
Decomposition of Multistage Stochastic Programs

with Recombining Scenario Trees

Christian Küchler∗ and Stefan Vigerske∗

Humboldt–Universität zu Berlin, Unter den Linden 6,
D–10099 Berlin, Germany,

ckuechler@math.hu-berlin.de, stefan@math.hu-berlin.de

Abstract

This paper presents a decomposition approach for linear multistage stochastic
programs, that is based on the concept of recombining scenario trees. The lat-
ter, widely applied in Mathematical Finance, may prevent the node number of the
scenario tree to grow exponentially with the number of time stages. It is shown
how this property may be exploited within a non-Markovian framework and un-
der time-coupling constraints. Being close to the well-established Nested Benders
Decomposition, our approach uses the special structure of recombining trees for
simultaneous cutting plane approximations. Convergence is proved and stopping
criteria are deduced. Techniques for the generation of suitable scenario trees and
some numerical examples are presented.

Keywords. Multistage Stochastic Programming, Nested Benders Decomposition, Recombining
Scenario Trees

AMS subject classification. 90C15, 90C39, 49M27, 65K05

Introduction

In multistage stochastic optimization problems the underlying stochastic processes are

usually represented through scenario trees. Unfortunately, even under a moderate branch-

ing structure, the number of scenarios can grow exponentially with the number of time

stages. Consequently, many problems of practical interest are approximated by models

∗Support by the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) and by the
Bundesministerium für Bildung und Forschung (BMBF) under the grant 03SF0312E is gratefully ac-
knowledged.

1

Decomposition of Multistage Stochastic Programs 2

that include only few time stages or a small number of scenarios. An attempt to cre-

ate such low-dimensional models relies on scenario reduction techniques, which pursuit

to present the stochastic processes as best as possible through a largely reduced set of

scenarios, cf. [14]. An approach often used in practice, aiming to find acceptable decisions

along a concrete observation process, is to optimize with rolling time horizon, cf. [26].

Under certain circumstances, a further approach to handle the dimensionality is to

use recombining scenario trees. An illustrative example is the binomial model of stock

price behaviour of Cox, Ross, and Rubinstein [5], whereby the number of nodes under T

time stages diminishes from 2T − 1 to T (T + 1)/2 through recombination of scenarios.

However, some information about the history of a node in the tree will be lost. This has

no consequences if the represented stochastic process has the Markov property and the

optimization problem contains no time-coupling constraints. But whenever one of these

properties is not fulfilled, it is difficult to formulate a dynamic programming equation

on a recombining scenario tree. Practical problems include often both non-Markovian

stochastic input and time-coupling constraints. For such problems, recombining scenario

trees seem to be inappropriate at first sight.

Motivated by the numerical possibilities of recombining scenario trees, we develop an

approach to solve large-scale and long-term multistage stochastic programs. The basic idea

can be described as follows. Although in many cases of practical interest the stochastic

input is not Markovian, it has only a comparable short-term memory and can be displayed

without great loss of precision by a scenario tree, where at certain time points scenarios

with similar short-term history are recombined. However, in the presence of time-coupling

constraints, the relevant past of both the stochastic process and the control variables has to

be available at each node to allow a numerical solution based on the dynamic programming

principle. A way out of this dilemma is to consider a reduced set of subtrees originated at

one or multiple time stages. This approach does not result in a recombining tree, but it

can be interpreted as the recombination of scenarios and offers the numerical advantages

of recombining trees through the possibility to simultaneously approximate cost-to-go

functions in nodes with corresponding subtrees.

Section 1 presents the problem structure and the concept of recombining scenarios.

The solution algorithm is detailed in Section 2, as well as convergence results and stopping

criteria. In Section 3 we sketch a method for generating recombining scenario trees. A

small example and some numerical results that demonstrate the potentials of our method

are presented in Section 4. Finally, we discuss possible extensions and further develop-

ments in Section 5.

Acknowledgement. We are grateful to Prof. Werner Römisch for his help and encour-

agement.

Decomposition of Multistage Stochastic Programs 3

1 Problem Formulation

1.1 Linear multistage stochastic programs

On a probability space (Ω,F , P), we consider an Rs-valued discrete time stochastic process

ξ = (ξt)t=1,...,T with time horizon T ∈ N. The filtration (Ft)t=1,...,T induced by ξ is defined

by

Ft := σ(ξt) with ξt := (ξs)s=1,...,t , t = 1, . . . , T.

Following the notation of [17], we consider the linear multistage stochastic program

(P) min

{
E

[
T∑

t=1

〈bt(ξt), xt〉

]
:

xt ∈ Xt, xt ∈ Ft, t = 1, . . . , T

At,0(ξt)xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T

}
,

for closed polyhedral sets Xt ⊂ Rr and matrix-valued mappings At,0(·), At,1(·), and ht(·)
of suitable dimensions. To render possible a numerical solution of (P), ξ is assumed to

take only finitely many values, i.e., the support of ξt’s distribution can be written as

Ξt := {ξt
i : i = 1, . . . , nt ∈ N} := supp P

[
ξt ∈ ·

]
⊂ Rs·t,

for t = 1, . . . , T . Considering certain time stages

0 = R0 < R1 < . . . < Rn < Rn+1 = T,

the cost-to-go function at time Rj and state (xRj
, ξ

Rj

i) ∈ XRj
×ΞRj is defined recursively

by QRn+1(·, ·) := 0 and the Bellman Equation

QRj
(xRj

, ξ
Rj

i) := min E

 Rj+1∑
t=Rj+1

〈bt(ξt), xt〉+QRj+1
(xRj+1

, ξRj+1)

∣∣∣∣∣∣ ξRj = ξ
Rj

i

(QRj
)

s.t. xt ∈ Xt, xt ∈ Ft, t = Rj + 1, . . . , Rj+1,

At,0(ξt)xt + At,1(ξt)xt−1 = ht(ξt), t = Rj + 1, . . . , Rj+1

for j = 1, . . . , n. Using this notation, (P) can be reformulated in terms of Dynamic

Programming:

min E

[
R1∑
t=1

〈bt(ξt), xt〉+QR1(xR1 , ξ
R1)

]
(Q0)

s.t. xt ∈ Xt, xt ∈ Ft, t = 1, . . . , R1,

At,0(ξt)xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , R1,

and solved by, e.g., the Nested Benders Decomposition method [2, 21, 27]. Thereby, the

piecewise-linear convex functions [3, Thm. 40]

xRj
7→ QRj

(xRj
, ξ

Rj

i), j = 1, . . . , n, i = 1, . . . , nRj
,

Decomposition of Multistage Stochastic Programs 4

are approximated successively by a set of supporting hyperplanes and evaluated in a

time- and node-dependent, adaptively chosen sequence of points xRj
. Unfortunately, the

number of nodes and functions that have to be approximated can grow exponentially with

increasing number of time steps T .

1.2 Recombining scenario trees

The finiteness of ΞT allows to represent the process ξ by a scenario tree, cf., e.g., [7]. We

say that ξ can be represented by a scenario tree within that the nodes {ξRj = ξ
Rj

i } and

{ξRj = ξ
Rj

k } can be recombined at time Rj, if both share the same associated subtree, i.e.,

the corresponding conditional distributions of (ξt)t=Rj+1,...,T coincide:

P
[
(ξt)t=Rj+1,...,T ∈ · |ξRj = ξ

Rj

i

]
= P

[
(ξt)t=Rj+1,...,T ∈ · |ξRj = ξ

Rj

k

]
.(1)

The resulting scenario tree can then be displayed as a recombining tree with much less

nodes than the original tree. Furthermore, recombining at several time stages may prevent

the node number to grow exponentially with the number of time stages, cf. Figure 1. But,

due to time-coupling constraints, the scenario-dependent control xRj
(ξRj) will not be

equal on {ξRj = ξ
Rj

i } and {ξRj = ξ
Rj

k }, in general. Therefore, solution methods based

on Dynamic Programming, like the Nested Benders Decomposition method, can not be

applied on a recombining tree. Thus, we have to abstain from combining nodes.

Nevertheless, (1) can be useful, since it entails equality of the cost-to-go functions

QRj
(·, ξRj

i) and QRj
(·, ξRj

k). The benefit becomes apparent within the Nested Benders

Decomposition Algorithm, where a cutting plane approximation of QRj
(·, ξRj

i) can be

used to approximate QRj
(·, ξRj

k), simultaneously for every ξ
Rj

k , k = 1, . . . , nRj
, that fulfils

(1). In this way, a considerable reduction of the numerical complexity of the problem can

be achieved.

The relation (1) divides every ΞRj , j = 1, . . . , n, into a familiy of equivalence classes.

The latter can be represented by a set of representative nodes at time Rj for j = 1, . . . , n:

ΛRj :=
{

λ
Rj

1 , . . . , λRj
mRj

}
⊂ ΞRj with

(i) for every ξ
Rj

i ∈ ΞRj , it exists ξ
Rj

k = λRj
m ∈ ΛRj such that (1) holds for i and k,

(ii) for every ξ
Rj

i , ξ
Rj

k ∈ ΛRj with i 6= k, (1) does not hold for i and k.

Thereby, mRj
∈ N denotes the number of different subtrees originated at time stage

Rj, j = 1, . . . , n. Given ΛRj , every node ξ
Rj

i ∈ ΞRj is associated with a representative

node by the well-defined mapping

λRj : Ξ
Rj

i → ΛRj , such that ξ
Rj

i and λRj(ξ
Rj

i) fulfill (1).

Although we do not use trees that are recombining in the strict sense, scenario trees with

Decomposition of Multistage Stochastic Programs 5

Figure 1: Non-recombining binary tree (left side) and binary tree with recombinations at

stages R1 = 3 and R2 = 5 (right side).

coinciding subtrees in the sense of (1) are denoted as recombining, in the following.

While the number of different functions QRj
(·, ξRj

i) at time Rj has been reduced from

nRj
to mRj

, the non-recombining nature of the control process (xt) still causes an ex-

ponential growth (with increasing j) of the number of control points that demand for

an evaluation of cost-to-go functions QRj
(·, λRj

m). Hence, to develop an algorithm that

efficiently exploits property (1) for solving (Q0), we have to find a way to deal with this

difficulty.

2 Solving a linear multistage stochastic program with

recombining scenarios

In this section we propose a modified Nested Benders Decomposition for the solution

of (P). The basic algorithm, presented in Section 2.1, makes use of the identity (1) to

simultaneously approximate the cost-to-go functions. Already leading to a complexity

reduction, this approach forms the basis for further improvements. More precisely, it is

shown in Sections 2.2 and 2.3 how the coincidence of subproblems and Lipschitz continuity

and convexity of the cost-to-go functions allow to handle the exponential growth of control

points. The full algorithm is stated in Section 2.4.

For simplicity, we avoid unboundedness of the subproblems (QRj
) by assuming bound-

edness of the sets Xt, t = 1, . . . , T . However, in general, the method of Van Slyke and

Wets [27] could be used to address this problem.

Whenever problem (QRj
) is infeasible for some xRj

, we write QRj
(xRj

, ξ
Rj

i) = ∞,

following the convention that the infimum over an empty set is equal to ∞.

Decomposition of Multistage Stochastic Programs 6

2.1 A Nested Benders Decomposition approach

Consider the formulation (Q0) of problem (P). In a Nested Benders Decomposition ap-

proach [2, 21, 27], the cost-to-go functions QRj
(·, λRj

i) are replaced by an approximation

using supporting hyperplanes (cutting planes). Due to the recombining nature of the

stochastic process, the value functions QRj
(·, ξRj

i) and QRj
(·, ξRj

k) coincide whenever ξ
Rj

i

and ξ
Rj

k fulfill (1), and, thus, they can be approximated simultaneously. Note that, in

difference to the classical Nested Benders Decomposition [2], we do not decompose the

problem at every time stage, but only on the stages Rj, j = 1, . . . , n.

More formal, we define the following underestimating functions: For j = n, . . . , 0,

x̄Rj
∈ XRj

, and λ
Rj

i ∈ ΛRj let

QL
Rj

(x̄Rj
, λ

Rj

i) := min E

 Rj+1∑
t=Rj+1

〈bt(ξt), xt〉+QLC
Rj+1

(xRj+1
, λRj+1(ξRj+1))

∣∣∣∣∣∣ ξRj = λ
Rj

i


(QL

Rj
)

s.t. xt ∈ Xt, xt ∈ Ft, t = Rj + 1, . . . , Rj+1,

At,0(ξt)xt + At,1(ξt)xt−1 = ht(ξt), t = Rj + 1, . . . , Rj+1,

xRj
= x̄Rj

,(2)

where QLC
Rn+1

(·, ·) := 0 and QLC
Rj+1

(·, λRj+1

i) is an approximation of QL
Rj+1

(·, λRj+1

i) by sup-

porting hyperplanes that is easy to evaluate and that will be properly defined in equation

(4) below. Problem (QL
Rj

) is often referred to as master problem in the literature.

Cutting plane approximation of QL
Rj

(·, λRj

i). The function QLC
Rj

(·, λRj

i) is used to

induce a feasible solution at stage Rj and to approximate the value of QL
Rj

(·, λRj

i) on its

domain. For the latter purpose, let x̄ ∈ XRj
with QL

Rj
(x̄, λ

Rj

i) < ∞. An optimality cut

supporting QL
Rj

(·, λRj

i) is given by QL
Rj

(x̄, λ
Rj

i)+〈π, xRj
−x̄〉 ≤ 0, where π denotes the dual

variables corresponding to the constraint (2) in an optimal solution of problem (QL
Rj

).

To induce feasibility at time stage Rj, a point xRj
that is infeasible for (QL

Rj
) is cut

off using a feasibility cut: Let the function U(·, λRj

i) measure the minimal L1-distance of

a point x̄ ∈ XRj
from the feasible set of (QL

Rj
),

U(x̄, λ
Rj

i) := min
x

E

[∥∥xRj
− x̂Rj

∥∥
1

+

Rj+1∑
t=Rj+1

d1(xt, Xt) + ‖At,0(ξt)xt + At,1(ξt)xt−1 − ht(ξt)‖1

∣∣∣∣∣ξRj = λ
Rj

i

]
s.t. xt ∈ Ft, t = Rj, . . . , Rj+1,

x̂Rj
= x̄,(3)

Decomposition of Multistage Stochastic Programs 7

where d1(y, A) := infz∈A ‖y − z‖1 for y ∈ Rr, A ⊆ Rr. Hence, U(x̄, λ
Rj

i) > 0 if and only

if QL
Rj

(x̄, λ
Rj

i) = ∞. Introducing slack variables, problem U(x̄, λ
Rj

i) can be formulated

as a linear problem. Thus, analog to optimality cuts, a feasibility cut is given by a

linearization of U(·, λRj

i) at x̄, U(x̄, λ
Rj

i) +
〈
π, xRj

− x̄
〉
≤ 0, where π denotes the dual

variables corresponding to the constraint (3) in an optimal solution of U(x̄, λ
Rj

i).

To summarize, an approximation of QL
Rj

(·, λRj

i) by means of optimality cuts Copt(λ
Rj

i)

and feasibility cuts Cfeas(λ
Rj

i) is given by

QLC
Rj

(xRj
, λ

Rj

i) := max
(x̄,π̄)∈Copt(λ

Rj
i)

QL
Rj

(x̄, λ
Rj

i) +
〈
π̄, xRj

− x̄
〉

(4)

s.t. U(x̄, λ
Rj

i) +
〈
π̄, xRj

− x̄
〉
≤ 0, (x̄, π̄) ∈ Cfeas(λ

Rj

i).

Nested Benders Decomposition Algorithm. The solution algorithm processes the

master problems (QL
Rj

), j = 0, . . . , n, of the decomposed scenario tree in a forward or

backward manner. At each time stage Rj the master problems QL
Rj

(·, λRj

i), λ
Rj

i ∈ ΛRj ,

are considered. The algorithm evaluates QL
Rj

(·, λRj

i) for a set Zj(λ
Rj

i) of controls xRj
.

If QLC
Rj

(xRj
, λ

Rj

i) < QL
Rj

(xRj
, λ

Rj

i), new optimality or feasibility cuts are generated and

added to the master problems at stage Rj−1. Further, in the forward mode, new control

points xRj+1
are generated from the solution of the master problem (QL

Rj
) to form the

sets Zj+1(λ
Rj+1

i) for λ
Rj+1

i ∈ ΛRj+1 . A special feasibility restoration mode ensures that

traversing the tree in forward mode is only continued when all master problems at the

current time stage could be solved. The algorithm stops when either the first timeperiod

master problem (QL
0) is infeasible, or all master problems could be solved to optimality

and the generation of cuts has stopped. In the former case, also problem (Q0) is infeasible,

in the latter, the problem has been solved to optimality. We refer to [2, 11, 21] for a more

formal description of the algorithm.

Proposition 1 (see, e.g., [21, Thm. 5]). The Nested Benders Decomposition Algorithm

stops in a finite number of steps either by reporting infeasibility of (Q0) or with a solution

that is optimal for (Q0).

The finiteness of the algorithm follows from the polyhedrality of the functions U(·, λRj

i)

and QRj
(·, λRj

i), since only a finite number of cuts are needed to represent all facets of

these functions.

2.2 Dealing with exponential growing control point sets

As mentioned above, a numerical challenge lies in the non-recombining nature of the

control process. Since every functionQL
Rj

(·, λRj

i) is evaluated for all controls xRj
∈ Zj(λ

Rj

i)

and each evaluation of QL
Rj

(·, λRj

i) yields a set of new controls xRj+1
(ξRj+1), which are then

Decomposition of Multistage Stochastic Programs 8

added to Zj+1(λ
Rj+1(ξRj+1)), the sets of control points Zj(λ

Rj

i) are growing exponentially

with increasing j = 1, . . . , n.

We attempt to further improve the algorithm’s efficiency by thinning out the sets

Zj(λ
Rj

i). Thus, before a master problem corresponding to scenario λ
Rj

i is processed, the

set Zj(λ
Rj

i) is aggregated to a subset of representative points that have preferably many

nonrepresentative points close to it. To this end, a graph G is constructed that has the

points Zj(λ
Rj

i) as vertices. An edge exists between two points x and x̂ if and only if x and

x̂ are considered as close, that is |xi − x̂i| ≤ ρ(xup
i − xlow

i) for i = 1, . . . , r, where ρ ∈ [0, 1]

is a thinning parameter and xlow and xup denote bounds on the values of x. The existence

of xlow and xup is ensured by the boundedness assumption on XRj
.

An aggregation of Zj(λ
Rj

i) is computed by finding a minimum vertex cover in G, i.e., a

subset of vertices S of minimal cardinality such that the union of S and its neighbourhood

in G yields Zj(λ
Rj

i). The grid-size parameter ρ guides the roughness of the thinning

operation, that is ρ = 0 corresponds to the removal of no points, and ρ = 1 corresponds

to the reduction of Zj(λ
Rj

i) to a singleton.

Note, that minimum vertex cover is known to be an NP problem [10], so that the

computation of a best (smallest) aggregation of Zj(λ
Rj

i) can result in a considerable slow-

down of the algorithm. Hence, we use a greedy heuristic to compute a good (small)

aggregation of Zj(λ
Rj

i). This heuristic selects representative points once at a time from

Zj(λ
Rj

i) by searching for a vertex of maximum degree. After removing the neighbourhood

of such a point from G, the algorithm proceeds with the remaining vertices until no edges

are left in G.

Proposition 2. Assume that relatively complete recourse [22] is fulfilled on the time stages

Rj, j = 0, . . . , n. Denote by v the optimal value of (Q0) and by vL the optimal value of

the lower bounding approximation (QL
0). The Nested Benders Decomposition Algorithm

with thinning stops after a finite number of steps with a solution of (QL
0) that is ρ-optimal

for (Q0), i.e., |v − vL| < Cρ holds true for some constant C ≥ 0.

Proof. Fix the sets Zj(λ
Rj

i), λ
Rj

i ∈ ΛRj , generated in the last forward pass of the Nested

Benders Algorithm. To obtain the desired bound on |v − vL|, it is sufficient to show that

(5) |QRj
(x, λ

Rj

i)−QLC
Rj

(x, λ
Rj

i)| ≤ Cjρ ∀x ∈ Zj(λ
Rj

i), i = 1, . . . ,mj,

for some constants Cj, j = 0, . . . , n + 1.

For j = n + 1 it is QRn+1(·, ·) ≡ QLC
Rn+1

(·, ·) ≡ 0 by definition. Let Cn+1 = 0. Assume

now that (5) holds true for timeperiod Rj+1. Fix λ
Rj

i ∈ ΛRj . Let Ẑj(λ
Rj

i) be the set of

representative points that are selected from Zj(λ
Rj

i) by the thinning algorithm, and let

ϕ : Zj(λ
Rj

i) → Ẑj(λ
Rj

i) be the thinning mapping which maps every xRj
∈ Zj(λ

Rj

i) to a

close representative point, i.e., |xi − ϕ(x)i| < ρ(xup
i − xlow

i). Thus, ‖x − ϕ(x)‖∞ < ρCϕ

holds with Cϕ := maxi |xup
i − xlow

i |.

Decomposition of Multistage Stochastic Programs 9

Fix x ∈ Zj(λ
Rj

i). Due to relatively complete recourse, QRj
(x, λ

Rj

i) and QRj
(ϕ(x), λ

Rj

i)

are finite and no feasibility cuts are generated. We estimate

(6)
∣∣∣QRj

(x, λ
Rj

i)−QLC
Rj

(x, λ
Rj

i)
∣∣∣ ≤ ∣∣∣QRj

(ϕ(x), λ
Rj

i)−QLC
Rj

(ϕ(x), λ
Rj

i)
∣∣∣

+
∣∣∣QLC

Rj
(x, λ

Rj

i)−QLC
Rj

(ϕ(x), λ
Rj

i)
∣∣∣ +

∣∣∣QRj
(x, λ

Rj

i)−QRj
(ϕ(x), λ

Rj

i)
∣∣∣

Since the Nested Benders Algorithm stopped, no optimality cuts have been generated after

evaluating QL
Rj

(ϕ(x), λ
Rj

i). Hence, QLC
Rj

(ϕ(x), λ
Rj

i) = QL
Rj

(ϕ(x), λ
Rj

i). Let x∗ be the opti-

mal solution of problem (QL
Rj

) with xRj
= ϕ(x) that was obtained when QL

Rj
(ϕ(x), λ

Rj

i)

was evaluated. Thus, x∗Rj+1
(ξRj+1) ∈ Zj+1(λ

Rj+1(ξRj+1)). Then we can make use of (5)

for timeperiod Rj+1 and estimate the first term on the right hand side of (6) by∣∣∣QRj
(ϕ(x), λ

Rj

i)−QLC
Rj

(ϕ(x), λ
Rj

i)
∣∣∣ = QRj

(ϕ(x), λ
Rj

i)−QL
Rj

(ϕ(x), λ
Rj

i)

≤ E
[
QRj+1

(x∗Rj+1
, λRj+1(ξRj+1))−QLC

Rj+1
(x∗Rj+1

, λRj+1(ξRj+1))
∣∣∣ξRj = λ

Rj

i

]
≤ Cj+1ρ.

For the last two terms of (6) we can utilize the Lipschitz continuity of the function

QRj
(·, λRj

i) and its approximation QLC
Rj

(·, λRj

i) and estimate each term by Lj‖x−ϕ(x)‖∞
for a Lipschitz constant Lj.

Thus, we can continue at (6) and obtain∣∣∣QLC
Rj

(x, λ
Rj

i)−QRj
(x, λ

Rj

i)
∣∣∣ ≤ Cj+1ρ + 2Lj‖x− ϕ(x)‖∞ ≤ Cjρ

with Cj := Cj+1 + 2LjCφ.

Remark 3. The relatively complete recourse assumption was needed to avoid that the

thinning operation removes a point for which actually a feasibility cut had to be generated.

Since the feasible set of (QRj
) is convex, this assumption can be dropped if the thinning

operation is designed such that no extremal points of Zj(λ
Rj

i)’s convex hull are removed

from Zj(λ
Rj

i). Then all necessary feasiblity cuts will be generated.

Starting the Nested Benders Decomposition Algorithm with a large thinning parameter

ρ, a rough approximation of the value functions QL
Rj

(·, λRj

i) can be obtained. Empirical

observations show that this preprocessing may lead to a significant speed-up, cf. Table 3 in

Section 4.2. This is due to the fact that the rough approximation produces solution points

that are already close to an optimal solution of the problem, and, hence, the generation

of too many “useless” cuts during the first iterations of the algorithm can be avoided.

After having roughly solved the problem, the approximation can be improved by de-

creasing ρ. By Proposition 2, the algorithm converges to an optimal solution of (Q0) with

ρ → 0. Unfortunately, decreasing ρ until an error tolerance on the thinning error is satis-

fied leads to large sets Zj(λ
Rj

i) again. A reliable and better adapted stopping criterion is

discussed in Section 2.3.

Decomposition of Multistage Stochastic Programs 10

2.3 Upper bounding approximation

As discussed above, the thinning operation allows a rough approximation of the functions

QL
Rj

(·, ξRj

i), but it is not clear how much the parameter ρ has to be decreased to ensure

a solution within a given error tolerance. As an adapted stopping criterion we propose

to compute a gap between lower and upper bounds on the functions QRj
(·, ξRj

i) and

to stop when this gap is sufficiently small. While the lower bounds are given by the

supporting hyperplane approximations QLC
Rj

(·, ξRj

i) of QL
Rj

(·, ξRj

i), the upper bounds can

be constructed from convex combinations of points where QRj
(·, ξRj

i) (or an upper bound

on it) has been already evaluated.

Hence, similar to the underestimating functions QL
Rj

(·, λRj

i) and QLC
Rj

(·, λRj

i), we define

overestimating functions by replacing the cost-to-go functions in the Bellman Equation

(QRj
) by approximations using convex combinations of already evaluated points. More

precisely, we define recursively the following overestimating functions: Let QUC
Rn+1

(·, ·) := 0

and for j = n, . . . , 0, let

QU
Rj

(xRj
, λ

Rj

i) := min E

 Rj+1∑
t=Rj+1

〈bt(ξt), xt〉+QUC
Rj+1

(xRj+1
, λRj+1(ξRj+1))

∣∣∣∣∣∣ ξRj = λ
Rj

i


s.t. xt ∈ Xt, xt ∈ Ft, t = Rj + 1, . . . , Rj+1,

At,0(ξt)xt + At,1(ξt)xt−1 = ht(ξt), t = Rj + 1, . . . , Rj+1.

For j = 1, . . . , n, let Yj(λ
Rj

i) ⊂ XRj
, λ

Rj

i ∈ ΛRj , be finite sets of control points. Then

the upper bounding approximation QUC
Rj

(·, λRj

i) of QU
Rj

(·, λRj

i) is defined by interpolating

from the values of QU
Rj

(·, λRj

i) in Yj(λ
Rj

i):

QUC
Rj

(xRj
, λ

Rj

i) := min
α

∑
y∈Yj(λ

Rj
i)

αyQU
Rj

(y, λ
Rj

i)

s.t. xRj
=

∑
y∈Yj(λ

Rj
i)

αyy

α ∈ S
|Yj(λ

Rj
i)|

,

where Sn is the (n − 1)-dimensional standard simplex in Rn (n ∈ N). Note, that the

domain of QUC
Rj

(·, λRj

i) is the convex hull of Yj(λ
Rj

i). Hence, to obtain meaningful bounds,

the sets Yj(λ
Rj

i) have to be large enough. In the final algorithm, these sets are generated

in an adaptive way similarly to the selection of points where optimality cuts are generated.

2.4 Full algorithm

We now incorporate the thinning operation and upper bound approximations in the nodal

approximation algorithm. From the discussion above, we have the relation

QLC
Rj

(·, λRj

i) ≤ QL
Rj

(·, λRj

i) ≤ QRj
(·, λRj

i) ≤ QU
Rj

(·, λRj

i) ≤ QUC
Rj

(·, λRj

i).

Decomposition of Multistage Stochastic Programs 11

Hence, for a point xRj
∈ XRj

, the creation of control points for time stage Rj+1 in forward

mode can be omitted if the gapQUC
Rj

(xRj
, λ

Rj

i)−QLC
Rj

(xRj
, λ

Rj

i) falls below a given tolerance

ε > 0. Further, a small gap QU
0 −QL

0 ensures that the approximation (QL
0) is very close

to the original problem (Q0) and that the algorithm can be stopped before the creation

of cuts has ended.

Algorithm 1 states the complete algorithm that is performed for a node λ
Rj

i ∈ ΛRj at

time stage Rj. We write a � b if a− b > ε.

The order in which the master problems (QL
Rj

) are handled is determined by the

sequencing protocol. We implemented a fast-forward-fast-backward procedure [2, 11] to

traverse the tree. In the forward mode, master problems are solved and control point sets

Zj(λ
Rj

i) are generated. The traversing direction is changed into the backward mode when

the end of the tree is reached (If a master problem is infeasible, the algorithm switches

temporarily into a special feasibility restoration mode). In backward mode, optimality

cuts are generated and upper bound approximations are updated.

Algorithm 1 (Nodal approximation algorithm). Let λ := λ
Rj

i ∈ ΛRj .

If j > 0 we perform the following algorithm:

Thin out Zj(λ).

if we are in forward mode or QL
Rj

(·, λ) or QU
Rj

(·, λ) have been updated then

for each xRj
∈ Zj(λ) do

Compute or update a lower bound l := QLC
Rj

(xRj
, λ) and upper bound u :=

QUC
Rj

(xRj
, λ) on QRj

(xRj
, λ).

if u � l then

Compute QL
Rj

(xRj
, λ).

if QL
Rj

(xRj
, λ) = ∞ then

Construct a feasibility cut and update QLC
Rj

(·, λ). return.

else if QL
Rj

(xRj
, λ) � QLC

Rj
(xRj

, λ) then

Construct an optimality cut and update QLC
Rj

(·, λ).

Update l := QL
Rj

(xRj
, λ).

end if

end if

if u � l then

Compute QU
Rj

(xRj
, λ).

if QUC
Rj

(xRj
, λ) � QU

Rj
(xRj

, λ) then

Update QUC
Rj

(·, λ) by adding xRj
to Yj(λ).

Update u := QU
Rj

(xRj
, λ).

end if

if forward mode and j < n and u � l then

Add the points xRj+1
(ξRj+1) from the solution of (QL

Rj
) to Zj+1(λ

Rj+1(ξRj+1)).

Decomposition of Multistage Stochastic Programs 12

end if

end if

end for

end if

if backward mode then

Zj(λ) := ∅.
end if

If j = 0 everything simplifies to:

if forward mode then

if (QL
0) has been updated then

Solve (QL
0) and update the lower bound l.

if (QL
0) is infeasible then

(Q0) is infeasible. return.

end if

end if

if (QU
0) has been updated then

Solve (QU
0) and update the upper bound u.

end if

if u � l then

Add the points xR1(ξ
R1) from the solution of (QL

0) to Z1(λ
R1(ξR1)).

end if

end if

We conclude this section with some notes on the main loop of the solution algorithm:

Remark 4. • QLC
Rj

(·, λRj

i) and QUC
Rj

(·, λRj

i) are initialized by QLC
Rj

(·, λRj

i) := −M and

Yj(λ
Rj

i) := {xmid} with xmid := 1
2
(xlow+xup) the midpoint of XRj

and QU
Rj

(xmid, λ
Rj

i) :=

M , where the value M is sufficiently large.

• In the so-called rough phase we improve our approximations by traversing between

the timeperiods with a very rough thinning (ρ = 0.1) of the sets Zj(λ
Rj

i). Finally, to

assure that the approximation error does not exceed a specified tolerance, we continue

the fast-forward-fast-backward traversing with a decreasing sequence of ρ.

• For small sets Yj(λ
Rj

i) as they appear in the first iterations of the algorithm, no or

only weak upper bounds are available. However, tight upper bounds are not needed

during the rough phase, and from our experimental results we can conclude that

useful upper bounds are obtained after the rough phase already.

Decomposition of Multistage Stochastic Programs 13

3 Generation of a recombining scenario tree

A variety of approaches for the generation of scenario trees have been developed, relying

on different principles, e.g. in [1, 4, 6, 7, 8, 16, 18, 20]. The forward tree construction of [16]

generates a scenario tree out of a given stochastic process ζ by the iterative approximation

of the conditional distributions

(7) P
[
ζt ∈ · | ζt−1 ∈ Cu

t−1

]
,

given a finite partition
(
Cu

t−1

)
u∈Nt−1 of supp P

[
ζt−1 ∈ ·

]
. This is done by choosing

points (v
(u,i)
t , i = 1, . . . , nu

t) and a corresponding Voronoi partition (V
(u,i)
t , i = 1, . . . , nu

t)

of the support of (7). Thereby, the (t − 1)-dimensional multiindex u describes the node

of the tree at time t− 1, nu
t is the branching degree of node u, and

C
(u,i)
t := Cu

t−1 × V
(u,i)
t .

Let ξ be a process whose distribution is given by the scenario tree, then the latter is

defined by the conditional probabilities

(8) P
[
ξt = v

(u,i)
t

∣∣∣ ξt−1 = (vu1
1 ,v

ut−1

t−1)
]

:= P
[
ζt ∈ V u,i

t | ζt−1 ∈ Cu
t−1

]
.

A recombining tree out of a Markov process can be constructed by approximating the

marginal distributions P [ζt ∈ ·] instead of (7). More precisely, one selects the points

v
(u,i)
t independently of u and the transition probabilities (8) depending only on ut−1, cf.

[1].

For constructing a recombining tree which approximates a non-Markovian stochastic

process, we propose the following approach, that can be seen as a mixture of the pro-

ceedings in [1] and [16]. Basically, it consists of constructing non-recombining trees for

every time interval [Rj + 1, Rj+1]. Recombining scenarios at time Rj means to assign the

same subtree to several nodes at time Rj. The particular subtree has to approximate ζ’s

future distribution that can depend, in the non-Markovian case, on ζ’s complete history.

We want two nodes at time Rj to obtain the same subtree if ζ’s values in these nodes are

close during the time interval [Rj −k, . . . , Rj − 1], for some value k ≥ 1. This seems to be

reasonable whenever P
[
ζT ∈ · | ζt−1 = ζt−1

]
depends continuously on (ζt−k, . . . , ζt−1), in

some sense, see also Remark 6 below. The latter is fulfilled if ζ has both the continuity

assumed in [1] and a short-term memory :

Assumption 1. There exists k ∈ N with k < Rj − Rj−1 for every j, such that we have

for every Rj and for every B ∈ B
(
R(T−Rj)·s

)
P

[
(ζt)t=Rj+1,...,T ∈ B | (ζt)t=1,...,Rj

]
= P

[
(ζt)t=Rj+1,...,T ∈ B | (ζt)t=Rj−k+1,...,Rj

]
.

Decomposition of Multistage Stochastic Programs 14

Remark 5. Short-term memory is a generalization of the Markov property. It is fulfilled

by a variety of processes of practical interest and can be verified easily if ζ’s distribution

is given as a time series model, in general. It is easy to see that, by augmentation of its

state space, every discrete-time process ζ with short-term memory may be transformed

into a Markov process.

Remark 6. As the approaches of [1] and [18], our tree generation method relies on the

continuity of ζt−1 7→ P
[
ζT ∈ · | ζt−1 = ζt−1

]
. This is illustrated by Example 2.6. of [17].

Since a rigorous consistency analysis for recombining trees lies beyond the scope of this

paper, we refrain from a proper definition of the claimed continuity.

Our approach to construct a recombining scenario tree reads as follows:

Algorithm 2 (Generation of a recombining scenario tree).

1. Initialization: Set C1
1 = {ζ1}, n1

1 = 1.

2. Tree generation until the first recombination:

For t = 2, . . . R1: For every multiindex u = (u1, . . . , ut−1) with us = 1, . . . , n
(u1,..,us−1)
s

and s = 1, . . . , t − 1: Approximate P
[
ζt ∈ · |ζt−1 ∈ Cu

t−1

]
through the choice of

cluster centers v
(u,i)
t and a corresponding Voronoi partition V

(u,i)
t , i = 1, . . . , nu

t . Set

C
(u,i)
t := Cu

t−1 × V
(u,i)
t and define ξ’s transition probabilities via (8).

3. Subtree generation:

For t = R1 + 1, . . . T :

(a) Consider t ∈ {1, . . . , n} such that Rt < t ≤ Rt+1, i.e., Rt is the latest recombi-

nation time (strictly) before t.

(b) If t = Rt + 1: (short-term history clustering)

Divide supp P
[
(ζRt−k+1, . . . , ζRt

) ∈ ·
]

into a Voronoi partition Ci
Rt

, i = 1, . . . ,mRt .

(c) For every multiindex u = (uRt , . . . , ut−1) with uRt = 1, . . . ,mRt and us =

1, . . . , n
(uRt ,...,us−1)
s for s = Rt + 1, . . . , t− 1:

Approximate P
[
ζt ∈ · |(ζRt−k+1, . . . , ζt−1) ∈ Cu

t−1

]
by the choice of points v

(u,i)
t

and a corresponding Voronoi partition V
(u,i)
t , i = 1, . . . , nu

t . Set C
(u,i)
t := Cu

t−1×
V

(u,i)
t and define ξ’s transition probabilities by

P
[
ξt = v

(u,i)
t | ξt−1 = (vu1

1 , . . . , v
ut−1

t−1)
]

:= P
[
ξt = v

(u,i)
t

∣∣∣ (ξRt−k+1, . . . , ξt−1) ∈ C
uRt

Rt
×

(
v

uRt+1

Rt+1 , . . . , v
ut−1

t−1

)]
:= P

[
ζt ∈ V

(u,i)
t | (ζRt−k+1, . . . , ζt−1) ∈ Cu

t−1

]
,

whenever
(
v

uRt−k+1

Rt−k+1 , . . . , v
uRt

Rt

)
∈ C

uRt

Rt
, and equal to 0 else.

Decomposition of Multistage Stochastic Programs 15

Remark 7. Algorithm 2 assigns two nodes at time Rj the same subtree, whenever their

short term histories until Rj fall into the same cluster Cj
Rt

determined in Step 3b. The

numbers nu
t determine the branching degree at node u and, using the notation of Section

1.2, mRj
represents the number of different subtrees originated at time Rj. These values,

determining the structure of the scenario tree, can either be predefined, or, as proposed

by [16], determined within the discretization procedures to not exceed certain local error

levels.

We did not specify how to carry out the approximation within the Steps 2, 3b, and

3c. For this purpose, the above cited tree generation algorithms use a stochastic gradient

method [1] and a heuristically motivated successive choice of vu
t out of a set of simulated

trajectories [16], respectively. Both can be applied in our framework, too. Furthermore,

there is a huge amount of publications dealing with this question, cf. the citations at the

beginning of this section, the monographies [12] and [13], and the references therein.

4 Numerical example

4.1 A simple power scheduling problem

We consider a power generating system consisting of several coal fired thermal units (index

set I), pumped hydro units (index set J), and a wind power plant. The objective is to

find cost-optimal operation levels of the thermal units and hydro units under uncertain

production of electricity from wind.

Denote by pi,t the operation level of the thermal unit i ∈ I, by lj,t the fill level of

the water reservoir j ∈ J , by wj,t the operation level of the pump j ∈ J , and by vj,t

the operation level of the turbine j ∈ J . Deterministic parameters of the problem are

operation ranges for the thermal units p
i
< p̄i, i ∈ I, the pumps w̄j > 0, and the turbines

v̄j > 0, the capacity of the water reservoirs l̄j > 0, j ∈ J , the fill levels of the reservoirs at

the beginning and end of the considered time horizon (lj,in and lj,end, j ∈ J), the efficiency

of the pumps ηj, j ∈ J , fuel costs bi, i ∈ I, and the energy demand dt. As stochastic

parameter we consider the wind power production κt.

Decomposition of Multistage Stochastic Programs 16

The complete model has the form

min E

[
T∑

t=1

∑
i∈I

bipi,t

]
s.t. lj,1 = lj,in − (wj,1 − ηjvj,1), lj,T = lj,end j ∈ J,(9)

lj,t = lj,t−1 − (wj,t − ηjvj,t), t = 2, . . . , T, j ∈ J,(10)

|pi,t − pi,t−1| ≤
1

4
(p̄i − p

i
), t = 2, . . . , T, i ∈ I,(11) ∑

i∈I

pi,t +
∑
j∈J

(wj,t − vj,t) + κt ≥ dt, t = 1, . . . , T,(12)

∑
i∈I

pi,t ≤
∑
i∈I

p̄i −
1

10
dt, t = 1, . . . , T,(13)

p
i
≤ pi,t ≤ p̄i, 0 ≤ vj,t ≤ v̄j, 0 ≤ wj,t ≤ w̄j, 0 ≤ lj,t ≤ l̄j, i ∈ I, j ∈ J, t = 1, . . . , T.

Constraint (9) models the initial and final fill level of the reservoirs, (10) couples the

fill levels of the reservoirs between successive time stages, (11) bounds the change in

the operation of the thermal units between successive time stages, (12) ensures that the

electricity demand is covered, and (13) is a reserve requirement.

For our numerical experiments we considered different time horizons between 2 days

and several months in hourly discretization. The stochastic wind speed process was mod-

eled by a GARCH-M time series model [9], that, in particular, exhibits the short-term

memory claimed in Section 3. It was used to create a binary wind speed scenario tree

with branching 3 times a day at 6, 12, and 18 o’clock. Recombination takes place once a

day at 6 o’clock. The tree was generated as sketched in Section 3 and we used a k−mean

clustering algorithm to approximate the (conditional) distributions. The resulting tree

was transformed to a wind energy scenario tree by using an aggregated power curve [19].

Due to the form of the tree, for each master problem (QRj
) in the Nester Bender De-

composition a scenario tree consisting of 8 scenarios is used. Note, that a non-recombining

scenario tree for 1 week with 3 branches per day consists of 39.546.276 nodes, while by

recombination the number of nodes reduces to 924, 1716, 3300, or 6468 for 1, 2, 4, or 8

subtrees per timeperiod (day), respectively.

4.2 Numerical results

The following results have been realized on a Pentium IV 3 GHz machine with 1 GB RAM

and Linux 2.6.11. All master problems have been solved with CPLEX 10.0.

First, we investigated how the efficiency of the Nested Benders Decomposition im-

proves when it can use the coincidence of several subtrees, i.e., that relation (1) is fulfilled

at one or several time stages Rj, j = 1, . . . , n. To this end, we considered time horizons of

2, 3, and 4 days, respectively. We used once a Nested Benders Decomposition Algorithm

Decomposition of Multistage Stochastic Programs 17

which decomposes the linear stochastic program every 24 hours, but without making use

of the recombining nature of the scenario tree, i.e., equal cost-to-go are not approximated

simultaneously. Thereon we run the decomposition algorithm on the recombining tree,

i.e., we allowed for simultaneous approximation of coinciding cost-to-go functions.

Table 1 summarizes the results of this experiment. The first column gives the overall

time horizon considered. Recall, that the deterministic equivalent is decomposed once per

day. The second column is the number of different subtrees per timeperiod. The third and

fifth column reports the total number of master problems that are considered after the

decomposition. It can be seen that recombining scenarios avoids an exponential growth

of the number of different subproblems, and, thus, significantly reduces the running time

of the Nested Benders Decomposition Algorithm.

no recombination with recombination

time horizon |ΛRj | # master problems time # master problems time

2 days 1 9 10s 2 3s

2 days 2 9 10s 3 4s

2 days 4 9 12s 5 7s

3 days 1 73 91s 3 3s

3 days 2 73 99s 5 5s

3 days 4 73 94s 9 9s

4 days 1 585 762s 4 4s

4 days 2 585 859s 7 6s

4 days 4 585 789s 13 13s

Table 1: Performance of Nested Benders Decomposition Algorithm on non-recombining

and recombining scenario trees

Next, we study the algorithm’s potential for optimization over longer time horizons

and the performance of the control space aggregations from the Sections 2.2 and 2.3, see

Table 2 for the results. The columns entitled with rough report the time spent for the

rough phase only, i.e., using thinning with ρ = 0.1. The rough phase turns out to be very

fast and its running time appears to depend linearly on the length of the considered time

horizon as well as on the number of different subtrees assigned to every recombining time

stage. In most cases, the rough phase provides solutions that are close to optimal solutions

and that do not significantly change during the remaining optimization procedure. Thus,

in practice, it may be reasonable to reduce the algorithm’s running time by putting the

final ρ not too small.

The calculation of upper bounds, detailed in Section 2.3, gives the possibility of adap-

tively choosing ρ such that a certain error level is not exceeded. The column rough phase

gap reports the relative gap between lower and upper bounds after having completed the

Decomposition of Multistage Stochastic Programs 18

rough phase. The columns entitled with complete report the complete solution time, i.e.,

the time spent to decrease ρ to the value given in the column final ρ. It can be seen that

with diminishing ρ the non-recombining nature of the decision process, which is due to

time-coupling constraints, leads to an exponential growth of the number of control points

and, consequently, of the running times.

no upper bounds with upper bounds

time horizon |ΛRj | final ρ rough complete rough rough phase gap complete

2 days 1 0.0001 2s 2s 3s < 0.01% 3s

2 days 2 0.0001 4s 4s 4s < 0.01% 4s

2 days 4 0.0001 6s 6s 6s < 0.01% 6s

1 week 1 0.0001 3s 17s 7s 0.02% 10s

1 week 2 0.0001 7s 17s 13s 0.05% 15s

1 week 4 0.0001 13s 26s 26s 0.03% 34s

2 weeks 1 0.001 5s 47s 16s 0.02% 33s

2 weeks 2 0.001 11s 711s 27s 0.04% 536s

2 weeks 4 0.001 21s 2512s 57s 0.03% 4535s

1 month 1 0.001 7s 47s 27s 0.01% 28s

1 month 2 0.001 21s >3h 59s 0.12% >3h

1 month 4 0.001 35s >3h 151s 0.03% >3h

3 months 1 0.001 19s >3h 68s 0.05% 507s

3 months 2 0.001 60s >3h 195s 0.09% 829s

3 months 4 0.001 60s >3h 868s 0.09% >3h

1 year 1 0.01 37s >3h 149s 1.12% >3h

Table 2: Performance for different time horizons with and without the use of upper bounds

Finally, we have investigated the gain of starting the thinning in Section 2.2 with a

large value of ρ and then decreasing it, instead of starting with the final value of ρ = 0.0001

from the beginning on. Table 3 shows the results. The advantage of a successive decreasing

of ρ is obvious, especially when the problem size increases. For the decreasing sequence,

we start with ρ = 0.1 and multiply ρ by 0.3 everytime that the approximations at the

first timeperiod problem are not changing until ρ falls below 0.0001.

5 Further Developments

As the numerical results show, the adaption of a Nested Benders Decomposition Algo-

rithm to recombining scenario trees allows to handle long time horizons with a reasonable

representation of the stochastic process and enables a considerable reduction of the com-

puting times. Of course, further improvements of the algorithm’s performance seem to be

Decomposition of Multistage Stochastic Programs 19

time horizon |ΛRj | decreasing ρ sequence start with final ρ

3 days 1 3s 3s

3 days 2 5s 5s

3 days 4 9s 10s

5 days 1 4s 15s

5 days 2 9s 22s

5 days 4 20s 31s

1 week 1 10s 51s

1 week 2 15s 1685s

1 week 4 34s 1960s

Table 3: Performance for a decreasing sequence of thinning tolerances ρ and a stationary

value of ρ

possible. Note, that solving the master problem (QL
Rj

) for all points from a set Zj(λ
Rj

i)

means the solution of many linear programs that differ only in their right hand sides.

Hence, a bunching procedure as introduced by Wets [28] and further developed by other

authors [2, 11, 15] allows to find an ordering of the set Zj(λ
Rj

i) that can significantly

decrease the running time. Also the choice of the sequencing protocol is not a trivial task

[11] and can substantially influence the algorithmic performance. Furthermore, it would

be desirable to investigate whether a more adaptive and time stage dependent choice of

the thinning parameter ρ can decrease the number of control points when longer time

horizons are considered.

A desirable extension, that would address many of todays applications where discrete

decisions have to be modeled, would be the support of mixed-integer variables in the first

and later timeperiod problems. While the integration into the first stage problem does not

require a change in the methodology, the appearance of mixed-integer variables at later

time stages changes the situation drastically since one looses the convexity of the cost-to-

go functions QRj
(·, λRj

i), which is a basic assumption for a Nested Benders Decomposition

Algorithm. However, promising approaches that might allow to overcome this difficulty

are, e.g., the work of Higle and Sen [24] (see also [23, Section 5] for a summary) and

Sherali and Sen [25], but both deal only with the two-stage case yet. An extension of

their approach to the multistage case, especially in connection with recombining scenario

trees which rely on a decomposition between timestages, would be very interesting.

References

[1] V. Bally, G. Pagès, and J. Printems. A quantization tree method for pricing and hedging
multidimensional american options. Mathematical Finance, 15(1):119–168, 2005.

Decomposition of Multistage Stochastic Programs 20

[2] J.R. Birge. Decomposition and partitioning methods for multistage stochastic program-
ming. Operations Research, 33(5):989–1007, 1985.

[3] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series in
Operations Research. Springer-Verlag, 1997.

[4] M.S. Casey and S. Sen. The scenario generation algorithm for multistage stochastic linear
programming. Mathematics of Operations Research, 30:615–631, 2005.

[5] J. Cox, S. Ross, and M. Rubinstein. Option pricing: a simplified approach. Journal on
Financial Economics, 7:229–263, 1979.

[6] M.A.H. Dempster. Sequential importance sampling algorithms for dynamic stochastic pro-
grams. Zapiski Nauchnykhas Seminarov POMI, 312:94–129, 2004.

[7] J. Dupačová, G. Consigli, and S.W. Wallace. Scenarios for multistage stochastic program-
ming. Annals of Operations Research, 100:25–53, 2000.

[8] J. Dupačová, N. Gröwe-Kuska, and W. Römisch. Scenarios reduction in stochastic program-
ming: An approach using probability metrics. Mathematical Programming, 95(A):493–511,
2003.

[9] B.T. Ewing, J.B. Kruse, and J.L. Schroeder. Time series analysis of wind speed with time-
varying turbulence. Technical report, 2004. available at http://www.ecu.edu/hazards/

reports.htm.

[10] M.R. Garey and D.S. Johnson. Computers and Intractability - A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

[11] H.I. Gassmann. MSLiP: a computer code for the multistage stochastic linear programming
problem. Mathematical Programming, 47:407–423, 1990.

[12] A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer Academic
Press, 1992.

[13] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions, volume
1730 of Lecture Notes in Mathematics. Springer, New York, 2000.

[14] N. Gröwe-Kuska, H. Heitsch, and W. Römisch. Scenario reduction and scenario tree con-
struction for power management problems. In A. Borghetti, C.A. Nucci, and M. Paolone,
editors, IEEE Bologna Power Tech Proceedings, 2003.

[15] D. Haugland and S.W. Wallace. Solving many linear programs that differ only in the
righthand side. European Journal of Operational Research, 37(3):318–324, 1988.

[16] H. Heitsch and W. Römisch. Scenario tree modelling for multistage stochastic programs.
Preprint 296, DFG Research Center Matheon ”Mathematics for key technologies” and sub-
mitted, 2005.

Decomposition of Multistage Stochastic Programs 21

[17] H. Heitsch, W. Römisch, and C. Strugarek. Stability of multistage stochastic programs.
SIAM Journal on Optimization, 17:511–525, 2006.

[18] R. Mirkov and G.Ch. Pflug. Tree approximations of dynamic stochastic programs. submit-
ted, 2006.

[19] P. Nørg̊ard (ed.). Fluctuations and predictability of wind and hydropower. Technical report,
WILMAR, Risø National Laboratory, 2004. http://www.wilmar.risoe.dk/Results.htm.

[20] G.Ch. Pflug. Scenario tree generation for multiperiod financial optimization by optimal
discretization. Mathematical Programming, 89:251–271, 2001.

[21] A. Ruszczyński. Decomposition Methods, chapter 3, pages 141–211. In Ruszczyński and
Shapiro [22], 2003.

[22] A. Ruszczyński and A. Shapiro, editors. Stochastic Programming. Handbooks in Operations
Research and Management Science. Elsevier, Amsterdam, 2003.

[23] R. Schultz. Stochastic programming with integer variables. Mathematical Programming,
97(1-2):285–309, 2003.

[24] S. Sen and J.L. Higle. The C3 theorem and a D2 algorithm for large scale stochastic
mixed-integer programming: Set convexification. Mathematical Programming, 104(1):1–20,
2005.

[25] S. Sen and H.D. Sherali. Decomposition with branch-and-cut approaches for two-stage
stochastic mixed-integer programming. Mathematical Programming, 106(A):203–223, 2006.

[26] S.P. Sethi and G. Sorger. A theory of rolling horizon decision making. Annals of Operations
Research, 29:387–416, 1991.

[27] R.M. Van Slyke and R. Wets. L-shaped linear programs with applications to optimal control
and stochastic programming. SIAM Journal of Applied Mathematics, 17(4):638–663, 1969.

[28] R. Wets. Solving stochastic programs with simple recourse. Stochastics, 10:219–242, 1983.

