basic performance of the system and to opti-
mize the beam splitting and mirror pulses for matter wave interferometry (see
Sec. 3.4.2),

• Bragg spectroscopy to study the momentum width evolution of condensates
emerging from different magnetic trap configurations (see Sec. 3.4.3),

• open (or asymmetric) interferometers (e.g., Ramsey-type and Mach-Zehnder
type) to probe the phase evolution of freely expanding condensates (see Sec. 3.5.1),
for measurements of the coherence length (see Sec. 3.5.3) and studies of the mean-
field influence (see Sec. 3.5.4), and

• pulsed optical levitation of atoms as a proof-of-principle experiment for measur-
ing the local gravitational acceleration (see Sec. A).

These experiments were done in preparation of drop campaigns demonstrating the
first interferometer with Bose-Einstein condensates in microgravity (see Sec. 5).

In Fig. 3.5, a schematic of the used coordinate system is given. The BEC is generated
in the magnetic chip trap, has an initial momentum p0 (most of the cases p0 ≈ 0) and
after release accelerates towards Earth in the z-direction. After an expansion time
T0, two anti-parallel laser waves traveling along the x-direction are switched on for
a duration τ to induce Bragg diffraction (τ ≪ T0, Tsep). In the case of only one
Bragg pulse, an absorption image is taken after spatial separation of the momentum
classes |p0〉 and |p0 + 2h̄k〉 during Tsep. The detection axis (y-direction) is oriented
perpendicular to the lattice beams.
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3 Bragg diffraction and open interferometers with degenerate gases

Figure 3.5: Schematic of first-order Bragg diffraction in the QUANTUS-I experiment. The
atom chip is located in the x-y plane and the released BEC is accelerated towards
Earth in the z-direction. After an expansion time T0, the Bragg laser beams
form a one-dimensional optical lattice in the x-direction for a pulse duration τ
with τ ≪ T0, Tsep. The momentum states spatially separate for Tsep until an
absorption image is taken along the y-direction after a total time-of-flight of
Ttof = T0 + Tsep.

3.4.1 Bragg laser system for drop tower operation

Stringent mechanical requirements are imposed on the laser system, since it will be
objected to critical thermal and mechanical loads (see Sec. 5.1). The other main
requirement is obviously given by the capability of driving two-photon transitions
between different momentum states of 87Rb.

For anti-parallel Bragg beams and a perfect resting point source, first-order Bragg
diffraction is resonant at a detuning of δ = 2h̄k2/m = 2π · 15.08 kHz. Since this
is only an ideal case, the frequency difference δ should be a variable parameter to
compensate any shifts of the resonance. Continuously illuminated atoms undergo
Rabi oscillations between the coupled momentum states. Therefore, the Bragg pulse
duration τ obviously needs to be tunable to optimize the beam splitter efficiency. The
effective Rabi frequency (see Sec. 3.2.2), can be calculated as

Ωeff =
3πc2ΓI

∆h̄ω3
. (3.39)

Therefore, the absolute intensity I of the beams as well as the detuning ∆ to the
|5S1/2, F = 2〉 → |5P3/2F = 3〉 transition of 87Rb should be an adjustable parameter.
We now want to focus on the technical realization. A schematic and a photograph of
the assembled Bragg laser system are given in Fig. 3.6.

Distributed feedback (DFB) diode laser source

The light source is a distributed feedback (DFB) laser diode, based on a III-V com-
pound semiconductor (GaAs) integrated into a hermetic TO3 housing filled with a
technical gas (Eagleyard, EYP-DFB-0780-00080-1500-TOC03-0000). It features a
Bragg grating which is implemented by a periodic variation of the index of refrac-
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3.4 Implementation of Bragg diffraction in QUANTUS-I

Figure 3.6: Miniaturized Bragg laser system for drop tower operation. The system is based on
a distributed feedback (DFB) diode laser, miniaturized optics and opto-mechanics
mounted onto an 270 x 310 mm2 aluminum breadboard with M3 threads (1 cm
spacing). Further details in text.

tion and extends over the total length of the semiconductor resonator2. The grating
narrows the linewidth of the emission and guarantees single frequency emission by se-
lecting a single longitudinal laser mode. Tuning of the emitted light is accomplished
by modulating either the diode’s current (dλ/dI ≈ 0.003 nm/mA) or temperature
(dλ/dT ≈ 0.06 nm/K), the latter of which is possible since the chip is soldered onto a
thermoelectric cooler (TEC).

Due to the absence of any critical opto-mechanical component, DFB diodes compro-
mise a monolithic structure and permit high long-term stability and reliability. The
maximum forward current and corresponding optical output power given by the manu-
facturer are Imax = 200 mA and Pmax ≈ 100 mW. The laser threshold and slope have
been measured to be Ith = 37 mA and S = 0.74 W/A, respectively. The emission spec-
trum reached the D2-line of 87Rb for a temperature of 22.0◦C. Standard specifications
are summarized in Tab. 3.1.

Opto-mechanical design and beam paths

The light emitted by the DFB diode (see Fig. 3.6) is collimated with an aspheric lens
(f = 2.2 mm) and passes an optical isolator (OI, 30 dB isolation), whose transmission
was measured to be 0.78. In this module, the used opto-mechanical components (mirror
mounts, optics holders) are self-made constructions, mostly based on aluminum alloys
and stainless steel.

After passing a half-wave plate (λ/2), the beam is split into two paths at a polariza-
tion beam splitter cube (PBS). One path is used for absolute frequency stabilization.
A fraction of Bragg laser light is overlapped with reference light (emerging from fiber
collimator (FC) 1) using another PBS. As a reference, we use the cooling laser (see
Sec. 2.4.3), stabilized to the |5S1/2, F = 2〉 → |5P3/2F = 3〉 transition of 87Rb. The

2Another laser type with an integrated Bragg grating is the distributed Bragg reflector (DBR) diode
laser. Here, the grating is not situated in the vicinity of the active medium but implemented aside
the gain section acting as a local reflector.
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parameter unit min. typ. max.

spectral width (FWHM) ∆ν MHz 2
temperature coefficient dλ/dT nm/K 0.06
current coefficient dλ/dI nm/mA 0.003
typ. Output power @ I = 180 mA mW 80
slope efficiency S W/A 0.6 0.8 1
threshold current Ith W/A 70

Table 3.1: Specifications of the DFB-diode used in the Bragg laser system at the begin of
life, adapted from [183]. Remark: By using the QUANTUS-I laser electronics, we
usually measured FWHM linewidths of about ∆ν ≈ 5 MHz.

beat signal is detected with a fast GaAs-based photodetector (Hamamatsu G4176-03).
The other path is used to generate the optical lattice and therefore the beam is

again split into two paths, each passing an acousto-optical modulator (AOM). These
devices (Crystal technology, 3080-122) are switchable on a ns-timescale and driven
with 80 MHz and 80 MHz + δ, respectively. In this way, they generate the required
frequency difference δ for the two beams. After passing the AOMs, the light is coupled
into polarization maintaining single-mode optical fibers (SuK, PMC-850-5,1-NA013-3-
APC-400-P) with commercial, miniaturized laser beam couplers (SuK 60SMS series,
8◦ polished), and finally guided to the experiment.

The light from both fibers is collimated to a Gaussian beam with a diameter of
0.65 cm (FWHM) using a single-lens telescope each, attached at opposites sides of
the vacuum chamber and pointing along the x-direction (see Fig. 3.5). Both beams
are equally linearly polarized, thus forming an optical grating at the position of the
atoms. Fiber-coupling and AOM diffraction efficiencies (cw) are both around η = 70%,
resulting in typical values of total optical power for the Bragg lattice of about Ptyp =
10 mW (cw) @ Ityp = 100 mA.

To verify the mechanical stability of the whole setup, the laser system was success-
fully tested in a self-built mini drop tower providing a drop altitude of approximately
1 m (designed and built by K. Moehle during a research assistant period in 2008). This
tower consists of a platform, on which laser test assemblies can be mounted and which
is identical to the used platforms in the drop capsules [107]. It is guided via two stain-
less steel metal rods and can be elevated by a mechanical winch to a height of 1 m and
subsequently be dropped from that distance. At the bottom, a combination of foam
sheets decelerates the assembly with typical loads of up to 50 g which are comparable
to the expected ones for the QUANTUS-I apparatus in the Bremen drop tower.

Stabilization and Switching electronics

To prevent excitations and atom losses which lead to decoherence, the absolute laser
frequency of the Bragg beams has to be sufficiently detuned from atomic resonances.
This is realized by an offset lock stabilization, as depicted in Fig. 3.7 (top).

The detected beat signal (G4176-03) between Bragg and cooling laser is typically
around ∆ = 640 MHz. It is first amplified (ZJL-7G), passes a directional coupler
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Figure 3.7: Stabilization path of the Bragg laser system in QUANTUS-I. Details in text.

(ZFDC-10-2S), then divided by a programmable divider and compared with a stable
reference oscillator (PXI-5404, 80 MHz) in a digital phase frequency detector (HMC
440QS16G). Subsequently, an error signal is fed into a lockbox which generates a
control signal for the current controller driving the Bragg laser diode. In this way, the
frequency of the Bragg laser source can be stabilized to a fixed detuning ∆, which can
be adjusted by changing the LO frequency or the divider scaling.

The electronics for driving the AOMs are depicted in Fig. 3.7 (bottom). Here, two
frequency generator cards (PXI-5404), phase-locked to a 10 MHz internal reference,
are used to drive one AOM each. The PXI-5404 is a 100 MHz frequency generator
with a 1.07 µHz frequency and 12 Bit vertical resolution. By following the right path,
the 80 MHz + δ output passes a power splitter (ZFSC-2-2-S+) from which one output
(OUT 2) is used as the LO for offset lock stabilization. On the left-hand side, the
80 MHz output has to be attenuated (VAT-3) such that both RF signals remain at the
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same amplitude for subsequent amplification.
They pass a directional coupler (ZFDC-10-2S) and are fed into one RF switch each

(ZYSWA-2-50DR), capable of switching times of about 20 ns (10 − 90%). A micro-
controller (Atmel ATmega8) generates a TTL signal to simultaneously trigger both
switches with µs resolution. This device controls our Bragg pulse duration. Finally,
each output is amplified to about 1 W (ZHL32A) and fed into the AOMs (3080-122).

In a later stage of the experiment, we exchanged this pulse generation concept with
a state-of-the-art timing processor (PulseBlaster DDS-II-300), providing two indepen-
dent analog output channels ranging in frequency from 5 kHz to 100 MHz with sub-
Hertz resolution. Various envelopes can now be programmed with 300 MHz sampling
rate and 14 Bits sampling precision3. This board gets triggered from the experimental
sequence (LabView routine) and is programmed via USB.

3.4.2 Rabi oscillations of condensates released from an atom chip

With the above described setup, Rabi oscillations between the coupled momentum
states |0h̄k〉 and |2h̄k〉 have been measured. In Fig. 3.8, the diffraction efficiency as
the number of diffracted atoms versus total atom number,

N2h̄k

Ntot
∼ A ·

(
1 − e−τ/t0 cos(Ωeff · τ)

)
, (3.40)

is plotted for increasing duration of square-shaped pulses τ and two different initial
expansion times T0. In contrast to the previous theoretical description, damping (with
decay constant t0) is considered mainly due to the momentum selectivity of the Bragg
pulses (see Sec. 3.3.1). Excitations and atom losses can be neglected since the total
atom number was measured to be constant during the Rabi cycles.

The condensate was released from the shallow trap (ωx = 2π · 46 Hz) and transferred
into the mF = 0 state by means of an ARP. The Bragg beams were ∆ = 2π · 640 MHz
red-detuned w.r.t the cooling transition and we optimized the frequency difference
between the laser beams to be in resonance with the center of the atomic momentum
distribution (δ ≈ 2π · 15 kHz).

The duration τ in Fig. 3.8 was scanned from 0 - 880µs for two different expansion
times T0 of 4 ms (red circles) and 19 ms (blue squares). After application of the Bragg
pulse, we waited for Ttof = T0 + Tsep = 33 ms to let the ensembles spatially separate
before detection. By fitting Eq. 3.40 to both data sets (solid red and blue lines), we
can extract π-pulse durations of τ19ms

π = 90 µs and τ4ms
π = 180 µs with diffraction

efficiencies of about 0.80 and 0.72, respectively. With that, effective Rabi frequencies
and corresponding beam intensities at the position of the atoms can be calculated
using

τπ =
π

Ωeff

=
πh̄∆ω3

3πc2ΓI
, (3.41)

resulting in Ω4ms
eff = 2π · 2.83 kHz and Ω19ms

eff = 2π · 5.54 kHz. The Bragg lattice inten-
sity at both positions therefore follows as I4ms = 3.3 W/m2 and I19ms = 6.5 W/m2.

3This enabled the generation of Gaussian-shaped pulses in the time-domain
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Figure 3.8: Rabi oscillations of a Bose-Einstein condensate between |0h̄k〉 and |2h̄k〉 after
T0 = 4 ms (red circles) and T0 = 19 ms (blue squares) of free expansion. The
solid lines correspond to fits of a damped, periodic function (see Eq. 3.40).

The observed differences are predictable and occur because during expansion, the
condensate are accelerated towards Earth and experience different local intensities
due to the Gaussian beam profile of the Bragg lattice. This spatial dependance was
independently measured by scanning the expansion time T0 prior application of a weak
Bragg pulse with

Φ · τ < π ∀T0, (3.42)

The results are plotted versus the corresponding vertical distance from the holding
trap position (see blue triangles in Fig. 3.9). The Gaussian fit (red line) indicates that
the free fall trajectory of the released atoms is not exactly perpendicular to the wave
vector of the Bragg lattice. The angle is dependent on the orientation of the drop cap-
sule which is usually (e.g. in-between of two drop campaign) not perfectly aligned w.r.t
gravity while standing in the lab. This causes a Doppler-shift (typically on the order
of a few kHz) which will be addressed in upcoming Bragg spectroscopy experiments
(see Sec. 3.4.3) but might be neglected here due to the broader spectral width of the
used pulses (∆ω ≈ 2π · 12.5 kHz). Hence, we can approximate the Gaussian intensity
maximum to be centered about dz0 ≈ 4.3 mm below the position of the holding trap.

This position of the beam center is actually desired to reduce reflections of the Bragg
light at the HR coated atom chip surface. Stray light or interferences of the beams
in the vicinity the atom chip surface lead to a complex intensity distribution and a
deformed wavefront. They obviously complicate an accurate prediction of what the
Bragg lattice below the chip actually looks like, which is important for experiments
targeting at high-precision interferometry measurements with atom-chip-based conden-
sates [9, 43]. However, this geometry yields high asymmetries of the pulse durations in
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Figure 3.9: Spatial dependence of the Rabi frequency. The diffraction efficiency of a Bragg
pulse is measured versus the vertical position of the atoms. The observed spatial
dependence is modeled by a Gaussian profile (red line) to approximate the center
position of the Bragg lattice at dz0

≈ 4.3 mm

ground-based measurements and more generally less effective Bragg pulses compared
to the available power. Given the measured beam profile of Fig. 3.9, we are using less
than 30% of the available peak intensity during the first 20 ms (dz ≤ 2 mm) of free
expansion.

Taken this systematic into account does still not entirely explain our measured Rabi
frequencies Ω4ms

eff and Ω19ms
eff , which are about a factor of 2 smaller compared to the

calculated ones (Eq. 3.41) using typical power values in the Bragg fibers of Pcw =
10 mW (see Sec. 3.4.1). Reasons for that are related to (i) reduced efficiency of AOMs
in pulsed mode, (ii) non-perfect polarization and overlapping of both beams, (iii)
transmission losses at the non-AR coated entry windows of the vacuum chamber and
(iv) losses in the Bragg beam telescope assembly.

Nevertheless, beam splitter efficiencies can be increased by the use of Gaussian-
shaped pulses in the time-domain as well as a higher effective Rabi frequencies (more
optical power or less detuning) to realize shorter pulse durations4. Gaussian-shaped
pulses feature a slightly narrower spectral distribution compared to rectangular shaped
pulses with the same duration [181], vice versa the same frequency width is achieved
for effectively longer pulses. Additionally, the spectral representation of rectangular
shaped pulses (Ĩ(ω) ∼ sinc(ω · τ/2)) features side lobe peaks, which is not the case for
a Gaussian beam which remains a Gaussian after Fourier transform (see Sec. 3.3.1).
These will limit the diffraction efficiency for the main Bragg order in resonance and
can lead to spurious scattering in unwanted momentum states.

4Already demonstrated in our setup with Bragg diffraction efficiencies of about ∼ 90%
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Finite momentum width of the atom source

The Rabi oscillation measurement with T0 = 19 ms is compared to numerical simula-
tions in Fig. 3.10. On the right hand side, a stack of absorption images is given where
each picture corresponds to one pulse duration of the measurement cycle. The aspect
ratio of the pictures has been adapted in order to better visualize the condensates finite
momentum width in the beam splitter direction, which is displayed in units of h̄k.

On the left, numerical simulations are shown where the momentum of the atoms (also
given in units of h̄k) is plotted versus the pulse area Φ = Ωτ . The simulations are based
on the theoretical model described in [184]. It relies on a partitioned representation of
the wave function in momentum space, where each interval is defined as

∆kn : (n− 1/2)|2h̄k| < kx ≤ (n+ 1/2)|2h̄k|. (3.43)

By now only considering first-order Bragg diffraction in the non-interacting case, we
represent the atomic state Ψ(kx, t) in two momentum zones ∆k0 and ∆k1 as

Ψ(kx, t) = φkx
·
(
c0(kx, t)
c2h̄k(kx, t)

)
, (3.44)

with the wave function in momentum space φkx
, the time-dependent coefficients rep-

resenting the amplitudes of both diffraction orders c0 and c2h̄k, and the atomic mo-
mentum in beam splitter direction kx.

The temporal evolution of the coefficients ci(kx, t) is determined by the Gross-
Pitaevskii equation in momentum space. By considering the Bragg lattice as a plane-
wave classical field, the dynamics in the non-interacting case are given by

i
∂

∂t

(
c0(kx, t)
c2h̄k(kx, t)

)
=

(
h̄k2

x

2m
Ωeff

2
Ωeff

2
h̄

2m(kx + 2k)2 − δ

)
·
(
c0(kx, t)
c2h̄k(kx, t)

)
(3.45)

with the effective Rabi frequency Ωeff, wave vector of the beam splitters k and the
detuning δ. We now can assume the atomic distribution as a Gaussian wave packet in
momentum space, the modulus squared of which is given as

|φ(kx)|2 =
1√

2πσkx

exp

(
− k2

x

2σ2
kx

)
. (3.46)

In the simulation, the atoms are considered as a Gaussian wave packet with a mo-
mentum width of σkx

= 0.13h̄k. This is an approximation based on Bragg spectroscopy
of freely expanding of atoms from the shallow trap with ωx = 2π · 46 Hz at T0 = 10 ms
(see Sec. 3.4.3).

Assuming the laser beams to be tuned to the two-photon resonance for resting atoms,
the effective detuning is only a result of the Doppler-width of the atomic cloud. The
time-dependent Rabi amplitude in momentum zone ∆k1 can hereby be calculated to

|c2h̄k(kx, t)|2 =
Ω2

eff

Ω2
eff + (2h̄kkx/m)2

sin2
(√

Ω2
eff + (2h̄kkx/m)2 · τ/2

)
, (3.47)
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Figure 3.10: Comparison of simulation (left) and experiment (right) of Rabi oscillations in-
duced by first-order Bragg diffraction. The condensate is released from the shal-
low trap (ωx ≈ 2π · 50 Hz) and expands for T0 = 10 ms until the beam splitter is
applied. The effective Rabi frequency was measured to be Ω19 ms

eff = 2π · 5.54 kHz.
For the calculation, we assumed the atoms to evolve as a Gaussian wave packet
with an rms width of σkx

= 0.13 h̄k.
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where we can plug in the value for Ωeff from our previous measurement. The expec-
tation of value of the wave function Ψ2h̄k after beam splitter operation then follows
as

|Ψ2h̄k(kx, t)|2 = |φ(kx)|2 · |c2h̄k(kx, t)|2. (3.48)

Oscillations of off-resonant atoms (ǫeff 6= 0) are faster, but occur with a smaller
amplitude. The smaller the initial momentum width of the atomic distribution, the
more homogenous is the Rabi frequency over the ensemble which will increase the
beam splitter efficiency. Another possibility would be to increase the Rabi frequency
which leads to a power broadened Rabi amplitude and enables the application of short
pulses.

An approximation for an effective π-pulse can be made based on the comparison of
the atomic distribution width and the width of the Rabi amplitude c2h̄k(k) [184]. The
latter decays to P = 0.5 for (2h̄k · kx/m)2 ≡ Ω2

eff, and we can define a FWHM of the
distribution (range of kx about the Bragg resonance point for which the probability of
momentum transfer exceeds 1/2) as

σc2h̄k(k)
= mΩeff/2h̄k, (3.49)

which increases linear with the effective Rabi frequency Ωeff. The Rabi cycling be-
havior of the whole wave packet now depends on the fraction of the power broadened
σc2h̄k(k)

and the momentum width of the initial state σkx
. Efficient mirror pulses are

expected for σc2h̄k(k)
/σkx

> 1 [184], if we assume an idealized two system without
losses. In real systems, however, scattering in other momentum states occurs which
limits the diffraction efficiency in the target state. For a Gaussian wave packet with
rms momentum width of σkx

= 0.13, the fraction can in our case be calculated to

σc2h̄k(k)

σkx

=
m · Ωeff

2h̄k · 2
√

2 ln 2σkx

≈ 1, (3.50)

which matches to our observed diffraction efficiency of 81% (see Fig. 3.8) considering
moderate losses of a real system and rectangular shaped beam splitter pulses. This
exemplary study shows the interplay between condensate width (approximated as a
Gaussian distribution) and power broadening of the Bragg beams. As already pointed
out, higher diffraction efficiencies were achieved with increased optical power and thus
shorter pulse durations. Another possibility is given with the application of delta-kick
cooling, which effectively reduces the velocity width of the matter wave source and
therefore σkx

(see Sec. 4.3.2).
The diffraction efficiency is limited due to the spectral selectivity of the Bragg pulses.

This is not only a disadvantage since it can be used to directly analyze the momentum
distribution of a freely evolving condensate, which is presented in the next section.

3.4.3 Bragg spectroscopy of expanding Bose-Einstein condensates

We can analyze the momentum distribution of the Bose-Einstein condensate using
Bragg spectroscopy [168]. Atoms are diffracted by interacting with Bragg beams whose
mutual detuning δ determines the momentum component which is diffracted out of the
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condensate (e.g. in resonance). A typical measurement performed for a condensate
released from a steep trap (Ibias = 0.7 A, ωx ≈ 2π · 150 Hz) is shown in Fig. 3.11.

After T0 = 10 ms of free expansion, we probe the condensate with a τ = 5 ms
lasting first-order Bragg pulse (rectangular shaped). The intensities are chosen to be
in resonance for first-order processes only, moreover, they have been reduced in order
ensure pulse areas of Φ · τ ≪ π. The beams are ∆ ≈ 640 MHz red detuned below
the cooling laser frequency. After a separation time of Tsep = 17 ms, we detect the
diffracted and un-diffracted cloud of atoms in dependence of the frequency detuning δ
between the Bragg beams.

Typical absorption images for the different detunings (δ = 6 − 17 kHz) and corre-
sponding column densities are given in Fig. 3.11. In contrast to the expected resonance
for first-order Bragg diffraction of resting atoms at δ ≈ 15 kHz, the center is shifted
by about ∆δ ≈ 3 kHz. Large crossing angles ϑ between the Bragg beams poten-
tially shift the resonance (see Sec. 3.1), but are prohibited due to the geometry of the
vacuum chamber and the beam telescopes. The observed deviation is related to the
fact, that the drop capsule itself (e.g., in-between of two drop campaigns) is not per-
fectly aligned w.r.t gravity while standing in the lab. This causes a non-zero velocity
component vx of the freely falling atoms along the wave vectors of the Bragg beams.
In our case, the Doppler shift ∆fd of the Bragg laser light can be approximated to
∆fd ≈ vx · 1.258 kHz/(mm/s) [150], leading to a fractional error of the effective de-
tuning ∆δ/δ0 ≈ 3/15 for velocities vx on the order of 1.2 mm/s. For example, such
velocities already occur at an expansion time of T0 = 10 ms, if the angle between wave
vector of the Bragg lattice and gravity exceeds only α~k,~g

≈ 1◦.
The sensitivity is limited by the stability of δ during the pulse duration time τ =

5 ms. As long as the Doppler-shift is constant, this would only absolutely shift the
spectrum but has no influence on the width. Another systematic is given by the spatial
dependence of the Rabi frequency due to the Gaussian beam profile, which we neglect
since Φ · τ ≪ π.

Influence of the trap steepness

From each picture in Fig. 3.11, the Bragg diffraction efficiency can be calculated and
displayed versus the difference to the center resonance ∆δ to achieve a spectrum in
momentum space. This has been done to evaluate the momentum width of condensates
expanding from four differently steep holding traps (see open symbols in Fig. 6.3.1,
left). The corresponding trapping frequencies in the beam splitter direction were ωx ≈
2π · (50, 100, 150, 350) Hz.

A Gaussian was fitted to the central peak of each spectrum (solid lines) to approxi-
mate the Bragg resonance rms width σ∆δ of the evolving condensates5. The obtained
rms width of the four data sets are then used to calculate the momentum width of the
atomic distribution as

σkx
=
m ·σ∆δ

2k
, (3.51)

5This was done by either fitting a double-Gaussian distribution to the spectrum or by manually
subtracting the thermal background.
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Figure 3.11: Bragg spectroscopy as a tool to measure the momentum distribution of a freely
expanding Bose-Einstein condensate. In each picture from top to bottom, the
pulse duration of the box-shaped Bragg pulses is kept constant at τ = 5 ms
and the detuning is scanned from δ = 6 kHz − 17 kHz. After application of the
Bragg pulse, we let the distribution expand for 22 ms before taking the image.
Diffracted atoms are indicated with the green box, the resulting hole in the
initial distribution is marked red. More details in text.
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Figure 3.12: Bragg spectroscopy of Bose-Einstein condensates released from differently steep
magnetic traps with ωx ≈ 2π · (50, 100, 150, 350) Hz. The observed spectra in
momentum space are fitted with a Gaussian function (left). The extracted rms
width is plotted versus the trapping frequency and fitted with A · √

ωx (right).

with mass of the atoms m and wave vector of the Bragg beams k. The resulting
width in units of h̄k are separately displayed as a function of the trapping frequency of
the holding trap (full symbols in Fig. 6.3.1, right). In a classical gas, the momentum
width is proportional to the square root of temperature T of the expanding cloud (see
Sec. 2.6.1). In a harmonic trap, the temperature dependents linearly on the trapping
frequency, we thus expect the Bragg resonance to evolve as σkx

∼ A · √
ωx, of which a

corresponding function is fitted to the data (solid red line).

Mean-field expansion from the shallow trap

Bragg spectroscopy can also be used to analyze the mean-field driven expansion of a
condensate. Therefore, we prepared our BEC in the shallow trap (ωx ≈ 2π · 50 Hz) and
probed the momentum distribution after different free expansion times (see Fig. 3.13).
Here, pulse durations of 3 ms (blue squares) and 5 ms (red triangles) were applied.

Directly after release, the width of the Bragg resonance increases immediately due to
mean-field acceleration and asymptotically reaches a finite value in the far-field, which
is expected for entirely converted mean-field energy. The resonance width σk can be
translated into a velocity width σv. The dashed red line is a theoretical prediction
of the latter using the measured trapping frequencies of Sec. 2.6.2 in a scaling law
approximation for cigarre-shaped condensates in the Thomas-Fermi regime [168, 130].

This data shows, that mean-field contributions are still present for expansion times
of Ttof ≤ 10 ms, which is expected for shallow traps (see Sec. 3.5.2). The non-linear
expansion of matter wave packets will play an important role as a systematic error in
interference experiments and therefore addressed in detail in Sec. 3.5.

Scattering in the Raman-Nath regime

Scattering in the Bragg regime occurs if the interaction time of the atoms with the
optical lattice beam is long enough, to fulfill the criteria of a thick grating. The atomic
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Figure 3.13: Mean-field acceleration of a Bose-Einstein condensates released from a shallow
magnetic trap (ωx ≈ 2π · 50 Hz), depicted by the increase of the Bragg resonance
width during free expansion of the sample. The dashed red line corresponds to
the calculated velocity evolution vx ∼ vinfωxt/

√
(1 + (ωxt))2 [130, 168].

waves scatter from all layers of the diffraction plane and add constructively in a single
order diffraction process, as previously used in first-order Bragg diffraction and Bragg
spectroscopy experiments.

Very short pulse durations instead broaden the resonance and lead to scattering in
neighboring momentum states, which is called Raman-Nath scattering [182, 172, 158].
Due to the comparably short interaction time, the optical lattice can be seen as a
stationary wave, imprinting a sinusoidal phase distribution at the wave function due to
the AC Stark shift, which develops into a Bessel-type distribution in the far field [161].

To find an approximation for the transition to the KD regime, we assume a cloud of
atoms which is exposed to a standing wave (δ = 0) and adapt the description of power
broadening of the Rabi amplitude for multi-order scattering (see Eq. 3.4.2). If the
Rabi amplitude is on the order of the effective detuning to the neighboring momentum
states as

Ωeff ≈ h̄

m

(
4nk2 − 2kσkx

)
, (3.52)

multi-order scattering will occur [184]. For example, simultaneous diffraction of a
Gaussian wave packet (released from the shallow trap) in ±2 momentum states would
for our parameters results in π−pulse durations of about

τ±2 =
π

Ωeff

≈ m ·π
h̄(8k2 − 2k(0.13h̄k))

≈ 8.6 µs, (3.53)

In Fig. 3.14 (left), the realization of multi-order Bragg scattering is shown. The con-
densate is adiabatically released from the shallow trap (ωx ≈ 2π · 50 Hz) and expands
for Ttof = 13 ms. Then, a short pulse is applied with a duration of τ = 8 µs and an in-
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Figure 3.14: Diffraction in the Raman-Nath regime. The initial condensate (0 h̄k) is simul-
taneously scattered in ± 3 momentum states after application of a pulse with
τ = 8 µs (left). The application of two successive multi-order beam splitters,
separated by about 100 µs, leads to a multi-order interference pattern (right).

tensity of IKD ≈ 10 W/m2. The sub-recoil momentum distribution of the condensate
allows to distinguish between the different momentum states in the absorption images,
where atoms are mainly scattered from 0h̄k order into ±4h̄k with a less significant
occupancy of ±2h̄k and ±6h̄k.

If we after application of the first Raman-Nath beam splitter wait for an interrogation
time of about 100 µs and subsequently apply a second beam splitter, we observe spatial
interference patterns in each of the outputs associated with the diffraction order (see
Fig. 3.14, right). The interference pattern can be clearly seen in the absorption image
as well as in the integrated column densities6. We will discuss the reason for the
formation of such interference patterns in the next section.

3.5 Interference experiments with Bose-Einstein condensates

Once released from the confining potential, Bose-Einstein condensates can be seen as
a giant matter wave expanding in free space with a periodicity associated with the
thermal de Broglie wavelength λdB. One of the striking manifestations of the conden-
sate’s wave nature is the observation of a spatial interference pattern in the overlapping
region of initially separated clouds. The first interference experiment demonstrating
the wave nature of a BEC was performed at MIT in 1997 [185]. The results clearly
indicated the self-interference of one BEC as well as the interference of two separately
generated BECs described by two distinct wave functions.

In the first case, degeneracy was reached by evaporatively cooling sodium atoms in
a magnetic trap. After passing the phase transition, the ultra-cold cloud has been
coherently split with the repulsive force of a blue-detuned light sheet - a single wave
function with two density peaks. The second case corresponds to a double-well config-
uration where two independent clouds of atoms where first trapped in separate sites,
and then simultaneously cooled down to quantum degeneracy - two individual conden-
sate wave functions with a random phase distribution. In both cases, switching off the
trap caused the wave packets to expand and interfere during time-of-flight such that

6Here, the BEC was released from the steep trapping potential (ωx ≈ 2π · 130 Hz) for a better
visibility of the fringe pattern
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spatial interference fringes have been observed in the overlapping region.
These pioneering results demonstrated the first-order coherence of a condensate wave

function and opened the way to a manifold of new experiments exploring the wave
nature of degenerate quantum gases. As one of the most fundamental properties,
the global phase coherence of condensates attracted great attention for applications
in enhanced atom interferometry. However, BECs suffer from mean-field interactions
which causes the phase distribution to evolve non-linear. The latter of which can
be modeled with scaling factors (λ-matrix formalism [130]) for time-dependent trap
configurations in the Thomas-Fermi limit.

In the next sections, we will address this important aspect in operating different
open interferometer concepts based on Bragg diffraction [160, 164]. To this end, the
implication of mean-field driven acceleration on the formation of the fringe pattern in
light-pulse atom interferometers will be investigated [186].

3.5.1 Open Ramsey-type interferometer (ORI)

Different approaches such as the mentioned double-well potential or spatial splitting
due to repulsive optical dipole forces have been studied to coherently prepare wave
packets with an initial separation for subsequent interference experiments.

Another common method has been realized in the QUANTUS-I experiment and
is based on two successive Bragg pulses. In a simplified scheme (see Fig. 3.15), the
condensate is adiabatically released from an atom-chip-based trap and evolves freely
for an expansion time T0. Then, a first beam splitter (π/2) is applied to coherently
prepare a superposition of two momentum states which separate with twice the recoil
velocity (2vr = 2h̄k/m ≈ 11.8 mm/s [150]). After an interrogation time Tint, the
different momentum classes of the wave function have a spatial displacement of δx =
2vr ·Tint. Now, a second π/2 pulse again recombines the two different momentum
classes. During an additional separation time Tsep, the output ports spatially separate
until an absorption image is taken after a total time-of-flight of Ttof = T0 + Tint +
Tsep. Such a beam splitter sequence generates two output ports with two partially
overlapping condensates each (red and blue clouds).

Complementary fringe patterns will appear in the two output ports, which can be
Fourier analyzed to extract contrast and fringe spacing [187, 188]. In this way, global
phase fluctuations in each experimental cycle can be filtered out, which would result
in a shifted fringe pattern perpendicular to the direction of the interferometer beams.

Bose-Einstein condensates are an excellent matter wave source for this type of ex-
periment because they have been demonstrated to be phase-coherent over the whole
cloud size for modest aspect ratios [186, 179]. The interference pattern of overlapping
condensates is expected to be spatially uniform and equidistant. This is a direct result
of the quadratic phase profile of freely expanding clouds of atoms which we want to
discuss in the next section.

Phase evolution of a Bose-Einstein condensate

The scaling approach for time-dependent potentials allows to calculate the temporal
evolution of freely expanding condensates [130]. For harmonic potentials with trapping
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Figure 3.15: Schematic of an open Ramsey-type interferometer (ORI) with Bose-Einstein
condensates (left). After a free expansion time T0, a first π/2 pulse coherently
splits the wave function into two momentum classes. An interrogation time Tint

later, where the density peaks feature a spatial displacement of δx, a second π/2
pulse again recombines the two momentum classes. The output ports separate
with twice the recoil velocity during Tsep, until they are detected by means
of absorption imaging (right). A spatial interference pattern emerges in the
overlapping zone of the expanding wave packets. More details in text.

frequencies ωi in the Thomas-Fermi regime, the scaling factors λi are determined by a
system of coupled differential equations (see Sec. 2.2.3)

λ̈i =
ω2

i (0)

λi
∏

j λj
− ω2

i (t)λi. (3.54)

Based on this approximation, a common expression for the velocity field dependent
on λi can be derived [130]

vi(~r, t) = ri
λ̇i(t)

λi(t)
. (3.55)

The velocity can also be given in terms of the derivative of the wave function’s phase
distribution [116], leading to

vi(~r, t) =
h̄

m

∂

∂i
φ(~r, t). (3.56)

In Thomas-Fermi (TF) approximation, Bose-Einstein condensates show a quadratic
density profile. The phase evolves proportionally to the density in free space, so we
can assume a quadratic phase profile of a generic wave function ψ ∼ eiφ (simplified to
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a 1D treatment7), with

φ(x) =
α

2
x2 + βx, (3.57)

where α = ∇2φ, and β corresponds to the center-of-mass (COM) motion of the con-
densates causing an additional linear phase evolution. With Eq. 3.55 and 3.56 we can
now derive an expression for α in terms of the scaling parameters

h̄

m
α(t) =

h̄

m

∂2φ

∂x2
=
∂vx

∂x
=
λ̇x(t)

λx(t)
. (3.58)

Spatially interfering matter waves

The interference pattern emerges in the overlapping zone of expanding wave packets
with initial spatial separation δx. After the second beam splitter (see Fig. 3.15), the
two wave packets can generally be described as ψ1(x) =

√
n1(x) · exp(iφ1(x)) and

ψ2 =
√
n2(x+ δx) · exp(iφ2(x+ δx)).

By assuming that interactions between the atoms in the different condensates are
negligible, therefore not affecting the dynamics during expansion and spatial overlap,
the one dimensional interference pattern in the overlapping region can be derived by
calculating the local density

n(x) = |ψ1(x) + ψ2(x+ δx)|2 ,
n(x) = |ψ1(x)|2 + |ψ2(x+ δx)|2 + 2 Re [ψ∗

1(x)ψ2(x+ δx)] .
(3.59)

The interference pattern is a consequence of the last term, caused by the spatially
dependent phase evolution of the two expanding ensembles. The particle density at
any point is thus given by the densities of the single wavepackets and the interference
term.

Let us isolate the interference term of the density (ni(x)) and evaluate it with the
already derived phase distribution of a condensate (see Eq. 3.57). For the general
situation of two wave packets with a non-zero relative velocity, the two phase profiles
have an opposite sign in the linear term (φ1,2 = α/2x2 ± βx). This results in

ni(x) = 2
√
n1(x)n2(x+ δx) Re [exp[i(−φ1(x) + φ2(x+ δx)]] ,

ni(x) = 2
√
n1(x)n2(x+ δx) cos

[
α/2(x+ δx)2 + β(x+ δx) − (α/2x2 − βx)

]
,

ni(x) = 2
√
n1(x)n2(x+ δx) cos [κ ·x+ φ0] .

(3.60)

The argument of the cosine-function consists of a constant phase shift φ0 = α/2(δx)2+
βδx and a spatial fringe frequency κ = αδx + 2β, which is proportional to the sepa-
ration δx. By considering a fully phase coherent condensate, the interference pattern

7Analogously for other dimensions. In principle, we reduce the BECs displacement to a scalar δx.
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shows up as straight fringes, uniformly spaced:

d(x) =
2π

κ
. (3.61)

Lines of constant phase are perpendicular to the separation vector δ~x between the
COM of both wave packets. The separation here is induced by two temporally sep-
arated beam splitters in a so-called open Ramsey-type interferometer (ORI). This
nomenclature is reasonable since there are obvious analogies to a standard Ramsey
interferometer (or to Ramsey spectroscopy) which will be illustrated shortly before we
continue with the calculation of the fringe pattern based on the scaling law formalism.

Analogy to Ramsey’s method of separated oscillatory fields

In a simplified picture of Ramsey’s method of separated oscillatory fields [98], a thermal
beam or a cloud of cold atoms crosses two separated interaction zones where phase-
locked microwaves are applied to the atoms. In the first zone, a coherent superposition
of two internal states is generated with a π/2 pulse, whose relative phase is oscillat-
ing at the eigenfrequency ω0 of the transition. After an interrogation time Tint, the
projection of the atoms quantum state at the second interaction zone now depends
on the accumulated phase difference between the atomic superposition state and the
microwave phase as ∆ω = (ω0 − ωµ) ·T .

This experiment can be seen as a T -lasting phase comparison measurement between
the local microwave oscillator and the induced quantum beat. By carefully scanning the
frequency ωµ around the atomic transition ω0, a periodic resonance curve is obtained
which can be approximated as

I(ω) ∝ cos (∆ω ·Tint) = cos ((ωµ − ω0) ·Tint) , (3.62)

and whose central peak is usually used in atomic clocks for stabilization of an local
oscillator to an atomic transition. The longer the interrogation time, the narrower
the resonance width. Generally, ultra-cold clouds of atoms are promising for this
application, since they allow for comparably high SNR after longer interrogation times
due to smaller momentum widths.

However, in an open Ramsey-type interferometer with Bragg diffraction, a coherent
superposition of momentum states is generated and the relative phase is oscillating at
the energy difference of the coupled states. In an ORI with expanding condensates,
this is a function of distance since the energy difference at each position x (see Eq. 3.34)
is determined by

h̄δ(x) =
(2h̄k + p0(x))2

2m
− p0(x)2

2m
= 4

(
ωr − prp0(x)

2mh̄

)
. (3.63)

Let the the frequency difference of the applied Bragg lattice be resonant to resting
atoms (δ0 = 4ωr). The resonance curve in this case can be written as

I(δ) ∝ cos ((δ(x) − δ0) ·Tint) = cos

(
2prp0(x) ·Tint

mh̄

)
. (3.64)
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The momentum distribution p0(x) is dependent on the phase profile φ(x) of a con-
densate (Eq. 3.56 and 3.57) and can be approximated as

p0(x) = h̄
∂

∂x
φ(x) = h̄αx+ β (3.65)

Assuming no relative velocities between the interfering wave packets (β = 0), our
measurement signal as being an absorption image proportional to the atomic density,
can be expressed as

I(δ) = ni(x) ∝ cos

(
α

2pr

m
·Tint ·x

)
≡ cos (γ ·x) . (3.66)

By a comparison of Eq. 3.66 and 3.60, we see that γ = κ which justifies our nomen-
clature of the applied (π/2 - π/2) beam splitter sequence as an open Ramsey-type
interferometer (ORI). We now come back to the calculation of the fringe spacing for
interfering condensates based on the λ-matrices formalism

3.5.2 Evolution of the fringe spacing

By neglecting the linear contribution of the phase evolution as β = 0 (i.e. no relative
velocity between the wave packets) in Eq. 3.60, the periodicity of the fringe spacing
(distance between two local maxima/minima) is given by

d(t) =
2π

αδx
=
λx(t)

λ̇x(t)
· h

mδx
. (3.67)

Hence, we can predict the temporal evolution of the fringe pattern for a given separa-
tion δx by calculating λ/λ̇. In QUANTUS-I, the confining potentials of the chip-based
Ioffe-Pritchard trap in ground-based experiments can be approximated as cigar-shaped
(ωx = ωz ≡ ωrad ≫ ωy). For a sudden opening of the trap at t = 0, the solution for
the scaling factors is [130]

λrad(τ) =
√

1 + τ2, (3.68)

λy(τ) =
(
1 + ǫ

(
τ arctan τ − ln

√
1 + τ2

))
, (3.69)

with the dimensionless variable τ = ωrad · t and the fraction of radial and axial trapping
frequency ǫ = ωy/ωrad.

The Bragg beams are aligned along the x-direction and the interference pattern will
emerge with lines of constant phase along the y-direction (see Fig. 3.5). The dynamics
of the fringe spacing can thus be discussed by evaluating the temporal evolution of
the fraction λ̇rad/λrad (see Fig. 3.16). Here, the scaling factors are calculated for three
different initial radial trapping frequencies of 2π · (50, 100, 150) Hz.

The temporal evolution of the radial Thomas-Fermi radii of expanding BECs is pro-
portional to λrad (see Sec. 5.2.1), which for long timescales increases linearly in time
and trapping frequency (λrad ∼ ω · t). Here, most of the mean-field energy is converted
into kinetic energy which causes the expansion velocity to asymptotically reach a con-
stant value (λ̇rad ∼ ω). The stepper the trap, the faster the condensate expands due
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Figure 3.16: Calculation of the temporal evolution of the radial scaling factor λrad(t) (left),
the first derivative λ̇rad(t) (center) and the fraction of λrad(t)/λ̇(t) (right)
for trapping frequencies of 2π · 50 Hz (black lines), 2π · 100 Hz (red lines) and
2π · 150 Hz (blue lines).

to density-dependent mean-field conversion. For comparison, the steepest trap shown
here (ωrad = 2π · 150 Hz), converts 95% of the mean-field within an expansion time of
T150 Hz,mean ≈ 3.25 ms, whereas the corresponding conversion time for the shallow trap
(ωrad = 2π · 50 Hz) is significantly larger with T50 Hz,mean ≈ 9.5 ms. We will review the
influence of mean-field accelerated expansion on the emergence of a fringe pattern in
upcoming interferometry experiments. The fraction of λ̇rad/λ determines the temporal
evolution of the fringe spacing and seems to converge towards a fixed slope for large
timescales.

In the far-field (t ≫ Tmean), the fraction λ/λ̇ can be approximated as

λrad(t)

λ̇rad(t)
=

√
1 + ω2

rad · t2 ·
√

1 + ω2
radt

2

ω2
radt

≈ t. (3.70)

This result combined with Eq. 3.67 and t ≡ Ttof yields the far-field approximation
of the fringe spacing

d(Ttof , δx) =
h ·Ttof

m · δx , (3.71)

which increases linearly with expansion time Ttof . In Fig. 3.16 (right), this would
correspond to a straight line emerging from the origin with a slope of 1, which differs
from the the scaling law approach due to the disregard of density dependent mean-field
conversion and finite size of the condensate.

To analyze the temporal evolution of interference pattern in experiment, we first
have to image it and evaluate the important properties with a suitable fit function.

Detection of the fringe pattern

As described earlier (see Sec. 2.4.5), we can calculate the optical density D of a camera
image to

D ≡
[
Ibeam − Idark

Iat − Idark

]
. (3.72)

94



3.5 Interference experiments with Bose-Einstein condensates

In QUANTUS-I, the atomic clouds are detected destructively and spatial information
is obtained by fitting different distributions to the obtained column densities. With
the resonant cross section σ, the atomic column density follow as n = D/σ. For
analyzing the spatial interference pattern, we integrate the density along the dimension
perpendicular to the interferometer beams (z-direction) and evaluate the 1D density
profile (x-direction) by fitting the following distribution to the column densities

n1D = n1D
max

2∑

n=1

[
1 + C sin

(
2π

d
(x− xn) + φn

)
· exp

(
−(x− xn)2

2σ2

)]
+ n1D

0 . (3.73)

With constant background n1D
0 and amplitude n1D

max, this function describes the
center of the output ports at positions x1 and x2 with a Gaussian density profile. To
consider interference, it is multiplied by a periodic function with fringe spacing d and
phases φ1 and φ2. Most important for interferometry studies of the condensates phase
coherence and related systematics are fringe spacing d and the contrast C.

In Fig. 3.15 (right), a typical absorption image and the integrated 1D column density
are given for ORI performed on ground. The positions x1 and x2 correspond to the
output ports with momentum classes p1 = 0h̄k and p2 = 2h̄k at the time of detection.

In a first set of experiments, we start by analyzing the fringe pattern and discussing
the temporal evolution by scanning either Ttof or the separation distance δx of the
interfering matter waves in an ORI.

Linear scaling of the fringe pattern with time-of-flight

In Fig. 3.17, the linear scaling of a fringe pattern with increasing Ttof is shown. There,
the condensate is released from a steep potential with ωrad ≈ 2π · 350 Hz, to be able to
observe several fringes within the overlapping region and to minimize mean-field effects.
After switching-off the trapping potential, it evolves freely for a total expansion time
of T0 = 10 ms until the first beam splitter (π/2) is applied with durations of typically
τ ≈ 100 µs. During an interrogation time of Tint = 240 µs, the two coupled parts of the
wave function separate to a maximum distance of only δx = 2vr ·Tint ≈ 2.6 µm. The
second beam splitter (π/2) thus recombines still overlapping clouds and generates two
complementary output ports. As already mentioned, we use rectangular-shaped pulses
in the time-domain and the interrogation time Tint is approximated by the distance
between the temporal centers of each pulse.

In the case of a Ramsey-type interferometer with first-order Bragg pulses, the fringe
spacing dori in the far field can be re-written as

dori =
hTtof

mδx
=
π ·Ttof

k ·Tint
, (3.74)

with wave vector k = 2π/λ of the Bragg beams. An absorption image is taken after
an additional separation time Tsep which was scanned to realize different total time-
of-flight between release of the matter waves and detection of Ttof = T0 + Tint + Tsep.

Error bars in Fig. 3.17 depict 1σ confidence bounds of the fitted parameters. Since
the interrogation time Tint is kept constant, the fringe spacing (blue circles) evolves
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Figure 3.17: Temporal fringe spacing evolution of a ground-based ORI with constant interro-
gation time Tint = 240 µs. The interferometer is applied T0 = 10 ms after release
of the condensate from a steep trap (ωrad ≈ 2π · 350 Hz). Scaling law calcula-
tions for the fringe spacing of differently steep radial-symmetric traps (dashed
lines) and the far-field approximation (solid line) are given for comparison.

linearly in time which fits well to the scaling law calculation using the corresponding
trapping frequency (dashed orange line). The far-field approximation coincides with
the numerical calculation after a few ms (solid blue line), which confirms our mea-
surement to be operated in the linear regime. A gallery of absorption images of this
measurement is shown as a temporal sequence in Fig. 3.20 (left).

For comparison, the scaling law calculations of d(t) for more shallow initial traps
are given (dashed red and black lines). These correspond the the most shallow trap
operable in ground-based measurements (ωrad ≈ 2π · 50 Hz) and the holding trap used
in microgravity experiments (ωrad ≈ 2π · 25 Hz, see Sec. 5.2.2). As expected, the
presence of mean-field acceleration would shift d(t) to larger values.

Scanning the wave packet separation

Another method to analyze the fringe spacing evolution and to verify the validity of
Eq. 3.74 has been demonstrated by scanning the interrogation time Tint for a fixed
time-of-flight Ttof . This changed the separation of the interfering wave packets δx.
In Fig. 3.18, two experimental data sets of condensates released from a steep trap
(ωrad ≈ 2π · 350 Hz) are shown for which the initial expansion time T0 is different.
Red circles show the fringe spacing for an ORI immediately applied after release of the
condensate (T0 = 0 ms), whereas blue circles correspond to a sequence applied during
the linear expansion phase (T0 = 10 ms).

The total time-of-flight Ttof between both data sets is slightly different, which is
why two dashed lines (red and blue) are calculated for the expected fringe spacing in
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Figure 3.18: Fringe spacing for increasing
interrogation time Tint (=̂ wave
packet separation) in an ORI.
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Figure 3.19: Influence of the trap steepness
on the relative far-field approx-
imation error in an ORI.

far-field approximation. Error bars are on the same order as compared to Fig. 3.17, but
not given here for better visibility. A gallery of absorption images for the measurement
with T0 = 10 ms is shown as a temporal sequence in Fig. 3.20 (right).

The fringe spacing is expected to decrease as 1/δx ∼ 1/Tint, which could be verified
for T0 = 10 ms. Large discrepancies between experiment and far-field approximation
occur for the data with T0 = 0 ms. During the first 400 µs after release, 73% of mean-
field energy is converted into kinetic energy, given the dynamics of λ̇rad for the used
trapping potential. The acceleration of the condensate during the ORI is therefore
strongly mean-field driven. If now a beam splitter is applied, the wave function is split
into a coherent superposition of two momentum states with bisected density. The wave
packets expansion rate λ̇ will therefore reach its asymptotic value earlier and changes
the slope of α ∼ λ̇/λ. The observed discrepancy may thus be a consequence of slowing
down the mean-field conversion process.

Based on this assumption, the relative error w.r.t the far-field approximation should
decrease for even steeper trapping potentials which lead to a faster mean-field conver-
sion.

Influence of the trap steepness

If we prepare the condensate in more steeper traps, they expand much faster leading
to almost entirely converted mean-field energy even at timescales of a few hundreds of
µs. An ORI with a fixed interrogation time of Tint = 400 µs is applied to condensates
directly after release. After Ttof = 33.1 ms, the fringe pattern is detected and the
spacing evaluated for different Ibias, which determines the steepness of the holding
trap (the trapping frequency roughly scales as ωrad ∼ I

3/2
bias, see Sec. 2.4.2).

The relative error between the measured fringe spacings and the far-field approxi-
mation

dmeas − dori

dori
(3.75)
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Figure 3.20: Temporal sequences of absorption images for an ORI with Bose-Einstein con-
densates. Every picture corresponds to a single measurement from the data sets
evaluated in Fig. 3.17 and 3.18, respectively. For a fixed interrogation time (=̂
distance δx between the interfering wave packets), the fringe spacing increases
linear with the time-of-flight Ttof (left). If the Ttof is constant and the interro-
gation time Tint is increased (right), the fringe spacing decreases as 1/Tint. In
these pictures, the condensate widths exceed the applied separation δx by about
a factor of ∼ 25, thus leading to a fringe pattern over the whole envelope. More
details in text.

is given in Fig. 3.19. The error bars correspond to the standard deviation of two
independent measurement cycles. At the beginning, the dominating mean-field accel-
eration of dense ensembles emerging from shallow traps (lower values of Ibias) yields
comparably high discrepancy of the measured fringe spacing dexp w.r.t. to the far-field
approximation. For steeper traps (Ibias → 1.3 A), most of the mean-field is converted
and the measured fringe spacing slowly converges to the corresponding values given by
the far-field approximation.

Until now, we implemented an ORI with an atom-chip-based BEC and investigated
the fringe spacing evolution under influence of mean-field driven acceleration. With
the same setup, a coherence length measurement of the condensate will be presented
next.

3.5.3 Autocorrelation measurement to study phase coherence

Contrast measurements of the fringe pattern for different separations δx allow the
study of the decay of the first order spatial correlation function C1(δx) [169]

C1(δx) =

∫
d3~rψ∗

0(~r ·~ex)ψ0(~r + δx ·~ex). (3.76)

The decay of the density correlation is particularly interesting for determining the
coherence length Lc of a degenerate sample and the ratio of this value compared to
the spatial extension (e.g., Thomas-Fermi radius). In other words, this value deter-
mines how well the wave function of an initially trapped BEC represents a minimum
uncertainty state w.r.t Heisenberg’s position-momentum relation [168].

Moreover, phase fluctuations due to thermal excitations, background collisions and
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Figure 3.21: Single-shot contrast of an
ORI as a function of the inter-
rogation time Tint, fitted by a
Gaussian (straight lines).
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Figure 3.22: Single-shot contrast of an ORI
for different condensate fractions
by scanning of the evaporation
end frequency νend.

other decoherence processes can be analyzed in this setup. These influences need to
be thoroughly investigated since they fundamentally limit the phase coherence of a
matter wave source.

The evolution of the contrast is obtained by fitting the fringe patterns of interfering
BECs after an ORI sequence with T0 = 10 ms for different interrogation times Tint.
In Fig. 3.21, we compare the decay of the single-shot contrast for condensates released
from two differently steep trapping potentials with ωrad,1 ≈ 2π · 150 Hz (red circles)
and ωrad,2 ≈ 2π · 350 Hz (blue squares). The depicted results (incl. standard devia-
tion) correspond to one measurement cycle each, where both output ports have been
analyzed independently.

The correlation function is expected to decay as a Gaussian [169], which is fitted to
both data sets (solid lines). In order to extract quantitative information, a coherence

length LC can be defined as the 1/e-width T
1/e
int of the measured correlation curve

Lc = 2vr ·T 1/e
int , (3.77)

resulting in Lc,1 = 4.0(2) µm and Lc,2 = 5.6(2) µm for the shown contrast evolution,
respectively.

These values can now be compared with the size of the condensate at the time of
the interferometer. For a fully phase-coherent condensate, the decay of the first order
correlation function directly reflects the width of the density profile [163]. However,
our current RF evaporation strategy typically leads to condensate fractions of only
about 60%, which already signalizes a limited phase coherence due to the presence of
thermal atoms in this case.

The Thomas-Fermi radius at the time of the interferometer can be approximated
by calculating the size of the condensate in the trap multiplied by the solution of the
scaling law for the radial component

Rtf (t) = Rtf
0 ·
√

1 + ω2
rad · t2, (3.78)
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with initial size of the condensate in the trap (see Sec. 2.2.3)

Rtf
0 =

(
15Nh̄2a

m2ωrad
2

)1/5

. (3.79)

For N = 104, a = 100 ab ≈ 5.3 · 10−9 m and the given trapping parameters, the TF
radius of the BEC after expansion of T0 = 10 ms can be calculated to R1

T F ≈ 32 µm
and R2

T F ≈ 51 µm, for ωx,1 = 2π · 150 Hz and ωx,2 = 2π · 350 Hz. With that, the
fractions of LC/Rtf are given by 0.13 and 0.11, respectively.

This measurement indicates that phase coherence of our matter wave source is lim-
ited independent of the steepness of the trap. Previous calculations and interference
pattern analysis have shown that this measurement is operated in the linear regime.
Besides wavefront distortions, which should be negligible due to the timescales of Tint,
one major limitation arises from the thermal background. The presence of thermal
atoms may wash out the contrast and thus lead to a faster decay rate. This correlation
will now be shortly presented in a direct measurement.

Limitations in contrast due to thermal background

The influence of the thermal background on the measured contrast is exemplary de-
picted in Fig. 3.22. In this graph, the obtained single-shot contrast (red squares) for
an ORI (T0 = 8 ms, Tint = 260 µs, Ttof = 34 ms) is plotted versus the end frequency of
the final evaporation ramp νend. The latter determines the fraction of thermal to total
atoms Ntherm/Ntot of the released ensemble (see also Sec. 2.5.3), which is additionally
given as blue squares in the plot. Lines are added to guide the eye and we see that
larger fractions of thermal atoms in the cloud lead to a reduced contrast. This is mainly
a result of the incoherent background washing out the contrast even for the longest
possible time-of-flight in ground based measurements (∼ 34 ms). As already pointed
out, our currently best evaporation strategy still leads to about 40% of thermal atoms
in the investigated clouds.

This contrast limitations will again be addressed in dedicated drop experiments.
The absence of a thermal background after sufficiently long time-of-flights (e.g., Ttof ≥
100 ms) will essentially lead to an improved contrast of about C ≈ 1 (see Sec. 5.3).

3.5.4 Asymmetric Mach-Zehnder interferometer (AMZI)

Another interferometer scheme to measure the evolution of the quantum-mechanical
phase of an expanding Bose-Einstein condensate is the so-called asymmetric Mach-
Zehnder interferometer (AMZI) [186], a scheme of which is given in Fig. 3.23. At first,
the condensate is released from the atom chip’s trapping potential. The wave function
evolves for a time T0 until it is split into a coherent superposition of different momentum
states (π/2 -pulse) by means of a first-order Bragg pulse. After an interrogation time T ,
the wave packets get redirected with a π -pulse. The timing of the last recombination
pulse (π/2) at T − δT can now be adjusted in a way the different momentum states of
the wave function are subjected to a variable spatial displacement δx = 2vr · δT . This
again results in the formation of complementary fringe patterns in two output ports,
which separate with twice the recoil velocity.
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Figure 3.23: Schematic of an asymmetric Mach-Zehnder interferometer (AMZI) with Bose-
Einstein condensates (left) and a temporal sequence of absorption images on
ground (right). An AMZI is characterized by non-overlapping condensates at
the interferometer output ports due to different interrogation times between the
three optical pulses. The wave packets separate during a first interrogation time
T , a π pulse then redirects the center-of-mass trajectories. After a second inter-
rogation time T − δT , a π/2 pulse finally recombines two partially overlapping
condensates in two output ports. A time Tsep later, an absorption image is
taken.

In comparison to the ORI sequences, this scheme is not limited by finite pulse du-
rations of the interferometer beams, thus allowing for very small spatial displacements
δx. Auto-correlation measurements can be performed by using a broader regime of
parameters enabling a more precise evaluation of the phase evolution. By using sub-
recoil sources such as BECs and increasing the interrogation time T between the beam
splitter pulses, we can ensure that the two superimposed states of the wave function
get entirely separated in space before recombination. We will highlight this fact in
drop tower experiments with an AMZI in microgravity, described in Sec. 5.

Fringe spacing approximation in the far-field

A spatial interference pattern emerges in the overlapping regions whose fringe spacing
is inversely proportional to the phase profile φ(x) of the wave function. Like in Ramsey-
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3 Bragg diffraction and open interferometers with degenerate gases

type interferometers, larger asymmetries δx lead to larger wave packet separations and
thus narrower fringe patterns.

The fringe spacing in the far field damzi can here be approximated to

damzi =
hTtof

mδx
=
π ·Ttof

k · δT , (3.80)

with Ttof = T0 +T +T −δT +Tsep and the asymmetry δT , which is precisely controlled
by the timing of the beam splitter pulses and independent of their duration.

Quadratic and linear phase evolution of a condensate - revisited

The spatial interference fringes of two overlapping Bose-Einstein condensates arise
because of the quadratic phase profile and a relative velocity between the wave packets’
center-of-mass. The latter has been neglected so far but will be in focus from now on.
In Sec. 3.5.1, the interference term of the density was derived

ni(x) = 2
√
n1(x)n2(x+ δx) cos [κ ·x+ φ0] , (3.81)

with n1, n2 being the local densities of the two wave packets and δx the spatial
displacement. Neglecting global phase fluctuations due to vibrations or laser phase
fluctuations (φ0 = 0), this expression predicts a one-dimensional interference pattern
with a spatial fringe frequency

κ(δx) = αδx+
mδv

h̄
, (3.82)

where the mean-field expansion of the wave packet is characterized by its phase curva-
ture α. The positive scattering length of 87Rb causes an additional phase shift due to
mean-field repulsion between the overlapping wave packets, which can be measured as
a small repulsion velocity δv. For a chosen separation of δx0 = −mδv/αh̄, the fringe
frequency yields κ(δx0) = 0 and the pattern disappears. Here, the contribution to the
global phase difference due to the quadratic phase evolution of an freely expanding
BEC is equalized by the contribution of the repulsion velocity.

For δx = 0, however, a fringe pattern has to occur because of the influence of the
mean-field induced δv as

κ(0) =
mδv

h̄
. (3.83)

By scanning the separation δx of the interfering wave packets from negative to posi-
tive values, both contributions to the condensate’s phase profile can be simultaneously
read out. In the next section, we measure the phase curvature α and repulsion velocity
δv of a condensate for different expansion times T0.

3.5.5 Measurement of phase curvature and repulsion velocity

To image the phase of a freely evolving Bose-Einstein condensate, we first release it
from a moderately steep trapping potential (ωrad ≈ 2π · 130 Hz). Roughly 104 atoms
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expand for different expansion times T0 = [0, 1, 3, 11] ms until they are subjected to an
AMZI.

Here, beam splitter durations for a π/2 pulse have typically been τ ∼ 100 µs. The
first interrogation time was fixed to T = 3 ms, whereas the second one T = 3 ms − δT
was scanned with asymmetries from δTstart = 700 µs to δTend = −700 µs. Positive
values of δT determine the condensates are led to interfere before they entirely overlap,
negative values indicate that the clouds’ center-of-mass have already crossed before
recombination. After a separation time of Tsep = 32 ms −T0 −T − (T − δT ), we image
the output ports.

Fringe pattern and fringe frequency

Exemplary measurements of |κ| = 2π/dmeas are shown in Fig. 3.24 for different wave
packet separations δx. They correspond to an initial expansion time of T0 = 0 ms (red
circles) and 11 ms (blue squares), and have been fitted by a straight line, as predicted
by Eq. 3.82. The observed fringe pattern evolves proportional to 1/δx (Eq. 3.82), and
diverges for δx = 0. Moreover, no fringe frequencies are given for induced separations
δx from −2 µm to 2 µm. Here, fitting the fringe spacing gets more challenging since
damzi first reaches the size of the interfering clouds itself.

The slopes of κ correspond to the phase curvature α and the intercepts are pro-
portional to the repulsion velocity δv. In this way, the values for α and δv for all
four expansion times have been extracted from the corresponding fits (incl. error) and
separately illustrated in Fig. 3.25 (with lines to guide the eye).

In this graph, the time-dependent phase evolution of a condensate is depicted. Di-
rectly after release, the BEC has a uniform phase (α = 0) and expands mainly driven
by strong mean-field repulsion (see Sec. 3.5.2). The measured non-zero value for α
at T0 = 0 ms is related to the fact, that the condensate already evolves during the
interferometer and until detection.

In general, the temporal evolution of α (blue triangles) is proportional to the fraction
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3 Bragg diffraction and open interferometers with degenerate gases

of a wave packet’s rate of velocity and size, α ∼ λ̇rad/λrad. At early times when the
mean-field energy is converted to kinetic energy, λ̇rad increases rapidly and α increases
as well. At later times, when most of the mean-field energy has been converted,
the increase of λ̇ gets substantially slowed down, effectively leading to a constant α.
Ultimately, α will even start to decease again since λ̇rad = const. for t ≫ 0, but the
wave packet still expands.

The data in Fig. 3.25 indicates that α is still, but only slowly increasing at the
investigated timescales. A more clear signature could have possibly been measured for
shorter interferometer times 2T − δT and earlier detection of the output ports [186].
However, the latter would have generally led to smaller fringe spacings (damzi ∼ Ttof )
which we would have not been able to detect anymore.

Even with the given restrictions of this setup, a repulsion velocity δv between the
overlapping wave packets could be measured. The observed dependance of δv on the
expansion time T0 is given as red triangles in Fig. 3.25. Obviously, the more dense the
samples are at short expansion times, the higher is their relative mean-field induced
velocity. After some expansion time, the densities of the clouds are reduced due to
mean-field expansion and this effect gets less significant.

3.6 Summary

In this chapter, an overview about the basic interactions of light and matter was given
which led to the description of Bragg diffraction as a coherent two-photon process be-
tween two momentum states. These transitions have been used to form beam splitters
and combiners for the matter waves emerging from our atom-chip-based source.

In this context, a miniaturized Bragg laser system was built and qualified for drop
tower application. After implementation of the system, the optical properties of the
Bragg beams in the vicinity of the atom chip have been directly analyzed with the
condensate itself as a sensitive probe. Resulting systematics on the spatial dependance
of the Rabi frequency have been analyzed in preparation of the drop experiments.

To identify a convenient source for matter wave interferometry, Bragg spectroscopy
was implemented as a tool to measure the momentum width of freely expanding con-
densates released from different magnetic trap configurations. In a next step, the phase
evolution of differently prepared condensates has been probed with open light-pulse
interferometer geometries.

The temporal evolution of contrast and fringe spacing of interfering condensates in an
open Ramsey-type interferometer (ORI) has been investigated and compared with the
theoretical predictions. The single-shot contrast usually exceeded C = 0.6, which is on
the order of the condensate fraction of our matter wave source. In the linear expansion
regime, the observed fringe spacing evolution was proven to follow the predictions of
the far-field approximation. However, we explored the border to the non-linear regime
as we probed the influence of residual mean-field energy on the quadratic and linear
term of the condensate’s phase. This was done in ORI geometries as well as with an
asymmetric Mach-Zehnder interferometer (AMZI), the latter of which was finally used
to probe the phase coherence of the condensate in our drop experiments.

After the successful implementation of an atom-chip-based source of non-magnetic
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degenerate gases (see Ch. 2), we now have reached the second milestone towards the
demonstration of a microgravity-enhanced matter wave interferometer at the Bremen
drop tower:

Free-fall interferometry with
Bose-Einstein condensates
in microgravity (see Ch. 5 )





Atom-chip-based source of non-magnetic
degenerate gases (see Ch. 2)

⋄

Bragg diffraction and open interferometers
with degenerate gases

⋄

Delta-kick cooling as a tool for long
baseline atom interferometry (see Ch. 4)

In principle, we would be ready for dedicated drop campaigns. But before conducting
experiments with QUANTUS-I in extended free fall, we will demonstrate an atom-chip-
based method to further reduce the expansion energy of freely evolving condensates.

As a matter of fact, it is the application of a technique known as delta-kick cooling
(DKC) which allowed for the observation of condensates after 2 s time-of-flight and the
demonstration of an asymmetric Mach-Zehnder interferometer at timescales of half a
second.
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4 Delta-kick cooling as a tool for long
baseline atom interferometry

If a harmonic trap containing atoms is adiabatically opened, energy from the quantum
system is extracted as long as the atoms are sufficiently isolated from the environment.
The trap can be assumed as a conservative (magnetic or optical) potential in well
shielded ultra-high vacuum (UHV) chambers. The main limitation of adiabatic cooling
is given by the gravitational field since the trapping potential must feature a gradient
that is larger than the gravitational force on the trapped atoms. This limits the
applicability of ultra-shallow traps for low energetic quantum ensembles at some point.
For example, the gravitational sag restricts the lowest reachable trapping frequencies
in ground-based experiments with our apparatus to ωi = 2π · (46, 18, 31 Hz). However,
this corresponds to temperatures of the released ensembles in the lower tens of nK (see
Sec. 2.6.1).

Ultra-cold clouds of atoms released from such shallow traps clearly feature a sub-
recoil velocity distribution. Amongst others, this was verified in Bragg spectroscopy
measurements (see Sec. 3.4.3) and in experiments to image the phase evolution of a
BEC with a matter wave interferometer (see Sec. 3.5.5). Here, the density peaks of
the condensate wave function are split into a coherent superposition of momentum
states which separate faster than they expand. In a matter wave interferometer based
on Bragg diffraction, this allows for resonant detection of both momentum states af-
ter relatively short separation times. Quantitatively, the interferometer times in our
ground-based measurements can already be chosen such that the spatial distances be-
tween the interfering paths exceed the width of the condensate by a factor of ∼ 2.
From this point of view, there is no immediate reason to further cool down the sample.

For microgravity experiments with ultra-long evolution times, the situation is dif-
ferent. Here, the expansion of even the coldest condensates will lead to dilute clouds
of atoms, since N = 104 atoms spread over areas of about a few square millimeters.
This is a challenge for absorptive detection methods and will at some point limit the
accessible expansion time [17, 12]. If the condensates expand to such macroscopic
sizes, they might also start to interact with the dielectric coating of the atom chip via
van-der-Waals forces, or even get adsorbed by the surface. To circumvent this and
achieve the highest possible signal-to-noise ratio (SNR), the expansion energy has to
be further reduced which increases the density of the atomic ensemble.

If beam splitter pulses are applied to form interferometers, the SNR will additionally
suffer from imperfect pulses and inherent atom losses. The finite velocity spread of
the atomic sample will lead to a Rabi frequency distribution over the cloud. Each
velocity class will oscillate at its own frequency which might limit the pulse efficiency.
Assuming a sufficiently broad Fourier distribution of the Bragg pulses I(ω), another
loss channel is given by the Bragg lattice intensity, which should be as homogenous
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as possible to address all atoms from the ensemble with the same cycle time. Up
to now, our coldest sources in microgravity typically feature Thomas-Fermi radii of
about 1 mm after 1 s of free expansion (see Sec. 5.2.3). Measurements in microgravity
indicate a COM velocity away from the chip surface, which after 1 s accumulates to a
vertical distance from the atom chip of about 2 mm. At this specific position and by
considering a Gaussian beam profile of the Bragg beams with diameter of 0.65 cm, this
leads to a Rabi frequency variation of 15% over the whole cloud (see Sec. 3.4.2). Thus
it is worth to investigate even colder sources.

Moreover, interferometric measurements rely on a precise determination of the phase
difference between the interfering paths. If the imprinted wavefront changes from pulse
to pulse due to non-negligible center-of-mass (COM) motion or fast expanding samples,
a measurable phase error will occur. Point-source interferometry [110] overcomes these
issues by assuming the condensate’s expansion rate to be much smaller than the change
of the phase curvature. This can be realized by either using wide beams or extremely
cold sources.

Adiabatic decompression may be a convenient method to further decrease the kinetic
energy of an atomic sample in microgravity. The adiabatic decompression criteria is
given by

dω

dt
≪ ω2, (4.1)

where the rate of change of the trapping frequency has to occur slowly compared to
the oscillation frequency in the trap, allowing the condensate to adiabatically follow
the changes of the potential. With this method, atoms could already be cooled down
below 500 pK using a weakly confining gravito-magnetic trap1 [63]. To prepare such
an ensemble with thermal temperatures of a few hundreds of picokelvin requires to
adiabatically reduce the mean trapping frequencies to about 2π · 1 Hz. Such a cooling
process would last for some seconds and besides limitations in the lifetime of the
magnetic trap due to background collisions, adiabatic expansion in ultra-weak traps
would also requires an exceptional level of control over magnetic stray fields. Both is
not feasible for QUANTUS-I with free fall durations of less than 5 s, the given magnetic
coil assemblies and only one single layer of µ-metal shield.

If it had been possible though, ultra-cold temperatures by adiabatic decompression
would come along with another disadvantage. The mean-field conversion of extremely
shallow traps is slow compared to steeper ones as the velocity scaling factor evolves as

λ̇rad(t) =
ω2

radt√
1 + ω2

radt
2

(4.2)

for the radial component of a condensate [130]. The velocity field approximately
reaches its final value for the characteristic time t ≥ 1/ωrad, which for a 2π · 1 Hz
trap would be about a second. Before that, the expansion is mean-field driven which
influences the phase evolution of the condensate and therefore needs to be considered
for the interpretation of the interferometer’s read-out (see Sec. 3.5.2).

1However, this was a ground-based experiment which required a levitating field since otherwise the
atoms would have dropped out of the weak trap due to the gravity.
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An idea leading to a shortcut to adiabaticity was presented 20 years ago [64]. It
relies on an appropriately applied momentum kick to the freely expanding ensemble.
This so-called delta-kick cooling (DKC) technique was first demonstrated by using
magnetic fields to apply momentum kicks on expanding clouds of thermal atoms and
thus reducing their velocity spread. The significant reduction of the velocity spread
consequently leads to lower temperatures and increased densities of freely expanding
clouds. Moreover, it has the advantage of being considerably faster than adiabatic
expansion [189, 65], as we will see in the upcoming sections.

After a short introduction into the basic principle of DKC (see Sec. 4.1), we imple-
ment this method in our atom-chip based apparatus (see Sec. 4.2). The influence of
spatial displacements between the DKC trap center and the condensates center-of-mass
(COM) due to inappropriate timing or wrong trap parameters will be discussed (see
Sec. 4.2.2). We analyze the cooling effect for thermal and condensed sources, which
will be proven to be independent of the condensate fraction in the investigated regime.
This is verified with a series of free expansion (see Sec. 4.3.1) as well as with measure-
ments of the beam splitter efficiency (see Sec. 4.3.2). In this thesis, the first application
of DKC on Bose-Einstein condensates as a source for matter wave interferometry is
realized. To this end, we investigate the influence of DK-cooled condensates on the
fringe spacing and the contrast of an open Ramsey-type interferometer (see Sec. 4.4).

4.1 Delta-kick cooling (DKC) with harmonic traps

The technique of delta-kick cooling (DKC) can be used to overcome the time-dependent
restrictions of adiabatic expansion into very weak trapping potentials. DKC relies on
a position dependent force, which matches the momentum-space distribution of an
expanding sample. Classically speaking, the atoms convert kinetic energy into potential
energy during expansion in the DKC potential. In an ideal 1D model, the duration
of the kick can be chosen such that all atoms reach their reversal point immediately
before the switch-off. This reduces the expansion rate after DKC manipulation to
nearly zero.

4.1.1 DKC in momentum space

Let us assume a 1D cloud of non-interacting atoms being released from a harmonic
atom-chip based trap and allowed to expand freely in the ballistic regime. After a time
T0, atoms with velocities vi, which had been at position xi,0 directly after switch-off,
will now have individual positions as

xi = vi ·T0 + xi,0 ≈ pi ·T0

m
. (4.3)

To bring the atoms to rest, a position-dependent momentum kick of

F (x) · τdkc = pi =
xim

T0
(4.4)

has to be applied, which requires a linear restoring force. The fastest atoms need to get
the greatest momentum kick. We therefore expose the atomic cloud to a 1D harmonic
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potential with frequency ωx,

Udkc(x) = 1/2mω2
xx

2 (4.5)

for a short duration of τdkc, such that the sinusoidal acceleration of the atoms in the
trap can be linearized. Each individual atom with mass m will now experience a
position dependent momentum kick as

F (x) · τdkc = −δUdkc

δx
· τdkc = −mω2

xxi · τdkc. (4.6)

If we now engineer the delta-kick potential such that the harmonic frequency of the
confining potential and the duration of kick fulfill

T0 · τdkc = 1/ω2
x, (4.7)

the kinetic energy of each individual atom can theoretically be reduced to zero (cf.
Eq. 4.4 and 4.6). We can define the strength of the delta-kick S = 1/T0 = ω2

dkc · τdkc,
in analogy to the power of an optical lens. This is why delta-kick cooling is often
referred to as a magnetic lens for matter waves.

4.1.2 DKC in phase space

In the phase space picture, exposing an atomic distribution to a harmonic potential
leads to a rotation of the distribution. At the beginning, all atoms are confined in
an external potential and show a Gaussian (thermal atoms) or Thomas-Fermi (BEC)
distribution in momentum and position space (Fig. 4.1, left). After releasing the atoms
from the trap and allowing them to freely expand, the distribution spreads in the x-
direction (Fig. 4.1, center). The atoms propagate according to their momentum, which
means that the fastest atoms are further away from the center than colder ones.

A carefully designed delta-kick with a harmonic potential can rotate the tilted ellip-
tical phase-space distribution onto the x-axis (Fig. 4.1, right). DKC operation converts
position into momentum and vice versa. Besides the kick duration itself, the fidelity is
dependent on the mode-match between the applied harmonic oscillator potential and
the momentum-position correlation of the atomic distribution. Optimized DKC min-
imizes the expansion energy of the atomic ensemble by increasing its spatial spread,
thus the sample will remain with precisely the same phase-space density as before the
kick.

DKC tolerances and trap anharmonicites

In our experiment, the delta-kick cooling is realized with atom-chip based magnetic
potentials. Mode mismatching thus can arise due to errors in the strength of the
magnetic fields, their spatial distribution and anharmonicities, as well as in the timing
of the delta-kick.

The momentum imparted at a final position xf is given by p = mω2
xxf · τdkc, and

the ideal delta-kick condition follows as ω2τdkc = 1/T0. After such an ideal kick, the
tolerance of the delta-kick momentum transfer should be less than the final momentum
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Figure 4.1: Phase-space diagram for harmonic-force delta-kick cooling (DKC). In the trapping
potential, the atoms show a Gaussian or Thomas-Fermi distribution in momen-
tum and position space (left). After some expansion time the cloud has expanded
in space (x-direction), which leads to an elongated and tilted phase-space distri-
bution (center). The application of an appropriate delta-kick will rotate the
distribution onto the x-axis. In this manner, the remaining momentum spread of
the atoms is reduced while simultaneously the spatial spread is increased (right).
This preserves the phase-space density of the initial cloud.

spread after the kick

δp = piδ(ω
2τdkcT0) < pf = xipi/xf . (4.8)

From Eq. 4.8 we get the expression for tolerable fractional errors

δ(ω2)

ω
+
δτdkc

τdkc
+
δT0

T0
<
xi

xf
∼
√
Tf

Ti
, (4.9)

with Tf/Ti as the ratio of the final and initial temperature of the ensemble.
For achieving extremely low temperatures, high expansion rates are necessary which

put tight restrictions on the tolerance of the delta-kick strength. Since harmonic
magnetic traps are discussed here, we can set δ(ω2)/ω = δ(B(2))/

√
B(2) withB(2) as the

curvature of the magnetic field. Perfectly harmonic potentials do not exist. However, if
we only focus on the center of the trapping potential we can approximate the influence
of trap anharmonicities and set restrictions to allowable trap anharmonicities. Taylor
expansion of the magnetic field around the center gives

B(x) = B(0) +
1

2
B(2)x2 +

1

6
B(3)x3 + ...+

1

n!
B(n)x(n). (4.10)

The effective force acting on the atoms is proportional to the gradient of the mag-
netic field (F (x) = gµBmF ∇B(x)), with Landé factor g, the Bohr magneton µB and
the magnetic quantum number mF . For an ideal delta-kick, the magnetic curvature
should fulfill gµBmFB

(2)xfτDKC = pi and aberrations caused by higher harmonic
terms should be smaller than the final momentum spread

F (x) · τdkc < pf , (4.11)

gµBmF ·
∑

n≥3

(
1

(n− 1)!
B(n)x(n−1)

)
· τdkc < pf . (4.12)
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The resulting condition for n-th order error in anharmonicities follows as [93]

B(n)

B(2)
<
xi

xf

(n− 1)!

xn−2
f

. (4.13)

Another problem is generally related to dimensionality and the goal to achieve the
lowest temperatures in all three dimensions simultaneously. Elongated atom-chip
based potentials feature an asymmetry. Thus the restoring force of a delta-kick is
not isotropic, which prevents an optimization of cooling in all directions such that a
trade-off has to be made. Once an appropriate trapping potential is found, the remain-
ing optimization parameters are the initial expansion time T0 and the kick duration
τdkc.

Before we start with an analysis of some of the mentioned error sources and their
influence on the measurement, we will first discuss the general implementation of DKC
on chip in the the next section.

4.2 Implementation of on-chip DKC

To realize DKC, the atomic cloud should be exposed to an appropriately designed
harmonic trap, which is switched on for a short duration. We simply use our atom-chip
structures to produce a suitable magnetic potential. The condensate is first generated
in the mF = 2 state, then released from the holding trap and expands freely (see
Fig. 4.2, left). After some free expansion time T0, a chip-trap is switched on again
for a duration of τdkc (typically a few hundreds of microseconds) which ideally fulfills
the cooling condition T0 · τdkc = 1/ω2. The application of a short harmonic potential
will rotate the elongated distribution in phase-space and ideally convert the entire
velocity width into a position width. Considerably fast switching times for the delta-
kick are possible thanks to the microscopic structures of the atom chip. Between initial
release and DKC, the bias field generated by macroscopic coils is continuously present
(additional offset field to K1, see Sec. 2.4.2) and within a ms ramped to the final value
for DKC, whereas the actual kick is realized by a brief current pulse through the z-
current. To transfer the atoms in the mF = 0 state for subsequent experiments, an
adiabatic rapid passage (ARP) is typically applied a few ms after DKC operation.

In microgravity experiments, we can use the same trap parameters for the holding
trap and the DKC potential since in the first ms after release the condensate will
hardly move w.r.t the initial center position. More importantly, the COM velocity
(∼ 1.2 µm/ms) during the kick (∼ 2 ms) can be neglected in microgravity. This not
only simplifies the experimental sequence but constitutes an ideal environment to test
the fundamental limitations of delta-kick cooling. The cooling effect can be investigated
just by observing the cloud after sufficiently long expansion times while optimizing the
DKC parameters T0 and τdkc.

Due to the influence of gravity in ground-based measurements, however, the conden-
sate’s COM is accelerated away from the chip surface and thus from the initial position
of the holding trap. Hence, measurements in 1 g require an adaption of the currents
to guarantee a sufficient mode overlap between the condensate and the DKC trap. As
already discussed in Sec. 2.4.2, the trap center r0 of a chip-based Ioffe-Pritchard trap
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Figure 4.2: Schematic of delta-kick cooling (DKC) in a temporal sequence (left). The atoms
are released from a harmonic trap and expand for T0 until a mode-matched trap
is switched on for a short duration τdkc. Ideally, the tilted elliptical phase-space
distribution is hereby exactly rotated onto the x-axis. A spatial mismatch between
the condensates COM and DKC trap position will lead to an additional velocity
kick (right).

(IPT) can be shifted perpendicular to the chip surface as

r0(z) =
µ0

2π
· Iz

Bbias
, (4.14)

with the z-wire current Iz, the vacuum permeability µ0, and the bias field Bbias. How-
ever, the further away we move the trap center, the less steep the potential becomes
in radial direction [19, 136]

ωrad ≈
√
µBgFmF

m
· B

′2

B0
∝ B2

bias

Iz
, (4.15)

with the Landé factor g, the Bohr magneton µB and the magnetic quantum number
mF . An appropriate source for ground-based DKC demonstration and the influence
of a mismatch between condensate’s position and DKC potential will be discussed in
the next section.

4.2.1 An appropriate source for ground-based DKC demonstration

Effective delta-kick cooling (DKC) requires an atomic ensemble which features a lin-
ear position-momentum distribution. In case of a degenerate source, the expansion
dynamics will be driven by strong mean-field interactions, a regime where the derived
expressions of Sec. 4.1.1 are not applicable, or only to some extend. Consequently, one
has to wait until the condensates correlation of momentum and position is linearized.
However, the validity of this approximation for the wave packet expansion in the far-
field depends on the condensate’s preparation in the holding trap. As an example for
the QUANTUS-I experiment, condensates released from the shallow trapping potential
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4 Delta-kick cooling as a tool for long baseline atom interferometry

(ωrad ≈ 2π · 50 Hz) still feature significant non-linear dynamics for expansion times on
the order of 10 ms (see Sec. 3.5.2). The application of a controlled delta-kick would
therefore be restricted to timescales between release and DKC operation of T0 ≥ 10 ms,
determined by the mean-field conversion of the cloud.

However, shifting the IPTs harmonic center to positions which coincide with the
COM position of the condensate after 10 ms comes at the cost of shallower traps. This
is an inherent feature of the atom-chip physics, and leads to longer durations τdkc of
the delta-kick compared to condensates which are closer to the surface2. Moreover,
the condensates COM will develop a certain velocity and propagate through the DKC
potential. Time-dependent DKC potentials will additionally influence the dynamics
and have essentially to be modeled within the λ-matrix formalism. They do not corre-
spond to the assumed ideal case anymore (see Sec. 4.1.1) and may lead to systematic
errors.

Based on these assumptions, the most appropriate source for demonstration of on-
chip DKC in ground-based measurements would be a condensate prepared in a steep
holding trap. Here, the mean-field is entirely converted after a few ms, which allows
us to apply DKC earlier than for shallow potentials. An earlier application means
that errors due to the condensates COM velocity will be reduced and the magnetic
field curvatures are larger which allows for high trapping frequencies and consequently
short pulse durations. The faster expansion as compered to shallow traps leads to
a larger wave packet spread at the time of DKC operation which is favorable for
reaching lower temperatures (Eq. 4.9). Thus, for most of the upcoming experiments,
the condensate will be released from a holding trap with a radial trapping frequency
of ωrad ≈ 2π · 350 Hz.

For this source, different DKC configurations have been investigated to find the
right parameters for a significant reduction of the expansion energy and negligible
influences on the COM motion. This optimization process foremost has been realized
by the variation of one of the following parameters for the DKC kick:

• Current of the z-wire Iz

• Magnetic bias field Bbias

• Free expansion time prior to the magnetic pulse T0

• Duration of the DKC pulse τdkc

In the next subsections, we show exemplary measurements which investigate the
influence of these parameters on the position of the DKC center as well as the net
cooling effect. Major attention will be payed on the consequences of a mismatch
between the harmonic trap center for DKC and the condensates position.

4.2.2 Position of the DKC trap center

Mismatches between the COM position of the atomic cloud and the center of the DKC
potential during the kick will lead to an additional linear force acting on the atoms

2Again, the ideal case is given by a microgravity environment, where the condensates COM motion
can be brought to negligible values for DKC operation.
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(see Fig. 4.2, right). For now, we neglect possible displacements in the horizontal plane
(x- and y-axis) due to the symmetry of the setup. Moreover, the fact that gravity is
pointing along the vertical direction (z-axis) makes the setup more sensitive to position-
dependent errors in this direction. The condensate is released from the holding trap
and follows an unperturbed, parabolic trajectory (black line). After expansion time
T0, a DKC trap is shortly switched on. We assume it to be perfectly mode-matched,
such that the atomic cloud expands in the center of a harmonic trap during the kick.
In this case, insignificant deviations of the trajectory compared to free expansion will
occur and the atoms can be detected with negligible spatial displacements compared
to free expansion without DKC.

If the DKC trap center is not overlapped with the condensate, an effective linear force
points in the direction of the DKC trapping center during the application time. This
can either be the case for atoms which already passed the DKC trap center (red lines)
or for traps at a position which is still to be passed (blue lines). Both situations will
influence the effective trajectory which can be studied quantitatively in time-of-flight
series.

Especially in the context of atom interferometric measurements, additional COM
velocities and inherent uncertainties in velocity and position of the matter waves would
strongly affect the phase extraction. Therefore, arising systematics need to be well
understood and controlled at a sufficiently high level. To obtain a first understanding
of this error source, we study the influence of a DKC trap displacement by choosing
a fixed expansion time of the condensate T0 and vary the DKC trap positions with Iz

and Bbias. We can also fix the DKC parameters and scan the T0 prior to the magnetic
pulse. Results of both approaches will be presented in the next subsections.

Influence of the atom-chip current

In this experiment, we shift the DKC trap center by scanning the z-wire current Iz for
a given configuration of the bias field Bbias. After application of the lens, the spatial
displacement for a fixed time-of-flight of Ttof = 34.3 ms is measured. After release,
the condensate expands for T0 = 6 ms before DKC with Bbias = 6.5 G and a duration
of τdkc = 300 µs is applied to the atoms. An absorption image is taken and the COM
position extracted from a Gaussian fit.

We scanned Iz and calculated the displacement for positions with and without ap-
plication of DKC (see Fig. 4.3, left). The atomic motion is reduced to a 1D trajectory
in z-direction, and in case of no DKC, the atomic position is characterized by zat at
the time of detection. For a perfectly timed (and sufficiently short) kick, the COM
position is ideally not affected (zat,dkc − zat ≈ 0), which in this experiment can be
fulfilled for a chip current of roughly Iz = 1.4 A.

If the center position of the harmonic potential during the kick is already passed
by the atoms, a linear force is acting on the atoms which points towards the trap
center and therefore against gravity (see red trap in Fig. 4.2, right). This pulsed
levitation arises for currents 1.0 A < Iz < 1.4 A and leads to observed displacements
of zat,dkc − zat < 0. For Iz < 1 A the gradient seems to be constant independent on
the current value. Here, the trap may not be approximated as harmonic anymore.

For the investigated chip currents between 1.4 A < Iz < 1.9 A, the DKC trapping
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Figure 4.3: Influence of a mismatch between the condensates COM position and the center
of the DKC trap during the magnetic pulse. For a given set of parameters, the
vertical displacement between atoms manipulated with DKC and freely expanding
atoms zat,dkc − zat is measured for different DKC trap chip currents Iz (left) and
by varying time T0 prior to DKC (right). More details in text.

center is not yet reached by the atoms. Consequently, they get accelerated towards the
center which leads to an additional velocity kick in the direction of gravity (zat,dkc −
zat > 0). In the linear regime between 1.0 A < Iz < 1.9 A, the additional velocity kick
in the z-direction (for these specific DKC parameters) can be approximated as

δ~vdkc = 41.4(6)
µm

ms · A
· (Iz − 1.4 A) ·~ez. (4.16)

Influence of the free expansion time prior to DKC

Once an appropriate DKC potential is found, a position mismatch between the con-
densate and the DKC trap center still can occur for an incorrect timing between release
and application of the kick. Again, this yields a systematic velocity kick ~δvdkc which
was investigated in a dedicated experiment.

We measured a time-of-flight series of a condensate released from the steep trap
without application of DKC. The obtained reference positions are then subtracted
from the COM positions of condensates manipulated with DKC. Here, the clouds
expand for a certain free expansion time T0 until a DKC potential with Iz = 1.8 A and
Bbias = 5.25 G was applied for τdkc = 300 µs. The measured vertical displacements
zat,dkc − zat are calculated for different expansion times prior to DKC and plotted as
colored, full circles in (see Fig. 4.3, right). Here, we can again distinguish between
three regimes:

• expansion times where the atoms already passed the trap center (T0 > 8 ms),
which leads to zat,dkc − zat < 0,

• expansion times for which a sufficient spatial overlap is achieved which leads to
a nearly unperturbed COM velocity (T0 ≈ 8 ms), and
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Figure 4.4: Additional COM velocity |δ~vdkc(T0)| based on a straight line fit of the data in
Fig. 4.3 (right). For the given DKC trap configuration (Iz = 1.8 A, Bbias = 5.25 G
and τdkc = 300 µs), the mismatch between condensate’s COM and DKC trap
center is modeled by an inappropriate timing of T0.

• expansion times where an additional momentum kick in direction of gravity is
observed (T0 < 8 ms), since zat,dkc − zat > 0.

Moreover, the observed value of |δ~vdkc| (given by each slope) is larger for shorter
free expansion times (T0 < 8 ms). From that we can conclude that the gradient must
be stronger, which can be explained by the asymmetry of the radial shape of the IPT
potential. Due to the 1/z dependence of the magnetic field strength perpendicular to a
single wire (see Sec. 2.4.2), it is usually steeper in the direction of the atom chip surface
[138, 140]. The observed additional COM velocities |δ~vdkc(T0)| based on a straight line
fit of the data in Fig. 4.3 (right) are depicted in Fig. 4.4 (here, the statistical errors
are negligible).

Influence of the bias field

According to Eq. 4.14, the position of the atom-chips’s trap center r0 is also dependent
on the value of the bias field Bbias. We measured again the displacement zat,dkc −zat of
the atoms COM for a fixed time-of-flight of Ttof = 23.3 ms for various configurations of
Iz and Bbias (see Fig. 4.5). The reference position of the condensate without application
of delta-kick cooling was measured previously and is subtracted from the obtained data
with DKC manipulation.

In this experiment, the condensate is released from the steep trap and expands for
T0 = 2 ms before a delta-kick with a duration of τdkc = 300 µs is applied. Within
T0, the condensate only moves for about 20 µm and we consequently can use trap
configurations which are closer by the atom chip’s surface.
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Figure 4.6: Influence of the kick duration
τdkc onto the wave packet rms
width σx for a given DKC trap
configuration.

For each Iz, we can find a bias field Bbias,0 for which the DKC trap center and
the condensate’s COM position sufficiently coincide (zat,dkc − zat = 0). The measured
values are summarized in Tab. 4.1 and correspond to the expected evolution of the trap
center position as r0(z) ∼ Iz/Bbias (see Eq. 4.14). Starting from here, a further increase
of the bias field (B > Bbias,0) means that the DKC trap center is moved towards the
chip surface and thus leads to displaced COM positions with zat,dkc − zat < 0. In the
other direction (B < Bbias,0), the condensate gets an additional kick in direction of
gravity which leads to observed positions after DKC application as zat,dkc − zat > 0.

If we approximate the observed dependencies as linear in the regime for zat,dkc−zat ∈
{−500 µm, 500 µm}, we can fit a straight line and extract the slopes determining δ~vdkc

around each Bbias,0. With each slope mδv given in Tab. 4.1, the velocity kick in the
z-direction can be calculated to

δ~vdkc = mδv · (Bbias −Bbias,0) ·~ez. (4.17)

From Eq. 4.17 and Tab. 4.1, we see that DKC traps with a higher Bbias,0 (and
consequently higher Iz to remain at the same position) feature an increased linear
restoring force. This can be explained by the higher magnetic field curvatures at the
condensate’s position for the chip-based IPT which evolves as ωrad ∼ B2

bias,0/Iz (see
Sec. 4.2).

4.2.3 DKC pulse duration and cooling effect

Since we are now able to identify a trap for DKC which coincidences with the COM
position of the condensate, we can additionally vary the pulse duration τdkc. In com-
bination with the expansion time prior to the DKC pulse T0 and the effective trapping
frequency of the DKC trap ωdkc, the right choice of the duration τdkc will ideally stop
the expansion for T0 · τdkc = 1/ω2

dkc. If we scan the timing parameters, the fidelity of
the cooling effect is best approximated by a measurement of the spatial width of the
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4.2 Implementation of on-chip DKC

manipulated wave packets in a time-of-flight series.
The condensate is again released from the steep trapping potential and after a free

expansion time of T0 = 8 ms, we switch on the DKC trap. The absorption images are
fitted with a Gaussian function and as a measure for the wave packet expansion, the
rms widths are exemplary given for the x-direction (see Fig. 4.6). The corresponding
error bars are on the order of the size of the data points and are omitted for better
visibility. In this measurement, we used a chip current of Iz = 1.9 A for the DKC
trap. We started with a slightly off-center trap (Bbias = 3.5 G) from which we know
its center is still to be passed by the atoms, and a comparably short duration of 100 µs
to observe a small cooling effect at first. Now, we can both improve the position of
the DKC trap (and with that the effective restoring force) and the pulse duration τdkc

in parallel until focusing occurs. Once this point is reached, a thorough optimization
can be started to find the right parameters for a minimized width by preserving the
aspect ratio of the cloud before DKC application.

For now we only focus on the width in the x-direction, and as a rough measure for
the cooling effect, an expansion temperature can be approximated by fitting

σ(t) =
√
σ2

0 + σ2
vt

2 (4.18)

to the data and calculating T = mσ2
v/kB. Without DKC (black squares), a temper-

ature of T = 47(3) nK is obtained from the fit. With a short kick of τdkc = 100 µs
(red circles), a small fraction of the expansion energy can be extracted which results
in T = 41(2) nK.

The next example (blue triangles) constitutes a nearly ideal combination of pulse
duration (τdkc = 300 µs) and bias field (Bbias = 5.7 G) for the given parameters, which
reduces the expansion rate of the wave packet to effectively zero on the investigated
timescales (T ≈ 5(5) nK, 10-fold reduction of the expansion rate). Here, the right
combination of kick duration and trapping frequency led to a rotation of the phase-
space distribution onto to the x-axis.

If we now increase the bias field (Bbias = 5.9 G) and apply a longer pulse duration
τdkc = 500 µs (green triangles), the rotating phase-space distribution will pass the point
of perfect conversion of momentum width into spatial width. Given the schematic in
Fig. 4.1 (left), most of the atoms at positions x > 0 now have a momentum pointing
against the initial direction with p < 0 and vice versa. This leads to a focusing of the

Iz [A] Bbias,0 [G] mδv [µm /ms · G]

0.6 4.6(3) -175(9)
0.7 5.3(2) -220(7)
0.8 6.0(3) -239(12)
0.9 6.7(3) -274(10)

Table 4.1: Evaluation of the data given in Fig 4.5. From linear fits to the displacements
zat,dkc − zat ∈ {−500 µm, 500 µm} for each Iz, one can obtain a value for no
additional kick Bbias,0. Moreover, each slope mδv determines an additional velocity
kick for a bias field mismatch around Bbias,0 as δvdkc = mδv · (Bbias −Bbias,0).
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4 Delta-kick cooling as a tool for long baseline atom interferometry

matter wave packet until the ensemble again starts to increase with the time-of-flight
(in Fig. 4.6, lines between the green triangles are added to guide the eye).

One has to note, that this method gives just an indication of the cooling effect. The
expansion of a condensate under the influence of a time-dependent potential should be
properly modeled with the λ-matrix formalism embedded in the QUANTUS-I chip-
model [113]. Moreover, the size of the clouds are on the order of the resolution of the
imaging system for effective DKC in ground-based measurements. Thus, the expansion
temperature on the observable time scales can only be roughly estimated. Again,
microgravity is a promising environment to overcome this restriction and to determine
expansion temperatures for delta-kick cooled atoms at large timescales.

The next section will present the application of an optimized DKC sequence to
thermal atoms and compare the cooling effect with a condensate released from the
same initial holding trap.

4.3 DKC sequence optimization and applicability to thermal

ensembles

Degenerate sources feature sub-recoil momentum distributions, but nevertheless will
profit from additional DKC in extended free fall experiments (see Sec. 5.2). In this
environment, some of the major advantages of further cooling have already been dis-
cussed at the beginning of this section. For the implementation of a matter wave
interferometer, they are mainly dedicated to optimized beam splitter efficiencies, a
more homogeneous wavefront due to point source character of the wave packet and
larger signal after macroscopic interrogation times in the interferometer.

As a commonly used alternative in atom interferometers, thermal ensembles do
not require sophisticated setups such as in BEC experiments. Thermal clouds are
generally faster to prepare, and feature higher atom numbers even after molasses phase
and state selection (typically about 107 atoms [61, 190]). But at least 1D velocity
selection processes are necessary to extract a sub-recoil momentum distribution, which
is afterwards used in the interferometer [175]. The other atoms are removed with
blow-away beams and are lost, which leads to a lower SNR. A much more elegant
method to prepare ensembles cooled in 3D without notable losses in atom number
after optical molasses is Raman sideband cooling [191, 192]. However, this technique
requires additional optical access for an optical lattice and well controlled magnetic
field gradients.

DKC with an atom chip might be another method to prepare thermal sources at
sub-recoil temperatures as an input for interferometry experiments.

4.3.1 Expansion studies

The influence on the expansion of a thermal ensemble is compared to a Bose-condensed
source by measuring the cooling effect in the two visible dimensions. The atomic cloud
is released from the steep trapping potential (ωx ≈ 2π · 350 Hz) and freely expands
for T0 = 6 ms until a delta-kick with a duration of τdkc = 300 µs is applied. This
parameter choice for the DKC trap (Bbias = 5.5 A, Iz = 1.15 A) is a result of a thorough
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Figure 4.7: Optimized DKC applied on thermal (red symbols) and Bose-condensed (blue
symbols) sources released from the same steep trapping potential with ωrad ≈
2π · 350 Hz. For comparison, the free expansion of a condensate released from the
shallow trap with ωrad ≈ 2π · 50 Hz is given (green symbols). Details in text.

optimization process based on the presented systematics in Sec. 4.2.2 and 4.2.3. In the
following measurements, we show that both visible dimensions (x- and z-direction) can
be sufficiently cooled down with one pulse in ground-based measurements, independent
of the condensate fraction. The first picture is taken after a time-of-flight of 10.3 ms
which is subsequently scanned to a final value of 34.3 ms (see Fig. 4.7).

The results for a purely thermal ensemble (red symbols) and a Bose-condensed cloud
(blue symbols) are compared. With application of DKC, the expansion is reduced to a
negligible value within the given observation time. As a measure for the spatial width
of the wave packets, the rms widths of Gaussian envelopes have been evaluated. Three
experimental runs are averaged, the standard deviation is only shown if it exceeds the
size of the plotted data points. Additionally, the rms widths of a freely expanding
BEC from the shallow trap with ωx ≈ 2π · 50 Hz are given (green symbols).

For the thermal case (νrf = 1.9 MHz, cf. Sec. 2.6.1), the temperature is reduced
from Tx = 330(3) nK and Tz = 296(3) nK to final values after DKC of about Tx ≈
8(2) nK and Tz ≈ 5(2) nK, respectively. Again, the same concerns as in Sec. 4.2.3 are
raised here and finally a detailed chip-model should be used to model the expansion
under the influence of DKC. Restrictions due to (i) the limited size of the chip-based
IPT for which the harmonic approximation is valid and (ii) trap anharmonicities are
not considered in the given approximation. Especially the deformation of the cloud
along the z-direction (see Fig. 4.8, (C)) is inadequately fitted by a simple Gaussian
distribution. However, using the rms width as a "scaling" for the wave packet width
under the influence of this optimized magnetic lens (Bbias = 5.5 A, Iz = 1.15 A), yields
a reduced expansion rate by a factor of ∼ 50.
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Figure 4.8: Temporal sequence of time-of-flight images for differently prepared matter wave
sources on ground. A: Expansion of a BEC released from the shallow trap
(ωrad ≈ 2π · 50 Hz). B: Expansion of a BEC released from the steep trap
(ωrad ≈ 2π · 350 Hz) without (left) and with (right) optimized DKC. C: Expansion
of a thermal ensemble released from the steep trap (ωrad ≈ 2π · 350 Hz) without
(left) and with (right) optimized DKC.
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A condensate expansion (νrf = 1.835 MHz, cf. Sec. 2.6.1) is shown for comparison.
Without DKC, the expansion of the Gaussian rms widths gives rise to temperatures
of Tx = 42(3) nK and Tz = 45(2) nK, respectively. Based on the previously used DKC
parameters, we optimized the sequence for a condensate to mostly preserve the same
aspect ratio before and after application. As a result, the applied lens had to be slightly
adapted (Bbias = 5.3 A, Iz = 1.15 A) but was again applied for τdkc = 300 µs after
T0 = 6 ms of free expansion. The residual wave packet expansion can be associated
with temperatures of about Tx ≈ Tz ≈ 1 nK. Compared to the collimated thermal
cloud (red symbols), the condensed ensemble after DKC (blue symbos) is only roughly
half the size, whereas a freely evolving condensate released from the shallow trap
(green symbols) clearly shows a finite momentum width larger than both ensembles
manipulated with DKC.

The series of absorption images for the condensed (B) and the thermal (C) ensemble
with and without DKC application are depicted in Fig. 4.8. For comparison, the
expansion of a condensate released from the shallow trap is given as well (A).

The expansion temperature of ensembles under the influence of DKC can be quan-
titatively determined with the chip-model and the λ-matrix formalism when using
Bose-condensed sources. Here, we presented the experimental demonstration of a col-
limated matter wave packet and demonstrated the reduction of the expansion rate to
nearly zero. In these ground-based measurements, we have been operating at the limit
of what is technically measurable. A more reliable analysis of the expansion rate and
the full potential of DKC in time-of-flight series can only be evaluated on the extended
timescales provided by a microgravity environment (see Sec. 5.2).

Another method to investigate the finite expansion rate of an atomic cloud is given
by a measurement of the Bragg diffraction efficiency. Bragg spectroscopy is a reli-
able method to directly measure the momentum width of freely expanding clouds and
therefore allows to reliably quantify the cooling effect.

4.3.2 Beam splitter efficiency

The effect of a reduced momentum width can also be displayed in terms of an en-
hanced Rabi amplitude. More efficient beam splitters are useful for high-resolution
interferometry applications, since any atom loss (e.g. due to imperfect beam splitters)
will be directly translated into a loss of the measurement signal,

SNR ∝ C ·
√
N, (4.19)

with contrast C and number of detected atoms N . Since DKC reduces the expansion
rate and therefore the momentum spread of the atomic clouds, a higher beam splitter
efficiency can be expected for a given Fourier width of the Bragg pulses. We first
compare the influence of DKC on the beam splitter efficiency for our already introduced
degenerate and purely thermal source. The atomic gases have been released from the
same steep trapping potential (ωx ≈ 2π · 350 Hz).

In Fig. 4.9, the first-order Bragg diffraction efficiency is shown while scanning the
Bragg pulse duration τ from 0 − 400 µs. To rule out influences of the COM velocity,
the detuning of the Bragg lattice has been optimized for all investigated ensembles. It
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Figure 4.9: Rabi oscillations of a BEC (left) and a purely thermal source of atoms (right)
released from the same steep trap (ωx ≈ 2π · 350 Hz). The application of DKC re-
duces the effective momentum spread of the ensembles which leads to an increase
of the transfer efficiency (full circles). More details in text.

has to be noted, that the application time of the Bragg pulses has not been adapted to
guarantee the same local intensity in the measurements. However, assuming the effect
of our optimized DKC on the COM motion to be negligible here, the chosen timings
(4 ms and 7 ms after release) correspond to intensity fluctuations of less than 3% (see
Sec. 3.4.2). Thus, all measurements have been performed with nearly the same Rabi
frequency which has not been optimized for the largest diffraction efficiency here. This
exemplary measurement should generally demonstrate the effect of DKC on the cloud’s
momentum width, thus the Rabi frequency was fixed to a trade-off value to observe a
comparably large cooling effect in both ensembles.

The magnetic lens (for explicit parameters see Sec. 4.3.1) has been applied T0 = 6 ms
after the release for τdkc = 300 µs. The Bragg pulse is applied 0.7 ms after DKC
followed by a separation phase of Tsep = 28.1 ms until an absorption image is taken.
Three experimental runs have been averaged and the error bars depict the standard
deviation. A damped sine function is fitted to the data to extract the duration and
efficiency for a π- pulse. For comparison, the absorption images at the measured

ηπ

BEC thermal

w/o DKC 0.65 0.24
w DKC 0.88 0.72
rel. diff. +35% +300%

Table 4.2: Diffraction efficiencies ηπ for a mirror pulse with Bose-condensed (left rows) and
thermal atoms (right rows) released from the steep trapping potential (ωx ≈
2π · 350 Hz). Note, these values have been extracted from exemplary measure-
ments to demonstrate the effect of DKC on the momentum width (see Fig. 4.9).
The Rabi frequency has not been optimized for the best diffraction efficiency here.
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Figure 4.10: Exemplary Bragg spectra for condensates (Nc/N = 0.62) released from the steep
trap with ωx ≈ 2π · 350 Hz (left). Without DKC, a simple Gaussian fit (red line)
gives an rms width of σ350 = 4.64(53) kHz. With DKC, the width of the central
peak fitted by a double-Gaussian distribution leads to σ350,dkc = 1.52(12) kHz.
Bragg spectroscopy measurements of differently prepared ensembles indicate a
4-fold reduction of the momentum width through DKC which is independent of
the condensate fraction (right). The momentum width of a condensate released
from the shallow trap is given for comparison.

π-pulse duration are given as an inlay.
In this configuration, the efficiency of a mirror pulse ηπ using a condensate (Fig. 4.9,

left) could be increased by about 35% (ηπ from 0.65 to 0.88). The results show, that we
can even reach higher diffraction efficiencies for condensates released from the steep
trap with DKC compared to a condensate released from the shallow trap without
DKC (ηπ ≈ 0.8, see Fig. 3.4.2). Moreover, with a measured increase of the diffraction
efficiency of about 300% (ηπ from 0.24 to 0.72), thermal gases profit even more of the
delta-kick cooling scheme. The results are summarized in Tab. 4.2.

The increase in diffraction efficiency could not be directly verified by an increase in
total atom number of the diffracted part of the wave function. This might be due to
the high densities and small sizes of the clouds manipulated with DKC (which leads to
an underestimation of the atom number) or loss effects during lens application, which
have to be further analyzed.

Bragg spectroscopy

With Bragg spectroscopy (see Sec. 3.4.3), we can directly measure the momentum
width of freely expanding clouds with and without the application of DKC. To demon-
strate the basic measurement principle, a rectangular-shaped Bragg pulse was applied
for a duration of τ = 600 µs which scanned the momentum distribution 9 ms after the
release of the steep trap. At first, no DKC was applied and the separation time of the
adressed momentum states before imaging was Tsep = 22 ms. As a measure for the
momentum width, a Gaussian was fitted to the data (red circles) and from the fit we
obtain an rms width of σ350 = 4.64(53) kHz (see Fig. 4.10, left).

In the second run, DKC was applied (Iz = 1.85 A, Bbias = 6.1 G) after an expansion
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4 Delta-kick cooling as a tool for long baseline atom interferometry

time of 8 ms for a duration of τdkc = 300 µs. The Bragg pulse was applied 1 ms later.
The condensate fraction of only 62% leads to a significant bi-modality which is also
present after application of the magnetic lens. Here, a double-Gaussian (green line) was
fitted to extract the rms width of the center peak, which in this case is presumably
Fourier-limited to about σ350,dkc = 1.52(12) kHz. This example already indicates a
reduction of the momentum width by at least a factor of 3.

As we already have seen in the expansion measurements and corresponding ab-
sorption images, DKC is not only restricted to condensed sources and is even ap-
plicable for broader thermal distributions. By adjusting the end-frequency of the
forced RF-evaporation (see Sec. 2.6.1), we can determine the temperature of the
trapped gas and therefore the condensate fraction. Four different values of the lat-
ter have been analyzed via Bragg spectroscopy and the obtained momentum widths
are given in Fig. 4.10 (right). The clouds have been released from the steep trap
(ωx ≈ 2π · 350Hz) and evolved freely for T0 = 6 ms before our optimized DKC trap
(Iz = 1.15 A, Bbias = 5.3 G) was applied with a duration of τdkc = 300 µs. 4 ms later,
Bragg pulses with Fourier-limited widths of about 250 Hz and 500 Hz have been applied
for an accurate spectroscopy of the ensembles with and without DKC, respectively.

For each of the investigated condensate fractions, the momentum width σx of the
freely expanding ensemble released from the steep trap (red squares), the ones ma-
nipulated with DKC (green squares) and ensembles released from the shallow trap
(blue triangles) are given. This graph again underlines, that the application of DKC
is not limited to condensed sources only. Specifically, the velocity width after DKC
manipulation can be reduced by a factor of ∼ 4 independent of the condensate fraction.

DKC allows to create samples which are colder compared to our most shallow trap-
ping potential, we can create them faster since we do not need to evaporate until
degeneracy and we do not need to wait for mean-field conversion but rather take a
shortcut to adiabaticity [193]. However, regarding enhanced SNR in a matter wave
interferometer, this method is only advantageous if the application of DKC does not
lead to a reduced contrast (e.g. through disturbed matter wave fronts). Whether the
spatial coherence can be preserved during DKC application will be investigated in the
next section.

4.4 Delta-kick cooled atoms for matter wave interferometry

DKC was successfully applied to our atom-chip based source of matter waves. The
next step is to image the phase evolution and prove the coherence of a delta-kick (DK)
cooled ensemble in an open Ramsey-type interferometer (ORI) sequence (for details on
the sequence, see Sec. 3.5.1). Therefore, the temporal evolution and contrast of fringe
patterns emerging from spatially interfering condensates are investigated for different
DKC configurations.

4.4.1 Fringe spacing evolution with time-of-flight

The BECs are released from a steep trapping potential (Iz = 2A and Ibias = 1.5A)
and expand for T0 = 8 ms. Then a lens with Iz = 1.3 A is applied for τdkc = 400 µs
until 4 ms later an ORI sequence with Tint = 260 µs is applied to samples. For the
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Figure 4.11: Exemplary images of the output ports of an open Ramsey-type interferometer
(ORI) with DK-cooled Bose-Einstein condensates. From A-D, the momentum
width of the condensate is reduced due to more efficient DKC whereas always the
same ORI sequence is applied to the ensembles. The fringe spacing is inversely
proportional to the velocity gradient across the cloud (see Sec. 3.5.1), thus it is
larger for colder samples. More details in text.

DKC potentials used here, three different bias fields Bbias = (2, 3, 4) G have been
investigated. The evolution of the fringe spacing is compared to that of a condensate
released from the same steep trap but without DKC.

In the chosen configuration, an increasing magnetic bias field means that the position
of the lens better coincides with the position of the wave packet at the application time
and therefore leads to a smaller momentum width (cf. Sec. 4.2.2). This is depicted
in the absorption images (see Fig. 4.11), where each picture corresponds to a total
time-of-flight of Ttof = 30.4 ms. The left picture shows the fringe pattern without the
application of DKC, and in the next three pictures Bbias is stepwise increased to a final
value of Bbias = 4 G, for which the DKC trap center mostly coincides with the COM
position of the condensate which maximizes the cooling effect.

Fig. 4.12 shows the corresponding fringe spacing evolution versus the total time-of-
flight on ground. The given error bars are 1σ intervals of the fitted fringe spacing. The
evolution of a freely expanding sample without DKC (black squares) coincides with the
calculation of the fringe spacing in linear expansion theory (dashed line). With DKC,
the evolution of the fringe spacing is still linear in time (fitted with straight lines),
but the spacing features an offset which is to be proportional to the DKC strength
and therefore to the final momentum width of the clouds after DKC application. The
obtained slopes are given in Tab. 4.3 and will be discussed in the next section.

The measured contrast is depicted in Fig. 4.12 (right), where lines between the data
points are added to guide the eye. For all configurations, no explicit influence of DKC
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Figure 4.12: Influence of different DKC configurations on the fringe spacing of an ORI se-
quence (left) and the corresponding evolution of the single-shot contrast (right).
Here, an increasing bias field Bbias means a more sufficient cooling due to a
better overlap between DKC trap center and condensate COM. The slow-down
of the wave packet expansion changes the velocity gradient across the cloud and
leads to an offset of the observed fringe spacing as d(t) ∼ λ/λ̇ (see Eq. 4.20).

can be seen from the data which means that the magnetic manipulation does not
necessarily lead to dephasing. The contrast even seems to slightly increase with on-
going time-of-flight Ttof , which might be attributed to the vanishing thermal atoms in
the background. This was already observed in Sec. 3.5.3.

Scaling law approach for DKC

The spatial evolution of Bose-Einstein condensates manipulated with time-dependent
DKC traps can be modeled with the λ-matrix formalism [130]. Based on the numerical
results for the scaling factors for size λx and expansion λ̇x, the fringe spacing dynamics
can be predicted as

dori(t) =
2π

αδx
=
λx(t)

λ̇x(t)
· h

mδx
, (4.20)

with phase curvature α, mass of the atoms m and the initiated separation in the
Ramsey-type interferometer δx.

Bbias [G] slope [µm /ms]

0 (no DKC) 1.44 (calculated)
2 1.42(8)
3 1.41(8)
4 1.23(19)

Table 4.3: Slopes and corresponding rms deviations of the linear fits to the experimental
data of Fig. 4.12. For Bbias = 0 G (no DKC), the slope is calculated based on the
far-field approximation of the fringe spacing evolution in an ORI (see Sec. 3.5.2).
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Figure 4.13: Schematic of the temporal evolution of the radial scaling factor λrad(t) (left),
the first derivative λ̇rad(t) (center) and the fraction of λrad(t)/λ̇(t) (right) for
free expansion and two artificial DKC operations applied after T0 = 7 ms.

To visualize the general dependencies, however, an example for the evolution of the
radial component of a condensate released from an elongated trap is given in Fig. 4.13.
Without DKC, the evolution of λ, λ̇, and the fraction λ̇/λ can be approximated by the
solutions given in Sec. 3.5.2, which are illustrated for comparison (black lines). The
application of DKC slows down the expansion rate of the ensemble. This is modeled
by artificially reducing the radial scaling factor evolution to 85% (red line) and 50%
(blue line) of the freely evolving condensate. Based on this, the derivative λ̇ and the
fraction λx/λ̇x have been calculated and displayed.

Directly after the DKC, the condensate has roughly the same size as shortly before
(left) but the expansion rate λ̇ gets significantly reduced during the DKC (center).
This is the reason for the instantaneous offset in λx/λ̇x (right), which determines the
fringe spacing period (see Eq. 4.20). In this simplified example, the fringe spacing
slope is still roughly the same after the kick.

This is indeed what we observed in the experiment. The slopes are comparable
within the fit errors (see Tab. 4.3) whereas the intercept continuously increases (See
Fig. 4.12, left). One might argue a slight trend of the measured slopes to flatten
with increasing Bbias. A possible explanation for this observation could be DKC-
induced variations of the mean-field energy which have not been considered in the
above depicted approximation. Due to the small size and expansion rate of the cloud
after DKC application, the density does not decrease as quickly as without DKC which
extends the phase of non-linear expansion. This rescales the fringe spacing evolution
as previously discussed (see Sec. 3.5.2).

4.4.2 Scan of the DKC strength

The previous interference experiments with DK-cooled atoms showed a linear scaling
of the fringe pattern with the time-of-flight and an offset proportional to the cooling
effect. The more sufficient the mode overlap between condensate’s COM and the DKC
trap, the more efficient is the cooling which led to larger fringe spacings.

This is now addressed in another measurement by again investigating the fringe
spacing evolution in an ORI. Here, we probe different DKC strengths by scanning the
bias field Bbias of the previously applied DKC trap. The condensates released from a
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Figure 4.14: Fringe spacing evolution (left) and corresponding single-shot contrast (right) of
three different ORI sequences with Tint = (210, 410, 530) ms. The bias field
Bbias for the DKC trap is subsequently increased which leads to a more narrow
momentum width. The modified phase evolution of the DK-cooled wave packets
leads to a larger fringe spacing.

steep trap (Iz = 2A and Ibias = 1.5A) are manipulated in ORI sequences with three
different initiated wave packet separations δx, determined by interrogation times fixed
to Tint = (210, 410, 530)µs. DKC with a duration of τdkc = 400 µs has been applied
T0 = 8 ms after release and 4 ms later the ORI was operated. The absorption images
have been taken at a total time-of-flight of Ttof = 29.4 ms. The chip current for the
DKC potential was fixed to Iz = 1.3 A, whereas Bbias was scanned from 0 to 5 G.

For negligible influences of DKC (0 G < Bbias < 2 G), the measured fringe spacing
corresponds to the far-field approximation which is given as dashed lines for each
Tint (see Fig. 4.14, left). By continuously moving the DKC center towards the COM
position of the condensate (2 G < Bbias < 5 G), the cooling gets more efficient. This
again reduces the slope of λ and shifts λ̇ to another offset which changes the fringe
spacing to larger values.

The evolution of the contrast confirms earlier observations, that the application of
DKC does not reduce the phase coherence of the manipulated sample. One might
ascribe even higher contrasts due to the application of stronger DKC which makes it
a valuable tool for long baseline atom interferometry.

4.5 Summary

As the third ingredient towards long-term matter wave interferometry at the Bremen
drop tower, the on-chip realization of delta-kick cooking (DKC) was demonstrated for
the first time. This included the implementation of DKC for condensed and thermal
atoms as well as the analysis of relevant error sources affecting the center-of-mass
(COM) motion. The net cooling effect was studied by a series of expansion and Bragg
spectroscopy measurements.

By the choice of the right DKC trap parameters, the momentum width could be
reduced by a factor of 4 (16-fold reduction of temperature). Moreover, these ground-
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4.5 Summary

based results have been proven to be independent of the condensate fraction. This led
to the observation of freely expanding samples with approximated expansion temper-
atures in the lower nK range.

DKC applied on matter waves as an input for light-pulse interferometers showed
no additional dephasing on the corresponding timescales. However, DKC changed the
phase evolution λ̇/λ of the expanding clouds. This affected the fringe pattern formation
and therefore had to be considered for the specific choice of the interferometer timing
parameters and the interpretation of the emerging pattern.

We thus have fulfilled the third requirement to be able to proceed to the drop tower
for dedicated measurement campaigns:

Free-fall interferometry with
Bose-Einstein condensates
in microgravity (see Ch. 5 )





Atom-chip-based source of non-magnetic
degenerate gases (see Ch. 2)

⋄

Bragg diffraction and open interferometers
with degenerate gases (see Ch. 3)

⋄

Delta-kick cooling as a tool for long
baseline atom interferometry

The next chapter will finally review our most recent results on the microgravity
experiments with the QUANTUS-I experiment. After a short description of the drop
tower and some basic procedures of a drop campaign, the macroscopic expansion of
a Bose-Einstein condensates for up to 2 s of free evolution will be highlighted. Af-
ter pathfinder experiments with an open Ramsey-type interferometer, we eventually
discuss the first realization of an asymmetric Mach-Zehnder interferometer with Bose-
Einstein condensates in microgravity.
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5 Free-fall interferometry with
Bose-Einstein condensates in
microgravity

After implementation of an non-magnetic source of matter waves, Bragg interferome-
try and preparatory ground-based measurements with delta-kick cooling (DKC), this
chapter summarizes the most recent experimental results of microgravity campaigns
operated with the QUANTUS-I apparatus. The whole apparatus performs quantum
gas experiments during free fall at the drop tower microgravity facility at the Center
of Applied Space Technology and Microgravity (ZARM) in Bremen [107].

After a short introduction of the drop tower environment and the procedures of a
standard drop campaign (see Sec. 5.1), we describe experiments with Bose-Einstein
condensates in extended free fall, where the atoms are prepared in a non-magnetic
state. In the beginning, we show that magnetic stray fields in the tower do not affect
the free expansion of atoms in the mF = 0 state. This suggests that indeed the residual
fields are responsible for the anomalous expansion of magnetically polarized atoms as
observed in the earlier runs of this experiment [19].

The scaling law for the temporal evolution of the condensate’s width is introduced
[130], whose prediction coincides with the experimental observations up to a maximum
free expansion time of 2 s (see Sec. 5.2). The latter was only possible by application of
our delta-kick cooling (DKC) scheme in the microgravity environment and constitutes
the second largest free expansion time of a cold quantum object reported so far1.

First interferometer experiments with degenerate gases in microgravity have been
performed with an open Ramsey-type interferometer (see Sec. 5.3). In this configura-
tion, macroscopic interference patterns of overlapping condensates after time-of-flights
of 500 ms could be observed. The absence of a thermal background after such long
evolution times consequently led to an improved contrast compared to ground-based
measurements with our setup.

In an asymmetric Mach-Zehnder interferometer, the temporal evolution of the emerg-
ing fringe spacing was investigated with and without the application of DKC (see
Sec. 5.4). To this end, contrast and signal-to-noise (SNR) ratio have been analyzed
for maximum interrogation time of up to 2T − δT = 677 ms. In this campaign, inter-
ference has been observed for quantum objects separated over distances which exceed
their size by one order of magnitude. These experiments demonstrate the feasibility
of operating an atom-chip-based matter wave interferometer under demanding condi-
tions. They will pave the way for future microgravity-enhanced experiments dedicated
to differential acceleration measurements with ultra-cold matter waves.

1In [110], a Bose-Einstein condensate is launched in an atomic fountain geometry and imaged after
Ttof = 2.6 s of free expansion.
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5 Free-fall interferometry with Bose-Einstein condensates in microgravity

5.1 The drop tower and standard procedures of a free fall
campaign

The drop tower is a microgravity facility of the ZARM (Center of Applied Space tech-
nology and Microgravity) at the University of Bremen, Germany. It has a total height
of 145 m, of which effectively 110 m can be used as free fall distance. The drop tube,
formed by multiple tube segments that are welded together, has to be evacuated to a
final pressure below 0.2 hPa before operation. Evacuation is necessary since residual
air friction would lead to vibrations and decelerations of the drop capsule in free fall,
lowering the level of reduced gravity. Additionally, the deceleration process is based on
catching the capsule in a container with polystyrene pellets which in principle could
lead to large electromagnetic charges, getting inflamed in combination with oxygen.
As a consequence of this evacuation, the quality of microgravity is relatively high
compared to, for example, zero-g airplanes [106]. Typically, the drop tower provides
∆g/g < 10−5 for frequencies below 500 Hz [107].

As already shown for the QUANTUS-I experiment in Sec. 2.4, payloads need to be
integrated within standardized drop capsules to be approved for drop tower operation.
The latter comprises a drop and a catapult mode, which offer microgravity durations
of 4.7 s and 9.2 s, respectively.

QUANTUS-I is designed for the drop mode, of which a typical timeline describing
the preparatory steps of a campaign will be given in the following section.

5.1.1 Typical timeline of a standard campaign

After switch-on and subsequent verification of the experiment’s performance in the lab,
the capsule is prepared for handover to the drop tower operators. Together with us as
the responsible scientists team, the setup is finally checked (e.g., unfavorable integrated
electrical connectors, loose components) and capsule closed (see Fig. 5.1, left). First, an
outer shell is pulled over the experiment and fastened with a mechanical buckle, which
takes place in the integration hall. Then the experiment is moved into the drop tower,
where an upper shell including all relevant interfaces (electrical connectors, thermal-
control system (TCS), remote control capability) is fixed at the top (see Fig. 5.1,
right). Afterwards, a winding mechanism connected to the upper shell smoothly lifts
the capsule to the top of the tower in about 15 min.

After elevation to about 110 m, telemetry and telecommand line are checked and
remote control access is established. Additionally, TCS and power supplies are con-
nected to the interface. This allows to test the basic status of the different subsystems
(e.g., UHV pressure, laser power and frequency locks) as well as the functionality of
the entire experiment. The latter is usually done by operating a standard sequence
generating Bose-Einstein condensates. Atom number and temperature of a conden-
sate released from the shallow trapping potential are compared to the values from
the aforementioned ground check. If successful, the evacuation of the entire tower is
started which typically leads to a typical final pressure of 0.2 hPa in about 1.5 hours
of operation.

The long evacuation time is the main reason why the drop tower can be operated
with at most 3 drops per day. In the case of any unforeseen problems, either on the
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5.1 The drop tower and standard procedures of a free fall campaign

Figure 5.1: Final check of the QUANTUS-I payload by the science team2, which is usually
done in the integration hall before hand-over to the drop tower operators (left).
Closing of the capsule with an upper shell and preparation for lift-up with a
winding mechanism is done by the operators (right).

scientist’s or operator’s side, the capsule is safely brought back to the ground via the
winding mechanism.

After evacuation, external supply units (DC power and cooling) are disconnected and
the drop tower operators assign the approval for the drop to the scientist team. Before
and after this disconnection process, we again verify the functionality of the experiment
by running our standard BEC sequence, which is particularly important for comparing
the performance by switching to accumulators. Moreover, the obtained position of the
condensate in these absorption images serves as a reference for evaluating the center-
of-mass motion in the following drop experiment. If all tests are successfully passed,
we release the experiment and perform our measurements in extended free fall.

In the drop mode, free fall lasts for about 4.7 s during which the capsule accelerates
to vertical velocities of about 170 km/h. It is finally caught in a 8 m high deceleration
tube containing polystyrene pellets, which act as a viscous fluid smoothly decelerating
the capsule. However, the experiment has to withstand peak decelerations of up to
50 g lasting for ∼ 100 ms during this impact (see Fig. 5.2, left). Permanent monitoring
of the most important parameters (e.g., UHV pressure, temperature, battery voltage,
laser power) is implemented, but to actively verify the status of the system after the
mechanical shock, we routinely generate a condensate while the capsule is still in the
deceleration tube.

Right after the impact, the tower is re-flooded with air. About 45 min later, the
capsule will be opened again by the drop tower operators and handed back to the
scientists for thorough investigation and preparation of the upcoming drop.

2QUANTUS-I science team from left to right: A. Wenzlawski, M. Krutzik and H. Müntinga. Unfor-
tunately, H. Ahlers is missing in these pictures as being the photographer.
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5 Free-fall interferometry with Bose-Einstein condensates in microgravity

Figure 5.2: Typical decelerations by slowing down a capsule in the polystyrene pool (left)
and DC accelerations of a catapult launch (right). Plots taken from [107].

Catapult mode

The QUANTUS-I experiment uses the drop mode only. The successor experiment
QUANTUS-II is designed for using the catapult mode of the drop tower, leading to
nearly twice the time of free fall.

In the catapult mode, the capsule is launched from the bottom of the tower in a
vertical parabola to the top. There are even more demanding requirements on the
payloads mass and volume [107]. After the capsule is closed by the operators, it is
positioned on a catapult piston. After evacuation and approximately 10 minutes before
the launch, supply units (DC power and cooling) are disconnected and the catapult
system is armed. The catapult piston is moved down to the final position and from now
on a 5 min time window allows the scientists to finally check the system and initiate
the launch.

The acceleration is induced by a pneumatic mechanism with an approximate dura-
tion of 280 ms and a peak value of 30 g (see Fig. 5.2, right). There is a slight time
delay between launch initialization at Tini = 0 s and execution, which causes the accel-
eration peak to be centered around Tlaunch ≈ 4.4 s. During the free fall parabola, the
deceleration chamber is placed exactly at the position of the impact. In this mode, the
microgravity experiment time can be extended from 4.7 to about 9.2 s. All interfaces
of the catapult capsule are identical to the one used in the normal dropping mode.

We now focus on the results of the QUANTUS-I apparatus probing the coherent
evolution of Bose-Einstein condensates in extended free fall.

5.2 Condensate expansion and delta-kick cooling in

microgravity

In 2010, the QUANTUS collaboration succeeded in realizing first degenerate quantum
gases of 87Rb atoms in microgravity. After optimization of the decompression phase
and the adiabatic release, condensates with expansion times of up to 1 s could be
detected [17].

However, the observed expansion of the BEC along its weak axes did clearly not
correspond to a free evolution. One possible explanation for the anomalous temporal
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5.2 Condensate expansion and delta-kick cooling in microgravity

evolution of the spatial width has been sub-Hertz residual magnetic fields interacting
with the atoms during the drop. The drop tower itself is not designed to meet the
requirements of magnetically sensitive experiments. It is built out of soldered tubes and
metal constructions, potentially leading to static and dynamic stray fields. Another
source could have been for instance a residual magnetization of the vacuum chamber.
Since the condensate at that time remained in the spin polarized |F = 2,mF = 2〉 state
after the release, tiny fields could have led to an effective force acting on the atoms
even though a single-layer µ-metal shield was used [137].

To circumvent this, we implemented an adiabatic rapid passage (ARP) in micrograv-
ity to transfer the atoms in the mF = 0 state (see Sec. 2.7). This Zeeman sublevel is
to first order insensitive to magnetic fields and should enormously reduce the effect of
present magnetic fields. The first experiments now to be performed in microgravity are
dedicated to confirm a free evolution according to the scaling law prediction — or to
raise new questions concerning the expansion dynamics of Bose-Einstein condensates
in microgravity.

We first discuss a suitable and commonly used theoretical model to describe the free
expansion of Bose-Einstein condensates.

5.2.1 Scaling law for time-dependent potentials

In Sec. 2.2.3, the Thomas-Fermi (TF) approximation for a description of the conden-
sate’s density distribution in a trap was introduced. This approximation is based on
disregarding kinetic energy w.r.t interactions, thus it is not valid to analyze the free
expansion of a condensate after release from the trapping potential. Once in free fall,
the internal energy is converted into kinetic energy and hence not negligible anymore.
First calculations towards the expansion of a condensate by changing the trapping
parameters or the external potential Uext have been carried out by numerically solving
the Gross-Pitaevskii (GP) equation [128]

[
− h̄2

2m
∆ + Uext(~r) + gφ2(~r)

]
φ(~r) = µφ(~r), (5.1)

with interaction strength g = 4πh̄2a/m, chemical potential µ and condensate wave
function φ(~r).

Another approach dedicated to time-dependent potentials was given by Y. Castin
and R. Dum, who extended a scaling formalism for isotropic potentials introduced by
Kagan [129] to three dimensional, anisotropic harmonic potentials [130]. They moti-
vated a quantum mechanical calculation with a classical ansatz, describing the ballistic
motion of the particles within the condensate, released from a potential characterized
by a set of time-dependent eigenfrequencies ωi(t).

In TF approximation, the density distribution of a Bose-Einstein condensate in an
external potential is given by

nT F (~r) =
∣∣∣Φ(~r)2

∣∣∣ = max

{
µ− Uext(~r)

g
, 0

}
. (5.2)

In a classical model, the effective force acting on every single particle of the ensemble
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5 Free-fall interferometry with Bose-Einstein condensates in microgravity

can be written as

~F (~r, t) = −∇(Uext(~r, t) + g ·n(~r, t)). (5.3)

For time-dependent potentials, we are assuming the shape of the density distribution
to remain constant, but the atoms move based on a scaling approach like

Ri(t) = λi(t)Ri(0), (5.4)

with the position of atoms in the i-th dimension Ri(0) at time t = 0 and the scaling
factors λi. The entire evolution of the coordinates Ri(t) is then described by Newton’s
equation of motion mR̈i(t) = Fi(~R(t), t), and we obtain a set of differential equations
for the scaling factors [130, 127]

mλ̈i(t)Ri(0) = −(∂ri
Uext)[~R(t), t] +

1∏
j λj(t)

(∂ri
Uext)[~R(t), t]. (5.5)

For harmonic potentials with trapping frequencies ωi, the scaling factors of all three
dimensions are proportional to Ri(0) and we get

λ̈i =
ω2

i (0)

λi
∏

j λj
− ω2

i (t)λi. (5.6)

This expression can be used to calculate the dynamics of the density distribution
under modification of the external potential, including instantaneous switch-off. At
time t = 0 we release the Bose-Einstein condensate from the confining potential and
set ωi(t > 0) = 0. The holding trap in QUANTUS-I can be approximated as an axial
symmetric trap (ωx = ωz ≡ ωrad ≫ ωy). In this case, Eq. 5.6 can be solved analytically,
leading to the following set of coupled differential equations [130, 127]

d2

dτ2
λrad =

1

λ3
rad

, (5.7)

d2

dτ2
λy =

(ωy/ωrad)2

λ2
rad ·λ2

y

, (5.8)

with a dimensionless variable τ = ωrad(0)t. The temporal expansion of the width in
the radial (Wrad) and axial (Wy) direction can now be written as

Wrad(τ) = Wrad(0)λrad(τ) = Rtf
rad

√
1 + τ2, (5.9)

Wy(τ) = Wy(0)λy(τ) = Rtf
y

(
1 + ǫ

(
τ arctan τ − ln

√
1 + τ2

))
, (5.10)

with the TF radii Rtf
rad =

√
2µ/mω2

rad, Rtf
y =

√
2µ/mω2

y and ǫ = ωy/ωrad. Given a
series of expansion pictures, we can calculate back the density distribution in the final
trapping potential. One can see, that the aspect ratio η = Wrad/Wy is completely inde-
pendent from the number of atoms or the chemical potential. In the TF-approximation,
the temporal evolution of the aspect ratio depends only on the trapping frequencies
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and can be used to verify the existence of a BEC [69, 67, 115].
The detection axis of the QUANTUS-I setup utilized in this thesis coincides with

the weak axis of the trap (y-direction), thus a change of the aspect ratio according
to Eq. 5.9 and 5.10 cannot be observed3. However, we will use the scaling approach
for verification of the BEC’s free expansion. The evolution of the visible axes will be
analyzed in microgravity experiments with time-of-flights of up to 2 s.

5.2.2 Experimental drop tower sequences with QUANTUS-I

Before we describe an experiment in free fall, we first recall the typical situation right
before the drop (see Sec. 5.1.1). The capsule is hanging at the top of the drop tower and
any external supply units (DC power and cooling) are disconnected. After assignment
of approval for the drop and a final test, we start the actual drop sequence by collecting
atoms in the MOT while the capsule is still hanging at the top. Once the MOT is
saturated (∼ 10 s), we release the capsule. For the particular experimental phases
which are now performed in free fall, see Fig. 5.3.

The remaining period of the MOT phase lasts for an additional second, to let any
residual vibrations damp out which occur during the release process of the capsule.
Subsequently, the atoms are further cooled in a short (∼ 4 ms) molasses phase, optically
pumped into the mF = 2 state and transferred into the chip-based Ioffe-Pritchard trap
(IPT). After roughly 1.7 s, the atoms are evaporatively cooled down to degeneracy
(BEC) and prepared in a final holding trap.

Once in microgravity, no gravitational sag deforms the trapping potential and there-
fore shallower traps than on ground can be realized [17, 137]. Hence, the condensate is
adiabatically decompressed into a holding trap with Ibias = 0.179 A and trapping fre-
quencies along the principal axes of ωi = 2π · (27, 10, 22) Hz [17], compared to the most
shallow ground configuration (Ibias = 0.36 A, ωi = 2π · (46, 18, 31) Hz, see Sec. 2.6).

An optimized delta-kick cooling (DKC) sequence is applied 30 ms after the release.
Here, the same holding trap with 2π · (27, 10, 22) Hz generated by the atom chip is
switched on again for tdkc = 2 ms. The experiments in the next sections will specif-
ically compare the free expansion of condensates with and without DKC and their
applicability for matter wave interferometry.

In a next step, the BEC is transferred into the mF = 0 state, realized by an ARP
lasting for 3.8 ms applied 4 ms after DKC. Efficient RF sweeps have been demonstrated
in ground based measurements (e.g., νrf = 7.70 → 7.74 MHz @ 10.5 G, see Sec. 2.7).
Due to the magnetic environment in the drop tower, the parameters of the ARP had
to be slightly adapted to maintain the same efficiency in microgravity (νrf = 7.71 →
7.75 MHz @ 10.5 G).

After preparation of the matter wave source, approximately 2 s are available for ex-
perimental studies of a microgravity-enhanced Bose-Einstein condensate (see Fig. 5.3).
We will analyze the temporal evolution of the Thomas-Fermi radius in free expansion
(EXP), the fringe spacing and contrast of open Ramsey-type interferometers (ORI)
and finally the coherent phase evolution in asymmetric Mach-Zehnder interferometers
(AMZI).

3In the predecessor setup [17], the camera was oriented along the x-direction.
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Figure 5.3: Typical timescales, atom numbers and average temperatures for the particular
experimental phases of QUANTUS-I in free fall. After preparing cold atoms in
a MOT and subsequent molasses phase, they are loaded into an atom-chip-based
Ioffe-Pritchard trap (IPT) and evaporatively cooled to degeneracy (BEC). Af-
ter adiabatic release, the atoms undergo magnetic delta-kick cooling (DKC) and
are transferred into the mF = 0 state by means of an adiabatic rapid passage
(ARP). The conducted experimental studies comprise free expansion (EXP), an
open Ramsey-type interferometer (ORI) and an asymmetric Mach-Zehnder inter-
ferometer (AMZI). Shortly before the impact, an absorption image is taken.
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Figure 5.4: Expansion data expressed by
Thomas-Fermi radii of freely
evolving Bose-Einstein conden-
sates with and without DKC.
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Figure 5.5: Corresponding signal-to-noise
ratio (SNR) of the integrated
atomic density with and without
DKC.

At all times, the atomic cloud or the interferometer output ports are detected after
a time-of-flight by means of absorption imaging4.

5.2.3 Free expansion of a Bose-Einstein condensate for 2 seconds

We will now discuss the results of the drop campaign with BECs in the mF = 0 state.
The expansion of the condensate expressed by the Thomas-Fermi (TF) radii includ-

ing fitting error is given for up to 500 ms of time-of-flight under microgravity conditions
(see Fig. 5.4, red squares). The detection axis points along the weak axis (y-direction)
of an trapping potential with ωi = 2π · (27, 10, 22) Hz. To get an estimation for the
condensate expansion dynamics, we say ωx ≈ ωz ≡ ωrad and fit the averaged conden-
sate widths in x- and z-direction using the scaling approach for elongated traps [130],
which predicts the width in the radial direction Rrf

rad(t) for ωrad ≫ ωy as

Rtf
rad(t) =

√
2µ

mω2
rad

·
√

1 + (ωrad · t)2. (5.11)

From the fit (solid red line in Fig. 5.4) we extract an effective radial trapping fre-
quency of ωrad = 2π · 20(3) Hz, which is slightly below what we expect from the initial
trapping frequencies along the principal axes and simulated data from [137, 17]. In the
latter it was argued, that the initially elongated trap is tilted both in the horizontal
plane and in the z-direction during adiabatic decompression. Since in this case the
principal axes of the condensate in free fall now do not perfectly overlap with the cam-
era axes, one might argue a slight projection error of the Thomas-Fermi radii. This
would correspond to the lower value of the trapping frequency obtained by the fit.

Besides this, the observed temporal evolutions correspond to the theoretical pre-
dictions based on the scaling approach for unperturbed condensate dynamics in the
Thomas-Fermi regime. Based on this analysis in the first Ttof = 500 ms of free ex-

4The detection intensity is increased from 0.2 · Isat to well above of the saturation intensity.
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Figure 5.6: Temporal evolution of the center-of-mass (COM) position in z-direction. The dis-
tance of the COM w.r.t. the atom chip’s surface is depicted for condensates evolv-
ing in the mF = 0 state (red squares) and for ensembles previously manipulated
with delta-kick cooling (blue triangles). A straight line can be fitted to the data
sets which determines a constant velocity in z-direction of vz = 1.17(15) mm/s
and vz = 0.93(5) mm/s, respectively.

pansion, the radial axis (as an average of the x- and z- direction) shows no obvious
deviation from the theoretical prediction. However, the weak axis (y-direction) could
not be observed in this geometry. A thorough analysis of the condensate evolution
in all three dimensions and the corresponding center-of-mass (COM) motion using a
detailed chip model can be found in [113].

The signal-to-noise ratio (SNR) drops rapidly since condensate expansion reduces the
atomic density and makes it challenging to detect atoms after 500 ms of free expansion
(red triangles in Fig. 5.5). Here, SNR is averaged over both visible dimensions and
the error bars depict the corresponding standard deviation. At these timescales, the
condensates typically containing N = 104 atoms usually feature Thomas-Fermi radii
of about 500 µm.

The knowledge of the COM position and velocity of the condensate w.r.t. the atom
chip surface is important for the upcoming matter wave interferometry experiments.
Since both the experimental apparatus and the condensate are in free fall, the COM
position should ideally be constant over time, meaning no effective velocity. However,
if there is a velocity, one has to distinguish between the two visible dimensions. Slight
COM velocities along the beam splitter axis (x-direction) can be equalized by an
adjustment of the effective detuning and power broadening of the beams. Vertical
accelerations will cause wavefront errors. We only focus on the vertical distance for
now.

The position of the condensate is measured w.r.t. the coordinate system of the
CCD camera. The accuracy of this method from drop to drop obviously relies on the
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5.2 Condensate expansion and delta-kick cooling in microgravity

stability of the camera position which eventually varies since decelerations of 50 g also
affect the camera mounting. In order to compare different drops, either the atom chips
surface itself is constituting an absolute reference or the reference pictures right before
the drop are used to evaluate the COM position of the condensate in free fall. The
first method is obviously only possible if the atom chip is visible in the absorption
image. However, the edge is out of focus and the exact position hard to determine.
This potentially leads to errors in the estimation of the relative distance of the atomic
cloud to the edge.

The estimation of the COM position in the vertical direction is depicted as red
squares in Fig. 5.6. The error bars represent fitting errors of the atomic position
but do not take errors in the estimation of the atom chip’s edge into account. The z-
position is not constant over time as a straight line can be fitted to the data which gives
rise to a constant velocity of vz = 1.17(15) mm/s away from the chip surface. This
velocity could arise from imperfect switching processes of the magnetic fields or inho-
mogeneities of the strong bias fields for the ARP. This velocity will again be addressed
in the discussion of contrast loss in an asymmetric Mach-Zehnder interferometer (see
Sec. 5.4.3).

The transfer of atoms in the mF = 0 state has led to the observation of an un-
perturbed free evolution along the radial dimension with a finite velocity away from
the chip. However, this observations have been limited to free expansion times of
Ttof = 500 ms. To overcome the observed limitations in SNR and to reach even longer
free evolution times in microgravity, we have to apply delta-kick cooling (DKC) the
atoms get transferred intp the mF = 0 state.

Delta-kick cooling in microgravity

To reduce the kinetic energy and therefore the expansion rate of a condensate, delta-
kick cooling (DKC) was implemented in the experimental sequence. The corresponding
results of time-of-flight measurements are shown as blue data points in Fig. 5.4 and
5.5. As already mentioned, the BEC is adiabatically released from the holding trap
and expands for about T0 = 30 ms. Then, the same trap with trapping frequencies
of ωi = 2π · (27, 22, 10) Hz generated by the atom chip is switched on for tdkc = 2 ms.
No adaption or further modeling of the DKC trap is necessary. The microgravity
environment ensures a high mode overlap of the condensate’s wave function with the
holding trap, thus the linear approximation of the DKC trap is still valid yielding a
position-independent field curvature.

However, the COM position in the z-direction is slightly changing due to the im-
perfect release process and the interaction of the atoms (mF = 2 state) with residual
fields (see Fig. 5.6). Compared to the ground-based experiments with nearly radial-
symmetric DKC traps, the anisotropy of the DKC trap in microgravity results in an
independent set of optimized parameters for each visible dimension (see Sec. 4.2.2).

Hence, the timing T0 and the duration τdkc had to be optimized experimentally to
result in the best trade-off between (i) isotropy of the atomic distribution, (ii) cooling
effect and (iii) residual COM motion after application [111]. This was done in a similar
way as previously shown for ground-based experiments (see Sec. 4.2).

After the kick, the atoms are coherently transferred to the mF = 0 state and detected
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Figure 5.7: Gallery of absorption images of freely expanding BECs in microgravity. The
condensates are formed in the |F = 2,mF = 2〉 state, manipulated with DKC
and afterwards transferred into the mF = 0 state by means of an ARP. The time
between initial release and absorption image shown in the pictures is 300 ms (A),
750 ms (B), 1050 ms (C), 1400 ms (D), and 1700 ms (E).

for different time-of-flights Ttof . The ARP itself was proven to yield the same transfer
efficiency in microgravity, also in combination with DKC.

The expansion rate can be drastically reduced by applying a short magnetic pulse
to the atoms (see Fig. 5.4, blue squares). Despite of the anisotropy of the used trap
for DKC, the spatial shape of most of the detected clouds can be approximated as
isotropic5. A quantitative prediction of the evolution of the Thomas-Fermi radii can
be given by a numerical simulation based on the λ-matrix formalism for the condensate
dynamics in time-dependent traps [130]. As a measure for the reduction of expansion
energy, the solution for an elongated trap (Eq. 5.11) is fitted to the averaged Thomas-
Fermi radii in both visible dimensions (blue curve). From this, we obtain trapping
frequencies and initial condensate sizes which may now be interpreted as trapping
parameters, which would lead to the observed expansion without applying DKC. Fol-
lowing that, an adiabatic release from a holding trap with trapping frequencies of about
1 Hz would be necessary to yield a similar expansion rate.

The observed temporal evolution give rise to effective temperatures of ∼ 1 nK and
clearly demonstrates that DKC leads to a reduced expansion rate. This is accom-
panied by higher densities of the clouds leading consequently to a higher SNR (see
Fig. 5.5, blue triangles). Only with DKC we have been able to observe the BEC via
absorption imaging after 2 seconds of free evolution, which is twice as long as in previ-
ous experiments [17] and the world’s second longest free expansion of a condensate to
our knowledge (cf. [110]). A gallery of absorption images for different time-of-flights
between 300 ms and 1700 ms is shown in Fig. 5.7. Here, each picture is individually
normalized and centered around the cloud’s density maximum.

The COM position in z-direction is given in Fig. 5.6 (blue triangles). Compared to
the free expansion of atoms in the mF = 0 state, the application of DKC seems to
slightly slow down the velocity away from the chip. Fitting a straight line leads to a
velocity of vz = 0.93(5) mm/s, indicating that DKC induces a weak momentum kick in
the direction of the atom chip. Taking the ground-based investigations of a mismatch
between condensate COM and DKC trap center into account (see Sec. 4.2), this means
that the atoms already passed the DKC trap center at the time of application.

We have constituted a predictable source of ultra-cold matter waves in microgravity
on timescales clearly superior to the predecessor setup. This was made possible by

5However, the slight asymmetry becomes visible for time-of-flight after 1500 ms.

144



5.3 Open Ramsey-type interferometer (ORI) in microgravity

Figure 5.8: Schematic of an open Ramsey-type (ORI, left) and an asymmetric Mach-Zehnder
interferometer (AMZI, right) operated in microgravity. For general details on
the pulse sequence, see Sec. 3.5.1 and 3.5.4, respectively. The total time-of-flight
Ttof in each geometry is given by the time between release and imaging. In this
schematics, T0 includes the operation of the adiabatic rapid passage (ARP) and
delta-kick cooling (DKC) where applicable.

the use of delta-kick cooling and an adiabatic rapid passage, both implemented on
chip. Now, the first interferometry experiments with Bose-Einstein condensates in
microgravity will be described.

5.3 Open Ramsey-type interferometer (ORI) in microgravity

The first interference experiments with degenerate gases in extended free fall have been
performed with an open Ramsey-type interferometer (ORI). This scheme was already
introduced in Sec. 3.5.1 and is based on a freely expanding BEC which is illuminated
with two successive π/2 Bragg pulses, separated by an interrogation time Tint (see
Fig. 5.8, left). This interferometer geometry generates two output ports with two
overlapping parts of the condensate wave function each. The relative distance between
the density peaks of the interfering distributions for first-order Bragg diffraction can
be calculated to δx = 2vr ·Tint ≈ 11.77 mm/s ·Tint.

Interference patterns occur in the overlapping region and the evolution of the corre-
sponding contrast, either in time-of-flight series or in an auto-correlation measurement
can be analyzed as an indication for the phase coherence of a matter wave source [163].
Moreover, an ORI can be considered as a double-slit experiment for matter waves [12].
Here, microgravity offers ultra-long evolution times and thus enable the observation
of an interference pattern of macroscopic matter wave packets in the far-field. In the
first interference experiments with an ORI to be presented in the next section, we do
not apply delta-kick cooling (DKC).
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Figure 5.9: The temporal evolution of the fringe spacing in an ORI is probed up to a time-
of-flight of Ttof = 500 ms (left). The applied interrogation times Tint (different
colors) determine the phase gradient of the interfering wave packets and therefore
the slope of the far-field approximation (dashed lines). The absence of thermal
atoms for long timescales lead to an increase in contrast, whereas the SNR drops
due to the finite expansion of the condensed ensemble (right). More details in
text

Temporal evolution of the fringe spacing and far-field approximation

From the presented expansion data, the Thomas-Fermi radii of freely expanding clouds
(mF = 0) agree with the predicted evolution of a condensate emerging from a holding
trap with trapping frequencies along the principal axes of ωi = 2π · (27, 10, 22) Hz. We
therefore can approximate the ratio of the cloud’s expansion rate and width in the
direction of the beam splitter, which determines the phase curvature of the expanding
ensemble as α = λx/λ̇x (see Sec. 3.5.1). The interrogation time between two successive
Bragg pulses changes the relative distance δx between the interfering wave packets,
which defines the fringe spacing period d in the far-field (see Sec. 3.5.2) according to

dori =
2π

αδx
=
λx

λ̇x

· h

mδx
≈ πTtof

k ·Tint
, (5.12)

with mass of the atoms m, total time-of-flight between release and absorption image
Ttof , wave vector k and interrogation time Tint. Based on the prediction of λx/λ̇x,
Tint was chosen to values around 1 ms to be able to observe about 3-4 local maxima
(minima) in the density profile (see Fig. 5.10). This allows for a reliable determina-
tion of the characteristic parameters from the fit routines as done in ground-based
measurements.

In Fig. 5.9 (left), we show the fringe spacing d of an ORI with varying time-of-
flight in microgravity. In this campaign, the Ramsey-type sequences have always been
performed with the same pause times between the pulses of Tp = 1 ms, but with
different π/2-pulse durations τπ/2. The effective interrogation time reads Tint = Tp +
τπ/2 and varies slightly on a daily basis due to intensity drifts of the Bragg laser
beams, which results in different durations of τπ/2. With this configuration, values
for the fringe spacing between d ≈ 40 µm for Ttof = 100 ms and d ≈ 160 µm for the
longest possible time-of-flight of Ttof = 500 ms have been observed.
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Figure 5.10: Absorption images of the output ports of an ORI in microgravity. The experi-
ments are realized with an interrogation time of Tint ∼ 1 ms, and three different
time-of-flights 300 ms, 400 ms, and 500 ms are depicted from left to right (A-C).
Note, that the separation time between recombination and detection was not
kept constant but varies between Tsep = 126 ms (A) and Tsep = 226 ms (B, C).

Each circle represents a single drop experiment, the different colors correspond to
the effective interrogation time and the error bars are given by the 1σ confidence
intervals of the fitted parameters. The ARP was always applied 4 ms after release with
a duration of 4 ms, followed by a 1 ms ramp down of the bias field. Open symbols now
represent experiments, for which the initial expansion time T0 between release and
the interferometer is always much larger than the characteristic time 1/ωrad, the full
symbols instead correspond to an ORI operated for T0 ≈ 1/ωrad.

In the far-field, the temporal evolution of the fringe spacing in an ORI can be safely
approximated by Eq. 5.12. These predictions are given as dashed lines for each Tint

in Fig. 5.9 (left). After sufficiently long times of free expansion T0 ≫ 1/ωrad before
application of the ORI (open circles), the entire mean-field energy of the condensate is
converted into kinetic energy and we are operating the interferometer in the ballistic
regime. The influence of the non-linear expansion directly after release of the conden-
sate is insignificant. This yields a better agreement between the measured data and
the far-field approach compared to ground-based measurements (see Sec. 3.5.1).

The single data point (full circle) at a time-of-flight of Ttof = 100 ms again vi-
sualizes the influence of mean-field acceleration at relatively short free expansion
times. Here, the initial expansion time (including ARP) before the interferometer
is T0 = 9 ms ≈ 1/ωrad. As observed in ground-based measurements, a first interferom-
eter pulse applied in the phase of mean-field driven acceleration reduced the density
by half6 and immediately changes the slope of λ̇/λ.

The change of the phase curvature α ∼ λ̇/λ leads to a discrepancy between far-field
approximation and observed fringe spacing. The implications of beam splitter pulses
to the evolution of λ and λ̇ have to be calculated based on the chip-model scaling
approach [113], but have not yet been implemented. As an approximation for the
single experiment, the offset can be quantified to ∆d = 8.4(1.7) µm which means a
relative error of about 24%.

6Additionally, a finite repulsion velocity δv between the separating momentum states is induced (see
Sec. 3.5.5 and Sec. 5.4.1). However, the resulting error in δx scales with interrogation time Tint

and thus might be negligible in case of an ORI.
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Contrast and signal-to-noise ratio

In Fig. 5.9 (right), the contrast C of the interference fringes (black squares) and the
corresponding signal-to-noise ratio (red triangles) are shown. They are extracted by
fitting Eq. 3.73 to the obtained absorption images. If given, error bars depict 1σ
confidence intervals of the fitted parameters.

For comparably short time-of-flights of 100 ms, the contrast can be quantified to
about C = 0.3 and finally increases up to values near C ≈ 1 for Ttof = 500 ms. Vice
versa, the SNR decreases by a factor of ∼ 7. The increase in contrast can be explained
by the absence of a non-condensed (thermal) fraction of the atomic cloud, which washes
out the interference contrast at comparably short time-of-flights. This was already
presented as the main decoherence mechanism in our ground-based measurements (see
Sec. 3.5.3). Due to the extended free fall provided by the drop tower environment, we
can wait for 500 ms to let the thermal background vanish, which results in a completely
modulated interference pattern.

The almost perfect contrast at long timescales leads to the assumption of a coherence
length at least just as big as the condensate’s width, as expected for purely phase
coherent matter waves [163]. However, due to the limited number of atoms in the
BEC and the finite expansion rates of about 1 mm/s, the atomic density and the SNR
decreases accordingly. This can also be seen in Fig. 5.10, where typical absorption
images are shown for three different time-of-flights of 300 ms (A), 400 ms (B), and
500 ms (C). Each picture is individually normalized and depicts the same region of
interest. Here, momentum transfer of the Bragg beams occurs in the negative x-
direction, that means the right output port represents interfering clouds of momentum
class 0h̄k. The interfering momentum classes of 2h̄k separate from this stationary
output port with twice the recoil velocity until the absorption image is taken. For
increasing time-of-flight, the fringe spacing increases due to the finite dispersion of
the wave packet which can be seen in the integrated column densities. Note, that the
initial expansion time T0 was not equal in the three pictures. This results in different
separation times between wave packet recombination and detection of Tsep = 126 ms
(A) and Tsep = 226 ms (B, C). Due to a non-perfect release process, the previously
analyzed COM velocity of the atoms in the z-direction is additionally visible.

The next section will review the results of an asymmetric Mach-Zehnder interferom-
eter operated with Bose-Einstein condensates in microgravity. This geometry can in
principle be used to form matter wave sensors which are extremely sensitive to inertial
forces such as accelerations and rotations [20, 110]. The upcoming results indicate the
feasibility of this setup for future precision tests of gravity-related effects such as a
test of the Universality of the Free Fall (UFF) by means of differential acceleration
measurements with ultra-cold matter waves.

5.4 Asymmetric Mach-Zehnder interferometer (AMZI) in
extended free fall

Light-pulse atom interferometers rely on the fact, that the phase shift between two
interfering paths can be read out by measuring atomic transition probabilities. For
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example, the local acceleration a of atoms w.r.t a reference mirror is encoded in the
phase difference of a gravimeter [194, 49]. The sensitivity of a quantum projection
noise limited single-shot acceleration measurement with N atoms in Mach-Zehnder
configuration can be expressed as

δa ∝ · 1

C
√
N

· 1

keff

· 1

T 2
, (5.13)

with the contrast C, the effective wave-vector keff , and the interrogation time T . The
T 2 scaling is obviously favorable for microgravity conditions, as long as one can assure
a measurable contrast C. The population ratio and thus a phase difference can only
be determined through a measurable contrast envelope.

To measure contrast, typically a set of multiple experiments with different phases
imprinted by, for example, the interferometer beams have to be performed. During a
phase scan, contrast may additionally vary from shot-to-shot even in lab-based experi-
ments. Numerous systematic effects [20, 9] introduce noise and bias terms in the phase
extraction. Contrast determination with this method gets even more challenging when
considering a drop tower experiment with max. 3 drops per day. The current Bragg
laser setup does not yet feature an active frequency stabilization of the Bragg lattice,
and reproducing exactly the same experimental conditions (e.g., center-of-mass velocity
and positions) from drop to drop is challenging and the focus of current investigations.

With an asymmetric Mach-Zehnder interferometer, however, the contrast can be
read out by a single shot. As introduced in the ground-based measurements of Sec. 3.5.4,
this interferometer scheme applies an asymmetry between the two pulse separation
times, therefore resulting in a total interrogation time of Tint = 2T − δT (see Fig. 5.8,
right). The temporal asymmetry directly translates to a spatial displacement of inter-
fering parts of the wave function at the two output ports, δx = 2vrδT .

In the far-field approximation, the fringe spacing d of an AMZI with effective wave
vector k is inversely proportional to the induced displacement δx as

damzi =
λx

λ̇x

· h

mδx
≈ π ·Ttof

k · δT =
π · (T0 + 2T − δT + Tsep)

k · δT , (5.14)

with initial expansion time T0, the interrogation time 2T − δT and the output port
separation time Tsep. In contrast to the open Ramsey-type sequence, the pulse duration
has not been taken into account for calculating the effective asymmetry δT . The latter
is only given by the timing asymmetry between the center of the Bragg pulse envelopes.

5.4.1 Probing the phase evolution of a condensate with an AMZI

To verify the feasibility of our apparatus in performing high-precision interferometry
measurements in microgravity, we performed an AMZI campaign operated with Bose-
Einstein condensates. They have been released from a shallow Ioffe-Pritchard trap
(IPT) with ωi = 2π · (27, 10, 22) Hz. The ARP was applied 4 ms after release with a
duration of 4 ms, and 1 ms later the asymmetric interferometer sequences have been
applied.

From the measurements operated with an ORI, we already learned that a beam-
splitter induced reduction of mean-field conversion influences the formation of the
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Figure 5.11: Fringe spacing of an asymmetric Mach-Zehnder interferometer (AMZI) in mi-
crogravity. Shown here is the temporal evolution of the fringe spacing d for
condensates released from a shallow trapping potential (red circles), and con-
densates additionally manipulated with DKC (blue squares). The solid lines
correspond to calculations using the scaling law solution for elongated traps
with radial trapping frequencies ωrad = 2π · 20 Hz (red line) and ωrad = 2π · 1 Hz
(blue line) estimated from the expansion data (see Sec. 5.2.3). The black dashed
lines represent the far-field approximation for asymmetries of δT = 1 ms and
δT = 2.5 ms, respectively. More details in text.

fringe pattern (see Sec. 5.3 or 3.5.2). This has to be considered for interferometer
pulses applied after free expansion times T0 ≤ 1/ωrad. However, since the available
free fall time is limited and we have to consider a sufficiently long separation time to
observe the two output ports spatially separated, we had to apply the AMZI as early
as possible.

Evolution of the fringe spacing without DKC

Based on the experiments made with the ORI, an asymmetry of δT = 1 ms was chosen,
which means the pause time between the first and the second pulse was slightly longer
compared to the time between the second and the third one. For this measurement
campaign, the separation time (see Fig. 5.8) was kept constant at Tsep = 52 ms. This
allows for a spatial separation of the output ports on the order of half a millimeter
(exceeding a few times the condensates size) before detection.

We observed a linear scaling of the fringe pattern with the total time-of-flight Ttof .
The evolution of fringe spacing could be measured up to a total interrogation time of
2T − δT = 449 ms (see Fig. 5.11, red circles), where error bars depict 1σ-confident
bounds of the fitted parameter. The measured fringe spacings slightly exceeds the
scaling law prediction calculated with an approximated radial trapping frequency of
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ωrad = 2π · 20(3) Hz (red line). Notably, this calculation coincides with the far-field
approximation (dashed line) after some tens of milliseconds7.

Deviations from measured fringe spacings dmeas to the theoretical prediction

dcalc =
λx

λ̇x

· h

mδx
(5.15)

can occur for an erroneous model of the fraction of the condensates size and velocity
λ̇/λ, and errors of the assumed wave packet separation δx. A thorough analysis of
the fringe spacing evolution is important, since it allows to detect external influences
on the wave packet dynamics and thus gives insight to decoherence mechanisms. In
the next section, we will qualitatively discuss possible error models which affect the
formation of the fringe pattern.

Influences on the fringe spacing evolution in open interferometers with BECs

In the following, some of the major influences on the fringe spacing evolution will be
discussed, which have to be considered in Eq. 5.15 for a correct theoretical prediction
and interpretation of the fringe pattern:

• Error in δx (1): Timing asymmetry δT . The fringe spacing scales as
d ∼ 1/δx and is thus inversely proportional to the temporal asymmetry (δx ∼
2h̄k/m · δT ). For QUANTUS-I, uncertainties in δT are negligible since our tim-
ing reference (PulseBlaster DDS-II-300) has a temporal resolution on the order
of some tens of ns, which is much smaller than the here applied asymmetry
δT = 1 ms. Moreover, duration and temporal uncertainty of supposedly equally
long beam splitter pulses have not to be considered for the effective interrogation
time in a Mach-Zehnder configuration.

• Error in δx (2): Alignment of the Bragg beams. If we generate the Bragg
lattice by the interference of two independent beams enclosing an angle ϑ (see
Fig. 3.1), the transferred momentum for resonant atoms is proportional to the
sine of the half angle as pr(ϑ) = 2h̄k · sin(ϑ/2). Here, ϑ = 180◦ for anti-parallel
beams. The separation of the interfering wave packets after recombination is
described by δx(ϑ) = 2h̄k/m · sin(ϑ/2) · δT , which affects the evolution of the
fringe spacing d ∼ 1/δx(ϑ). However, the dimensions of the UHV chamber in
QUANTUS-I prohibit large angles between the Bragg beams such that misalign-
ment as a potential error source can be omitted by carefully adjusting the beams.
To explain the observed offset, an angle of ϑ ≈ 140◦ would be necessary, which
can safely be excluded.

• Error in δx (3): Repulsion velocity kick. As measured in ground-based
experiments with an asymmetric Mach-Zehnder interferometer, the application
of interferometer pulses in the presence of a strong mean-field will modify the
relative COM velocity between both momentum states (see Sec. 3.5.5). The

7This is true for all corresponding scaling law calculations within the fitting error of ωrad. These are
not shown here for better visibility.
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positive scattering length of 87Rb causes an additional phase shift due to mean-
field repulsion between the overlapping wave packets, which can be measured
as a small repulsion velocity rate δv. Without repulsion kick and ϑ = 180◦,
the separation after recombination is δx0 = 2h̄k/m · δT . An additional COM
velocity δv after the first pulse will consequentially lead to a time-dependent
spatial displacement of δx(δv) = δx0 + δv · (2T − δT + Tsep), which again affects
the fringe spacing as d(t) ∼ 1/δx(δv). The repulsion velocity itself is dependent
on the strength of the mean-field and therefore on the condensate preparation
before release. Comparably steep traps with ωrad ≈ 2π · 130 Hz (see Sec. 3.5.5)
led to ground-based measurements of δv on the order of µm/s, which can be seen
as an upper value for the AMZI campaigns in microgravity. Here, we released
the condensate from our most shallow trap (ωrad ≈ 2π · 20 Hz) and the impact
on the fringe spacing is estimated in Fig. 5.12.

• Error in δx (4): Rotations. Capsule rotations will affect the evolution of
fringe spacing d as well as the fringe pattern’s read out. We have to distinguish
between the three axes (see Fig. 5.17) and always have to keep in mind that the
experiment chamber (incl. beam splitter direction) is rotating w.r.t the atomic
cloud. Rotations Ωx along the direction of the beam splitter wave vector (x-
direction) will ideally not affect d or the interferometer read out and can thus be
neglected. Rotations along directions perpendicular to the wave vector (Ωy and
Ωz) will lead to more complex fringe spacing dynamics and affect the pattern’s
read out. For a better understanding, let us first recall the situation of a non-
rotating experiment. After recombination in an AMZI, lines of constant phase
are perpendicular to the vector δ~r between the COM of both wave packets, which
in the 1D case of beam splitters along the x-direction is given as δ~x. The norm
|δ~x| = δx is time-independent and usually used as wave packet separation in
Eq. 5.15. Rotations of the beam splitter wave vector will now lead to a rotated
COM vector δ~r(t) with a time-dependent length. This implies (i) a rotation of
the fringe pattern and (ii) smaller fringe spacings compared to the non rotating
experiments. Whereas rotations Ωy in this case will still allow for high-contrast
imaging of the fringe pattern, rotations along the z-axis will additionally lead to
reduced contrast in the absorption images. Capsule rotations during a drop have
been monitored with an inertial measurement unit (IMU) and will be discussed
in Sec. 5.4.3.

• Error in λ̇/λ (1): Principal axes of the condensate. It was proven in
[137] (and indicated through the analysis of the free expansion in Sec. 5.2.3),
that the initially elongated trap is tilted both in the horizontal plane and in
the z-direction during adiabatic decompression. Since the principal axes of the
condensate after release now do not perfectly overlap with the beam splitter
axis, errors will arise due to the assumption of an elongated trapping potential
whose fast axis is aligned perpendicular to the beam splitter axis. A detailed
chip-model was developed [113] and used for our Bragg interferometer analysis
in [12], which properly predicts the scaling of the of the condensate based on the
λ-matrix formalism [130] (see Fig. 5.12).
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Figure 5.12: Comparison of observed and calculated fringe spacing for three different mod-
els. The relative error of the experimentally measured fringe spacing to the
prediction of the scaling law with an idealized cigar shaped trap (red circles,
ωrad ≈ 2π · 20 Hz) is compared to the numerical solution of the chip model
(blue triangles). Additionally, the latter has been modified with a repulsion
velocity δv (orange squares). Details in text.

• Error in λ̇/λ (2): Beam-splitter induced reduction of α. In this AMZI
campaign without DKC, the first interferometer pulse is applied 9 ms after release
of the condensate from a shallow trapping potential with about ωrad ≈ 2π · 20 Hz.
For this trap, the acceleration of the condensate is still mean-field driven (cf.
Fig. 3.16 and 3.17). If now a beam splitter is applied, the wave function is split
into a coherent superposition of two momentum states with bisected density. The
wave packets expansion rate λ̇ will reach its asymptotic value earlier and therefore
change the slope of α ∼ λ̇/λ. An offset arises which was already identified in the
context of ORIs in measurements on ground (see Sec. 3.5.2) and in microgravity
(see Sec. 5.3).

The relative error between the measured and calculated fringe spacings

dmeas − dcalc

dcalc
(5.16)

using three different models (including some of the aforementioned influences) is given
in Fig. 5.12. The relative error is plotted versus the interferometer time T , which
is given by the pause time between the first and the second Bragg pulse. Since we
kept the initial expansion time T0 and separation time Tsep constant, there is a linear
dependence between T and total time-of-flight Ttof , which is why the latter is indicated
with a second x-axis at the top of the graph.
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The red data points correspond to the relative error between experiment and calcu-
lation as shown in Fig. 5.11, where the fringe spacing dcalc is calculated with Eq. 5.15
by approximating ωx = ωz ≡ ωrad. The value for ωrad was obtained by fitting the
expansion data (see Sec. 5.4). The error bars of (dmeas − dcalc)/dcalc correspond to
the fitting error of the experimentally observed fringe spacing. For short timescales,
the measured fringe spacing exceed the prediction by up to 10%, but incrementally
approach the zero line (coincidence of measurement and model) until they finally fall
below it. This simple model is obviously not suitable for a correct fringe spacing
prediction.

In [12], we simulated the fringe spacing based on a chip-model (CM) which considers
the tilt of the condensate and induced rotations of the principal axes. The blue data
points correspond to the relative deviation of the observed data to this model, which
fit quite well to the data6.

Additional influences on the evolution of λ̇/λ due to the reduction of α (error in
λ̇/λ (2)) cannot account for the observed behavior since they would only lead to a
positive offset. However, for large interferometer times, the error still increases since
the experimental fringe spacing is smaller than the prediction. This might be assigned
to the relative big error in fitting the fringe spacing but could also be an indication of
an error in δx (e.g., repulsion velocity kick or rotations).

As one example for a linear phase factor, we modeled the CM with an additional
repulsion velocity. For that, we took δv = 10 µs/s which was measured previously in
ground based measurements for a comparably tight trap (ωrad ≈ 2π · 130 Hz). This
should serve as an upper value for δv. The results are depicted as orange squares6.
The additional linear phase term shifts the fringe spacing but could also not explain
the tendency observed for the last two data points.

The long-term evolution of the fringe spacing should be analyzed in further drop
campaigns since all contributions to the phase evolution have to be perfectly under-
stood and considered in a dedicated model to perform high-precision measurements.
Due to the long time-of-flight available, microgravity experiments with interfering con-
densates at long timescales are sensitive to even the slightest perturbations in position
and velocity.

Evolution of the contrast without DKC

The observed contrast for AMZI with condensates in the mF = 0 state is plotted
versus the interferometer time 2T − δT (see Fig. 5.13). This is the time the atoms
spend in the interferometer and contrast is expected to scale with this characteristic
time. The contrast typically exceeds C = 0.5 (see red circles in Fig. 5.13), which is
less than compared to the measurements with an ORI, which featured about the same
separation δx. This indicates decoherence mechanisms which will be analyzed at the
end of this section.

The SNR dropped rapidly and prohibited longer interrogation times (see red circles
in Fig. 5.14). These have only become accessible by applying delta-kick cooling prior
to the ARP and the subsequent AMZI sequences.

6The errors remain on the same scale as shown for the red data, but are omitted here for better
visibility.
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Figure 5.13: Contrast of the evolving inter-
ference pattern versus the total
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Figure 5.14: Signal-to-noise ratio (SNR) ex-
tracted from the fits to the in-
tegrated column density data.

5.4.2 An AMZI with delta-kick cooled condensates

By applying the delta-kick cooling (DKC) technique, we could extend the observation
of contrast to an interrogation time 2T − δT = 677 ms. In our experimental sequence,
this corresponds to a total time-of-flight of Ttof = T0 + 2T − δT + Tsep = 960 ms (blue
squares in Fig. 5.11 - 5.14).

The BEC is released from the shallow trap with ωi = 2π · (27, 10, 22) Hz and expands
for 30 ms. Then, we applied DKC by means of a 2 ms lasting magnetic trap with the
same trapping frequencies as the holding trap. The ARP was applied 4 ms after DKC
with a duration of 4 ms. After ramp down of the offset field within 1 ms, the cloud freely
expands for 164 ms until the interferometer sequence is applied. We therefore assume
to operate in the ballistic regime. Since DKC effectively slows down the expansion
rate, we changed the asymmetry to a slightly larger value δT = 2.5 ms to preserve the
number of visible fringes along the now much narrower condensate. This is the reason
for the rescaling of the fringe spacing’s slope, which follows quite well the interaction-
free far-field approximation (black dashed line).

In Sec. 5.2.3, the spatial evolution of a delta-kick cooled ensemble was modeled
with a virtual trapping potential. Indeed, to realize a cloud with an expansion rate
comparable to that observed with DKC, an initial trap with ωrad = 2π · 1.4(1) Hz would
be necessary. Compared to our method, this would require longer preparation times
(adiabatic opening of the trap) and has another major disadvantage. For such a shallow
trapping potential, mean-field conversion would slow down and affect the evolution of
the phase profile even on timescales available in microgravity. As an example, the
calculation of the fringe pattern evolution with ωrad = 2π · 1.4 Hz is shown as a blue
line in Fig. 5.11. With the help of DKC, we can prepare ultra-cold ensembles without
mean-field driven accelerations.

The contrast is not as high as the AMZI operated without DKC, which in part can be
explained by the larger asymmetry (See Sec. 3.5.3). However, it still exceeds C = 0.4
for interrogation times up to 2T−δT ≈ 500 ms. Due to the larger signal after employing
DKC, we are able to detect interference fringes until a maximum interrogation time
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of 596 ms. Here, contrast and SNR both decrease with the interrogation time of the
AMZI and generally with the expansion time of the BEC.

Our currently largest interferometer (green triangles in Fig. 5.11 - 5.14) is made pos-
sible by carefully adjusting the separation time Tsep between recombination through
the last π/2 pulse and detection. In this method, both output ports are not completely
spatially separated for imaging. The timing is chosen such that the output ports are
separated by a distance which is equal to half a fringe spacing. The pattern of the
two exit ports now overlap, ideally leading to the same contrast with an increased
absorption signal. This allowed for an AMZI with a maximum interrogation time of
2T − δT = 677 ms.

5.4.3 Limitations in contrast and signal-to-noise ratio

The output of our open interferometers are spatially interfering parts of condensed
matter waves. Thus, the contrast of each shot can be inferred from the modulation
depth of the fringe pattern. The contrast itself depends on various external influences,
noise sources as well as on the atomic cloud properties itself (e.g., coherence length,
see Sec. 3.5.3).

For an AMZI with DKC, contrast typically exceeds C = 0.4 but fades away for
increasing T . The observed reduction is non-exponential in time and uniform over the
cloud [12]. The SNR drops as the clouds expand, which leads to a lower signal for long
time-flights. This limitation can in principle be overcome by using other detection
methods or condensates with more atoms as in the successor experiment7. However,
decoherence mechanisms will still lead to significant loss of contrast and thus ultimately
limit the precision of matter wave interferometry experiments in microgravity. We
will now qualitatively discuss three important systematics which can be attributed to
decoherence in drop experiments.

Influence of residual fields

In [17], the QUANTUS-I experiment observed anomalous expansion of a condensate
in the microgravity environment of the drop tower. The cloud of condensed atoms
was prepared in a magnetic sensitive state |F = 2,mF = 2〉, and the corresponding
data indicates the presence of magnetic stray fields. The expansion could be modeled
with an artificial sub-Hertz residual field [137]. With an interferometer, we now have
another possibility to directly verify the presence of electro-magnetic stray fields.

With an adiabatic rapid passage, we now have a tool to compare interferometers
with atoms in |F = 2,mF = 2〉 and |F = 2,mF = 0〉 state, without affecting the clouds’
temperatures or center-of-mass motion to first order. On the timescales of our ground-
based measurements (Ttof = 32 ms), we could not observe loss of contrast by using
magnetically polarized atoms.

In 5.15, two absorption images are shown for exactly the same interferometer se-
quence operated with differently polarized atoms in microgravity. They have been
taken after a total time-of-flight of 260 ms and in case of atoms in the mF = 2 state

7In the QUANTUS-II experiment, condensates with about N = 3 · 105 atoms can be generated within
a cycle time of less than two seconds [195].
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Figure 5.15: Comparison of the influence of residual fields on the free propagation of matter
waves. An AMZI is used to study the coherence of differently polarized ensem-
bles in two consecutive measurements (mF = 0 (A) vs. mF = 2 (B)). In both
cases, the sequence is performed with 2T − δT = 199 ms and the absorption
images are taken after a total time-of-flight of 260 ms. The contrast drops from
C = 0.64 (mF = 0) to C ≈ 0 (mF = 2).

(B) no interference pattern occurs, whereas interfering condensate copies in the mF = 0
state show a fringe pattern with a contrast of C = 0.64 (A). This is a clear evidence
for residual magnetic fields which influence the evolution of λ̇/λ. Another result is
shown in Fig. 5.16, where a 50/50 mixture of atoms in the mF = 0 and mF = −1
state has been prepared as an input state for an AMZI with 2T − δT = 99 ms. After
recombination, the interferometer output ports of the different mF states are spatially
separated in a Stern-Gerlach experiment. After application of a strong magnetic gradi-
ent, the isolated interferometer with mF = 0 atoms could be detected with a contrast
of C = 0.69 whereas no fringes are observed in case of the mF = −1 sub-ensemble.

However, the discussed measurements of an AMZI in microgravity in this thesis have
been operated with atoms in the mF = 0 state during interferometry. They are to first
order insensitive to magnetic fields. Nevertheless, the quadratic Zeeman shift

∆Equad(mF ) = (4 −m2
F )h̄ωquad/4 (5.17)

with ωquad = 286 Hz/G2 [150] still leads to perturbations of the free evolution. Com-
pared to the linear shift, the quadratic one is small but might accumulate to finite COM
displacements of the wave packets as well as disturbances of the phase evolution, which
cause a loss of contrast for extended free fall times. This will be implemented in the
next version of the chip model.

Capsule rotations

Capsule rotations will affect the evolution of the fringe spacing d as well as the fringe
pattern’s read out. They will lead to (i) a rotation of the fringe pattern and (ii) a
smaller fringe spacing compared to the non rotating experiments. As already discussed
in Sec. 5.4.1, rotations Ωx and Ωy can be neglected as a source of contrast loss. However,
the contrast of an absorption image suffers from the projection of a rotated fringe
pattern along the z-axis.

To quantify the rotation rate of the capsule during a drop, an inertial measurement
unit (IMU) was installed which measured the rates independently for all three dimen-

157



5 Free-fall interferometry with Bose-Einstein condensates in microgravity

Figure 5.16: Absorption image of an AMZI operated with spinor gases to probe residual
fields. An equally populated mixture of atoms in the mF = 0 and mF = −1
state is prepared with the adiabatic rapid passage. This mixture is then used
as an input state for an AMZI with 2T − δT = 99 ms. After recombination,
the output states are spatially separated with a magnetic field gradient. The
isolated interferometer wit mF = 0 atoms shows a contrast of C = 0.69 whereas
no contrast is observed in case of the mF = −1 sub-ensemble.

sions. A typical result is shown in Fig. 5.17. The largest rotation rates (Ωx = 0.17◦/s
and Ωy = 0.12◦/s) have been measured along the x- and y-direction, which both will
not contribute to a loss in contrast. Rotations along z-direction can be quantified to
about Ωz = 0.03◦/s, which cannot explain a complete loss of contrast on the investi-
gated timescales [112].

Beam splitter alignment and wavefront distortions

Since the atoms have a finite COM motion perpendicular to the wave vector of the
Bragg beams and the wave function itself spreads over macroscopic distances of half a
millimeter (see Sec. 5.2.3), the quality of the interferometer beams will play a significant
role regarding the interferometer contrast. Wavefront curvatures and aberrations are
one of the main sources of decoherence and phase estimation errors in high-precision
atom interferometers.

In a uniform gravitational field, the measured phase difference in a Mach-Zehnder
interferometer is dependent on the phase of the Bragg beams imprinted on the atomic
wave function. At the different times t1, t2, t3 of the beam splitter pulses, the atomic
wave function of the i-th atom with positions ~ri in the lattice beam accumulates a
total phase shift of

∆iΦ = φ1(~ri, t1) − 2 ·φ2(~ri, t2) + φ3(~ri, t3), (5.18)

We now have an atomic distribution, which in case of a nK cold BEC is small com-
pared to thermal sources at µK temperatures. However, in microgravity experiments
with extended free fall time, even the condensate’s expansion has to be taken into
account.

The first pulse of the AMZI with DKC is applied 194 ms after release. Here, the
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A B

Figure 5.17: Typical rotations of the QUANTUS-I capsule during a drop experiment (A).
An inertial measurement unit (IMU) monitored the rotation along the three
principal axes while being in free fall. This period is colored in each graph. For
convenience, the geometry of the AMZI is given in (B).

condensate has a spatial extension of about 100 µm in the radial direction, and is
displaced from the atom chip’s surface by about 800 µm. Ideally, a Gaussian intensity
profile can be assumed for the Bragg lattice, which itself has a planar wavefront only in
the focal plane. In QUANTUS-I, self-built telescopes collimate the light to a FWHM
of 6.5 mm and have not been optimized to the full extend w.r.t to a perfect wavefront.
More critical, imperfections of all traversed optics (e.g., lenses, waveplates, windows)
and additional reflections at the HR-coated chip surface will presumably lead to a
perturbed wavefront. In the setup presented here, both Bragg beams are collimated
via two separated sets of telescopes and enter the UHV chamber via opposite non
AR-coated entry windows. The imprinted phase on the atoms suffers from wavefront
inhomogeneities over the clouds width.

For our longest interferometer, the last pulse is applied at 2T−δT = 677 ms, which is
882 ms after release from the holding trap. Here, the condensate has evolved to a radial
size of about 300 µm. Assuming the Bragg laser beams only to cause 1D momentum
transfer along the x-direction, the condensate’s COM position changes over 800 µm in
the z-direction mainly due to the imperfect release process and the interaction with
the magnetic lens (see Sec. 5.2.3).

The imprinted phase difference now changes from pulse to pulse due to (i) the finite
expansion and (ii) the COM velocity in an arbitrary wavefront. Finally, one can not
assure that even the orientation of both interferometer telescopes w.r.t. each other
and the atom chip is the same for each drop.

The influence of imperfect wavefronts and the role of the HR-coated chip surface as
a reflector has to be analyzed in future drop campaigns. The arising systematics are of
importance for the next-generation drop capsule experiments which aim for precision
measurements of differential accelerations at timescales exceeding QUANTUS-I. Ul-
timately, space-borne sensors will offer even longer microgravity times and wavefront
errors will be a major limitation in the phase estimation.
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The central results of this thesis constitute an important step towards operating preci-
sion interferometry experiments based on ultra-cold atoms in weightlessness. Despite
the fact that there is still a long way to go for space-borne applications, this work
demonstrated necessary scientific techniques and tools for free-fall interferometry on
extended time scales. Specifically, it proved the general feasibility of microgravity-
enhanced quantum sensors with an atom-chip-based source of Bose-Einstein conden-
sates in the Bremen drop tower.

The achieved results with QUANTUS-I (Q-I) can be assigned to two consecutive
working phases: ground-based implementation of experimental techniques for unper-
turbed matter wave interferometry including preparatory studies, and the adaption of
all techniques for microgravity application and subsequent combination to demonstrate
the first BEC interferometer in extended free fall:

Free-fall interferometry with
Bose-Einstein condensates
in microgravity (see Ch. 5 )





Atom-chip-based source of non-magnetic
degenerate gases (see Ch. 2)

⋄

Bragg diffraction and open interferometers
with degenerate gases (see Ch. 3)

⋄

Delta-kick cooling as a tool for long
baseline atom interferometry (see Ch. 4)

6.1 Results of the preparatory ground-based studies

As a first major upgrade compared to earlier setups of Q-I [17], the on-chip generation
of (to first order) magnetic insensitive Bose-Einstein condensates with an RF-induced
adiabatic rapid passage (ARP) has been demonstrated. Typically, up to 90% of the
atomic ensemble were coherently transferred into the mF = 0 state.

A compact and robust Bragg laser system based on a distributed feedback (DFB)
diode laser was built and qualified for drop tower operation. After integration into
the Q-I payload, matter wave beam splitters and combiners based on two-photon
transitions between two internal momentum states have been implemented.

The phase evolution of chip-based Bose-Einstein condensates has been probed with
open light-pulse interferometer geometries. The temporal evolution of contrast and
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fringe spacing of interfering condensates in an open Ramsey-type interferometer (ORI)
has been investigated and compared with the theoretical predictions. We explored
the border to the non-linear expansion regime as we analyzed the influence of residual
mean-field energy on the quadratic and linear term of the condensate’s phase. This was
done in ORI geometries as well as with an asymmetric Mach-Zehnder interferometer
(AMZI), the latter of which was finally used to probe the phase coherence of the
condensate in our drop experiments.

As the third experimental requirement towards long-term matter wave interferome-
try, the on-chip realization of delta-kick cooling (DKC) has been presented for the first
time. This included the implementation of DKC for condensed and thermal sources
as well as the analysis of relevant error sources affecting the center-of-mass (COM)
motion. By the choice of the right DKC trap parameters, the momentum width could
be reduced by a factor of 4 (16-fold reduction of temperature), independent of the
condensate fraction. This led to the observation of freely expanding samples with
approximated expansion temperatures in the lower nK range.

6.2 Results of the microgravity campaigns

After the preparatory ground-based studies and the implementation of relevant tools
for unperturbed matter wave interferometry in microgravity, dedicated drop campaigns
with the Q-I payload have been performed. In more than 250 free fall experiments
operated at the drop tower in Bremen, the first demonstration of a matter wave inter-
ferometer with degenerate gases in extended free fall has been realized. To this end,
a well-planned drop strategy including the following intermediate steps has rigorously
been followed:

• Implementation of the ARP in microgravity and verification of the free expansion
of atoms in the mF = 0 state to follow the scaling law. These results suggested
that indeed residual magnetic fields in the tower have been responsible for anoma-
lous expansion of magnetically polarized atom as observed in the earlier runs of
this experiment [17, 137].

• Operation of ORI sequences to demonstrate the basic tools for matter wave
interferometry in microgravity. The resulting interference pattern was similar to
the one in the far-field of a double-slit and we could verify the spatial coherence
of condensates after free expansion times of up to 500 ms. The absence of thermal
background atoms led to an improved contrast of nearly C = 1 and indicated a
coherence length at least as large as the condensate width.

• First demonstration of on-chip DKC in microgravity. This technique allowed
us to observe the free evolution of a ∼ 1 nK cold quantum object after 2 s,
which constitutes the second largest free expansion time of a cold quantum object
reported so far [110]. For comparison, an adiabatic release from a holding trap
with trapping frequencies of about 1 Hz would be necessary to yield the same
expansion rate.
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• First application of DKC as a tool for long baseline matter wave interferometry.
The feasibility of an inertial sensitive geometry has been proven by the realization
of an AMZI with interrogation times of up to 2T − ∆T = 677 ms [12]. Here, the
contrast usually exceeded 40% but faded away for longer timescales.

Conclusion and next steps with QUANTUS-I

It still has to be evaluated why the contrast is decreasing and what mitigation strate-
gies can be deployed. Generally, the related interferometer sequences are throughout
operated in the linear expansion regime and collisions with thermal background atoms
(typical condensate fraction ∼ 60%) may be excluded since ORI experiments indicated
an increasing contrast for timescales up to 500 ms. Moreover, it was shown that the
application of DKC per se did not lead to dephasing and contrast loss.

We discussed the possible impact of capsule rotations, which affect the direction
of the beam splitter wave vector and therefore the effective trajectories of the wave
packets in the rotating framework. We measured the rotation rate with an inertial
measurement unit (IMU) and a first analysis shows that the residual rotations in the
contrast-sensitive direction (Ωz ≈ 0.03◦/s) are indeed too small to completely explain
the observations in our AMZI drop tower campaign [112].

The application of an ARP minimizes the influence of residual fields since atoms in
the mF = 0 state are to first order insensitive to magnetic fields. However, to rule out
that higher order terms of the magnetic interaction can be accounted for the contrast
loss on macroscopic timescales, they should be included in the Q-I chip model.

Wavefront distortions and imperfect beam splitter alignment are obvious candidates
to explain the contrast loss. Reflections of the Gaussian tails of the Bragg beams at
the highly reflecting coating of the atom chip surface cause optical interferences in
the vicinity of it. Additionally, imperfections of all traversed optics (e.g., wave plates,
lense, non-coated entry windows of the UHV chamber) and scattered light in general
lead to a perturbed wavefront at the atoms position. Due to the finite width and
COM velocity of the condensate, the imprinted phase profile on the atoms suffers from
beam splitter to beam splitter and we suspect this wavefront inhomogeneities over the
cloud’s spatial extension as the main reason for global dephasing.

In principle, this assumption can be investigated in a series of dedicated drop ex-
periments. Therefore, a controlled mechanism to move the BEC further away from
the chip surface is needed, which would allow for systematic studies of the interferom-
eter contrast in dependance of the z-position. A variable spatial displacement of the
COM position can also be used to improve beam splitter efficiencies (shorter pulses
and homogenous intensity), since the Gaussian peak of the Bragg beams is centered
about 5 mm below the position of the atom chip. It could be realized with a COM
kick during the adiabatic release and subsequent stop with an appropriately designed
magnetic lens pulse. Here, the atom chip gives us control over shape and position of
the DKC trap.

A more convenient method might be given by a series of two successive Bragg beam
splitter pulses reflected at the surface of the atom chip. Whereas the first possibility
is technically challenging and requires indeed some drops to find the right parameters,
the second method comes at the prize of 50% atom loss at least. In microgravity,
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two identical but counter propagating traveling waves will lead to simultaneous Bragg
diffraction in two opposing directions. One cloud will be accelerated towards the chip,
the other away from the surface. Thus 50% atom loss cannot be prohibited, which is
a challenge for achieving ultra-long expansion time with typical atom numbers of Q-I
(N ∼ 104).

Upcoming drop experiments with Q-I might also be used to further explore the
fundamental limits of DKC. Better control over the COM motion of the released con-
densate and the application of Multi-DKC sequences might lead to even colder sources
and potentially enable a more symmetric cooling of the condensate along both visi-
ble directions. In general, on-chip magneto-optics for matter waves (e.g. multi-lens
matter wave telescopes) is a promising tool for a versatile wave packet preparation in
phase-space. Spatial extension, momentum width and COM velocity can be adapted
to prepare a source which accurately features the desired properties for a specific ex-
periment. For example, this could be point-like sources mostly insensitive to wave
front curvatures for atom interferometry on ultra-long time scales. Macroscopic quan-
tum samples with tunable spatial extensions instead are beneficial for the study of
long-range order effects [14, 35] or even quantum reflection [196, 19].

Q-I is a pathfinder experiment which greatly demonstrated the technical feasibility of
an atom-chip-based source of degenerate gases as well as matter wave interferometers
on ultra-long timescales. It’s unquestioned that operating Q-I in microgravity will still
bring in new ideas and insights to important questions of microgravity-enhanced quan-
tum science. Examples of running experimental investigations on a proof-of-principle
level are rotation-insensitive interferometer topologies, double-Bragg diffraction topolo-
gies and compact chip-based gravimeter setups. However, Q-I was not inherently de-
signed for precision measurements.

Quantitative analyses of the contrast loss and global dephasing as well as multi-
sequential DKC have to be carefully considered with the limited number of available
drops at the drop tower. For a number of technical reasons, it might be more appro-
priate to address these issues with the successor drop tower experiments. They are
specifically designed for precision interferometry experiments in extended free fall and
amongst others will be reviewed in the following outlook.

6.3 Outlook on future experiments and advanced laser
system technology

To extend the reader’s picture of what the corresponding community (with its nu-
merous collaborations) is planning for the near future, we now review a selection of
upcoming microgravity experiments and missions with an emphasis on the already
used or proposed laser system technology1.

The success of QUANTUS-I (and previously ATKAT, which demonstrated the first
MOT in microgravity [197]) led to two other drop tower experiments: QUANTUS-II
and PRIMUS (see Sec. 6.3.1). They aim for the the demonstration of dual-species mat-

1Conception, assembly and qualification of laser systems for quantum gas experiments aboard sound-
ing rockets and space-borne instruments was the second main focus of my work during my time as
a Ph.D. student at Humboldt-University. The results will be published elsewhere.
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ter wave interferometry with rubidium-potassium (Rb-K) mixtures and first quantum-
based tests of the universality of the free fall (UFF) in a microgravity environment.

As a next major stepping stone towards space-applicability and proof of quantum
technological maturity, several sounding rocket experiments and missions are planned
(see Sec. 6.3.2). These comprise (i) the MAIUS mission which constitutes the third
generation of QUANTUS experiments to be operated as a single payload on an own
sounding rocket vehicle and (ii) technology-related experiments (e.g. FOKUS) for tests
of the laser heritage which has been developed in the framework of the LASUS project2.

The achieved results of the drop tower and sounding rocket experiments as well as re-
lated system studies constituted the baseline of the German contribution to a proposal
for a satellite mission based on ultra-cold quantum gases. STE-QUEST (Space-time
explorer and quantum equivalence principle space test) was a medium-size (M3) candi-
date satellite mission in the scope of ESA’s Cosmic Vision program (see Sec. 6.3.3). In
this context, a European consortium proposed a satellite-borne instrument which con-
sists of a dual-species atom interferometer operated with different rubidium isotopes
(85Rb and 87Rb) to test the weak equivalence principle in space.

6.3.1 Quantum tests of the UFF at the drop tower

The verification of the universality of the free fall (UFF) with quantum objects is one of
the major scientific goals of the QUANTUS collaboration3. QUANTUS-I (Q-I) is only
capable of single species condensate generation whereas the next-generation experiment
QUANTUS-II (Q-II) is designed for on-chip dual-species quantum gas operation with
ultra-cold rubidium and potassium atoms (see Tab. 6.1 and [43]). As another ultra-cold
quantum gas experiment to be operated at the drop tower, PRIMUS 4 is also aiming at
testing the UFF with rubidium and potassium degenerate mixtures. Both are designed
for the catapult mode of the drop tower, which offers a microgravity time of up to 9.2 s.
(see Sec. 5.1). The main difference between them is given by the technological approach
to generate the degenerate matter wave mixture, since PRIMUS will use an optical
dipole trap [198, 44].

In this context, UFF-violating measurements aim for a direct determination of the
Eötvös ratio η based on the quantum nature of particles,

η =
|aRb − aK |

g
, (6.1)

determining the normalized differential acceleration of two matter wave packets associ-
ated with supposedly individual accelerations aRb and aK . By anticipating shot-noise

2LASUS is a collaboration of the groups of A. Peters (HU Berlin), A. Wicht (Leibniz-Institut,
Ferdinand-Braun Institut für Höchstfrequenztechnik), E.M. Rasel (LU Hannover) and K. Seng-
stock (U Hamburg).

3QUANTUS is a collaboration of the groups of E.M. Rasel (LU Hannover), K. Bongs (U Birming-
ham), C. Lämmerzahl (ZARM / U Bremen), A. Peters (HU Berlin/ Leibniz-Institut, Ferdinand-
Braun Institut für Höchstfrequenztechnik), A. Wicht (Leibniz-Institut, Ferdinand-Braun Institut
für Höchstfrequenztechnik), K. Sengstock (U Hamburg), R. Walser (TU Darmstadt), and W.P.
Schleich (U Ulm)

4PRIMUS is a collaboration of the groups of S. Herrmann/C.Lämmerzahl (ZARM / U Bremen) and
E.M. Rasel (LU Hannover).
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QUANTUS-II QUANTUS-I

payload volume 300 l 500 l
payload mass 180 kg 240 kg
total capsule mass 480 kg 590 kg
microgravity time 9.2 s 4.7 s
atomic species 87Rb and 39,40,41K 87Rb
atom source flux (Rb only) 109 at/s 5 · 106 at/s
condensate atom number (Rb only) 105 104

cycle time (Rb only) typ. 1 s 10 - 15 s

Table 6.1: Comparison of the QUANTUS-II catapult-capable experiment versus the
QUANTUS-I pathfinder. Mass and volume budgets are approximated values based
on [199, 19]. The total capsule mass includes payload, platforms, base structure
(incl. battery platform), four stringers, nose cone, pressurized cover and top lid
plate [107].

limited detection in the microgravity environment, the only noise source contributing
to the measurement sensitivity is quantum projection noise [62]. The sensitivity to ac-
celerations for a single-species measurement in Mach-Zehnder configuration can thus
be approximated as

δa ∼ 1

C
√
N

· 1

keff

· 1

T 2
, (6.2)

with contrast C, atom number N , effective wave vector keff and interrogation time T .
As an example, given our results with the Q-I experiment reported in [12] and the
achieved atom numbers and anticipated performance of the Q-II apparatus [199] (see
also Tab. 6.1), a single-shot sensitivity enhancement (assuming the same contrast and
beam splitter wave vector) of about

[∆a]Q−II

[∆a]Q−I
=

(2.5 s)2 ·
√

105

(0.34 s)2 ·
√

104
≈ 160 (6.3)

seems feasible. With a more conservative approach (T = 1 s), the attainable single-shot
sensitivity with Q-II (∆a ≈ 10−10 g) combined with a high degree of common-mode
suppression of residual vibrations in a differential measurement scheme [52, 60] might
allow for a measurement of the Eötvös factor of better than η ≤ 5 · 10−11 [44]. Since
the drop tower environment only allows for a repetition rate of three drops a day,
the most promising method to extract the differential acceleration phase from the
interferometric signal is Bayesian estimation [42].

Ultimately, these experiments might pave the way for space based instruments such
as STE-QUEST (see Sec. 6.3.3), that in principle could achieve an overall sensitivity
at the 10−15 level, based on a single-shot resolution of the differential acceleration
of about σ∆a = 10−12 g [9, 31] with T = 5 s and N = 106. In the end, this is
comparable to the level of accuracy targeted by proposed space tests based on classical
bulk matter [32, 33, 34]. As it was motivated in the beginning of this thesis, these
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Figure 6.1: Photograph of the QUANTUS-II team5 arrival in Bremen (left), the PRIMUS
frequency comb (center) and laser system test capsule (right).

so far unmatched precision measurements in the classical and in the quantum domain
would consequently set new limits to the validity of the equivalence principle in mutual
agreement or, probably more interesting, find contradictory results.

QUANTUS-II

The second generation experiment Q-II outperforms the predecessor Q-I in many tech-
nical aspects and allows for dual-species operation (see Tab. 6.1). The budgets of a
capsule eligible for catapult operation are defined by the ZARM Fallturmbetriebs-
gesellschaft (FAB) [107]. They show even more stringent limitations compared to a
capsule for drop mode in terms of total length (2094 mm vs. 2860 mm) as well as
total mass including all platforms and the outer shell (400 kg vs. 500 kg). With a
net payload mass of less than 161.5 kg (including capsule platforms) and a volume of
0.3 m3, Q-II impressively demonstrated the realization of the world’s most compact
dual-species quantum gas machine [199].

The heart of the experiment is a multi-layer atom chip, loaded in combination of a
2D+ [200] and 3D MOT which are separated by a differential pumping stage. Mul-
tiple layers of current carrying wires on the chip allow for the generation of various
trapping potentials, including large volume traps for efficient MOT operation as well
as ultra-steep harmonic potentials for fast evaporation. The flexibility in the attain-
able trap configurations are also promising for the optimization of DKC. First results
of corresponding simulations indicate the possibility of reaching temperatures in the
sub-nK regime [201]. With this setup, the full span between large single-species 87Rb
condensates (a few 105 atoms) and fast cycle times (repetition rate of up to 0.5 Hz)
has already been proven in ground-based experiments. More technical details on the
physics package and the performance can be found in [199]. In December 2013, the
payload was transported to the Bremen drop tower (see Fig. 6.1, left) and the team is
currently expecting a first drop in June 2014.

5From left to right: A. Grothe, W. Herr, Ch. Grzeschik, T. Sternke and J. Rudolph.
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As one of the key elements for the successful Q-II operation in microgravity, a robust
and miniaturized laser system for dual-species laser cooling of and atom interferometry
with rubidium and potassium quantum gases is required. For this purpose, a catapult-
capable laser system was developed in our group [202, 203, 204, 205] which ensures
sufficient functionality even after DC shocks of about 30 g during launch and 50 g
during recapture (see Sec. 5.1).

Exploiting the full potential of the Q-II atom-chip-based setup in terms of loading
rate and atomic flux [199] requires high output powers on the order of a few hun-
dreds of mW for 2D+ and 3D MOT. Therefore, micro-integrated master-oscillator,
power amplifier (MOPA) modules are operated as light sources which have been de-
veloped specifically for this purpose at the Ferdinand-Braun Institut, Leibniz-Institut
für Höchstfrequenztechnik in context of the QUANTUS project. They are based on
a distributed feedback (DFB) diode laser whose emission is fed into a rich-waveguide
(RW) mode filter/ preamplifier and subsequently amplified in a tapered amplifier sec-
tion (see Fig. 6.2). Commercial-of-the-shelf thermo-electric coolers (TEC) are mounted
between module and heatsink to regulate the temperature for reliable operation us-
ing on-module NTC sensors. With typical FWHM linewidths on the order of a few
hundreds of kHz for 780 nm emission [206], this micro-integrated MOPA technology
is capable to provide at least 1 W optical output power [207]. Detailed results on
the electro-optical performance and first atom-optical applications of corresponding
modules for 780/767 nm are currently prepared for publication [208].

The MOPA modules are the central devices of the Q-II dual-species laser system,
which consists of two nearly congruent parts (Rb and K), segmented into four func-
tional units each (see Fig. 6.3). These are interconnected with polarization maintaining
single-mode optical fibers and comprise:

• Reference laser module. Miniaturized DFB diode laser based frequency ref-
erence, for technical details see [205].

• MOPA module. Houses the three MOPA modules and self-made, high-rigidity
miniaturized opto-mechanics (titanium grade 5) together with commercially avail-
able passive (e.g., optical isolator, fiber-collimators) components to fiber-couple
and subsequently guide the light to the other units.

• Light distribution and switching module. Capable of 2D+/3D switching,
selection of Raman- or Bragg beam splitter operation. Besides obligatory optics
and catapult-capable opto-mechanics, it additionally features active components
for reliable and fast light switching (e.g., acousto-optical modulators, shutters).

• Raman laser module. Coherent manipulation of the atomic cloud with beam
splitters of Raman-type. Information on these systems can be found it [203, 204].

The final overlap between potassium and rubidium light and the distribution towards
the physics package is done by fiber-optical splitter systems. Including the 5 cm thick
honey-comb aluminum base plate, the entire laser system (without control and driver
electronics) for dual-species operation fits within a volume of less than 50 l and features
a mass budget of about 35 kg.
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Figure 6.2: Schematic (left) and picture (right) of a 2nd generation micro-integrated master-
oscillator, power-amplifier (MOPA) module. The oscillator (MO) and the am-
plifier chip (PA) are mounted onto a gold-coated aluminum-nitride (AlN) sub-
mount which serves as a heat spreader. The sub-mounts are soldered onto a
micro-optical bench (in-between, micro-optics are assembled with adhesive bond-
ing techniques), which itself is clamped on a copper heat sink for better handling
and contacting. To prevent optical feedback, a micro-isolator is placed between
MO and PA section. The microbench features a net size of only 10 x 50 mm3,
the entire module is smaller than 25 x 50 x 15 mm3. Adapted from [209].

Figure 6.3: CAD drawing of the Q-II catapult capable laser system for dual-species inter-
ferometry with ultra-cold Rb and K quantum gas mixtures [202]. It consists of
two nearly congruent parts (for Rb and K), segmented into four functional units
each. With a total mass budget of less than 35 kg (without electronics), the entire
system fits on a capsule platform with a diameter of about 700 mm only.
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The rubidium part of the laser system is operable and already integrated in the Q-II
catapult payload. Prior to integration, the mechanical stability and basic performance
of the frequency stabilization has been separately tested in dedicated drop- and cata-
pult campaigns. Currently, the potassium part is being assembled and will presumably
complete the laser system in mid of 20156.

PRIMUS

The PRIMUS experiment complements the drop tower related research towards dual-
species interferometry with a different technological approach. Here, the source for
degenerate gases will be a crossed optical dipole trap [198, 44]. Once trapped in such
a potential, both atomic species can be simultaneously cooled down to degeneracy
by simply lowering the optical power of the two beams for forced evaporative cooling
[210]. Additionally, a crossed optical dipole trap or dipole forces in general may be
interesting for the implementation of DKC. In principle, the waist can be tuned to
generate larger trapping volumes and highly symmetric configurations can be accessed
due to the Gaussian beam profile. The DKC strength is adjustable via the total optical
power and the absolute frequency detuning [211].

A striking advantage of this setup lies in the accessibility of Feshbach resonances.
They allow to (i) tune the interaction strength to favorable values for efficient evapo-
ration and lower losses due to two- and three body collisions [212, 213] as well as (ii)
adjust the mixture to remain in a miscible phase during the measurements.

Currently, the subsystems are being assembled and integrated to achieve all-optical
Bose-Einstein condensation in ground-based measurements, which is scheduled for late
2014 [214]. A picture of the PRIMUS payload comprising laser system, batteries,
control computer and basic capsule infrastructure is shown in Fig. 6.1 (right).

The PRIMUS laser system (excl. dipole trap laser) is mostly based on the Q-II laser
technology but relies on another approach concerning the laser source type. Here, the
Raman lasers are drop tower capable, micro-integrated extended cavity diode laser
(ECDL) modules. These ECDLs have become available due to the on-going devel-
opments at the Ferdinand-Braun Institut, Leibniz-Insitut für Höchstfrequenztechnik
in context of the LASUS project (see Fig. 6.4, top). They provide sufficiently nar-
row short-term FWHM linewidhts of less than 100 kHz (100 µs) and an output power
on the order of a few tens of mW. In preparation of the sounding rocket missions
(see Sec. 6.3.2), they have been qualified in vibration tests (8.1 gRMS and 21.4 gRMS

20-2000 kHz) and mechanical shock tests (1500 g) where no degradation of the electro-
optical performance was observed [215].

Since the dual-species interferometer will operate with beam splitter lasers at dif-
ferent wavelengths of 780 nm and 767 nm, it ultimately may be necessary to provide a
phase link between the two laser systems to obtain an accurate estimate of the differ-
ential phase. In PRIMUS, this will be achieved by means of a femtosecond frequency
comb (Menlo Systems), which has been tested separately in various drop campaigns
(see Fig. 6.1, center).

6This point in time mainly depends on the concerted Q-II drop campaign strategy and corresponding
preparatory experiments on ground.
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Figure 6.4: Photographs of micro-integrated ECDL (top) and MOPA (bottom) modules of
the 3rd generation ( c© Ferdinand-Braun Institut, Leibniz-Institut für Höchst-
frequenztechnik). They are based on a versatile platform comprising the GaAs
semiconductor chip(s), micro-optics and electronic interfaces altogether assem-
bled onto a structured aluminum-nitride (AlN) ceramic plate with a footprint of
80 x 25 mm2. Including the electrical interface, it takes up a volume of 30 cm3

only with mass budget of 40 g [215].
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For laser cooling of rubidium, DFB-MOPA modules based on the same technology
platform [216] (see Fig. 6.4, bottom) are used whereas in case of the comparably dense
D2-level structure of potassium, again ECDLs are foreseen which will be subsequently
fed into a macroscopic TA section to achieve the relevant output power levels. The
light switching, overlapping and distribution modules are mostly based on Q-II heritage
which comprises free-space laser beam manipulation with high-rigidity, self-made opto-
mechanics assembled onto a honey-comb baseplate (cf. Fig. 6.3).

6.3.2 Sounding rocket experiments and missions

The drop tower is an excellent test-bed for pathfinder experiments in extended free
fall. In return, this microgravity platform already imposes demanding requirements on
the payload key technologies in terms of mechanical and thermal robustness, long-term
reliability, remote control capability, and miniaturization.

As the next step towards space-borne application and consecutive experiments,
sounding rockets are commonly used. They offer a reduced gravity environment (re-
maining accelerations below 10−5 g after heights of 80 - 100 km) with a duration of
about six minutes during a free fall parabola in the thermosphere [217, 218]. The
height of the apex depends on the specific motor combination and the payload mass,
but typically yields 250-300 km. The comparably strong requirements in mechanical
stability of sounding rocket payloads manifest the necessity of quantum technological
maturity and sufficiently high technology-readiness-level (TRL):

• Mechanical loads. During the burning phase of the motors, the sounding rocket
will spin up to about 3 Hz and high accelerations (up to 20 g), vibrations (8.1 gRMS

@ 20-2000 Hz, typ. qualification level for a double-stage sounding rocket of VSB-
30 type) as well as DC shocks (∼ 50 g) will affect the payload. Accordingly,
the components and the subsystems as well as the entire instrument need to
successfully pass all corresponding test procedures.

• Temperature gradients. Air friction heats up the outer hull to approx. 200◦C
during the ascent and additionally the flight electronics, laser sources and other
accompanying active components will locally raise the temperature. During ap-
proximately 7 min of operational time (incl. ascent), a thermal-control-system
(TCS) has to guarantee an acceptable thermal environment for the subsystems
to operate reliably.

• Maintenance-free instrument. The entire experiment cannot be accessed
after integration into the rocket, which is typically done more than half a year
prior to launch7. After final integration, the instrument will be operating in its
commissioning phase to optimize the measurement sequences and the over-all
performance. All components and subsystems need to be reliably operating and
must not show a critical degradation until launch. In case of any unexpected
circumstances, this pre-flight phase might easily add up to more than a year.

7Some experiments require late access, for example short-living biological probes. In this case, the
outer structure might be equipped with late access hatches. But considering a highly integrated
and thermally system with delicate fiber optics, small hatches have not been considered as an
advantageous option.
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All of the above mentioned aspects have to be tackled by dedicated technology pro-
grams targeting at compact and robust solutions for each subsystem. The LASUS
project led to design, assembly and qualification of diode laser systems for quantum
gas operation aboard sounding rockets. In this context, a reference laser system for ru-
bidium spectroscopy based on a micro-integrated DFB diode laser has been developed.
It will fly as a piggy-back payload of the FOKUS experiment. Additionally, an entire
laser system for laser cooling, state preparation, Bragg interferometry and detection
of condensed rubidium atoms has been developed, assembled and qualified. This work
was done in context of the MAIUS mission.

FOKUS experiment on TEXUS-51

Optical atomic clocks and atom interferometers in space would both benefit from an
optical reference with high accuracy and precision such as a frequency comb [82, 219].
Since this technology is still comparably large and complex, the FOKUS project aimed
for a compact, robust and maintenance-free solution for space applications.

In this context, a rocket-borne frequency comb has been developed by Menlo Sys-
tems and the MPQ [82]. The comb system is stabilized onto a chip-scale atomic
clock (CSAC), comprises an Erbium-doped fiber laser emitting at 1560 nm in com-
bination with an all-fibered optical amplifier. Approximately 100 mW are used for
carrier-envelope-offset (CEO) beat detection in a f-2f interferometer [220] and 50 mW
are frequency doubled to 780 nm in a waveguide-based second harmonic generation
(SHG) module. This light can be used for absolute frequency comparisons of the comb
oscillator with an additional laser system running at 780 nm, which is referenced to,
for example, an optical transition of rubidium.

Within the LASUS project, a robust and miniaturized 780 nm reference laser system
was developed which will operate together with the fiber comb on the TEXUS-51
mission. A schematic (left) as well as a picture (right) of the piggy-back payload
are given in Fig. 6.5. The laser source comprises a DFB laser diode which is micro-
integrated onto a structured AlN micro-bench. The latter corresponds to the 3rd
generation of diode laser modules developed at the Ferdinand-Braun Institut, Leibniz-
Institut für Höchstfrequenztechnik (cf. Fig. 6.4).

After passing a micro-isolator (OI), the light exiting the front facet is coupled into
a polarization-maintaining single-mode fiber by means of a Zerodur [221] based fiber
in-coupler8 (INC). This in-coupler is glued onto a dedicated free-space area on the
microbench. The laser module is placed onto a precision manufactured copper mount
with a maximum bow of less than 10 µm with respect to a total length of 104 mm, and
three clamps with a line contact fix the module in position [222]. This mount is then
attached to a thermo-electric cooler (TEC), used for temperature stabilization with
on-module NTC sensors next to the laser chip.

The fiber-coupled light is partially guided to a rubidium spectroscopy cell unit based
on free-space optical bench technology8 (B). Zerodur was chosen as the base mate-
rial, comprising high rigidity and excellent thermal characteristics [221, 223]. On this
board, one path is used for monitoring the Doppler-broadened signal (single pass, PD1),

8Developed and assembled in the framework of the LASUS project at the University of Hamburg
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while the second path is designed in a double-pass configuration, allowing to detect a
Doppler-free spectroscopy signal for frequency stabilization (PD2). The main part of
the fiber-coupled light of the DFB master laser is being overlapped with frequency-
doubled light of the frequency comb for subsequent beat detection (PD3). After elec-
tronic bandpass filtering, the beat frequency will be monitored during the mission
which allows for on-flight frequency comparison.

The entire FOKUS experiment payload including the rubidium reference module
(see Fig. 6.6) has a mass of about 23 kg, fits into a pressurized dome of 30 cm diameter
and 35 cm height and needs about 80 W electrical power for operation [82]. The final
vibration test was passed on qualification level (8.1 gRMS @ 20-2000 Hz) for 120 s each
axis. Immediately after the vibration phase the system is automatically mode-locked
and then phase-stabilized. In addition, the 780 nm reference module was tested sepa-
rately and remained stabilized to the atomic transition even during the vibration test.
Moreover, a flight simulation test (switched-off cooling) verified all locks to remain in
their locking range for at least 15 min of operation.

FOKUS should fly as part of the TEXUS-51 mission with a first scheduled launch
date of April 2013. However, the mechanical guidance system of the specific launch
tower at ESRANGE (European Space and Sounding Rocket Range) showed a critical
degradation which would have led to unpredictable sounding rocket trajectories. The
responsible safety board thus decided to cancel the campaign. Currently, the launch
of the FOKUS experiment as part of the TEXUS-51 mission is scheduled for late 2014.

MAIUS mission

The MAIUS missions shall demonstrate the technological readiness of delicate quantum
gas experiments for space applications by realizing the first rubidium Bose-Einstein
condensate (BEC) and matter wave interferometer aboard a sounding rocket. More-
over, the experiment team will try to operate the system in a parameter regime (e.g.
free evolution time), which is beyond the state-of-the-art accessible at the drop tower
or in zero-g airplanes.

The physics package comprises a 2D+/3D-MOT atomic source combined with a
multi-layer atom chip, both based on an enhanced Q-II design. The laser system
technology and miniaturized electronics for the whole payload have been developed
within the LASUS project. The mechanical and thermal engineering of the entire
sounding rocket instrument was mainly done by DLR-RY and the stability tests have
been carried out at the ZARM. The MAIUS experiment is currently in its integration
phase and scheduled for a launch in late 2014. A scheme of the 11.8 m long sounding
rocket vehicle with its subsystems (A-F) and a CAD drawing of the scientific payload
(a-e) are shown in Fig. 6.7.

As one of the key subsystems, the laser system is based on a hybrid approach, com-
bining free-space optical bench technology with fiber-integrated distribution systems.
Laser sources are micro-integrated semiconductor laser modules which have been de-
veloped for precision measurement applications aboard sounding rockets (cf. Fig. 6.4)
[216]. The functionality of the system comprises the operation of a 2D+/3D MOT
for rubidium atoms, optical pumping, interferometry based on Bragg beam splitters
and absorption imaging of the ultra-cold atomic cloud. Besides a total number of 8
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Figure 6.5: Schematic (left) and photograph (right) of the DFB-based reference laser module
as a piggy-back payload developed for the FOKUS experiment. The outer dimen-
sions of the assembled module are 215 x 170 x 48 mm3. The GaAs semiconductor
chip is soldered onto a submount, integrated on a 3rd generation microbench and
collimated via micro-optics (A). The main output is fiber-coupled, guided to a
spectroscopy module (B) and combined with the frequency doubled light of the
frequency comb (C) for on-flight beat measurements. Abbreviations: photodi-
ode (PD), optical isolator (OI), laser diode (LD), fiber in-coupler (INC), fiber
out-coupler (OUC), half waveplate (λ/2), quarter waveplate (λ/4), mirror (M),
dichroic polarizer (P), polarizing beam splitter (PBS), vapor cell (RB).

Figure 6.6: Design (left) and photograph (right) of the FOKUS overall system, ready for
integration into the sounding rocket. The payload will be flown in a pressurized
dome, with an inner diameter of 35 cm and a height of 35 cm. The total power
consumption of the system is about 80 W, the total flight mass adds up to less
than 25 kg. Figure adapted from [82].
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Figure 6.7: Overview of the sounding rocket experiment MAIUS-I [218]. The vehicle consists
of a European recovery system (A), service system and rate-control system (B),
the scientific payload (C), motor adapter and de-spin system (D), S30 motor incl.
fin assembly (E), and the S31 motor incl. fin assembly (F). The payload consists
of the vacuum pump section (a), the µ-metal shielded UHV chamber section with
atomic source (b), the laser system (c), control electronics (d) and the power
supply (e) [224].
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Figure 6.8: CAD drawing of the MAIUS laser system (top) and pictures of the integrated
flight model (FM) laser system (bottom). The two-level design features a laser
source part and a switching and distribution part both mounted onto opposite
sides of a water cooled heat sink. On the left, the packaged laser modules, the
PCB interfaces, fiber-optical isolators and PD-monitoring capability are shown.
The right side comprises the Zerodur-based switching and spectroscopy module,
the beat module and the fiber-splitter systems for distribution. The dimensions
of the assembled FM laser system are 274 x 340 x 227 mm3 and it features a total
flight mass of about 27 kg.

177



6 Summary and outlook

micro-integrated laser modules, a Zerodur based switching and spectroscopy module,
a beat module and fiber-optical splitter systems have been integrated together with
extensive monitoring capabilities (e.g., power, frequency, temperature). Moreover, a
basic redundancy architecture has been forseen8.

Within a volume of less than 25 l and a mass of 27 kg (without control and driver
electronics), the entire laser system successfully passed the final vibration test on
acceptance level (5.4 gRMS @ 20-2000Hz, 60 s each axis) in October 2013 and is now
being integrated with the flight electronics and subsequently with the physics package.
A CAD drawing and pictures of the integrated laser system are given in Fig. 6.8.

All electrical, thermal and optical interfaces of the laser system are summarized in
the corresponding section of the Interface Control Document (ICD), see [225]. De-
tailed information on design, (sub-)system assembly, vibration test (qualification and
acceptance level) and overall performance of the MAIUS laser system will be published
elsewhere.

6.3.3 Towards satellite-borne quantum sensors

The STE-QUEST mission [226] proposal is a response to the call for medium-size (M-
class) satellite missions by ESA’s Cosmic Vision plan with launch opportunity between
2022 and 2024. It was recommended by the ESA advisory structure and finally selected
for an assessment study (phase A).

The proposed satellite is operated in a highly elliptical orbit and hosts a dual-
species atom interferometer (ATI) with two different isotopes of rubidium [227]. With
the planned instrument, a measurement of the differential acceleration between 85Rb
and 87Rb and therefore a space-based test of the weak equivalence principle (WEP)
can be carried out. The specific choice of these isotopes as quantum test matter is
justified by the high common-mode rejection for the differential acceleration [30, 9]
and the technological heritage [12, 228, 46] as well as ground-based demonstration
experiments [23].

As a source for coherent matter waves, Bose-Einstein condensates are generated
in a hybrid trap setup, consisting of a multi-layer atom chip and a crossed optical
dipole trap. After adiabatic release and optical delta-kick cooling, the matter wave
mixture will be simultaneously interrogated by a 2T = 10 s lasting, symmetric double-
diffraction interferometer sequence to extract the differential acceleration [229, 230].

In particular, STE-QUEST is designed to measure for 0.5 hours during the perigee
pass (∼ 600 km) of the highly elliptical orbit with a total duration of about 16 hours
(see Fig. 6.9), since the proximity to Earth maximizes a possible violation signal.
The satellite’s orientation is actively controlled with an inertial pointing mode which
avoids the use of compensation strategies to maintain a sufficient measurement signal,
such as co-rotating mirrors [231]. The proposed mission duration of 5 years enables
a determination of the Eötvös ratio (net integration of 1.5 years) to an accuracy of

8Two DFB-MOPA modules are implemented as redundancy units, which will be connected to a
redundant set of driver electronics. In case of any malfunction or critical degradation, the optical
fiber of the defect device will be disconnected from the system and subsequently spliced to the
output of the redundancy laser. This allows to restore the laser system’s operative condition
without major modifications.
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Figure 6.9: Schematic of the highly elliptical orbit initially chosen for clock comparison tests
with STE-QUEST. The matter wave interferometer will operate for 0.5 hours
during the perigee pass (∼ 600 km).

2 × 10−15 [30]. This is four orders of magnitude more accurate than the proposed drop
tower experiments (see Sec. 6.3.1) and beyond state-of-the-art precision achieved by
lunar laser ranging [28, 232] and torsion balances [29]. Parameter optimization and
re-calibration is operated and controlled during the apogee phase (∼ 50000 km).

A cesium cold atomic clock is foreseen as an optional payload and would be operating
in between apogee and perigee to be exposed to the largest possible variation of the
gravitational potential. Using the clock on the satellite in comparison with a highly
accurate ground-based network of clocks enables Earth and Sun gravitational redshift
tests with fractional uncertainties of 1 × 10−7 and 2 × 10−6, respectively [227].

The dual-species atom interferometer payload as the main instrument can be sub-
divided into three functional units: physics package, laser system, and electronics
module. The physics package consists of a magnetically shielded UHV vacuum cham-
ber which comprises the atomic source (2D+/3D MOT assembly), the hybrid trap of
atom chip and optical dipole trap, the high-quality retro-reflecting mirror for the in-
terferometer beams and the detection system. The laser system provides all necessary
frequencies to operate a dual-species interferometer. Both, the physics package as well
as the laser system require complex driver and control electronics unit. A detailed
description of the payload is given in [233].

Including 20% component contingency, a total mass budget of 221 kg, a peak power
level below 815 W (608 W in average) and a volume of 470 l are allocated for the entire
STE-QUEST payload. Corresponding system studies showed that the payload would
well fit on a satellite launched with a Soyuz rocket [233].

Laser system for the STE-QUEST dual-species atom interferometer

For STE-QUEST, a hybrid system is proposed comprising a reference and optical
dipole trap laser based on telecom technology and frequency doubling techniques with
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micro-integrated, high power diode laser modules. The complex switching procedures
of all laser beams (excl. dipole trap) as well as the precise and controlled distribution
of the laser light to the physics package is realized with a Zerodur optical bench setup
combined with a fiber optical splitter system.

In particular, this design approach is the result of a delta-study of the technological
key components and subsystems carried out in the consortium’s work of phase A. The
proposed system (see Fig. 6.10.) can be divided into three functional units:

• Reference and optical dipole trap laser (ROL). Includes the frequency
stabilized reference laser and generates the laser beams for optical dipole trap
operation. This unit is mostly based on telecommunication components and
frequency doubling waveguide technologies. All-fibered components developed
in the telecom field naturally supply miniaturized and robust solution, whose
technological maturity has also been demonstrated within several projects in the
area of inertial quantum sensors [46, 45, 234]

• Micro-integrated diode laser package (DLP). Micro-integrated diode laser
modules are the sources for laser cooling (in a 2D+/3D MOT configuration),
internal state preparation, coherent manipulation and detection of the 87Rb and
85Rb quantum gas mixture. They are built on either already space qualified
or space compatible technologies and constitute the 4th generation of micro-
integrated diode laser modules (cf. 2nd gen. in Sec. 6.3.1 and 3rd gen. in Sec. 6.3.2)
developed at the Ferdinand-Braun Institut, Leibniz-Institut für Höchstfrequen-
ztechnik9. The laser modules are hermetically sealed in a housing made of Kovar,
filled with a technical gas and have a size of 128 x 78.2 x 22.5 mm3 [227, 233].
The STE-QUEST concept features a narrow linewidth, extended cavity diode
laser module (µECDL module) as a master oscillator and a separate high power
amplifier (µPA module) unit interconnected with a polarization maintaining
single-mode optical fiber. This two-module strategy provides a small linewidth
(< 100 kHz) and a high fiber-coupled output power (1000 mW) with improved
thermal stability.

• Switching and distribution module (SDM). Switching module based on
Zerodur optical bench technology in combination with a fiber-optical distribu-
tion module. Switching and intensity control is realized with a combination of
acousto-optical modulators (AOMs) and mechanical shutters assembled onto the
optical bench. Details on the SDM can be found in [111]

Each of the subsystems is integrated within a separate mechanical structure with
optimized thermal budgets and adapted for specific characteristics in spatial dimen-
sions [233]. The general requirements on the laser system performance and additional
information can be found in [227].

In the end, however, STE-QUEST has not been selected for a M3 mission since the
technological readiness of the instrument could not yet compete with more established

9Developed in the framework of the MILAS project (Mikrointegration von Lasersystemen für den
Weltraumeinsatz).
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Figure 6.10: Overall schematic of the laser system for STE QUEST ATI. The laser system
is divided into three subsystems: The reference laser and optical dipole trap
module (ROL), the diode laser package module (DLP) and the switching and
distribution module (SDM). All interfaces shown here are pm single mode opti-
cal fibers. Abbreviations: Extended cavity diode laser (ECDL), Erbium-doped
fiber amplifier (EDFA), phase modulator (PM), periodically poled Lithium-
Niobate (PPLN), micro-integrated extended cavity diode laser (µECDL), micro-
integrated power amplifier (µPA). 1Laser modules used for 2D+/3D MOT op-
eration and as one beam of the Raman laser pair. 2Laser modules used for
repumping and as the other beam of the Raman laser pair.
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technologies as proposed for payloads in the other mission scenarios. The science case
had nevertheless received a positive evaluation and the consortium already discusses
the immediate next steps to be prepared for upcoming calls on suitable satellite mis-
sions [235].
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A Light-pulse levitation and a bouncing
condensate gravimeter

By dropping bodies and timing their free-fall, one can derive a value for the local
gravitational acceleration. The timing presented here is based on repetitive optical
levitation of atoms with acceleration-induced first-order Bragg diffraction off a standing
light wave.

Usually, levitation in cold atomic physics is referred to as magnetic fields interacting
with paramagnetic atoms. The magnetic moment of the atoms interacts with magnetic
fields which results in an effective force when using gradients as

~F = gmFµB∇ ~B, (A.1)

with magnetic quantum number mF , Landé factor g, Bohr magneton µB and the mag-
netic field gradient ∇ ~B. For example, this force could be used for continuous levitation
of atoms against gravity. By doing so, cold atom experiments could for example profit
from extended measurement times, the possibility to realize ultra-shallow trapping po-
tentials and optimizations of the evaporation efficiency due to the compensation of the
gravitational sag [19]. So far, magnetic levitation is restricted to a small volume only
and requires numerous of bias fields for precise control [63]. The levitating potential
is inherently affected by noise of the current sources driving the magnetic coils, which
might disturb the free evolution of the atomic wave function. Moreover, magnetic
levitation can be optimized for one atomic species or isotope only, since the magnetic
force is independent of the mass, which obviously is not the case for gravity.

Another method for levitation is given by repetitive optical pulses based on Bragg
diffraction. Let us assume an atomic cloud in free fall which has a certain COM
position and velocity. After some time, it gets diffracted by a standing light wave
whose effective wave vector points anti-parallel to gravity. If the transferred beam
splitter momentum is larger than the momentum of the atoms before the pulse, the
diffracted part bounces off the light wave, changes the direction of motion and ideally
follows a classical 1D parabola. The atomic trajectory will pass its apex and at some
point reach again position and velocity at the time of the first pulse. Here, we can
apply another beam splitter and repeat this operation for a number of carefully timed
Bragg pulses to keep the atoms "suspended" against gravity.

Using an atom chip with HR-coating simplifies such a setup enormously (see Fig. A.1,
left), since besides the cold atoms themselves just one single-frequency laser beam
reflected at the chip surface with µs timing is sufficient for basic operation1. The
atoms will accelerate under the influence of the gravitational field which causes a

1In our experiment, an additional beam perpendicular to the Bragg beam is used for absorption
imaging
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Figure A.1: Picture of the QUANTUS-I atom chip (left) and schematic of a chip-based ac-
celeration measurement with repetitive Bragg diffraction (right). After release
from the holding trap, the condensate is accelerated towards Earth. We wait for
an expansion time T0 = h̄k/mg until a standing light wave pulse is created by
retro-reflection of a single frequency beam at the atom chip’s HR-coated surface.
In the moving frame of the atoms, the beams are Doppler-shifted to fulfill the
condition for first-order Bragg diffraction. Subsequently, a fraction of atoms gets
diffracted and can ideally be suspended against gravity if the pulses are applied
with a repetition rate of Trep = 2h̄k/mg.

standing light wave to be Doppler-shifted in the moving frame of the atoms. With
the right timing of the pulse, the Doppler-induced frequency difference between the
incident and reflected beam fulfills the condition for Bragg diffraction (see Sec. 3.2.2).

If the beam splitting process does not affect the expansion of the atoms perpendicu-
lar to the wave vector (e.g., plane wave fronts, ideal mirror pulses), we can artificially
extend the effective free expansion time in these directions. Additionally, the local
gravitational acceleration can be derived from the optimized timing between subse-
quent Bragg pulses to achieve the best suspension efficiency. In principle, this method
is applicable in rather compact setups without the need for large UHV chambers.

A.1 Proof-of-principle experiment

The described method can be used to demonstrate an extremely compact, atom-chip-
based device for measuring the acceleration of the atoms induced by gravity. This was
already demonstrated in similar setups [236, 237]. We start the experiment by creating
a BEC in our chip-based Ioffe-Pritchard trap (IPT), which is adiabatically expanded
into the weak trapping potential (ωi = 2π · (46, 18, 31)). After the holding trap is
switched off, the cloud expands due to mean-field repulsion whereas the center-of-mass
(COM) is accelerated towards Earth.

In a one dimensional treatment (see Fig. A.1, right), the position of the COM as a
function of time is given by z(t) = zini + vinit− 1/2gt2, the corresponding momentum
is p(t) = m · (vini −gt), with the initial velocities vini and positions zini. For simplicity,
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Figure A.2: Absorption images for different numbers of light-pulse levitation pulses. The
BEC is released from the shallow trap (ωi = 2π · (46, 18, 31)) and expands for
about T0 = 580 µs. Then, an optical lattice is generated by retro-reflecting a
single-frequency Gaussian beam at the HR-coated chip surface. From left to
right, absorption images for 0, 5 and 15 subsequent first-order Bragg pulses are
depicted. These are always taken after the same time-of-flight Ttof = 32 ms,
which results in shifted COM positions of the bounced atoms in the z-direction
since a fraction of atoms is suspended at a constant altitude. Next to each image,
the corresponding column density profile is given.

we set vini = zini = 0 and after a free-fall time of T0, the atoms will have momentum
of p(T0) = mg ·T0 ≡ h̄k. For 87Rb, this yields T0 ≈ 0.6 ms2.

At this time, we manipulate the atoms with a pulsed optical standing wave, reflected
at the HR coated surface of the atom chip. In the end, about 10 mW have been used for
the Bragg laser beam and the frequency was ∆ = 640 MHz red-detuned with respect
to the 5S1/2 → 5P3/2 cooling transition of 87Rb. The light for the Bragg lattice was
coupled into one polarization maintaining single mode optical fiber and guided to a
telescope which is pointing towards the atom chip’s surface (negative z-direction).

The telescope is of the same type as used for Bragg diffraction experiments described
in this thesis so far. It is based on a single lens design with a FWHM of 0.65 cm. The
angle of incidence at the atom chip’s surface and therefore optimal overlapping of the
incident and retro-reflected beam can be adjusted with three external screws. The
optimization was done by maximizing the back-coupling efficiency.

After an expansion time T0, the pulsed standing optical light wave will be Doppler-
shifted in the moving frame of the atoms. T0 can be chose such that the condition for
first-order Bragg diffraction is fulfilled. In this way, a fraction of falling atoms with a
COM momentum of p(T0) = h̄k will be addressed by the beam splitter and afterwards

2In the real experiment, the atoms additionally get a slight momentum kick due to an imperfect
release process. However, this can be compensated with the timing T0 of the first beam splitter
pulse.
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feature an upward pointing momentum with p(T0 + τ) = −h̄k (see Fig. A.1, right).
The corresponding beam splitter operation for a coherent superpostion can be written
as

|h̄k〉 → 1√
2

(|h̄k〉 − i|h̄k〉) , (A.2)

and by carefully adjusting pulse duration and intensity, a pulse area of Ω · τ = π
would ideally allow for bouncing-off the hole sample of atoms (see Sec. 3.2.2). In our
experiment, however, Gaussian shaped beam splitter pulses have been applied with a
duration of τ = 70 µs which led to diffraction efficiencies of about 80%. Gravity again
forces the atoms to change their direction at the apex of the parabola. After a time

Trep = 2h̄k/mg, (A.3)

the momentum state −|h̄k〉 evolves back into |h̄k〉 due to the COM motion under the
influence of gravity. For 87Rb atoms, this time is approx. Trep ≈ 1.2 ms [150]. By now
applying beam splitters with a timing interval of Trep, we can suspend a fraction of
atoms at a constant altitude.

In an exemplary measurement, both the time before the first pulse T0 and the time
between the repetitive pulses Trep were varied to maximize the number of suspended
atoms. In Fig. A.2, typical absorption images are shown which correspond to 0, 5
and 15 subsequent beam splitter operations. Since the absolute time-of-flight Ttof in
these images was kept constant, the repetitive application of Bragg pulses results in a
shifted COM position. The timing between the pulses Trep was first estimated by using
a common value for local gravity (g = 9.81 m/s2), but afterwards optimized in terms
of transition probability to achieve the best suspension efficiency for a certain number
of bounces. The results of such an optimization are shown in Fig. A.3, where the
accumulated diffraction efficiency for 12 subsequent beam splitter operations is plotted
versus the separation time Tsep. A double-Gaussian was fitted to the data to extract
the value for Tsep for the central peak (red line) in presence of the thermal background
(dashed line), which results in the largest diffraction efficiency. The obtained cycle
time Tsep = 1198.6(7) µs determines the acceleration of the atoms due to gravity as

g =
2h̄k

mTrep
= 9.819(6) m/s2, (A.4)

with the mass of the atoms m and the wave vector of the standing light wave k = 2π/λ.
Here, the uncertainties are given by the fitting error of the central peak of the double-
Gaussian fit. If we could have applied more beam splitters, the central peak would
have become sharper and more pronounced. In our proof-of-principle measurement,
the latter seems to be slightly off-centered w.r.t. thermal background (see Fig. A.3).
This indicates that the timing of our pulses is still slightly incorrect. Moreover, the
absolute value is arguable, since the atoms in the measurement have been in a state
with non-zero magnetic moment (mF = 2) and the direction of the effective wave
vector (e.g. the orientation of the entire drop capsule) has not been optimized to the
full extend along the direction of gravity.

Timing errors in Trep cause a Doppler-induced frequency difference of the traveling
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Figure A.3: Optimization of the cycle time
Trep to achieve the best suspen-
sion efficiency for 12 subsequent
Bragg pulses.
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Figure A.4: Measurement of the decay of
the accumulated diffraction ef-
ficiency for up to 23 repetitive
Bragg pulses.

wave which does not correspond to twice the recoil frequency of 87Rb. This mismatch
will increase over time. Together with losses due to spontaneous emission and the
non-linear expansion of the condensate due to mean-field acceleration (see Sec. 3.5.1),
this mainly leads to a reduction in the repeatability and therefore fidelity of this
optical levitation process. Single-pulse operation was measured to transfer about η =
83% of the atoms into the desired momentum state −|h̄k〉 and populates adjacent
states with the remaining atoms (see Fig. A.2). The experimentally observed decay
rate for the application of up to 23 subsequent Bragg pulses (corresponds to 46h̄k
transferred momenta) is depicted as blue triangles in Fig. A.4. The blue dashed line
is the calculation which considers an exponential decay.

Without optical levitation, the free fall time in our ground-based measurements is
limited to about 32 ms. The atoms will then leave the detection volume and finally hit
the ground of the chamber. With the method presented here, this observation time
could be extended by ∆T = Nbounce ·Tsep ≈ 23 · 1.2 ms = 27.6 ms, which efficiently
results in a doubled time-of-flight of about Tmax ≈ 59.6 ms. With some technical
improvements on the beam splitter efficiency and the transfer of the atoms into a
magnetically insensitive state prior to the beam splitter pulses, this technique might
be generally able to achieve suspension times on the order of ∆T > 100 ms. This comes
along with a more precise determination of the repetition rate Trep, which might lead
to a gravimetric precision as achieved with freely falling atom interferometers, but in
a much more compact volume [236, 237].

187





B Rubidium D2 line data

The properties of 87Rb and 85Rb given here are relevant to the calculations and ap-
proximations made in this thesis. All data is adapted from [148, 150], which to the
full extend can be accessed by http://steck.us/alkalidata.

Rubidium 87 D2 line (52S1/2 → 52P3/2) optical properties

parameter symbol value

frequency ω0 2π · 384.230 484 468 5(62) THz
transition energy h̄ω0 1.589 049 462(38) eV
wavelength (vacuum) λ 780.241 209 686(13) nm
wave number (vacuum) k/2π 12 816.549 389 93(21) cm−1

natural linewidth (FWHM) Γ 2π · 6.0666(18) MHz
recoil velocity vr 5.8845 mm/s
recoil energy ωr 2π · 3.7710 kHz
recoil temperature Tr 361.96 nK
doppler temperature TD 145.57 µK

Rubidium 85 D2 line (52S1/2 → 52P3/2) optical properties

parameter symbol value

frequency ω0 2π · 384.230 406 373(14) THz
transition energy h̄ω0 1.589 049 139(38) eV
wavelength (vacuum) λ 780.241 368 271(27) nm
wave number (vacuum) k/2π 12 816.546 784 96(45) cm−1

natural linewidth (FWHM) Γ 2π · 6.0666(18) MHz
recoil velocity vr 6.0230 mm/s
recoil energy ωr 2π · 3.8597 kHz
recoil temperature Tr 370.47 nK
doppler temperature TD 145.57 µK
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B Rubidium D2 line data

Figure B.1: 87Rb D2 transition hyperfine structure, with frequency splittings between the
hyperfine energy levels, adapted by [150].

Figure B.2: 85Rb D2 transition hyperfine structure, with frequency splittings between the
hyperfine energy levels, adapted by [148].
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C Abbreviations

The abbreviations used in this thesis are explained here.

ACES Atomic clock ensemble in space
AI Atom interferometer
AlN Aluminum-nitride
AMZI Asymmetric Mach-Zehnder interferometer
AOM Acousto-optic modulator
ARP Adiabatic rapid passage
BEC Bose-Einstein condensate
CAL Cold atom laboratory
CCD Charge-coupled device
CCP Conductively cooled package
CHAMP Challenging mini-satellite payload
CM Chip model
COM Center-of-mass
COTS Commercial-off-the-shelf
DDS Direct digital synthesizer
DFB Distributed feedback
DKC Delta-kick-cooling
DLP Diode laser package module
ECDL Extended cavity diode laser
µECDL Micro-integrated extended cavity diode laser
EDFA Erbium-doped fiber amplifier
EEP Einstein’s Equivalence Principle
EOM Electro-optic modulator
FC Fiber coupler
FFT Fast Fourier transform
FMS Frequency modulation spectroscopy
FOKUS Faserlaserbasierter optischer Kammgenerator unter Schwerelosigkeit
FPGA Field-programmable gate array
GOCE Gravity field and steady-state ocean circulation explorer
GP Gross-Pitaevskii
GPS Global positioning system
GRACE Gravity recovery and climate experiment
GR General Relativity
GW Gravitational waves
HYPER Hyper-precision cold-atom interferometry in space
ICE Interférométrie cohérente pour l’Espace
IMU Inertial measurement unit
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C Abbreviations

IPT Ioffe-Pritchard trap
ISS International Space Station
KALEXUS Kalium-Laserexperimente unter Schwerelosigkeit
LASUS Entwicklung von neuartigen Diodenlasersystemen für

Präzisionsexperimente unter Schwerelosigkeit
LD Laser diode
LLI Local Lorentz Invariance
LO Local oscillator
LPI Local Position Invariance
MAIUS Materiewellen-Interferometer unter Schwerelosigkeit
MILAS Mikrointegration von Lasersystemen für den Weltraumeinsatz
MOPA Master-oscillator-power-amplifier
MORABA Mobile Raketen Basis
MOT Magneto-optical trap
MTS Modulation transfer spectroscopy
OI Optical isolator
OPLL Optical phase lock loop
ORI Open Ramsey-type interferometer
µPA Micro-integrated power amplifier
PBS Polarizing beam splitter
PD Photo diode
PFD Phase-frequency detector
PHARAO Projet d’horloge atomique par refroidissement

d’atomes en orbite
PPLN Periodically poled Lithium-Niobate
PRIMUS Präzisionsinterferometrie unter Schwerelosigkeit
QED Quantum electrodynamics
QUANTUS Quantengase unter Schwerelosigkeit
QWEP Quantum test of the weak equivalence principle
RF Radio frequency
ROL Reference and optical dipole trap laser
SDM Switching and distribution module
SHG Second harmonic generation
SHM Space hydrogen maser
SME Standard-model extension
SNR Signal-to-noise ratio
STE-QUEST Space time explorer and quantum equivalence space test
TA Tapered amplifier
TCS Thermal control system
TEC Thermo-electric cooler
TEXUS Technologische Experimente unter Schwerelosigkeit
TF Thomas-Fermi
TOF Time-of-flight
TRL Technology-readiness-level
UFF Universality of the Free Fall
UHV Ultra-high vacuum
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