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Abstract. We deal with Dirichlet’s problem for second order quasilinear non-divergence
form elliptic equations with discontinuous coefficients. First we state suitable structure,
growth, and regularity conditions ensuring solvability of the problem under considera-
tion. Then we fix a solution u0 such that the linearized in u0 problem is non-degenerate,
and we apply the Implicit Function Theorem: For all small perturbations of the coef-
ficient functions there exists exactly one solution u ≈ u0, and u depends smoothly (in
W 2,p with p larger than the space dimension) on the data. For that no structure and
growth conditions are needed, and the perturbations of the coefficient functions can be
general L∞-functions with respect to the space variable x. Moreover we show that the
Newton Iteration Procedure can be applied to calculate a sequence of approximate (in
W 2,p again) solutions for u0.

1. Introduction

This article concerns quasilinear elliptic boundary value problems in non-divergence
form of the type

(1.1)

{
aij(x, u, Du)Diju(x) + b(x, u, Du) = 0 in Ω,

u = 0 on ∂Ω.

Throughout the paper Ω ⊂ R
n will be a bounded domain (open and connected set) with

C1,1-smooth boundary ∂Ω, aij = aji and b are Carathéodory functions, and as usual, the
summation over indices i, j, k, . . . is understood from 1 to n, if these appear pairwise. Our
assumptions will be, on the one side, general enough to include cases such that

• the functions aij(·, u, ξ) and b(·, u, ξ) can be discontinuous,

and, on the other side, strong enough to have

• existence of strong solutions u ∈ W 2,p(Ω) to (1.1) with p > n;
• applicability of the Implicit Function Theorem and the Newton Iteration Proce-

dure to such solutions.

In Section 2 we summarize known results ensuring existence of solutions u ∈ W 2,p(Ω)
to (1.1) with p > n. In the semilinear case, i.e. when the coefficients aij(x, u, ξ) are
independent of ξ, we suppose, among other conditions, that

(1.2) aij(·, u) ∈ V MO(Ω) ∩ L∞(Ω) for all i, j = 1, . . . , n and u ∈ R.

In the general case of quasilinear operators we have to suppose that, for a certain p > n,

(1.3) aij(·, u, ξ) ∈ W 1,p(Ω) for all i, j = 1, . . . , n, u ∈ R and ξ ∈ R
n.

If n = 2, the assumptions (1.2) and (1.3) can be weakened to

(1.4) aij(·, u) ∈ L∞(Ω) for all i, j = 1, . . . , n and u ∈ R
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and

(1.5) aij(·, u, ξ) ∈ L∞(Ω) for all i, j = 1, . . . , n, u ∈ R and ξ ∈ R
n,

respectively.
Our main new results are presented in Sections 3 and 4. There we suppose that the

functions aij are differentiable with respect to the variables u ∈ R and ξ ∈ R
n. Moreover,

we fix a solution u0 ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) to (1.1) with p > n and assume that the

homogeneous linearized boundary value problem

(1.6)

⎧⎪⎪⎨
⎪⎪⎩

aij(x, u0, Du0)Diju
+ (Dξk

aij(x, u0, Du0)Diju0 + Dξk
b(x, u0, Du0)) Dku

+ (Duaij(x, u0, Du0)Diju0 + Dub(x, u0, Du0))u = 0 in Ω,
u = 0 on ∂Ω

has no solution u �≡ 0. Then, in Section 3, a result of the type of the Implicit Function
Theorem will be proved, which, roughly speaking, asserts the following: For all small
perturbations of the coefficient functions aij and b there exists exactly one solution u
to (1.1) close to u0 in W 2,p(Ω), and this solution depends C1-smoothly in the sense of
W 2,p(Ω) on the perturbations. Remark that the perturbations of the coefficient functions
aij do not have to satisfy (1.2) or (1.3), but only (1.4) or (1.5), respectively. Hence, as
a byproduct of an application of the Implicit Function Theorem we get existence results
for solutions u ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) with p > n for (1.1) with coefficient functions aij ,
which do not necessarily satisfy (1.2) or (1.3), but which are in a certain sense close to
functions satisfying (1.2) or (1.3), respectively.

In Section 4 we consider the following sequence of linear non-homogeneous boundary
value problems determining to Newton iteration ul+1 for given ul (l = 1, 2, . . .):

(1.7)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aij(x, ul, Dul)Dijul+1

+Duaij(x, ul, Dul)(ul+1 − ul)Dijul

+Dξk
aij(x, ul, Dul)Dk(ul+1 − ul)Dijul

+Dub(x, ul, Dul)(ul+1 − ul)
+Dξk

b(x, ul, Dul)Dk(ul+1 − ul) + b(x, ul, Dul) = 0 in Ω,
ul+1 = 0 on ∂Ω.

We prove that, if the initial iteration u1 is sufficiently close to u0 in W 2,p(Ω), then there
exists a unique sequence of solutions u2, u3, . . . ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) to (1.7), and ul

converges to u0 in W 2,p(Ω) as l → ∞.
In Section 5 we state some remarks concerning similar results for

• other boundary conditions,
• quasilinear elliptic systems in non-divergence form,
• nonlinear elliptic equations and systems in divergence form.

For the results of Sections 3 and 4 we do not need any growth conditions on the
functions aij(x, ·, ·) and b(x, ·, ·), but only some uniform boundedness and continuity of
these functions and their derivatives, which ensures that the superposition operators

u 	→ aij(·, u(·), Du(·)) and u 	→ b(·, u(·), Du(·))
are C1 from W 1,∞(Ω) into L∞(Ω). The corresponding proofs are presented in the Ap-
pendix of this paper. For the sake of simplicity of the formulations, in the Appendix
we introduce the notion of Ck-Carathéodory functions and a norm in the space of those
functions, which is just the norm measuring the smallness of the perturbations of the
coefficient functions aij and b, which is used for the result of the type of the Implicit
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Function Theorem in Section 3.

Finally, let us mention some notations commonly used in the paper. We write | · | for
the absolute value in R and the Euclidean norm in R

n, respectively, and Ω is a bounded
and C1,1-smooth domain in R

n. For functions u : Ω → R we denote by Diu the partial
derivative of u with respect to the i-th component of the independent variable x ∈ Ω,
Du := (D1u, . . . , Dnu) is the gradient of u, and Diju is the second partial derivatives with
respect to the i-th and the j-th components of x. For functions b : Ω × R × R

n → R we
write Dub and Dξk

b for the partial derivatives of b with respect to the variable u ∈ R

and to the k-th component of the variable ξ ∈ R
n, respectively. As usual, a function

a : Ω × R
m → R is called Carathéodory function, if a(·, v) is measurable for all v ∈ R

m

and a(x, ·) is continuous for almost all (a.a.) x ∈ Ω.
By Lp(Ω) and W k,p(Ω) we denote the usual Lebesgue and Sobolev spaces with their

norms ‖ · ‖p and ‖ · ‖k,p, respectively (k = 1, 2, . . . , 1 ≤ p ≤ ∞). Finally, V MO(Ω) is the
class of functions with vanishing mean oscillation in Ω (cf. [13], [21]), i.e., the space of all
f ∈ L1

loc(Ω) such that

sup
r

γf(r) < +∞ and lim
r→0

γf(r) = 0.

Here γf : (0,∞) → R is the V MO-modulus of f defined by

γf(r) = sup
0<ρ≤r

sup
x∈Ω

1

|Ωρ,x|

∫
Ωρ,x

|f(y) − fΩρ,x|dy,

where Ωρ,x := {y ∈ Ω : |y − x| < ρ}, fΩρ,x is the average |Ωρ,x|−1
∫

Ωρ,x
f(y)dy, and |Ωρ,x|

stands for the Lebesgue measure of Ωρ,x.

2. Selected Existence Theorems

This section collects known results regarding strong solvability of the Dirichlet problem
for elliptic operators with discontinuous coefficients.

2.1. Linear equations with V MO coefficients. Let us consider the linear Dirichlet
problem

(2.1)

{
Lu ≡ aij(x)Diju(x) = f(x) a.e. in Ω,

u = 0 on ∂Ω.

Concerning the coefficient functions aij : Ω → R we suppose these are measurable, aij =
aji for all i, j = 1, . . . , n, and that the following conditions are fulfilled:

(21) Uniform ellipticity of L: There exist positive constants λ and Λ such that for
a.a. x ∈ Ω and all η ∈ R

n

λ|η|2 ≤ aij(x)ηiηj ≤ Λ|η|2.

(22) VMO property : aij ∈ V MO(Ω) for all i, j = 1, . . . , n.

Theorem 2.1. ([4, Theorem 4.4]) Suppose (21) and (22). Then for all p ∈ (1,∞) and all
f ∈ Lp(Ω) there exists a unique solution u ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) of (2.1).

Obviously, L is a linear bounded operator from W 2,p(Ω) into Lp(Ω). Hence, by Banach’s
inverse operator theorem, Theorem 2.1 claims that L is an isomorphism from W 2,p(Ω) ∩
W 1,p

0 (Ω) onto Lp(Ω). This property will be used repeatedly in Sections 3 and 4 below.
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2.2. Semilinear equations with V MO coefficients. In this subsection we consider
the semilinear Dirichlet problem

(2.2)

{
Su ≡ aij(x, u)Diju + b(x, u, Du) = 0 a.e. in Ω,

u = 0 on ∂Ω.

Suppose the coefficients aij : Ω × R → R and b : Ω × R × R
n → R are Carathéodory

functions, aij = aji for all i, j = 1, . . . , n, and that the following conditions are fulfilled:

(23) Uniform ellipticity of S: There exists a non-increasing function λ : [0,∞) →
(0,∞), such that for a.a x ∈ Ω and all u ∈ R, η ∈ R

n it holds

λ(|u|)|η|2 ≤ aij(x, u)ηiηj ≤
1

λ(|u|) |η|
2.

(24) Local uniform continuity of aij with respect to u: For all M > 0 there exists a
non-decreasing function µM : [0,∞) → (0,∞) with limt↓0 µM(t) = 0 such that
for a.a. x ∈ Ω and all u, u′ ∈ [−M, M ] it holds

|aij(x, u) − aij(x, u′)| ≤ µM(|u − u′|).
(25) VMO property of aij with respect to x, locally uniformly in u: For all M > 0 it

holds

lim
r↓0

(
sup
|u|≤M

sup
0<ρ≤r

sup
x∈Ω

1

|Ωρ,x|

∫
Ωρ,x

∣∣aij(y, u)− 1

|Ωρ,x|

∫
Ωρ,x

aij(z, u)dz
∣∣dy

)
= 0.

(26,p) Quadratic gradient growth of b: There exist p > n, b1 ∈ Lp(Ω) and a non-
decreasing function ν : [0,∞) → (0,∞) such that

|b(x, u, ξ)| ≤ ν(|u|)
(
b1(x) + |ξ|2

)
for a.a. x ∈ Ω, all u ∈ R and all ξ ∈ R

n.
(27) Monotonicity of b with respect to u: There exists non-negative function b2 ∈

Ln(Ω) such that

sign u · b(x, u, ξ) ≤ λ(|u|)b2(x) (1 + |ξ|) .

Theorem 2.2. ([18, Theorem 1.1], [16, Theorem 2.6.9]) Suppose (23)–(27). Then there
exists a solution u ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) of (2.2).

Since any u ∈ W 2,p(Ω) with p > n is uniformly continuous, the assumptions (24) and
(25) ensure that a(·, u(·)) ∈ L∞(Ω) ∩ V MO(Ω), and the corresponding V MO-modulus is
bounded in terms of ‖u‖L∞(Ω) and of the continuity modulus of u (see [18, Lemma 2.1]
or Lemma A.1 below). Further, assumptions (27) and (26,p) give a priori estimates for
solutions u to (2.2) in L∞(Ω) and W 1,2p(Ω). Whence the existence result follows from the
Leray–Schauder principle.

2.3. Quasilinear equations with smooth coefficients. Consider the general quasi-
linear Dirichlet problem

(2.3)

{
Qu ≡ aij(x, u, Du)Diju + b(x, u, Du) = 0 a.e. in Ω,

u = 0 on ∂Ω.

Concerning the coefficient functions aij : Ω×R×R
n → R we suppose these are C1 smooth

and aij = aji for all i, j = 1, . . . , n. Further, we suppose that b : Ω × R × R
n → R is a

Carathéodory function and that the following conditions are fulfilled:
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(28) Uniform ellipticity of Q: There exists a non-increasing function λ : [0,∞) →
(0,∞), such that for a.a x ∈ Ω and all u ∈ R, ξ, η ∈ R

n it holds

λ(|u|)|η|2 ≤ aij(x, u, ξ)ηiηj ≤
1

λ(|u|)|η|
2.

(29,p) Growth conditions for aij : There exist p > n, Φ ∈ Lp(Ω) and a non-decreasing
function µ : [0,∞) → (0,∞) such that for all x ∈ Ω, u ∈ R and ξ ∈ R

n it holds

|Duaij(x, u, ξ)| + |Dkaij(x, u, ξ)| ≤ µ(|u| + |ξ|)Φ(x),

|Dξk
aij(x, u, ξ)| ≤ µ(|u| + |ξ|),∣∣Dξk

aij(x, u, ξ) − Dξj
aik(x, u, ξ)

∣∣ ≤ µ(|u|)
(
1 + |ξ|2

)−1/2

and∣∣∣∣∣
n∑

k=1

(
Duaij(x, u, ξ)ξkξk − Duakj(x, u, ξ)ξkξi + Dkaij(x, u, ξ)ξk − Dkakj(x, u, ξ)ξi

)∣∣∣∣∣
≤ µ(|u|)(1 + |ξ|2)1/2

(
|ξ|+ Φ(x)

)
.

(210,p) A local uniform continuity property of b with respect to (u, ξ): There exists p > n
such that b(·, u, ξ) ∈ Lp(Ω) for all u ∈ R and all ξ ∈ R

n, and for all M, ε > 0
there exists δ > 0 such that for a.a. x ∈ Ω and all (u, ξ), (u′, ξ′) ∈ R×R

n with
|u − u′| + |ξ − ξ′| < δ and |u|, |u′|, |ξ|, |ξ′| ≤ M it holds∫

Ω

|b(x, u, ξ) − b(x, u′, ξ′)|pdx < ε.

Theorem 2.3. ([14, Theorem 7.1]) Suppose (26,p)–(210,p). Then there exists a solution

u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) of (2.3).

As in the case of semilinear operators, the monotonicity condition (27) and (28) ensure
an L∞(Ω) a priori estimate for any solution to (2.3) (see [6, Theorems 10.4, 10.5]). As-
sumptions (26,p) and (29,p) provide for an a priori bound for a suitable Hölder norm of Du.
Hence, Theorem 2.3 follows from (210,p) and the Leray–Schauder fixed point theorem.

2.4. Planar quasilinear equations with L∞ coefficients. It the present subsection
we consider the general quasilinear Dirichlet problem (2.3) in the case of two independent
variables (n = 2). In this case the regularity assumptions on the coefficient functions aij

can be significantly weakened. In fact, consider the Dirichlet problem

(2.4)

⎧⎪⎨
⎪⎩

Q2u ≡
2∑

i,j=1

aij(x, u, Du)Diju + b(x, u, Du) = 0 a.e. in Ω ⊂ R
2,

u = 0 on ∂Ω,

supposing that aij and b are Carathéodory functions and a12 = a21.

Theorem 2.4. Let n = 2 and Ω be convex. Suppose (27) and let Q2 be a uniformly
elliptic operator, that is, there are positive constants λ and Λ such that

(2.5) λ|η|2 ≤ aij(x, u, ξ)ηiηj ≤ Λ|η|2

for a.a. x ∈ Ω and all u ∈ R, ξ, η ∈ R
2. Then there exists a number p0 > 2 such

that, whenever condition (26,p) is fulfilled with a certain p ∈ (2, p0), there exists a solution

u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) of (2.4).
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Theorem 2.4 is a particular case of [16, Theorem 3.2.9]. In fact, each uniformly elliptic
operator in two dimensions satisfies the Cordes condition ([16, Remark 1.2.17]), that is,

(2.6)

∑2
i,j=1 a2

ij(x, u, ξ)(
a11(x, u, ξ) + a22(x, u, ξ)

)2 ≤ 1

1 + ε
for all u ∈ R, ξ ∈ R

2 and a.a. x ∈ Ω

for any ε ∈
(
0, 2λΛ/(λ2 + Λ2)

)
. It is proved by Campanato in [2] (see also [16, Theo-

rem 1.2.3]) that in case of a convex domain Ω there exists p0 > 2 such that the linear
Dirichlet problem {

Lu = f ∈ Lq(Ω) a.e. in Ω,
u = 0 on ∂Ω

is uniquely solvable in W 2,q(Ω)∩W 1,q
0 (Ω) ∀q ∈ [2, p0) for any linear operator L satisfying

(2.6). The number p0 depends on Ω and ε, i.e., on λ and Λ.
Take now p ∈ (2, p0) such that (26,p) is satisfied and let v ∈ W 1,2p(Ω). The linear

Dirichlet problem⎧⎪⎨
⎪⎩

2∑
i,j=1

aij(x, v, Dv)Dij(T v) + b(x, v, Dv) = 0 a.e. in Ω ⊂ R
2,

T v = 0 on ∂Ω

admits a unique solution T v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) as consequence of Campanato’s result

and of (26,p) (which gives b(·, v, Dv) ∈ Lp(Ω)). Thus, a nonlinear operator T : W 1,2p(Ω) →
W 2,p(Ω) ∩ W 1,p

0 (Ω) is defined which, considered as a mapping from W 1,2p(Ω) into itself,
is continuous and compact. This way, the Leray–Schauder theorem implies existence of a
fixed point of T , which is the desired solution of (2.4) (see [17], [22] or the proof of [16,
Theorem 3.2.9] for details).

2.5. Quasilinear operators satisfying the Campanato condition. For p ∈ (1,∞)
let us denote

C(p) := sup

⎧⎪⎨
⎪⎩

(∑n
i,j=1

∫
Ω
|Diju|pdx

)1/p

(∫
Ω
|∆u|pdx

)1/p
: u ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω), ∆u �≡ 0

⎫⎪⎬
⎪⎭ .

Because of the Calderón–Zygmund inequality, C(p) is a finite number, and it is well known
that C(p) ≥ 1 for p ≥ 2. Moreover, if Ω is convex then limp↓2 C(p) = C(2) = 1 as proved
by C. Miranda and G. Talenti.

In this subsection we consider once again the general quasilinear Dirichlet problem (2.3)
supposing that aij and b are Carathéodory functions and aij = aji for all i, j = 1, . . . , n.
Moreover, we assume:

(211) Campanato’s ellipticity condition: There exist positive constants α, γ and δ,
with γ + δ < 1 such that∣∣Tr τ − α aij(x, u, ξ)τij

∣∣ ≤ δ|Tr τ | + γ

C(p)
‖τ‖n×n

for a.a. x ∈ Ω, all u ∈ R, ξ ∈ R
n, and all symmetric matrices τ ∈ R

n×n. Here
‖τ‖n×n is the Euclidean norm of the matrix τ and Tr τ =

∑n
i=1 τii.

Theorem 2.5. ([19, Theorem 1.1, Remark 1], [16, Proposition 3.2.18]) Let conditions
(26,p), (27) and (211) be satisfied. Then there exists a solution u ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) of
(2.3).
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The proof makes essential use of (211) which ensures that the quasilinear operator Q is
near (see [3], [16]) to the Laplacian both considered as mappings from W 2,p(Ω)∩W 1,p

0 (Ω)
into Lp(Ω). A relevant example of a quasilinear operator Q satisfying condition (211) could
be a uniformly elliptic one given by a coefficients matrix {aij}n

i,j=1 with small enough
difference between the highest and the lowest eigenvalue.

More precisely, suppose that aij satisfies (2.5). Decomposing aij into λδij + (aij − λδij)
with Kronecker’s δij , we get

|Tr τ − αaij(x, u, ξ)τij| = |Tr τ − αλTr τ − α (aij − λδij)τij |
≤ |1 − αλ|.|Tr τ | + α|aij − λδij |.|τij|

≤ |1 − αλ|.|Tr τ | + α
( n∑

i=1

(aii − λ) +

n∑
i,j=1

i�=j

|aij|
)
‖τ‖n×n

≤ |1 − αλ|.|Tr τ | + αn2(Λ − λ)C(p)

C(p)
‖τ‖n×n,

since |aij| ≤ Λ − λ for i �= j and λ ≤ aii ≤ Λ as it follows from (2.5). Let α ∈ (0, 1/λ).
Then (211) will be satisfied with δ = 1 − αλ and γ = αn2(Λ − λ)C(p) if

(2.7) n2

(
Λ

λ
− 1

)
C(p) < 1.

Remark 2.6. Global unicity of strong solutions to (2.2), (2.3) or (2.4) can be invoked
under additional assumptions on the data which, roughly speaking, require aij ’s to be
independent of u and both aij(x, ξ) and b(x, u, ξ) to be Lipschitz continuous in ξ. The
reader is referred to [6, Theorem 10.2] (cf. also [18, Theorem 1.4] and [16, Theorem 2.6.12])
for details.

3. Application of the Implicit Function Theorem

Let Ω ⊂ R
n be a bounded and C1,1-smooth domain and consider the general quasilinear

Dirichlet problem

(3.1)

{
aij(x, u, Du)Diju + b(x, u, Du) = 0 a.e. in Ω,

u = 0 on ∂Ω

and its formal linearization at u = u0

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

aij(x, u0, Du0)Dijv
+ (Dξk

aij(x, u0, Du0)Diju0 + Dξk
b(x, u0, Du0))Dkv

+ (Duaij(x, u0, Du0)Diju0 + Dub(x, u0, Du0)) v = 0 a.e. in Ω,
v = 0 on ∂Ω.

We impose the following hypotheses:

(31) aij , b : Ω × R × R
n → R are C1-Carathéodory functions and aij = aji for all

i, j = 1, . . . , n (for the notion of C1-Carathéodory functions see Definition A.2
in the Appendix).

(32,p) u0 ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) is a solution to (3.1) with p > n.

(33) There exists a positive constant λ such that for a.a x ∈ Ω and all η ∈ R
n it

holds
aij(x, u0(x), Du0(x))ηiηj ≥ λ|η|2.

(34) The maps x ∈ Ω 	→ aij(x, u0(x), Du0(x)) ∈ R are in V MO(Ω) ∩ L∞(Ω) for all
i, j = 1, . . . , n.



8 D.K. PALAGACHEV, L. RECKE AND L.G. SOFTOVA

(35) There does not exist a non-zero solution v ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) to (3.2).

Theorem 3.1. Suppose (31)–(35). Let U ⊂ R × R
n be an open and bounded set and

K ⊂ U a compact such that (u0(x), Du0(x)) ∈ K for a.a. x ∈ Ω.

Then there exist neighborhoods V ⊆ C1(Ω×U )n2×C1(Ω×U ) of zero and W ⊆ W 2,p(Ω)∩
W 1,p

0 (Ω) of u0 and a C1-map ϕ : V → W with ϕ(0) = u0 such that for all(
{ãij}n

ij=1, b̃
)
∈ V, u ∈ W

we have

(3.3)

⎧⎨
⎩

(aij(x, u, Du) + ãij(x, u, Du))Diju

+b(x, u, Du) + b̃(x, u, Du) = 0 in Ω,
u = 0, on ∂Ω

if and only if u = ϕ
(
{ãij}n

i,j=1, b
)
.

Proof. For the sake of simplicity, let us denote

ã := {ãij}n
i,j=1 for {ãij}n

i,j=1 ∈ C1(Ω × U)n2

.

Denote by U the set of all u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) such that there exists a compact

K ⊂ U with (u(x), Du(x)) ∈ K for all x ∈ Ω. Obviously, U is open in W 2,p(Ω). Because
of assumption (31) and Lemma A.3, there exist C1-maps

Aij : C1(Ω × U)n2 × U → L∞(Ω), B : C1(Ω, U) × U → L∞(Ω)

such that (
Aij(ã, u)

)
(x) = aij(x, u(x), Du(x)) + ãij(x, u(x), Du(x)),(

B(̃b, u)
)
(x) = b(x, u(x), Du(x)) + b̃(x, u(x), Du(x)).

Hence, the problem (3.3) is equivalent to

(3.4) F (ã, b̃, u) = 0,

where

(3.5) F (ã, b̃, u) := Aij(ã, u)Diju + B(̃b, u).

Obviously, the map F is C1-smooth from C1(Ω × U)n2 × C1(Ω × U) × U into Lp(Ω).

Moreover, ã = 0, b̃ = 0, u = u0 is a solution to (3.4) because of (32,p). Let us solve (3.4)
with respect to u nearby of this solution by means of the Implicit Function Theorem. In
order to do this we have to check that

(3.6) DuF (0, 0, u0) ∈ Iso
(
W 2,p(Ω) ∩ W 1,p

0 (Ω); Lp(Ω)
)
.

Because of (3.5) we have

DuF (0, 0, u0)v = Aij(0, u0)Dijv + (DuAij(0, u0)v)Diju + DuB(0, u0)v

for all u ∈ U and v ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω). Hence, the linear operator DuF (0, 0, u0) is the

sum of the two linear operators

v ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) 	→ Aij(0, u0)Dijv ∈ Lp(Ω),(3.7)

v ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) 	→ (DuAij(0, u0)v)Diju + DuB(0, u0)v.(3.8)

By the definition of the map Aij, the value of the right-hand side of (3.7) in a point x ∈ Ω
is aij(x, u0, Du0(x))Dijv(x). Hence, the assumptions (33) and (34) and Theorem 2.1 imply
that (3.7) is an isomorphism.
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Similarly, the definitions of Aij and B imply that the right-hand side of (3.8) in a point
x ∈ Ω is

Duaij(x, u0(x), Du0(x))v(x)Diju0(x)+Dξk
aij(x, u0(x), Du0(x))Dkv(x)Diju0(x)

+Dub(x, u0(x), Du0(x))v(x)+Dξk
b(x, u0(x), Du0(x))Dkv(x).

Hence, because of the compact embedding W 2,p(Ω) ↪→ W 1,p(Ω), the linear operator (3.8)
is compact. Therefore, the linear operator DuF (0, 0, u0) is Fredholm (index zero). In
particular, it is an isomorphism if it is injective. Thus, assumption (35) yields that (3.6)
is true.

Hence, the Implicit Function Theorem can be applied to (3.5) in the described way and
this gives the assertion of Theorem 3.1. �

4. Application of the Newton Iteration Procedure

In this section we again suppose the domain Ω to have a C1,1–smooth boundary, and
consider the general quasilinear Dirichlet problem

(4.1)

{
aij(x, u, Du)Diju + b(x, u, Du) = 0 a.e. in Ω,

u = 0 on ∂Ω

and its formal linearization in u = u0

(4.2)

⎧⎪⎪⎨
⎪⎪⎩

aij(x, u0, Du0)Dijv
+ (Dξk

aij(x, u0, Du0)Diju0 + Dξk
b(x, u0, Du0))Dkv

+ (Duaij(x, u0, Du0)Diju0 + Dub(x, u0, Du0)) v = 0 a.e. in Ω,
v = 0 on ∂Ω,

but this time together with the following sequence of linear non-homogeneous boundary
value problems determining to Newton iteration ul+1 for given ul (l = 1, 2, . . .):

(4.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aij(x, ul, Dul)Dijul+1

+Duaij(x, ul, Dul)(ul+1 − ul)Dijul

+Dξk
aij(x, ul, Dul)Dk(ul+1 − ul)Dijul

+Dub(x, ul, Dul)(ul+1 − ul)
+Dξk

b(x, ul, Dul)Dk(ul+1 − ul) + b(x, ul, Dul) = 0 in Ω,
ul+1 = 0 on ∂Ω.

Definition 4.1. Denote by Ap the set of all symmetric matrix functions {aij}n
i,j=1 ∈

L∞(Ω)n2
, for which there exists λ > 0 such that

(4.4) aij(x)ηiηj ≥ λ|η|2 for all η ∈ R
n and a.a x ∈ Ω

and for which the map u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) 	→ aijDiju ∈ Lp(Ω), is an isomorphism.

Obviously, any of the symmetric matrix functions {aij}n
i,j=1 ∈ L∞(Ω)n2

, considered in
Section 2 (e.g., with aij ∈ V MO(Ω), or aij ’s satisfying the Cordes condition (2.7)) is in

Ap, and any symmetric matrix function, which is close to them in L∞(Ω)n2
and which

satisfies (4.4) is in Ap as well.

We impose the following conditions:

(41) aij , b : Ω × R × R
n → R are C1,1-Carathéodory functions and aij = aji for all

i, j = 1, . . . , n (for the notion of C1,1-Carathéodory functions see Definition A.2
in the Appendix below).

(42,p) u0 ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) is a solution to (4.1) with p > n.
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(43,p) {aij(·, u0(·), Du0(·))}n
i,j=1 ∈ Ap.

(44) There does not exist a non-zero solution v ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) to (4.2).

Theorem 4.2. Suppose (41)–(44). Then there exists a neighborhood W ⊂ W 2,p(Ω) ∩
W 1,p

0 (Ω) of u0 such that for any u1 ∈ W there exists a unique sequence of solutions
u2, u3, . . . ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω) to (4.3), and ul converges to u0 in W 2,p(Ω) as l → ∞.

Proof. We proceed as in the proof of Theorem 3.1. Writing F (u) for F (0, 0, u), the problem
(4.1) is equivalent to

(4.5) F (u) = 0

with

(4.6) (F (u)) (x) := aij(x, u(x), Du(x))Diju(x) + b(x, u(x), Du(x)).

Lemma A.3 implies that (4.6) defines a map F ∈ C1
(
W 2,p(Ω); Lp(Ω)

)
. Assumption (42,p)

yields that u0 is a solution to (4.5). Finally, (43,p) and (44) imply (as in the proof of
Theorem 3.1) that

F ′(u0) ∈ Iso
(
W 2,p(Ω) ∩ W 1,p

0 (Ω); Lp(Ω)
)
.

Hence, all conditions for the applicability of the abstract Newton iteration procedure (see
[24, Proposition 5.1]) to (4.5) in the solution u0 are checked up to the following one:

(4.7) F ′ is Lipschitz continuous in a neighborhood of u0.

For proving (4.7), we use the quasilinear structure of F. Because of (4.6) we have

F (u) = Aij(u)Diju + B(u),

where Aij, B ∈ C2
(
W 1,∞(Ω); L∞(Ω)

)
are the superposition operators generated by aij

and b. Hence

F ′(u)w = Aij(u)Dijw +
(
A′

ij(u)w
)
Diju + B′(u)w.

Therefore (F ′(u) − F ′(v))w is a sum of the following terms:

(Aij(u) − Aij(v))Dijw,(4.8) (
A′

ij(u) − A′
ij(v)

)
wDiju,(4.9)

A′
ij(v)wDij(u − v),(4.10)

(B′(u) − B′(v)) w.(4.11)

The Lp-norm of (4.8) can be estimated by

(4.12) const ‖u − v‖Lp(Ω)‖w‖W 2,p(Ω)

in view of the mean value theorem and because A′
ij is locally bounded from W 2,p(Ω)

into L (W 2,p(Ω), L∞(Ω)) (as a locally Lipschitz continuous map, cf. Lemma A.3). The
Lp-norms of (4.9) and (4.11) can be estimated by (4.12) because A′

ij and B′ are lo-

cally Lipschitz continuous from W 2,p(Ω) into L (W 2,p(Ω), L∞(Ω)) . Finally, the Lp-norm
of (4.10) can be estimated by (4.12) again, because A′

ij is locally bounded from W 2,p(Ω)

into L (W 2,p(Ω), L∞(Ω)) . �
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5. Concluding Remarks

Results of the type of Sections 3 and 4 are true also for other boundary conditions, in
particular for the regular oblique derivative problem

(5.1)

⎧⎨
⎩

Qu ≡ aij(x, u, Du)Dij + b(x, u, Du) = 0 a.e. in Ω,

∂u

∂�
+ σ(x)u = 0 on ∂Ω.

Here �(x) =
(
�1(x), . . . , �n(x)

)
is a unit vector field defined on ∂Ω which is never tangen-

tial to ∂Ω, σ(x) < 0 and �i, σ ∈ C0,1(∂Ω). We dispose of various existence results for
(5.1) under the set of hypotheses given in Section 2. Precisely, we refer the reader to [15]
when Q is a linear operator, to [5] in case Q is semilinear, to [23] for general quasilinear
operators with smooth coefficients and to [7] in the situation considered in Theorem 2.4.

The results of Sections 3 and 4 can be generalized to weakly coupled systems of the
type

(5.2) aα
ij(x, u1, . . . , uN , Du1, . . . , DuN)Diju

α + bα(x, u1, . . . , uN , Du1, . . . , DuN) = 0.

In (5.2) the index α varies from 1 to N , but there is no summation over α. If ellipticity
conditions of the type (33) are fulfilled for each α, then the main part of the lineariza-
tion in a solution (u1

0, . . . , u
N
0 ) generates, in the case of homogeneous Dirichlet boundary

conditions, for example, an isomorphism

v ∈
(
W 2,p(Ω) ∩ W 1,p

0 (Ω)
)N 	→

[
aα

ij(·, u1
0, . . . , u

N
0 , Du1

0, . . . , DuN
0 )Dijv

α
]N

α=1
∈ (Lp(Ω))N .

Hence, the whole linearization of (5.2) generates a Fredholm operator (index zero) from(
W 2,p(Ω) ∩ W 1,p

0 (Ω)
)N

into (Lp(Ω))N , and it is an isomorphism iff it is injective.

Results of the type of Sections 3 and 4 are also true for boundary value problems
for elliptic equations and systems in divergence form, see [20] for the case N = 2 and
[12] for N ≥ 2. In comarison with the results of the present paper for non-divergence
type equations, in those papers some of the assumptions are weaker (arbitrary Lipschitz
domains and arbitrary discontinuities in x, mixed boundary conditions), some stronger
(the equations have to be linear with respect to the gradient Du). In the case N > 2
there are involved other function spaces (Sobolev-Campanato spaces), and the maximal
regularity theory for the linear problems, used in [12], is developed in [8, 9, 11]. The
maximal regularity theory for the linear problems, used in [20], is developed in [10].

Appendix: Superposition Operators

In this section Ω is a bounded domain in R
n, and we consider superposition operators

of the type

(A.1) (A(u)) (x) = a(x, u(x), Du(x)) for a.a. x ∈ Ω.

Our first result proposes sufficient conditions in order that the superposition operator A
maps functions u ∈ C(Ω) with Du ∈ (V MO(Ω) ∩ L∞(Ω))n into V MO(Ω) ∩ L∞(Ω). It
generalizes Lemma 2.1 in [18] and Lemma 2.6.2 in [16].

Lemma A.1. Let a : Ω×R×R
n → R be a Carathéodory function satisfying the following

conditions:
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(A1) a(·, u, ξ) ∈ V MO(Ω) locally uniformly in (u, ξ): For all M > 0 it holds

γM(r) := sup
|u|,|ξ|≤M

sup
0<ρ≤r

sup
x∈Ω

1

|Ωρ,x|

∫
Ωρ,x

∣∣∣a(y, u, ξ)− 1

|Ωρ,x|

∫
Ωρ,x

a(z, u, ξ)dz
∣∣∣dy

tends to zero as r tends to zero.
(A2) Continuity properties of a(x, ·, ·): For all M > 0 there exist cM > 0 and a non-

decreasing function µM : [0,∞) → (0,∞) with limt→0 µM(t) = 0 such that for
a.a. x ∈ Ω, all u, u′ ∈ R and all ξ, ξ′ ∈ R

n it holds

|a(x, u, ξ)− a(x, u′, ξ′)| ≤ µM(|u − u′|) + cM |ξ − ξ′|.
(A3) a(x, 0, 0) ∈ L∞(Ω).

Then A(u) ∈ V MO(Ω) ∩ L∞(Ω) for any u ∈ C(Ω) with Du ∈ (V MO(Ω) ∩ L∞(Ω))n .

Proof. Let u ∈ C(Ω) with Du ∈ (V MO(Ω) ∩ L∞(Ω))n , and take M ≥ ‖u‖W 1,∞(Ω). Then
for a.a. x ∈ Ω we have

|a(x, u(x), Du(x))| ≤|a(x, 0, 0)| + |a(x, u(x), Du(x)) − a(x, 0, 0)|
≤‖a(·, 0, 0)‖L∞(Ω) + µM

(
‖u‖L∞(Ω)

)
+ cM‖Du‖L∞(Ω)n .

Hence, A(u) ∈ L∞(Ω).
Now, take x ∈ Ω and 0 < ρ ≤ r. Then

I(ρ, x) :=
1

|Ωρ,x|

∫
Ωρ,x

∣∣a(y, u(y), Du(y))− 1

|Ωρ,x|

∫
Ωρ,x

a(z, u(z), Du(z))dz
∣∣dy

≤2I1(ρ, x) + I2(ρ, x)

with

I1(ρ, x) :=
1

|Ωρ,x|

∫
Ωρ,x

∣∣a(y, u(y), Du(y))− a(y, u(x), (Du)Ωρ,x)
∣∣dy,

I2(ρ, x) :=
1

|Ωρ,x|

∫
Ωρ,x

∣∣a(y, u(x), (Du)Ωρ,x) −
1

|Ωρ,x|

∫
Ωρ,x

a(z, u(x), (Du)Ωρ,x)dz
∣∣dy,

(Du)Ωρ,x :=
1

|Ωρ,x|

∫
Ωρ,x

Du(y)dy.

It follows from (A2) that

I1(ρ, x) ≤ µM(ωu(r)) + cMγDu(r)

with ωu being the modulus of continuity of u and γDu the V MO modulus of Du. Further,
(A1) yields

I2(ρ, x) ≤ γM(r).

Hence supρ≤r supx∈Ω I(ρ, x) → 0 as r → 0, and this completes the proof. �

The second result of this section describes conditions which imply that the superposition
operator A is a C1–smooth map from W 1,∞(Ω) into L∞(Ω). Moreover, we show that the
corresponding evaluation map

(a, u) 	→ a(·, u(·), Du(·))
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is C1 on suitable function spaces. The smoothness of evaluation maps depends on the
choice of the function spaces (see, e.g., [1, Proposition 2.4.17]). In order to introduce our
function space of the Carathéodory functions a let us use the following terminology:

Definition A.2. Let U ⊆ R × R
n, and let a : Ω × U → R be a Carathéodory function.

(i) The function a is called C1-Carathéodory function on Ω × U if the following condi-
tions are fulfilled:

(A4) For almost all x ∈ Ω the function a(x, ·) is continuously differentiable.
(A5) For all compact sets K ⊂ U there exists cK > 0 such that for a.a. x ∈ Ω and

all (u, ξ) ∈ K it holds

|a(x, u, ξ)|+ |Dua(x, u, ξ)| +
n∑

j=1

|Dξj
a(x, u, ξ)| ≤ cK .

(A6) For all compact sets K ⊂ U and all ε > 0 there exists δ > 0 such that for a.a.
x ∈ Ω and all (u, ξ), (u′, ξ′) ∈ K with |u − u′| + ‖ξ − ξ′‖ < δ it holds

|a(x, u, ξ)− a(x, u′, ξ′)|+|Dua(x, u, ξ) − Dua(x, u′, ξ′)|

+

n∑
j=1

|Dξj
a(x, u, ξ) − Dξj

a(x, u′, ξ′)| ≤ ε.

(ii) The function a is called C1,1-Carathéodory function on Ω×U if (A4) and (A5) hold
and the following condition is fulfilled:

(A7) For all compact sets K ⊂ U there exists LK > 0 such that for a.a. x ∈ Ω and
all (u, ξ), (u′, ξ′) ∈ K it holds

|a(x, u, ξ)−a(x, u′, ξ′)| + |Dua(x, u, ξ) − Dua(x, u′, ξ′)|

+
n∑

j=1

|Dξj
a(x, u, ξ) − Dξj

a(x, u′, ξ′)| ≤ LK (|u − u′| + |ξ − ξ′|) .

(iii) Let K ⊂ R ×R
n be a compact. The vector space of all C1-Carathéodory functions

on Ω × K, equipped with the norm

‖a‖ := sup
(u,ξ)∈K

ess sup
x∈Ω

|a(x, u, ξ)|+ sup
(u,ξ)∈K

ess sup
x∈Ω

|Dua(x, u, ξ)|

+
n∑

j=1

sup
(u,ξ)∈K

ess sup
x∈Ω

|Dξj
a(x, u, ξ)|

will be denoted by C1(Ω × K).

Lemma A.3. Let U ⊂ R × R
n be bounded and open. Denote by U the set of all u ∈

W 1,∞(Ω) such that there exists a compact K ⊂ U with (u(x), Du(x)) ∈ K for a.a. x ∈ Ω.
Then the following is true:

(i) U is open in W 1,∞(Ω);
(ii) Let a ∈ C1(Ω × U). Then there exists a C1-map A : U → L∞(Ω) such that for

a.a. x ∈ Ω, all a ∈ C1(Ω × U) and all u ∈ U it holds (A.1). If, moreover, a is a
C1,1-Carathéodory function, then the derivative A′ is locally Lipschitz continuous.

(iii) There exists a C1-map E : C1(Ω × U) × U → L∞(Ω) such that for a.a. x ∈ Ω, all
a ∈ C1(Ω × U) and all u ∈ U it holds

(A.2) (E(a, u)) (x) = a(x, u(x), Du(x))
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Proof. Assertion (i) is obvious. Let us show that assertion (ii) is true. We have

Dua(x, u, ξ) = lim
v→0

a(x, u + v, ξ) − a(x, u, ξ)

v

for a.a. x ∈ Ω, all u ∈ R and all ξ ∈ R
n. Thus, Dua(·, u, ξ) is the limit almost everywhere

of a sequence of measurable functions and, hence, measurable. Analogously we get that
the functions Dξj

a(·, u, ξ) are measurable.
Now, let us fix a function u ∈ U . By definition there exists a compact K ⊂ U with

(u(x), Du(x)) ∈ K for a.a. x ∈ Ω. Hence, because of assumption (A5), we get that

(A.3) a(·, u(·), Du(·)), Dua(·, u(·), Du(·)), Dξj
a(·, u(·), Du(·)) ∈ L∞(Ω).

If the superposition operator A is differentiable in u then its derivative can be calculated
pointwise for a.a. x ∈ Ω, i.e.

(A.4) (A′(u)v)(x) = Dua(x, u(x), Du(x))v(x) + Dξk
a(x, u(x), Du(x))Dkv(x)

Thus, the right hand side of (A.4) is a candidate for the derivative A′(u). Because of (A.3)
the map

(A.5) v 	→ Dua(·, u(·), Du(·))v(·) + Dξk
a(·, u(·), Du(·))Dkv(·)

is linear and bounded from W 1,∞(Ω) into L∞(Ω). Let us show that (A.5) is indeed the
derivative of A in u. For a.a x ∈ Ω and all v ∈ W 1,∞(Ω) we have

a(x, u(x) + v(x), Du(x) + Dv(x)) − a(x, u(x), Du(x))

−Dua(x, u(x), Du(x))v(x) − Dξk
a(x, u(x), Du(x))Dkv(x)

=

∫ 1

0

(
Dua(x, u(x) + tv(x), Du(x) + tDv(x))v(x) − Dua(x, u(x), Du(x))v(x)

+Dξk
a(x, u(x) + tv(x), Du(x) + tDv(x))Dkv(x) − Dξk

a(x, u(x), Du(x))Dkv(x)
)
dt.

Take ε > 0. There exist a compact set K ⊂ U and δ > 0 such that for all v ∈ W 1,∞(Ω)
with ‖v‖W 1,∞(Ω) < δ it holds (u(x) + v(x), Du(x) + Dv(x)) ∈ K for a.a. x ∈ Ω. Taking δ
small enough we can assume that it is the δ corresponding to K and ε from (A6). Hence,
we have for a.a. x ∈ Ω and all v ∈ W 1,∞(Ω) with ‖v‖W 1,∞(Ω) < δ that∣∣a(x, u(x)+ v(x), Du(x) + Dv(x)) − a(x, u(x), Du(x))

−Dua(x, u(x), Du(x))v(x) − Dξk
a(x, u(x), Du(x))Dkv(x)

∣∣ ≤ ε‖v‖W 1,∞(Ω).

Now, let us show that the derivative A′ is continuous in u. Take ε, K and δ as above.
Then, again by (A6), for a.a x ∈ Ω and all v, w ∈ W 1,∞(Ω) with ‖v‖W 1,∞(Ω) < δ we have

|(A′(u + v) − A′(u)w) (x)|
=

∣∣∣ (Dua(x, u(x) + v(x), Du(x) + Dv(x)) − Dua(x, u(x), Du(x)))w(x)

+ (Dξk
a(x, u(x) + v(x), Du(x) + Dv(x)) − Dξk

a(x, u(x), Du(x)))Dξk
w(x)

∣∣∣
≤ ε‖w‖W 1,∞(Ω).

Analogously, one shows that the derivative A′ is locally Lipschitz continuous if condition
(A7) is satisfied.

(iii) In order to show that the evaluation map E is continuously differentiable we show
that its partial derivatives with respect to a and to u exist and are continuous. Obviously,
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the map E(·, u) is linear. Hence, the partial derivative DaE of E with respect to a exists
everywhere, and for a.a. x ∈ Ω, all a, b ∈ C1(Ω × U) and all u ∈ U we have

(A.6) (DaE(a, u)b) (x) = b(x, u(x), Du(x)).

Moreover, as above one shows that the partial derivative DuE of E with respect to u
exists everywhere, and for a.a. x ∈ Ω and all a ∈ C1(Ω× U), u ∈ U and v ∈ W 1,∞(Ω) we
have

(A.7) (DuE(a, u)v)(x) = Dua(x, u(x), Du(x))v(x) + Dξk
a(x, u(x), Du(x))Dkv(x).

Let a ∈ C1(Ω × U) and u ∈ U be fixed. We are going to show that DaE and DuE are
continuous in the point (A, u).

There exists a δ > 0 such that for all v ∈ W 1,∞(Ω) with ‖v‖W 1,∞(Ω) < δ it holds

(u(x) + v(x), Du(x) + Dv(x)) ∈ U for a.a. x ∈ Ω. Hence, for a.a. x ∈ Ω, all b, c ∈
C1(Ω × U) and all v ∈ W 1,∞(Ω) with ‖v‖W 1,∞(Ω) < δ we have

| (DaE(a + b, u + v)c − DaE(a, u)c) (x)|
=

∣∣c(x, u(x) + v(x), Du(x) + Dv(x)) − c(x, u(x), Du(x))
∣∣

=
∣∣∣ ∫ 1

0

(
Duc(x, u(x) + tv(x), Du(x) + tDv(x))v(x)

+Dξk
c(x, u(x) + tv(x), Du(x) + tDv(x))Dkv(x)

)
dt

∣∣∣
≤ ‖c‖C1(Ω×U)‖v‖W 1,∞(Ω).

Finally, in order to show that DuE is continuous in (A, u), we take an arbitrary ε > 0
and the δ from above. Choosing δ small enough we can assume that it is the δ corre-
sponding to U and ε from (A6). Hence, we have for a.a. x ∈ Ω, all b ∈ C1(Ω× U) and all
v, w ∈ W 1,∞(Ω) with ‖b‖C1(Ω×U) + ‖v‖W 1,∞(Ω) < δ that

|(DuE(a + b, u + v)w − DuE(a, u)w) (x)|

=
∣∣∣ (Dua(x, u(x) + v(x), Du(x) + Dv(x)) − Dua(x, u(x), Du(x)))w(x)

+ (Dξk
a(x, u(x) + v(x), Du(x) + Dv(x)) − Dξk

a(x, u(x), Du(x)))Dξk
w(x)

+ Dub(x, u(x) + v(x), Du(x) + Dv(x))w(x) + Dξk
b(x, u(x) + v(x), Du(x)Dξk

w(x)
∣∣∣

≤ (ε + δ)‖w‖W 1,∞(Ω).
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