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Abstract

There is currently a great interest in the physics of degenerate quantum gases
and low-energy few-body scattering due to the recent experimental advances in
manipulation of ultracold atoms by light. In particular, almost perfect periodic
potentials, called optical lattices, can be generated. The lattice spacing is fixed by
the wavelength of the laser field employed and the angle betwen the pair of laser
beams; the lattice depth, defining the magnitude of the different band gaps, is tun-
able within a large interval of values. This flexibility permits the exploration of
different regimes, ranging from the “free-electron” picture, modified by the effec-
tive mass for shallow optical lattices, to the tight-binding regime of a very deep
periodic potential. In the latter case, effective single-band theories, widely used in
condensed matter physics, can be implemented with unprecedent accuracy. The
tunability of the lattice depth is nowadays complemented by the use of magnetic
Feshbach resonances which, at very low temperatures, can vary the relevant atom-
atom scattering properties at will. Moreover, optical lattices loaded with gases of
effectively reduced dimensionality are experimentally accessible. This is especially
important for one spatial dimension, since most of the exactly solvable models in
many-body quantum mechanics deal with particles on a line; therefore, experiments
with one-dimensional gases serve as a testing ground for many old and new theo-
ries which were regarded as purely academic not so long ago. The physics of few
quantum particles on a one-dimensional lattice is the topic of this thesis. Most of
the results are obtained in the tight-binding approximation, which is amenable to
exact numerical or analytical treatment.
For the two-body problem, theoretical methods for calculating the stationary

scattering and bound states are developed. These are used to obtain, in closed form,
the two-particle solutions of both the Hubbard and extended Hubbard models; it is
found that the latter can show resonant scattering behavior. A new theorem, which
characterizes all two-body bound states on a one-dimensional lattice with arbitrary
finite range interactions, is proven here. The methods used for the simplest Hubbard
models are then generalized to obtain exact results for arbitrary interactions and
particle statistics.
The problem of binding and scattering of three identical bosons is studied in

detail, finding new types of bound states with no continuous space counterparts.
The physics of these trimers is revealed by an effective model which is then applied
to “dimer”-”monomer” scattering on the lattice.
Stationary states of other lattice systems are also considered. First, the problems

of binding and scattering of a single particle on a superlattice off a static impurity
are analytically solved. Among the results obtained, the presence of a second bound
state for any lattice and interaction strengths is highlighted. Second, a model of the
harmonic oscillator on the lattice, preserving most of the properties of its continuous
space analog, is presented and analytically solved. Two different models, being
formally equivalent to the aforementioned lattice oscillator, are then constructed
and solved exactly.
Quantum transport of a a single particle and a bound particle pair on a one-

dimensional lattice superimposed with a weak trap is investigated. Based on the
knowledge of the results obtained for stationary states, coherent, non-dispersive
transport of one and two particles can be achieved. A surprising fact – repulsively
bound pairs are tighter bound than those with attractive interaction – is found and
physically explained in a simple way.
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Zusammenfassung

Der aktuelle experimentelle Fortschritt bei der Manipulation ultrakalter Atome
mit Licht löst gegenwärtig ein großes Interesse an der Physik entarteter Quantengase
und der niederenergetischen Streuung weniger Teilchen aus. Insbesondere ist es mög-
lich, nahezu perfekte periodische Potenziale, sogenannte optische Gitter, zu gene-
rieren. Der Gitterabstand wird durch die Wellenlänge und den Winkel zwischen den
Strahlen des verwendeten Laserfeldes festgelegt, während die Gittertiefe, welche die
Größenordnung der verschiedenen Bandlücken definiert, über eine weite Bandbreite
variiert werden kann. Diese Flexibilität erlaubt die Untersuchung verschiedenster
Regime, vom Bild des ”freien Elektrons”, welches im Falle flacher optischer Gitter
durch die effektive Masse modifiziert wird, bis zum tight-binding-Regime (Regime
der festen Bindung), das mit einem sehr tiefen periodischen Potenzial simuliert
werden kann. Liegt das letztere Regime vor, so lassen sich die effektiven Einzel-
bandtheorien, die weitgehend in der Physik der kondensierten Materie Verwendung
finden, mit hervorragender Genauigkeit implementieren. Die Durchstimmbarkeit der
Gittertiefe wird heutzutage durch das Ausnutzen magnetischer Feshbachresonanzen
komplementiert, welche bei sehr niedrigen Temperaturen die atomaren Streueigen-
schaften nach Belieben variieren können. Darüber hinaus sind mit Gasen gefüllte
optische Gitter, deren Dimensionalität effektiv reduziert ist, experimentell zugäng-
lich. Dies ist speziell für eine einzige räumliche Dimension sehr von Bedeutung, da
die meisten der exakt lösbaren Modelle der quantenmechanischen Vielteilchentheo-
rie das Verhalten von Teilchenketten beschreiben. Somit stellen Experimente mit
eindimensionalen Gasen für viele alte und neue Theorien, die noch vor nicht allzu
langer Zeit nur als rein akademisch angesehen wurden, eine praktische Versuchs-
plattform dar. Die Untersuchung des Verhaltens weniger Quantenteilchen in einem
eindimensionalen Gitter ist Thema dieser Arbeit. Der Großteil der Ergebnisse ist im
Rahmen der tight-binding-Näherung erhalten worden, welche eine exakt numerische
oder analytische Behandlung ermöglicht.
Für das Zweikörper-Problem konnten theoretische Methoden zur Berechnung der

stationären Streu- und Bindungszustände entwickelt werden. Mit deren Hilfe ist es
gelungen, sowohl für das Hubbard-Modell, als auch für das erweiterte Hubbard-
Modell die Zweiteilchen-Lösungen in kompakter Form zu erhalten; es ist gezeigt
worden, dass letzteres ein resonantes Streuverhalten aufweisen kann. Ferner konnte
ein neues Theorem, das alle Zweikörper-Bindungszustände in einem eindimensio-
nalen Gitter mit beliebiger endlich reichweitiger Wechselwirkung charakterisiert,
bewiesen werden. Die Methoden für die einfachsten Hubbard-Modelle sind verall-
gemeinert worden, um exakte Ergebnisse für beliebige Wechselwirkungen und Teil-
chenstatistiken herzuleiten.
Bei der genauen Untersuchung der Streuung und Bindung dreier identischer Bo-

sonen sind neue Typen von Bindungszuständen gefunden worden, denen im kontinu-
ierlichen Raum kein Pendant zugeordnet werden kann. Die Physik dieser Trimere
wird durch ein effektives Modell beschrieben, welches auch auf die Streuung von
Dimeren mit Monomeren in Gittern angewandt wurde.
Es wurden zudem die stationären Zustände anderer Gittersysteme betrachtet.

Zuerst konnten die Streu- und Bindungszustände eines Teilchens in einem Supergit-
ter mit einer statischen Störung analytisch bestimmt werden. Aus den erhaltenen
Resultaten ist das Auftreten eines zweiten gebundenen Zustandes, unabhängig von
den Gitterparametern und der Wechselwirkungsstärke, hervorzuheben. Des weite-
ren wurde ein Modell des harmonischen Oszillators auf dem Gitter eingeführt, das
die Eigenschaften wie im kontinuierlichen Raum weitgehend erhält, und analytisch



gelöst. Anschließend konnten zwei unterschiedliche, zum besagten harmonischen
Gitteroszillator formal äquivalente Modelle konstruiert und gelöst werden.
Schließlich wurde der Quantentransport eines einzelnen Teilchens und eines ge-

bundenen Teilchenpaars in einem eindimensionalen Gitter, überlagert mit einer
schwachen Falle, untersucht. Ausgehend von den erhaltenen Ergebnissen für die
stationären Zustände kann ein kohärenter, nicht-dispersiver Transport eines oder
zweier Teilchen erreicht werden. Es wurde der überraschende Effekt gefunden und
in einfacher physikalischer Weise erklärt, dass repulsiv gebundene Paare stärker
gebunden sind als solche mit einer attraktiven Wechselwirkung.
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1. Introduction

Advances in cooling and trapping of atoms had lead to the experimental observation of
Bose-Einstein condensation in a dilute, ultracold gas [AEM+95] some fifteen years ago.
This progress awakened renewed interest in the study of degenerate quantum gases.
With the high controllability of ultracold atoms by means of laser fields it is now

possible to create artificial periodic potentials – optical lattices. Such systems may
serve as “quantum simulators” of the fundamental models of condensed matter physics.
By combining two or more optical lattices, it is even possible to create superlattices
having different subperiods, in which the induced splitting of the original bands into
the so-called mini-bands can emulate, for instance, more complicated crystals formed
by heteronuclear ions.
In 2002, a quantum phase transition from the Mott insulator phase (an incom-

pressible, gapped phase with a number of bosons commensurate with the number
of lattice sites) to the superfluid phase (a compressible phase in which the many-
body system, when subject to an external velocity field, remains at rest) was realized
[GME+02] with ultracold bosonic atoms loaded in an optical lattice. More recently,
repulsively-bound pairs of atoms in an optical lattice were produced and character-
ized [WTL+06] experimentally. These exotic, metastable bound pairs have energies
lying in a band gap, and, in optical lattices free of phonons and defects, they can-
not decay into the scattering continuum. This effect, unobserved in traditional solid
state materials due to fast energy dissipation, has triggered the investigation of novel
few-body lattice effects [WB09, Wei10, JCS09, PM07, PNM08] and were also the sub-
ject of this thesis [VP08a, VP08b, VP09, Val10, VPS10], which can be probed when
the cold gas is sufficiently dilute. Furthermore, many researchers have since studied
the implications of the few-body bound states on the many-body physics in a lattice
[PSAF07, WHC08, SBE+09, SJ09, SJS10, RRBV08, SGJ+08].
Ultracold atoms loaded in optical lattices are robust systems to explore few-body

phenomena. Using magnetic Feshbach resonances [Fes58, BLV+09] to modify the low-
energy properties of atom-atom interactions, the scattering length can be very precisely
tuned in a wide interval. A particularly interesting implication is the Efimov effect
[Efi70], originally predicted in the context of nuclear physics four decades ago, which
results in a sequence of weakly bound trimers with universal properties appearing near
the two-body threshold. Since the first evidence of the existence of such trimers in a
single well of an optical lattice [KMW+06], the Efimov physics has become an important
topic of theoretical [vSDG09, DGE09, MRDG08, TFJ+09, WE09] and experimental
[KFM+09, FKB+09] research.
The extreme experimental control over ultracold atoms in optical lattices makes it

possible to set the number of particles per unit cell to one [GME+02] or few. Single-site
addressability (emptying lattice wells at will), recently achieved in [WLG+09], comple-
mented by the control over the lattice filling, opens up new possibilities for exploring
few-body effects on a lattice, which may allow the observation of phenomena associated
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1. Introduction

with translational invariance, which are those considered in this thesis.
The physics of few particles on a lattice (or in systems with a non-trivial band struc-

ture) is, on the other hand, relevant in condensed matter as well. The most traditional
condensed matter systems where few-body physics play a role are, without any doubts,
semiconductors. The study of fundamental problems on the binding of the exciton, an
electron-hole pair, was an active area of research two decades ago. Among these, the
long standing question “what is the mass of the exciton?” was then answered [MG84].
It was shown, theoretically, that the effective mass of the exciton depends on its center
of mass energy, shortly confirmed experimentally by Cafolla and co-authors in [CST85].
A closely related effect appears in most of the models considered in this thesis, however
in a different context. More recently, there is also growing interest in the physics of
excitons due to the experimental advances in the search for the Aharonov-Bohm effect
[AB59] with a single exciton in quantum dot nanorings [FVCPR09, TVCLR+10].
The few-body problem is also relevant to the physics of magnetism. Certain elemen-

tary excitations of magnetic materials, called magnons, can be regarded as a collection
of few interacting (quasi-) particles on a lattice. A benchmark example is the two-
magnon spectrum of the spin-half one-dimensional Heisenberg model, already solved by
Bethe almost 70 years ago [Bet31] by means of his celebrated ansatz. Direct experimen-
tal observation of two-magnon bound states in a spin-1 chain was recently reported in
[ZWB+07], while evidence of Bose-Einstein condensation of quasi-particles, in this case
spin triplets, was unambiguously obtained in a seminal experiment by Zapf and collab-
orators [ZZH+06]. These recent achievements highlight the importance of few-particle
effects in realistic many-body systems.
The work presented in this thesis is focused on the transport, scattering and binding

of few particles on a deep one-dimensional lattice. This research is mainly motivated
by the recent experimental advances in few-body physics in optical lattices. But the
findings are expressed in a general form so that they are independent of the particular
physical realization of the models. This work aims at filling the gap between the widely
studied one- and many-body (finite density) problems on a lattice. Its relevance lies
mostly, but not only, on the methodology, which simplifies and generalizes previous
works [WTL+06, PM07, Mat86], and is extendable to the physics of magnetic materials.
The exact solutions presented in this thesis yield clear physical interpretation of the
results; while for systems with no analytic solution, effective theories are constructed to
clarify their physics.
In this thesis, I discuss the quantum dynamics of a single particle and a bound particle

pair in a deep lattice superimposed by a weak harmonic potential, which is a realistic
experimental situation for cold atoms in optical lattices. It is found that coherent, non-
dispersive transport of wavepackets can be achieved from one side of the trap to the other
[VP08a]. Moreover, it is shown that carefully “engineered” initial wave packets, being
localized at essentially one lattice well, can also exhibit periodic oscillations between
the two sides of the shallow trap. It is also demonstrated that, in a weak harmonic
trap, repulsively interacting pairs can be tighter bound than those subject to attractive
interaction. The interpretation of this effect turns out to be a simple consequence of
the solutions obtained for the homogeneous lattice in [VP08b].
By using a methodology introduced by the author in [VP08b], the two-body problem

on a one-dimensional lattice with nearest-neighbor interactions is also studied. It is
shown that, contrary to what happens in the pointlike interacting case [WTL+06, PM07,

2



VP08b], finite- and low-energy resonances can exist [VP09] in such system. We derive
exact solutions for both bound and scattering states and find that, in general, two
different bound states can exist. These findings are relevant in view of the recent
interest in dipolar atoms or molecules in optical lattices [GWH+05].
Next, by generalizing the methods introduced in [VP08b] and [VP09], it is shown

that any two-body problem on a one-dimensional lattice with arbitrary but finite range
interactions is exactly solvable [Val10]. As an important mathematical result, it is
proven that all bound states are fully characterized by roots of polynomials of a well
defined degree, which depends on the range of the interactions.
The results for the two-body problem are extended to investigate the binding [VPS10]

and scattering of three bosonic particles on a one-dimensional lattice. A complete, exact
numerical solution of the integral equation [Mat86] for three-body bound states is given,
and it is found that, apart from the trivial bound states consisting of three bosons co-
localized at the same site, there exist two hitherto unknown weakly bound states. These
states correspond to a strongly-bound boson pair and a third particle at a neighboring
site, interacting via an effective particle-exchange interaction. Within this effective
theory, the pair-particle scattering is analytically solved, using the methods derived for
the two-body problem.
The problem of collision and binding of a mobile particle and a heavy (static impurity)

one on a superlattice is here addressed. It is shown that a simple modification of the
methods introduced for the two-body problem on a homogeneous lattice, to account for
Bloch’s theorem, suffices to obtain the exact solutions. By solving either an integral
equation in quasi-momentum space or a transcendental equation obtained from direct
lattice representation, it is found that, independently of the strength of the particle-
impurity interaction, there are always two bound states of the mobile particle being
trapped by the immobile impurity. This is then formalized by finding that the scattering
length can have no poles.
The fundamental question of constructing a lattice harmonic oscillator which, in its

ground state, preserves all the “good” properties of its analog in continuous space,
such as supersymmetric algebraic structure and minimal uncertainty relation, is also
addressed here. The formalism is then applied to two different but related problems:
low-energy scattering off a static impurity in a periodic potential, and a many-body
interacting system on a finite ring. This topic and the particle-impurity collisions on
the superlattice represent work in progress.

Outline

In chapter 2, we introduce most of the theoretical and mathematical tools needed for
the understanding of the rest of the thesis. In particular, we present the physics of
optical lattices and the tight-binding approximation. The experts in the field may skip
this chapter.
In chapter 3, after introducing two kinds of boundary conditions for particles on a

finite, one-dimensional lattice, we give the exact solution of some well-known one-body
problems, which illustrate the usefulness of the quasi-momentum representation. We
then explain our results on coherent transport of a single particle in a lattice superim-
posed by a harmonic potential.
The scattering, binding and transport of two lattice particles are studied in chapter 4.

3



1. Introduction

A detailed treatment of the three-body problem is given in chapter 5. The scattering of
a single particle off an impurity on a superlattice is the topic of chapter 6. Finally, our
model of the harmonic oscillator on the lattice, with some applications to other physical
systems, is discussed in chapter 7.

4



2. Formalism of Quantum Lattice Physics

Quantum Mechanics on a tight-binding, single band lattice, which we call “Quantum
Lattice Physics”, requires the use of a formalism which differs in some aspects from the
“usual” Quantum theory due to the discrete nature of the underlying physical space.
In this chapter we introduce how optical lattices can be experimentally created by

means of laser-atom interaction. We then briefly explain the single-particle band struc-
ture in a periodic potential, and the tight-binding approximation.
Next, we will show how to construct a discrete kinetic energy operator assuming that

we only know an approximate functional form of the energy dispersion in terms of the
single-particle (quasi-) momentum. Though we can take any functional form, with a
certain periodicity in quasi-momentum space, we will restrict ourselves to the one we
will derive in subsect. 2.2, which is the simplest possible approximation. We apply
what is known as Peierls’ substitution [Pei33], which maps the single-particle problem
to direct lattice space. This is the basic idea behind any discrete quantum-mechanical
theory.
After Peierls’ substitution, we are left with a self-adjoint kinetic energy operator which

links a function at a given point only with its nearest neighbors1 on the lattice [Mat86].
Since the functions involved must be only defined at lattice points, we have to choose a
Hilbert space H in accordance with the discretization. It is natural therefore to choose
H as the space of square summable functions – `2 – in direct lattice representation;
otherwise, if we would choose spaces of square integrable functions – L2 –, the solutions
to the problems we are interested in would not be uniquely defined! In reciprocal (quasi-
momentum) representation, we use an L2 space of periodic functions. Changing from
one representation to the other is made possible thanks to the discrete version of the
Fourier transform [Bri88].
Since most of the results below are special topics in scattering theory on the one-

dimensional lattice, we briefly introduce in this chapter the lattice version of collision
theory which is, in fact, very similar to scattering theory in free space [Joa75]. In
particular, we will discuss the Green’s function approach [Eco90] to the problem and
obtain the free particle Green’s functions for the one-dimensional case.

2.1. Optical lattices

The interaction of atoms with light has a broad range of applications. Among the
most relevant ones are laser cooling and trapping of atoms [PS08]. We briefly introduce
here near-resonant laser-atom interaction, and use it to describe the generation of laser-
induced periodic potentials – optical lattices.
In the dipole approximation, the interaction between the laser electric field and the

1The models used throughout this thesis are mostly coupling only nearest-neighbors.
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2. Formalism of Quantum Lattice Physics

atom is given by
V̂d = −d ·E, (2.1)

where d is the dipole moment of the atom and E is the (classical) electric field. If the
field is static, E 6= E(t), the perturbative correction to the ground state energy of an
atom is given by

∆ = −
∑
e

|〈e| V̂d |g〉|2

ξe − ξg
, (2.2)

where e runs over all excited states of the atom, g labels its ground state, and ξe(g) is the
excited (ground) state energy of the unperturbed atom. By writing the electric field as
E = Eu, where u is the unit vector in the direction of the electric field, the perturbative
correction (dc Stark shift) becomes

∆ = −1
2α|E|

2, (2.3)

where we have defined the static polarizability of the atom as

α = 2
∑
e

|〈e|d · u |g〉|2

ξe − ξg
. (2.4)

We now assume that the electric field of the laser is, to a good approximation,
monochromatic with a frequency ω. The time-dependent electric field acquires the
form

E(r, t) = E(+)(r)e−iωt + E(−)(r)eiωt, (2.5)

where we have used the standard notation E(±) for the positive and negative frequency
parts of the electric field [LP07]. Since the electric field is real, we have [E(+)]∗ = [E(−)].2
The time averaged ground state energy (or ac-Stark) shift is given in this case by

∆ = −1
2α(ω)〈|E(r, t)|2〉, (2.6)

with
〈|E(r, t)|2〉 = 1

T

∫ T

0
|E(r, t)|2dt (2.7)

the time averaged squared electric field over a period T = 2π/ω, and the dynamic
polarizability given by

α(ω) = 2
∑
e

(ξe − ξg)
|〈e|d · u |g〉|2

(ξe − ξg)2 − (~ω)2 . (2.8)

If the frequency is close to a single, isolated atomic resonance g → e, we can approximate
the polarizability as

α(ω) ≈ |〈e|d · u |g〉|
2

ξe − ξg − ~ω
. (2.9)

Since we only want to briefly introduce all these concepts, we avoid further complications
by not considering the finite lifetime of the excited state here.

2If the electric field would be quantized, this corresponds to the hermiticity of the E-field operator.
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2.2. The band structure

We can now interpret the energy shift ∆ in the ground state of the atom due to the
external laser field as a potential felt by the atom. In this way, we find that the external
potential has the form

V (r) = −1
2α(ω)〈|E(r, t)|2〉. (2.10)

For a one-dimensional lattice, it suffices to consider a standing wave laser field, which
is a superposition of two linearly polarized counterpropagating laser fields of the form
E0 cos(±kx− ωt), so that

E(x, t) = E0[cos(kx− ωt) + cos(kx+ ωt)] = 2E0 cos(kx) cos(ωt), (2.11)

and therefore the time averaged intensity has the form

〈|E(x, t)|2〉 = 2E2
0 cos2(kx). (2.12)

The optical lattice potential then becomes

V (x) = −α(ω)E2
0 cos2(kx), (2.13)

which is a periodic potential with lattice spacing d = π/k. Note that for α(ω) > 0
(α(ω) < 0), the periodic potential is attractive (repulsive) at the local maxima of the
intensity (2.12). In the following section we study the general band structure of a
periodic potential and the tight-binding approximation.

2.2. The band structure

Periodic potentials have general properties which are independent of their particular
form. The single-particle energy spectrum consists of different bands which are usually
separated by gaps – forbidden energy regions. Each of the energies in the bands can
be labeled by an integer band index s and a continuous vector “index” called quasi-
momentum k, as we will discuss in this section.
We start with the single-particle stationary Schrödinger equation for a particle with

mass m
Hψ =

(
− ~2

2m∇
2 + V (r)

)
ψ = Eψ, (2.14)

with V (r + R) = V (r), that is, V is periodic – invariant under a translation r→ r + R,
where R is a lattice vector. We state a simple, yet extremely important result, known
as Bloch’s theorem [AM76]:
Theorem. The eigenstates of H, Eq. (2.14), can be written as

ψ(r) ≡ ψs,k(r) = eik·rφs,k(r), (2.15)

where φs,k(r + R) = φs,k(r).
To illustrate the concept of band structure, we solve here a famous exactly solvable

model in one dimension, the so-called Kronig-Penney (KP) model. The periodic poten-

7



2. Formalism of Quantum Lattice Physics
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Figure 2.1.: Band structure of the Kronig-Penney model, calculated from Eq. (2.17) for
2md2g/~2 = 10.

tial of the KP model has the form

V (x) = g
+∞∑

n=−∞
δ(x− nd), (2.16)

where d is the lattice spacing and δ is a Dirac delta. The problem is trivially shown to
have its energy spectrum obtained by solving the following transcendental equation for
each value of the Bloch quasi-momentum k

2mg
~2α

sin(αd) + cos(αd) = cos(kd), (2.17)

where α2 = 2mE/~2 and E is the energy eigenvalue. In Fig. 2.1 we show the first
four bands for 2md2g/~2 = 10 in the reduced band scheme [AM76], that is, we show
the energies only in the first Brillouin zone (1BZ). The band gaps are clearly identified
there. The value of g chosen for Fig. 2.1 is quite large, since it is comparable to the
energy of a free particle at the edges of the 1BZ, E0 = ~2π2/2md2 ≈ g. Therefore,
the gaps are rather big: we say that in this case we are in the tight-binding regime. If
g � E0 the band gaps would become very small, and the energies, in the extended zone
scheme, would resemble a free particle parabola: we say we are in the quasi-free regime.
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2.2. The band structure

2.2.1. Tight-binding approximation

Throughout this thesis, most of the results are obtained in the tight-binding regime,
where we use extensively the so called single-band approximation: if the gaps between
bands s − 1, s and s + 1 are large compared to the typical strength of the pairwise
interactions, and if there is no inelastic transition between the bands due to such in-
teractions, phonons or external fields, we can basically assume that, once the particles
occupy the s-th band, they will remain there. In order to illustrate the tight-binding
method, we have to introduce first an orthonormal basis – the Wannier basis [AM76] –
such that the exact Bloch functions are expanded in terms of the Wannier functions ws
as

ψs,k(x) =
∑
R

eikRws(x−R) ≡
∑
n

eikxnws(x− xn), (2.18)

where, for simplicity, we have assumed a one-dimensional lattice. If the periodic po-
tential is deep, the Wannier functions of the lowest Bloch band are actually localized
around the local minima of the periodic potential (which we assume to be at xn = nd,
with n ∈ Z). We will assume from now on that the particles are ocupying the lowest
Bloch band only.

Let us consider a many-body system with pairwise interactions U(x − x′) in the
presence of periodic confinement V (x+ xn) = V (x). The action is given by [SGD09]

S[Ψ∗,Ψ] =
∫ ~β

0
dτ

∫
dxΨ∗(x, τ)

(
~
∂

∂τ
− ~2

2m
∂2

∂x2 + V (x)
)

Ψ(x, τ)

+ 1
2

∫ ~β

0
dτ

∫
dx

∫
dx′Ψ∗(x, τ)Ψ∗(x′, τ)U(x− x′)Ψ(x′, τ)Ψ(x, τ), (2.19)

where Ψ and Ψ∗ = [Ψ]∗ are the complex fields, β = 1/kBT , and τ is the imaginary time.
We now expand the fields in terms of Wannier functions as

Ψ(x, τ) =
∑
s,n

bs,n(τ)ws(x− xn). (2.20)

Since we assume that only the lowest Bloch band is occupied, we only retain terms with
s = 0 in the above sum. The final result reads in this case

S[b∗, b] = S0[b∗, b] + SU [b∗, b], (2.21)

with the free action given by

S0[b∗, b] =
∫ ~β

0

∑
n

b∗n(τ)
(
~
∂

∂τ
+ εn

)
bn(τ)−

∑
n6=m

b∗n(τ)Jnmbm(τ)

 , (2.22)

where the on-site energies are defined as

εn =
∫
dxw∗0(x− xn)

[
− ~2

2m
∂2

∂x2 + V (x)
]
w0(x− xn), (2.23)

9



2. Formalism of Quantum Lattice Physics

and the tunneling rates between sites n and m are given by

Jnm = −
∫
dxw0(x− xn)

[
− ~2

2m
∂2

∂x2 + V (x)
]
w0(x− xm). (2.24)

If the periodic potential is very deep, the Wannier functions are strongly localized around
the center of the given lattice site. We can then assume that, to a good approximation,
the tunneling rate is practically zero if |n−m| > 1. We then have Jn,m±1 ≡ J 6= 0 and
Jnm = 0 otherwise. For the interacting part of the action we also simplify the problem
by assuming that the interaction potential U is very weak when the particles do not lie
on the same site, and therefore we have

SU [b∗, b] =
∫ ~β

0
dτ
U

2
∑
n

b∗n(τ)b∗n(τ)bn(τ)bn(τ), (2.25)

where we have defined

U ≡
∫
dx

∫
dx′w∗0(x− xn)w∗0(x′ − xn)U(x− x′)w0(x′ − xn)w0(x− xn). (2.26)

Again, for simplicity, we consider only bosons, and the action (2.21) corresponds to the
second quantized Hamiltonian

H = −J
∑
n

(b̂†nb̂n+1 + b̂†n+1b̂n) +
∑
n

εnN̂n + U

2
∑
n

N̂n(N̂n − 1), (2.27)

where b̂†n (b̂n) is the bosonic creation (annihilation) operator at site n, and where we
have defined the number operator N̂n = b̂†nb̂n. The immediate consequence of the tight-
binding Hamiltonian (2.27) is that the single particle energy band, for εn ≡ γ = constant
has the form

ε(k) = −2J cos(kd) + γ, (2.28)

which is the well-known tight-binding dispersion relation [AM76]. In the following sec-
tions we will derive the first-quantized form of Eq. (2.27), i.e. valid for bosons, fermions,
mixtures or distinguishable particles in general, by means of the so-called Peierls’ sub-
stitution.
A more sophisticated approach to obtaining an interacting Bose-Hubbard Hamiltonian
was given by Schneider and collaborators in [SGS09].

2.3. Peierls’ substitution

In order to construct a quantum theory of an interacting N -body system of particles
allowed to have only discrete lattice positions at . . . ,−nd,−(n−1)d, . . . , (n−1)d, nd, . . .,
it is necessary to introduce Hermitian operators which are only defined at such discrete
positions. Here we introduce what is called Peierls’ substitution, which makes it possible
to define a discrete kinetic energy operator.
The lowest energy band of a single particle in a tight-binding periodic potential has

the form (see Eq. (2.28))
ε(k) = −2J cos(kd), (2.29)

10



2.4. Hilbert spaces for a lattice and the discrete Fourier transform

where J is the so-called tunneling rate, k ∈ (−π/d, π/d] is the quasi-momentum of
the particle and d is the lattice spacing. Peierls’ substitution consists of replacing the
quasi-momentum by an operator, namely

k → −i∂x. (2.30)

Therefore, the energy is no longer a scalar, but it becomes a function of an operator,

ε→ T̂ = −2J cos(−id∂x) = −J(ed∂x + e−d∂x). (2.31)

We take a function ψ(x), which is assumed to be analytic ∀x. The action of any analytic
function of an operator on ψ(x) is defined via its Taylor expansion [Con94, Kat95]. For
the operator T̂ , we have

(T̂ψ)(x) = −J
∞∑
n=0

(
dn

n! ∂
n
xψ(x) + (−d)n

n! ∂nxψ(x)
)
. (2.32)

Since ψ(x) is an analytic function, its Taylor series exists at every point, so we have the
following expression

ψ(x± d) =
∞∑
n=0

(±dn)
n! ∂nxψ(x). (2.33)

We therefore conclude that

(T̂ψ)(x) = −J (ψ(x+ d) + ψ(x− d)) , (2.34)

where, of course, x should be points of the discrete lattice, that is, x/d ∈ Z.

The action of the kinetic energy operator T̂ on a wave function ψ can be regarded
as “hopping” of a particle from one lattice site n = x/d to its neighboring sites n + 1
and n − 1, with a certain hopping (tunneling) rate J . Unless otherwise stated, lattice
sites will be labeled by integer numbers n instead of their lattice positions x which are
less convenient, contrarily to finite difference discretization where the continuum limit
is the final goal. Note that the continuum limit of the discrete kinetic energy is indeed
the second derivative

lim
d→0
− T̂ + 2J 1̂

Jd2 = ∂2
x. (2.35)

Mathematically, the discrete kinetic energy operator T̂ is called a second-order finite-
difference operator.

2.4. Hilbert spaces for a lattice and the discrete Fourier
transform

In this section we define the relevant Hilbert spaces, and the discrete Fourier transform
between quasi-momentum and direct lattice representations.
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2. Formalism of Quantum Lattice Physics

2.4.1. Direct lattice space

Usually, in Quantum Mechanics, a system of N particles is assumed to move in a D-
dimensional Euclidean space RD. The Hilbert space associated with the system is the
Lebesgue H′ =

⊗N
i=1 L

2(RD) space, that is, the N -body wave function |ψ〉 must be
square integrable,

〈ψ|ψ〉 =
∫
RND
|ψ(r1, r2, . . . , rN )|2dr1dr2 . . . rN <∞, (2.36)

with ri ∈ RD.
If the physical system is not defined in a continuous space, but on a lattice, the

situation changes drastically, since we can no longer define the Hilbert space as H′.
In a D-dimensional hypercubic lattice, the lattice points must satisfy n ∈ ZD (with
n = r/d). Since it is not possible to integrate in a discrete space, we substitute integrals
in L2 by sums in `2 spaces. Therefore, the natural Hilbert space of the system is
H =

⊗N
i=1 `

2(ZD). If |ψ〉 ∈ H, then

〈ψ|ψ〉 =
∑
|ψ(n1,n2, . . . ,nN )|2 <∞. (2.37)

The scalar products in `2 are defined as usual: if |ψ〉, |φ〉 ∈ H then

〈φ|ψ〉 =
∑

φ∗(n1, . . . ,nN )ψ(n1, . . . ,nN ). (2.38)

2.4.2. Reciprocal space. The discrete Fourier transform

In order to construct an interacting theory capable of describing scattering and binding
of microscopic particles, the lattice analog of the momentum representation – the quasi-
momentum representation – can be very useful.
In the continuum, the Fourier-Plancherel transform maps wave functions from real

to momentum space. There is a discrete version of the Fourier transform on a lattice,
namely the discrete Fourier transform (DFT). To define it, assume, for simplicity, that
we have a single-particle wave function in one dimension and in direct lattice represen-
tation. Furthermore, assume that the lattice has a finite number of points consisting of
the elements of the subset {−L, . . . , L} ⊂ Z, and we are interested in the limit L→∞.
Then,

|ψ〉 = (ψ(−L), ψ(−L+ 1), . . . , ψ(0), . . . , ψ(L− 1), ψ(L)). (2.39)

The DFT of |ψ〉 is defined as follows

ψ̃(q) ≡ (Fψ(x))(q) =
L∑

n=−L
ψ(n)e−

2π
2L+1 iqn, (2.40)

where q = −L, . . . , L is an integer number. The DFT above is not a unitary transforma-
tion, so the norms are not preserved. However, this definition is more convenient in order
to properly take the limit L→∞. The norms are related as 〈ψ̃|ψ̃〉 = (2L+ 1)〈ψ|ψ〉, so
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2.5. Discrete Schrödinger equation

the normalization condition implies

1
2L+ 1〈ψ̃|ψ̃〉 = 1

2L+ 1

L∑
q=−L

|ψ̃(q)|2 = 1
2π

L∑
q=−L

|ψ̃(q)|2∆L <∞, (2.41)

where ∆L ≡ 2π/(2L + 1). In the limit of L → ∞, the sum turns into an integral, and
the normalization condition reads

1
2π

∫ π

−π
dk|ψ̃(k)|2 <∞. (2.42)

The normalization condition stated above is evidently equivalent3 to |ψ̃〉 ∈ L2((−π, π]).
Therefore, the natural generalization of the Hilbert space to N particles and D dimen-
sions is H̃ =

⊗N
i=1 L

2(Ω), where Ω is the Brillouin zone hypervolume Ω = (−π, π]D.

2.5. Discrete Schrödinger equation
We consider here the Schrödinger equation for, first, a single particle with and without an
external potential, in one dimension; and, second, for an arbitrary number of interacting
particles, possibly in an external potential, in any dimension.

2.5.1. Single-particle equation
Let us consider a free particle moving on a one-dimensional lattice. The Hamiltonian
of the system is then simply the discrete kinetic energy, that is,

H = T̂ = −J(ed∂x + e−d∂x). (2.43)

The stationary Schrödinger equation H |ψ〉 = E |ψ〉 reads in this case

−J(ψ(n+ 1) + ψ(n− 1)) = Eψ(n), (2.44)

where n = x/d. The Schrödinger equation is equivalent to a three-term recurrence
relation with the condition |ψ(n)| ≤ C ∈ R for all n ∈ Z. Applying the plane-wave
ansatz

ψ(n) = eiknd, (2.45)

which is bound by 1 ∀n, we obtain

−2J cos(kd)eiknd = Eeiknd ⇒ E = ε(k) = −2J cos(kd). (2.46)

The energy of a free lattice particle could have also been obtained by means of the
spectral mapping theorem (SMT) [Con94]. Since the discrete kinetic energy, Eq. (2.43),
was obtained with Peierls’ substitution, and the spectrum of −i∂x is the whole real line,
the SMT implies that the spectrum of H = T̂ is E = −2J cos(kd), where k ∈ R are
the eigenvalues of −i∂x. Since the cosine is a periodic function of kd, we restrict k to
(−π/d, π/d], hence recovering the whole spectrum of the free Hamiltonian.

3We have avoided further complications by considering only the Riemann integral. Rigorously speaking,
we should have used the Lebesgue construction.
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2. Formalism of Quantum Lattice Physics

We consider now a single particle subject to an external potential v(n), which can
be a trap (limn→±∞ v(n) = ∞), a finite-range potential (v(n) = 0 if n > n+ ∈ Z+ or
n < n− ∈ Z−), a commensurate periodic potential (v(n+ n0) = v(n) for some n0 ∈ Z),
an incommensurate periodic potential (v(n+z0) = v(n) for some z0 ∈ R−Z), a random
potential (v(n) is a random sequence), or some combination thereof.

The Hamiltonian of the system is the sum of kinetic and potential energies, H = T̂+v,
and the stationary Schrödinger equation reads

(Hψ)(n) = −J(ψ(n+ 1) + ψ(n− 1)) + v(n)ψ(n) = Eψ(n). (2.47)

Depending on the shape and properties of the external potential, the eigenenergies and
eigenfunctions of H may be calculated analytically but, in general, a numerical solution
of Eq. (2.47) will be required. Some of the exactly solvable single-particle Schrödinger
equations are discussed in chapter 3.

2.5.2. Many-body systems of interacting particles

Most of the physically interesting lattice effects are associated with several interacting
particles. Furthermore, the combined effects of the lattice, the interactions and an
external potential yield even richer physics. Assuming that only two-body interactions
are present, the Hamiltonian for N > 1 particles reads

H =
N∑
i=1

(T̂i + vi) +
N∑

i<j=1
Vi,j , (2.48)

where T̂i and vi are, respectively, the kinetic and potential energy of particle i, and Vi,j
represents the two-body interaction between particles i and j. Unless otherwise stated,
V will be assumed to be symmetric, that is, Vi,j = Vj,i. The stationary Schrödinger
equation H |ψ〉 = E |ψ〉 is

− J
N∑
i=1

(
D∑
s=1

ψ(n1, . . . ,ni + es, . . . ,nN ) +
D∑
s=1

ψ(n1, . . . ,ni − es, . . . ,nN )
)

+

 N∑
i=1

vi(ni) +
N∑

i<j=1
Vi,j(ni,nj)

ψ(n1, . . . ,nN ) = Eψ(n1, . . . ,nN ), (2.49)

where the translation vectors are defined as

es ≡ (0, . . . , 1, . . . , 0), (2.50)

that is, es is a normalized D-dimensional vector.

Important note: From now and in the rest of the thesis we will implicitly assume
that d ≡ 1, unless otherwise stated. In chapter 7, the lattice spacing will not be set to
1, since we will need it for the continuum limit.
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2.6. Collision theory on the lattice

2.6. Collision theory on the lattice

In analogy with the usual quantum mechanics in continuous space, the collision of
particles moving on a discrete lattice can be described in terms of a modified version
of the integral equation of scattering (the Lippmann-Schwinger equation). Our starting
point is the discrete Schrödinger equation for a particle scattered off a finite range
potential v

[(T̂ − ε(k))ψk](n) = −v(n)ψk(n), (2.51)

where T̂ is the discrete kinetic energy operator and ε(k) is the single-particle energy
band. The general solution of this equation can be written as

ψk(n) = φk(n)−
∑
m

G
(0)
k (n,m)v(m)ψk(m), (2.52)

where φk is the solution of the homogeneous difference equation

[(T̂ − ε(k))φk](n) = 0, (2.53)

and the free particle Green’s function G(0)
k satisfies

[(T̂n − ε(k))G(0)
k ](n,m) = δn,m. (2.54)

The subscript n in T̂n signifies that it only acts on coordinate n, and δn,m is the Kronecker
delta.
If we are interested in bound states with eigenenergies E lying outside the continuum,
|E| > max |ε(k)| = 2J , then the Schrödinger equation reads

[(T̂ − E)ψE ](n) = −v(n)ψE(n), (2.55)

and the eigenfunctions ψE satisfy the homogeneous equation

ψE(n) = −
∑
m

G
(0)
E (n,m)v(m)ψE(m), (2.56)

where the Green’s function G(0)
E for energies outside the continuum satisfies the equation

[(T̂n − E)G(0)
E ](n,m) = δn,m. (2.57)

As seen, the lattice version of the integral equation of scattering is analogous to its
continuum counterpart [Joa75], and the only difference is that we have to replace the
integral by a sum.

2.6.1. Lattice Green’s functions I: scattering states

We have already introduced the free particle Green’s function on the lattice. Lattice
Green’s functions (LGF) have a wide range of applications, arising in general problems
involving partial differential equations when dealing with finite difference methods. In
our case, the free LGFs are important not only for potential and two-body scattering,
but also for the three-body problem in chapter 5. It is therefore convenient to introduce
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2. Formalism of Quantum Lattice Physics

them and, at least in one dimension, outline some of their properties.
In 1D, the recurrence relation satisfied by the free LGF is

−J [G(0)
k (n+ 1,m) +G

(0)
k (n− 1,m)] + 2J cos(k)G(0)

k (n,m) = δn,m, (2.58)

and since this equation depends only on z = n−m, we can rewrite it as

−J [G(0)
k (z + 1) +G

(0)
k (z − 1)] + 2J cos(k)G(0)

k (z) = δz,0, (2.59)

where G(0)
k (z) = G

(0)
k (n−m) = G

(0)
k (n,m). We will be mainly dealing with bosons, and

their respective problems after separation of the center of mass and relative coordinates.
Therefore, we will calculate here the free symmetric LGF, while in one dimension the
“antisymmetric” – fermionic – LGF4 can be built from the solutions for hard-core bosons
[Gir60]. For the symmetric LGF we use the most general solution at z 6= 0,

G
(0)
k (z) = C cos(kz) +D sin(k|z|), (2.60)

which upon insertion in Eq. (2.59), yields C ≡ 0 and5

D = −csc(k)
2J , (2.61)

and therefore the symmetric LGF has the form

G
(0)
k (n,m) = −csc(k)

2J sin(k|n−m|). (2.62)

2.6.2. Lattice Green’s functions II: bound states

We calculate now the one-dimensional free LGFs G(0)
E for energies outside the continuous

spectrum ε(k) of the discrete Hamiltonian. We have to solve Eq. (2.57) which, expressed
in “relative coordinate” z = n−m reads

−J [G(0)
E (z + 1) +G

(0)
E (z − 1)]− EG(0)

E (z) = δz,0. (2.63)

Since |E| > 2J , we perform a conformal mapping for the energy

E = −J 1 + α2

α
, (2.64)

with α ∈ R and |α| < 1. Substituting this expression, Eq. (2.64), into Eq. (2.63) for
z 6= 0, we obtain the symmetric LGF

G
(0)
E (z) = Cα|z|, (2.65)

4Properly speaking, the LGF implying an antisymmetric eigenstate of the Schrödinger equation is not
antisymmetric.

5Below, csc(x) denotes the cosecant of x.
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with C a constant. We now use this result in Eq. (2.63) for z = 0, to obtain

C = α

J(1− α2) . (2.66)

In order to get G(0)
E as a function of the energy, we invert the conformal mapping (2.64),

so that
α = −E ±

√
E2 − (2J)2

2J . (2.67)

Since the LGF G
(0)
E (z) ∝ α|z|, and G(0)

E must be normalizable, the final expression for α
must be

α = −E − sgn(E)
√
E2 − (2J)2

2J , (2.68)

and therefore the LGF for bound-state energies becomes

G
(0)
E (n,m) = sgn(E)√

E2 − (2J)2

[
−E − sgn(E)

√
E2 − (2J)2

2J

]|n−m|
. (2.69)

In a similar way, we can obtain the “antisymmetric” (fermionic) Green’s function; how-
ever, we will omit it and use fermionization [Gir60] instead, when needed.

2.7. Equivalence between repulsive and attractive potentials

We state here a general result for an N -body system on a hypercubic lattice in any
dimension which, although being usually implicitly assumed, is useful and important
to keep in mind, especially when dealing with purely attractive or repulsive two-body
interactions. We will need it throughout this thesis.
Let H be the following second-quantized Hamiltonian

H = −J
∑
〈m,n〉

b̂†mb̂n + F̂ ({N̂}), (2.70)

where J is the single-particle tunneling rate, 〈m,n〉 denotes that the sum runs over
nearest neighbors, b̂†n (b̂n) is the creation (annihilation) operator of a single particle
(boson or fermion) at site n and F̂ is an arbitrary analytic function of the number
operators at each site n, N̂n ≡ b̂†nb̂n.
If n ≡ (n1, n2, . . . , nD) is a point of a D-dimensional hypercubic lattice, we define the
unitary operation Ĝ, so that Ĝ = Ĝ† = Ĝ−1, with the actions

Ĝân = (−1)
∑D

s=1 ns ân,

Ĝâ†n = (−1)
∑D

s=1 ns â†n. (2.71)

We easily see that H − 2F̂ = −ĜHĜ−1 is unitarily equivalent to −H. This implies
that the spectrum of a Hamiltonian containing the potentials included in F̂ is obtained
by changing the sign of every point in the spectrum of the corresponding Hamiltonian
having F̂ replaced by −F̂ . In the case of F̂ containing purely repulsive (or attrac-
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2. Formalism of Quantum Lattice Physics

tive) two-body interactions, this result implies a formal equivalence of the solutions for
attractive and repulsive potentials.

2.8. Low-energy collisions. Scattering lengths
In free space, when two particles, in one dimension for simplicity, collide with low
relative momentum k → 0, much of the physics can be extracted from a single quantity
called scattering length. This is defined rigorously as the number a appearing in the
zero-energy solution of the stationary Schrödinger equation at larger distances than the
finite range (R) of the interaction potential [LSSY05]

φ(x) = |x| − a
R− a

. (2.72)

By knowing the scattering length of a system, one has many immediate consequences.
First of all, a pole in the scattering length denotes the entry (from a→ −∞ to a→ +∞)
or exit (from a → +∞ to a → −∞) of a bound state. If the scattering length is large
and positive, then the least bound state has a binding energy E ∝ −1/a2, and its size
depends linearly on it, 〈|x|〉 ∝ a.
On a one-dimensional lattice, the scattering continuum is bound from below, as well

as from above. This has important consequences, one of them being that the limits of
low-energy (E → −2J) and high-energy (E → +2J) collisions are essentially equivalent
(see sect. 2.7). Therefore, there are two different scattering lengths; the first, at energy
E → −2J , is defined exactly as in free space, Eq. (2.72), but with x being a discrete
coordinate, while the second can be defined in the same way after applying the trans-
formation Ĝ of the previous section. The consequences one draws from the scattering
lengths on the lattice remain unchanged from those in free space discussed above.
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3. The one-body problem

The most fascinating aspect of lattice systems, as we have already remarked, is the pres-
ence of several particles that interact with each other. However, a deep understanding
of any few- or many-particle system requires an even deeper knowledge of the single-
particle problem. Not only is the one-body problem the basis for many approximate
theories – especially mean-field theories – and necessary ingredient in few-body scatter-
ing theory and perturbative calculations, but it also represents an interesting topic by
itself. One can, in fact, build a large number of exactly solvable many-body problems by
simply realizing that a certain one-body problem is solvable via supersymmetric Quan-
tum Mechanics [CKS95]. This is the case of, for example, Sutherland’s model [Sut71]
and the attractive Lieb-Liniger gas [Mat93]; in chapter 7 we introduce another example
which, in fact, can be applied to several different situations.
In this chapter we first introduce two different kinds of boundary conditions for a

particle on a finite lattice. Then, we proceed to show, briefly, the solution of two well-
known single-particle problems on the lattice. Finally we will show our results [VP08a]
on coherent quantum transport of wave packets in a combined lattice and parabolic
potential pertinent to the recent experimental progress with ultracold atoms in optical
lattices.

3.1. Boundary conditions

We deal here with the problem of one free particle on the lattice which, although being
trivial, will be needed in many discussions throughout the text. We define two types of
finite lattices, namely, with open and periodic boundary conditions.

3.1.1. Open boundary conditions

Assume a lattice consisting of L sites denoted by n = 1, . . . , L. The open boundary
conditions require that the solutions |ψ〉 of the stationary Schrödinger equation H |ψ〉 =
E |ψ〉, with H = T̂ given by Eq. (2.34), vanish outside a one-dimensional box, that is,
ψ(0) = ψ(L+ 1) = 0. The only possible solutions are obviously of the form

ψ(n) = sin(kn), (3.1)

while the boundary conditions imply the discretization of the quasi-momenta k = kN =
Nπ/(L+ 1), with N = 1, . . . , L, and the eigenenergies are given by the usual expression

EN = −2J cos(kN ). (3.2)

Note that the solutions for open boundary conditions, when the lattice space is extended
to Z , are also (excited) eigenstates.
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3. The one-body problem

3.1.2. Periodic boundary conditions

We now solve the problem with periodic boundary conditions, by setting ψ(1) = ψ(L+
1) 6= 0. The eigenstates of H take the form

ψ(n) = eikn, (3.3)

and the boundary condition implies k = kN = 2πN/L, with N = 0, . . . , L − 1, and of
course the eigenvalues have the form EN = −2J cos(kN ).

3.2. Solution of the Schrödinger equation with some external
potentials

We consider here two well-known examples of single-particle discrete Schrödinger equa-
tions under external potentials: the discrete harmonic oscillator and linear potentials.
In order to study them more easily, we first prove an important result. If an extension of
the potential in space representation from Z to R, V (x) = 〈x|V̂ 〉 is an analytic function
of x ∈ R in the neighborhoods of all integers n, that is, if

V (n) =
∞∑
j=0

cjn
j , (3.4)

for small open balls (in R) around each n ∈ Z, then

Ṽ (k) ≡ 〈k|V̂ 〉 =
∞∑
j=0

cj ij
∂j

∂kj
. (3.5)

To show this, it suffices to consider the particular case V (n) = nj , j ∈ Z. Then by
applying the DFT on a wave function ψ, we get

(Ṽ ψ)(k) =
∑
n

njψ(n)e−ikn =
∑
n

ψ(n)ij ∂
je−ikn

∂kj
= ij ∂

j

∂kj
[∑
n

ψ(n)e−ikn] = ij ∂
j

∂kj
ψ(k).

(3.6)
Note that this fact corresponds to a transformation dual to the Peierls’ substitution.

We will call the correspondence
n→ i ∂

∂k
(3.7)

the inverse Peierls’ substitution. We proceed now to solve the Schrödinger equations we
have mentioned.

3.2.1. The linear potential

It is well-known [Wan60] that the spectrum of the discrete Hamiltonian

H = T̂ + α
∑
n

n |n〉〈n| , (3.8)
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3.3. Dynamics of a single-particle in a combined lattice and parabolic potential

with T̂ given by Eq. (2.34), is linearly spaced, that is, its eigenenergies satisfy Es+1 −
Es = constant. This structure of the spectrum is called the Wannier-Stark ladder,
and it plays an important role in the physics of semiconductors, exhibiting interesting
phenomena such as Bloch oscillations and is the basis for interband transitions [SLS+08].
An exact solution of the eigenvalue problem for H, Eq. (3.8), is possible, in posi-

tion space, involving Bessel functions [AS64]. Instead, we study the problem in quasi-
momentum space, which is even simpler than the direct lattice approach. After using
the inverse Peierls’ substitution, Eq. (3.7), in the Schrödinger equation H |ψ〉 = E |ψ〉,
we get

iα∂ψ
∂k

(k) = (E + 2J cos(k))ψ(k), (3.9)

with the periodic boundary condition ψ(k + 2π) = ψ(k). The general unnormalized
solution of the above equation has the form

ψ(k) = exp
[
− i
(
Ek + 2J sin(k)

)
/α
]
. (3.10)

By using now the periodic boundary condition, we obtain the spectrum

E = Es = αs, (3.11)

with s ∈ Z. Therefore we have shown, by simple means, that the energy spectrum is
given by the Wannier-Stark ladder, Eq. (3.11).

3.2.2. The discrete harmonic oscillator

We deal now with the potential
v(n) = Ω̃n2. (3.12)

The Schrödinger equation in quasi-momentum space reads in this case

−Ω̃∂
2ψ(k)
∂k2 − 2J cos(k)ψ(k) = Eψ(k), (3.13)

subject to the boundary condition ψ(k + 2π) = ψ(k), of course. The above equation is
nothing but the Mathieu equation [AS64]. We transform Eq. (3.13) into its canonical
form [AS64],

∂2y(v)
∂v2 + (a− 2s cos(2v))y(v) = 0, (3.14)

by identifying v = (k + π)/2, ψ(k) = y(v), a = 4E/Ω̃ and s = 4J/Ω̃. Therefore
the functions y(v) we have introduced are π-periodic Mathieu functions (ψ(k + 2π) =
ψ(k)⇒ y(v+π) = y(v)). The properties of these functions are well-known [AS64] , and
we will derive some of them in the next section where they will be needed.

3.3. Dynamics of a single-particle in a combined lattice and
parabolic potential

Many experiments concerning ultracold atoms in periodic potentials – optical lattices –
aim at simulating fundamental models of condensed matter physics [BDZ08]. However,
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3. The one-body problem

a fundamental difference with respect to traditional solid state physics is the unavoidable
presence of an external harmonic trap. One can expect that, if the trap is weak enough,
the physics in the center of the trap will not differ much from that for the flat lattice
situation; however, there are additional effects associated with the presence of the weak
harmonic trap.
In this section we investigate the single-particle problem on a lattice with an additional

superimposed weak parabolic potential. We present a detailed discussion of the author’s
results in [VP08a]. We give a comprehensive explanation of the single-particle energy
spectrum based on which we study the coherent dynamics of wave packets. We find
that using discretized Gaussian wave packets as initial states can lead to non-dispersive
dynamics. Moreover, motivated by the recent interest in optical lattice-based quantum
transport, we show how coherent transport of a carefully engineered localized initial
wave packet can be achieved in the system under consideration.

3.3.1. The model

We consider in general many non-interacting particles moving on a one-dimensional
tight-binding periodic and weak parabolic potentials. The Hamiltonian in second quan-
tization has the form

H =
∑
n

[
Ω̃n2N̂n − J(b̂†nb̂n+1 + b̂†n+1b̂n)

]
, (3.15)

where b̂†n (b̂n) is the bosonic creation (annihilation) operator1 at site n ∈ Z, N̂n = b̂†nb̂n is
the number operator, Ω̃(> 0) quantifies the strength of the external harmonic potential
and J(> 0) is the tunnel coupling between adjacent sites n and n± 1. The basis we use
for Hamiltonian (3.15) is the Fock basis { |Nn〉}, whose elements are defined as

|Nn〉 ≡
1√
N !

(b̂†n)N |0〉, (3.16)

with |0〉 being the vacuum state corresponding to an empty lattice. We will refer to the
Hamiltonian (3.15) as the trapped non-interacting Bose-Hubbard Hamiltonian.

3.3.2. Single particle stationary states and eigenenergies

We restrict now the domain of Hamiltonian (3.15) to a single particle, that is, we seek
eigenstates |ψ〉 of (3.15) satisfying N̂tot |ψ〉 = 1 |ψ〉, with N̂tot =

∑
n N̂n the total number

operator. The wave function has the form

|ψ〉 =
∑
n

ψ(n) |1n〉, (3.17)

with the normalization condition
∑
n |ψ(n)|2 < ∞, that is, |ψ〉 is an `2(Z) function.

Indeed, from second quantization, we identify |1n〉 ≡ |n〉; then, from the stationary

1It is here not relevant to make a distinction between CCR or CAR algebras for the creation and
annihilation operators, since here we will restrict ourselves to the single-particle subspace.
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3.3. Dynamics of a single-particle in a combined lattice and parabolic potential

Schrödinger equation H |ψ〉 = E |ψ〉 we get the difference relation

[(T̂ + v)ψ](n) = Eψ(n), (3.18)

where T̂ is the discrete kinetic energy operator, Eq. (2.34), and v(n) = Ω̃n2 is the
harmonic potential (3.12). The single particle problem is sketched in Fig. (3.1).

Ω̃

J

Figure 3.1.: Sketch of single particle tunneling and harmonic potential for Hamiltonian
(3.15).

The difference equation (3.18) above is just the discrete harmonic oscillator studied in
subsect. 3.2.2. Therefore its eigenstates, in quasi-momentum representation, are given
by Mathieu functions, and its eigenenergies are characteristic values of the Mathieu
equation. In Fig. 3.2 we plot the single-particle spectrum calculated via exact diago-
nalization in a (large enough) finite box for J/Ω̃ = 140. There we see that the spectrum
is separated in three parts, namely (i) linear, (ii) Bloch-like and (iii) parabolic regions.
We consider here the most relevant case of a weak parabolic potential, with J/Ω̃� 1.

(i) The linear spectrum. If J/Ω̃ is a large number, we can expect the lattice harmonic
oscillator to have, to a good approximation, an evenly spaced low-energy spectrum.
The reason is quite simple, and follows from re-incorporating the lattice spacing d into
the problem. To this end, consider the finite-difference discretization of the harmonic
oscillator in continuous space, by making use of the discrete Laplacian, Eq. (2.35),
before taking the continuum limit, that is, before making the lattice spacing d go to
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Figure 3.2.: Single-particle energy eigenvalues Ek in a combined periodic and parabolic
potential obtained by numerical diagonalization of Hamiltonian (3.15) with
J/Ω̃ = 140. For comparison, the eigenvalues Ēk within the Bloch mini-band
for a flat lattice (Ω = 0) of length L = 31 with open boundary conditions
are also plotted with dots (below Ek at k = 0).

zero. The continuum harmonic potential is then discretized as

1
2mω

2x2 → 1
2mω

2d2n2, (3.19)

from which we identify Ω̃ = mω2d2/2. The continuum limit is then properly taken as
d→ 0,2

lim
d→0

J/Ω̃ = lim
d→0

~2

m2ω2
1
d4 =∞, (3.20)

which is equivalent to J/Ω̃ → ∞. Therefore, for large J/Ω̃, the low-energy excitation
spectrum should be approximately linear.

We can now estimate the lowest energies and their respective eigenfunctions. Identi-

2Here, nd becomes the continuous variable x in the continuum limit.
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3.3. Dynamics of a single-particle in a combined lattice and parabolic potential

fying

J → ~2

2md2 , (3.21)

Ω̃→ 1
2mω

2d2, (3.22)

the effective frequency describing the linear part of the spectrum is ~ω = 2
√
JΩ̃. There-

fore for small k the energies Ek and associated eigenstates |χk〉 of (3.15) are

Ek ≈ −2J + 2
√
JΩ̃(k + 1/2), (3.23)

|χk〉 ≈ N
∑
n

(2kk!)−1/2e−ζ
2
n/2Hk(ζn) |1n〉, (3.24)

where N is a normalization constant, ζn = n 4
√

Ω̃/J is the discretized coordinate, and
Hk(ζ) is the k-th Hermite polynomial. In fact, these approximations for Ek and |χk〉
are quantitatively correct, since they represent the lowest order approximation to the
small-k solutions of the Mathieu equation [AS64].

(ii) The Bloch-like spectrum. The low-energy excitations studied in the previous para-
graph can be described in such way because their corresponding states essentially occupy
only the central region of the trap, and hence their approximate Gaussian tails prevent
the largest portion of their density to be affected by the “hard wall” generated by the
lattice harmonic potential.
We now explain this concept of hard wall: tunneling has to be dramatically suppressed
once the potential energy due to the trap is of the order of, or larger than, the maximal
kinetic energy on the lattice, that is, when Ω̃n2 ≥ 2J . This means that the maximum
number of non-localized states is approximately given by Nmax = 2bnmaxc+ 1, with

nmax ≡

√
2J
Ω̃
, (3.25)

where bnmaxc is an estimate of the largest value of |n| occupied by the non-localized
states. This means that if some excited states have a non-negligible population close to
±nmax, they feel hard walls at ±nmax, since it is not possible to tunnel to ±(nmax + 1)
or further. Therefore, the highest-energy excited states for which Ek < 2J must have
an energy spectrum similar to that corresponding to the spectrum of a particle on a
finite lattice with open boundary conditions, Eq. (3.2). This fact is shown in Fig. 3.2,
where the Bloch mini-band with L = Nmax sites is compared to the actual spectrum of
Hamiltonian (3.15).

(iii) The parabolic spectrum. After the discussions concerning the linear and Bloch-
like spectra, it is now clear where the parabolic spectrum comes from. Evidently, when
the state number k is larger than Nmax, there should be two quasi-degenerate states
with energies E2|n|+1 ≈ E2|n|+2 ≈ Ω̃n2 and with associated eigenstates of the form
( |1n〉 ± |1−n〉)/

√
2. The states of these kinds are therefore tightly localized and, once
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3. The one-body problem

the particle is initially high enough in the trap, |n| > nmax, it will stay there forever.3

3.3.3. Coherent dynamics of a single-particle wave packet
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Figure 3.3.: Time evolution of density ρn ≡ 〈N̂n〉 for a single-particle wave packet |ψ〉
in a combined periodic and parabolic potential with J/Ω̃ = 140. (a) Initial
state |ψ(0)〉 corresponds to the ground state |χ0〉 (discrete Gaussian) shifted
by 7 sites from the trap center. (b) Initial state |ψ(n′)(0)〉 is a localized
around n′ = 7 wave packet constructed from the k = 0, 1, . . . 20 eigenstates
|χk〉. Insets in (a) and (b) show the density distribution ρn at t = 0 and
t ' τ/2. Time is measured in units of ~J−1.

From the previous analysis, it is clear that if we restrict ourselves to the harmonic
oscillator–like states belonging to the lowest part of the energy spectrum, we can expect
a quasi-periodic dynamics in the system. Non-dispersive transport of a single-particle
wave packet from one side of the shallow parabolic potential to the other can then
be achieved. In Fig. 3.3(a) we show the dynamics of a single particle wave packet |ψ〉,
represented by the ground state of the system |χ0〉, Eq. (3.24), initially shifted by 7 sites

3Note that when there is more than one particle and these particles interact, this statement might no
longer be true.
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from the trap center. Numerical solution of the Schrödinger equation using Hamiltonian
(3.15) reveals almost perfect periodic oscillations of the discrete Gaussian wave packet
between the two sides of the parabolic potential with period τ ' 2π/ω = (π~/J)

√
J/Ω̃.

From the set of harmonic oscillator–like states |χk〉 of Eq. (3.24), we can construct
a well-localized wave packet |ψ(n′)〉 centered at a prescribed site n′ (|n′| < nmax). If we
write the initial state as

|ψ(0)〉 =
∑
k

Ak |χk〉 , (3.26)

the probability amplitude an for a particle to be at site n is given by

an = 〈1n|ψ(0)〉 ∝
∑
k

Ak (2kk!)−1/2 e−ζ
2
n/2Hk(ζn) . (3.27)

To obtain a localized around site n′ state |ψ(n′)〉, we maximize |an′ |2, which determines
the set of coefficients {Ak} in Eq. (3.26). In Fig. 3.3(b) we show the time evolution of
such a localized state, which exhibits periodic collapses and partial revivals at sites −n′
and n′ with time steps τ/2. The revivals are not complete since, as noticed above, the
energy spectrum Ek for small k is only approximately linear in k. Nevertheless, our
results suggest that coherent non-dispersive transport of carefully engineered atomic
wave packets can be achieved in optical lattices in the presence of a shallow parabolic
potential.

3.4. Conclusions
In this chapter we have considered some specific single-particle problems which can be
solved exactly or, at least, recast in terms of known functions. We have then applied
the theory outlined for stationary states to study coherent transport of a single-particle
wave packet from one side to the opposite side of a trapped lattice. Our results may
be relevant for physical implementation of optical lattice-based quantum transport and
quantum information transfer.
On the purely theoretical side, we would like to remark that the model used for the

lattice harmonic oscillator in this chapter is not unique, in the sense that it is not the
only model on the lattice that tends, in the continuum limit, to the usual harmonic
oscillator. In fact, we will see in chapter 7 that the model used here – which is the most
common in the literature – is, by far, not the best discrete oscillator model one can
build.
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4. The two-body problem

In free space, with no external potentials, the collision and binding of two particles
interacting via short range potentials is simple [Mes99, Joa75, Tay06]. The continuous
spectrum of two-body collisions corresponds to the sum of the kinetic energies of the two
unbound particles, and is therefore bound from below and unbound from above. On the
other hand, the energy of a bound particle pair should lie below the scattering contin-
uum. This is the reason why the particles in free space need to interact attractively,1 at
least in part, in order to be able to get bound. In one and two dimensions, any attractive
potential, no matter how weak or strong, can bind two particles [Kla77, Sim76, LL58].
This is not the case in three dimensions, and the deepest bound state of a potential will
be present only after the first zero-energy resonance [Cwi77, Lie76]. Aparently, this has
major consequences in many-body problems, already showing up for three interacting
bosons [Efi70, KMW+06, KFM+09, FKB+09, NFJG01]. An overview of the quantum
mechanical three-body problem will be given in the beginning of chapter 5.
As we noted in chapter 2, discretized theories naturally arise as single band approxi-

mations to the physics of interacting particles in periodic potentials. These models are
also used as a finite-difference discretization of underlying theories in continuous space
[MM05]; a remarkable example is that of Lattice Gauge Theories [Rot05], where the
finite-difference discretization appears to be the only way of obtaining non-perturbative
results in Quantum Chromodynamics. Of course, discrete theories share certain common
features with their continuous space counterparts, especially at low (quasi-) momenta,
but there are also major differences. The fact that the continuous spectrum of a single
lattice particle is not only bound from below, but also from above2, is responsible for
many (though not all) of the differences between the properties of interacting particles
on and off the lattice. In a more realistic model – continuous space with a periodic
potential – these effects are associated with the existence of band gaps.
One of the most celebrated predictions of the discretized tight-binding theory is the

existence of two-body bound states due to purely repulsive interactions [WTL+06]. Since
the continuous spectrum of the two-body problem has an upper bound, there can be
stable states lying above the continuum; in reality, these states lie in a band gap [WO06].
Another consequence of the lattice discretization is the non-trivial dependence of the
two-body wave functions on the center of mass quasi-momentum. Indeed, the original
two-body problem before the tight-binding approximation is not separable, and this fact
remains, though in a weaker sense, in the tight-binding theory. The resulting effect is
that if the total quasi-momentum is close to the edge of the first Brillouin Zone, the
bound states become totally co-localized [WTL+06] or, in more realistic energy bands,
they become almost but not completely co-localized [PM07]. This is similar to the

1A short range attractive potential, in Quantum Mechanics, is defined as any negative potential, and
repulsive any non-negative potential. In Classical Mechanics, a positive potential not monotonically
decreasing is not called repulsive [LSSY05].

2In this case, we say that the Hamiltonian of the theory is a continuous or bound operator [Con94].
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Mattis-Gallinar (MG) effect [MG84], which states that the effective mass of the exciton
– a bound particle-hole pair – is appreciably larger than the sum of the two effective
masses of its constituents, if the interactions are strong, and that it depends on the
center of mass energy of the bound composite. In a tight-binding theory, the MG effect
is a direct consequence of the non-Galilean nature of the lattice kinematics. The effect
was observed in semiconductors by Cafolla and collaborators in [CST85]. When the total
quasi-momentum approaches the edge of the Brillouin zone, the effective strength of the
two-body interactions increases dramatically. This seemingly unimportant remark, at
least for the case of a flat lattice and low temperatures, has however a major consequence
in a harmonic trap, present in all experiments with ultracold atoms: the repulsively
bound pairs are bound tighter than their attractive counterparts, as the author and
his collaborator demonstrated in [VP08a]. Very recently, some qualitative features of
photon-assisted tunneling in an optical lattice [SLS+08] were proven to be a consequence
of the energy dispersion of a boson pair [WB09], which is yet another demonstration of
the effects of the absence of Galilean invariance on the lattice.
In this chapter we focus on the two-body problem on a one dimensional lattice de-

scribed by a discrete – tight-binding – Hamiltonian. We first discuss the simplest
two-body problem, with zero range interaction on a flat lattice. A derivation of the
two-particle states was given by the author and his collaborator in [VP08b], which ac-
counts for a much simpler – even pedagogic – approach to the solution as compared to
earlier treatments, and is the topic of sect. 4.1. A complicated derivation was given
by Scott et al. in [SEG94], where the authors, on the way to the exact solution of
the two-body problem, “separated” the coordinates in an inconvenient fashion, employ-
ing the matrix form of the eigenvalue problem. The two-body problem was solved in
quasi-momentum space by Winkler et al. [WTL+06], though their conclusions about
the three-dimensional case were innacurate;3 later on Piil and Mølmer [PM07] solved
the single band problem using more realistic energy dispersions. One of the conclusions
is that for zero range interacting pairs there is no resonance in the system for any value
of the total quasi-momentum. This is a consequence of the dimensionality: as in free
space, there is always a bound state in one dimension [DHKS03]. Therefore, simulating
resonant phenomena with such model is not possible and, moreover, it is the limiting
case of a short range interaction.
The author gave an exact, analytic treatment of the problem with on-site as well as

nearest-neighbor interactions in [VP09]; a more detailed solution and discussion of this
problem is given in sect. 4.2. There we prove that two-body resonances can emerge in
the presence of extended range interactions, and we study all the scattering and bound
state properties of the system. We have to note that for the particular case of spin-
polarized fermions (or hardcore bosons), the problem was already studied by Scott et
al. in [SEG94], however with the cumbersome methods we have referred to above.
After the completion of [VP09], the author of this thesis derived, in a systematic

way, the equations satisfied by the bound state solutions of the two-body problem with
arbitrary finite range interactions. It was then proved by the author, mathematically,
that the corresponding solutions are always described by roots of polynomials [Val10].
The bound states can then be simply calculated, toghether with the full spectrum and

3The authors gave a wrong estimation of the two-body resonance by a factor of around 16. The original,
exact result was given more than 70 years ago by Watson [Wat39].
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4.1. Two-particle states with on-site interaction

eigenstates of any two-body Hamiltonian on a homogeneous lattice in one dimension,
provided the interactions have a finite range. A detailed discussion is presented in sect.
4.3.
In the last section of this chapter, based upon part of our results in [VP08a], we

describe the dynamics of two bosons in a combined lattice and parabolic potential, which
is relevant for physical implementation schemes of quantum information and quantum
transport. It is the generalization of sect. 3.3 to two particle dynamics and transport
of bound pairs. We show that, if the external trapping potential is weak, the bound
“dimers” can exhibit coherent dynamics, behaving effectively as single particles. We also
explain, with the help of the physics described throughout this chapter, why a repulsively
bound pair in its ground state is tighter bound than its attractive counterpart, if the
lattice is superimposed with a weak trap.

4.1. Two-particle states with on-site interaction

We begin by considering two identical bosons in a one dimensional lattice interacting via
an attractive or a repulsive on-site interaction of strength U .4 The problem is relevant
to ultracold atoms in optical lattices, and most of the physics of the repulsively-bound
atom pairs [WTL+06] is captured by the model. Here we present a simple and exact
analytical solution of the two-body problem in position (direct lattice) space, which is
important for understanding most of the rest of this thesis.
Instead of using the method described in [VP08b] we will employ the exact lattice

Green’s functions (2.62) and (2.69). These LGFs were actually calculated by using a
more general analog of the method in [VP08b] in subsects. 2.6.1 and 2.6.2. The LGFs,
and correspondingly the solution to this problem, were also obtained by Piil and Mølmer
in [PM07], in quasi-momentum space.
In second quantized form, the Hamiltonian of the problem is that of the Bose-Hubbard

model
H = −J

∑
n

(b̂†nb̂n+1 + b̂†n+1b̂n) + U

2
∑
n

N̂n(N̂n − 1). (4.1)

We restrict ourselves here to the two particle sector, considering solutions |ψ〉 of the
stationary Schrödinger equation which satisfy N̂tot |ψ〉 = 2 |ψ〉, where N̂tot ≡

∑
n N̂n

is the total number operator. A sketch of the tunneling and interaction processes is
represented in Fig. 4.1.
We rewrite Hamiltonian (4.1) in first quantized form and consider its eigenstates which

are symmetric under the exchange of the two particles (the polarized fermionic case is
trivial, since the zero-range interaction has no effect). The correspondence between first
and second quantized forms follows by the definitions |2n〉 = |n, n〉 and |1n, 1m〉 =

1√
2( |n,m〉+ |m,n〉) (n < m). The single-particle Hamiltonian for particle i is given by

the usual tight-binding expression

H(i) = −J
∑
ni

( |ni〉〈ni + 1| + |ni + 1〉〈ni| ), (4.2)

4As usual, U > 0 (U < 0) is said to be repulsive (attractive).

31



4. The two-body problem

J
U

Figure 4.1.: Sketch of single particle tunneling and two-body interaction for Hamiltonian
(4.1).

and consequently the two-body Hamiltonian is

H = H(1) ⊗ I(2) + I(1) ⊗H(2) + U
∑
n1

|n1, n1〉〈n1, n1| , (4.3)

where I(i) =
∑
ni |ni〉〈ni| is the identity operator acting on the degrees of freedom of

particle i, and |n1, n2〉 ≡ |n1〉 ⊗ |n2〉.
We solve the Schrödinger equation by first expanding the eigenstates as

|ψ〉 =
∑
n1,n2

ψ(n1, n2) |n1, n2〉, (4.4)

so that the eigenvalue problem H |ψ〉 = E |ψ〉 is equivalent to the following recurrence
relation,

− J
[
ψ(n1 + 1, n2) + ψ(n1 − 1, n2)
+ ψ(n1, n2 + 1) + ψ(n1, n2 − 1)

]
+ Uδn1,n2ψ(n1, n2) = E ψ(n1, n2). (4.5)

We separate the equation in center of mass (R = (n1 +n2)/2) and relative (z = n1−n2)
coordinates by using the ansatz

ψ(R, z) = eiKRφK(z), (4.6)

where remarkably the relative wave function φK depends parametrically on the center
of mass quasi-momentum K ∈ (−π, π] since, after substituting Eq. (4.6) in Eq. (4.5),
we see that φK satisfies

−JK [φK(z + 1) + φK(z − 1)] + Uδz,0φK(z) = EφK(z), (4.7)
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4.1. Two-particle states with on-site interaction

where JK = 2J cos(K/2). Note that the energy is not additive in the sense that it is not
the sum of a center of mass and a relative energies, but depends on K as a parameter.
This is a consequence of the breakdown of Galilean invariance on the lattice, since
ε(k) 6= ~2k2/2m. In Mathematics, operators which, after conservation of total quasi-
momentum, still depend non-trivially on K are called fiber operators.

4.1.1. Scattering states

We first seek the symmetric scattering states of Eq. (4.7). The resulting tight-binding
Hamiltonian

HK ≡ −JK
∑
z

( |z + 1〉〈z| + |z〉〈z + 1| ) + U
∑
z

δz,0 |z〉〈z| , (4.8)

is equivalent to the problem of a single particle with tunneling rate JK scattering off
one impurity located at the center of the lattice. Since the potential has short range,
the eigenenergies of HK in the continuum are given by

E ≡ EK,k = −2JK cos(k) = −4J cos(K/2) cos(k). (4.9)

We solve for the scattering states by making use of the lattice Green’s function (LGF)
formalism of chapter 2. Recall that the symmetric scattering states satisfy Eq. (2.52)
which, in our specific problem, reads

φK,k(z) = cos(kz)−
∑
m

G
(0)
k (z,m)Uδm,0φK,k(m). (4.10)

The symmetric non-interacting LGF has in this case the form (2.62)

G
(0)
k (z,m) = −csc(k)

2JK
sin(k|z −m|), (4.11)

which, introduced in (4.10), yields the scattering wave functions

φK,k(z) = cos(kz) + U

2JK
csc(k) sin(k|z|). (4.12)

Clearly, φK,k is a superposition of a free bosonic state and a fermionized state5 [Gir60].
For weak interactions, U → 0, φK,k reduces to the free bosonic solution while for very
strong interactions, U → ∞, it becomes fermionized, that is, the wave functions of
scattering states are equal to the absolute value of the free fermionic wave function with
the same relative quasi-momentum k.
The scattering states (4.12) are valid only for sin(k) 6= 0. On the lattice, due to the

symmetry of the continuous spectrum, i.e. EK,k = −EK,k±π, we have to generalize the
limit of “low-energy” scattering. To understand this, note that the group velocity

~vg = ∂EK,k
∂k

= 2JK sin(k), (4.13)

5Note that these two states are not orthogonal in any sense.
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vanishes in the limit of k → 0 and k → π. We can then define two different limits of
“low-energy” scattering. As a consequence, there are two distinct scattering lengths of
the system (see sect. 2.8). By taking the corresponding limits, we see that

lim
k→0

φK,k(z) ∝ |z| −
(−2JK

U

)
, (4.14)

and
lim
k→π

φK,k(z) ∝
(
|z| − 2JK

U

)
(−1)z, (4.15)

from which we deduce that the two scattering lengths are

a±K = ∓2JK
U

. (4.16)

This result for the scattering length already gives us some important information: in
this model there is only one bound state, since none of the scattering lengths has a pole
for U 6= 0, that is, there is no “zero-energy” resonance. Another relevant quantity we
can calculate is the phase shift δK,k. We rewrite the wave function φK,k as

φK,k(z) ∝ cos(k|z|+ δK,k), (4.17)

where the phase shift is given by

tan(δK,k) = − U

2JK
csc(k), (4.18)

which, in the limit of non-interacting particles reduces to δK,k = 0, while for infinitely
strong interactions it becomes δK,k = −sgn(U)π/2. The scattering length can also be
calculated in the standard way using the phase shift as

a±K = − lim
k→0,π

∂δK,k
∂k

= ∓2JK
U

. (4.19)

In Fig. 4.2 we plot the continuous spectrum EK,k of H as a function of the total
quasi-momentum K, with a shading proportional to the density of states (DOS)

ρ(E,K) ∝
(
∂E

∂k

)−1
= 1√

(2JK)2 − E2 , (4.20)

which is divergent when the energy approaches the top (E = 2JK) or bottom (E =
−2JK) of the scattering continuum.

4.1.2. Bound states

The on-site interaction U 6= 0 can bind the two bosons together into a close dimer
[WTL+06, VP08b, PM07, PSAF07] whose energy is above (U > 0) or below (U < 0)
the continuum (4.9) of scattering states. We now derive simple analytic solutions for
the bound dimer states. For |K| = π (JK = 0), Eq. (4.7) immediately yields EK=π ≡
Eπ = U and

φπ(0) = 1, φπ(z 6= 0) = 0. (4.21)
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Figure 4.2.: Energies EK versus the center-of-mass momentum K for a pair of bosons
in a 1D lattice described by the Hubbard model. The continuum spectrum
corresponds to energies (4.9) of the scattering states, with the shading pro-
portional to the density of states (4.20). The line below and the line above
the scattering band are, respectively, the energies of the attractively-bound
dimer with U = −5J and the repulsively-bound dimer with U = 5J . Their
relative coordinate wave functions (4.28) at |K| = 0, π/2, π are shown on
the bottom and the top panels.

For energies outside the continuum |EK | > 2JK and |K| 6= π, we use the LGF from Eq.
(2.69)

G
(0)
E (n,m) = sgn(EK)√

E2
K − (2JK)2

−EK − sgn(EK)
√
E2
K − (2JK)2

2JK

|n−m| . (4.22)

We perform the conformal mapping (2.64), so that the energy is written as EK =
−JK(αK + 1/αK), where αK is real with |αK | < 1, and the LGF is recast as

G(0)
α (n,m) = αK

JK(1− α2
K)

(αK)|n−m|. (4.23)
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We can now calculate the bound state wave functions with the help of equation (2.56),
which becomes

φK(z) = −G(0)
α (z, 0)UφK(0). (4.24)

The equation for the energies of the bound states is obtained by setting z = 0 in the
above equation, leading to

G(0)
α (0, 0) = − 1

U
, (4.25)

which is equivalent to a polynomial equation in αK with the solution

αK = U ±
√
U2 + (2JK)2

2JK
. (4.26)

Using Eq. (4.24) for z 6= 0, we see that the eigenenergies and the (normalized) eigen-
states have the form

EK = sgn(U)
√
U2 + 4J2

K , (4.27)

φK(z) =
√

sgn(U)UK
4
√
U2
K + 1

(
UK − sgn(U)

√
U2
K + 1

)|z|
, (4.28)

with UK ≡ U
2JK . In Fig. 4.2 we plot the bound state energy band (4.27) and the

associated eigenfunctions (4.28) at different quasi-momenta for repulsive (U/J = 5)
and attractive (U/J = −5) interactions. Increasing the total quasi-momentum leads to
tighter localization of the relative coordinate wave function at z = 0, which in the limit
of |K| → π, becomes completely localized, as we have seen from Eq. (4.21).
Note that, in this model, a bound state exists for any non-zero value of the on-site

interaction U , independently of its sign. If U > 0, then the relative wave function
changes sign from one site to the next, which is a signature of repulsive binding (the
bound state has an energy above and not below the continuum). The bound pair has
an effective mass

M∗ = ~2
[
∂2EK
∂K2

]−1

K=0
= sgn(U)~

2√U2 + (4J)2

4J2 . (4.29)

The effective mass is positive for an attractively bound pair, and is negative if the
pair is repulsively bound. For weak interaction |U | � J , we have M∗ ' ±~2/J =
±2m, i.e., twice the single particle effective mass m = ~2/(2J) of Eq. (3.21). On
the other hand, for strong interaction |U | � J , we obtain M∗ ' ~2/(2J (2)), where
J (2) ≡ −2J2/U is the effective tunneling rate of the dimer between the neighboring
lattice sites [WTL+06, PM07, PSAF07, VP08b, VP09]. Now the dimer effective mass
is large due to its slow tunneling |J (2)| � J , with the sign of J (2) determining the sign
of M∗. In this limit the bound state energy can be approximated as

EK ' (U − 2J (2))− 2J (2) cos(K), (4.30)

where the first term on the right-hand side represents the dimer “internal energy”, while
the second term is the kinetic energy of a dimer with quasi-momentum K. Equation
(4.30) can be used to derive a single-dimer effective Hamiltonian. After Peierls’ substi-
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tution, the Hamiltonian for a dimer under an external potential v has the form

H = −J (2)∑
n

( |n+ 1〉〈n| + |n〉〈n+ 1| ) +
∑
n

v(n) |n〉〈n| + (U − 2J (2))I, (4.31)

where |n〉 represents the effective dimer at site n of the lattice and I =
∑
n |n〉〈n| is the

identity operator. The Hamiltonian (4.31) is valid provided (i) |U |/J � 1 and (ii) the
potential does not satisfy v(n±1)−v(n) ≈ U for any n, since otherwise the dissociation
(or a superposition of dimer-monomer states) would be a resonant process; this issue will
become clearer when studying the dynamics of two particles with an external parabolic
trap, which is the topic of sect. 4.4.

4.2. Two-particle states in the extended Hubbard model

The first, non-trivial generalization of the two-body problem on the lattice corresponds
to the so-called extended Hubbard model [MRR90], which includes on-site interactions
as well as nearest-neighbor interactions between particles (bosons or spin up-spin down
fermions). Clearly, with spin-polarized fermions the inclusion of interactions has to start
at a nearest-neighbor level, since the on-site potential does not affect them due to the
Pauli principle. Moreover, the recent quest for the physics of dipolar atoms [GWH+05]
and molecules [NOdM+08, OOH+06] in an optical lattice needs of course the inclusion
of, to lowest order, nearest-neighbor interactions to take into account the effects of the
long range potentials.
In this section we consider the physics of two particles in the extended Hubbard

model. Instead of dealing with its original, fermionic version, we study the model for
bosons, without loss of generality. Indeed, the two boson case is identical to one spin-up
and one spin-down fermions, while the case of two spin-polarized fermions corresponds
to the limit of infinitely strong on-site interaction of the bosonic case in one dimension
[Gir60].
The Hamiltonian of the extended Hubbard model in a homogeneous lattice reads

H =
∑
n

−J
∑
n

(b†nbn+1 + b†n+1bn)

+ U

2
∑
n

N̂n(N̂n − 1) + V
∑
n

N̂nN̂n+1, (4.32)

where V is the nearest-neighbor interaction, and both U and V can be attractive or
repulsive.
After separation of center of mass and relative coordinates as ψ(n1, n2) = eiKRφK(z)

with R = (n1 + n2)/2 and z = n1 − n2, the eigenvalue problem H |ψ〉 = E |ψ〉 reduces
to the three-term difference equation

−JK
[
φK(z + 1) + φK(z − 1)

]
+
[
Uδz,0 + V (δz,1 + δz,−1)− EK

]
φK(z) = 0. (4.33)

We show in this section that the solutions to the above equation can have resonances,
in contrast to the problem of on-site interaction only. The existence of a resonance has
two implications: first, the resonant eigenstate is asymptotically the non-interacting
solution, which means that, for indistinguishable particles, there is a full transmission
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4. The two-body problem

after the collision; second, the “zero-energy” resonances mark the entry or exit of a
bound state into or out of the continuum. Below we give a rigorous meaning to the
term “zero-energy” resonance for particles on the lattice, which is qualitatively different
from the properly called zero-energy resonances in continuous space. We characterize all
the scattering properties of the system in detail, starting from the exact collisional states,
and obtaining the scattering lengths (corresponding to top/bottom of the continuum)
which describe the “low-energy” properties. As we have already noted, we will assume
from now on that we deal with a pair of bosons (symmetric eigenstates of Eq. (4.33)),
and we will obtain the corresponding fermionic states by applying the standard Bose-
Fermi mapping theorem [Gir60].
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Figure 4.3.: Energies versus the center-of-mass momentum K for a pair of bosons in a
1D lattice described by the extended Hubbard model. The continuum spec-
trum corresponds to energies EK,k of the scattering states, with the shading
proportional to the density of states ρ(E,K). The lines correspond to en-
ergies EK of the two particle bound states for various values of interaction
strengths [U/J, V/J ].

4.2.1. Scattering states and resonances
The scattering solutions |φ〉 of the Schrödinger equation (4.33) have the asymptotic
form (|z| ≥ 1)

φK,k(z 6= 0) = e−ik|z| + e2iδK,keik|z|, (4.34)

where the effects of the collision are accounted for by the phase shift δK,k. As for any
finite range potential, the energies are given by the sum of two free-particle Bloch bands
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4.2. Two-particle states in the extended Hubbard model

EK,k = −2JK cos(k). (4.35)

The continuum of energies EK,k and the corresponding density of states ρ(E,K) ∝
∂k/∂E = [(2JK)2−E2]−1/2 are shown in Fig. 4.3. The wave functions of the scattering
states for sin(k) 6= 0 are given by

φK,k(0) = cos(δ(0)
K,k)

cos(k + δK,k)
cos(k + δ

(0)
K,k)

, (4.36)

φK,k(z 6= 0) = cos(kz + δK,k), (4.37)

where the phase shifts δ(0)
K,k and δK,k are defined through

tan(δ(0)
K,k) = − U

2JK sin(k) , (4.38)

tan(δK,k) = JKU + [2JK cos(k) + U ]V cos(k)
{UV − 2JK [JK − V cos (k)]} sin(k) . (4.39)
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Figure 4.4.: Two-particle scattering cross-section σK,k versus the center-of-mass K
and relative k quasi-momenta for several values of interaction strengths
[U/J, V/J ]. Flipping simultaneously the sign of both U and V is equivalent
to shifting k → k + π.

Clearly, when the nearest-neighbor interaction vanishes, V = 0, the scattering states
reduce to those studied in the previous section. We concentrate here on the role of
non-vanishing nearest-neighbor interaction V 6= 0 in the two-body collisions. To this
end, we define the scattering amplitude [Joa75] f as

f(δK,k) = 1
2(e2iδK,k − 1), (4.40)
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so that the cross section σK,k takes the form

σK,k = |f (δK,k)|2 = sin2(δK,k). (4.41)

The cross sections for several values of U and V are plotted in Fig. 4.4. The cross
section vanishes when the phase shift is zero, denoting therefore a resonance at energy
EK,k = −2JK cos(k). By making use of Eq. (4.39), we see that, with the condition
8J2

K/(UV ) ≤ 1, there is a resonance at EK,k if

EK,k = 1
2U

1±

√
1− 8 J

2
K

UV

 , (4.42)

or, written more explicitly, if

cos(k) = − U

4JK

1±

√
1− 8 J

2
K

UV

 . (4.43)

The other interesting limit to consider is that of the maximal cross section, i.e. σK,k =
1. This happens whenever δK,k = π/2, and the asymptotic wave function corresponds
to the state of two hard-core bosons (U → ∞). Since we are considering here the
case of sin(k) 6= 0, there is a resonance whenever the denominator [UV − 2JK(JK −
V cos (k))] sin(k) in the expression (4.39) vanishes for k 6= 0,±π, that is, at energies

EK,k = U − 2J
2
K

V
, (4.44)

or, more explicitly, whenever

cos(k) = JK
V
− U

2JK
. (4.45)

We now consider the “low-energy” behavior of the system, at sin(k) → 0. As in Eq.
(4.19), we define two scattering lengths, given by

a±K = − lim
k→0,π

∂δK,k
∂k

= UV − 2JK(JK ∓ V )
UV ± JK(U + 2V ) . (4.46)

“Zero-energy” resonances will be present for some value of the center of mass quasi-
momentum K if any of the two scattering lengths a±K diverges. The scattering lengths
have a pole when

UV ± JK(U + 2V ) = 0. (4.47)

Defining
W = UV

U + 2V , (4.48)

the scattering length diverges for

JK = lim
k→0,π

sgn(cos(k))W = ∓W. (4.49)
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In other words, the divergence of a±K occurs when the absolute value of the center of
mass quasi-momentum |K| is equal to the critical value

KR = 2 arccos
(
∓W2J

)
, (4.50)

under the condition 0 ≤ ∓W/2J ≤ 1 for k → 0, π, respectively. As will become apparent
from the subsequent discussion, KR indicates the emergence of scattering resonances
associated with the bound states (see Fig. 4.5).

4.2.2. Bound states

We now consider the two-particle bound states. For bosons, using in Eq. (4.33) the
exponential ansatz

φK(z 6= 0) ∝ α|z|−1
K , (4.51)

we immediately see that the eigenenergies of the bound states have the already discussed
form

EK = −JK
1 + α2

K

αK
. (4.52)

From the Schrödinger equation for the wave function at z = 0,

φK(0) = −αK + V

JK
+ 1 + α2

K

αK
, (4.53)

which, upon substitution back into the Schrödinger equation for z = 0, and applying
the symmetry requirement φK(1) = φK(−1), yields the cubic polynomial equation

JKV α
3
K + (V U − J2

K)α2
K + JK(V + U)αK + J2

K = 0. (4.54)

The solutions α(i)
K of Eq. (4.54) with i ∈ {1, 2, 3} are physically acceptable if they

imply normalizable eigenfunctions, |α(i)
K | < 1. In fact, if Eq. (4.54) admits a solution

with α(i)
K = ±1, this solution corresponds to a “zero-energy” resonance. Indeed, setting

αK = ±1 in Eq. (4.54), we find the relation between U , V and JK to be

UV ± JK(U + 2V ) = 0, (4.55)

which is exactly the same relation derived from the requirement that the scattering
length, Eq. (4.46), has a pole (cf. Eq. (4.47)).

Existence of at least one and at most two bound states. In the case where only the
on-site interaction was present we showed, by explicitly calculating the wave functions
and eigenenergies, that there is always one bound state, independently of the value of
interaction U 6= 0. We now proceed to show that when the nearest-neighbor interaction
is added, there is at least one and at most two symmetric bound states. Mathematically,
we shall prove that Eq. (4.54) admits always at least one real solution whose absolute
value is smaller than one, and that it has at most two such solutions.

• Existence of at least one bound state. Let us first fix V , and let it be positive (if
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4. The two-body problem

V < 0 the result evidently holds, too). Consider the function

U(αK) = −JKV α
3
K + J2

Kα
2
K − JKV αK − J2

K

V α2
K + JKαK

, (4.56)

obtained by rearranging Eq. (4.54). We prove that for K = 0, U is a surjective
function of αK=0 = α0 in its domain D(U) ⊂ (−1, 1); we denote R(U) as the
range (or image) of U. The function U has a singularity at α0 = −2J/V whenever
V ≥ 2J , and a singularity at α0 = 0 for any value of V . U is a continuous function
of α0 with no singularities if α0 > 0. Thus, we have to consider the limits of U
when α→ 0+ and α→ +1,

lim
α0→0+

U(α0) = −∞ (4.57)

lim
α0→+1

U(α0) = − 4JV
V + 2J , (4.58)

which proves that (−∞,−4JV/(V + 2J)) ⊂ R(U).

We consider first the case V < 2J . In this situation the two relevant limits are

lim
α0→0−

U(α0) = +∞ (4.59)

lim
α0→−1

U(α0) = − 4JV
2J − V . (4.60)

Since the inequality
− 4JV

2J − V < − 4JV
2J + V

(4.61)

holds, the range of U for U < 2J is the real line, that is, R(U) = R. If, on the
other hand, V ≥ 2J , the relevant limit to take is

lim
α0→(− 2J

V )+
U(α0) = −∞, (4.62)

which proves that for any values of U and V there is at least one bound state at
K = 0. Therefore, there is always at least one bound state for any value of K.

• Existence of at most two bound states. Since we have already proved that there
is at least one bound state, we may use this result in the subsequent discussions.
Define the polynomial

P (α) = JKV α
3
K + (V U − J2

K)α2
K + JK(U + V )αK + J2

K , (4.63)

whose roots are the bound state solutions for αK . There are four different cases.

(a) U, V < 0 with UV > −JK(U + 2V ). The polynomial at the positive edge
of [−1, 1] satisfies P (1) > 0. We also have limαK→+∞ P (αK) = −∞. Therefore
P (αK) has a zero in (1,+∞). Since P is a cubic polynomial, it has three roots;
hence there are at most two bound states.

(b) U, V < 0 with UV < −JK(U + 2V ). In this case we have P (−1) < 0 and
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4.2. Two-particle states in the extended Hubbard model

limαK→−∞ P (αK) = +∞. Thus, there are at most two bound states in this case.
(c) U < 0, V > 0 with UV > −JK(U+2V ). We have P (1) > 0. If U+2V > 0

then P (−1) < 0 which, combined with limαK→−∞ P (αK) = +∞ proves that
there are at most two bound states. If U + 2V < 0, then P (−1) > 0, and so
P (−1)P (1) > 0; since there is at least one and at most three roots in the interval
(−1, 1), then there are exactly two bound states in this case.

(d) U < 0, V > 0 with UV < −JK(U + 2V ). We have that P (1) < 0 and
limαK→+∞ P (αK) = +∞, which completes the proof.

 0

 0.2

 0.4

 0.6

 0.8

 1

-12 -10 -8 -6 -4 -2  0  2  4  6  8  10  12

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

U/J

V
/
J

Kc/π

Figure 4.5.: The U, V diagram for the existence of the second bound solution |α(2)
K | < 1

of Eq. (4.54) with Kc < |K| ≤ π, with shading proportional to Kc ∈ [0, π].

As we have shown, Eq. (4.54) admits at most two solutions corresponding to bound
states. Obviously, for non-interacting particles U = V = 0, there can be no bound
state. For U 6= 0 and V = 06 [VP08b] as well as for U = 0 and V 6= 0, there is only
one bound solution α

(1)
K at any K. For any other values of U, V 6= 0, the first bound

solution α(1)
K exists at any K, and the second bound solution α(2)

K exists at |K| > Kc,
where the critical Kc is shown in Fig. 4.5 and is defined as

Kc =
{
KR if |W/2J | ≤ 1
0− otherwise

. (4.64)

6See sect. 4.1.
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4. The two-body problem

We thus see that the scattering length diverges when the second bound state approaches
the edge of the scattering continuum. This signifies the appearance of the scattering
resonance at |K| = KR which is determined by Eq. (4.50) under the condition |W/2J | ≤
1. If, however, this condition is not satisfied, no scattering resonance is present, and
the second bound state exists for all K ∈ (−π, π] with the energy below or above the
scattering continuum depending on whether W ≡ UV/(U + 2V ) is negative or positive,
respectively (see Fig. 4.3).

Some solutions for the bound states. In general, analytic expressions for the bound
solutions of Eq. (4.54) are too cumbersome for detailed inspection, but several special
cases yield simple instructive results. (i) With only the on-site interaction U 6= 0 and
V = 0, there is one bound solution α

(1)
K = (U − EK)/(2JK) with the corresponding

energy EK = sgn(U)
√
U2 + 4J2

K , as was discussed in the previous section. (ii) With
very strong on-site interaction |U | → ∞ and V 6= 0, the first bound solution is trivial,
α

(1)
K = 0 and EK = U . It represents an infinitely bound pair. The second, more

relevant (non-trivial) solution α(2)
K = −JK/V and EK = V + J2

K/V describes a pair of
hard-core bosons, φK(0) = 0, that are bound by the nearest-neighbour interaction V
provided |JK/V | < 1 [SEG94]. Note that in this limit we have W = V , and the last
condition for the existence of the second bound state again reduces to |K| > Kc. This
solution is relevant to spin-polarized fermions as well. According to the Bose-Fermi
mapping theorem [Gir60], the eigenenergies and eigenfunctions for fermions are those
corresponding to bosons, except for the symmetry of the wave functions: call φB(z) the
relative hard-core bosonic eigenfunction; then the fermionic eigenfunction φF (z) has the
form

φF (z) = sgn(z)φB(z). (4.65)

Note that the above equation also applies to the stationary scattering states. (iii) Finally,
a rather curious and simple case is realized with U = −V . The first bound solution
is similar to that in (i), but with U replaced by V , α(1)

K = (V − EK)/(2JK) and the
energy EK = sgn(V )

√
V 2 + 4J2

K , which corresponds to binding mainly by the off-site
interaction. The second bound solution is similar to that in (ii), but now with V

replaced by U , α(2)
K = −JK/U and EK = U + J2

K/U , provided |JK/U | < 1 (note that
now W = U). This solution corresponds to the on-site interaction binding.

More generally, when the on-site U and off-site V interactions have different sign,
the first bound state is associated mainly with larger interaction in absolute value, and
the second bound state with the weaker one. When, however, U and V have the same
sign and comparable strength, the bound states have mixed nature in the sense that
both interactions significantly contribute to the binding. To illustrate the foregoing
discussion, in Fig. 4.6 we show the wave functions of bound states for several cases
pertaining to the on-site, off-site and mixed binding, while the corresponding energy
dispersion relations are plotted in Fig. 4.3.
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Figure 4.6.: Relative coordinate wave functions ψK(z) of the two-particle bound states
for several values of interaction strengths [U/J, V/J ]. Thick bars correspond
to the first bound solution of Eq. (4.54) at K = 0. Thinner bars correspond
to the second bound solution atK = 0, if it exists for allK, or atK = 3π/4,
if it exists for |K| > Kc (cf. Figs. 4.3 and 4.5).

4.3. The two-body problem with arbitrary finite-range
interactions

In this chapter we have so far solved two models7 of two interacting one-dimensional
lattice particles, drawing several conclusions about them: (i) bound states can be cal-
culated via a certain polynomial equation of different degree that depends on the range
of the interaction, (ii) the scattering states, both symmetric (bosonic) or antisymmetric
(spin-polarized fermionic), are well described, asymptotically, by a single phase shift
which depends again on the range of the potential, (iii) the “low-energy” properties of
those systems, characterized by the scattering lengths, can always be calculated, leading
to rather simple expressions of the corresponding interaction potentials.
Therefore, the next relevant question to ask is whether there is a general pattern

followed by the solutions and properties of the two-body problem when the interactions
are of arbitrary but finite range. In this section we deal with this question and find
that, indeed, there is a well defined pattern for the bound states, and that all scattering
properties can be calculated efficiently. For the particular, yet very important case of
low-energy scattering (which we define as scattering at the top or bottom of the energy
band) we show how to obtain the scattering lengths accurately even without knowing
the phase shift.
Below we deal with both identical and distinguishable particles which can, of course,

have different tunneling rates, using a generalization of the center of mass separation
ansatz for the two-body problem.

7See sects. 4.1 and 4.2.
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4.3.1. General separation of the two-body problem

We consider two particles, labeled A and B, in general having different tunneling rates8

JA and JB, and interacting via a symmetric two-body potential V (z) = V (−z). The
reduction of the two-body to a one-body problem was also carried out by Piil and
collaborators in [PNM08], in quasi-momentum space. Here we show how to separate
the problem in direct lattice space, which is much more convenient in order to obtain
the exact results in the remainder of this section.
The two-body one dimensional discrete Schrödinger operator H, acting on `2(Z) ⊗

`2(Z) is, in first-quantized form,

(Hu)(nA, nB) =− JA [u(nA + 1, nB) + u(nA − 1, nB)]
− JB [u(nA, nB + 1) + u(nA, nB − 1)]
+ V (|nA − nB|)u(nA, nB), (4.66)

For the moment, we do not allow V to be infinitely large, |V (|n|)| < ∞ for all n ∈ Z;
this condition will be relaxed afterwards. Moreover, we assume that V is an arbitrary
potential of finite range ρ ∈ Z, that is, V (|n| > ρ) = 0 with at least V (ρ) 6= 0.
In order to solve the Schrödinger equation exactly we need to transform the Hamil-

tonian H to a single particle operator. For this purpose, consider the ansatz

u(nA, nB) = uK(z)e−iβKz+iKR, (4.67)

where R = (nA + nB)/2, z = nA − nB and

tan βK = JA − JB
JA + JB

tan (K/2). (4.68)

After introducing u in the Schrödinger equation Hu = Eu we arrive at the desired
single-particle Hamiltonian

(H̃uK)(z) = −|J (K)|[uK(z + 1) + uK(z − 1)] + V (|z|)uK(z), (4.69)

where the so-called collective tunneling rate [PNM08] has the form

|J (K)| =
√
J2
A + J2

B + 2JAJB cosK. (4.70)

At this point it is convenient to introduce a dimensionless Hamiltonian by dividing it
by the collective tunneling, which is equivalent to setting J (K) ≡ 1 in Eq. (4.69), and
rename uK ≡ u for simplicity.

4.3.2. Bound states

We pursue the exact solution for the bound states of two-body systems on the lattice
with finite range interactions.
We define a bound state of H̃ as any square-summable solution u(z) of the discrete

stationary Schrödinger equation H̃u = Eu with its associated eigenvalue E lying outside

8In continuous space this is equivalent to particles with different masses.
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4.3. The two-body problem with arbitrary finite-range interactions

the essential spectrum of H̃, σess = [−2, 2]. Recall that “outside the essential spectrum”
can actually mean both above [WTL+06, PSAF07, PM07, VP08b, VP08a, VP09] or
below the continuum.
It is already known that for any finite range potential V there exists at least one

symmetric bound state;9 it is also known that the maximum number of symmetric
(antisymmetric) bound states of H̃ is ρ+ 1 (ρ) [Tes00]. Now we show rigorously how to
calculate all these bound states exactly. The formulation of this result is as follows.
Theorem:
Let H̃ be the Hamiltonian (4.69) with V a range-ρ (< ∞) potential. Then all bound
states u(z) of H̃ have the decay property u(z) = α|z|−ρ for |z| ≥ ρ, 0 < |α| < 1; the
energies of the bound states are given by E = −α− 1/α. If u(z) is symmetric then α is
a root of a polynomial of degree 2ρ+ 1 if ρ ≥ 1 and, if ρ = 0, its degree is 2; if u(z) is
antisymmetric and ρ > 0 then α is the root of a polynomial of degree 2ρ− 1.
Proof. Applying the exponential ansatz for u(z) with |z| ≥ ρ yields immediately

E = −α− 1/α ≡ f(α). (4.71)

Since f((−1, 0) ∪ (0, 1)) = (−∞,−2) ∪ (2,∞) and f is injective in (−1, 0) ∪ (0, 1), we
have that the exponential ansatz is the only possible form for the bound states outside
the range of V . It can be shown by induction that α is a root of a polynomial: for
ρ ≥ 2, if u(z) is exponentially decaying, then αnu(ρ−n) = Q

(n)
2n−1(α) and αn−1u(ρ−n−

1) = Q
(n−1)
2n−3 (α), where Q(m)

k are polynomials of degree k. For symmetric solutions the
polynomial equation is then obtained by setting u(1) = u(−1) and, for antisymmetric
solutions, by setting u(0) = 0, which proves our statement. For ρ = 0 and ρ = 1 the
result can be proved by explicitly obtaining the polynomial equation [VP08b, VP09] as
done in subsects. 4.1 and 4.2.
The theorem presented here implies that for any finite range potential we have to

solve a polynomial equation whose degree grows slowly with increasing ρ. The way of
obtaining such polynomials is, as can be observed from the proof, inductive: we start by
setting u(ρ) = 1 and proceed to calculate u(±1) and u(0) by recurrence and solve the
respective symmetry constrains u(1) = u(−1) or u(0) = 0. Certainly, if ρ gets too large
it becomes inconvenient to get such polynomials for a general potential V , and we should
obtain the coefficients of the polynomial equation for the given particular potential. We
have calculated both polynomials P (α) for the symmetric and antisymmetric bound
states numerically, with their roots characterizing the bound states, for the specific
choice of the potential

V (z) =


− 1
|z|3 if 0 < |z| ≤ 10

0 if |z| > 10
−9.7313 if |z| = 0

 (4.72)

which represents a dipolar potential with a cutoff. The results are shown in Fig. 4.7.
For symmetric bound states the polynomial has only one root in (−1, 1), and therefore
only one bound state.10 The polynomial has a root at α = 1, which means that it has

9This result is a generalization of what we proved in subsect. 4.2. See [DHKS03], where the authors
make use of simple variational estimates with perturbation theory-inspired trial functions.

10Note that since V (z) ≤ 0 for all z ∈ Z, there can be no roots for −1 < α < 0.
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low-energy resonance. We will discuss resonances in subsect. 4.3.4. The polynomial
for antisymmetric bound states has also one and only one root in (−1, 1), in agreement
with the discrete Bargmann’s bound [HS02].

0 0.5 1
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4

6

8

α

P (α)

Figure 4.7.: Polynomials for symmetric (solid line) and antisymmetric (dashed-dotted
line) bound states whose roots α characterize the bound states with energy
E = −α− 1/α.

4.3.3. Scattering states
For finite range potentials, the scattering states of Hamiltonian H̃ are asymptotically
plane waves, that is, for |z| ≥ ρ we have

uS(z) ∝ cos(k|z|+ δS), (4.73)
uA(z) ∝ sgn(z) cos(k|z|+ δA), (4.74)

where S and A denote, respectively, the symmetric and antisymmetric solutions. Their
associated eigenenergies are given by the standard energy dispersion [AM76]

E = −2 cos(k). (4.75)

However, a general result concerning the phase shifts δS and δA does not seem feasible,
and it is quite cumbersome to obtain them in closed form for rather large ρ. We can,
however, calculate the phase shifts (and the exact solution at all z) numerically by
recurrence. To this end, we set uS(ρ+ 1) = cos(k(ρ+ 1) + δS) and uS(ρ) = cos(kρ+ δS)
and analogously for antisymmetric solutions. We then calculate uS(−1) and uS(1) for
symmetric solutions with the help of Eq. (4.69) and solve uS(−1) = uS(1). In the
case of antisymmetric solutions, the relevant equation is uS(0) = 0. We have done
so for the potential of Eq. (4.72), as plotted in Fig. 4.8. There, we clearly observe
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4.3. The two-body problem with arbitrary finite-range interactions

that the main differences between the two phase shifts are at low quasi-momenta where
the symmetric solution is resonant (see Fig. 4.7); at slightly higher quasi-momentum
we observe little difference between the two phase shifts. This means that far from
k = 0 fermionization appears rapidly, and is due to the large on-site interaction V (0),
while at low momenta the longer-range part of the potential plays an important role.
In the insets of Fig. 4.8, we compare the phase shifts for the potential in Eq. (4.72)
and a model range-1 potential, whose analytic solution is known11 [VP09]. The model
potential W is chosen so as to be consistent with Bargmann’s bound [HS02], and to be
resonant for the lowest-energy symmetric solution. We obtain [VP09]

W (1) =
∞∑
n=1

V (n) = −1.19753

W (0) = −12.125. (4.76)

The qualitative agreement between the results using V or W for the symmetric eigen-
states is manifest in Fig. 4.8 and, as expected, the differences are most noticeable in
the high quasi-momentum regime. For antisymmetric eigenstates the agreement is very
good, even quantitatively, until |k| ' π/2.

4.3.4. Scattering lengths and zero-energy resonances

The “low” energy (k → 0, π) scattering properties of the two-body system can be under-
stood via a simple, yet exact, calculation of the scattering lengths. Indeed, the solution
of the stationary Schrödinger equation for k → 0 and k → π has the corresponding
energy E = −2 and E = +2, and the asymptotic (|z| ≥ ρ) behavior

uS(z) = (∓1)z |z| − a
±
S

ρ− a±S
(4.77)

uA(z) = sgn(z)(∓1)z |z| − a
±
A

ρ− a±A
, (4.78)

where a−i (a+
i ) is the scattering length, i = S,A. It must be noted that on the lattice,

there can be four different scattering lengths, two for bosons and two for (spin-polarized)
fermions. In order to calculate the scattering lengths we proceed as follows : using the
recurrence relation from z = ρ by setting ui(ρ+ 1) = (∓1)ρ+1[1 + 1/(ρ− a±)], ui(ρ) =
(∓1)ρ and E ≡ E± = ±2, the scattering lengths for the symmetric states are obtained by
solving the equation (V (0)−E±)uS(0)−2uS(1) = 0 (see proof of the theorem in subsect.
4.3.2), while for the antisymmetric states the equation to be solved is uA(0) = 0. It is
remarkable that the resulting equations for the scattering lengths as functions of the
potential are linear in a±, that is, are of the form s0a

± + b0 = 0 with s0 and b0 real
constants which depend on V (z). In fact, this is an alternative way of defining the four
lattice scattering lengths, completely equivalent to the definition a± = − limk→π,0 ∂kδ,
with the advantage of not needing to know the phase shift explicitly. It must be noted
at this point that, strictly speaking, scattering lengths are singular properties of one-
dimensional lattices since the radial symmetry is lost in dimensions D > 1.

11See sect. 4.2.
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Figure 4.8.: The calculated phase shifts (tan(δ) with δ = δS or δ = δA) for symmetric
(circles) and antisymmetric (squares) scattering wave functions, Eqs. (4.73)
and (4.74) as a function of the relative quasi-momentum k, for the potential
(4.72). Left inset: comparison of the symmetric phase shift (circles) with
the one obtained with a model range-1 potential (triangles), Eq. (4.76).
Right inset: antisymmetric phase shift (squares) compared to the result
with the model range-1 potential (triangles). The axes of the insets have
the same meaning as those of the main figure.

As an example, we have calculated a−S for a quickly decaying potential V (0 < |z| ≤
ρ) = −1/|z|3 with a cutoff, V (|z| > ρ) = 0, and V (0) as a free parameter. The results
are shown in Fig. 4.9 for range ρ = 10, where we observe a clearly marked resonance at
the point where the scattering length diverges.
The divergence of one of the scattering lengths can happen for different values of the

total quasi-momentum K.12 In the simplest case of a zero range interaction with V (0) =
U , we know that the system has no zero-energy resonances, subsect. 4.1. For longer
ranges, already starting with ρ = 1 [VP09], these resonances can occur (see subsect. 4.2).
With the method outlined in this section we are then able to predict when, for a given
range-ρ potential with one or more free parameters {V (z1), V (z2), . . . , V (zn)}, there is
such a resonance. To do so, one sets u(z ≥ ρ) = (∓1)z and iterates recursively as has
been explained, and then solves the resulting equation for symmetric and antisymmetric
states, obtaining a relation between the free potential parameters corresponding to a
resonance.
We consider again the example of Fig. 4.9. As we have already noted, the system

admits one resonance at the bottom of the continuum for the symmetric states. The

12Recall that we have normalized the Hamiltonian as H̃ = H/|J(K)|.
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Figure 4.9.: Scattering length a−S (see text) as a function of the free parameter V (0),
with V (0 < |z| ≤ 10) = −1/|z|3 and V (|z| > 10) = 0.

approximate location of the resonance can be inferred from Fig. 4.9. However, once the
scattering length starts to diverge, it becomes very hard (if not impossible) to accurately
locate the resonance grafically, especially if the resonance is a very sharp function of
V (0). With our method, we are able to locate the resonance very precisely, obtaining
for the above discussed example a value of V (0) = −9.7313.13 This is exactly the value
chosen in the previous subsections to match this resonance.

4.3.5. The number of bound states

The scattering lengths are very useful quantities in the sense that their precise values
imply the knowledge of the total number of bound states with energies lying below or
above the continuum. For this purpose, we use the discrete analog of Sturm oscillation
theory [Tes00]. In simple terms, oscillation theory states that the number of nodes14 of
the zero-energy (E = E− = −2) symmetric (antisymmetric) solution u0 of H̃u0 = Eu0
in Z+ is exactly the number of symmetric (antisymmetric) eigenstates below E− = −2.
Since any state with energy below E− is a bound state, the number of nodes of u0 is the
number of bound states below the continuum. To see how many bound states there are
with energies above the continuum, we make use of the transformation Ĝ, Eq. (2.71),
or, equivalently, count the number of missing nodes.
We apply oscillation theory now to our example with the potential of Eq. (4.72) leaving
again V (0) as a free parameter. We calculate the symmetric zero-energy solution for a

13If the calculation is implemented with a symbolic package, the value of V (0) at which the resonance
occurs can be calculated exactly (with no machine precission limit). In our example, V (0) is a
rational number whose (large) numerator and denominator can be calculated exactly this way.

14On the lattice, a function f is said to have a node between n and n+ 1 iff f(n)f(n+ 1) < 0.
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given scattering length a−S with the methods introduced in this section and see that for
V (0) < −9.7313 there are two bound states with energies below E−, and for V (0) ≥
−9.7313 there is exactly one bound state below the continuum.

4.3.6. A generalization
More general Hamiltonians with exchange operators appear when dealing with the prob-
lem of one “free” boson and a bound pair [VPS10], which is the topic of the next chapter.
We will then see that the effective particles are distinguishable, there is a hardcore on-
site interaction, an effective range-1 potential and a first-order exchange interaction. We
consider now the following one-body Schrödinger operator

(Hexu)(z) = −[u(z + 1) + u(z − 1)] + V (|z|)u(z) + Ω(|z|)(P̂ u)(z), (4.79)

where V (0) can be finite or infinite and P̂ is the discrete parity operator. We further
assume that Ω(|z|) has a finite range ρex with no on-site exchange, Ω(0) = 0, since it
can be included in V (0).
Obviously [P̂ ,Hex] = 0, and therefore we can look for symmetric and antisymmet-

ric eigenfunctions. However, the Hamiltonian does not commute with the exchange
operator ΩP̂ . With the parity being a good quantum number it is straightforward
to generalize the theorem in subsect. 4.3.2 to include the exchange. To see this,
take ρM ≡ max(ρ, ρex). If u(z) is symmetric, the exchange shifts the potential to
V (|z|) + Ω(|z|), while if u(z) is antisymmetric it shifts the potential to V (|z|)− Ω(|z|).
Therefore, obtaining the bound states of Hex reduces again to a polynomial equation of
degree 2ρM ±1, and all the results of our theorem apply by changing ρ to ρM . However,
it is no longer true that the hardcore condition maps “bosons” onto “fermions”. Indeed,
the non-trivial dependence of Hex on the parity of the eigenstates makes it possible for
the states to be above as well as below the continuum even if V and Ω have both the
same definite sign. This makes Hex violate the hypotheses of the Bose-Fermi mapping
theorem (BFMT) [Gir60], and it explains the appearance of exotic three-body bound
states in a 1D lattice [VPS10], studied extensively in chapter 5.

4.4. Dynamics of two bosons in a combined lattice and
parabolic potential

This section is a natural continuation of sect. 3.3; however, for the understanding of
the following discussions, the results obtained in the previous sections of this chapter
are valuable.
Here, our goal is to study the quantum transport of a single bound pair on the

harmonically trapped lattice. We have shown in subsect. 4.1 that a two-body bound
state with strong on-site interaction has a very large effective mass. We also developed
the effective theory that treats, under certain conditions, a single pair as essentially
unbreakable, constituting a new particle. We will show that this is indeed a very good
approximation for the dynamics when the lattice is superimposed with a weak parabolic
potential.
On a flat lattice, both repulsive and attractive on-site interactions are totally equiv-

alent, as we saw in subsect. 2.7. However, this is no longer true when the trapping
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potential is switched on; this fact makes the repulsively bound pairs more stable than
their attractive counterparts.
Apart from the main goal of this section, we also study, in a time-dependent fashion,

two-body collisions and partial trapping of two-body wave packets due to the larger
effective mass of the portion of the initial state that has some population of two particles
at the same site.

4.4.1. The model

We thus consider cold bosonic atoms in a combined tight-binding periodic and weak
parabolic potential. In 1D, the system is described by the trapped, interacting Bose-
Hubbard Hamiltonian

H =
∑
n

[
Ω̃n2N̂n + U

2 N̂n(N̂n − 1)− J(b†nbn+1 + b†n+1bn)
]
, (4.80)

where Ω̃ > 0 quantifies the strength of the superimposed parabolic potential due to
which site n = ±1,±2, . . . acquires energy offset Ω̃n2 with respect to site n = 0 corre-
sponding to the minimum of the potential.

4.4.2. Two particle dynamics

Clearly, in the simplest case of feeble interaction |U | � J , we have two independent
particles for which the results of sect. 3.3 apply. But even for strong on-site interaction
U , some aspects of the combined dynamics of two low-energy particles can be inferred
from the independent particle picture modified by short range collisions. This applies
when the initial state |Ψ(0)〉 = |ψ〉 ⊗ |ψ′〉 is composed of two non-overlapping single-
particle wave packets, |〈ψ|ψ′〉|2 � 1, which upon collision with each other are reflected
by the potential barrier |U | & J . Examples of such a situation with large on-site attrac-
tive interaction energy U = −10J are shown in Figs. 4.10(a) and 4.10(b). Analogous
dynamics is observed for the repulsive interaction U = 10J .
More intriguing is the case of initial state |Ψ(0)〉 = |ψ〉 ⊗ |ψ〉 consisting of two

overlapping single-particle wavepackets shown in Fig. 4.10(c). This state has a sig-
nificant population of the two-particle states |2n〉 given by

∑
n |〈2n|Ψ〉|2 '

∑
n |an|4,

where an are the single-particle probability amplitudes. Clearly, the population of two-
particle states is largest in the central part of the initial density distribution. As seen in
Fig. 4.10(c), this part exhibits slow dynamics, characterized by the effective tunnelling
constant J (2) = −2J2/U , and separates from the wings of the initial density profile.
The wings, formed by the single-particle states |1n〉, oscillate between the two sides of
parabolic potential with the usual period τ .15

Interaction-bound dimers. At this point, let us recall16 [WTL+06, PSAF07, VP08b,
VP08a, PM07] that two bosonic particles occupying the same site n can form an effective
“dimer” bound by the on-site interaction U . Thus, when |U | � J , the first-order

15See sect. 3.3.
16See sect. 4.1.
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Figure 4.10.: Time evolution of density ρn ≡ 〈N̂n〉 for two particles in a combined pe-
riodic and parabolic potential with J/Ω̃ = 140 and U = −10J . (a) Initial
state |Ψ(0)〉 corresponds to one particle in the ground state |χ0〉 and the
other particle in state |χ0〉 shifted from the trap center by 7 sites. (b) Ini-
tially both particles in state |χ0〉 are shifted from the trap center by 7
sites in opposite directions. (c) Initial state corresponds to both particles
in state |χ0〉 shifted from the trap center by 7 sites in the same direction.
Inset in (c) shows the projection

∑
n |〈2n|Ψ〉|2.

transitions |2n〉 → |1n〉 |1n±1〉 effected by the last term of Hamiltonian (4.80) are non-
resonant and the particles cannot separate. However, the second-order in J transitions
|2n〉 → |2n±1〉 via virtual intermediate states |1n〉 |1n±1〉 are resonant. Consequently,
the dimer can tunnel as a whole with the effective rate J (2) = −2J2/U � J [PSAF07,
VP08a], as was also derived from the exact energy band in sect. 4.1. This explains the
dynamics seen in Fig. 4.10(c) where the initial density distribution splits into slow and
fast propagating components, the former composed of the dimer states |2n〉 while the
latter containing the monomer states |1n〉.
If the initial state is prepared in such a way that only two-particle (dimer) states are
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4.4. Dynamics of two bosons in a combined lattice and parabolic potential

populated, as implemented in, e.g., [WTL+06], for |U | � J the system can, to a good
approximation, be described by an effective dimer Hamiltonian derived in the second
order in J/U , Eq. (4.31). In terms of the dimer creation c†n = (b†n)2[1/

√
2(N̂n + 1)] and

annihilation cn = [1/
√

2(N̂n + 1)](bn)2 operators, and number operator m̂n = c†ncn =
N̂n/2, the effective Hamiltonian for a single dimer reads

Heff =
∑
n

[
Ω(2)n2m̂n + (U − 2J (2))m̂n − J (2)(c†ncn+1 + c†n+1cn)

]
, (4.81)

where Ω(2) = 2Ω̃ is the strength of the parabolic potential felt by the dimer, while
(U − 2J (2)) represents the “internal” energy of a dimer. Note that Eq. (4.81) is a
particular case of Eq. (4.31), but in second quantized form.

Before proceeding, let us note that, differently from the flat lattice situation considered
in [VP08b, PSAF07] and sect. 4.1, here the effective Hamiltonian Heff is not applicable
in the vicinity of sites |n| ' |U |/(2Ω̃) where near-resonant dissociation of a dimer can
occur via transitions |2n〉 → |1n〉 |1n±1〉. But since we are interested in the dynamics
of low-energy dimers with |U | � J � Ω̃, such high-n states cannot be reached.
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Figure 4.11.: Time evolution of atom density ρn ≡ 〈N̂n〉 for an attractively-bound dimer
in a combined periodic and parabolic potential with J/Ω̃ = 140 and U =
−10J . Initial state |Ψ(0)〉 corresponds to the ground state |χD0 〉 of the
effective Hamiltonian (4.81) with the dimer amplitudes aDn (0) shown in the
left inset. Right inset is the projection

∑
n |〈2n|Ψ〉|2.

Consider first the case of strong attractive interaction U < 0 leading to a positive
tunnelling constant J (2) > 0. Then the effective Hamiltonian (4.81) has the same form
as the Hubbard Hamiltonian (3.15) for a single particle in a combined periodic and
parabolic potential. We can therefore immediately write the lowest energy eigenvalues
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and eigenstates for an effective dimer as

EDk ≈ −2J (2) + 2
√
J (2)Ω(2) (k + 1

2) , (4.82)

|χDk 〉 ≈ N
∑
n

(2kk!)−1/2e−ξ
2
n/2Hk(ξn) |1Dn 〉 , (4.83)

where energies EDk are relative to the dimer internal energy (U−2J (2)), ξn = n 4
√

Ω(2)/J (2)

is the discrete coordinate, and |1Dn 〉 ≡ c†n |0〉 denotes a state with a single dimer at site
n; obviously |1Dn 〉 = |2n〉. The modified Bloch band −2J (2) ≤ EDk ≤ 2J (2) for the dimer
is restricted to the sites with

|n| ≤ nDmax ≡

√
2J (2)

Ω(2) , (4.84)

thus containing ND
max = 2bnDmaxc + 1 energy levels EDk with 0 ≤ k < ND

max. The
effective harmonic oscillator frequency at the bottom of the modified Bloch band is
~ωD = 2

√
J (2)Ω(2) and the dimer effective mass µD = ~2/(2J (2)) is large (J (2) � J)

and positive. We have verified these conclusions by numerically solving the Schrödinger
equation using the exact Hamiltonian (4.80) with the initial conditions corresponding
to eigenstates (4.83) of the effective Hamiltonian (4.81). As an example, in Fig. 4.11
we show the time evolution, or nearly complete absence thereof, of the system in the
ground state of (4.81),

|χD0 〉 '
8

√
Ω(2)

π2J (2)

∑
n

e−ξ
2
n/2 |1Dn 〉 = 8

√
Ω̃|U |
π2J2

∑
n

e−ξ
2
n/2 |2n〉 , (4.85)

with energy ED0 = −2J (2) +
√
J (2)Ω(2).

We next turn to the case of strong repulsive interaction U > 0. The dimer tunneling
constant is negative, J (2) < 0, corresponding to a negative effective mass µD [PSAF07].
As a result, |χD0 〉 in Eq. (4.85) is no longer the ground state of Hamiltonian (4.81), as
attested in Fig. 4.12(a). To see this, consider for a moment a single particle in a flat
lattice of L sites with J < 0. It follows from Eqs. (3.1), (3.2) that the lowest energy
state with ĒL−1 = −2J cos[πL/(L+ 1)] = −2|J |cos[π/(L+ 1)] is

|χ̄L−1〉 = −N
L∑
l=1

sin
[

lπ

L+ 1

]
eilπ |1l〉 . (4.86)

Thus, in the limit of infinite lattice L→∞, the ground state corresponds to the Bloch
wave with quasi-momentum q = π. Returning back to the repulsively-bound dimer in
the combined periodic and parabolic potential, we find that the low-energy eigenvalues
are those of Eq. (4.82) with the replacement J (2) → |J (2)|, while the corresponding
eigenstates are given by

|χ̃Dk 〉 ≈ N
∑
n

(2kk!)−1/2e−ξ
2
n/2Hk(ξn)eiπn |1Dn 〉 . (4.87)
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Figure 4.12.: Time evolution of density ρn ≡ 〈N̂n〉 for repulsively-bound dimer in a com-
bined periodic and parabolic potential with J/Ω̃ = 140 and U = 10J . (a)
Initial state |Ψ(0)〉 is the ground state |χD0 〉 of attractive dimer, Eq. (4.85),
with amplitudes aDn (0) shown in the left inset. (b) Initial state |Ψ(0)〉 is the
ground state |χ̃D0 〉 of repulsive dimer, Eq. (4.88), with amplitudes aDn (0)
shown in the left inset. Right insets are the projections

∑
n |〈2n|Ψ〉|2.

The ground state with ED0 = −2|J (2)|+
√
|J (2)|Ω(2) is then

|χ̃D0 〉 '
8

√
Ω(2)

π2|J (2)|
∑
n

e−ξ
2
n/2eiπn |1Dn 〉

= 8

√
Ω̃|U |
π2J2

∑
n

e−ξ
2
n/2(−1)n |2n〉 , (4.88)

which is confirmed by our numerical simulations illustrated in Fig. 4.12(b). Remarkably,
the repulsive dimer appears to be tighter bound than the attractive one. The symmetry

57



4. The two-body problem

between the cases of U < 0 and U > 0 is broken due to the presence of a parabolic
potential, in which the ground state of the repulsive dimer has quasi-momentum K = π
leading, according to Eq. (4.21), to almost completely colocalized bosons.
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Figure 4.13.: Time evolution of (a) atom density ρn ≡ 〈N̂n〉, and (b) dimer density ρDn ≡
〈m̂n〉 ' ρn/2 in a combined periodic and parabolic potential with J/Ω̃ =
140 and U = 10J . Initial state |Ψ(0)〉 corresponds to the dimer ground
state |χ̃D0 〉 shifted by 3 sites from the trap center. (a) is the numerical
solution of the Schrödinger equation with the exact Hamiltonian (4.80),
while (b) is obtained with the effective Hamiltonian (4.81). Inset in (a)
shows the projections

∑
n |〈2n|Ψ〉|2.

Finally, in Fig. 4.13 we show the dynamics of a dimer wave packet |Ψ〉, represented
by the ground state |χ̃D0 〉 initially shifted by 3 sites from the trap center (for these
parameters, nDmax ' 4.9). Our simulations using the exact Hamiltonian (4.80) and the
effective Hamiltonian (4.81) yield practically identical results, which amount to periodic
oscillations of the dimer wavepacket between the two sides of parabolic potential with
period τD ' 2π/ωD = (π~/2J)

√
|U |/Ω̃. Numerical simulations for attractively bound
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dimers reveal similar behaviour but with considerably larger admixture of the single-
particle states,

∑
n |〈1n|Ψ〉|2 . 0.2. This is another manifestation of the fact that the

repulsive dimer in a combined periodic and weak parabolic potential is bound tighter
than the attractive dimer under the otherwise similar conditions.

4.5. Conclusions and outlook
To summarize, in this chapter we have studied in detail the two-body problem on a
one-dimensional (1D) tight-binding lattice.
We have given complete analytical solutions of the eigenvalue problem for, first, the

simplest case of on-site interaction only, then the extended Hubbard model which in-
cludes also nearest-neighbor interaction, and then the general two-body problem with
finite range interactions, although involving some more numerical work. We have shown
that, in 1D, in order to obtain two-body resonances – which can be important for many-
body applications – we need to include, at least, nearest-neighbor interactions. We have
shown that all two-body bound states with any finite range interaction are characterized
by roots of an algebraic equation and we have developed a complete formalism for exact
calculation of resonance positions, scattering lengths and phase shifts.
Apart from the static results, we have studied the dynamics of two interacting bosons

on a lattice under the influence of an external harmonic potential. We have shown
that coherent – non-dispersive – transport of an interaction-bound pair can be achieved
between the two sides of the trap. Moreover, we have seen that, due to the internal
structure of the bound pairs, the repulsive dimers in the trap are bound tighter than
their attractive counterparts. Our results are relevant to current experiments with cold
alkali atoms in optical lattices and weak magnetic (or optical) traps [MO06, Blo05].
In higher dimensions, the two-body problem has been studied in [Mat86], however

mostly at zero total quasi-momentum. It would be very interesting to study the effects
of anisotropy – different quasi-momenta in each of the lattice directions –, especially
the crossover between three and two dimensions; and from two to one dimension. The
reduction of the effective tunneling in one direction compared to the other direction
when the projection of the total quasi-momentum in this direction is close to the edge
of the Brillouin zone may lead to the so-called geometric resonances [Ols98, FBZ04],
even when the lattice is actually isotropic.
The most natural extension of our work is, without any doubts, the three-body prob-

lem. Our results in this direction [VPS10] are explained in detail in the following
chapter.
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‘For historical reasons, there is a great deal of satisfaction in solving the three-body
problem, or at least in reducing it to quadrature, in any context’.
(Daniel C. Mattis [Mat86])

The three-body problem on a lattice has a long history. The study of the three-
magnon problem, for the Heisenberg model (HM) in one dimension, can be carried
out analytically with great detail thanks to the Bethe ansatz [KM97]. These magnons,
the quasi-particles of the HM, behave as lattice hard-core bosons with nearest-neighbor
pairwise interactions. For three spin-polarized fermions the situation is not different,
since the Heisenberg model and the many-fermion problem are unitarily equivalent.
Even the case of spin-1/2 fermions with two spins up and one spin down (or the other
way around), with on-site softcore interactions (which is nothing but the three-body
problem in the Hubbard model), can be solved analytically [LW68], and no three-body
bound states are present.
Given the success of the Bethe ansatz to describe essentially all three-body prob-

lems on one-dimensional lattices, Rudin and Mattis [RM84] studied the problem only in
higher (two and three) dimensions for soft-core bosons and spin-1/2 fermions; however,
they did it only for vanishing total quasi-momentum K ≡ 0. For fermions, they real-
ized that no three-body bound state exists, whatever (strong or weak) the interaction
strength is. In the case of three bosons, they found two results. First of all, that the
Efimov effect [Efi70] also appears on the lattice around the K = 0 two-body resonance
in three dimensions, although no qualitative or quantitative analysis was carried out.
Second, and more important, that the three-body bound state in three dimensions with
an asymptotic energy 3U (U is the on-site interaction strength) appears discontinu-
ously1 and already in the strong coupling regime. In two dimensions no Efimov effect
was reported, and the three-body bound states have no threshold, as in one dimension.
Most of these results are treated in detail, with a great pedagogical value, in the review
article [Mat86].
We study here the three-boson problem on the lattice, when the motion of the particles

is restricted to one spatial dimension. This case (for bosons) has been overlooked for
more than 20 years, and only recently the present author and his collaborators studied
this problem in detail in [VPS10].
Apart from the simple strongly bound trimer of three particles essentially co-localized

at the same lattice site, we find two other kinds of weakly bound three-boson states
corresponding to a “free” particle attached to a bound pair. Their binding will be shown
to be qualitatively explained by an effective theory in the strong coupling regime. This
theory suggests that the binding mechanism is an effective particle exchange interaction
between the dimer and the third particle, the monomer.

1It has a finite size at the formation threshold.
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5.1. Bound states

In order to study the properties of the three-boson bound states exactly , we will make
use of the so-called Mattis equation [Mat86], which we derive in the next subsection for
general lattice dimensions. We then solve it in one dimension in subsect. 5.1.2, finding
new bound states whose physics will be revealed by our effective model in subsect. 5.1.3.

5.1.1. Mattis equation

Let us consider three interacting bosons on a D dimensional homogeneous, hypercubic
lattice with the single band energy dispersion

ε(ki) ≡ ε(ki1 , ki2 , . . . , kiD) =
D∑
j=1

ε(kij ), (5.1)

which is assumed to have the period of the first Brillouin zone Ω = (−π, π]D, that is,
we define

ε(kij + 2π) = ε(kij ). (5.2)

The interaction potential V̂ between each pair of particles acts like

V̂ |k1,k2,k3〉 = 1
(2π)D

∫
Ω
dkV (k)

[
|k1 + k,k2 − k,k3〉

+ |k1 + k,k2,k3 − k〉
+ |k1,k2 + k,k3 − k〉

]
(5.3)

on the non-symmetrized eigenstates of the free three-body Hamiltonian T̂ ,

T̂ =
3∑
i=1

T̂i, (5.4)

T̂i = ε(−i∂ki). (5.5)

In solving the stationary Schrödinger equation H |ψ〉 = E |ψ〉, for H = T̂ + V̂ , we need
to calculate the matrix elements of the form

〈k′1,k′2,k′3| V̂ |ψ〉. (5.6)

For the bosonic bound states, the eigenfunctions can be expanded as

|ψ〉 =
∫∫∫

Ω3
dk1dk2dk3ψ(k1,k2,k3) |k1,k2,k3〉, (5.7)

with ψ being symmetric with respect to exchange of any pair of quasi-momenta. The
formal solution to the Schrödinger equation has the form

|ψ〉 = −[T̂ − E]−1V̂ |ψ〉, (5.8)
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where T̂ is the non-interacting Hamiltonian (5.4) with energy dispersion given by Eq.
(5.1). We then obtain the bound state equation

[E − ε(k1,k2,k3)]ψ(k1,k2,k3) = M̄(k1; k3) + M̄(k1; k2) + M̄(k3; k1), (5.9)

where the functions M̄ are defined as

M̄(k1; k2) = 1
(2π)D

∫
Ω
dkV (k)ψ(k1 + k,k2 − k,K− k1 − k2), (5.10)

and similarly for any pair of quasi-momenta ki and kj . We have defined above the
(conserved) total quasi-momentum K ≡ k1 + k2 + k3 of the three-body system which is
introduced to eliminate the dependence of each M̄ on one of the three quasi-momenta.

We can simplify Eq. (5.9) further by assuming the following two properties:
(i) The interaction potential preserves the symmetry of the lattice,

V (k) = V (ki1 , . . . , kij , . . . , kiD) = V (ki1 , . . . , kij + 2π, . . . , kiD), (5.11)

that is, V is periodic with the period of the Brillouin zone.
(ii) The potential is invariant under the change k→ −k, that is

V (k) = V (−k). (5.12)

This last condition is of course natural. The first of these conditions is usually not a
problem when it concerns either one-dimensional systems (e.g. the |n|−1 potential in
1D satisfies condition (i)), or short-range interactions. It is, however, more problematic
when long range interactions in D > 1 occur. To illustrate this point, let us consider the
Coulomb interaction between two electrons in continuous space. The three-dimensional
Coulomb potential VC in momentum space reads

VC(k) = 4πe2 1
k2 . (5.13)

Of course, if used in this form as an electron-electron interaction on the lattice, it violates
condition (i). The Coulomb problem on a three-dimensional (3D) lattice has not been
solved analytically, that is, the solution of the discrete Poisson equation

(∆VC)(n) = −δn,0, (5.14)

is not known analytically in three dimensions. However, if one still needs a Coulomb-
like interaction which satisfies the requirement (i), and behaves at low momenta as the
continuous space Coulomb interaction, the following choice for the potential is possible
[Mat86],

VC(k) ∝ 1
cos(kx) + cos(ky) + cos(kz)− 3 , (5.15)

since for k → 0 (i.e. the continuum limit), VC(k) ∼ k−2. This way of parametrizing
lattice potentials to respect the lattice symmetry (i), by replacing k2 by

∑
cos(ki)− d,

is indeed very useful for numerical (finite-difference) simulations of problems in the
continuum in the low-momentum regime.
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Having discussed the conditions that a “good” interaction potential on the lattice
should satisfy, we proceed to simplify Eq. (5.9). If (i) and (ii) are met, then the
eigenfunctions ψ also have the periodicity of V in each of their arguments ki, i = 1, 2, 3.
Therefore, we can choose freely the origin of integrations in Eq. (5.9), and the functions
M̄ become

M̄(ki; kj) = 1
(2π)D

∫
Ω
dkV (k− ki)ψ(k,kj ,K− k− kj). (5.16)

There are only three different M̄ ’s thanks to conditions (i) and (ii), since the following
relation

M̄(ki; kj) = M̄(ks; kj), (5.17)

where i 6= j and i 6= s 6= j, holds. Finally, we have derived a system of three coupled
integral equations, namely (5.16), with the wave function ψ given by Eq. (5.9). A major
simplification of Eq. (5.16) is then achieved if the interaction potential has zero range,
that is, for V (k) ≡ U . In this case, the functions M̄(ki; kj) cease to depend on the first
variable ki and simply become

M̄(ki; kj) ≡M(kj) = U

(2π)D
∫

Ω
dkψ(k,kj ,K− k− kj), (5.18)

so they satisfy the following integral equation,

M(kj) = U

(2π)D
∫

Ω
dkM(k) +M(kj) +M(K− k− kj)

E − ε(k,kj ,K− k− kj)
. (5.19)

The single final integral equation for the Mattis functions M(kj), the Mattis equation
[Mat86], is then obtained by making use of the symmetry in the denominator in Eq.
(5.19), so we can make the replacement M(K − k − kj) → M(k) in the numerator,
obtaining

M(kj)[1 + IE(kj)] = 2U
(2π)D

∫
Ω
dk M(k)
E − ε(k,kj ,K− k− kj)

, (5.20)

where IE is a generalized Watson’s integral [Wat39] and has the form

IE(kj) = − U

(2π)D
∫

Ω
dk 1
E − ε(k,kj ,K− k− kj)

. (5.21)

5.1.2. Three-boson bound states on a one-dimensional lattice

Formalism. We restrict ourselves now to the case of three bosons on an infinitely long
one-dimensional (1D) lattice interacting via a zero range potential of strength U , as
described by the Bose-Hubbard Hamiltonian in 1D,

H = −J
∑
n

(b̂†nb̂n+1 + b̂†n+1b̂n) + U

2
∑
n

N̂n(N̂n − 1). (5.22)

We will use the formalism developed in the previous subsection; we work in the three-
particle subspace and write the eigenfunctions in quasi-momentum representation ex-
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plicitly for D = 1,

|ψ〉 =
∫

Ω3
dk1dk2dk3ψ(k1, k2, k3) |k1, k2, k3〉, (5.23)

where Ω ≡ (−π, π] is the one-dimensional Brillouin zone, and where ki is the quasi-
momentum of particle i (i = 1, 2, 3). We saw in the previous subsection that the
bound-state wave functions have the simple form

ψ(k1, k2, k3) = −M(k1) +M(k2) +M(k3)
ε(k1) + ε(k2) + ε(k3)− E , (5.24)

where ε(k) = −2J cos(k) is the single particle energy band of the tight-binding lattice
Hamiltonian, Eq. (5.22), while the functions M satisfy the one-dimensional Mattis
equation

M(k)[1 + IE(k)] = −U
π

∫ π

−π
dq

M(q)
ε(k) + ε(q) + ε(K − k − q)− E , (5.25)

where IE is the one-dimensional generalized Watson’s integral

IE(k) = U

2π

∫ π

−π
dq

1
ε(k) + ε(q) + ε(K − k − q)− E . (5.26)

The Watson’s integral (5.26) can be performed analytically by using contour integration
[PM07]. However, with the methods already introduced in the previous chapter, we can
calculate it easily by simple comparison. This is very useful in order to do numerical
calculations efficiently. To this end, consider the two-boson problem on a 1D lattice
with on-site interaction only. The bound state solutions, after separation of center of
mass and relative coordinates, are obtained as

〈k|φ〉 = − 1
2 cos(K/2)ε(k)− E 〈k| V̂ |φ〉, (5.27)

where k is the relative momentum, φ is the relative wave function and K is the to-
tal quasi-momentum. After simple algebraic manipulations we arrive at the integral
equation

1 = − U2π

∫ π

−π
dk

1
2 cos(K/2)ε(k)− E (5.28)

for the energy E. The solutions are, of course, those obtained in coordinate space, so
that the bound state energies are given by

E = sgn(U)
√
U2 + (4J cos(K/2))2. (5.29)

Conversely, for Eq. (5.28) to have a solution, U must have the form

U = sgn(E)
√
E2 − (4J cos(K/2))2. (5.30)
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Therefore, for a general value of E, the integral in Eq. (5.28) is given by∫ π

−π
dk

1
2 cos(K/2)ε(k)− E = −sgn(E) 2π√

E2 − (4J cos(K/2))2 . (5.31)

By comparison, the 1D generalized Watson’s integral (5.26) has the form

IE(k) = − sgn[E − ε(k)]U√
[E − ε(k)]2 − 16J2 cos2[(K − k)/2]

. (5.32)

The Mattis integral equation, Eq. (5.25), is a homogeneous Fredholm equation of the
second kind with a fixed eigenvalue λ = 1. Note that it can be written formally as

KM = λM, (5.33)

subject to λ = 1 and with the kernel K defined as

K(q, k) = −U
π

1
[1 + IE(k)][ε(k) + ε(q) + ε(K − k − q)− E] . (5.34)

Therefore, Eq. (5.25) is a highly non-linear equation for the energy E for a given value
of U/J and a fixed total quasi-momentum K. Note also that Eq. (5.25) does not imply
M(k) to be an even or odd function of k; in fact, there is no symmetry with respect to
k = 0 unless |K| = 0 or |K| = π.
The numerical solution of Eq. (5.33) combines two methods. First of all, one has to

solve the eigenvalue problem, therefore obtaining a set of λ’s, by means of Nystrom’s
method [Nys30]. Then the correct solution is obtained by minimizing

fE({λ}) = |λ1 − 1|, (5.35)

with respect to E, where {λ} is the set of eigenvalues of K for a given energy E, and λ1
is the eigenvalue which is closest to 1 among the set.

Spectrum of the three-boson problem. Before solving Eq. (5.25), we can already
describe a large part of the spectrum of three bosons interacting via on-site repulsion or
attraction on a 1D lattice, since we know the full two-body spectrum in detail. First,
the continuous spectrum of three scattered (unbound) bosons, with energies denoted by
Ec3(k1, k2,K − k1 − k2) is simply the sum of three single-particle energy bands,

Ec3(k1, k2,K − k1 − k2) = ε(k1) + ε(k2) + ε(K − k1 − k2). (5.36)

We will refer to this subset of the spectrum as the “three-body continuum”. Next, there
is a continuum (which we call “two-body continuum”) consisting of energies which are
the sum of a single particle band and a dimer (bound pair) energy. If Q is the quasi-
momentum of the dimer and k = K −Q is the quasi-momentum of a monomer (single
particle), the energies Ec2 in the two-body continuum are given by

Ec2(K,Q) = sgn(U)
√
U2 + [4J cos(Q/2)]2 − 2J cos(K −Q). (5.37)
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There is still another part of the spectrum which is well-known and, at least in 1D, trivial.
When the on-site interaction is strong enough, |U |/J � 1, three bosons occupying the
same site are forced to stay together as a bound “on-site” trimer with energy Eb ≈ 3U ,
since the energy required to dissociate it is approximately |∆E | ≈ |3U −U | = 2|U | � J .
Consequently, there is a narrow band of on-site bound states with energies lying at
around 3U .
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Figure 5.1.: (a) Full three-particle energy spectrum of Hamiltonian (5.22) with U=-10J,
versus the total quasi-momentum K. All bound states are obtained via
exact numerical solution of Eq. (5.25). (a’) Magnified part of the spectrum
corresponding to dimer-monomer states. (b) Binding energies EB for the
off-site (weakly bound) trimers at K = 0 versus the interaction strength
U < 0. (c) Dimer-monomer spectrum of the effective Hamiltonian (5.53).
The two bound states are obtained via numerical solution of Eq. (5.58).

We solve Eq. (5.25) numerically, concentrating for concreteness on the case of attrac-
tive interactions, U < 0. We note, however, that our results also apply to the case of
repulsive interactions, since the spectrum for U > 0 is obtained from that for U < 0
by mirror reflection against the E = 0 axis and shifting of the quasi-momentum kj of
each particle by π, so that the total quasi-momentum is K → K + 3π (mod 2π). The
full spectrum of Hamiltonian (5.22) is shown in Fig. 5.1. Apart from the already dis-
cussed three- and two-body continua, and the band of on-site bound states, we see that
two new kinds of bound states arise, with energies lying below (Ea1) and above (Ea2)
the two-body continuum. We can already deduce certain properties of these states by
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simply looking at the spectrum. First, these are not on-site bound states, since their
energies Ea1(2) ≈ U + O(J) are very far from Eb ≈ 3U . This means that these states
must populate very little the Fock states of the form |3n〉, so it is appropriate to call
them “off-site” bound states. Next, their binding energies with respect to the two-body
continuum are EB1(2) ≈ ∓J/2, which suggests that these states are composed of a dimer
and a monomer weakly bound to each other. It is remarkable that the state above the
two-body continuum is bound stronger than the state below the continuum. Finally,
they are not the so-called Efimov trimers [Efi70, NFJG01], since their existence seems
attached to D = 3, close to a two-body resonance (in 1D, Hamiltonian (5.22) has no
resonances), and the states calculated here will be shown to persist deep in the strong
coupling regime, where the Efimov effect cannot be present.
In Fig. 5.2 we show the quasi-momentum distributions |ψ(k1, k2,K − k1 − k2)|2 at

K = 0 for the three different bound states, with the on-site interaction set to U/J = −10,
together with the reduced single particle quasi-momentum distributions ρK , defined as

ρK(k) =
∫ π

−π
dq|ψ(k, q,K − k − q)|2. (5.38)

As seen in the figure, the bound state below the two-body continuum has a quasi-
momentum distribution which is centered at k = 0, resembling then the quasi-momen-
tum distribution of an attractively bound pair [WTL+06], and is weakly bound since
it has a rather peaked quasi-momentum distribution. On the other hand, the bound
state above the two-body continuum has a momentum distribution peaked at around
k ≈ π, similarly to the case of repulsively bound pairs. Hence, if the intuitive picture of
these bound states as dimer-monomer pairs is valid, there must be another mechanism,
apart from the on-site interaction alone, capable of binding the system together into
attractively- and repulsively-bound states of a dimer and a monomer. Finally, the on-
site bound states have a very flat quasi-momentum distribution, indicating that they are
strongly bound, as we already saw in the full spectrum, Fig. 5.1, and by strong-coupling
arguments (Eb − Ec2 ∼ 2U).
As can be seen from Fig. 5.1(b), where we plot the binding energies EB1(2) at K = 0,

there are thresholds for the existence of full bands of the off-site bound states. For the
trimer below the two-body continuum, the binding energy vanishes when |U | ≈ 4J : at
this critical value of U the trimer energy Ea1 approaches the edge of the dimer-monomer
scattering continuum Ec2 = −

√
U2 + 16J2 − 2J . On the other hand, the trimer above

the two-body continuum ceases to exist already for |U | ≈ 8.5J , since then its energy
Ea2 approaches the bottom of the three-body continuum Ec3 = 3ε(0) = −6J (the two
continua, Ec2 and Ec3, overlap for |U | ≤ 8J). Thus, at K = 0, the trimer state with
energy Ea2 starts to appear well in the strong interaction regime, while for larger K the
threshold is smaller: |U | ≈ 4J for |K| → π.

5.1.3. Effective theory in the strong-coupling regime

In the previous chapters, where mostly analytical expressions for the bound state ener-
gies were derived, it was only a matter of applying Peierls’ substitution to the bound
state energy bands and expanding them in Taylor series in order to obtain effective
single-particle theories for the bound composites. Now, we want to derive an effective
Hamiltonian for the dimer-monomer system which can describe to a good approxima-

68



5.1. Bound states

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1-1 -0.5  0  0.5  1

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

k1/π

|ψ|2
k
2
/
π

k/π

ρ
0
(k
)

(a1) (a2)

(a1) (a2)

(b)

(b)

Figure 5.2.: Top panel: Quasi-momentum distributions |ψ(k1, k2,K − k1 − k2)|2 of the
three-particle bound states for U = −10J and K = 0; (a1) and (a2) cor-
respond to the off-site (weakly bound) trimers with energies below and
above the two body dimer-monomer continuum, while (b) corresponds to
the on-site (strongly bound) trimer. Lower panel: Reduced single-particle
momentum distributions ρ0(k) for the cases of (a1), (a2), and (b).

tion the properties of the off-site bound states, as well as the scattering states of the
system, in the strong interaction regime, |U |/J � 1.

The dimer-monomer effective theory. We now apply the effective strongly coupled
theory outlined in Appendix A to the problem of the dimer-monomer system in a one-
dimensional lattice. We split the Bose-Hubbard Hamiltonian (5.22) in the following way

H = H0 + ξV, (5.39)

with ξ ≡ −J and

V =
∑
n

(b̂†n+1b̂n + b̂†nb̂n+1), (5.40)

H0 = U

2
∑
n

N̂n(N̂n − 1). (5.41)

In our case, the subspace we are interested in to derive an effective Hamiltonian consists
of the unperturbed Fock states of the form

|n1, n2〉 ≡ |2n1〉 |1n2〉, (5.42)
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with n1 6= n2. For the first order correction given in Eq. (A.13) we need

〈2m11m2 |V |2n11n2〉 = 〈2m11m2 | [(b̂
†
n1+1+b̂†n1−1)b̂n1 +(b̂†n2+1+b̂†n2−1)b̂n2 ] |2n11n2〉, (5.43)

obtaining the effective Hamiltonian to first order

H
(1)
eff = H1 +Hex, (5.44)

with

H1 = −J
∑
n1 6=n2

[ |2n11n2+1〉(1− δn1,n2+1) + |2n11n2−1〉(1− δn1,n2−1)]〈2n11n2 | , (5.45)

and
Hex = −2J

∑
n1 6=n2

|2n21n1〉(δn1+1,n2 + δn1−1,n2)]〈2n11n2 | . (5.46)

We define now creation and annihilation operators for the dimer (ĉ, ĉ†) and monomer
(â, â†) as [PSAF07]

ĉn = 1√
2(N̂n + 1)

(b̂n)2(N̂n − 1)(3− N̂n), (5.47)

ĉ†n = (N̂n − 1)(3− N̂n)(b̂†n)2 1√
2(N̂n + 1)

, (5.48)

ân = b̂n
(2− N̂n)(3− N̂n)

2 , (5.49)

â†n = (2− N̂n)(3− N̂n)
2 b̂†n, (5.50)

which can be verified to obey the bosonic commutation relation. Indeed,

[ĉn, ĉ†m] |ψD〉 = δn,m |ψD〉, (5.51)
[ân, â†m] |ψM 〉 = δn,m |ψM 〉, (5.52)

where |ψD〉 =
∑
n f

D(n) |2n〉 and |ψM 〉 =
∑
n f

M (n) |1n〉. If they act on any ket which
does not belong to their subspace, they map it onto the zero vector. We also define the
number operators N̂D

n ≡ ĉ†nĉn and N̂M
n ≡ â†nân.

With the above definitions, and after carrying out the calculation of the second order
correction to the unperturbed Hamiltonian, we arrive at the effective dimer-monomer
Hamiltonian,

Heff = H1 +H2 +Hint, (5.53)

where H1 reads
H1 = −J

∑
n

(â†nân+1 + H.c.), (5.54)

describing the kinetic energy term of the monomer with single particle energy band ε(k);

H2 = E(2)∑
n

N̂D
n − J (2)∑

n

(ĉ†n+1ĉ
†
n + H.c.) (5.55)
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is the dimer internal energy, E(2) = U − 2J (2), with the second order tunneling rate
J (2) = −2J2/U giving rise to the single dimer Bloch band ε(2)(Q) = −2J (2) cos(Q); and
finally,

Hint = V (2)∑
n

N̂D
n N̂

M
n±1 −W

∑
n

(ĉ†n+1ĉnâ
†
nân+1 + H.c.) (5.56)

describes effective short-range interactions between the dimer and the monomer, in-
cluding a weak repulsive (or attractive, if U > 0) nearest-neighbor interaction V (2) =
−7J2/2U , and an exchange interaction with the rate W = 2J . We emphasize here that
a hard-core on-site interaction between the dimer and monomer is assumed.

In Fig. 5.1(c) we plot the spectrum of the effective Hamiltonian (5.53). It involves
a two-body scattering continuum, with the energy given by the sum of the energies of
(asymptotically) free dimer and monomer,

Ec2 = [U − 2J (2)]− 2J (2) cos(Q)− 2J cos(K −Q), (5.57)

and two bound states with energies Ea1 and Ea2 below and above Ec2. These effective
dimer-monomer bound states are obtained using the stationary Schrödinger equation
for the two-body wavefunction Ψ(Q, k) in quasi-momentum space, which leads to the
integral equation

Ψ(Q, k) = − 1
2π

∫ π

−π
dq

U12 + VC(Q, q) + VS(Q, q)
E(2) + ε(2)(q) + ε(K − q)− E

Ψ(q, k), (5.58)

where K = Q+ k is the total quasi-momentum of the system, and

VC(Q, q) = [2V (2) cos(q)− 4J cos(K − q)] cos(Q) (5.59)
VS(Q, q) = [2V (2) sin(q)− 4J sin(K − q)] sin(Q). (5.60)

We have included an artificial on-site interaction U12 → ∞ to impose the hard-core
condition on Hamiltonian (5.53). It is possible to reduce Eq. (5.58) to a non-linear
equation for the energy E by making use of the properties of the free lattice Green’s
functions. However, the resulting equation is rather cumbersome and we omit it here.
After solving Eq. (5.58) numerically, we obtain the two bands of bound states Ea1 and
Ea2 of Fig. 5.1(c). Comparison with Fig. 5.1(a’) reveals good qualitative agreement
with the exact spectrum of the three-body problem. The energies of the two-body
continuum are very well reproduced, while the bound state energies differ quantitatively
from those obtained by the exact Hamiltonian (5.22). These differences are associated
with the internal structure of the dimer, which is not accounted for by the effective
model. However, the discrepancies disappear progressively with increasing value of the
on-site interaction, as second order perturbation theory becomes more accurate.

There are two special but important cases for which the bound states of the effective
model can be calculated analytically. These correspond to the dimer-monomer system
having total quasi-momentum K = 0 or K = π. We seek the eigenstates |Ψ〉 of
Hamiltonian (5.53) in position space,

|Ψ〉 =
∑
n1 6=n2

Ψ(n1, n2) |n1, n2〉, (5.61)
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where we have redefined |n1〉 ≡ |1Dn1〉 and |n2〉 ≡ |1Mn2〉. We can map the resulting
difference equation into a one-body problem by using the ansatz we introduced in the
previous chapter for distinguishable particles with different masses,

Ψ(n1, n2) = eiK(n1+n2)/2e−iβKzφK(z), (5.62)

with z ≡ n1 − n2 the dimer-monomer relative distance, and

tan(βK) = J − J (2)

J + J (2) tan
(
K

2

)
. (5.63)

After separation of coordinates, and using the hardcore condition φK(0) = 0, we obtain
the one-body difference equation

J̄KφK(±2) +WKφK(∓1) + [Ē − V (2)]φK(±1) = 0,
J̄K [φK(z + 1) + φK(z − 1)] + ĒφK(z) = 0, (5.64)

with |z| > 1, J̄K ≡
√
J2 + (J (2))2 + 2JJ (2) cos(K), WK ≡W cos(K), and Ē ≡ E−E(2).

The bound solution is obtained by applying the exponential ansatz

φ
(P)
K (z 6= 0) = [sgn(z)](1−P)/2α

|z|−1
K , (5.65)

where P = ±1 is the parity of the state (P = 1 for symmetric and P = −1 for antisym-
metric φK). The solution of the resulting equation yields

α
(P)
K = − J̄K

V (2) − PWK
, (5.66)

with the energy given by the usual expression E − E(2) = −J̄K(1 + α2
K)/αK . In the

limit of infinitely strong interaction, |U |/J → ∞, second order perturbation theory is
exact, and predicts limiting values of the binding energies below and above the two-body
continuum, being Eb,∞ = ∓J/2, as can be inferred from Fig. 5.1 at large values of the
interaction |U |/J .
We now show how, without the exchange interaction, it is not possible to have bound

states in the range of validity of the effective Hamiltonian, but even if it were possible,
we could not explain the existence of a second bound state. To see this, assume the
hypothetical situation of no exchange term, W = 0. Then, the problem becomes that of
two hard-core bosons in the extended Hubbard model (though with a collective tunneling
rate J̄K 6= 2J cos(K/2)) discussed in full detail in chapter 4. The only possible bound
state would be φK = α

|z|−1
K , with

αK = J̄K
V (2) . (5.67)

However, |αK | < 1 if and only if |U |/J < 3/2 for K = 0 and |U |/J < 11/2 for K = π.
Since the effective Hamiltonian can only be valid for |U |/J > 8 – the value that defines
when the three- and two-body continua overlap and no adiabatic elimination is sensible
– there can be no bound states at all if the exchange is not present. Moreover, as we
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have already noted, the model without exchange cannot describe the presence of a bound
state located below (for U < 0) the scattering continuum of Hamiltonian (5.53). We
therefore can conclude that the off-site bound states arise due to the effective exchange
of a particle, with the rate 2J , when the bound pair and the “free” particle are close to
each other.

5.2. Scattering states

Quantum collision theory, on and off the lattice, for three particles does not differ much
from that for two particles [Joa75]. However, the inclusion of a third particle is by
no means trivial. In most cases, there are no analytical solutions of the three-body
problem, however with notable exceptions, such as the Bethe ansatz-solvable models we
discussed in the beginning of this chapter.
On a one dimensional lattice with soft-core pairwise interactions, and due to the

equivalence between attractive and repulsive interactions,2 there is not a single scattering
problem that can be dealt with exactly in a simple manner3, since two-body bound
states (above or below the continuum) are always present and, unavoidably, have to
appear as one of the “products” of scattering whenever the energy of the incident wave
is sufficiently large to form bound states. Moreover, the scattering of a dimer and
a monomer on a lattice, even in 1D, has not been studied rigorously to the date of
writing. Therefore approximate methods to study three-body collisions, allowing a
physical understanding of the results, are needed.
Here we present an approximate solution to the elastic scattering of a bound pair and

an unbound third boson on a 1D lattice in the strong coupling regime for two special
cases for which the scattering problem is exactly solvable. Therefore, we make use of the
effective Hamiltonian (5.53) of the previous section, qualitatively valid for |U |/J > 8.
The two cases are those which appeared to be exactly solvable for the bound state
problem, that is, for total quasi-momenta K = 0 and K = π. We restrict ourselves
from now on to these two special values. We have an effective problem where the
two particles involved are distinguishable, and therefore we can now study the proper
scattering problem of an incident wave scattered off a potential which includes exchange.
First of all, we realize that the parity is conserved, so we can solve first for antisymmetric
and symmetric eigenfunctions, and we will then use them to construct the scattering
“experiment”, and calculate the reflection and transmission rates.
The symmetric scattering eigenfunctions φSK of Hamiltonian (5.53) have the form

φSK(z) = cos(k|z|+ δS), (5.68)

for |z| 6= 0, together with the hard-core condition φSK(0) = 0. After tedious but simple
algebra we obtain the symmetric phase shift δS ,

tan δS = J̄K cos(2k) + (WK + Ē − V (2)) cos(k)
J̄K sin(2k) + (WK + Ē − V (2)) sin(k)

, (5.69)

2See subsect. 2.7.
3Not even in a complicated one.

73



5. The three-body problem

where the scattering energies are given by

Ē = −2J̄K cos(k). (5.70)

The antisymmetric wave functions are constructed similarly, as

φAK(z) = sgn(z) cos(k|z|+ δA), (5.71)

which obviously yield the same eigenenergies, Eq. (5.70), and the antisymmetric phase
shift has the form

tan δA = J̄K cos(2k) + (−WK + Ē − V (2)) cos(k)
J̄K sin(2k) + (−WK + Ē − V (2)) sin(k)

. (5.72)

In order to obtain wave functions that consist of incident, transmitted and reflected
waves, we consider the eigenstates which are superpositions of symmetric and antisym-
metric wave functions,

φK(z) ∝ cos(k|z|+ δS) +Bsgn(z) cos(k|z|+ δA)
=
[
eiδS +Bsgn(z)eiδA]eik|z| +

[
e−iδS +Bsgn(z)eiδA]e−ik|z|. (5.73)

Requiring the wave function for z > 0 to be the transmitted wave, we impose the
condition

B = −e−i(δS−δA), (5.74)

so that the final wave function has the form

φK(z > 0) = teikz, (5.75)
φK(z < 0) = eikz + reikz, (5.76)

where the reflection and transmission coefficients are given by

t = 1
2
[
e2iδS − e2iδA], (5.77)

r = 1
2
[
e2iδS + e2iδA]. (5.78)

One immediately realizes that the coefficients are normalized so that the sum of trans-
mission (T ) and reflection (R) probabilities is unity, T +R ≡ |t|2 + |r|2 = 1, with T and
R given by the expressions

T ≡ |t|2 = sin2(δS − δA), (5.79)
R ≡ |r|2 = cos2(δS − δA). (5.80)

Therefore, the transmission will be maximal when the difference between the symmetric
and antisymmetric phase shifts is close to ±π/2. In Fig. 5.3 we plot the transmission
and reflection probabilities as functions of the relative quasi-momentum k, for the value
U/J = −10 at total quasi-momenta K = 0 and K = π. We observe that full trans-
mission is never obtained, but rather high transmission probabilities can be achieved at
relative momenta close to π/2. We have checked (numerically) that there can never be
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5.3. Conclusions and outlook

complete transmission with U/J in the range of validity of the model, contrary to the
conclusions obtained in [JCS09], where the authors did not derive a consistent effective
Hamiltonian to second order in J/U , and seemingly replaced the exchange rateW = 2J
by the (incorrect) value of W = J .
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Figure 5.3.: Transmission probabilities for a monomer colliding with a dimer in the
effective model with U/J = −10; K = 0 corresponds to solid line and
K = π to dotted line.

5.3. Conclusions and outlook

In this chapter we have studied the three-boson problem on a one-dimensional lattice
in detail. We have shown that, for strong interactions, two types of non-trivial bound
states essentially composed of a dimer and a monomer exist for any value of the total
three-body quasi-momentum. One of these states appears to have the “wrong” binding
energy: above (below) the relevant continuum for attractive (repulsive) interactions,
showing a quasi-momentum distribution according to this binding. We have explained
the nature of these bound states as a consequence of an effective exchange interaction
between dimer and monomer in the strong coupling regime. Moreover, these states
have asymptotic, universal binding energies in the limit of very large on-site interaction.
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5. The three-body problem

The universal binding energies are equal, in absolute value, to half the single-particle
hopping rate.
We have also studied the exact scattering properties of the dimer-monomer system in

our strong coupling effective theory. Our results prove that dimer-monomer scattering
cannot be resonant, that is, no full transmission of a monomer through a dimer (or
conversely) can happen. This is contrary to what was incorrectly predicted in [JCS09].
The next natural step in the three-body problem on the lattice is the systematic study

of the Efimov effect. Efimov states were proven, numerically, to exist on a 3D lattice by
Rudin and Mattis [RM84]. More rigorously, Lakaev and collaborators proved, mathe-
matically, that the Efimov effect occurs on a 3D lattice loaded with three short range
interacting bosons, and estimated the spectrum asymptotics [LM03, ALM04, ADL07].
However, there is neither quantitative nor physical understanding of the Efimov effect on
the lattice. More dramatically, the case of finite quasi-momentum in some (one or two)
of the three directions of the lattice, which is equivalent to certain degree of anisotropy,
has not been studied, and should reveal even more exotic states than we have so far
observed. As a last remark I would like to launch a rather exotic question: is there a
three-magnon Efimov effect in a real material?
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6. Collision theory on a model superlattice

Superlattices are superpositions of two or more lattices with different periods. The
interplay between the different subperiods of the new system gives rise to what is known
as mini-bands – splitting of the original bands of the problem.
In semiconductor physics, superlattices are formed by periodically arranged layers of

semiconducting materials with different band gaps [ET70]. Upon application of a static
electric field, superlattices can show resonant tunneling effects of an electron from one
mini-band to the other or Bloch oscillations due to the Wannier-Stark ladder [Wan60],1
depending on the relative strength of the electric field with respect to the gap between
the mini-bands.
For cold atoms, superlattices can be formed by superimposing two optical lattices

with different periods [PPT+03]. The resulting system can have a whole range of sub-
periods and, consequently, a richer mini-band structure compared to that achievable
with semiconductors.
The theory of ultracold atoms in optical superlattices and strongly correlated elec-

trons in superlattice structures is currently attracting much interest [RMO06, RAR+06,
BPH+07, CLH+08, HR09, TNB09], since the periodicity of the superlattice gives rise
to new and striking correlated quantum phases and quantum phase transitions.
Optical superlattices can be used to prepare and detect certain phases not achievable

with homogeneous optical lattices. The phenomenon of d-wave Cooper pairing with
ultracold fermionic gases loaded in an optical superlattice, which may be of relevance
to the physics of high-Tc superconductors, might be observed in this system [RSF+09].
Moreover, a scheme for producing magnetic quantum phases with cold spinor gases in
a superlattice has been recently proposed [RGB+07].
One-dimensional tight-binding superlattice Hamiltonians describe the transmission of

microwaves through long arrays of scatterers (micrometer screws) inserted in a waveg-
uide. In [KS98], the authors were able to experimentally observe the Hofstadter but-
terfly [Hof76], the fractal spectrum of Harper’s equation describing the single-particle
Schrödinger equation on a superlattice.
From a purely theoretical point of view, and given the success in solving the one-

dimensional lattice many-fermion problem [LW68] and the Heisenberg model [KM97]
by means of the Bethe ansatz, one may be tempted to proceed to the solution of the
many-body problem on the simplest possible tight-binding superlattice with a period of
twice the natural lattice period. But even before that, it is necessary to understand a
much simpler, yet important problem, which is that of a single particle colliding with a
fixed impurity on a superlattice. This problem is closely related to “dimerized” fermionic
systems,2 which arise as a consequence of the so-called Peierls’ instability [Pei55, KL87]
in one dimensional crystals.

1See subsect. 3.2.1.
2The non-interacting Hamiltonians of the dimerized and superlattice models have identical band struc-
tures.
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6. Collision theory on a model superlattice

In this chapter we give the exact solution of the problem of a single particle scat-
tering off and binding to a single immobile impurity where the interaction is given by
a zero range potential. We find that a simple modification of the usual (homogeneous
lattice) solutions, involving periodic modulation of the scattering and bound state wave
functions, is sufficient to obtain the full spectrum and eigenstates of the system. But
contrary to the flat lattice case, for any parameters of the system there are two bound
states, one of which lying in the band gap and the other one outside of it. These inter-
esting solutions can serve as conceptual building blocks for the more important cases
of two- and many-body physics on a superlattice. Our findings can be observed with
standard experimental techniques in microwave scattering in waveguides [KS98] or with
ultracold atoms in optical superlattices.

6.1. The free particle

In the tight-binding approximation, the Hamiltonian H0 of a period-τ (∈ Z) superlattice
acting on a wave function ψ is defined through

(H0ψ)(n) = (T̂ψ)(n) + λ cos
(2π
τ
n

)
ψ(n), (6.1)

where T̂ is the discrete kinetic energy operator, Eq. (2.34), and we set, by convention,
λ > 0. Since the superlattice Hamiltonian is periodic, we can apply Bloch’s theorem
[AM76] and the eigenfunctions of H0 can be written as

ψ(n) = eiknφk(n), (6.2)

where φk(n+ τ) = φk(n) has the periodicity of the superlattice, and k is the particle’s
quasi-momentum.3 The periodicity of φk allows one to perform exact calculations for
superlattice band structures even for very large periods, since for each value of the
quasi-momentum k one can simply diagonalize the Hamiltonian with periodic boundary
conditions for φk. This can be seen more clearly in quasi-momentum representation.
Applying the canonic transformation n → i∂k – the inverse Peierls’ substitution – we
obtain the transformed Hamiltonian

H0 |k〉 = ε(k) |k〉+ λ

2

(
|k + 2π

τ
〉+ |k − 2π

τ
〉
)
, (6.3)

from which we see that the potential operator couples |k〉 with only a finite number (2)
of other states. This means that in order to solve the eigenvalue problem exactly, we
need to diagonalize a finite matrix for each value of the quasi-momentum.

6.1.1. The simplest superlattice: three solutions

The simplest possible superlattice is the one with period τ = 2, which is sketched in
Fig. 6.1. For the rest of this chapter, we will deal exclusively with this model, for which

3This quasi-momentum is not the same quasi-momentum used in the previous chapters, but should,
strictly speaking, be called quasi- quasi-momentum. In a discrete theory it plays the role of a
quasi-momentum while the usual quasi-momentum plays the role of the true momentum.
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mostly exact analytical solutions can be obtained.

J J 2λ

0
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n=
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Figure 6.1.: Sketch of the tunneling and potential with period τ = 2 for Hamiltonian
(6.1).

We begin with the free particle problem. There are at least three different ways of
solving the stationary Schrödinger equation H0 |ψ〉 = E |ψ〉. We start from the one
that makes use of Bloch’s theorem explicitly. Assume ψ(n) = exp(ikn)φk(n), with
φk(n+ 2) = φk(n), and the Schrödinger equation becomes

−J(eikφk(n+ 1) + e−ikφk(n− 1)) + λ(−1)nφk(n) = E(k)φk(n). (6.4)

Since φk(n+ 1) = φk(n− 1), we have

−2J cos(k)φk(n+ 1) + λ(−1)nφk(n) = E(k)φk(n). (6.5)

We set n = 0 and take φk(0) = 1 since its value is arbitrary. We then obtain the relation

φk(1) = −E(k)− λ
2J cos(k) , (6.6)

and by setting n = 1 we get
φk(1) = −2J cos(k)

E(k) + λ
, (6.7)

by solving the set of two equations we obtain for the energy

Es(k) = (−1)s
√

(2J cos(k))2 + λ2, (6.8)

with s = 1, 2, which shows explicitly that the model we are dealing with has two bands.
Note that the two bands are “mirror symmetric”, that is, E1(k) = −E2(k).
We can solve the Schrödinger equation in a much more elegant way which, however,
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6. Collision theory on a model superlattice

lacks generality and can only be applied to the present model. First note that the
superlattice potential V (n) = λ(−1)n anticommutes with the kinetic energy operator,
{V, T̂} = 0. By squaring the Hamiltonian we then obtain

H2
0 = T̂ 2 + V 2 + {V, T̂} = T̂ 2 + λ2, (6.9)

and, since the eigenvalues of the kinetic energy squared are (2J cos(k))2, we immediately
see that the eigenvalues of H0 are given by (6.8) as they should.
The third method to obtain the eigenstates of the superlattice Hamiltonian is, per-

haps, the most useful, since introducing interactions within this method is usually sim-
pler, especially in higher (two or three) dimensions. We diagonalize the Hamiltonian
now in quasi-momentum space. As was discussed in the previous subsection, the super-
lattice potential (which is off-diagonal in quasi-momentum space) only couples |k〉 with
|k + π〉 = |k − π〉. We diagonalize H0 in the basis { |k〉, |k + π〉} for each value of the
quasi-momentum k. The eigenfunctions are given by

|s, k〉 ≡ |ψs,k〉 = λ

Es(k)− ε(k) |k〉+ |k − π〉 = Es(k) + ε(k)
λ

|k〉+ |k − π〉, (6.10)

where s = 1, 2 labels the two bands, Es is given by Eq. (6.8) and ε(k) = −2J cos(k) is
the usual single-particle Bloch band in a flat lattice.
When there is no superlattice potential (if λ ≡ 0), all single-particle properties are

periodic, in quasi-momentum space, with the period (2π) of the first Brillouin zone
Ω = (−π, π]. The superlattice induces what we can call Brillouin subzones (BsZ).4 We
see that all properties of the eigenstates of the superlattice Hamiltonian are invariant
under a quasi-momentum translation k → k±π: Es(k±π) = Es(k) and |s, k±π〉 = |s, k〉
(up to a normalization constant). Therefore we define the first Brillouin subzone of
the period-2 superlattice as the interval Ω1BsZ = (−π/2, π/2] and the second Brillouin
subzone as Ω2BsZ = (−π,−π/2] ∪ (π/2, π].
The eigenfunctions (6.10), after normalization, take the form

|s, k〉 = As(k)
(
Es(k) + ε(k)

λ
|k〉+ |k − π〉

)
, (6.11)

where the normalization constant As(k) is given by

As(k) = 1√
1 +

(
Es(k)+ε(k)

λ

)2
. (6.12)

It is easy to check that two states from the same band with different quasi-momenta
are orthogonal, and that any two states from different bands are also orthogonal, so we
have

〈s, q|s′, k〉 = δs,s′δ(q − k). (6.13)

We discuss now two important cases, namely, the limits of small and large gap ∆G =

4These play the role of Brillouin zones in discrete theories, while the actual Brillouin zone Ω plays the
role of R.
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6.1. The free particle

2λ. If the gap is large, λ� J , then the eigenenergies (6.8) are approximately given by

Es(k) ≈ (−1)s
[
λ+ (ε(k))2

2λ

]
, (6.14)

and their associated wave functions (6.10) are approximated by

|s, k〉 ≈ Bs(k)
[(

(−1)s + ε(k)
λ

)
|k〉+ |k − π〉

]
, (6.15)

with Bs(k) a normalization constant. We observe that when the gap is large, the
eigenstates of H0 are essentially a superposition of |k〉 and |k − π〉 with equal weights,
and the energy bands are flat – they almost do not vary as a function of k. In Fig. 6.2
we compare the approximate band structure (6.14) with the exact one, Eq. (6.8).
For a small gap, λ� J , the energies can be expanded as

Es(k) ≈ (−1)s 2(ε(k))2 + λ2

2|ε(k)| . (6.16)

As can be observed in Fig. 6.3, the concept of Brillouin zones is then very useful: we
can interpret the small gap limit as a single energy band with a discontinuity (gap) of
magnitude ∆G at the edges of the first BsZ k = ±π/2.

-0.5 0 0.5

-4

-2

0

2

4

E

J

k/π

Figure 6.2.: The exact band structure (solid lines) for λ/J = 3 and the approximation
(dots), Eq. (6.14).
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Figure 6.3.: The exact band structure (solid lines) for λ/J = 1/5 and the approximation
(dots), Eq. (6.16).

The effective mass of a single particle in the s-th band of the superlattice is given by

m∗s = ~2
[
∂2Es(k)
∂k2

]−1

k=0
= (−1)s+1~2

√(
λ

4J2

)2
+ 1

4J2 , (6.17)

which is positive for the lower band and negative for the upper band. As can be observed
in Fig. 6.4, the effective mass is approximately constant and equal to the case of no
superlattice for λ � J , while for large λ it grows (in absolute value) linearly with
increasing the magnitude of the gap. This essentially means that the larger the gap,
the slower the low-energy dynamics of a single particle on the superlattice, as expected.
Moreover, hopping between nearest neighbors is suppressed while second-order tunneling
is slow but resonant.

6.2. The single impurity problem on the superlattice

We consider now the simplest interacting problem for a particle on the period-2 super-
lattice, corresponding to its collision with a single localized impurity. The impurity is
assumed to be an infinitely heavy particle (with zero tunneling rate), located at a fixed
lattice position. The impurity and the mobile particle interact via a zero range potential.
Moreover, since the two bands of the superlattice are mirror symmetric, we can assume,
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Figure 6.4.: Effective mass of a particle in the τ = 2 superlattice. The upper branch
corresponds to s = 1 (lower band) and the lower branch to s = 2 (upper
band).

without loss of generality, that the impurity is located at the centre of the lattice (in
our convention, it lies at a site with v(0) = +λ). Therefore the new Hamiltonian has
the form

H = H0 + U |0〉〈0| , (6.18)

where H0 is the single particle Hamiltonian of the superlattice with τ = 2, Eq. (6.1),
and U is the particle-impurity interaction, which can be attractive or repulsive.

6.2.1. Bound states

Bound states in quasi-momentum representation. We first treat the problem in the
quasi-momentum representation, for which the extension to higher dimensions is easier.
The discrete Fourier transform (DFT) of H0 is given by Eq. (6.3), and the DFT of the
potential V̂ ≡ U |0〉〈0| provides its action in k-space

V̂ |k〉 = U

2π

∫ π

−π
dq |q〉, (6.19)

on any eigenstate |k〉 of the free particle with no superlattice.
We study now the stationary states of the system. To this end, it is more convenient
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6. Collision theory on a model superlattice

to work in the basis of eigenstates of the superlattice Hamiltonian H0, { |1, k〉, |2, k〉}
given by Eq. (6.11). The matrix elements of the interaction potential are given by

〈s, k′| V̂ |s′, k〉 = U

2πAs(k
′)As′(k)[fs(k′) + 1][fs′(k) + 1], (6.20)

where As(k) is given by Eq. (6.12) and fs(k) ≡ λ−1(Es(k) + ε(k)). Recall the matrix
elements of the free superlattice Hamiltonian

〈s, k′|H0 |s′, k〉 = Es(k)δs,s′δ(k′ − k). (6.21)

The bound state wave functions have the form

|ψ〉 =
∫ π/2

−π/2
dk (ψ1(k) |1, k〉+ ψ2(k) |2, k〉) , (6.22)

and therefore we have

〈s, k′| V̂ |ψ〉 = U

2πAs(k
′)[fs(k′) + 1]×∫ π/2

−π/2
dk[ψ1(k)A1(k)(f1(k) + 1) + ψ2(k)A2(k)(f2(k) + 1)]. (6.23)

By taking now the brackets 〈s, k′|H |ψ〉 and using the stationary Schrödinger equation
H |ψ〉 = E |ψ〉 we obtain a set of two coupled integral equations

ψs(k′) = U

2π
As(k′)(fs(k′) + 1)

E − Es(k′)

∫ π/2

−π/2
dkF (k), (6.24)

for s = 1, 2, where we have defined the function

F (k) = ψ1(k)A1(k)(f1(k) + 1) + ψ2(k)A2(k)(f2(k) + 1). (6.25)

We proceed now to decouple the two equations. Defining

ψs(k) ≡ As(k)(fs(k) + 1)
E − Es(k) χs(k), (6.26)

trivially yields χ1(k) = χ2(k) = C ∈ C, and therefore the final equation for the bound
states reads

1 = U

2π

∫ π/2

−π/2
dk

[
(A1(k))2(f1(k) + 1)2

E − E1(k) + (A2(k))2(f2(k) + 1)2

E − E2(k)

]
. (6.27)

The above equation can be solved numerically with the same methods introduced in
subsect. 5.1.2. We will however solve the problem in direct lattice space, which yields a
much simpler, transcendental equation for the bound state energies, and is the subject
of the following paragraph.
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6.2. The single impurity problem on the superlattice

Bound states in position representation. Recall that, in a flat lattice (λ ≡ 0), the
following conformal transformation,

E = −J 1 + α2

α
, (6.28)

with 0 < |α| < 1 and α ∈ R, maps unambiguously the range |α| < 1 into R− [−2J, 2J ].
Therefore, if the desired eigenstate represents a bound state, with energy outside the
continuum, it can be fully characterized by a single parameter α. This form of the
energy as a function of α immediately gives the correct wave functions ψ(n) = α|n|

for zero range interaction, and one finally obtains a system of two equations with two
unknowns.

For the τ = 2 superlattice, we now apply the following reasoning:
(i) The energies of the continuum are given by Es(k) = (−1)s

√
[ε(k)]2 + λ2, with s = 1, 2

and ε(k) = −2J cos(k).
(ii) For the case of λ = 0, the bound state energies are obtained by replacing ε(k) by
expression (6.28).
(iii) We need a new conformal transformation that maps a subset
S ⊂ {α ∈ C | |α| < 1} onto R− σess, where the continuous spectrum is now given by

σess = [−
√

4J2 + λ2,−λ] ∪ [λ,
√

4J2 + λ2]. (6.29)

From (iii) it is clear that the functional form of the energy must depend only on α and
λ. Keeping in mind (i) and (ii), we propose the following functional form for the two
energies

Es = (−1)s
√(

J
1 + α2

α

)2
+ λ2. (6.30)

The domain of the transformation (6.30) can no longer be a subset of R. Part D1
of the domain D which is mapped onto (−∞,−

√
4J2 + λ2) ∪ (

√
4J2 + λ2,∞) is easily

seen to be
D1 = (0, 1). (6.31)

The other part D2 which is mapped onto (−λ, λ) consists of a set of purely imaginary
numbers α = ia, with a > 0,

D2 =
{
ia ∈ C | (

√
λ2 + 4J2 − λ)/2J < a < 1

}
. (6.32)

We now assume the following form for the bound state wavefunctions ψ,

ψ(n) = f(α;n)φα(n), (6.33)

where φα(n+2) = φα(n). This assumption will be justified if the final equations obtained
for φα and E have non-trivial, consistent solutions. With these ansätze, and using the
energy (6.30) in the Schrödinger equation H |ψ〉 = E |ψ〉, we find that the function f
has the form

f(α;n) = α|n|, (6.34)
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and the periodic part of the eigenfunctions is simply

φα(1) = U

J

α

α2 − 1 , (6.35)

with φα(0) ≡ 1. The consistency equation for the energies becomes

E = 1 + α2

1− α2U + λ. (6.36)

By equating Eqs. (6.30) and (6.36) , we obtain the two final equations

(−1)s
√(

J
1 + α2

α

)2
+ λ2 = 1 + α2

1− α2U + λ, (6.37)

for s = 1, 2, and the physically relevant solutions lie in the domain D ≡ D1 ∪D2. We
can also extend the domain to include negative values of α (if −α ∈ D1) and a (if
−ia ∈ D2), giving rise to different wave functions for which the phase changes from site
to site while their associated eigenenergies are equal to those of the solutions lying in
D.
In Fig. 6.5 we plot the bound state energies as functions of λ for a fixed value of the

zero range particle-impurity interaction U = −2J . As can be inferred from the figure,
there are two bound states, one below the lowest scattering continuum and one in the
gap. Although the bound state below the band quickly approaches the bottom of the
continuum for larger λ/J , it does not disappear but remains very weakly bound for all
gap sizes. We will show in the next subsection that there are no zero-energy resonances.

6.2.2. Scattering theory

Let us now calculate the symmetric continuum states (note that [H, P̂ ] = 0 for the τ = 2
superlattice). We assume that they can be factorized as

ψ(S)(n) = cos(k|n|+ δ)φk(n), (6.38)

with φk(n+2) = φk(n). After substitution into the Schrödinger equation H |ψ〉 = E |ψ〉
and some algebra we obtain that the phase shift, δ ≡ δs(k), must satisfy

tan δs(k) = U

Es(k)− λ cot(k), (6.39)

where s = 1, 2 is the band index, φk(0) ≡ 1, φk(1) is given by Eq. (6.7) and the energy
bands Es(k) are given by Eq. (6.8). For λ = 0, the above relation, Eq. (6.39), reduces
to the flat lattice result. Moreover, there are no resonances in the system for any value
of λ, U or k. The antisymmetric scattering states5 are readily calculated by applying
the ansatz

ψ(A)(n) = sin(kn)φk(n), (6.40)

where again φk are given by φk(0) ≡ 1 and φk(1) in Eq. (6.7).

5The antisymmetric states do not feel the delta interaction at all: they are free states.
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Figure 6.5.: The bound state energies (curves) as a function of λ for U/J = −2. The
continuum of scattering states is plotted as shaded surfaces, and the gap is
clearly observed.

Having both symmetric and antisymmetric scattering states we can now give the
solution in terms of incident, reflected and transmitted waves6 as

ψ(n) = φk(n)[A cos(k|n|+ δs(k)) +B sin(kn)] =
{

φk(n)(eikn + re−ikn), n < 0
φk(n) teikn, n > 0.

(6.41)
In order for the second equality to hold, the coefficients must satisfy

B/A = ie−iδs(k), (6.42)

and we find for the transmission and reflection coefficients

t = 1
2(e2iδs(k) + 1) (6.43)

r = 1
2(e2iδs(k) − 1). (6.44)

Hence, the transmission and reflection probabilities are given by T ≡ |t|2 = cos2(δs(k))
6On the superlattice, these are no longer plane waves.
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6. Collision theory on a model superlattice

and R = |r|2 = 1− T = sin2(δs(k)).
The solutions above are of course not well defined for “zero-energy” states, with

k = 0 (s = 1, 2) or k = π/2 (s = 2). The “low-energy” scattering properties (k = 0) are
described in terms of the scattering length of the system, as

as ≡ − lim
k→0

∂δs(k)
∂k

= Es(0)− λ
U

. (6.45)

(6.46)

The solution at zero quasi-momentum is then given by

ψ0(n) = φ0(n)
(

1− |n|
as

)
, (6.47)

with φ0 the periodic Bloch’s function of the given band s = 1 or s = 2. For the case of
k = π/2 and s = 2 we have not found a non-trivial (i.e. ψ 6= 0) solution.

6.3. Conclusions and outlook

In this chapter we have focused our attention to the simplest case of scattering on the
superlattice, a single particle colliding with an immobile impurity. The superlattice we
have used is the simplest one as well, described by a tight-binding Hamiltonian. This
system, however, exhibits new physics such as the possibility of having, simultaneously,
bound states inside and outside the energy gap induced by the superlattice. More-
over, our results can be generalized to any other period of the superlattice and with
longer range (but still finite) interactions; this would require more involved algebraic
manipulations but the physics will be similar.
One might be tempted to generalize our results to two-body scattering by employing

a slight modification of the usual two-body ansatz studied in detail in chapter 4. Since
on the superlattice the two-body problem does not separate into the center of mass and
relative coordinates, it is indeed rather obvious that a natural generalization for the
two-boson scattering states with zero range interaction could simply be

ψ(n1, n2) = Sφk1(n1)φk2(n2)eik1n1+ik2n2 + Csgn(n1 − n2)Aφk1(n1)φk2(n2)eik1n1+ik2n2 ,
(6.48)

where n1 and n2 are the coordinates of the two particles, φk is the Bloch’s function
with periodicity of the superlattice, S is the symmetrization operator, A is the antisym-
metrization operator and C a constant to determine.
It is easy to see by direct substitution into the Schrödinger equation that the ansatz

(6.48) cannot be an eigenstate of the two-body problem on the superlattice with period
τ = 2. The reason is that we have two sublattices, A and B, composed of even and
odd sites, respectively. It turns out that, in addition to C, we need a second constant
in Eq. (6.48). This means that we need a third function having the same (asymptotic)
energy as the functions conforming Eq. (6.48) to build a correct ansatz. We have
already proved that such functions exist and are unique. Moreover, physically acceptable
solutions of the Schrödinger equations can be constructed analytically, with very little
numerical effort – no more than solving a system of two linear equations! – and show
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very interesting features such as unconventional paired states. Needless to say, the single
particle-impurity collision is a fundamental building block for the two-body problem.
To the best of our knowledge, this would be the first two-body problem in a periodic

potential7 to be solved analytically, and might be a first step towards the exact solution
of the many fermion problem on the superlattice.

7The tight-binding superlattice is a finite-difference problem with a periodic potential.
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7. Lattice oscillator model, scattering
theory and a many-body problem

The quantum harmonic oscillator is a paradigmatic model with applications in all
branches of physics, too numerous to be counted. Due to the special structure of its
Hamiltonian, it is possible to obtain its eigenstates exactly in several different ways.
Perhaps the most celebrated one is the algebraic solution by means of the creation-
annihilation (ladder) operators [CKS95], which is by far the simplest and most elegant
and, moreover, it is the first step towards field quantization [Mes99].

For more complicated problems the use of numerical methods becomes necessary.
One of the most popular techniques is the finite-difference discretization, which is often
employed in high-energy physics to obtain non-perturbative results [Rot05]. However,
this method has severe problems, since the symmetries of the original problem are
usually lost on the lattice and can only be recovered once the continuum limit is taken
which, in practice, is numerically impossible. As an important example, the lattice
harmonic oscillator, subsect. 3.2.2, though it can be written as the Mathieu equation
in quasi-momentum space [CGM86, Mat86], is not factorizable and not even its ground
state can be obtained in closed form. This fact is very disappointing, since then the
SUSY structure of the system is not transparent (in fact, not even present) until the
continuum limit is taken.

In this chapter, we construct a model for the lattice harmonic oscillator which has a
correct continuum limit. Its Hamiltonian is shape invariant [CKS95] and, though the
excitations cannot be accessed analytically, its ground state is exactly solvable for any
value of the oscillator frequency and the lattice spacing. The excitations can, however,
be obtained by solving an equation which is analogous to the Hermite equation. We
propose then a definition of coherent states, finding that their correct continuum limit
cannot be obtained if they are defined as eigenstates of the lattice annihilation operators,
so their definition has to be given in terms of the displacement operator. Our model is
completely analogous to that for a single particle in a periodic potential, and we use it to
calculate the lowest band zero energy scattering length in a particle-impurity collision.
We then make further use of the analogy of the model with a many-body system with
anharmonic interactions on a finite ring which can be solved exactly for the ground
state.
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7. Lattice oscillator model, scattering theory and a many-body problem

7.1. Position and momentum operators on the lattice
We define the following operators in quasi-momentum space as the momentum (p̂) and
position (x̂) operators,

p̂ ≡ ~
d

sin kd (7.1)

x̂ ≡ i ∂
∂k
, (7.2)

where d (> 0) is the lattice spacing and k ∈ (−π/d, π/d] is the quasi-momentum. The
operators p̂ and x̂ are constructed in analogy with their continuous space counterparts.1
We can write the lattice analog of the harmonic oscillator annihilation â and creation
â† operators as

â = (X̂ + iP̂ )/
√

2 (7.3)
â† = (X̂ − iP̂ )/

√
2, (7.4)

where the quadrature operators are defined as

X̂ ≡ (mω/~)1/2x̂, (7.5)
P̂ ≡ (m~ω)−1/2p̂. (7.6)

However, by using the lattice operators of Eqs. (7.1) and (7.2) we see that [X̂, P̂ ] =
i cos(kd) and [â, â†] = cos(kd). In other words, the canonic commutation relations are
valid up to a factor of cos(kd). In the limit of small lattice spacing, we obtain the correct
commutation relation of the continuous space case limd→0[X̂, P̂ ] = i. The commutation
relation [X̂, P̂ ] yields a generalized uncertainty principle (GUP) of the form

∆X∆P ≥ 1
2 |〈cos(kd)〉|, (7.7)

which resembles the GUP of systems with a minimal length [Hos06]. The GUP (7.7) does
not imply any minimal ∆X (it can be zero). However, we have a maximal dispersion
for the momentum,

∆P ≤ ∆Pmax =

√
~π

mωd3 , (7.8)

which is infinite in the continuum limit, as it should.

7.2. The lattice harmonic oscillator
If we wish to construct a lattice theory for the harmonic oscillator having a similar
structure as its continuum limit, we have to consider the operator

N̂ ≡ â†â = 1
2(P̂ 2 + X̂2 + i[X̂, P̂ ]). (7.9)

1Note that they have the correct continuum limit, i.e. they tend to the continuous space operators
when d→ 0.
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7.2. The lattice harmonic oscillator

So far, the “number” operator, Eq. (7.9), has exactly the same appearance as in con-
tinuous space. Its explicit form is given by

N̂ = 1
2

(
−mω

~
∂2

∂k2 + ~
mωd2 sin2(kd)− cos(kd)

)
. (7.10)

The number operator written in this way looks rather unusual. If we rewrite sin2(kd) =
(1−cos(2kd))/2, and perform Fourier transform to direct lattice space, then we see that
the number operator N̂ acts as

(N̂ψ)(x) = 1
2
[mω
~
x2ψ(x)− ψ(x+ d) + ψ(x− d)

2

+ ~
2mωd2

(
ψ(x)− ψ(x+ 2d) + ψ(x− 2d)

2
)]

(7.11)

where n = x/d ∈ Z are the lattice points. Thus, the number operator corresponds
to a lattice with nearest-neighbor and next-nearest-neighbor hoppings with an external
harmonic trap, plus a trivial constant. After taking the continuum limit d → 0, one
easily verifies that ~ωN̂ → p̂2/2m+mω2x2/2− ~ω/2.

7.2.1. Ground state and lattice Hermite equation

From now on we consider the Hamiltonian

H ≡ ~ω
(
N̂ + 1

2
)
. (7.12)

If operator â annihilates a wave function in k-space which is 2π-periodic,2 then it is the
ground state of H with energy E0 = ~ω/2. Equation âψ0(k) = 0 is readily solved and
the ground state wave function has the form

ψ0(k) = Ne−γdeγd cos(kd), (7.13)

where γd ≡ ~/(mωd2). In the continuum limit, Eq. (7.13) reduces to the well-known
harmonic oscillator ground state, ψ0(k) ∼ exp(−~k2/mω). We use this result to verify
the uncertainty principle on the lattice, and find that in the ground state of the lattice
harmonic oscillator, the uncertainty relation is also minimal,

∆X∆P = 1
2

∣∣∣∣〈ψ0| cos(kd) |ψ0〉
〈ψ0|ψ0〉

∣∣∣∣ , (7.14)

since in general ∆X∆P ≥ |〈
[
X̂, P̂

]
〉|/2.

Further analogy with the harmonic oscillator in continuous space can be observed
by solving the eigenvalue problem for the number operator N̂ψ(k) = Ñψ(k) with the
ansatz ψ(k) = ψ0(k)φ(k). The eigenvalue problem is then transformed to the equation

φ′′(k)− 2 ~
mω

sin(kd)
d

φ′(k) + 2 ~
mω

Ñφ(k) = 0 (7.15)

2For simplicity, we will call a function 2π-periodic when it is actually 2π/d-periodic.
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7. Lattice oscillator model, scattering theory and a many-body problem

that determines the unknown φ(k) for which periodic boundary conditions (PBC) φ(k+
2π/d) = φ(k) are assumed. Note the analogy of Eq. (7.15) with the Hermite equation:
the naive substitution sin(kd)/d ∼ k, valid for kd� 1, yields the well-known continuum
limit, in which the eigenvalues Ñ become natural numbers.
In Fig. 7.1 we plot the low-energy eigenvalues Ñ of N̂ , Eq. (7.10), for a small value of

the lattice spacing d. We see that the lowest eigenvalue is indeed zero, while the rest of
the eigenvalues appear to be quasi-degenerate but almost linearly spaced as Ñs+2−Ñs =
1. The reason is that, in direct lattice space, the number operator includes tunneling to
nearest and second nearest neighbors, therefore inducing the quasi-degeneracy, except
for the ground state. The relevant eigenstates for the continuum limit are those labeled
by even quantum numbers s and, in direct lattice space, appear to be essentially a
superposition of the discretized Hermite functions ψs/2(x = 2nd)−ψs/2(x = −(2n+1)d).
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Figure 7.1.: Eigenvalues of N̂ , Eq. (7.10), for d = 1
10
√

5

√
~
mω .

7.2.2. Coherent states
It is natural to define now the coherent states for the lattice harmonic oscillator. First,
we try the eigenstates of the annihilation operator, âψα = αψα, with α ∈ C. The
solution of this equation is

ψα(k) = exp

−i2

√
~
mω

αk

ψ0(k) (7.16)
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7.2. The lattice harmonic oscillator

with ψ0(k) being the ground state, Eq. (7.13). If we assumed α to be any complex
number, ψα would not fulfill the PBC. Hence, if we insist on ψα to be correct, we
have no choice but to restrict the values of α to αj = 1

2

√
mω
~ j, j ∈ Z, which is a

very unsatisfactory answer since the coherent states would then be restricted to equally
spaced real numbers. Therefore the coherent states ψα do not present a very convenient
definition. This apparently difficult situation can be resolved in a rather elegant way,
however, relaxing the requirement that the coherent states be eigenstates of the lattice
annihilation operator â. To this end, we define the coherent states Ψα as solutions of
the equation âΨα(k) = α cos(kd)Ψα(k),

Ψα(k) = exp

−i2α

√
~
mω

sin(kd)
d

ψ0(k), (7.17)

which are obviously 2π-periodic for all α ∈ C, and have the correct continuum limit. We
can further justify Eq. (7.17) as a definition since even in the continuum the coherent
states are solutions of (â + αi[X̂, P̂ ])Ψα = 0. The only issue we cannot generalize to
the lattice case is the usual form of the displacement operator, since on the lattice the
Baker-Hausdorff formula is not valid due to the commutator

[
â, [â, â†]

]
6= 0. Therefore

we define here the displacement (or translation) operator for lattice and continuum as
D̂(α) = e−i2αP̂ , which generates unnormalized coherent states.

7.2.3. Angular momentum
A major inconvenience of lattice discretizations, if these are introduced artificially and
not due to a true underlying crystal structure, is the absence of rotational symmetry.
To be more concrete, we lack conservation of angular momentum or, more dramatically,
we do not even have a definition of angular momentum on the lattice!
We propose here a rather simple lattice analog of the angular momentum. The re-

quirements this operator has to satisfy are rather relaxed: (i) it should have a correct
continuum limit, (ii) there should be a ground state of some relevant enough Hamilto-
nian with a well defined “angular momentum” on the lattice and, (iii) the lattice angular
momentum cannot commute with the lattice Hamiltonian. Requirement (iii) is easy to
satisfy: take any Hamiltonian which respects the symmetries of the lattice. We discuss
now how (i) and (ii) can be met. Consider first a two-dimensional (2D) oscillator with
Hamiltonian H(2D) = ~ω

[
N̂1 + N̂2 + 1], with N̂i = â†i âi. We define the lattice angular

momentum in 2D, in analogy with the continuum, as

L̂ ≡ x̂1p̂2 − x̂2p̂1 = i(â1â
†
2 − â

†
1â2), (7.18)

and we see that condition (i) is fulfilled. As promised, requirement (ii) is automati-
cally satisfied by the ground state of H(2D), ψ(2D)

0 (k1, k2) = ψ0(k1)ψ0(k2), with ψ0(ki)
defined in Eq. (7.13), and by the ground state of the 2D free particle Hamiltonian
HF = −2J

∑
k1,k2(cos(k1d)+cos(k2d)) |k1, k2〉〈k1, k2| , ψ(k1, k2) = δ(k1)δ(k2), both hav-

ing angular momentum L = 0 as a good quantum number. It must be noted that lattice
angular momentum operators have been defined in the context of rotating gases in an
optical lattice in [BPS+06], but with such definition requirement (ii) is no longer satis-
fied for the ground state of the lattice oscillator. We now show by explicit calculation
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7. Lattice oscillator model, scattering theory and a many-body problem

that the angular momentum on the lattice is in general not a conserved quantity

[L̂, N̂1 + N̂2] =i
[
cos(k1d)â1â

†
2 + â2â

†
1 cos(k1d)

− â1â
†
2 cos(k2d)− cos(k2d)â2â

†
1
]
, (7.19)

which, as expected, is non-zero, but vanishes in the continuum limit. It must be noted
now that the lattice angular momentum operator, Eq. (7.18), can be used as a definition
not only for the model discussed here, but for any tight-binding lattice model even
without next-nearest-neighbor hopping.

7.3. Application to impurity scattering in a periodic potential
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Figure 7.2.: Scattering lengths for mV0L
2/~2 = 10−3, 1/2, 1 and 3/2 (at x0 = 0 from

bottom to top). Inset: a(0) as a function of L.

The model presented here can be applied to construct completely different systems
and obtain some of their properties exactly. As a first application, let us consider a
single particle moving on the real line. It is readily verified that the Hamiltonian with
the periodic potential,

V (x) = V0 sin2(x/L)− ~
L

√
V0
2m cos(x/L) (7.20)

has a ground state ψ0(x) = exp[λL cos(x/L)], with λL =
√

2mV0L/~, since the potential
and kinetic energy operators are dual to those for the lattice Harmonic oscillator in

96



7.4. A many-body system

quasi-momentum space. We consider a single static impurity located at x0 ∈ (−πL, πL]
(this is the central site, and by translation applies to an impurity at any site), with zero
range interaction potential Vg(x) = gδ(x− x0), and we show how to get the low-energy
scattering properties of the system in a very simple manner. First we notice that, since
V has a purely continuous spectrum and the impurity is immobile, upon collision the
incident waves can only acquire a phase shift. Therefore, for low-energy scattering we
only need the periodic (ψ0) and aperiodic (which we call ψI) solutions for zero energy.
The aperiodic solution centered at the first site is given by

ψI(x) = ψ0(x)
∫ x

dxe−2λL cos(x) ≡ ψ0(x)Φ(x). (7.21)

This aperiodic solution is clearly antisymmetric and it holds that Φ(x) = βx + φp(x),
where φp(x + 2πL) = φp(x). Recall that without the periodic potential, this solution
corresponds to setting φp ≡ 0, and the scattering length a0 of a static Dirac delta
impurity is defined [LSSY05] by the zero-energy solution f0(x) = 1− |x|/a0. Clearly, f0
is the sum of the periodic (free) solution and the aperiodic (unnormalizable) solution,
with the inverse scattering length as a coefficient. In analogy to the free space situation,
we define a position dependent scattering length a(x0), x0 ∈ (−πL, πL], in terms of the
zero-energy solution

f(x;x0) = ψ0(x)− |ψI(x)− ψI(x0)|
a(x0) , (7.22)

which, written in this way, satisfies the boundary condition

f ′(x+
0 )− f ′(x−0 ) = 2mgf(x0)/~2 (7.23)

imposed by the Dirac delta, if

a(x0) = − ~2

mg

[
(ψ0Φ)′

ψ0

]
x=x0

(7.24)

for x0 ∈ (−πL, πL], and a(x0 + n2πL) = a(x0), with n ∈ Z. In the simplest case
of x0 = 0, the scattering length is shown to have the form a(0) = −~2e−2λL/(mg).
If x0 6= 0 it has to be calculated numerically. In Fig. 7.2 we plot the scattering
length a(x0), showing how strongly it depends on the position of the impurity. The
scattering length never diverges (there is no resonance), but mga(x0)/~2 can actually
become positive and indeed very large with increasing V0 at x0 6= 0, even though the
corresponding free-space scattering length (we assume g > 0) is negative. This means
that interactions in a periodic potential can effectively change both quantitative and
qualitatively, depending on where the scattering takes place.

7.4. A many-body system

As a second application, we construct a many-body Hamiltonian of interacting particles
on a finite ring whose ground state can be obtained in closed form. We consider N
particles on a ring of length 2πL. The position of particle i ∈ {1, . . . , N} is denoted
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by xi ∈ (−π/L, πL] and its momentum by pi = −i~∂/∂xi, and for all the functions
involved we use PBC. We consider the following Hamiltonian

H = ~2

2m

N∑
i=1

Â†i Âi, (7.25)

Âi = ∂

∂xi
+ λL

N∑
j=1
j 6=i

sin(xi,j/L), (7.26)
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where xi,j = xi − xj . With these definitions, the many-body Hamiltonian (7.25) is
2π-periodic. In the limit of an infinitely long ring, L → ∞, we are left with N parti-
cles interacting via pairwise harmonic potentials. However, for any finite-size ring the
interactions are anharmonic and contain three-body terms.
Since the Hamiltonian H, Eq. (7.25), is the sum of semi-positive operators, it follows

that H ≥ 0. Hence, if there exists a non-singular periodic function ψ0 which is annihi-
lated by all Ai, i = 1, . . . , N , then it is the ground state of H and its eigenenergy is zero.
The set of N equations Âiψ0 = 0 is easily shown to be satisfied by the wave function

ψ0(x1, . . . , xN ) = N

N∏
i<j=1

exp
[
2λL2 cos(xi,j/L)

]
, (7.27)

with N the normalization constant. It is remarkable that for any L < ∞, the ground
state (7.27) is square integrable, even if λ < 0, but in taking the limit of L → ∞ this
will no longer be true.
In Fig. 7.3 we plot some ground state pair correlation functions, defined as

ρ(x, x′) ∝
∫

Ω
dx3 . . . dxN |ψ0(x, x′, . . . , xN )|2, (7.28)

where Ω ≡ (−π/L, π/L]N−2. We note that as λL2(> 0) becomes larger, the particles
tend to be tighter co-localized, which also happens for increasing number of particles.

7.5. Conclusions
We have constructed a lattice model of the harmonic oscillator with a correct continuum
limit whose properties, especially in the ground state, are the perfect analogous of
those in continuous space. We have also defined lattice coherent states and a lattice
“angular momentum” in terms of the creation and annihilation operators of the model.
By establishing connections with other systems, we were able to describe low-energy
scattering in a periodic potential and an anharmonically interacting many-body system.
These results are relevant for lattice simulations as well as cold collisions and many-body
theory.
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A. Effective strongly coupled theories

We describe here how to obtain effective Hamiltonians, to second order in J/|U | (in
general, to second order in a certain “small” parameter of the Hamiltonian), following
[CTDRG92, LSA+07].

Let H be the Hamiltonian
H = H0 + ξV, (A.1)

and let us assume that we know the eigenstates (and eigenvalues) of H0, which can
be grouped in different subspaces labeled by the index α. If we define Pα to be the
projection operator on the subspace denoted by the index α, it holds that PαH0Pβ = 0
for α 6= β. Consider now the transformation of the original Hamiltonian H,

Heff ≡ GHG−1, (A.2)

where G ≡ eiS is unitary, GG† = G†G = 1, and S is hermitian, S† ⊂ S. We have to
choose G, or for that matter, S, so that the effective Hamiltonian does not couple states
which lie in different subspaces,

PαHeffPβ = 0 (A.3)

if α 6= β. We take now the specific choice of S in which PαSPα = 0. Assuming that
ξ is a small parameter (in the usual sense of perturbation theory, |ξ| must be much
smaller than a certain parameter which quantifies H0), we assume the operator S to be
a holomorphic function of ξ.1 We can then expand it in Taylor series as

S =
∞∑
i=1

ξiSi. (A.4)

We make use of the Baker-Hausdorff formula [LP07] to second order,

Heff ≈ H + [iS,H] + 1
2[iS, [iS,H]], (A.5)

obtaining, if we only keep terms up to ξ2,

Heff ≈ H0 + ξH
(1)
eff + ξ2H

(2)
eff , (A.6)

where we have defined the first and second order corrections to the unperturbed Hamil-

1This is the case for many lattice models; see [Kat95] for details.
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tonian H0 as

H
(1)
eff = [iS1, H0] + ξV, (A.7)

H
(2)
eff = [iS2, H0] + [iS1, ξV ] + 1

2[iS1, [iS1, H0]]. (A.8)

If |α, i〉 and |β, j〉 are two states in the subspaces α and β, respectively, and using the
condition PαH0Pβ = 0, we find

〈α, i| iS1 |β, j〉 = ξ
〈α, i|V |β, j〉
Eα,i − Eβ,j

(1− δα,β), (A.9)

where we have defined the energies Eα,i as the eigenvalues of the unperturbed Hamil-
tonian H0, H0 |αi〉 = Eα,i |αi〉. We then get for the first order effective Hamiltonian
within the α subspace

H
(1)
eff = ξV. (A.10)

After some algebraic manipulations we arrive at the second order correction in the
desired subspace

H
(2)
eff = −ξ

2

2
∑
i

V Qα,iV, (A.11)

where the operators Q are defined as

Qα,i ≡
∑
l,γ 6=α

|γ, l〉〈γ, l|
Eγ,l − Eα,i

. (A.12)

We finally obtain the effective Hamiltonian to second order in matrix form

〈α, i|Heff |α, j〉 = Eα,iδi,j + ξ〈α, i|V |α, j〉 − ξ2

2 〈α, i|V [Qα,i +Qα,j ]V |α, j〉. (A.13)
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Abbreviations
Abbreviation Explanation
BFMT Bose-Fermi mapping theorem
CAR Canonic anticommutation relation
CCR Canonic commutation relation
DFT Discrete Fourier transform
GUP Generalized uncertainty principle
HM Heisenberg model
LGF Lattice Green’s function
nBZ n-th Brillouin zone
nBsZ n-th Brillouin subzone
nD n dimensions
OL Optical lattice
PBC Periodic boundary conditions
SMT Spectral mapping theorem
SUSY Supersymmetric
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