
Domain-Centered Product Line Testing

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
Dipl.-Inf. Hartmut Lackner

Präsident der Humboldt-Universität zu Berlin

Prof. Dr. Jan-Hendrik Olbertz

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät

Prof. Dr. Elmar Kulke

Gutachter

1. Prof. Dr. Bernd-Holger Schlingloff

2. Prof. Dr. Ina Schäfer.

3. Prof. Dr. Alexander Knapp

Tag der Verteidigung: 13.07.2016

ii

Abstract

Consumer expectations of (software-)products are growing continuously. They
demand products that fit their exact needs, so they pay only for necessary function-
alities. Producers react to those demands by offering more variants of a product.
Product customization has reached a level where classically mass produced goods,
like cars, can be configured to unique items. New paradigms facilitate the engineer-
ing of such variant-rich systems and reduce costs for development and production.
While development and production became more efficient, quality assurance suffers
from treating each variant as a distinct product. In particular, test effort is affected,
since each variant must be tested sufficiently prior to production. For variant-rich
systems this testing approach is not feasible anymore.

The methods for test design presented in this thesis overcome this issue by
integrating variability into the test design process. The resulting test cases include
requirements for variants, which must be fulfilled to execute the test successfully.
Hence multiple variants may fulfill these requirements, each test case may be
applicable to more than only one variant.

Having test cases with requirements enables sampling subsets of variants for
the purpose of testing. Under the assumption that each test case must be executed
once, variants can be sampled to meet predefined test goals, like testing a minimal
or diverse subset of variants. In this thesis, five goals are defined and evaluated by
assessing the tests for their fault detection potential. For this purpose, new criteria
for assessing the fault detection capability of product line tests are established.
These criteria enable quantitative as well as qualitative assessment of such test cases
for the first time.

The results of the presented methods are compared with each other and
furthermore with state of the art methods for product line testing. This comparison
is carried out on four examples of different sizes, from small to industry-grade.

Zusammenfassung

Die Ansprüche von Kunden an neue (Software-)Produkte wachsen stetig. Produkte
sollen genau auf die einzelnen Kundenwünsche zugeschnitten sein, sodass der Kunde
genau die Funktionalitt erhält und bezahlt die er benötigt. Hersteller reagieren auf
diese gestiegenen Ansprüche mit immer mehr Varianten in denen sie ihre Produkte
ihren Kunden anbieten. Die Variantenvielfalt hat in solchem Maß zugenommen, dass
selbst in Massen gefertigte Produkte heute als Unikate produziert werden können.
Neue Methoden wie Produktlinienentwicklung unterstützen die Entwicklung sol-
cher variantenreicher Systeme. Während der Aufwand für die Entwicklung neuer
Varianten nun sinkt, profitiert die Qualitätssicherung nicht vom Effizienzgewinn
der Entwicklung. Im Gegenteil: Insbesondere beim Test wird zunächst jede Vari-
ante wie ein einzelnes Produkt behandelt. Bei variantenreichen Systemen ist dies
aufwandsbedingt jedoch nicht mehr möglich.

Die in dieser Arbeit vorgestellten Testentwurfsmethoden berücksichtigen die
Variantenvielfalt in besonderem Maße. Bisher wurden, nach einer Stichprobenauswahl
zur Reduktion des Testaufwands, die Testfälle auf Basis der konkreten Produkte
entworfen. Statt nun auf Basis konkreter Produkte werden in dieser Arbeit zwei
Ansätze vorgestellt, die die Phase des Testentwurfs auf die Produktlinienebene
heben. Die bei Anwendung dieser Methoden entstehenden Testfälle enthalten, je
nach Inhalt, Freiheitsgrade bzgl. ihrer Anforderungen an eine Variante, sodass ein
Testfall auf ein oder mehrere Varianten angewendet werden.

Ausgehend von solchen Testfällen werden in dieser Arbeit neue Kriterien zur
Stichprobenauswahl entwickelt. Mit diesen Kriterien kann der Umfang der Stichpro-
be, aber auch Eigenschaften der zu testenden Varianten bzgl. eines gegebenes Testziel
optimiert werden. So ist es möglich, z.B. sehr wenige oder sehr unterschiedliche
Varianten zum Test auszuwählen. Insgesamt werden in dieser Arbeit fünf Kriteri-
en definiert und auf ihr Fehleraufdeckungspotenzial untersucht. Zu diesem Zweck
werden neue Bewertungskriterien zur Fehleraufdeckungswahrscheinlichkeit von Pro-
duktlinientests etabliert. Somit ist erstmalig eine quantitative sowie qualitative
Bewertung von Produktlinientests möglich.

Die Ergebnisse der vorgestellten Methoden und Auswahlkriterien werden sowohl
untereinander evaluiert, als auch konventionellen Testmethoden für Produktlinien-
systeme gegenübergestellt. An vier Beispielen unterschiedlicher Grös̈se werden die
in dieser Arbeit vorgestellten Methoden evaluiert.

v

Contents

1 Introduction 1

1.1 Problem Statement . 3
1.2 Approach . 4

1.3 Assumptions . 5

1.4 Contributions . 5
1.5 Structure . 7

I Preliminaries 9

2 Background 11

2.1 Model-Based Product Line Engineering 11
2.1.1 Feature-Oriented Design . 11

2.1.2 Variability Modeling . 14

2.1.3 A Basic Variability Language 15
2.1.4 Summary . 16

2.2 Model-Based Testing . 16
2.2.1 Summary . 19

2.3 Test Assessment . 19
2.3.1 Mutation Analysis . 20

2.3.2 Error Design . 20

2.4 Examples . 21
2.4.1 Ticket Machine . 22

2.4.2 Alarm System . 24
2.4.3 eShop . 26

2.4.4 Body Comfort System . 26

2.4.5 Summary . 28

3 Assessment of Product Line Tests 33
3.1 Potential Errors in Model-Based Product Line Engineering 33

3.2 Product Line Test Assessment . 37

3.2.1 Mutation System for Product Lines 37
3.2.2 Product Line Mutation Operators 37

vi Contents

3.3 Evaluation . 41

3.3.1 Setup . 41

3.3.2 Results . 42

3.3.3 Threats to Validity . 45

3.4 Related Work . 45

3.5 Conclusions . 45

II Model-based Testing for Product Lines 47

4 Automated Test Design for Product Lines 49

4.1 Model-based Testing for Product Lines 49

4.1.1 Application-Centered Test Design 50

4.1.2 Domain-Centered Test Design 51

4.2 Evaluation of both Approaches . 56

4.2.1 Tool Chain SPLTestbench . 56

4.2.2 Experiment Settings . 58

4.2.3 Results . 58

4.3 Related Work . 60

4.4 Conclusion, Discussion, and Future Work 61

5 Test-driven Product Sampling 63

5.1 Reusable Test Cases . 64

5.2 Sampling Configurations from Reusable Test Cases 64

5.2.1 General Sampling . 65

5.2.2 Targeted Sampling . 65

5.3 Example and Evaluation . 68

5.3.1 Tool Chain SPLTestbench . 68

5.3.2 Setup . 68

5.3.3 Results . 69

5.3.4 Discussion . 73

5.4 Related Work . 73

5.5 Conclusion . 74

6 Testing Product Boundaries 77

6.1 Testing Boundaries of Products . 77

6.1.1 Boundary Transitions . 78

6.1.2 Turning Open Boundaries into Test Goals 79

6.2 Evaluation . 84

6.2.1 Setup . 84

6.2.2 Results . 84

Contents vii

6.2.3 Discussion . 84
6.3 Related Work . 85
6.4 Conclusion & Future Work . 86

III Closure 87

7 Conclusion 89
7.1 Contributions . 89
7.2 Impact . 89
7.3 Future Work . 91

Bibliography 93

List of Figures 107

List of Tables 109

1

Chapter 1.

Introduction

A trend of our time is the mass production of customized products to satisfy
customers’ individual needs. An illustrative example for this are the German car
manufacturers who have recognized that customers enjoy to customize the purchased
car to their needs. The manufacturers have therefore established platforms from
which different variants of cars like sedans, station wagons, hatchbacks, or SUVs
can be easily derived from. The idea of a platform is not limited to a car’s body
and extends to choices over any user-visible characteristic, like exterior and interior
design, the engine, as well as countless comfort, infotainment, and assistance systems.

At the core of engineering such kind of platforms, lies planned reuse of (software)
artifacts to efficiently derive new variants. A method established to particularly
facilitate planned reuse is product line engineering (PLE) [PBL05]. In PLE, a
platform is defined as a product line (PL), which specifies a core common to all
variants (commonalities) and a managed set of features satisfying specific needs of a
particular market (variabilities). PLE also prescribes the possible combinations of
features to configure and subsequently derive new variants.

For the German car manufacturers, PLE has increased engineering capabilities
dramatically (cf. Chap. 2 in [PBL05]). Modern mid-size car models can be configured
to the degree that within one year any variant is not configured and bought twice,
although hundred thousands of cars of this model are shipped. Furthermore, features
are indeed shared across models of different classes. Hence the amount of offered
models and variants was never greater than today.

The success of PLE is due to the separation of domain and application en-
gineering as depicted in Figure 1.1. During domain engineering, the domain – by
means of the common core, features, and their combinations – is analyzed, designed,
and implemented. The analysis in this phase differs from traditional requirements
analysis, since the result of this phase is not a static product but a platform to
configure and build products from. PLE addresses this issue by considering the
platforms variability through planned reuse in the early phases of the development
life cycle. Design and implementation are also tailored to reflect the earlier defined
variability.

Later in application engineering, requirements of a particular product are

2 Chapter 1. Introduction

Domain Engineering

Application Engineering

Domain
Analysis

Domain
Design

Product
Configuration

Product
Implementation

Resolution

Domain
Implementation

Product
Design

Figure 1.1.: Process of product line engineering (PLE)

specified by providing a configuration. Subsequently, the respective designs and
implementations are derived according to the configuration from the domain-level
artifacts created earlier. In PLE, the derivation of application artifacts is called
resolution. This phase is sought to be highly automated, particularly in variant-rich
systems development as we discuss them in this thesis.

With more capable engineering processes, also quality assurance has to adapt
to achieve and maintain product and process quality in a PL environment. There
are many well-known quality assurance techniques. In industry, testing is most
wide-spread when it comes to measure product quality. For software systems, the
costs for testing range between 30 and 50 percent of overall development costs and
increase up to 80 percent when the system under test (SUT) has a safety-critical
purpose [Jon91, Lin05]. To increase efficiency, testing becomes a more and more
automated process. A first practical measure is the automation of test execution to
avoid manual regression testing. Upon that, the next logical step is to automate
test design.

Like many methods, also test design can be supported by models. Model-
based testing (MBT) is considered one of the most mature automated test design
techniques. Here, models are used to describe only the test-relevant aspects of
the SUT, its environment, or both. There are several reports about the successful
application of MBT in industrial practice [WS14,For12,LSW+10].

Although MBT increases efficiency of testing, it does not scale for PLE under
the premise that every variant must be tested individually as in static systems
development. Hence, methods were proposed to systematically sample variants
in order to select a subset for testing [OG05,ER11,OZML11,LSKL12]. Then for
each variant test design is performed. This is an approach to which we refer as
application-centered (AC) test design, since the test design is based on individual
product models in the application engineering-level (cf. Fig 1.2).

1.1. Problem Statement 3

Domain Engineering

Application Engineering

Domain
Model

Domain
Test Cases

Product
Model Application-centered

test design

Resolution

Domain-centered
test design

Product
Test Cases

Figure 1.2.: Approaches to product line (PL) testing

In this thesis, we investigate methods for domain-centered (DC) test design
which, in contrast, are based on models from the domain engineering-level. This
approach should inherently reduce redundant test cases, while maintaining a high
level of test quality. From the resulting domain test cases, products for testing are
systematically sampled, resolved, and eventually tested. The methods presented in
this thesis are supported by example software product lines (SPL) and compared to
competing application-centered methods.

1.1. Problem Statement

Although test efficiency benefits from less redundancy, there is no test design method
proposed on the domain-level that takes advantage of the information stored in
domain artifacts. One reason for this is the inability of current testing techniques to
deal with variability to create test cases for actual products. Models created during
domain design are enhanced for variability: they may contain non-deterministic
behavior due to multiple variants of the same component, duplicate declarations
and initializations that are mapped to different variants, or other inconsistencies
that are resolved at a later stage, e.g. resolution, to create valid product models.

For example, for most car models in Germany two engine options are offered:
gasoline and diesel. On the domain engineering-level, models for both engines exist
although only one of them can be deployed into a product model. In this case,
conventional test methods will force the test designer to make a decision towards a
particular variant. Of course, this decision must be made, if one of the engines is a
test goal of the currently built test case. But if not, the decision on which engine to
use for this test case can be postponed until test execution planning takes place.

The purpose of test execution planning is to assign test cases to products for

4 Chapter 1. Introduction

later execution. The planning can be performed with several intents, like testing
only a minimal amount of products for early smoke tests or testing a large number
of products for building confidence, either for internal purposes or to convince
authorities. Hence, the test effort for executing a particular test suite can be
adapted to the current test intents.

Concluding, domain-centered test design touches upon several challenges:

– Levels of test design: On which levels of PLE can test design for variant-rich
systems be performed? What are the main advantages of the individual
methods? Is any method superior?

– Reusability of tests: Can reusability be expressed on the level of tests so that
each test can be reused for testing more than one variant?

– Test planning for PL systems: For which subset of products should testing
be performed? By which measure can products be systematically selected for
testing if reusable test cases are provided?

– Fault detection capability of PL tests: Are there new kinds of faults to be
made in PLE? Must tests be adapted to find such faults?

– Applicability of standard test generators: Can commercial off-the-shelf (COTS)
test generators for non-variant systems be reused to design tests for variant-rich
software systems within reasonable effort? Can they generate reusable tests?

1.2. Approach

In this thesis, we propose novel methods for designing, planning, and assessing tests
in a PL context. A main goal is to define these methods on the domain engineering-
level in PLE. The reason for this is as follows: During domain engineering, we find
abstract representations of the application level to reduce the design’s complexity.
For example, instead of enumerating all valid configurations, feature models are
used during domain engineering to represent the set of valid configurations. For
the same reason, we want test artifacts to be domain artifacts until it is decided on
which products should be tested. Hence, the key idea and hypothesis is:

Leverage test design to the domain engineering-level.

Furthermore, we leverage established methods for assessing non-variant system
tests to draw conclusions on how thoroughly the overall PL is tested. These methods
are important to measure, compare, and discuss the quality of the presented results.
We achieve this by leveraging established concepts and introducing traceability
relations between test artifacts of the application and domain engineering-level.

1.3. Assumptions 5

1.3. Assumptions

One major improvement in the last fifteen years in software development is MDE
(model-driven engineering). It closes the gap between requirements and implementa-
tion by refining the requirements until code can be derived manually or automatically.
Further benefits are improved communication within and across developer teams
and other stake holders, and many more [KWB03].

As many development methods, PLE can be supported by model-based abstrac-
tions [KCH+]. Furthermore, automated test design can be supported by model-based
approaches as well [UPL,BDG+07]. We take up on this development and tailor the
presented methods towards model-based PLE and test design. Hence, providing
system and test models for the presented approaches is vital and considered a
prerequisite.

1.4. Contributions

The contributions of this thesis are centered around test design, test planning, and
test quality. Parts of the results of this thesis have been published in [LTWW14,
LS14,LS15,Lac15,WWL15]. This thesis summarizes and extends these results. The
work presented can be grouped into the following four categories.

Contribution 1: Domain-Centered Test Design

As pointed out, test design can be performed on different levels in PLE. This thesis
investigates test design processes on varying levels. As a first contribution, we
define a novel class of processes and propose two approaches for implementing such
processes. The resulting tests carry on variability information and are thus reusable
for testing one or more variants. We define test design processes and notions for
reusable test cases, which provide the fundamentals for this thesis:

– Test Design Processes. We combine variability specifications by means of
feature models and feature mapping models with behavioral specifications
to enable automated model-based test design. The main contribution is the
definition of a test generation approach on the domain-engineering level, i.e.,
it does not depend on resolving single product variants during the test design
phase. We establish the two DC approaches pre-configuration and step-by-
step. Both approaches are defined over feature models, mapping models, and
software models. Furthermore, we present the main differences of established
test design processes to the defined novel test design processes.

– Reusable Tests. As a result of DC test design methods, we receive reusable
test cases. Each test case is reusable for a subset of variants in the PL. We

6 Chapter 1. Introduction

provide notions for reusability of test cases in regard to both of the presented
DC test design methods.

Contribution 2: Test Planning for Reusable Tests

Testing a PL is performed to fulfill prescribed test intents, e.g. system test, perfor-
mance test or smoke tests, defined by the test plan as in any system testing process.
However depending on the test goals defined by the chosen intent, choices for test
design strategy, amount of tested variants and the variants’ characteristics must be
made. With the test design processes presented in this thesis, we enable standard
test design strategies for generating reusable test cases.

Reusable test cases play a crucial role for planning tests in a PL context. The
choice of variants for testing and planning their execution against sets of tests
directly affects the test plan’s adequacy to fulfill the test intents. Thus in this thesis,
we propose and evaluate the combinations of the following aspects on selecting
variants and assigning them to tests:

– Probe Size. The effort for testing variant-rich systems increases with the
amount of variants selected for testing. Under the premise that every test
case is executed once, test managers have a degree of freedom when it comes
to choosing the variants for testing. A manager may choose a minimal set of
variants to minimize test effort or on the other hand may choose a maximal
set for increased confidence in the test’s results.

– Product Properties. The selection of products can be driven by individual
properties of the variants. We identify properties inherent to sets of variants,
like the diversity of the variants’ individual configurations or their size by
means of the amount of selected and unselected features. In addition, we
consider costs for building the variant and setting it up for testing.

– Feature Combination. The combinatorial selection of features was investigated
intensively [LOGS12,PSK+10]. In this thesis, we analyze the effects of feature
combinations on test quality in the context of test-based product selection.

Contribution 3: Product Line Test Quality

Quality of tests has many aspects. Since a test’s purpose is to find faults, one major
aspect is fault detection capability. The methods presented in this thesis enable test
assessment of PL tests by raising mutation analysis to the domain engineering-level.

– Mutation Process. A mutation system for product lines was proposed in [LS14].
We present a mutation process for mutating mapping models and behavioral

1.5. Structure 7

specifications. Test execution is performed on products and mutation scores
are propagated to domain artifacts.

– Faults in Variability Models. Variability and domain engineering are split into
different phases and models. Hence of new modeling languages used in PLE,
more kinds of errors can be made on the model-level than in non-variable
systems engineering. We observe new errors in mapping models. From these,
we derive domain-based mutation operators.

Contribution 4: Tool Support and Experimental Results

All algorithms presented in this thesis are implemented in several software tools. In
combination they make up the SPLTestbench which is integrated into the Eclipse
Framework as plug-ins. In particular, the following tools were developed in the
course of this thesis.

– Valerie: Variability Injection. is a set of model transformations that inject a
variability specification into a behavioral specification, here software models.
This transformation enables COTS software for DC test design. In particular,
it provides support for the test generators Conformiq Test Designer and RT
Tester.

– Cosa: Configuration Sampler. is a tool for sampling product configurations
from incomplete configurations. The process of sampling is implemented as a
constraint problem. For solving the problem it employs the Java Constraint
Programming solver (JaCoP).

– Muse: SPL Mutation System. performs test assessment by means of fault de-
tection capability for product line tests. It implements the presented mutation
process and mutation operators.

– Emol: Executable UML. generates executable Java code from a given SPL
model and a set of configurations.

Although all tools are implemented as proof of concept, experimental results
demonstrate the general feasibility of the presented methods and the overall ap-
proach.

1.5. Structure

The remainder of this dissertation is organized as follows:

8 Chapter 1. Introduction

– In Chap. 2, we define our terminology and present the foundations of our work.
We introduce model-based PLE and PL testing, as well as methods for test
assessment, and examples used throughout this thesis.

– In Chap. 3, we survey potential faults specific to model-based PLE and means
to evaluate the fault detection capability of PL test suites. The results from
this chapter facilitate the evaluation in the remaining chapters.

– In Chap. 4, we present automated test design based on artifacts from the
domain engineering-level. Furthermore, we compare the results to AC test
design methods.

– In Chap. 5, we present our approach of sampling configurations for testing and
planning test execution. We discuss possible sampling criteria, combinations
thereof, and compare the results with AC test design methods.

– In Chap. 6, we show how the presented DC test design method can be improved
for detecting PL-specific faults.

– We conclude and summarize this dissertation in Chap. 7.

9

Part I.

Preliminaries

11

Chapter 2.

Background

In this chapter, we introduce and summarize basic concepts and recent findings in
research used in the remainder of this thesis. In particular, we present the concepts
of PLE (product line engineering) in Section 2.1 as well as MBT (model-based
testing) and its application to PLE as discussed in literature so far in Section 2.2.

The evaluation of the methods for DC test design and product sampling
presented in Part II of this thesis are facilitated by mutation analysis. Since the
application of mutation analysis to PLE is a contribution of this thesis, we provide a
general introduction to this point in Section 2.3 and present the contribution-specific
parts in Chapter 3.

Furthermore, four examples are introduced to illustrate and support the findings
of this thesis.

2.1. Model-Based Product Line Engineering

Individual customer expectations and the reuse of existing assets in a product’s
design are two driving factors for the emergence of PLE: increasing the number
of product features while keeping system engineering costs at a reasonable level.
In terms of software engineering, a SPL is a set of related software products that
share a common core of software assets (commonalities), but can be distinguished
(variabilities) [PBL05].

The definition and realization of commonalities and variabilities is the process
of domain engineering. Actual products are built during application engineering.
Here, products are built by reusing domain artifacts and exploiting the product
line’s variability.

2.1.1. Feature-Oriented Design

Like many methodologies, PLE can be supported by model-based abstractions such
as feature models. Feature models offer a way to overcome the aforementioned
challenges by facilitating the explicit design of global system variation points [KCH+].

12 Chapter 2. Background

Search

eShop

Catalog

Credit Card eCoinsBank Transfer

Payment Security

High Standard

Mandatory Requires

Optional ExcludesAlternative

Or

Figure 2.1.: A feature model for the eShop example.

A feature model specifies valid product configurations and has a tree structure
in which a feature can be decomposed into sub-features. Figure 2.1 shows an example
feature model that is reused later in this thesis. A parent feature can have the
following relations to its sub-features: (a) Mandatory : child feature is required,
(b) Optional : child feature is optional, (c) Or : at least one of the children features
must be selected, and (d) Alternative: exactly one of the children features must be
selected. Furthermore, one may specify additional (cross-tree) constraints between
two features A and B: (i) A requires B: the selection of A implies the selection of
B, and (ii) A excludes B: both features A and B must not be selected for the same
product.

A feature model (FM) can also be represented as a propositional formula [Bat05]:

FM : (F → B)→ B

where F = f1, ..., fk is the set of features belonging to the PL. Since the empty
configuration is considered correct under the above premises, we include the root
feature as an additional conjoined literal to the formula.

For instance, the boolean formula for the eShop example in Figure 2.1 is:

2.1. Model-Based Product Line Engineering 13

FM = eShop ∧ (¬eShop ∨ Catalog)

∧ (¬eShop ∨ Payment) ∧ (¬eShop ∨ Security)

∧ (¬Payment ∨ CreditCard

∨ BankTransfer ∨ eCoins)

∧ (¬Security ∨ (High ∧ ¬Standard)

∨ (Standard ∧ ¬High))

∧ (¬Catalog ∨ eShop)

∧ (¬Payment ∨ eShop)

∧ (¬CreditCard ∨ Payment)

∧ (¬BankTransfer ∨ Payment)

∧ (¬eCoins ∨ Payment)

∧ (¬Security ∨ eShop)

∧ (¬High ∨ Security) ∧ (¬Standard ∨ Security)

∧ (¬Search ∨ eShop) ∧ (¬CreditCard ∨High))

The assignment of a value to a literal indicates whether the corresponding
feature is selected (true) or deselected (false). Any variable assignment that satisfies
the formula is a valid product configuration pc for the PL:

pc = F → B

A product configuration is valid, iff FM (pc) = true holds.
For instance, the following formula is a valid pc for the eShop feature model

presented in Figure 2.1.

P =eShop,Catalog ,Payment ,BankTransfer ,

¬CreditCard ,¬eCoins ,¬Search,Security ,

High,¬Standard

We define the set of all valid product configurations specified by a feature
model FM to be:

PC = {pc : F → B|FM (pc) = true}

To facilitate the design of such models, we provide a feature model language de-
fined in Ecore with the Eclipse Modeling Framework (EMF) as depicted in Figure 2.2.
The feature model language is similar to other standard feature languages [BAC04].

14 Chapter 2. Background

Figure 2.2.: Feature model language diagram.

It offers basic functionalities, for designing mandatory, optional, or, alternative, and
binary cross-tree-constraints (CTC) between features. Extended functionalities, e.g.
cardinalities or attributes, are not supported.

2.1.2. Variability Modeling

Although a feature model captures the system’s variation points in a concise form its
elements are only symbols [CA05]. Their semantics has to be provided by mapping
them to a model with semantics: a base model. Such a mapping can be defined
using an explicit mapping model or extending the base model’s language [GV07].

An explicit mapping model consists of relations from feature model elements
to base model elements. We refer to a domain model as the triple of feature model,
mapping model, and base model. From such a domain model, product models or
code can be resolved for a given pc. In the following, we introduce the three major
paradigms for variability modeling as depicted in [GV07]:

Annotative Modeling In this case, the base model is designed in terms of a so
called 150% model. A 150% model contains every element that is used in at least
one product configuration and, thus, subsumes every possible product [GKPR08]
(Fig. 2.3a). Subsequently, model elements are removed to resolve a valid variant.

Compositional Modeling In contrast to annotative languages, compositional lan-
guages start from a minimal core that contains features that are common to all
possible products. From this starting point additional features will be added by a
designer (Fig. 2.3b).

2.1. Model-Based Product Line Engineering 15

- Feature A

- Feature B

- Feature C

- Feature D

+ Feature A

+ Feature B

+ Feature C

a) b)

c) + Feature A

+ Feature B

- Feature C

- Feature D

in�uenced by

Delta modules

Figure 2.3.: Annotative (a), compositional (b) variability (based on [GV07])
and delta modeling (c)

Transformational Modeling Lastly, there are methods that combine compositional
and annotative methods, where model elements can be removed and added to resolve
a variant. A well-known approach for this is delta modeling (also delta-oriented
programming) [Sch10]. Delta modeling consists of two parts: The first one is a core
product comprised of a set of feature selections that represent a valid product. The
second part is a set of delta modules which specify changes to the core module.
These changes can either be the construction (add) or destruction (remove) of
elements from the product model (Fig. 2.3c). Each delta module is associated to
one or more features. Whenever a feature is selected or deselected the associated
deltas are applied to the product model, resulting in a new product model.

2.1.3. A Basic Variability Language

For the examples applied in this thesis, we use a custom annotative modeling
language. This language is a subset of the Common Variability Language (CVL).
The standardization process of the CVL specification is still an ongoing process and
the language specification might be subject to change [HMPO+08]. For consistency
over all experiments carried out during the period of this thesis, we apply only
the here described language features. In particular, our language does only feature
annotative modeling capabilities, while CVL also includes features transformational
modeling.

A mapping model in our mapping language, consists of mappings, where each
mapping maps a single feature to a set of elements in the base model. For designing
base models, we employ the Unified Modeling Language (UML), which is commonly

16 Chapter 2. Background

Figure 2.4.: Implementation of the mapping model language in Ecore.

applied in software engineering. Multiple features mapping to the same base model
element are interpreted as a conjunction of features. Additionally, each mapping
has a Boolean flag that indicates whether the mapped model elements are part of
the product when the feature is selected (true) or unselected (false).

In Figure 2.4, we depict the mapping model language as implemented for this
thesis with Ecore. The language refers to concepts of elements from the UML and
to features from our feature model language. Figure 2.5 shows an excerpt of the
eShop specification, where parts of the feature model are depicted in the upper half
and parts of the state machine’s payment process are shown in the lower half. In
between, we find a mapping, denoted by a dotted edge, from feature Credit Card to
the transition labeled as “SelectCreditCard[]/”.

2.1.4. Summary

Separation of concerns is a key paradigm in PLE. There is a variety of languages and
methods to support PLE in model-based environments. Here, we present a small
portion of relevant languages. Although many standards are proposed, no common
standard was established to this point, partly due to the diversity of available
languages provided by academia and industry.

2.2. Model-Based Testing

Testing is a common approach to quality assurance. The idea is to systematically
compare the observed system behavior with the expected one. The quality of tests

2.2. Model-Based Testing 17

Base Model (excerpt)

Credit Card High

... ...

Mapping: TRUE

Standard

 Feature Model (excerpt)

SelectCreditCard []/

Choose Payment Method Credit Card

Figure 2.5.: SPL design with annotative variability.

is often measured in terms of requirements and code coverage. Satisfying a coverage
criterion can result in big test suites with corresponding efforts in test design and test
execution. There are various approaches and tools to automate the test execution
in order to reduce testing costs. The biggest issue of this approach is change. A
change of requirements or customer demands may result in far more effort for test
design adaptation than for manual test execution. In the worst case, these test
design adaptation costs outweigh the costs saved by automated test execution. In
order to solve this issue, test design also needs to be automated.

There are a few techniques called MBT: some refer to test case models, like use
cases, which are used as templates to facilitate test case implementation [HGB08].
Others generate test data from test data models, like CTE [GG93]. In this thesis,
we interpret MBT as the automation of test design, where a test suite is generated
from a dedicated test model. The test model contains test-relevant information
about the intended behavior of the SUT and/or the behavior of its environment.

The resulting test suite is a set of test cases and possibly more test suites.
Each test case consists of a sequence of stimuli and expected reactions to these
stimuli. Especially test generators we use throughout this thesis for our state
machine examples, we receive such sequences as outputs. For non-deterministic
systems a test case may also be a tree or graph of stimuli and reactions. A test
case may also pose prerequisites on the system’s state or configuration that must be
fulfilled, before the test case can be executed.

We depict a generic MBT process in Figure 2.6 as presented by Utting et
al. in [UPL12]: First (1), the test model is created. Typically, it is created from
textual requirements or formal specifications. Its level of abstraction depends on

18 Chapter 2. Background

Figure 2.6.: MBT process by Utting et al. [UPL12]

the intended test level and test target. MBT is suitable for various kinds of test
targets like full or partial functionality, quality of service, performance, and others.

Test models can be designed in many notations like abstract state machines,
timed automata, and UML state machines [LS12], or Event-B [WBC14], Calculus
of Communicating Systems (CCS) [BK05], communicating sequential processes
(CSP) [MLL09], Markov Chains [Pro05], Petri Nets [Xu11], Z [LS05], and many
others. Ultimately, the chosen notation must be suited to express the relevant test
aspects and must be supported by the employed test generator.

Second (2), the test generator must be configured to select tests that achieve the
test targets adequately. Hence, test selection criteria were defined to approximate the
notion of a “good” test case. Typical selection criteria are coverage metrics based on
model element and/or traced requirements. For transition-based notations, common
coverage criteria are defined over the test model’s control flow, data flow, conditional
branching, use cases, requirements, or stochastic characterizations [CM94].

In a third step (3), test selection criteria are transformed into test case specifi-
cations. This is a necessary step, since test selection criteria must be formalized for
the particular test generator to make them operational.

Test case generation can start whenever the model and the test case specification
are defined (4). Before a test can be run by the test driver against the SUT, test
scripts must be generated (5-1). Due to the diversity of test drivers, test generators
are built to generate test cases that are agnostic of the intended test driver. Hence,

2.3. Test Assessment 19

the resulting test cases must be transformed into platform-specific test scripts. The
remaining abstraction-gap between test model and SUT can be handled either by
another transformation process or by an adaptor. Finally in (5-2), the test verdict
is received and evaluated. In this step, an adaptor or transformation may again
abstract the test verdict to the test model’s level. From this on, further actions are
planned as in any other test process.

2.2.1. Summary

In this thesis, we apply UML state machines as models for automated test design.
UML state machines are a common modeling language to express behavioral test mod-
els and they are supported by commercial and academic tools: IBM ATG [IBM09],
Conformiq TestDesigner [Con], JUMBL [Pro03], Sepp.med MBTSuite [SKK13],
Verified RT-Tester [Pel], ParTeG [Wei09], CertifyIt Smartesting [BLPT05], and
others. Typical test targets for state machines are criteria for control flow, data
flow, conditional branching, use cases, and requirements [CM94]. Test designers
create a test suite that fulfills a prescribed set of criteria to a certain degree. The
resulting tests can then be adapted to the interface of the SUT and executed.

2.3. Test Assessment

In this thesis, we do not only propose new methods for testing product lines, we
also evaluate them. This is achieved by assessing the generated test suites. Of
course fault detection capability (FDC) is of major concern, when it comes to test
assessment. The cause of a fault, as defined by the International Software Testing
Qualifications Board (ISTQB), is an error made by humans during programming,
which is due to a mistake, a misconception or misunderstanding. Only when the
erroneous lines are executed, this error becomes a fault or defect in the system. A
fault may cause the system to behave incorrectly, but does not necessarily have
to. A failure is, due to a fault, the inability of the system to perform a required
function.

In Section 2.2, we introduced measures for test selection by means of coverage
criteria. The same measures are used to assess tests, i.e., test suites scoring higher
coverage are more likely to detect faults. Also a test suite’s code coverage on the
SUT can be measured and used as a quality criterion [MSB12], although code
coverage is only a necessary but not sufficient condition.

If available, a test suite can be assessed by calculating the ratio of detected
faults to known faults. In late stages of development, also the ratio of faults reported
during development and faults reported from field usage can be measured.

Beyond that, test assessment can be performed along various measures: execu-
tion time, costs, readability, debugability, maintainability, repeatability, and others.

20 Chapter 2. Background

Typically execution time, costs, and repeatability are easier to assess, while the
other criteria are subjective to the individual testers.

2.3.1. Mutation Analysis

Mutation analysis (also mutation testing) as introduced by DeMillo et al. [DeM80]
is a fault-based testing technique with the intended purpose to assess the quality of
tests that will be applied to a system.

The process of mutation analysis introduces errors into software by creating
multiple versions of the original software, where each created version contains one
error. After that, existing test cases are used to execute the erroneous versions
(mutants) with the goal to distinguish the faulty ones (to kill a mutant) from the
original software. The ratio of killed mutants to generated mutants is called mutation
score, that is computed after the execution of all test cases. The main goal of the
test designer is to achieve a mutation score of 100 percent, that indicates that all
mutants (i.e., all faults) have been detected [OU01,JH11].

Regarding to [JH09] we can distinguish multiple kinds of mutants that can be
created. The simplest one are first-order mutants that, regarding to the mutation
operators, only have one introduced error. Even if first-order mutants can be killed
during the process of mutation testing, this does not guarantee that a combination
of two (or even more) mutants will also be detected by the test suite. Such combined
mutants are referred as higher-order mutants.

Though mutation operators are applied to fit in errors, there is the chance,
that the resulting mutant offers the same behavior as the original. This type of
mutants are referred as hidden mutants. Hidden mutants are not easily detectable
(undecidable), but supposed to be killed if detected during the mutation analysis
process [JH11].

2.3.2. Error Design

In mutation analysis, defective software versions are derived from a set of poten-
tial errors a human can make during software development. Potential errors are
implemented as mutation operators, which are applied to the original software for
introducing errors. The mutation operator’s design affects the validity of the result-
ing mutation scores and the costs for testing by means of the amount of mutants
to create and the number of tests to execute against them. Thus, we apply the
following four guiding principles for creating mutation operators [BOY00,Woo93]:

1. Mutation categories should model potential error. It is important to recognize
different types of error. In fact, each mutation operator is designed to model
errors belonging to the corresponding error class.

2.4. Examples 21

2. Only simple, first-order mutants should be generated. These mutants are
produced by making exactly one syntactic change to the original specifica-
tion. This restriction is justified by the coupling effect hypothesis which says
that the test sets that detect simple mutants will also detect more complex
mutants [Off92].

3. Only syntactically and semantically correct mutants should be generated.
Some mutations may result in an illegal expression, such as division by 0.
Such mutants should not be generated.

4. Do not produce too many mutants. This includes some practical restrictions.
For example, do not replace a relational connector with its opposite, if for
other mutants a term negation operator is applied, since both mutants are
semantically equivalent.

From other mutation systems presented in [BHP11, ALN13, FDMM94], we
identify the following general categories for model-based mutation operators:

1. Model element deletion: a model designer forgets to add a model element, e.g.
a feature, a mapping, or a transition.

2. Model element insertion: a model designer inserts a superfluous model element,
e.g. a feature, a mapping, or a transition.

3. Property change: a model designer chooses a wrong value for a property of a
model element, e.g. mandatory feature instead of optional, inverse value for a
feature’s status, or wrong transition target.

For each model element-type, like mappings, transitions, guards, etc., one can check
for applicable categories and implement mutation operators accordingly.

2.4. Examples

To evaluate the methods presented in this thesis, we employ four model examples:
An embedded ticket machine, an alarm system, an e-commerce webshop, and a
car’s body comfort system. All of the model examples conform to the previously
presented requirements for applying SPLTestbench.

As presented in Section 2.1 we use a model-based PLE approach to specify the
models. The domain analysis is performed with feature models, while for defining
variability, we use annotative concepts as defined earlier by the presented mapping
model language in Section 2.1.3. The base models are specified with UML, in
particular state machines and classes. Each example consists of at least one state

22 Chapter 2. Background

machine diagram. Each state machine has a context class, which holds attributes
used in the state machine and ports for sending and receiving messages.

We apply syntax and semantics as defined in the UML standard. For sending
messages from the SUT to the environment we use the following notation:

(1) <SignalType> <signalIdentifier>;

(2) <portname>.send(<signalIdentifier>);

First (1), we declare an identifier of the signal’s type. Then (2), we call the send
method of the outbound port from which we intend to send the signal. Furthermore,
the signal’s identifier is passed as a parameter to the port’s send method.

In the following we present an example for sending a signal of type “Text” over
a port named “out”. We choose to declare the signal’s identifier as “letter”. If
the signal has a property, e.g. “content” of type String, we may also set the value
of this property before sending the signal. The corresponding effect is:

(1) Text letter;

() letter.content = "Hello World";

(2) out.send(letter);

2.4.1. Ticket Machine

The Ticket Machine is a simple case study and is adopted from Cichos et al. [CLOS12].
The functionality is as follows: a customer may select tickets, pay for them, receive
the tickets, and collect change. The feature model has a root feature with three
sub-features attached to it; all of them are optional. Depending on the selected
features, the machine offers reduced tickets, accepts not only coins but also bills,
and/or will dispense change.

The feature model is depicted in Figure 2.7, while the base model is shown in
Figure 2.8. The features are mapped as follows:

– Bills to transitions labeled “bill[paid=costs]/ paid+=5;” at state
“Payment” and “bill[paid>=5]/ paid-=5;”, “bill[paid>0 && paid<5]/

paid--;” at state “MoneyChange”.

– Not Bills to transition labeled “coin[paid>0]paid--;” at state
“MoneyChange”.

– Change to transition labeled “change[tDay==0 && tShort==0 && tRed==0]”
from state “TicketEjection” to “MoneyChange”.

– Not Change to transition labeled “change[tDay==0 && tShort==0 &&

tRed==0]/ paid=0; costs=0; success o; Out.send(o);” from state
“TicketEjection” to “MoneyChange”.

2.4. Examples 23

Reduced fareBills Change

Ticket Machine

Figure 2.7.: Feature model of the Ticket Machine example.

Figure 2.8.: Base model of the Ticket Machine example.

24 Chapter 2. Background

– Reduced Fare to transition labeled “redT/ tRed++; costs+=3;” at state
“TicketSelection”.

2.4.2. Alarm System

The Alarm System example is also adopted from Cichos et al. [CH11] and more
complex. The alarm may be set off manually or automatically by a vibration
detector. Both features are part of an or-group and, thus, at least one of the two
features must be present in every product. In the event of an alarm, a siren or
a warning light will indicate the security breach. When the vibration does not
stop after a predefined period of time, the system optionally escalates the alarm
by calling police authorities and/or sending photos of evidence. Additionally to its
alarming functionality, the Alarm System SPL provides a feature for taking a photo
of any operator that configures the system for security measures.

We adopted the Alarm System models by removing manual timers that were
implemented as guard conditions. Furthermore, we added cross-tree-constraints
(CTC) and more features to the feature model for exercising the SPLTestbench’s
functionalities more thoroughly.

The feature model is depicted in Figure 2.9, while the base model is shown in
Figure 2.10. The features are mapped as follows:

– User Interface, Storage and Online Access are mandatory and need no map-
ping.

– Camera to state “Camera”.

– Photo to transition labeled “photo/ makePhoto o; Out.send(o);

storePhoto p; Out.send(p); data = true;” at state “Camera”.

– Video to transition labeled “video/ makeVideo o; Out.send(o);

storeVideo p; Out.send(p); data = true;” at state “Camera”.

– Manual Release to transition labeled “manStart/ m=true;” from state
“StandBy” to “EnsureDanger”.

– Vibration Detector to transition labeled “vibrating” from state “StandBy”
to “EnsureDanger”.

– Warning Light to transition “startWarning / flashFast o;

Out.send(o);” from state “Ensure Danger” to “AlarmSignal”.

– Siren to transition “startSiren / loudSound o; Out.send(o);” from state
“Ensure Danger” to “AlarmSignal”.

2.4. Examples 25

Camera StorageVibration
Detector

VideoPhoto High Standard

Manual
Release

Warning
Light

SirenUser
Inteface

Online
Access

Alarm System

Figure 2.9.: Feature model of the Alarm System example.

Figure 2.10.: Base model of the Alarm System example.

26 Chapter 2. Background

– High and Standard are not mapped to model elements, since they have no
influence on any resulting product model.

2.4.3. eShop

The eShop example is a fictional e-commerce Webshop designed for this thesis. A
customer can browse the catalog of items, or if provided, use the search function.
Once the customer put items into the cart, he can checkout and may choose from
up to three different payment options, depending on the eShop’s configuration. The
transactions are secured by either a standard or high security server. A CTC ensures
that credit card payment is only offered if the eShop also implements a high security
server. While we show the base model in Figure 2.11, its feature model was already
presented in Figure 2.1. The features are mapped to the state machine’s elements
as follows:

– Catalog, Payment and Security are mandatory and need no mapping.

– Bank Transfer to all transitions connected to state “Bank Transfer”.

– eCoins to all transitions connected to state “eCoins”.

– Credit Card to all transitions connected to state “Credit Card”.

– High to attribute secureConnection with its default value set to true.

– Standard to attribute secureConnection with its default value set to false.

– Search to any transitions connected to state “Search”.

2.4.4. Body Comfort System

This example is an actual case study created by Lity et al. and documented as
technical report in [LLLS]. The case study stems from a cooperation between the
Institute for Programming and Reactive Systems, Institute for Software Engineering
and Automotive Informatics, Real-Time Systems Lab, and their partners from
the German automotive industry. The system comprises the following (variable)
functionality:

– Power Windows with Finger Protection

– Exterior Mirrors with Heating

– Controls (Human Machines Interface) with Status LEDs

– Alarm System with Interior Monitoring

2.4. Examples 27

Figure 2.11.: Base model of the eShop example.

28 Chapter 2. Background

– Central Locking System with Automatic Locking

– Remote Control Key with Safety Function and controls for Alarm System and
Power Windows.

The case study’s feature model is depicted in Figure 2.12 and an overview
of the system’s compositions is shown in Figure 2.13. In the technical report, the
base model consists of 21 state machine models and the variability is given by 15
delta-models.

For the purpose of the evaluations performed within this thesis, the models
were transformed to mapping models and state machines with annotated variability.
For annotation, we employ the mapping language as introduced in Section 2.1.3.
As a result of this transformation we gain 21 state machines and 20 mappings to 357
state machine elements (each mapping can refer to multiple base model elements).
Neither the state machine models nor the mapping model are presented individually
in this thesis.

2.4.5. Summary

The presented examples vary in complexity of variability and behavior. Table 2.1
and 2.2 summarize the individual models on structural level. Besides of the Body
Comfort System Case Study, the Alarm System example is the most variable SPL in
this comparison by means of possible configurations (CNF), offering 42, followed by
the eShop with 20, and the Ticket Machine with only 8 configurations. Although the
Alarm System has only two features more than the eShop, it offers twice as many
configurations. This is a typical effect observable in variable systems, where adding
only a few features can drastically increase the amount of configurations. There are
further metrics for feature models available to measure analyzability, changeability,
and understandability, which we did not apply so far [BG11].

Similar to feature models, UML models are of different complexity by means
of states, transitions, sub-machines, and signals. Here, the eShop case study is the
most complex example. The Alarm System and the Ticket Machine are gradually
less complex.

2.4. Examples 29

Figure 2.12.: Feature model of the Body Comfort System. [LLLS]

30 Chapter 2. Background

Figure 2.13.: Overview of the Body Comfort System’s architecture. [LLLS]

2.4. Examples 31

Table 2.1.: Feature model summary for Ticket Machine (TM), Alarm System
(AS), eShop (ES), and Body Comfort System (BCS).

Example TM AS ES BCS

Features 4 12 10 27

Core features 1 3 4 7

Grouped features 0 8 5 8

Cross-tree constraints 0 2 1 6

Configurations 8 42 20 11,616

Table 2.2.: Base model summary for Ticket Machine (TM), Alarm System (AS),
eShop (ES), and Body Comfort System (BCS).

Example TM AS ES BCS

States 4 5 16 235

Transitions 19 19 28 369

Levels of Hierarchy 0 0 2 0

Sub-Machines 0 0 3 0

Signals 10 19 26 102

33

Chapter 3.

Assessment of Product Line Tests

Test assessment is an integral part for evaluation of the concepts presented in Part II
of this thesis. This chapter builds the foundations for assessing the quality of PL
test suites by means of fault detection capability (FDC). Though there are many
methods proposed for testing a PL, until now, quality assessment of tests was
limited to measuring code, model and/or requirements coverage [Mv03, CDS06].
Mutation analysis is a major approach to investigate a test suite’s FDC. So far
mutation analysis for PLE is constrained to mutating individual products of a PL.
This approach has two major drawbacks: first, developers can introduce errors on
all kinds of artifacts, not only on product models, leading to new kinds of faults.
For better understanding, we analyze different design paradigms for model-based
PLE as presented in Section 2.1 and errors that can occur during the respective
design processes. From the results, we develop mutation operators for variability
models and base models to mimic possible faults in these models.

Secondly, the selection of products and subsequently its mutations is biased by
the products selected for testing. Therefore, mutation analysis assesses the quality
of the tests for particular products, but not for the whole PL. In contrast, we define
a mutation system and operators on the domain engineering-level. This enables us
to assess the test quality independently from the tested products. Subsequently, the
test suite’s quality by means of FDC can be assessed for the complete PL.

The remainder of this chapter is structured as follows: In Section 3.1 we define
and classify kinds of errors. We present our PL test assessment system and its
evaluation with three of the four examples introduced in Section 3.2. Eventually,
we show related work in Section 3.4 and conclude in Section 3.5.

3.1. Potential Errors in Model-Based Product Line
Engineering

The feature mapping has a major impact on the outcome of the resolved products in
a PL, however, the design is complex and error-prone. We identify potential errors
in a systematic way by checking each modeling paradigm for possibilities to add

34 Chapter 3. Assessment of Product Line Tests

superfluous or omit necessary elements or change the value of an element’s attribute.
For each potential error we discuss its effects onto the resolved products.

Annotative Variability

In the annotative variability paradigm, we identify the following model elements for
potential errors from the feature mapping model: mappings, their attribute feature
value, mapped feature, and the set of mapped elements. The errors which can be
made on these model elements and their effects are as follows:

N1) Omitted mapping: a necessary mapping is left out by its entirety. Subsequently,
mapped elements will be part of every product unless they are restricted by other
features. As a result, some or all products unrelated to the particular feature
will include superfluous behavior. Products including the mapped feature are not
affected, since the behavior was enabled anyway.

N2) Superfluous mapping: a superfluous mapping is added, such that a previously
unmapped feature is now mapped to some base model elements. This may also
include adding a mapping for an already mapped feature, but with inverted feature
value. Adding a mapping with feature value set to true results in the removal
of elements from products unrelated to the mapped feature. Contrary, adding a
mapping with feature value set to false removes elements from any product which
the mapped feature is part of. In any case the behavior of at least some products is
reduced.

N3) Omitting a mapped element: a mapped model element is missing from the set
of mapped elements in a mapping. Subsequently, a previously mapped element
will not only be available in products which the said feature is part of, but also in
products unrelated to this feature. As a result, some products offer more behavior
than they should or contain unreachable model elements.

N4) Superfluously mapped element: an element is mapped although it should not
be related to the feature it is currently mapped to. As a result the element becomes
unavailable in products which do not include the associated feature. The product’s
behavior is hence reduced.

N5) Swapped feature: the associated features of two mappings are mutually ex-
changed. Subsequently, behavior is exchanged among the two features and thus,
affected products offer different behavior than expected. The result is the same as
exchanging all mapped elements among two mappings.

N6) Inverted feature status: the binary-value of the feature value attribute is flipped.
The mapped elements of the affected mapping become available to products where

3.1. Potential Errors in Model-Based Product Line Engineering 35

they should not be available. At the same time, the elements become unavailable
in products where they should be. For example, if the feature value is true and is
switched to false, the elements become unavailable to products with the associated
feature and available to any product not including the said feature. Of course, other
feature mappings to the same element(s) must still be considered.

Compositional Variability

In PL modeling with compositional variability, a mapping is a bijection between
features and modules composed from domain elements. Potential errors in the
feature mapping models can be made at: mappings, mapped feature, and mapped
module. We identify the following potential errors:

P1) Omitted mapping: a necessary mapping is missing in its entirety. This appears
to us to be an unrealistic scenario, since one can automatically check for all modules
being mapped to some feature. But if we consider the case of a missing mapping,
products with the associated feature would be missing the modules’ functionality.

P2) Superfluous mapping: a superfluous mapping is added. Similar to the above,
this is an unrealistic scenario for the same reason: all modules should be mapped
exactly once. In a model-based environment, this check should be easily automatable.
However, if adding a superfluous mapping is possible, more behavior becomes enabled
in products containing the mapping’s feature.

P3) Swapped modules: the associated modules of two mappings are mutually ex-
changed. As a result, all products containing one of the two features, but not the
other, do not offer the expected behavior. Subsequently, all products containing
none or both features behave as expected.

P4) Swapped features: the associated features of two mappings are mutually
exchanged. The result is the same as above for swapped modules.

Transformational Variability

For other paradigms, like delta-modeling [Sch10], we make similar observations. In
contrast to compositional variability models, delta-oriented variability models start
from an actual core product, instead of a base module. From this on, only the
differences from one product to another are defined by deltas. In delta-modeling,
mapping multiple features to the same delta is allowed. A delta may add elements
to and remove elements from the core product at the same time. As potential points
of errors in delta-modeling we identify deltas, a delta’s set of mapped features, its
set of removed elements from the base product, and its set of added elements.

36 Chapter 3. Assessment of Product Line Tests

D1) Omitted delta: the domain model misses an entire delta definition. Products
containing features of the missing delta may lack behavior or offer too much of it.
This depends on whether the delta removes and/or adds elements from/to the base
product.

D2) Superfluous delta: an unnecessary delta is added. As a result, products
containing the associated feature(s) will offer additional behavior. Also, affected
products might lack behavior if the delta removes elements.

D3) Omitted feature: a necessary feature from the set of mapped features is missing.
If no feature is left, the delta is not mapped at all which can be statically verified.
If otherwise the set still contains at least one feature, any product containing the
current set of mapped features but not the missing feature, offers too much or too
few behavior. In some cases, the set of mapped features and the affected elements
may collide with another delta, which is again statically verifiable.

D4) Superfluous feature: an additional feature is added to a delta’s already complete
set of mapped features. As a result, the delta will be available in less products. If
the added feature mutually excludes one of the already mapped features, the delta
will be applicable to no product at all. A static check can be used to validate that a
set of features is satisfiable by some product. Only products containing the correct
set of features, but not the superfluous ones, are affected by this error. Affected
products may offer more or less behavior.

D5) Omitted base element: a delta’s set of base elements is missing an element. In
consequence, too few elements are removed from the core product by this delta to
match the product’s model. Thus any product containing the features from this
delta offers too much behavior.

D6) Superfluous base element: a delta’s set of base elements contains additional
elements. This will remove more elements than necessary from the products affected
by this delta. Hence, these products offer too few behavior.

D7) Omitted delta element: an element from the set of delta elements in a delta is
missing. As a result, all products containing the delta’s features offer more or less
behavior than specified - depending on whether the delta element adds or removes
elements.

D8) Superfluous delta element: an element from a delta’s set of delta elements is
missing. In consequence, the products containing the delta’s features offer more or
less behavior than specified. Again, this depends on whether the delta element adds
or removes elements.

3.2. Product Line Test Assessment 37

3.2. Product Line Test Assessment

As laid out in section 3.1, new kinds of errors can be made in model-based PLE
than in contrast to single systems engineering. Current test design methods and
coverage criteria are not prepared to deal with these errors and resulting faults. We
propose a mutation system for PL systems. It is specifically designed to assess test
quality, by means of FDC, for the whole product line rather than for single systems.

Mutation systems for PL need novel mutation operators. The reason for this is
the separation of concerns in PLE, where variability and domain engineering are split
into different phases and models. Mutation operators defined for non-variant systems
cannot infer mutants including modules from other products, since this information
is only available during domain engineering. However, we expect a high-quality test
suite to detect such faults. Hence, we also propose new mutation operators based on
the potential errors, we identified in Section 3.1. For conciseness, we only consider
potential errors from annotative variability modeling for implementation.

3.2.1. Mutation System for Product Lines

Performing mutation analysis on PL tests is different from non-variant system tests,
since in contrast to conventional mutation systems, a mutated domain model is
not executable per se. Thus, testing cannot be performed until a decision is made
towards a set of products for testing. This decision depends on the PL test suite
itself, since each test is applicable to just a subset of products.

In Figure 3.1, we depict a mutation process for assessing PL test suites, which
addresses this issue. Independently from each other, we gain (a) a set of domain
mutants by applying mutation operators to the domain model and identify (b)
a set of configurations describing the applicable products for testing. We apply
every configuration in (b) to every mutant in (a), which returns a new set of
product model mutants. Any mutant structurally equivalent to the original product
model is immediately removed and does not participate in the scoring. The mutant
product models are easily resolved to product mutants and finally, tests are executed.
Our mutation scores are based on the domain model mutants, hence we establish
bidirectional traceability from any mutant domain model to all its associated product
mutants and back again. If a product mutant is killed by a test, we backtrack
its domain model mutant and flag it as killed. The final mutation score is then
calculated from the killed and the overall number of domain models mutants.

3.2.2. Product Line Mutation Operators

Here, we present mutation operators for feature mapping models with annotative
variability. Furthermore, we enrich the mutation system by standard state machine

38 Chapter 3. Assessment of Product Line Tests

Domain Model

Domain Model Mutants
(a)

Product Model Mutants

Product Mutants

Apply Mutation Operators

Generate products

Configurations
(b)

Test Suite

Extract Configurations for Testing

SPL Mutation Score
Backtrace Product Mutants to
Product Lines Specification Mutants

Apply configurations & resolve product models

Execute Tests and Calculate Mutation Score

Figure 3.1.: Mutation process for PL systems

operators and apply them on domain-level as well. For systematic identification
of mutation operators, we apply the guidelines presented in Chapter 2.3.2 and
categorize each identified operator. Also, we discuss potentially invalid and hidden
mutants resulting from each operator. Still there is no guarantee that the following
list is complete.

Feature Mapping

We design the mutation operators according to the potential errors identified in
Section 3.1. We do not consider inserting superfluous mappings as in this case it
remains unclear which and how many UML elements should be selected for the
mapping. We assume that this, if not carefully crafted, will lead to mostly invalid
mutants.

Delete Mapping (DMP) The deletion of a mapping will permanently enable the
mapped elements, if they are not associated to other features that constrain their
enabledness otherwise. In our examples, no invalid mutants were created. However,
for product lines that make heavy use of mutual exclusion (Xor and excludes) this

3.2. Product Line Test Assessment 39

does not apply. The reason for this are competing UML elements like transitions
that would otherwise never be part of the same product. Multiple enabled and
otherwise excluding transitions are possibly introducing non-determinism or at least
unexpected behavior.

Some product mutants created with this operator might behave equivalent to an
original product. This is the case for all products that include the feature for which
the mapping was deleted. Since these mutants are structurally equivalent to the
original product model, they are easy to detect.

Delete Mapped Element (DME) This operator deletes a UML element reference
from a mapping in the feature mapping model. It resembles the case, where a
modeler forgot to map a UML element that should have been mapped.

Similar to the delete mapping operator, this operator may yield non-deterministic
models, where otherwise excluding transitions are concurrently enabled. Product
mutants equivalent to the original product model can be derived, if the feature
associated to the deleted UML reference is part of the product. Again, this is results
in structural equivalence to the original product.

Insert Mapped Element (IME) This operator inserts a new UML element reference
to the mapping. This is the contrary case to the operators defined before, where
mappings and UML elements were removed. However, inserting additional elements
is more difficult than deleting them, since a heuristic must be provided for creating
such an additional element. We decided to copy the first UML element reference
from the subsequent mapping. If there are no more mappings, we take the first
mapping. This operator is not applicable if there is just one mapping in the feature
mapping model.

Again, there is a chance of creating invalid mutants: If a UML element reference is
copied from a mutually excluded mapping, the resulting model may be invalid due
to non-determinism.

Also structurally equivalent mutants are created, when the features from the subse-
quent mapping, which acts as source for the copied element, and the target mapping
are simultaneously activated in a product.

Swap Feature (SWP) Swapping features exchanges the mapped behavior among
each other. This operator substitutes a mapping’s feature by the following mapping’s
feature and vice versa. The last feature to swap is exchanged with the very first of
the model.

Non-deterministic behavior and thus invalid models may be designed by this operator.
This is due to the fact that the mutation operator may exchange a feature from a
group of mutually exclusive features by an unrestricted feature. In consequence, the

40 Chapter 3. Assessment of Product Line Tests

previously restricted feature is now independent, while the unrestricted feature joins
the mutual exclusive group. This may concurrently enable transitions which results
in non-deterministic behavior.

We gain structurally equivalent mutants, if the two swapped features are simultane-
ously activated.

Change Feature Value (CFV) This operator flips the feature value of a mapping.
A modeler may have selected the wrong value for this boolean property of each
mapping.

The operator must not be applied to a mapping, if there is a second mapping with
the same feature, but different feature value. Otherwise, there will be two mappings
for the same feature with the same feature value, which is not allowed for our feature
mapping models.

This operator may yield invalid mutants, if it is applied to a mapping that excludes
another feature. In that case, two otherwise excluding UML elements can be present
at the same time, which may result in invalid models, e.g. two default values
assigned to a single variable or concurrently enabled transitions.

UML State Machine

In the past 20 years, many mutation operators for transition-based systems were
defined [FDMM94,OLAA03,BBW06,BH08]. Here, we limit ourselves to the design
of operators based on transitions as these may have the strongest impact on the
behavior of the SUT. We do not design operators that can be mimicked by the
combination of two of them. In particular, we do not consider the exchange of an
element by another, since this can easily be mimicked by removing and inserting
the removed element at another point in the model.

We identified five targets for mutation: (i) remove the entire transition, change
its (ii) target state, as well as mutating its (iii) triggers, (iv) guard, and (v) effect.
The latter three can be mutated according to the three defined categories delete,
add and change.

For all mutants created by the here presented operators, there is a chance of
materializing mutants behaving equivalent to the original product. This is the case,
when the mutated element is part of a disabled feature. Of course, hidden mutants –
if detected – will be excluded from the scoring.

In general, we will not apply any class mutation to our UML state ma-
chines [KCM00]. The system’s logic is designed in the state machine diagrams, while
the classes are merely containers for variables and diagrams.

Delete Transition (DTR) Deletes a transition from a region in a UML state machine.
This operator might create invalid UML models, if not enough transitions remain

3.3. Evaluation 41

on a pseudo-state (fork, join, junction, and choice) [OMG, p.555].

Change Transition Target (CTT) Changes the target of a transition to another
state of the target state’s region. This operator is only applicable if the region has
more than one state.

Delete Effect (DEF) Deletes the entire effect from a transition. We consider sending
signals to the environment or other components to be part of a transition’s effect,
hence they are deleted as well.

Delete Trigger (DTI) Deletes a transition’s trigger. Only a single trigger is deleted
at a time and every trigger is deleted once.

Insert Trigger (ITG) Copies an additional trigger to a transition. The trigger is
copied from another transition within the same region. This may lead to non-
deterministic behavior if both transitions, the source transition of the trigger and
the mutated transition, are outgoing transitions of the same state.

Delete Guard (DGD) Deletes the entire guard of a transition. This may lead to
non-deterministic behavior of the state machine, if another transition is enabled
simultaneously. Furthermore, in the case of transitions without triggers and where
source and target are the same state, this operator leads to infinite looping of
the state machine over the mutated transition. The reason for this behavior is
UML’s run-to-completion semantic, where an enabled transition without triggers is
immediately traversed.

Change Guard (CGD) Changes a guard’s term by exchanging operators or substi-
tuting boolean literals by their inverse. Our CGD operator supports 30 different
arithmetic, relational, bitwise, compound assignment, and logic operators. Further-
more, literal ”null” is exchanged by ”this”.

This may cause mutants with non-deterministic behavior, whenever two transition
become concurrently enabled due to the manipulation of one of their guards.

3.3. Evaluation

3.3.1. Setup

We employ the three example product lines introduced in Section 2.4 for performing a
mutation analysis on them. We designed the test suite for each example automatically
by applying model-based testing techniques. We chose all-transitions coverage for
selecting the tests. A test generator then automatically designed the tests and
outputs XML-documents. From the tests, SPLTestbench selected variants for testing
and resolved mutated product models from the mutated domain model.

42 Chapter 3. Assessment of Product Line Tests

Since our examples lack implementations, we decided to generate code from the
mutated product models and run the tests against them. Therefore, we developed
and employed a code generator for transforming individual product models into
Java. Another transformator generates executable JUnit code from the tests which
we gained from the test generator. The mutation system then collects all the
code artifacts, executes the tests against the product code, and finally reports
the mutation scores for all tests and for every operator individually. All of the
transformations above and the mutation system are integrated into SPLTestbench.

Generating code and tests from the same basis for testing the code is not
feasible in productive environments, since errors propagate from the basis to code
and tests. However in our case, tests are executed against code derived from mutated
artifacts, while the test cases were generated from the original model.

3.3.2. Results

We were able to assess the test quality for all three test suites derived from the
examples. Here, we present the results. For each mutation operator we measured the
amount of detected mutants based on the domain model. In addition, we assessed
accumulated mutation scores for each example over all mutation operators and vice
versa, the accumulated results for each mutation operator over all examples. The
detailed results for feature mapping operators can be read from Table 3.1 and for
UML operators from Table 3.2.

For every example we tracked the number of original products selected for
testing, generated domain model mutants, and resolved product mutants. Test-wise
we counted tests, test steps by means of stimuli and expected reactions in all tests,
tests executed against all product mutants, and the number of failed tests during
test execution.

For the eShop example, SPLTestbench selected four products for testing.
Independent from this, the mutation system generated 30 domain model mutants
and 96 product mutants for the mapping mutation operators. For the state machine
mutation operators it generated 122 domain model mutants and 478 product mutants.
Every test case from the 13 test cases for this example was executed against every
suitable mutant. This results in 302 test executions for the mutants created by the
mapping mutation operator and 1,553 test executions for state machine mutation
operators. Ultimately, 20 tests for mapping operators and 283 tests for state machine
operators failed, killing 69.67% and 36.67% of the mutants.

For the Ticket Machine example, we executed 1332 tests for state machine
operators, executed them against 296 product mutants, and eventually 272 tests
failed, killing 66.89% of the PL mutants. Analog to the eShop, we executed less tests
and generated less product mutants for the feature mapping operators: 252 tests
were executed against 56 product mutants, which were resolved from 28 domain

3.3. Evaluation 43

Table 3.1.: Mapping operator scores per mutation operator in % and Accum-
lated Scores (Acc)

Op. eShop Ticket Machine Alarm System Acc

DMP 0.00 (4) 0.00 (5) 0.00 (8) 0.00
DME 0.00 (14) 0.00 (8) 0.00 (21) 0.00
IME 75.00 (4) 40.00 (5) 50.00 (8) 52.94
SWP 100.00 (4) 60.00 (5) 62.5 (8) 70.59
CFV 100.00 (4) 100.00 (5) 87.50 (8) 94.12

Acc 36.67 (30) 35.71 (28) 30.19 (53) 33.33

Table 3.2.: UML operator scores per mutation operator in % and Accumlated
Scores (Acc)

Op. eShop Ticket Machine Alarm System Acc

DTR 89.29 (28) 84.21 (19) 63.16 (19) 80.30
CTT 64.29 (28) 63.16 (19) 36.84 (19) 56.06
DEF 100.00 (16) 82.35 (17) 61.54 (13) 82.61
DTI 82.61 (23) 100.00 (13) 94.12 (17) 90.57
ITG 20.83 (24) 27.78 (18) 16.67 (18) 21.67
DGD 0.00 (1) 42.86 (14) 50.00 (2) 41.18
CGD 100.00 (2) 68.75 (48) 90.00 (10) 73.33

Acc 69.67 (122) 66.89 (148) 57.17 (98) 65.21

model mutants. The tests yield an even lower mutation score of 35.71% than for
the eShop case study.

In case of the Alarm System, we executed 537 tests against 278 product mutants
created by the mapping mutation operators and 1,168 tests against 585 product
mutants created by the state machine mutation operators. Eventually, 37 and 123
tests failed, killing 30.19% and 57.17% of the mutants, respectively. The results are
summarized in Table 3.3 and 3.4.

The table shows some interesting effects. For most of the operators we gain
mutation scores between 60% and 100%. This is in the expected range for test
suites generated with the all-transitions coverage on random mutants [Wei09,LS12].
However, there are some notable exceptions: DMP (0%) and DME (0%) on feature
mappings, ITG (21.67%) and DGD (41.18%) on base models. The reason is that
these operators add superfluous behavior to the product. Errors consisting of
additional (unspecified) behavior are notoriously hard to find by specification-based
testing methods. Specification-based testing checks whether the specified behavior is

44 Chapter 3. Assessment of Product Line Tests

Table 3.3.: Summarized Results for Mapping Operators

eShop Ticket Machine Alarm System

Products for testing 4 4 6
Product line mutants 30 28 53
Product mutants 96 56 278
Test cases 13 9 12
Test steps 103 68 62
Tests executed 302 252 537
Failed tests 20 30 37

Table 3.4.: Mutation Results for State Machine Operators

eShop Ticket Machine Alarm System

Products for testing 4 4 6
Product line mutants 122 148 98
Product mutants 478 296 585
Test cases 13 9 12
Test steps 103 68 62
Tests executed 1,553 1,332 1,168
Failed tests 283 272 123

implemented; it cannot find unspecified program behaviors (e.g. viruses). Program-
code-based testing checks whether the implemented behavior is correct with respect
to the specification; it cannot find unimplemented requirements (e.g. missing
features).

To solve this problem, we must not only check whether a required feature is
implemented, but also whether a deselected feature is really absent. One possibility
for this is to add product boundary tests, which are automatically generated from
the domain model. An detailed elaboration of this idea can be found in [WWL15].
Another possibility is to admit so-called “negative tests”, which are constructed
manually and test whether a certain behaviour is absent. This idea will be followed
in section 6. Another method for detecting superfluous behavior is code coverage.
Metrics, such as branch coverage, will easily detect superfluous behavior in separate
modules. Discovering superfluous behavior hidden within production code is much
harder, since this would require high efforts for test generation, e.g. to achieve
metrics such as multiple condition/decision coverage (MC/DC).

3.4. Related Work 45

3.3.3. Threats to Validity

A general concern regarding mutation analysis is the likeliness of the mutation
operators representing actual errors a developer can make. Hence, we decided to
design the operators in a systematic way and followed the general guidelines for
designing errors in section 2.3.2. Due to the systematic way, we disregard the
likelihood of an error being made. In consequence, errors that are unrealistic in
practice and hard to discover by the tests yield bad mutation scores, although they
are negligible due to their unlikeliness to appear. This could lead to investing into
improved fault detection capability, where the impact might be low, when the efforts
could be spend more efficiently elsewhere.

3.4. Related Work

Mutation analysis for PL systems seems to be a rather new topic. To our knowledge,
there is no publication dealing with mutation operators on all model artifacts of a
domain model. Though, Henard et al. proposed two mutation operators for feature
models based on propositional formulas in [HPP+13]. They employ their mutation
system for showing the effectiveness of dissimilar tests, in contrast to similar tests.
For calculating dissimilarity, the authors provide a distance metric to evaluate the
degree of similarity between two given products.

In contrast, mutation analysis for behavioral system models, e.g. finite state
machines, is established since two decades. Fabbri et al. introduced mutation
operators for finite state machines in [FDMM94]. In addition to our operators, they
also consider adding states and the exchange of elements (event, guard, effect) by
another. Belli and Hollmann provide mutation operators for multiple formalisms:
directed graphs, event sequence graphs [BBW06], finite state machines [OLAA03],
and basic state charts [BH08]. They conclude, that there are two basic operations
from which most operations can be derived: omission and insertion. Also for timed
automata, mutation operators can be found in [ALN13].

In [SZCM04] Stephenson et al. propose the use of mutation testing for priori-
tizing test cases from a test suite in a PL environment. Unfortunately, the authors
provide no evaluation of their approach.

3.5. Conclusions

In this contribution, we lifted mutation analysis to the domain engineering-level. We
defined and investigated mutation operators for feature models, mapping models,
and UML state machine models. As opposed to product-based mutation analysis,
our mutation operators are based on the domain model. This allows us to mimic

46 Chapter 3. Assessment of Product Line Tests

realistic errors made by humans during modeling a PL. To our knowledge, this is
the first step towards a qualitative evaluation of PL tests, which is based on the
domain model.

Our results for the three examples are as expected for most of the mutation
operators. As predicted, mutation operators contributing superfluous behavior are
hard to detect for conformance tests. Such mutations are DMP (0%) and DME
(0%) on feature mappings and ITG (21.67%) on base models. For most of the other
operators we gain scores above 70%, which is in the expected range for all-transitions
coverage [Wei09]. For DGD and CTT mutations the tests score surprisingly low
results. Here, further investigations seem necessary.

In conclusion, we identified a lack of fault detection capability in standard
test procedures for PL systems. Even simple faults are not detectable, neither by
all-transitions, MC/DC as for safety-critical systems, nor any other conformance
test procedure. As indicated, the results are applicable to at least the here surveyed
PLE paradigms with annotative, compositional, and transformational variability.
We assume, other paradigms suffer from this lack as well. Unfortunately, current
procedures for negative testing, which could potentially detect such faults are still
not enabled for PL systems. Thus, future work will proceed to enable negative
testing procedures for PL systems.

47

Part II.

Model-based Testing for Product
Lines

49

Chapter 4.

Automated Test Design for Product Lines

Testing is a costly and repetitive task, therefore automation is implemented where
possible. We have already introduced the principles of automated test design
by model-based testing (MBT) in Section 2.2 in Part I of this thesis. In this
contribution, we deal with test design automation for PL systems. We present
the intuitive approach of resolving a representative set of products from a PL for
the purpose of testing, introduce an improved approach that works on the domain
engineering-level, and compare them. Both approaches are implemented in the
prototype implementation SPLTestbench and evaluated using several examples.

This contribution is structured as follows: In Section 4.1, we define both
mentioned automated test design approaches for product lines. We present the
evaluation and the comparison of both approaches in Section 4.2. Eventually, we
show the related work in Section 4.3 and conclude in Section 4.4.

4.1. Model-based Testing for Product Lines

Tests for PL systems face two challenges: covering a significant subset of products
and covering a significant subset of the test focus on the domain-level. As the
products share commonalities, some test cases may be applicable to more than one
product.

Domain models consist of a base model, in our case UML state machines,
a feature model explicitly expressing the PL’s variation points, and a feature
mapping model that connects the two former. This is essentially the view of domain
engineering, where commonalities and variabilities are specified. Of course, this view
is also applicable from the point of testing. From the domain artifacts, application
artifacts can be derived, i.e. products and tests. Based on this, we define two
approaches to automated test design for PL systems as depicted in Figure 4.1:
application-centered (AC) and domain-centered (DC).

The AC approach consists of first selecting a representative set of products
(test models) and second generating test cases from each of these models. This
approach is focused on satisfying a defined coverage on each test model, which also
leads to an overlap of the resulting test cases. In contrast, the DC approach directly

50 Chapter 4. Automated Test Design for Product Lines

Domain Engineering

Application Engineering

Domain
Model

Domain
Test Cases

Product
Model Application-centered

test design

Resolution

Domain-centered
test design

Product
Test Cases

Figure 4.1.: Product line testing.

applies the domain model for designing tests. This second approach is focused
on the behavior defined at the domain-level and does not focus on covering single
products. Instead, there is still variability in the choice of the concrete products
for which the test cases will be executed. Both approaches are investigated in more
detail in the following paragraphs.

4.1.1. Application-Centered Test Design

We call any test design method that binds the variability by selecting products
before the test design phase AC (see Figure 4.2). In this approach, product models
are selected from the domain model according to a predefined feature coverage
criterion first. Since testing all products individually is usually not feasible, these
criteria are applied to gain a representative set of configurations from the PL for
testing. Criteria like n-wise are presented in [OZML11,PSK+10,JHF12].

From the selected product models, tests are designed according to a given model
coverage criterion. In our example, this may be any coverage criterion applicable to
UML state machines.

Since each test case is generated only for a single configuration, the resulting
test suite will be specific to its respective product. Therefore, the test generation will
result in application-specific test suites. Due to the commonalities of the products
of a PL, a test case that was generated for a single configuration may be applicable
to other configurations as well. Consequently, test cases that aim for the same
goals are executed over and over again. Still, test cases must be generated for all
selected configurations and then a model coverage criterion is applied to all of their
corresponding models.

4.1. Model-based Testing for Product Lines 51

Feature Model Base ModelMapping Model

Select
Products

Feature Coverage
Criterion

Product Models

Generate
Testcases

Product-Specific
Test Suites

Model Coverage
Criterion

Execute Tests

Products

Domain Model

Figure 4.2.: Detailed application-centered (AC) test design process.

4.1.2. Domain-Centered Test Design

In this approach, we use only domain engineering level artifacts for test generation.
DC test design preserves variability until a product under test has been selected for
test execution.

A major advantage of this approach is the focus on the test aspects of the
domain model without deriving single products first. This allows to focus only on
the test aspects without the overlap of the results from independently generating
tests for similar products. This approach maximizes the coverage of the test targets
and thus should lead to high-quality test cases, while at the same time it classifies
the products into sets that are most test-worthy due to their diverse behavior.

Though, using the base model as the only input for test design is not sufficient
as it lacks information about the model element’s associations to the features and
the features itself, since they impose additional constraints on the system’s behav-
ior. Also, the base model may include contradictory requirements and syntactical
violations. Thus, the main challenge of this approach is to merge the domain model,
consisting of a feature model, mapping model and a base model, into a single model
artifact that a standard test generator will accept as valid input (Fig. 4.3). We
identified two solutions to this problem: 1) the step-by-step approach: sequentially
excluding non-conforming configurations during test design-time, and 2) the pre-

52 Chapter 4. Automated Test Design for Product Lines

Domain Model

Base ModelMapping Model

Generate
Testcases

Model Coverage
Criterion

Merge Models

Domain Model

Select
Products

Execute Tests

Domain Test
Suite

Products

Feature Coverage
Criterion

Feature Model

Figure 4.3.: Detailed domain-centered (DC) test design process.

configuration approach: choosing a valid configuration before designing individual
test cases.

The Step-by-Step Approach

The key idea of the step-by-step approach is to sustain the variability until it
becomes necessary to bind it. Therefore, at the beginning of each test case design
the assumption is made that the test case is applicable to any valid product of the
PL. Since not necessarily all valid paths in the base model are applicable to all
products, the test designer must take account of test steps that bind variability. A
test step must bind variability if not all products do conform. Subsequently, the
set of valid products for this particular test case must be reduced by the set of
non-conforming products. Hence, each test case is valid for any of the remaining
products that do conform.

We implemented the step-by-step approach for state machines as follows. The
tracking of the excluded products can be achieved by introducing a Boolean variable

4.1. Model-based Testing for Product Lines 53

into the system class for each feature that is not a core feature (feature variable).
This variable is set whenever a transition added to a test case forces the mapped
feature to be present (true) or prohibits its presence (false). For preventing repeated
assigning to such a feature variable, an additional control variable is necessary.
Therefore, another Boolean variable is added for each non-core feature to the system
class (control variable) and must be initialized with false. Each of these variables
tracks whether the corresponding feature has not yet been set and is thus free (false)
or was already set (true). In the latter case, no further assignments to the feature
variable are allowed as the feature is bound to the value of the corresponding feature
variable.

The guards and effects on the transitions of the respective state machine can
then be instrumented with these variables to include variability information in
the state machine. For each feature fi that is mapped by a mapping mfi,t to a
transition t its partial feature formula pffi,t is derived. Since we have now derived
all features that have to be accounted for before taking transition t, we collect them
in a single conjunction:

Gt =

n∧
i=1

pf fi,t

We still have to incorporate the protection against repeated writings by substi-
tuting each feature literal in Gt with the following expression: (¬fc ∨ (fv == mf,v)),
where fc is the control variable of feature f , fv is the feature variable of f , and mf,t

is the value of the feature mapping’s flag associated with transition t. The resulting
expression can safely be conjoined with t’s original guard.

Finally, t’s effect must bind the variability of all associated features. This is
possible by setting the control variable fc to true and the feature variable fv to the
value of its mapping’s flag for each feature that appeared in Gt. Thus, for each
feature f in Gt we append the following code to the effect of transition t:

if ¬fc then
fc ← >
fv ← mf,t

Once the test generator executes this code, the feature is bound and it is not
possible to change the binding for this test case anymore. Figure 4.4 shows the
result of merging the domain model into a single UML state machine for the excerpt
of the eShop introduced in Figure 2.5.

After test generation has finished, the valid configurations for a particular
test case can be read from the feature variables in each test case. Since the test
cases may contain variability we obtain an incomplete configuration from each test
case. An incomplete configuration is a configuration that supports a three-valued

54 Chapter 4. Automated Test Design for Product Lines

SelectCreditCard

[(¬CreditCardc V CreditCardv)

Λ (¬Highc V Highv)

Λ (¬Standardc V ¬Standardv)] / if (¬CreditCardc){

CreditCardc = TRUE;

CreditCardv = TRUE;
}
if (¬Highc){

Highc = TRUE;

Highv = TRUE;
}
if (¬Standardc){

Standardc = TRUE;

Standardv = FALSE;
}

Choose Payment Method Credit Card

Figure 4.4.: Excerpt of the merged domain model with step-by-step approach
applied.

semantics for features instead of two values. The first two values are the same as
in normal configurations (selected/unselected), the third stands for undecided. An
undecided feature expresses variability by making no premise on the presence of the
feature. Hence, each of the resulting test cases is reusable for any product of the PL
that conforms to the following: For each control variable that is evaluated to true,
the corresponding feature variable evaluation indicates whether this feature must
be selected or unselected in the product. Features for which the respective control
variable evaluates to false are yet undecided and thus not evaluated.

The Pre-Configuration Approach

In the pre-configuration approach, test goals are selected from the domain model and
also the test design is performed on this model similar to the step-by-step approach.
However, during the design of an individual test case, the product configuration is
fixed from the beginning of each test case and must not change before a new test
case is created. Consequently, within a test case the test designer is limited to target
for test goals that are specific to the selected product configuration. Thus, satisfying
all domain model test goals is a matter of finding the sufficient configurations.

We implemented the pre-configuration approach by adding a signal to the very
beginning of the base model for configuring the model. Therefore, we introduce
a new state to the state machine, redirect all transitions leaving the initial state
to leaving this new state, and add a transition between the initial state and the
new state. Due to the UML specification the redirected transitions must not have

4.1. Model-based Testing for Product Lines 55

SelectCreditCard [CreditCard Λ High Λ ¬Standard]/

Choose Payment Method Credit Card

Figure 4.5.: Excerpt of the merged domain model with the pre-configuration
approach applied.

a trigger, which is why we can add a trigger for configuration purposes to each of
them. The trigger listens to a configuration signal that carries a valuation for all
non-core features. The guard of these transitions must protect the state machine
to be configured with invalid configurations and thus contains the propositional
formula corresponding to the PL’s feature model. Since any configuration that is
provided by the signal must satisfy the guard’s condition, only valid configurations
are accepted.

After validating the configuration, the parameter values of the signal will be
assigned to system class variables by the transition’s effect. Hence, for each non-core
feature a boolean variable indicating whether the feature is selected or not is added
to the system class. Again, transitions specific to a set of products are protected by
these variables, like in the step-by-step approach to limit the base model behavior to
a behavior an actual product can conform to. However, control variables need not
to be checked during test design, since the configuration is fixed and valid from the
beginning of each test case. Therefore, it is sufficient to derive the partial feature
formulas pf for all features fn that are mapped to a transition t by a mapping mfi,t

and construct a conjunction from these formulas:

Gt =
n∧

i=1
pf fi,t.

For conjoining Gt with t’s guard, of course, the feature literals must be ex-
changed by the corresponding feature variables from the class. Figure 4.5 depicts
the resulting merged domain model for this approach. As a result, no product
can conform to any test case’s first step, since it was used to set the configuration
and presents not the real system’s behavior. In a simple post-processing action
this configuration step must be removed from the test cases before testing can be
performed.

With these transformations made to the base model, a test designer can
already create test cases for the PL. However, each test case will be specific to
one configuration. As pointed out, a generalization is possible, though is not yet
implemented it. The necessary model transformation for this generalization is
sketched as follows: The additional transformation steps consist of adding Boolean
control variables for each non-core feature to the system class and initializing them
with false and effects on transitions for setting these variables to true when traversed
by the test generator. More precisely, for every transition t that is mapped to a

56 Chapter 4. Automated Test Design for Product Lines

feature f by a mapping mf,t, the following code needs to be appended to t’s effect
for every mapped feature f .

if ¬fc then
fc ← >

A test generator will set every control variable for all features associated with
that transition, when this transition is added as a step to a test case. Hence, each
control feature that is still false at the end of a test case indicates a free variation
point. This result can be captured in a reusable test case for a subsequent selection
of variants for testing.

4.2. Evaluation of both Approaches

In this section, we present the implementation of both DC test design approaches,
step-by-step and pre-configuration. Furthermore, we apply them to the three
examples introduced in Section 2.4 to compare these approaches to AC test design
methods.

4.2.1. Tool Chain SPLTestbench

The SPLTestbench is composed of five major components: (i) the feature injector to
merge domain models as introduced in section 4.1.2, (ii) a model printer that exports
the model to a test generator-specific format, (iii) a third-party test generator - in this
case Conformiq, (iv) a configuration extractor that collects incomplete configurations
from the generated test cases, and (v) domain-specific languages [Voe13] (DSLs)
that facilitate design and data processing of a) feature models, b) feature mapping
models, and c) configuration models. Figure 4.6 depicts the SPLTestbench workflow.

As defined in 4.1.2, the first step towards a domain-level test suite is to merge
the individual models of a domain model into one. This task is performed by the
feature injector by limiting the behavior in the base model according to feature
and mapping model. We created two libraries for this purpose: the first library
generates propositional formulas for a given feature model and for individual features
as discussed in the preliminaries in Section 2.1. The latter library consists of typical
transformations on UML models for facilitating the creation and manipulation of
states, transitions, guards, triggers, effects, and signals. Eventually, the newly gained
model must be exported into a format for a particular test generator. Therefore, we
implemented a model printer that reuses the UML model transformations library to
prepare the model to be exported and then prints it into the target file format. This
means, no adaptations to test generators are necessary, since the output format of
this transformation complies to the expected input of the test generator.

When coupled with Conformiq, SPLTestbench currently supports UML models

4.2. Evaluation of both Approaches 57

(v).a (v).b

Feature Injector

Model Printer

Propositional
Formulas

UML Model
Transformations

Conformiq Export

Configuration
Extractor

Base Model
[State Machine + Class]

Feature Model
[DSL]

Feature Mapping
[DSL]

Domain Test Suite
Model

ConformiqTM

Conformiq Model
[SM + Class]

Domain Model*
[SM + Class]

Incomplete
Configurations [DSL]

(i)

(ii)

(iii)

(iv)

(v).c

Figure 4.6.: Workflow of the SPLTestbench.

that have a single class and one or more state machines that specify the class’
behavior. The class has to provide at least two ports, one for receiving signals from
and the other for sending signals to the environment. One state machine must be
selected as the class’ classifierBehavior and must own at most one region, while
each region must own an initial state. A transition may own a trigger, a guard,
and/or an effect. This far, only SignalEvents are supported. Signals, SignalEvents,

58 Chapter 4. Automated Test Design for Product Lines

Figure 4.7.: Menu options in the SPLTestbench.

and PrimitiveTypes are stored in the same Package as the class.

Conformiq delivers a test suite in XML format as a results of the test generation.
As these test cases are reusable test cases, we can derive incomplete configurations
from them to sample valid configurations in a later stage.

SPLTestbench is designed as Eclipse plug-in. Figure 4.7 shows how the com-
ponents (i), (ii), and (iv) integrate into the IDE. Each of the three menu items
starts an individual wizard that guides the user through the details of the respective
process.

4.2.2. Experiment Settings

For our experiment we generated tests according to both presented approaches,
AC and DC test design. For AC test design we selected two different feature
model coverage criteria for individual comparison: all-features-included-excluded
and all-feature-pairs [POS+12].

For the actual test case design we employed Conformiq Designer for both
approaches. Conformiq Designer supports control-flow, branching, requirements,
and path coverage criteria. For the individual state machine models as well as
for the merged state machine models we applied all-transition coverage [WS10].
Though, there are many other more sophisticated metrics for state machines to
choose from [GMP03,CLMG+10,GVP13].

Due to Conformiq Designer’s state machines semantics it is not possible to
apply the Body Comfort System case study directly. Although further model trans-
formations can be used to adapt the model, those additional transformations lead
to growth of the model’s state space. In the case of the BCS, memory consumption
of Conformiq Designer was then too high to be processed by available workstations.
For this reason, Real-Time Tester (RTT) by Verfied and University of Bremen is
employed to handle the BCS case study [Pel13]. As in Conformiq Designer, we
apply all transitions coverage with RTT as well.

4.2.3. Results

We were able to generate test suites for both approaches with all the aforementioned
parameters for all examples. Here, we present the first results. We counted the

4.2. Evaluation of both Approaches 59

Table 4.1.: Test cases, test steps, and configuration for each of the presented
approaches.

Example
Approach

AC-IX AC-PW DC-Pre DC-Step

T
e
st
s Ticket Machine 13 50 9 9

Alarm System 21 57 12 12

eShop 20 71 13 13

S
te
p
s Ticket Machine 33 56 48 39

Alarm System 55 165 62 50

eShop 135 486 48 39

C
o
n
f. Ticket Machine 2 6 5 1

Alarm System 3 9 6 2

eShop 2 7 4 2

number of test cases and test steps that were generated by the test generator. Of
course, the amount of configurations that is necessary to execute the test cases is of
equal interest.

The results for these measures are shown in Table 4.1 for each individual
approach: AC with all-features-included-excluded (AC-IX) as well as with pair-wise
(AC-PW) coverage and DC with pre-configuration (DC-Pre) as well as with step-by-
step (DC-Step). The AC-PW approach scores the highest values for all measures
since it applies the strongest feature coverage criterion and thus covers a maximum
of configurations. Consequently, more test cases and test steps are generated than
for any other approach. In contrast, the DC-Step yields the lowest scores for any
measure except for tests steps on the Ticket Machine, while at the same time — as
stated in section 4.1.2 — it is focused on covering every reachable transition. We
take this as an indicator for DC test design to scale better than AC approaches.

For the BCS case study, no final results are available yet. So far, RTT generated
13 tests and covered 284 of 369 transitions. The researchers at University of Bremen
are confident that RTT is able to cover the remaining transitions, although this will
need some optimization of RTT’s configuration.

Concluding, DC test design produces test suites with a significantly lower
number of tests and test steps than AC test design. Thus, test execution efforts
are much lower for these test suites. As we will see in Chapter 5, this does not
necessarily lead to a lower error detection capability.

60 Chapter 4. Automated Test Design for Product Lines

4.3. Related Work

Testing is one of the most important quality assurance techniques in industry. Since
testing often consumes a high percentage of project budget, there are approaches to
automate repeating activities like, e.g., regression tests. Some of these approaches
are data-driven testing, keyword-driven testing, and model-based testing. There are
many books that provide surveys of conventional standard testing [AO08, Bin99,
MSB12] and model-based testing [BJK+05, UL06, ZSM11]. Here, we use MBT
techniques and apply them to PL systems. Modeling languages like the UML have
been often used to create test models. We apply UML state machines.

Feature models are commonly used to describe the variation points in PL
systems. There are several approaches to apply feature models in quality assurance.
For instance, Olimpiew and Gomaa [OG05] deal with test generation from PL
systems and sequence diagrams. However, we focus on UML state machines and
describe different approaches for combining both. In contrast to sequence diagrams,
state machines are commonly used to describe a higher number of possible behaviors,
which makes the combination with feature models more complex than combining
feature models and sequence diagrams. As another example, McGregor [McG] shows
the importance of a well defined SPL testing process. Just like McGregor, the
focus of this contribution is to investigate the process of creating tests rather than
defining the structurally possible relations of feature models and state machines.
Pohl and Metzger [PM06] emphasize the preservation of variability in test artifacts
of SPL testing. As we derive test case design from models automatically, this vari-
ability is preserved. Lochau et al. [LSKL12] also focus on test design with feature
models. In contrast to our work, they focus on defining and evaluating coverage
criteria that can be applied to feature models. In the presented AC approaches, we
strive for using such coverage criteria on feature models for the automation of test
design. Furthermore, Lochau et al. recently proposed an extension for AC testing
to decrease its efforts by omitting common test goals that were already exercised
for other products of the PL [LOGS12].

The contribution that is most relatable to the DC approach is presented by
Cichos et al. in [COLS11]. They merge feature models into the behavioral model
in a different way than presented here. Then they select a set of configurations for
testing, e.g. by applying pair-wise selection. One after another, each configuration
is passed to the test generator until all test targets are covered. Consequently,
each resulting test case is applicable to the configuration it was generated for. No
post-processing, e.g. model-checking, takes place to identify features the test case is
agnostic to. In conclusion, they use domain-centered infrastructure (domain-model)
to generate test cases in an application-centered manner. In contrast, DC test design
as presented above, needs no predefined set of configurations and yields reusable test
cases from which configurations can be sampled. Furthermore Cichos et al. state, no

4.4. Conclusion, Discussion, and Future Work 61

standard test generator can be applied for their method due their approach to merge
domain models. In contrast, DC test design is easily integrated with commercial off
the shelf test generators and existing tool chains - as demonstrated with Conformiq
Designer and Real-time Tester.

4.4. Conclusion, Discussion, and Future Work

In this contribution, we presented different approaches to the automatic test design
for PL systems. We presented two approaches to use feature models and mapping
models for automatic test design from base models. Our main contributions are the
definition and evaluation of test design approaches using three examples.

Methodically, the main difference of both presented approaches lies in the order
in which test targets by means of coverage criteria are applied. In the AC approaches,
first a feature model coverage criterion and then a test model coverage criterion
is applied. In contrast, for DC approaches only a test model coverage criterion
is applied. As our results show, this leads to very different test suites for both
approaches. Test suites created with DC test design approaches have significantly
fewer test steps, but also cover all transitions of the model. We conclude that DC
test design scales better w.r.t. system size than AC methods by means of test
steps and the amount of products to test. Although we have not yet carried out a
mature performance analysis, the same argument should hold for test generation
and execution time, as tests are generated only for a single model and executed on
less products.

Currently, the approaches are limited to mapping features to transitions. In
larger systems, not only transitions, but also variables, default values, classes, whole
components, and other behavioral or structural elements are potential targets for
mappings. This need further investigation as one cannot simply apply our approach
to these kinds of elements. For example, to allow a variable to have multiple default
values is a non-trivial problem, not only because most UML editors will not allow
to create a second default value for a single variable. But also test generators will
not accept a model with two variables that have the same name. Hence, efficient
solutions must be found to deal with such syntactically incorrect base models.

Furthermore, we showed that DC test design opens the fields for new feature
coverage criteria. Since this test design method preserves variability throughout
the test design process, products can be selected with other intentions, e.g., the
fewest configurations for executing all tests, or the largest configurations by means
of activated features. This kind of criteria is investigated in the next chapter.

63

Chapter 5.

Test-driven Product Sampling

With the introduction of domain-centered (DC) test design in Chapter 4, product
configurations can be sampled from the PL’s test cases. So far, the only criterion for
which sampling was performed is minimizing the amount of configurations. A valid
reason for employing this criterion is to minimize the amount of tested products,
and subsequently reduce test effort. However, its fault detection capability (FDC)
has not yet been assessed.

In this contribution, we address the question whether coverage criteria for
sampling configurations from test cases affect the FDC of a test. We set up our
experiment to reuse the same test suite for every sampling, thus we can measure the
effects of different sampling criteria in isolation. The assessment of fault detection
capability is facilitated by the PL mutation framework as presented in Chapter 3.
We do expect the FDC to vary by altering the following conditions:

a) Sampling as much configurations as possible.

b) Sampling large products by means of activated features.

c) Sampling diverse products.

The reasoning behind this is the following: Testing many products decreases the
chance to miss some fault which is specific for a particular combination of features.
A selection of large products for testing should expose faults when some or many
features combined do not interact as planned. Finally, research indicates that testing
diverse products is beneficial to FDC than rather testing similar products [HPP+13].

The remainder of the contribution is structured as follows: In Section 5.1 we
formally define the concept of reusable test cases as introduced in Section 4.1.2 in
the previous chapter. Section 5.2 presents sampling methods and Section 5.3 shows
the experimental setup and initial results achieved so far. Section 5.4 covers related
work and finally Section 5.5 concludes this contribution.

64 Chapter 5. Test-driven Product Sampling

5.1. Reusable Test Cases

Testing a PL faces two major challenges: first, the behavioral test goals must be
sufficiently covered and secondly, a meaningful subset of products should be sampled
for testing. MBT of PL systems allows the application of behavioral coverage criteria
as well as the usage of structural coverage criteria like t-wise coverage of features.
As presented in Chapter 4, we distinguish testing processes for PL systems into
application-centered (AC) and domain-centered (DC) testing processes.

In the first process, a set of configurations is selected by a structural criterion
for the purpose of testing, then corresponding products are resolved from the domain
model and tests are designed from the individual product models. In contrast, in
the latter process tests are designed from the domain model in the first place. Hence
products in a PL share commonalities, PL test cases are not necessarily limited to
be assigned to a single product anymore. Instead, a test case is reusable for a set of
products.

This is achieved by keeping track of the features that must be selected or
deselected for each test case. However, for some features such a decision is unnec-
essary, if a particular test case is agnostic to said feature. In this case, we mark
the feature for this test as undecided. Therefore, we introduce incomplete product
configurations, which extend the concept of product configurations by a third value
to be assigned to a feature, here X:

ic = F → B ∪ {X}

Now, a test designer can create an incomplete product configuration and store it
with the test case.

After test creation, product configurations are sampled from the incomplete
configurations by a coverage criterion. We can sample a product configuration from
an incomplete product configuration by making decisions for undecided features
whether to select or deselect them. This must be done for every undecided feature
in every incomplete configuration, until no feature is assigned undecided anymore.
From the resulting product configurations, products can be resolved and finally
the tests can be executed against their associated product. In the next section, we
present coverage criteria for sampling configurations from such reusable test cases.

5.2. Sampling Configurations from Reusable Test Cases

A main challenge in DC testing, is to sample product configurations from the test
cases’ incomplete configurations such that every test case can be executed at least
once. The product configurations are sampled with the target to maximize the
likelihood of detecting faults in the PL during testing, while keeping the test effort

5.2. Sampling Configurations from Reusable Test Cases 65

reasonably low. Such sampling of product configurations is facilitated by coverage
criteria. In the following, we present novel coverage criteria for sampling product
configurations so that each test case can be executed once.

5.2.1. General Sampling

Due to the nature of feature models being representable as propositional formulas,
the problem of sampling configurations can be viewed as boolean satisfiability
problem. Hence we search for an optimal solution to a coverage criterion, we present
the individual coverage criteria as constraint problems. As a first step, we model
the problem of sampling a product configuration from an incomplete configuration.
On this basis, we define mini-/maximization criteria to sample large, small, few,
many, and diverse variants from a set of incomplete configurations.

Problem 1 Complete a given incomplete configuration.

Solution The first step is to declare variables for each feature in F and their
domains. The domain varies depending on the feature’s assignment:

– f = true then the corresponding variable’s domain is {1}

– f = undecided then the corresponding variable’s domain is {0, 1}

– f = false then the corresponding variable’s domain is {0}

Finally, we define the propositional formula of the feature model as constraints for
the variables. A constraint solver is now able to make assignments to undecided
features and check its solution for validity against the propositional formula.

The solution of Problem 1 can easily be extended to sample product configura-
tions for all test cases in a test suite.

Problem 2 Complete all incomplete configurations in a test suite with m test cases.

Solution The method to solve problem 1, can be repeated individually for ev-
ery incomplete configuration in the given test suite. Eventually, all incomplete
configurations of the test suite are complete.

5.2.2. Targeted Sampling

In the following, we define coverage criteria for sampling product configurations
from test cases. We denote the coverage criteria as optimization problems, so that
an optimization engine can automatically find optimal solutions for a given sampling
target.

66 Chapter 5. Test-driven Product Sampling

Problem 3 Optimize the set of m-test cases for constraints. In particular:

a) Few/many configurations not exceeding m,

b) Small/large configurations by means of selected features,

c) Diverse configurations,

d) Combinations thereof

Solutions

a) Optimizing the Amount of Distinct Configurations. The aim is to select either
few or many products to execute every test case in the given test suite at least
once. The optimization problem here is to achieve a minimal or maximal number
of distinct product configurations. We model the constraint problem as follows: A
product configuration can be interpreted as a binary number b, when we interpret
selected features as binary value “1” and deselected features as “0” respectively.
Hence a product configuration pcn with features Fn : f1, . . . , fk is interpreted as the
number:

bn = (f1f2 . . . fk−1fk)2

For a test suite with m test cases, we derive bn for every product configuration
pcn, where 1 ≤ n ≤ m. We collect all bi in the set Z:

Z = {b1, b2, . . . , bm−1, bm}

For receiving a minimal set of concrete configurations we have to minimize
the cardinality of Z. Vice versa, we maximize the cardinality of Z, if we want to
maximize the number of configurations for testing:

max /min costa = |Z|

In terms of optimization, we refer to the cardinality of Z as costs, here costa.
The expected costs for the criteria of maximizing or minimizing the amount of
configurations are in the range of 1 to the number of test cases m. The selection of
the same product for all test cases results in costs of 1. The upper limit is m, since
we require each test case to be assigned to only one product.

b) Optimizing the Size of all Configurations. We define the size of a configuration
as the sum of all selected features. For constraint solving, we interpret selected as
numerical value “1” and deselected as “0” respectively. Therefore, we can define
the size of a product configuration pcn as follows:

sn =
∑k

i=1 fi

5.2. Sampling Configurations from Reusable Test Cases 67

When we accumulate sizes of all product configurations, we can optimize
towards either a minimal or maximal overall size:

max /min costb =
∑m

n=1 sn

where maximization achieves large product configurations and minimization small
product configurations. The costs of the smallest solution is 2 ×m where the root
feature and only one other feature is enabled (hence 2) and multiply these by the
amount of test cases m. The highest cost for solution is k ×m, where every feature
k is selected in every test case m, which is the result of assigning a single product
with all features activated to all test cases.

c) Optimizing the Diversity of Configurations We define diversity over a set of m
test cases and k features. First we establish a relation between a single feature i over
all configurations. The goal is to have each feature as often selected as deselected,
hence we gain most different assignments.

We achieve this by calculating the diversity di of each feature fn,i, where
1 ≤ n ≤ m and 1 ≤ i ≤ k:

di =
∑m

n=1 fn,i

Next, we calculate the deviation from optimal diversity, which is m/2, because
we want a feature to be equally often selected and deselected over all n configurations.
Subsequently, the deviation of a feature fi from its optimal diversity is calculated
by |di − (m/2)|. Finally, we achieve maximal diversity by minimizing the sum of all
deviations:

min costc =
∑k

i=1 |di − (m/2)|

The minimal costs for a solution to this problem is 0 with product configurations
being maximally diversified. The highest cost are (m/2) × k, where the same
configuration is sampled for every test case.

We note that this approach does not maximize the amount of sampled product
configurations, but their diversity. Inherently, this approach leads to solutions with
fewer unique product configurations, if the calculated diversity is higher than for
another solutions with more product configurations and less diversity. An approach
to increase the amount of product configurations is the combination of the two
criteria diversity and maximization of the amount of product configurations.

d) Combinations In general, all combinations of the previously defined constraints
are valid with the exception of:

– few with many product configurations,

68 Chapter 5. Test-driven Product Sampling

– small with large product configurations.

Any other combination is valid, e.g. many with large and diverse configurations.
For making a preference towards one or more criteria, weights can be added to the
costs.

Of course, costs cannot be summed up directly if the optimization targets are
opposing, e.g. if large and diverse should be combined, the targets are minimization
and maximization. In this case, a decision for an overall optimization target must
be made (min or max) and the costs of the criterion not fitting that target must be
inverted. Costs are inverted by subtracting the solution’s costs from the expected
maximal costs. The result of this subtraction are the inverted costs.

5.3. Example and Evaluation

In this section, we assess the fault detection capability of an example test suite in
respect to sampled configurations. First, we introduce the example and setup, then
we present the results.

5.3.1. Tool Chain SPLTestbench

For the purpose of evaluating the here proposed methods, we extended SPLTestbench
to support coverage-driven product sampling from incomplete product configurations.
We implemented the coverage criteria as presented in this contribution by constraint
programming. As constraint programming environment JaCoP is employed [KS13].
The sampling process is supported by Eclipse plug-ins to configure sampling and
start the sampling process as depicted in Figure 5.1.

The whole process domain model to sampling of product configurations is
depicted in Figure 5.2. This includes the test generation from a domain model for
given coverage criteria. As discussed in Chapter 4, the result of the test generation
process is a suite of reusable test cases. From these test cases, the feature model,
and a given set of sampling criteria, product configurations will be sampled. As a
result of the sampling, product configurations are mapped to test cases. Then test
execution can take place.

5.3.2. Setup

In the previous Chapter 4, we have already designed test cases for the three examples
eShop, Ticket Machine, and Alarm System with AC as well as DC test approaches.
Here, we reuse these test cases generated with the step-by-step method to measure
the effects of sampling for different criteria on the test case’s FDC and compare
them to include/exclude-all-features and pair-wise combinatorial testing from AC

5.3. Example and Evaluation 69

Figure 5.1.: Project options in SPLTestbench for sampling products.

test design. However, the Ticket Machine example is not assessed here, since its
variance is too low and the base model is too small for providing credible results.

For assessing the FDC, we employ the PL mutation framework presented in
Chapter 3. For the current experiment, we apply both of the supported types of
mutation operators: behavioral operators, which mutate the state machine model,
and variability operators, which mutate the feature mapping model. However, we do
not apply the following operators which in most cases add behavior: delete mapping,
delete mapped element, and copy trigger. The reason for this is the test cases’
inefficiency to detect additional behavior, since we perform conformance-testing
when we apply all-transitions coverage. Still, we apply the excluded operators in
Chapter 6 when testing for enabled features.

5.3.3. Results

We performed mutation analysis for all examples and their test suites with different
sampling criteria and their combinations. Since the test suite stays the same for
all samplings, this procedure assesses the impact of the different sampling criteria
on the test suite’s FDC. For a first experiment, we sampled configurations for all
sampling criteria in isolation and in combination as shown Table 5.1. To reduce the
amount of samplings, we chose four representative combinations: Few+Small+Div,
Few+Large+Div, Many+Small+Div, and Many+Large+Div. Furthermore, we see
the configurations sampled for AC test design in the last two rows. There, we
show the configurations for include/exclude-all-features and two-pair combinatorial
sampling [LSKL12,PSK+10].

70 Chapter 5. Test-driven Product Sampling

Figure 5.2.: Sampling process in SPLTestbench.

Additionally, we present necessary test executions for achieving selected sam-
pling criteria in Figure 5.2. As discussed earlier, every test case for a given DC
sampling is executed only once in this evaluation. Hence we reuse the same test
suite for different samplings, the overall amount of test executions is the same for
any DC sampling regardless of being an isolated or a combined one. In contrast, for
AC test design we generated the test cases individually for each variant. From this,
we gain more test cases and subsequently more test executions. Due to the setup,
AC test cases contain redundancy, since the common core and repeatedly activated

5.3. Example and Evaluation 71

Table 5.1.: Distinct configurations sampled.

Isolated DC samplings eShop Alarm System

Few 1 3
Many 13 12
Small 4 7
Large 1 3

Div 7 8

Combined DC samplings eShop Alarm System

Few+Small+Div 4 7
Few+Large+Div 4 7

Many+Small+Div 10 11
Many+Large+Div 10 11

AC samplings eShop Alarm System

Include/exclude-all 2 3
Two-pair 7 9

Table 5.2.: Test executions

eShop Alarm System

Any DC sampling 13 9
Include/exclude-all 20 19

Two-pair 71 54

features are tested over and over again for each tested variant.

Next, we proceeded with the results of our mutation analysis. The assessment
process is as follows: During sampling, we received an assignment of product
configurations to test cases. The mutation system generates mutants and derives
product code from the mutated domain model. Then it executes the test cases for
every mutated product according to the assignment of the original products. We
present the mutation scores in two parts. First, we assess the sampling criterion’s
effect on the FDC for base models. The results of this first assessment are presented
in Table 5.3. In the second part, we assess the FDC for mapping models and present
the results in Table 5.4.

72 Chapter 5. Test-driven Product Sampling

Table 5.3.: Mutation scores for detected faults in base models in %.

Isolated DC samplings eShop Alarm System

Few 77.6 66.3
Many 76.5 65.0
Small 76.5 65.0
Large 77.6 66.3

Div 77.6 65.0

Combined DC samplings eShop Alarm System

Few+Small+Div 76.5 65.0
Few+Large+Div 77.5 66.3

Many+Small+Div 76.5 65.0
Many+Large+Div 77.5 65.0

AC samplings eShop Alarm System

Include/exclude-all 76.5 57.5
Two-pair 77.5 71.3

Table 5.4.: Mutation scores for detected faults in mapping models in %.

Isolated DC samplings eShop Alarm System

Few 33.3 54.2
Many 91.7 66.7
Small 91.7 66.7
Large 33.3 43.5

Div 66.7 66.7

Combined DC samplings eShop Alarm System

Few+Small+Div 91.7 70.8
Few+Large+Div 66.7 62.5

Many+Small+Div 91.7 70.8
Many+Large+Div 66.7 70.8

AC samplings eShop Alarm System

Include/exclude-all 66.7 54.2
Two-pair 100.0 79.2

5.4. Related Work 73

5.3.4. Discussion

The FDC of the test suite varies with the applied sampling criterion. However, the
mutation scores for the base models exposes only marginal variance. This is due to
the DC test design approach where all-transitions as test selection is applied to the
base model in the first place and product sampling afterwards. Hence we do not
further discuss FDC of test cases towards faults in the base model.

More variance is found in the FDC of the test cases for errors in the mapping
models: the highest FDC of isolated criteria are achieved by maximized amount of
products (Many) and small products (Small). However, we expected larger products
to contain more components and thus be more likely to expose faulty behavior due
to more possible interactions. Instead, large products led to testing too few products
for having a positive impact on fault detection. Though Many and Small have
the same FDC in this example, Small is more efficient when we evaluate the test
effort based on the amount of tested products. Small yields always less products for
testing than Many (cf. Table 5.1).

For combined sampling criteria the variance of the mutation scores declines. The
highest scores in the group of combined criteria are achieved by the following two com-
binations: maximized amount with small and diverse products (Max+Small+Div)
and by minimized amount with small and diverse products (Min+Small+Div).
In this case, fault detection efficiency is higher for Min+Small+Div than for
Max+Small+Div, since less products are sampled for testing. In general, com-
bined criteria scored equal or lower to the top scoring isolated criteria, but never
better.

In comparison to the AC testing methods, DC lies in between the two presented
AC criteria. DC testing achieves at least include/exclude all features in all cases,
while at the same time it needs less test executions. In comparison to two-pair
combinatorial testing, DC testing is only as good as in one case and otherwise 5 to
8.4 points behind. This advantage over DC testing comes with a price: two-pair
testing needs at least five times more test executions than any DC test in this
evaluation.

Summing up, application-centered and domain-centered testing differs only
if errors in the variability model are of concern. Within different DC methods,
sampling few, small and diverse products seems to be most advantageous.

5.4. Related Work

Sampling product configurations for testing is an ongoing challenge. Most work is
focused on structural coverage criteria for feature models and hence is agnostic to the
interactions in behavioral models [PSK+10,OZML11]. Still, the test effort is high,
since feature interactions are selected for testing where no behavioral interaction is

74 Chapter 5. Test-driven Product Sampling

present.

Lochau et al. present incremental test design methods to subsequently test
every specified behavior [LSKL12]. Here, configurations are sampled as needed to
achieve the next test goal. The result is a set of test cases where each is limited to
a single product configuration. In contrast, the here presented coverage criteria for
sampling configurations rely on reusable test cases.

Similar to the notion of incremental test design Beohar et al. propose spinal
test suites [BM14]. A spinal test suite allows one to test the common features of
a PL once and for all, and subsequently, only focus on the specific features when
moving from one product configuration to another. This is different from the notion
of reusable test cases, where there is no such thing as progressing through product
configurations.

Baller et al. present optimization criteria and a supplementing formal frame-
work for optimizing product line tests in [BLLS14]. In general, their approach is
based on product-centered test design, where redundant test cases were designed.
By applying additional efforts for optimizing the test suite, they eliminate some
redundant test cases and subsequently reduce efforts for test execution.

Under constrained budgets for testing, it is useful to prioritize the products
selected for testing. Al-Hajjaji et al. present such an approach in [AHTM+14] that
can be applied after variants are sampled for testing.

5.5. Conclusion

In this contribution, we presented five novel coverage criteria for sampling product
configurations from a test suite consisting of reusable test cases. This is the first
assessment of a single test suite with varying product configurations so that every
test case can be executed exactly once. We assessed the coverage criteria in isolation
and additionally in combination with each other. Our experiment was conducted on
three PL examples. The FDC of the test suites was assessed by mutation analysis.
Faults were injected into the behavioral models as well as into variability models of
the examples.

We found that testing many products (Many) or rather small products by
means of enabled features (Small) increases the test’s FDC in our case. This is
particularly true for faults located in the variability model. Fault detection for
faults in the behavioral model remained almost equal over all sampling criteria. We
also assessed combinations of the defined sampling criteria, which increases the test
suites’ FDC further.

In future, further experiments based on larger examples and industrial case
studies are scheduled. This will provide more confidence on the current findings.
Furthermore, the current sampling approach can be extended to allow multiple

5.5. Conclusion 75

test executions. The reasoning behind this is the following: since all sampled
configurations are built anyways, the effort for executing all compatible test cases,
rather than only the assigned products, might not be much higher after all. The
efficiency of this approach is dependent on the costs for building products in respect
to additional effort for test executions and the setup/tear down phases. Also, this
extension might close the gap between DC and two-pair’s FDC.

77

Chapter 6.

Testing Product Boundaries

So far, the contributions of this thesis focused on covering the selected behavior of a
product, i.e., they check if everything that should be in the product is implemented.
In this contribution, we focus on covering the deselected behavior by checking whether
everything that should not be in the product variant is actually not implemented.
Common test design approaches cannot be used for this, because they are focused
on cutting away all deselected behavior for a variant, and thus the model for the
variant does not contain deselected behavior, anymore. To overcome this issue, we
introduce model transformations that create new model elements describing the
non-existence of deselected behavior.

The contribution is structured as follows. In Section 6.1 we describe the
approach. The implementation and experiments are described in Section 6.2. Sec-
tion 6.3 contains an analysis of the related work. In Section 6.4, we conclude and
discuss the presented approach including threats to validity.

6.1. Testing Boundaries of Products

MBT is focused on creating test cases from behavioral models. In MBT, test cases
are typically designed for performing positive testing by means of checking the SUT
for conformance to the test models. For testing a PL, the information about features
and parts being explicitly excluded, however, is valuable too. A test designer can
make use of this information by creating tests that actively try to invoke excluded
behavior. We think of this as an attempt of breaching the boundaries of a product
under test (PUT), where the boundary is predefined by the PUT’s configuration. A
boundary is overcome if an excluded behavior is invoked and executed as specified
in the domain model.

In this contribution, we refer to the Ticket Machine as running example. In
Figure 6.1, we depict an excerpt of the Ticket Machine’s domain model, consisting
of a feature model and a UML state machine as base model. In this excerpt, the
system waits for coins or bills to be inserted until the costs for the selected tickets
are covered. The dotted arrow maps the feature Bills to the transition t6 in the state
machine: If the Ticket Machine’s configuration includes the feature Bills, then the

78 Chapter 6. Testing Product Boundaries

Bills ReducedFair Change

 Base Model: UML State Machine (excerpt)

Ticket Machine

 Feature Model

Payment

coin [paid < costs] /
paid++;
credit o;
o.sum=costs;
out.send(o);

bill [paid < costs] /
paid+=5;
credit o;
o.sum=costs;
out.send(o);

t5 t6

t4

t7

Mapping: TRUE

Figure 6.1.: Excerpt of the product line model for the Ticket Machine.

mapped transition t6 must be present in the corresponding product. If the feature
is not selected, this transition is not part of the corresponding product and hence
leaving the customer’s only payment option to be coins as denoted in transition t5.

6.1.1. Boundary Transitions

Inside the PUT’s boundaries is the PL’s core and all included features declared by the
configuration. Outside its boundaries lie the excluded features. Figure 6.2 depicts
an excerpt of a Ticket Machine product, in which the feature Bills is deactivated.
Here, the state “Payment” and the transitions t4, t5, t7 lie within the boundaries of
the product. Transition t6 as shown in the excerpt of Figure 6.1 is not part of this
product. We overcome this boundary, if we make the product process a bill in this
state as defined in the domain model.

More formally speaking, we define a product’s boundary by boundary transitions
over UML state machines. We define a boundary transition bt, where S is the set
of states and T is the set of transitions in a base model and t(s, s′) is a transition
from state s to s′ as:

bt(s, s′) ∈ T ⇔ s, s′ ∈ S ∧ s ∈ productmodel

∧bt 6∈ productmodel

Hence, a boundary transition is not part of the particular product. We call a product

6.1. Testing Boundaries of Products 79

Payment

coin [paid < costs] /
paid++;
credit o;
o.sum=costs;
out.send(o);

t5

t4

t7

Figure 6.2.: Ticket Machine prod-
uct w/o feature Bills.

Payment

coin [paid < costs] /
paid++;
credit o;
o.sum=costs;
out.send(o);

t5

t4

t7

bill [paid < costs] /

t20

Figure 6.3.: Same product with
complementary transition added.

to have an open boundary, if behavior from an excluded feature can be invoked at
some point of the PUT’s execution.

In general, it is possible to detect open boundaries by stimulating the PUT
with unexpected events in every state. This resembles sneak-path-analysis and is
costly [HTBH12]. Here, we propose a method to reduce test effort by stimulating
the PUT with unexpected events only if its active state has at least one boundary
transition. In particular, we stimulate the PUT with only those events that could
possibly trigger one of its boundary transitions attached to this state.

6.1.2. Turning Open Boundaries into Test Goals

We choose transition-based coverage criteria for selecting test goals. Our approach
comprises introducing a transition for each boundary transition to which we refer
to as complementary transition. The intention of this is to create transitions
specifying that the PUT should stay in its current state and with events that are
not expected to trigger product behavior. Hence, for every boundary transition, we
add a complementary transition with its source state as target and source. For the
presented Ticket Machine product without feature Bills, Figure 6.3 shows the same
excerpt of the product as in Figure 6.2, but with the additional complementary
transition t20, which complements boundary transition t6 of this product. The
complementary transition must have no effect, since in the state “Payment” no
reaction is expected for any product that does not include feature Bills. However,
we should not add a complementary transition, if there is an explicitly specified
behavior for processing the signal event when feature Bills is excluded as in state
“Selection”.

So far, we defined boundary transitions for a given product and outlined how to
add complementary transitions. For DC test design we must raise these concepts to
the domain engineering-level, in order to set complementary transitions as test goals.
Particularly, we define a transformation for adding complementary transitions to

80 Chapter 6. Testing Product Boundaries

Bills ReducedFair Change

 150% UML State Machine (excerpt)

Optional

Mapping: TRUE

 Feature Model

Payment

coin [paid < costs] /
paid++;
credit o;
o.sum=costs;
out.send(o);

bill [paid < costs] /
paid+=5;
credit o;
o.sum=costs;
out.send(o);

t5 t6

t4

t7

bill [paid < costs] /

t20

Mapping: FALSE

Figure 6.4.: PL Model Example: Ticket Machine with Complementary Transi-
tion.

the domain model whenever there is a boundary transition of any product available.
This enables DC test design methods to consider complementary transition as test
goals during test design. Also, AC test design methods benefit from this approach,
since the complementary transitions are propagated during the resolution process
to the application-level.

In Figure 6.4, we depict the desired outcome of the transformation: we added a
complementary transition t20 to state Payment for transition t6, which is a boundary
transition for any product not including the feature Bills. Hence, the complementary
transition is mapped to feature Bills with the mapping’s flag set to false, denoting
the transition is only to be included when the feature Bills is deselected.

We present the pseudo code to achieve the result shown in Figure 6.4 in
Algorithm 1. Let SM(S, T) be a state machine, where S is the set of states and T
the set of transitions. For each transition t ∈ T we define:

• source(t) as the source state of t,

• target(t) as the target state of t,

• triggers(t) as the triggers of t,

6.1. Testing Boundaries of Products 81

• triggers ∗(t) as the triggers from all transitions leaving target(t), if triggers(t)
is empty, and triggers(t) otherwise. Since this is a recursive definition,
triggers ∗(t) must stop once all t ∈ T are traversed.

• features(e) as the set of feature selections mapped to a UML element e ∈ SM .
A feature selection states whether a feature must be selected or deselected to
include e.

• concurrentGuards(t) as a conjunction of guard conditions. The conditions
are collected from transitions that can be concurrently enabled with t.

First a set of transitions for storing complementary transitions during this procedure
is initialized. Then for all transitions of the state machine the following actions are
performed: the algorithm checks in lines 4–7 if current transition b is a boundary
transition for some product. This is achieved by checking whether b has different
feature mapping selections than its source state. The selections from b, which are
not shared by its source state are stored in difference. When difference is not
empty, b is a boundary transition and creation of a complementary transition begins.
Otherwise, the for-loop continues with the next b.

From line 8 to 12, the complementary transition c is added to C and is
initialized with source(b) as target and source state, and triggers ∗(b) as triggers.
The complementary transition’s guard is built from the original boundary transition’s
guard and, to prevent non-deterministic behavior, conjoined with the negated guard
conditions of concurrently enabled transitions. Lastly in this if-block, c is mapped
to the negated difference of feature selections unified with the selections of b’s source
state, so c is included in every product when b’s source state is, but b is not. Line
14 concludes the procedure by adding the set of complementary transitions C to
the state machine’s set of transitions T .

The outcome of this procedure when applied to the Ticket Machine’s domain
model is depicted in Figure 6.5. We denote the mappings from the feature model
by feature formulas in the transition’s guards analog to Featured Transition System
(FTS) introduced by Classen [CHSL11]. We use the following acronyms: B for
Bills, C for Change, and R for ReducedFare. The complementary transitions added
by our transformation procedure are denoted by dotted arcs (transitions t19–t22).
Beginning from the initial state, we find the first state with at least one boundary
transition to be “Selection”. The boundary transition here is t3, which is enabled
when the feature ReducedFare is part of a product. Hence, t19 is added to the
state machine for serving as an additional test goal to any product not including
ReducedFare. To achieve all-transition coverage, a test case must include sending
the signal event “reducedTicket” when the feature ReducedFare is disabled while the
state machine is supposed to stay in state “Selection”. Analog to this, transition t20
is added for boundary transition t6 in state “Payment”.

82 Chapter 6. Testing Product Boundaries

Selection

Payment

TicketIssue

shortTicket [] /
tShort++;
costs+=2;
total o;
o.sum=costs;
out.send(o);

dayTicket [] /
tDay++;
costs+=4;
total o;
o.sum=costs;
out.send(o);

reducedTicket [R] /
tRed++;
costs+=3;
total o;
o.sum=costs;
out.send(o);

next [costs > 0]

t0

coin [paid < costs] /
paid++;
credit o;
o.sum=costs;
out.send(o);

bill [B && paid < costs] /
paid+=5;
credit o;
o.sum=costs;
out.send(o);

[paid >= costs] / paid-=costs;

[R &&
tRed>0] /
tRed-=1;

[tShort>0
&& tRed ==0] /
tShort-=1;

[tDay>0
&& tShort==0
&& tRed==0] /
tDay-=1;

cancel [paid<costs]
tShort=0;
tDay=0;
tRed=0;

Selection

[B && paid>0
&& paid<5] /
paid--;
credit o;
o.sum=paid;
out.send(o);

[B && paid >=5] /
paid-=5;
credit o;
o.sum=paid;
out.send(o);

[paid ==0] /
costs=0;
success o;
out.send(o);

change [C && tDay==0
&& tShort==0 && tRed==0] /
processChange o;
out.send(o);

noChange [!C && tDay==0 && tShort==0 && tRed==0] /
processChange o;
out.send(o);

t1 t2 t3

t4

t5 t6

t7

t8

t9 t10 t11

t12

t13

t14 t15 t16

t17

[!B && paid > 0] /
paid--;
credit o;
o.sum=paid;
out.send(o);

reducedTicket [!R] /
t18

cancel [] /
tShort=0;
tDay=0;
tRed=0;

t19

bill [!B && paid < costs] /

t20

change, noChange
[!R && tRed>0
&& !(tDay==0
&& tShort==0
&& tRed==0)] /

noChange [C && tDay==0
&& tShort==0
&& tRed==0] /

change [!C
&& tDay==0
&& tShort==0
&& tRed==0] /

t21
t22

t23

Figure 6.5.: Domain Model: Ticket Machine with added feature formulas and
complementary transitions.

Selection

Payment

TicketIssue

shortTicket [] /
tShort++;
costs+=2;
total o;
o.sum=costs;
out.send(o);

dayTicket [] /
tDay++;
costs+=4;
total o;
o.sum=costs;
out.send(o);

next [costs > 0]

t0

coin [paid < costs] /
paid++;
credit o;
o.sum=costs;
out.send(o);

[paid >= costs] / paid-=costs;

[tShort>0
&& tRed ==0] /
tShort-=1;

[tDay>0
&& tShort==0
&& tRed==0] /
tDay-=1;

cancel [paid<costs]
tShort=0;
tDay=0;
tRed=0;

Selection[paid ==0] /
costs=0;
success o;
out.send(o);

noChange [tDay==0 && tShort==0 && tRed==0] /
processChange o;
out.send(o);

t1 t2

t4

t5

t7

t8

t10 t11

t13

t14

t17

[paid > 0] /
paid--;
credit o;
o.sum=paid;
out.send(o);

reducedTicket [] /
t18

cancel [] /
tShort=0;
tDay=0;
tRed=0;

t19

bill [paid < costs] /

t20

change, noChange
[tRed>0
&& !(tDay==0
&& tShort==0
&& tRed==0)] /

change [tDay==0
&& tShort==0
&& tRed==0] /

t21
t22

Figure 6.6.: Product: State machine model of a Ticket Machine without Bills,
Change, and ReducedFare.

6.1. Testing Boundaries of Products 83

Algorithm 1 Adds Complementary Transitions to a Region

1: procedure addComplementaryTransitions
2: C ← ∅
3: for all b ∈ T do
4: incoming←

⋃
features(s ∈ S|s = source(b))

5: difference← features(b)− incoming
6: if difference 6= ∅ then
7: C ← C ∪ c
8: source(c)← source(b)
9: target(c)← source(b)

10: guard(c)← guard(b) ∧ ¬(concurrentGuards(b))
11: triggers(c)← triggers ∗(b)
12: features(c)← incoming ∧ ¬ difference

13: T ← T ∪ C

State “TicketIssue” shows three boundary transitions t9, t12, and t13. Transition
t9 has no trigger, hence its target state must be checked for outgoing transitions
with triggers. The transformation’s check for further transitions in t9’s target
state delivers t9 to t13. Since t9 is currently under investigation it will not be
checked for triggers again. Transitions t10 and t11 are untriggered and thus their
target state must be evaluated for further triggers. Since their target state is also
“TicketIssue”, for which this check is currently performed, there are no further checks
at this point. For each of the triggered transitions t12 and t13 one self-loop must be
created. Each of them includes the copied trigger, negated feature constrained for
the currently investigated feature ReducedFare and its guard constraint, the copied
feature mapping (C) from the transition at the target state, and its negated guard
constraint:

t12 : change
[
¬R ∧ tRed > 0 ∧ C

∧¬
(
tDay == 0 ∧ tShort == 0 ∧ tRed == 0

)]
/

t13 : noChange
[
¬R ∧ tRed > 0 ∧ ¬C

∧¬
(
tDay == 0 ∧ tShort == 0 ∧ tRed == 0

)]
/

We combine both transitions to create t21 with both triggers and reduced guards,
where constraint C and ¬C cancel each other out. Unfortunately, t21 is unreachable,
since the condition tRed > 0 never holds for any product that does not include
t3. Transitions t22 and t23 are added accordingly. Finally, no further boundary
transitions exists and therefore the procedure ends here.

84 Chapter 6. Testing Product Boundaries

6.2. Evaluation

In this section, we present the evaluation of the product line’s test suites, with and
without the presented model transformations. We assess all tests by means of fault
detection capability (FDC). First, we introduce the test setup and then, present the
results.

6.2.1. Setup

We assess two test suites for each of the examples presented in Section 2.4 in
Chapter 2. As a first test suite we use the test suite generated by DC test design
as presented in Chapter 4. In particular, we apply the step-by-step method. For
the second, we apply our transformations as presented in this contribution and
generate the test cases with the step-by-step test design method. For test generation,
Real-Time Tester by Verified is employed [Pel13]. For all test suites, we applied
all-transition coverage for test selection.

From the test cases, SPLTestbench sampled configurations for testing few
products. The assessment of the test cases’ FDC was carried out by mutation
analysis. Here, we applied all mutation operators for mapping models as defined in
Chapter 3.

6.2.2. Results

In Table 6.1, we show the test assessment results of test suites, that were designed
with the original models. In each row, we show the mutation results for all examples
in the form of killed mutants/all mutants. As supposed, mutations with behavior
that is not described by the test model (DME, DMP) are not detected. For the
other two mutation types which alter specified behavior (IME, CFV), we receive
mixed results in the range of 40% to 100%.

In contrast, Table 6.2 depicts the assessment results for the test suites that were
created from our transformed models. Again in each row, we show the mutation
results for all examples in the form of killed mutants/all mutants. We observe
increased scores for every mutation operator on any of our examples. In the last
row of each table, we show the overall results for each example. Furthermore, in the
last column we present the accumulated scores of every mutation operator over all
examples.

6.2.3. Discussion

Our results support the recommendation of Binder [Bin99] and the conclusions
drawn by Mouchawrab et al. [MBLD11] and Holt et al. [HTBH12]: Testing sneak
paths (in our case as boundaries of product line variants) is an essential component of

6.3. Related Work 85

Table 6.1.: Mutation Scores
for Regular Tests

Op. TM eShop AS p.Op.

DMP 20.0 0.0 0.0 5.9
DME 12.5 0.0 0.0 2.3
IME 40.0 25.0 25.0 29.4
CFV 100.0 100.0 75.0 88.2
SWP 60.0 50.0 37.5 47.1

per Ex. 42.8 23.3 20.8

Table 6.2.: Mutation Scores
for Tests with
Transformations

Op. TM eShop AS p.Op.

DMP 60.0 100.0 62.5 70.6
DME 37.5 28.6 38.1 34.9
IME 60.0 100.0 25.0 52.9
CFV 100.0 100.0 87.5 94.1
SWP 80.0 100.0 50.0 70.6

per Ex. 64.3 66.7 49.1

state-based testing and drastically increases FDC. Furthermore the results indicate
that sneak path testing is a necessary step in state-based testing due to the same
observations made by Holt et al. [HTBH12]: 1) The proportion of sneak paths in
the collected fault data was high (61,5 %), and 2) the presence of sneak paths is
undetectable by conformance testing.

We were able to increase the amount of killed mutants by a significant amount
through our model transformations but were not able to kill all mutants. Especially
the mutation score for the DME operator is still below 50% of killed mutants. This
is partly the result of unreachable behavior, e.g. in the case when a UML element
(e.g. a transition) that was mapped to a feature (and thus is now permanently
enabled) has preceding elements mapped to the same feature. In that case, the
element is always enabled but only reachable if its preceding elements are present,
which is only true if the feature is present. A fundamental question here is if this
indicates an issue of the test design or an unrealistic mutation operator.

This leads to the consideration of the threats to validity. The first point was
already mentioned: The introduced mutation operators are new and depend on a
model-based PLE. Further analysis with well-known mutation operators need to be
done. Concerning the validity of our examples: we are aware that the used examples
are rather small. A larger case study with realistic background would be necessary
to underline the advantages of our approach and also the assumed conditions like,
e.g., the application of feature models.

6.3. Related Work

In recent years MBT emerged as an efficient test design method that yields a number
of improvements compared to conventional test design such as higher test coverage
or earlier defect detection. There are several surveys on the effectiveness of MBT in

86 Chapter 6. Testing Product Boundaries

general [ZSM11,BJK+05,UL06] and MBT of SPL systems [OWES11]. In contrast
to this, we combine the application of model-based software product line testing
with a product line-specific sneak path analysis. To our knowledge, this combination
has not been covered before.

An early evaluation of the mutation scores suggests that our generated test
suites satisfying all-transitions coverage are capable of detecting many seeded faults
except unspecified behavior, so-called sneak paths [Bin99]. In safety-critical systems,
an unintentional sneak path may have catastrophic consequences. Sneak path testing
aims at verifying the absence of sneak paths and at showing that the software under
test handles them in a correct way. Several studies showed that sneak path testing
improves the fault detection capabilities [BDL04, MBLD11, HTBH12]. However,
the effort spent for sneak path testing is considerably high. Here, we present a
novel, more efficient approach for detecting unspecified behavior in product line
engineering: We define boundary transitions that stimulate the product under test
with only those events that could possibly trigger a transition that would invoke
excluded behavior. To our knowledge, this approach has not been applied in the
context of software product line engineering before.

6.4. Conclusion & Future Work

In this contribution, we combined MBT for product lines with boundary tran-
sition analysis. We extended our previous work on DC test design with model
transformations that increase the FDC of the generated test suites.

We were able to increase the mutation score in each of our three examples and
for each of the proposed mutation operators significantly by using the proposed
model transformation. The scores increased for the eShop by 43%, for the Ticket
Machine by 24% and for the Alarm System by 29%. As for the operators the
numbers increased by 63% for the DMP operator, by 33% for the DME operator,
by 24% for the IME operator, and by 6% for the CFV operator (which were already
very high), and for the SWP operator by 23%.

87

Part III.

Closure

89

Chapter 7.

Conclusion

This chapter concludes this thesis. Herein, we reflect on the scientific achievements
contributed by this thesis and look at the achievement’s impact on the scientific
community. Furthermore, we discuss more general future work derived from the
open leads in this thesis.

7.1. Contributions

In this thesis, we proved the Hypothesis initially stated in Section 1.2:

Leverage test design to the domain engineering-level.

For this, we provided methods and concepts as solutions. In particular, we make
the following contributions to leverage testing to the domain-level:

1. Enable automated test design on domain-level by model transformations.

2. Product sampling from reusable test cases.

3. Adapt established test coverage criteria for PL systems.

4. Enable test assessment on domain-level.

The contributions are implemented as proof of concept prototypes within the
SPLTestbench.

7.2. Impact

The contributions are published as multiple scientific articles and were presented on
international conferences and workshops. All articles are peer-reviewed by leading
scientists and experts in the field of software testing and PLE. In the following,
we list the contributing article’s title, authors, venue, and where it contributes to
within this thesis:

90 Chapter 7. Conclusion

• Model-based Product Line Testing: Sampling Configurations for Optimal Fault
Detection. Hartmut Lackner. SDL Forum 2015: Chapter 5 Test-driven Product
Sampling

• Automated Test Design for Boundaries of Product Line Variants. Stephan
Weißleder, Florian Wartenberg, and Hartmut Lackner. ICTSS 2015. Chapter 6
Testing Product Boundaries

• Potential Errors and Test Assessment in Software Product Line Engineering.
Hartmut Lackner and Martin Schmidt. MBT 2015. Chapter 3 Assessment of
Product Line Tests

• Model-Based Test Design of Product Lines: Raising Test Design to the Product
Line Level. Hartmut Lackner, Martin Thomas, Florian Wartenberg, and
Stephan Weißleder. ICST 2014. Chapter 4 Automated Test Design for
Product Lines

• Assessment of Software Product Line Tests. Hartmut Lackner and Martin
Schmidt. SPLat 2014. Chapter 3 Assessment of Product Line Tests

• Top-Down and Bottom-Up Approach for Model-Based Testing of Product Lines.
Stephan Weißleder and Hartmut Lackner. MBT 2013. Chapter 4 Automated
Test Design for Product Lines

Our concept of domain-level test design and reusable test cases attracted attention
of both, the community of MBT and PLE. Notably, Aitor Arrieta et al. present a
test architecture for configurable cyber-physical systems [ASE14b,ASE14a]. The
authors identify test efficiency as one of the major challenges and derive from the
concepts presented in this thesis a domain-level test design and product sampling
process for Simulink environments. For this purpose, the authors introduce test
feature models to support reusable test cases throughout the test process.

Our approaches for test design and fault detection are also recognized by
Devroey et al. [DPL+15]. Their most recent vision is to have dissimilar test case
selection for testing PL systems. For measuring fault detection capability they also
research in the fields of mutation analysis. Since they have chosen other notations to
model variability and behavior, the results in this thesis are not directly transferable.

A general confirmation of the relevance of the discussed topics in this thesis
is the fact that Østein Haugen, who is a leading expert on the standardization of
the Common Variability Language, is also researching on solutions for sampling
products from reusable test cases [SH15]. So far, the findings presented by him and
his colleagues are limited to sampling configurations for testing a minimal amount
of products. In contrast, in Chapter 5 of this thesis, we presented five different
sampling criteria - sampling for minimal amount of products being one of them -

7.3. Future Work 91

and additionally measured the individual criterion’s fault detection capability and
discussed their implications.

7.3. Future Work

Although we found answers in this thesis for leveraging testing to the domain-level,
there are still open questions and we raised new ones.

The examples in this thesis employed for carrying out the evaluations are
typical for small and isolated systems. However in the industry, we can find more
complex systems not only by size in states, transitions, signals, or features. The
Body Comfort System case study, which is currently under investigation, could
provide more confidence in the findings.

Other aspects of complexity, which we have not dealt with in this thesis but
are widely spread, are distributed system or cyber-physical systems or internet of
things. A large-scale study with these kinds of systems would significantly improve
confidence in the feasibility and reliability of the current findings.

Furthermore, a case study of a real system that is already in use could supply
known errors from test or field reports. With this knowledge the FDC of versions
exposing the documented errors could be tested with domain-level tests. The aim is
to measure the tests accuracy to find such known errors. Whether this kind of test
assessment is independent from the employed modeling languages, is still arguable,
since each language may promote different kinds of errors.

In industry, we can also observe other notations for model-based PLE for both,
variability and behavior modeling. In Chapter 3, we showed that errors in different
variability notations, like annotative, compositional, or transformational variability
modeling effectively lead to similar faults at runtime.

93

Bibliography

[AHTM+14] Al-Hajjaji, Mustafa; Thüm, Thomas; Meinicke, Jens; Lochau, Malte;
Saake, Gunter: Similarity-based prioritization in software product-line
testing. In: Gnesi, Stefania; Fantechi, Alessandro, editors, the 18th
International Software Product Line Conference, pp. 197–206. 2014.
doi:10.1145/2648511.2648532.

[ALN13] Aichernig, Bernhard K.; Lorber, Florian; Ničković, Dejan: Time for
Mutants — Model-Based Mutation Testing with Timed Automata. In:
Hutchison, David; Kanade, Takeo; Kittler, Josef; Kleinberg, Jon M.;
Mattern, Friedemann; Mitchell, John C.; Naor, Moni; Nierstrasz,
Oscar; Pandu Rangan, C.; Steffen, Bernhard; Sudan, Madhu; Ter-
zopoulos, Demetri; Tygar, Doug; Vardi, Moshe Y.; Weikum, Gerhard;
Veanes, Margus; Viganò, Luca, editors, Tests and Proofs, volume 7942
of Lecture Notes in Computer Science, pp. 20–38. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-38915-3. doi:
10.1007/978-3-642-38916-0{\textunderscore}2.

[AO08] Ammann, Paul E.; Offutt, Jeff: Introduction to Software Testing.
Cambridge University Press, New York, NY, USA, 2008. ISBN
9780521880381.

[ASE14a] Arrieta, Aitor; Sagardui, Goiuria; Etxeberria, Leire: A configurable
test architecture for the automatic validation of variability-intensive
cyber-physical systems. In: Mannaert, Herwig, editor, ICSEA 2014.
Curran, Red Hook, NY, 2014. ISBN 9781634394697.

[ASE14b] Arrieta, Aitor; Sagardui, Goiuria; Etxeberria, Leire: A model-based
testing methodology for the systematic validation of highly configurable
cyber-physical systems. In: Kanstrén, Teemu, editor, VALID 2014,
pp. 66–73. Curran, Red Hook, NY, 2014. ISBN 9781634394727.

[BAC04] Burke, Michael G.; Antkiewicz, Michal; Czarnecki, Krzysztof: Feature-
Plugin. In: Vlissides, John M.; Schmidt, Douglas C., editors, OOPSLA
2004, volume v. 39, no. 10 (Oct. 2004) of ACM SIGPLAN notices, pp.
67–72. Association for Computing Machinery, New York, NY, 2004.
ISBN 1-58113-831-8.

94 Bibliography

[Bat05] Batory, Don: Feature models, grammars, and propositional formulas.
In: Proceedings of the 9th international conference on Software Product
Lines, SPLC’05, pp. 7–20. Springer-Verlag, Berlin, Heidelberg, 2005.
ISBN 3-540-28936-4. doi:10.1007/11554844{\textunderscore}3. URL
http://dx.doi.org/10.1007/11554844_3.

[BBW06] Belli, Fevzi; Budnik, Christof J.; White, Lee: Event-based modelling,
analysis and testing of user interactions: approach and case study. In:
Software Testing, Verification and Reliability, volume 16(1):pp. 3–32,
2006. ISSN 0960-0833. doi:10.1002/stvr.335.

[BDG+07] Baker, Paul; Dai, Zhen Ru; Grabowski, Jens; Haugen, Øystein;
Schieferdecker, Ina; Williams, Clay: Model-Driven Testing: Using
the UML Testing Profile. Springer, Berlin, 1st edition, 2007.

[BDL04] Briand, Lionel C.; Di Penta, M.; Labiche, Yvan: Assessing and im-
proving state-based class testing: a series of experiments. In: Software
Engineering, IEEE Transactions on, volume 30(11):pp. 770–783, 2004.
doi:10.1109/TSE.2004.79.

[BG11] Bagheri, Ebrahim; Gasevic, Dragan: Assessing the maintainability
of software product line feature models using structural metrics. In:
Software Quality Journal, volume 19(3):pp. 579–612, 2011. ISSN
0963-9314. doi:10.1007/s11219-010-9127-2.

[BH08] Belli, Fevzi; Hollmann, Axel: Test generation and minimization with
basic statecharts. In: Delp, Edward J.; Wong, Ping Wah, editors,
the 2008 ACM symposium, volume vol. 5681, p. 718. SPIE and IS&T,
Bellingham, Wash and Springfield, Va, 2008. ISBN 978-1-59593-753-7.
doi:10.1145/1363686.1363856.

[BHP11] Belli, Fevzi; Hollmann, Axel; Padberg, Sascha: Model-Based Inte-
gration Testing with Communication Sequence Graphs. In: Zander,
Justyna; Schieferdecker, Ina; Mosterman, Pieter J., editors, Model-
based testing for embedded systems, Computational analysis, synthesis,
and design of dynamic systems. CRC Press, Boca Raton, 2011. ISBN
1439818452.

[Bin99] Binder, Robert V.: Testing Object-Oriented Systems: Models, Patterns,
and Tools. Addison-Wesley Longman Publishing Co., Inc, Boston, MA,
USA, 1999. ISBN 0-201-80938-9.

[BJK+05] Broy, Manfred; Jonsson, Bengt; Katoen, Joost-Pieter; Leucker, Martin;
Pretschner, Alexander, editors: Model-based testing of reactive systems:

http://dx.doi.org/10.1007/11554844_3

Bibliography 95

Advanced lectures, volume 3472 of Lecture Notes in Computer Science.
Springer, Berlin, 2005. ISBN 978-3-540-26278-7. doi:10.1007/b137241.

[BK05] Berkenkötter, Kirsten; Kirner, Raimund: Real-Time and Hybrid Sys-
tems Testing. In: Broy, Manfred; Jonsson, Bengt; Katoen, Joost-Pieter;
Leucker, Martin; Pretschner, Alexander, editors, Model-based testing
of reactive systems, volume 3472 of Lecture Notes in Computer Sci-
ence, pp. 355–387. Springer, Berlin, 2005. ISBN 978-3-540-26278-7.
doi:10.1007/11498490{\textunderscore}16.

[BLLS14] Baller, Hauke; Lity, Sascha; Lochau, Malte; Schaefer, Ina: Multi-
objective Test Suite Optimization for Incremental Product Family
Testing. In: ICST’ 14: International Conference on Software Testing,
Verification, and Validation. IEEE, 2014. ISBN 9781479957910.

[BLPT05] Bouquet, Fabrice; Legeard, Bruno; Peureux, Fabien; Torreborre, Eric:
Mastering Test Generation from Smart Card Software Formal Models.
In: Barthe, Gilles; Burdy, Lilian; Huisman, Marieke; Lanet, Jean-Louis;
Muntean, Traian, editors, Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices, volume 3362 of Lecture Notes in
Computer Science, pp. 70–85. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-24287-1. doi:10.1007/978-3-540-30569-9{\textunderscore}4.
URL http://dx.doi.org/10.1007/978-3-540-30569-9_4.

[BM14] Beohar, Harsh; Mousavi, Mohammad Reza: Spinal Test Suites
for Software Product Lines France, 6 April 2014. In: Schlin-
gloff, Holger; Petrenko, Alexander K., editors, Proceedings Ninth
Workshop on Model-Based Testing, MBT 2014, Grenoble, France,
6 April 2014, volume 141 of EPTCS, pp. 44–55. 2014. doi:10.
4204/EPTCS.141.4. URL http://dx.doi.org/10.4204/EPTCS.141.

4,TitelanhanddieserDOIinCitavi-Projektbernehmen.

[BOY00] Black, Paul E.; Okun, Vadim; Yesha, Y.: Mutation operators for
specifications. In: ASE 2000 15th IEEE International Automated
Software Engineering Conference, pp. 81–88. 2000.

[CA05] Czarnecki, Krzysztof; Antkiewicz, Michal: Mapping Features to
Models: A Template Approach Based on Superimposed Variants.
In: Glück, Robert, editor, Generative programming and compo-
nent engineering, volume 3676 of Lecture Notes in Computer Sci-
ence, pp. 422–437. Springer, Berlin [u.a.], 2005. ISBN 3-540-29138-
5. doi:10.1007/11561347{\textunderscore}28,. URL http://dblp.

uni-trier.de/db/conf/gpce/gpce2005.html#CzarneckiA05.

http://dx.doi.org/10.1007/978-3-540-30569-9_4
http://dx.doi.org/10.4204/EPTCS.141.4, Titel anhand dieser DOI in Citavi-Projekt übernehmen
http://dx.doi.org/10.4204/EPTCS.141.4, Titel anhand dieser DOI in Citavi-Projekt übernehmen
http://dblp.uni-trier.de/db/conf/gpce/gpce2005.html#CzarneckiA05
http://dblp.uni-trier.de/db/conf/gpce/gpce2005.html#CzarneckiA05

96 Bibliography

[CDS06] Cohen, Myra B.; Dwyer, Matthew B.; Shi, Jiangfan: Coverage and
adequacy in software product line testing. In: ROSATEA 2006,
pp. 53–63. Association for Computing Machinery, Inc., New York,
NY, 2006. ISBN 1-59593-459-6. doi:10.1145/1147249.1147257. URL
http://portal.acm.org/citation.cfm?id=1147249.1147257&

coll=Portal&dl=GUIDE&CFID=65839091&CFTOKEN=21681387.

[CH11] Cichos, Harald; Heinze, Thomas S.: Efficient Reduction of Model-
Based Generated Test Suites Through Test Case Pair Prioritization.
In: Proceedings of the 7th International Workshop on Model-Driven
Engineering, Verification and Validation (MoDeVVa 10), pp. 37–42.
IEEE Computer Society Press, Los Alamitos, 2011.

[CHSL11] Classen, Andreas; Heymans, Patrick; Schobbens, Pierre-Yves; Legay,
Axel: Symbolic Model Checking of Software Product Lines. In:
33rd International Conference on Software Engineering, ICSE 2011,
May 21-28, 2011, Waikiki, Honolulu, Hawaii, Proceedings, pp. 321–
330. ACM, 2011. ISBN 978-1-4419-4888-5. URL http://2011.

icse-conferences.org/.

[CLMG+10] Cruz-Lemus, José A.; Maes, Ann; Genero, Marcela; Poels, Geert;
Piattini, Mario: The impact of structural complexity on the un-
derstandability of UML statechart diagrams. In: Information Sci-
ences, volume 180(11):pp. 2209–2220, 2010. ISSN 00200255. doi:
10.1016/j.ins.2010.01.026.

[CLOS12] Cichos, Harald; Lochau, Malte; Oster, Sebastian; Schürr, Andy: Re-
duktion von Testsuiten für Software-Produktlinien. In: Jähnichen,
Stefan; Küpper, Axel; Albayrak, Sahin, editors, Software Engineering
2012: Fachtagung des GI-Fachbereichs Softwaretechnik, 27. Februar
- 2. März 2012 in Berlin, volume 198 of LNI, pp. 143–154. GI, 2012.
ISBN 978-3-88579-292-5.

[CM94] Chilenski, John Joseph; Miller, Steven P.: Applicability of modi-
fied condition/decision coverage to software testing. In: Software
Engineering Journal, volume 9(5):p. 193, 1994. ISSN 02686961. doi:
10.1049/sej.1994.0025.

[COLS11] Cichos, Harald; Oster, Sebastian; Lochau, Malte; Schürr, Andy:
Model-Based Coverage-Driven Test Suite Generation for Software
Product Lines. In: Hutchison, David; Kanade, Takeo; Kittler, Josef;
Kleinberg, Jon M.; Mattern, Friedemann; Mitchell, John C.; Naor,

http://portal.acm.org/citation.cfm?id=1147249.1147257&coll=Portal&dl=GUIDE&CFID=65839091&CFTOKEN=21681387
http://portal.acm.org/citation.cfm?id=1147249.1147257&coll=Portal&dl=GUIDE&CFID=65839091&CFTOKEN=21681387
http://2011.icse-conferences.org/
http://2011.icse-conferences.org/

Bibliography 97

Moni; Nierstrasz, Oscar; Pandu Rangan, C.; Steffen, Bernhard; Su-
dan, Madhu; Terzopoulos, Demetri; Tygar, Doug; Vardi, Moshe Y.;
Weikum, Gerhard; Whittle, Jon; Clark, Tony; Kühne, Thomas, edi-
tors, Model Driven Engineering Languages and Systems, volume 6981
of Lecture Notes in Computer Science, pp. 425–439. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-24484-1. doi:
10.1007/978-3-642-24485-8{\textunderscore}31.

[Con] Conformiq Qtronic: Semantics and Algorithms for Test Generation:
a Conformiq Software Whitepaper. URL http://www.verifysoft.

com/ConformiqQtronicSemanticsAndAlgorithms-3.

[DeM80] DeMillo, Richard A.: Mutation Analysis as a Tool for Software Test-
ing. In: 4th IEEE Computer Software and Application Conference
(COMPSAC), pp. 390–393. IEEE Press, New York, 1980.

[DPL+15] Devroey, Xavier; Perrouin, Gilles; Legay, Axel; Schobbens, Pierre-
Yves; Heymans, Patrick: Covering SPL Behaviour with Sampled
Configurations. In: Schmid, Klaus; Haugen, Øystein; Müller, Johannes,
editors, the Ninth International Workshop, pp. 59–66. 2015. doi:
10.1145/2701319.2701325.

[ER11] Engström, Emelie; Runeson, Per: Software product line testing – A
systematic mapping study. In: Information and Software Technology,
volume 53(1):pp. 2–13, 2011. ISSN 09505849. doi:10.1016/j.infsof.2010.
05.011.

[FDMM94] Fabbri, Sandra C. P. F.; Delamaro, M. E.; Maldonado, J. C.; Masiero,
P. C.: Mutation analysis testing for finite state machines. In: 1994
IEEE International Symposium on Software Reliability Engineering,
pp. 220–229. 1994.

[For12] Forrester Research Inc.: The Total Economic Impact of Conformiq
Tool Suite, 2012.

[GG93] Grochtmann, Matthias; Grimm, Klaus: Classification trees for par-
tition testing. In: Software Testing, Verification and Reliability,
volume 3(2):pp. 63–82, 1993. ISSN 1099-1689. doi:10.1002/stvr.
4370030203. URL http://dx.doi.org/10.1002/stvr.4370030203.

[GKPR08] Grönniger, Hans; Krahn, Holger; Pinkernell, Claas; Rumpe, Bernhard:
Modeling Variants of Automotive Systems using Views. In: Kühne,
Thomas; Reisig, Wolfgang; Steimann, Friedrich, editors, Tagungsband

http://www.verifysoft.com/ConformiqQtronicSemanticsAndAlgorithms-3
http://www.verifysoft.com/ConformiqQtronicSemanticsAndAlgorithms-3
http://dx.doi.org/10.1002/stvr.4370030203

98 Bibliography

zur Modellierung 2008 (Berlin-Adlershof, Deutschland, 12-14. März
2008), LNI. Gesellschaft für Informatik, Bonn, 2008.

[GMP03] Genero, Marcela; Miranda, David; Piattini, Mario: Defining Metrics
for UML Statechart Diagrams in a Methodological Way. In: Goos,
Gerhard; Hartmanis, Juris; Leeuwen, Jan; Jeusfeld, Manfred A.; Pastor,
Óscar, editors, Conceptual Modeling for Novel Application Domains,
volume 2814 of Lecture Notes in Computer Science, pp. 118–128.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-
20257-8. doi:10.1007/978-3-540-39597-3{\textunderscore}12.

[GV07] Groher, Iris; Voelter, Markus: Expressing Feature-Based Variability in
Structural Models. In: Workshop on Managing Variability for Software
Product Lines. 2007.

[GVP13] Guo, Liangpeng; Vincentelli, Alberto Sangiovanni; Pinto, Alessandro:
A complexity metric for concurrent finite state machine based em-
bedded software. In: 2013 8th IEEE International Symposium on
Industrial Embedded Systems (SIES), pp. 189–195. 2013.

[HGB08] Hasling, Bill; Goetz, Helmut; Beetz, Klaus: Model Based Testing of
System Requirements using UML Use Case Models. In: 1st Interna-
tional Conference on Software Testing, Verification and Validation,
2008, pp. 367–376. IEEE, Piscataway, NJ, 2008. ISBN 978-0-7695-
3127-4. doi:10.1109/ICST.2008.9.

[HMPO+08] Haugen, Øystein; Møller-Pedersen, Birger; Oldevik, Jon; Olsen,
Gøran K.; Svendsen, Andreas: Adding Standardized Variability to
Domain Specific Languages. In: SPLC 2008, pp. 139–148. IEEE Com-
puter Society, Los Alamitos, Calif, 2008. ISBN 978-0-7695-3303-2.
doi:10.1109/SPLC.2008.25.

[HPP+13] Henard, Christopher; Papadakis, Mike; Perrouin, Gilles; Klein,
Jacques; Le Traon, Yves: Assessing Software Product Line Testing
Via Model-Based Mutation: An Application to Similarity Testing. In:
ICSTW ’13: IEEE 6th International Conference On Software Testing,
Verification and Validation Workshops 2013, pp. 188–197. 2013. ISBN
978-1-4799-1324-4.

[HTBH12] Holt, Nina Elisabeth; Torkar, Richard; Briand, Lionel C.; Hansen, Kai:
State-Based Testing: Industrial Evaluation of the Cost-Effectiveness of
Round-Trip Path and Sneak-Path Strategies ISSRE 2012, Dallas, TX,
USA, November 27-30, 2012. In: 23rd IEEE International Symposium

Bibliography 99

on Software Reliability Engineering, ISSRE 2012, Dallas, TX, USA,
November 27-30, 2012, pp. 321–330. IEEE, 2012. ISBN 978-1-4673-
4638-2. doi:10.1109/ISSRE.2012.17. URL http://dx.doi.org/10.

1109/ISSRE.2012.17.

[IBM09] IBM: Telelogic Rhapsody (IBM) – Official homepage, 2009. URL
http://www.telelogic.com/products/rhapsody/index.cfm.

[JH09] Jia, Yue; Harman, Mark: Higher Order Mutation Test-
ing. In: Inf. Softw. Technol., volume 51(10):pp. 1379–
1393, 2009. ISSN 0950-5849. doi:10.1016/j.infsof.2009.04.
016. URL http://dx.doi.org/10.1016/j.infsof.2009.04.016,

TitelanhanddieserDOIinCitavi-Projektbernehmen.

[JH11] Jia, Yue; Harman, Mark: An Analysis and Survey of the Development
of Mutation Testing. In: IEEE Transactions on Software Engineering,
volume 37(5):pp. 649–678, 2011. ISSN 0098-5589. doi:10.1109/TSE.
2010.62.

[JHF12] Johansen, Martin Fagereng; Haugen, Øystein; Fleurey, Franck: An
algorithm for generating t-wise covering arrays from large feature
models. In: Santana de Almeida, Eduardo; Schwanninger, Christa;
Benavides, David, editors, the 16th International Software Product
Line Conference, pp. 46–55. 2012. ISBN 978-1-4503-1094-9. doi:
10.1145/2362536.2362547.

[Jon91] Jones, Capers: Applied software measurement: assuring productivity
and quality. McGraw-Hill, Inc, New York, NY, USA, 1991. ISBN
0-07-032813-7.

[KCH+] Kang, K. C.; Cohen, S. G.; Hess, J. A.; Novak, W. E.; Peter-
son, A. S.: Feature-Oriented Domain Analysis (FODA) Feasibil-
ity Study. URL http://www.sei.cmu.edu/library/abstracts/

reports/90tr021.cfm.

[KCM00] Kim, S.; Clark, John A.; Mcdermid, J. A.: Class Mutation: Mutation
Testing for Object-Oriented Programs. In: FMES, pp. 9–12. 2000.

[KS13] Kuchcinski, Krzysztof; Szymanek, Radoslaw: JaCoP - Java Constraint
Programming Solver. In: , 2013. URL http://lup.lub.lu.se/

record/4092008/file/4092009.pdf.

[KWB03] Kleppe, Anneke G.; Warmer, Jos B.; Bast, Wim: MDA explained:
The model driven architecture : practice and promise. The Addison-

http://dx.doi.org/10.1109/ISSRE.2012.17
http://dx.doi.org/10.1109/ISSRE.2012.17
http://www.telelogic.com/products/rhapsody/index.cfm
http://dx.doi.org/10.1016/j.infsof.2009.04.016, Titel anhand dieser DOI in Citavi-Projekt übernehmen
http://dx.doi.org/10.1016/j.infsof.2009.04.016, Titel anhand dieser DOI in Citavi-Projekt übernehmen
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm
http://lup.lub.lu.se/record/4092008/file/4092009.pdf
http://lup.lub.lu.se/record/4092008/file/4092009.pdf

100 Bibliography

Wesley object technology series. Addison-Wesley, Boston, 2003. ISBN
978-0321194428.

[Lac15] Lackner, Hartmut: Model-Based Product Line Testing: Sampling
Configurations for Optimal Fault Detection. In: Fischer, Joachim;
Scheidgen, Markus; Schieferdecker, Ina; Reed, Rick, editors, SDL 2015:
Model-Driven Engineering for Smart Cities, volume 9369, pp. 238–251.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-24911-
7. doi:10.1007/978-3-319-24912-4{\textunderscore}17.

[Lin05] Linz, Andreas: Basiswissen Softwaretest: Aus- und Weiterbildung zum
Certified Tester - Foundation Level nach ISTQB-Standard. Dpunkt
Verlag, 2005. ISBN 3898643581.

[LLLS] Lity, Sascha; Lachmann, R.; Lochau, Malte; Schaefer, Ina: Delta-
oriented Software Product Line Test Models: The Body Comfort
System Case Study.

[LOGS12] Lochau, Malte; Oster, Sebastian; Goltz, Ursula; Schürr, Andy: Model-
based pairwise testing for feature interaction coverage in software
product line engineering. In: Software Quality Journal, volume 20(3-
4):pp. 567–604, 2012. ISSN 0963-9314. doi:10.1007/s11219-011-9165-4.

[LS05] Lúcio, Levi; Samer, Marko: Technology of Test-Case Generation.
In: Broy, Manfred; Jonsson, Bengt; Katoen, Joost-Pieter; Leucker,
Martin; Pretschner, Alexander, editors, Model-based testing of reactive
systems, volume 3472 of Lecture Notes in Computer Science, pp. 323–
354. Springer, Berlin, 2005. ISBN 978-3-540-26278-7. doi:10.1007/
11498490{\textunderscore}15.

[LS12] Lackner, Hartmut; Schlingloff, Holger: Modeling for automated test
generation - a comparison. In: Giese, Holger; Huhn, Michaela; Phillips,
Jan; Schätz, Bernhard, editors, Dagstuhl-Workshop MBEES: Mod-
ellbasierte Entwicklung eingebetteter Systeme VIII, Schloss Dagstuhl,
Germany, 2012, Tagungsband Modellbasierte Entwicklung eingebetteter
Systeme, pp. 57–70. fortiss GmbH, München, 2012.

[LS14] Lackner, Hartmut; Schmidt, Martin: Towards the assessment of soft-
ware product line tests: a mutation system for variable systems. In:
Gnesi, Stefania; Fantechi, Alessandro; Maurice H. ter Beek; Botterweck,
Goetz; Becker, Martin, editors, 18th International Software Product
Lines Conference - Companion Volume for Workshop, Tools and Demo
papers, SPLC ’14, Florence, Italy, September 15-19, 2014, pp. 62–69.

Bibliography 101

ACM, 2014. ISBN 978-1-4503-2739-8. doi:10.1145/2647908.2655968.
URL http://doi.acm.org/10.1145/2647908.2655968.

[LS15] Lackner, Hartmut; Schmidt, Martin: Potential Errors and Test Assess-
ment in Software Product Line Engineering. In: Pakulin, Nikolay V.;
Petrenko, Alexander K.; Schlingloff, Bernd-Holger, editors, Proceedings
Tenth Workshop on Model Based Testing, MBT 2015, London, UK,
18th April 2015, volume 180 of EPTCS, pp. 57–72. 2015. doi:10.4204/
EPTCS.180.4. URL http://dx.doi.org/10.4204/EPTCS.180.4.

[LSKL12] Lochau, Malte; Schaefer, Ina; Kamischke, Jochen; Lity, Sascha: In-
cremental Model-Based Testing of Delta-Oriented Software Product
Lines. In: Hutchison, David; Kanade, Takeo; Kittler, Josef; Kleinberg,
Jon M.; Mattern, Friedemann; Mitchell, John C.; Naor, Moni; Nier-
strasz, Oscar; Pandu Rangan, C.; Steffen, Bernhard; Sudan, Madhu;
Terzopoulos, Demetri; Tygar, Doug; Vardi, Moshe Y.; Weikum, Ger-
hard; Brucker, Achim D.; Julliand, Jacques, editors, Tests and Proofs,
volume 7305 of Lecture Notes in Computer Science, pp. 67–82. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-30472-9.
doi:10.1007/978-3-642-30473-6{\textunderscore}7.

[LSW+10] Lackner, Hartmut; Svacina, Jaroslav; Weißleder, Stephan; Aigner,
Mirko; Kresse, Marina: Introducing Model-Based Testing in Industrial
Context - An Experience Report. In: MoTiP’10: Workshop on Model-
Based Testing in Practice. 2010.

[LTWW14] Lackner, Hartmut; Thomas, Martin; Wartenberg, Florian; Weißleder,
Stephan: Model-Based Test Design of Product Lines: Raising Test
Design to the Product Line Level. In: Seventh IEEE International
Conference on Software Testing, Verification and Validation, ICST
2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, pp. 51–60.
IEEE Computer Society, 2014. ISBN 978-0-7695-5185-2. doi:10.1109/
ICST.2014.16. URL http://dx.doi.org/10.1109/ICST.2014.16.

[MBLD11] Mouchawrab, Samar; Briand, Lionel C.; Labiche, Yvan; Di Penta,
Massimiliano: Assessing, Comparing, and Combining State Machine-
Based Testing and Structural Testing: A Series of Experiments. In:
IEEE Trans. Softw. Eng., volume 37(2):pp. 161–187, 2011. ISSN
0098-5589. doi:10.1109/TSE.2010.32.

[McG] McGregor, John D.: Testing a Software Product Line.
URL http://www.bibsonomy.org/api/users/ist_spl/posts/

aec593ff707ee5e036253d36633a414e.

http://doi.acm.org/10.1145/2647908.2655968
http://dx.doi.org/10.4204/EPTCS.180.4
http://dx.doi.org/10.1109/ICST.2014.16
http://www.bibsonomy.org/api/users/ist_spl/posts/aec593ff707ee5e036253d36633a414e
http://www.bibsonomy.org/api/users/ist_spl/posts/aec593ff707ee5e036253d36633a414e

102 Bibliography

[MLL09] Malik, Qaisar A.; Lilius, Johan; Laibinis, Linas: Model-Based Test-
ing Using Scenarios and Event-B Refinements. In: Butler, Michael;
Jones, Cliff; Romanovsky, Alexander; Troubitsyna, Elena, editors,
Methods, Models and Tools for Fault Tolerance, volume 5454 of Lec-
ture Notes in Computer Science, pp. 177–195. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-00866-5. doi:
10.1007/978-3-642-00867-2{\textunderscore}9.

[MSB12] Myers, Glenford J.; Sandler, Corey; Badgett, Tom: The art of software
testing. John Wiley & Sons, Hoboken, N.J, 3rd edition, 2012. ISBN
1118133153.

[Mv03] Muccini, H.; van der Hoek, A.: Towards Testing Product Line
Architectures. In: Electronic Notes in Theoretical Computer Sci-
ence, volume 82(6):pp. 99–109, 2003. ISSN 15710661. doi:10.1016/
S1571-0661(04)81029-6.

[Off92] Offutt, A. Jefferson: Investigations of the Software Testing Coupling
Effect. In: ACM Trans. Softw. Eng. Methodol., volume 1(1):pp. 5–
20, 1992. ISSN 1049-331X. doi:10.1145/125489.125473. URL http:

//doi.acm.org/10.1145/125489.125473.

[OG05] Olimpiew, Erika Mir; Gomaa, Hassan: Model-Based Testing for Ap-
plications Derived from Software Product Lines. In: ACM SIGSOFT
Software Engineering Notes, volume 30(4):pp. 1–7, 2005. ISSN 0163-
5948. doi:10.1145/1082983.1083279.

[OLAA03] Offutt, Jeff; Liu, Shaoying; Abdurazik, Aynur; Ammann, Paul: Gen-
erating test data from state-based specifications. In: The Journal of
Software Testing, Verification and Reliability, volume 13:pp. 25–53,
2003.

[OMG] OMG: UML 2.4.1 Superstructure Specification.

[OU01] Offutt, A. Jefferson; Untch, Roland H.: Mutation 2000: Uniting the
Orthogonal. In: Wong, W. Eric, editor, Mutation Testing for the
New Century, pp. 34–44. Springer US, Boston, MA, 2001. ISBN
978-1-4419-4888-5. doi:10.1007/978-1-4757-5939-6{\textunderscore}7.

[OWES11] Oster, Sebastian; Wubbeke, Andreas; Engels, Gregor; Schürr, Andy:
A Survey of Model-Based Software Product Lines Testing. In: Zander,
Justyna; Schieferdecker, Ina; Mosterman, Pieter J., editors, Model-
based testing for embedded systems, Computational analysis, synthesis,

http://doi.acm.org/10.1145/125489.125473
http://doi.acm.org/10.1145/125489.125473

Bibliography 103

and design of dynamic systems, pp. 339–384. CRC Press, Boca Raton,
2011. ISBN 1439818452.

[OZML11] Oster, Sebastian; Zorcic, Ivan; Markert, Florian; Lochau, Malte: MoSo-
PoLiTe: tool support for pairwise and model-based software product
line testing. In: VaMoS ’11, pp. 79–82. 2011.

[PBL05] Pohl, Klaus; Böckle, Günter; Linden, Frank J. van der: Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc, Secaucus, NJ, USA, 2005. ISBN
3540243720.

[Pel] Peleska, Jan: RT-Tester Model-Based Test Case and Test Data Gener-
ator: User Manual: Version 9.0-1.0.0.

[Pel13] Peleska, Jan: Industrial-Strength Model-Based Testing - State of the
Art and Current Challenges. In: Electronic Proceedings in Theoretical
Computer Science, volume 111:pp. 3–28, 2013. ISSN 2075-2180. doi:
10.4204/EPTCS.111.1.

[PM06] Pohl, Klaus; Metzger, Andreas: Software Product Line Testing. In:
Communications of the ACM, volume 49(12):pp. 78–81, 2006. ISSN
0001-0782. doi:10.1145/1183236.1183271.

[POS+12] Perrouin, Gilles; Oster, Sebastian; Sen, Sagar; Klein, Jacques; Baudry,
Benoit; Traon, Yves: Pairwise testing for software product lines: com-
parison of two approaches. In: Software Quality Journal, volume 20(3-
4):pp. 605–643, 2012. ISSN 0963-9314. doi:10.1007/s11219-011-9160-9.

[Pro03] Prowell, S. J.: JUMBL: a tool for model-based statistical testing. In:
36th Annual Hawaii International Conference on System Sciences.
2003. doi:10.1109/HICSS.2003.1174916.

[Pro05] Prowell, S. J.: Using Markov Chain Usage Models to Test Complex
Systems. In: Sprague, Ralph H., editor, Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, p. 318c. IEEE
Computer Society Press, Los Alamitos, Calif, 2005. ISBN 0-7695-2268-
8. doi:10.1109/HICSS.2005.663.

[PSK+10] Perrouin, Gilles; Sen, Sagar; Klein, J.; Baudry, B.; Le Traon, Yves:
Automated and Scalable T-wise Test Case Generation Strategies for
Software Product Lines. In: ICST ’10: International Conference
on Software Testing, Verification and Validation, pp. 459–468. IEEE
Computer Society and IEEE, Los Alamitos, Calif and Piscataway, N.J,

104 Bibliography

2010. ISBN 978-1-4244-6435-7. doi:10.1109/ICST.2010.43. URL http:

//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5477055.

[Sch10] Schaefer, Ina: Variability Modelling for Model-Driven Development
of Software Product Lines Systems, Linz, Austria, January 27-29,
2010. Proceedings. In: Benavides, David; Batory, D.; Grünbacher,
Paul, editors, Fourth International Workshop on Variability Modelling
of Software-Intensive Systems, Linz, Austria, January 27-29, 2010.
Proceedings, volume 37 of ICB-Research Report, pp. 85–92. Universität
Duisburg-Essen, 2010.

[SH15] Shimbara, Daisuke; Haugen, Øystein: Generating Configurations for
System Testing with Common Variability Language. In: Fischer,
Joachim; Scheidgen, Markus; Schieferdecker, Ina; Reed, Rick, edi-
tors, SDL 2015: Model-Driven Engineering for Smart Cities, volume
9369 of Lecture Notes in Computer Science, pp. 221–237. Springer
International Publishing, Cham, 2015. ISBN 978-3-319-24911-7. doi:
10.1007/978-3-319-24912-4{\textunderscore}16.

[SKK13] Schöffler, Jennifer; Kramer, Anne; Kastner, Norbert: Parameter-
ized Generation of Process Variants and Project-Specific Operat-
ing Procedures from Business Process Models. In: Woronowicz,
Tanja; Rout, Terry; O’Connor, RoryV.; Dorling, Alec, editors,
Software Process Improvement and Capability Determination, vol-
ume 349 of Communications in Computer and Information Science,
pp. 261–266. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-
38832-3. doi:10.1007/978-3-642-38833-0{\textunderscore}27. URL
http://dx.doi.org/10.1007/978-3-642-38833-0_27.

[SZCM04] Stephenson, Zoë; Zhan, Yuan; Clark, John; McDermid, John: Test
Data Generation for Product Lines - A Mutation Testing Approach.
In: Geppert, Birgit; Krueger, Charles; Li, Jenny, editors, SPLiT
’04: Proceedings of the International Workshop on Software Product
Line Testing, pp. 13–18. Boston, MA, 2004.

[UL06] Utting, Mark; Legeard, Bruno: Practical model-based testing: A tools
approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2006. ISBN 0123725011.

[UPL] Utting, Mark; Pretschner, Alexander; Legeard, Bruno: A taxonomy
of model-based testing. URL http://www.cs.waikato.ac.nz/pubs/

wp/2006/uow-cs-wp-2006-04.pdf.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5477055
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5477055
http://dx.doi.org/10.1007/978-3-642-38833-0_27
http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf
http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf

Bibliography 105

[UPL12] Utting, Mark; Pretschner, Alexander; Legeard, Bruno: A Taxonomy
of Model-Based Testing Approaches. In: Softw. Test. Verif. Reliab.,
volume 22(5):pp. 297–312, 2012. ISSN 0960-0833. doi:10.1002/stvr.456.
URL http://dx.doi.org/10.1002/stvr.456.

[Voe13] Voelter, Markus: DSL engineering: Designing, implementing and
using domain-specific languages. CreateSpace Independent Publishing
Platform, 2013. ISBN 1481218581.

[WBC14] Wilkinson, Toby; Butler, Michael; Colley, John: A Systematic Ap-
proach to Requirements Driven Test Generation for Safety Critical
Systems. In: Ortmeier, Frank; Rauzy, Antoine, editors, Model-Based
Safety and Assessment, volume 8822 of Lecture Notes in Computer Sci-
ence, pp. 43–56. Springer International Publishing, Cham, 2014. ISBN
978-3-319-12213-7. doi:10.1007/978-3-319-12214-4{\textunderscore}4.

[Wei09] Weißleder, Stephan: Influencing Factors in Model-Based Testing with
UML State Machines: Report on an Industrial Cooperation. In:
Hutchison, David; Kanade, Takeo; Kittler, Josef; Kleinberg, Jon M.;
Mattern, Friedemann; Mitchell, John C.; Naor, Moni; Nierstrasz, Oscar;
Pandu Rangan, C.; Steffen, Bernhard; Sudan, Madhu; Terzopoulos,
Demetri; Tygar, Doug; Vardi, Moshe Y.; Weikum, Gerhard; Schürr,
Andy; Selic, Bran, editors, Model Driven Engineering Languages and
Systems, volume 5795 of Lecture Notes in Computer Science, pp. 211–
225. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-
642-04424-3. doi:10.1007/978-3-642-04425-0{\textunderscore}16.

[Woo93] Woodward, M. R.: Errors in algebraic specifications and an exper-
imental mutation testing tool. In: Software Engineering Journal,
volume 8(4):p. 211, 1993. ISSN 02686961. doi:10.1049/sej.1993.0027.

[WS10] Weißleder, Stephan; Sokenou, Dehla: ParTeG - A Model-Based Testing
Tool. In: Softwaretechnik-Trends, volume 30(2), 2010.

[WS14] Weißleder, Stephan; Schlingloff, Holger: An Evaluation of Model-
Based Testing in Embedded Applications. In: ICST’ 14: International
Conference on Software Testing, Verification, and Validation. IEEE,
2014. ISBN 9781479957910.

[WWL15] Weißleder, Stephan; Wartenberg, Florian; Lackner, Hartmut: Au-
tomated Test Design for Boundaries of Product Line Variants. In:
El-Fakih, Khaled; Barlas, Gerassimos; Yevtushenko, Nina, editors,
Testing Software and Systems, volume 9447, pp. 86–101. Springer

http://dx.doi.org/10.1002/stvr.456

106 Bibliography

International Publishing, Cham, 2015. ISBN 978-3-319-25944-4. doi:
10.1007/978-3-319-25945-1{\textunderscore}6.

[Xu11] Xu, Dianxiang: A Tool for Automated Test Code Generation from
High-Level Petri Nets. In: Hutchison, David; Kanade, Takeo; Kittler,
Josef; Kleinberg, Jon M.; Mattern, Friedemann; Mitchell, John C.;
Naor, Moni; Nierstrasz, Oscar; Pandu Rangan, C.; Steffen, Bern-
hard; Sudan, Madhu; Terzopoulos, Demetri; Tygar, Doug; Vardi,
Moshe Y.; Weikum, Gerhard; Kristensen, Lars M.; Petrucci, Laure,
editors, Applications and Theory of Petri Nets, volume 6709 of Lec-
ture Notes in Computer Science, pp. 308–317. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-21833-0. doi:
10.1007/978-3-642-21834-7{\textunderscore}17.

[ZSM11] Zander, Justyna; Schieferdecker, Ina; Mosterman, Pieter J.: A Tax-
onomy of Model-Based Testing for Embedded Systems from Multiple
Industry Domains. In: Zander, Justyna; Schieferdecker, Ina; Moster-
man, Pieter J., editors, Model-based testing for embedded systems,
Computational analysis, synthesis, and design of dynamic systems.
CRC Press, Boca Raton, 2011. ISBN 1439818452.

107

List of Figures

1.1 Process of product line engineering (PLE) 2
1.2 Approaches to product line (PL) testing 3

2.1 A feature model for the eShop example. 12
2.2 Feature model language diagram. 14
2.3 Annotative (a), compositional (b) variability (based on [GV07]) and

delta modeling (c) . 15
2.4 Implementation of the mapping model language in Ecore. 16
2.5 SPL design with annotative variability. 17
2.6 MBT process by Utting et al. [UPL12] 18
2.7 Feature model of the Ticket Machine example. 23
2.8 Base model of the Ticket Machine example. 23
2.9 Feature model of the Alarm System example. 25
2.10 Base model of the Alarm System example. 25
2.11 Base model of the eShop example. 27
2.12 Feature model of the Body Comfort System. [LLLS] 29
2.13 Overview of the Body Comfort System’s architecture. [LLLS] 30

3.1 Mutation process for PL systems . 38

4.1 Product line testing. 50
4.2 Detailed application-centered (AC) test design process. 51
4.3 Detailed domain-centered (DC) test design process. 52
4.4 Excerpt of the merged domain model with step-by-step approach

applied. 54
4.5 Excerpt of the merged domain model with the pre-configuration

approach applied. 55
4.6 Workflow of the SPLTestbench. 57
4.7 Menu options in the SPLTestbench. 58

5.1 Project options in SPLTestbench for sampling products. 69
5.2 Sampling process in SPLTestbench. 70

6.1 Excerpt of the product line model for the Ticket Machine. 78

108 List of Figures

6.2 Ticket Machine product w/o feature Bills. 79
6.3 Same product with complementary transition added. 79
6.4 PL Model Example: Ticket Machine with Complementary Transition. 80
6.5 Domain Model: Ticket Machine with added feature formulas and

complementary transitions. 82
6.6 Product: State machine model of a Ticket Machine without Bills,

Change, and ReducedFare. 82

109

List of Tables

2.1 Feature model summary for Ticket Machine (TM), Alarm System
(AS), eShop (ES), and Body Comfort System (BCS). 31

2.2 Base model summary for Ticket Machine (TM), Alarm System (AS),
eShop (ES), and Body Comfort System (BCS). 31

3.1 Mapping operator scores per mutation operator in % and Accumlated
Scores (Acc) . 43

3.2 UML operator scores per mutation operator in % and Accumlated
Scores (Acc) . 43

3.3 Summarized Results for Mapping Operators 44
3.4 Mutation Results for State Machine Operators 44

4.1 Test cases, test steps, and configuration for each of the presented
approaches. 59

5.1 Distinct configurations sampled. 71
5.2 Test executions . 71
5.3 Mutation scores for detected faults in base models in %. 72
5.4 Mutation scores for detected faults in mapping models in %. 72

6.1 Mutation Scores for Regular Tests 85
6.2 Mutation Scores for Tests with Transformations 85

111

112 List of Tables

List of Publications

Articles
2015 Model-Based Product Line Testing: Sampling Configurations for Op-

timal Fault Detection, Hartmut Lackner, 17th International SDL Forum:
Model-Driven Engineering for Smart Cities.
Potential Errors and Test Assessment in Software Product Line Engi-
neering, Hartmut Lackner and Martin Schmidt, Proceedings of the Tenth
Workshop on Model Based Testing (MBT).
Automated Test Design for Boundaries of Product Line Variants, Ste-
phan Weißleder, Florian Wartenberg, and Hartmut Lackner, Proceedings of
the 27th International Conference on Testing Software and Systems (ICTSS).

2014 Towards the assessment of software product line tests: a mutation
system for variable systems, Hartmut Lackner and Martin Schmidt, Procee-
dings of the 18th International Software Product Line Conference: Companion
Volume for Workshops, Demonstrations and Tools (SPLC).
Model-Based Test Design of Product Lines: Raising Test Design to the
Product Line Level, Hartmut Lackner, Martin Thomas, Florian Wartenberg,
Stephan Weißleder, IEEE Seventh International Conf. on Software Testing,
Verification and Validation (ICST).

2013 Top-Down and Bottom-Up Approach for Model-Based Testing of Pro-
duct Lines, Stephan Weißleder and Hartmut Lackner, Proceedings of the
Eighth Workshop on Model-Based Testing (MBT).
Zwei Ansätze zur automatischen modellbasierten Generierung von
Testfällen fÃĳr variantenreiche Systeme, Stephan Weißleder and Hartmut
Lackner, in Softwaretechnik-Trends 33.

2012 Modeling for automated test generation - a comparison, Hartmut Lack-
ner and Holger Schlingloff, 8th Dagstuhl-Workshop on Modellbasierte Ent-
wicklung eingebetteter Systeme (MBEES).

2010 Introducing Model-Based Testing in Industrial Context, Hartmut Lack-
ner, Jaroslav Svacina, Stephan Weißleder et al., 3rd Workshop on Model-based
Testing in Practice (MoTiP).
System Models vs. Test Models -Distinguishing the Undistinguisha-
ble?, Stephan Weißleder and Hartmut Lackner, GI Jahrestagung (LNI).

2009 Test Case Generation from workflow-based Requirement Specificati-
ons, Hartmut Lackner, Jaroslav Svacina, and Holger Schlingloff, Workshop
on Concurrency, Specification and Programming (CSP).

List of Tables 113

Book Chapters
2012 Software Platform Embedded Systems 2020: Application and Evalua-

tion in the Healthcare Domain, Hendrik Heinze, Khalid Kallow, Hartmut
Lackner et al., in Model-Based Engineering of Embedded Systems (ISBN
978-3642-346149).

Magazines
2011 Nicht kapitulieren, sondern automatisieren, Hartmut Lackner and Salko

Tahirbegovic, in medizin & technik Ausgabe 5/11.

Selbständigkeitserklärung

Hiermit erkläre ich, Hartmut Lackner, geboren am 06.12.1982 in Berlin, dass

• ich die vorliegende Dissertationsschrift “Domain-Centered Product Line Tes-
ting” selbstständig und ohne unerlaubte Hilfe angefertigt sowie nur die ange-
gebene Literatur verwendet habe,

• ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe oder
einen solchen besitze und

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fa-
kultät II der Humboldt-Universität zu Berlin bekannt ist gemäß des Amtlichen
Mitteilungsblattes Nr. 34/2006.

Berlin, den

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Approach
	1.3 Assumptions
	1.4 Contributions
	1.5 Structure

	I Preliminaries
	2 Background
	2.1 Model-Based Product Line Engineering
	2.1.1 Feature-Oriented Design
	2.1.2 Variability Modeling
	2.1.3 A Basic Variability Language
	2.1.4 Summary

	2.2 Model-Based Testing
	2.2.1 Summary

	2.3 Test Assessment
	2.3.1 Mutation Analysis
	2.3.2 Error Design

	2.4 Examples
	2.4.1 Ticket Machine
	2.4.2 Alarm System
	2.4.3 eShop
	2.4.4 Body Comfort System
	2.4.5 Summary

	3 Assessment of Product Line Tests
	3.1 Potential Errors in Model-Based Product Line Engineering
	3.2 Product Line Test Assessment
	3.2.1 Mutation System for Product Lines
	3.2.2 Product Line Mutation Operators

	3.3 Evaluation
	3.3.1 Setup
	3.3.2 Results
	3.3.3 Threats to Validity

	3.4 Related Work
	3.5 Conclusions

	II Model-based Testing for Product Lines
	4 Automated Test Design for Product Lines
	4.1 Model-based Testing for Product Lines
	4.1.1 Application-Centered Test Design
	4.1.2 Domain-Centered Test Design

	4.2 Evaluation of both Approaches
	4.2.1 Tool Chain SPLTestbench
	4.2.2 Experiment Settings
	4.2.3 Results

	4.3 Related Work
	4.4 Conclusion, Discussion, and Future Work

	5 Test-driven Product Sampling
	5.1 Reusable Test Cases
	5.2 Sampling Configurations from Reusable Test Cases
	5.2.1 General Sampling
	5.2.2 Targeted Sampling

	5.3 Example and Evaluation
	5.3.1 Tool Chain SPLTestbench
	5.3.2 Setup
	5.3.3 Results
	5.3.4 Discussion

	5.4 Related Work
	5.5 Conclusion

	6 Testing Product Boundaries
	6.1 Testing Boundaries of Products
	6.1.1 Boundary Transitions
	6.1.2 Turning Open Boundaries into Test Goals

	6.2 Evaluation
	6.2.1 Setup
	6.2.2 Results
	6.2.3 Discussion

	6.3 Related Work
	6.4 Conclusion & Future Work

	III Closure
	7 Conclusion
	7.1 Contributions
	7.2 Impact
	7.3 Future Work

	Bibliography
	List of Figures
	List of Tables

