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Pregnant rats received 0.10 or 0.20 mg/kg body weight betamethasone, or 100 mg/kg body weight L-carnitine, or
L-carnitine 100 mg/kg plus betamethasone 0.05 or 0.10 mg/kg body weight, or saline (controls) for three days
before delivery of foetuses at day 19 of gestation. Dose-related effects on the dipalmitoyl phosphatidylcholine
content and the phosphatidylcholine species composition of foetal and maternal lungs were determined. Betametha-
sone (0.10 and 0.20 mg/kg) or L-carnitine (100 mg/kg) significantly increased (p < 0.05) the dipalmitoyl phosphati-
dylcholine content in the foetal lungs, while only small changes were found in relative terms. Combinations of
betamethasone (0.05 or 0.10 mg/kg) with L-carnitine (100 mg/kg) also significantly increased the dipalmitoyl phos-
phatidylcholine content of the foetal lungs above control values (p < 0.01) and above the values achieved with
betamethasone alone (p < 0.05). In the maternal lungs a significant increase of the dipalmitoyl phosphatidylcholine
content above the control values was only found after treatment with betamethasone-carnitine combinations,
whereas compared with the foetal lung the relative increase of dipalmitoyl phosphatidylcholine as a fraction of total
phosphatidylcholine was more pronounced after betamethasone treatment. The gas Chromatographie method used
separates two monoenoic phosphatidylcholine species with 32 carbon atoms in the acyl residues. These two phos-
phatidylcholine species showed striking differences between adult and foetal lungs. Palmitoleyl palmitoyl phosphati-
dylcholine predominates in the maternal lung, whereas palmitoyl palmitoleyl phosphatidylcholine is the major
monoenoic phosphatidylcholine species with 32 carbon atoms in the foetal lung. These two species were not affected
in maternal or foetal lung by betamethasone or L-carnitine treatment. In contrast, after treatment with betametha-
sone-carnitine combinations, a significant increase of the fraction of palmitoyl palmitoleyl phosphatidylcholine was
found in foetal but not in the maternal lung. The results of the present study demonstrate that maternal glucocorti-
coid and carnitine treatment affects the maternal as well as the foetal lung but with different effects on the dipalmi-
toyl phosphatidylcholine content and phosphatidylcholine species composition.

T . j A. of exogenous surfactant is known to be effective in reduc-Introduction . ° .
mg the seventy of the disorder (4). Altered chemical com-

The problem associated with a preterm birth are due to the position and functional activity of surfactant has also been
immaturity of one or more organ systems. Because the demonstrated in adult respiratory distress syndrome, and
neonatal respiratory distress syndrome is the most severe it has been suggested that these abnormalities occur early
complication, its prevention is a matter of major concern. in the disease process (5). The main causes of adult respi-
Pulmonary surfactant is a complex aggregation of phos- ratory distress syndrome in pregnancy were found to be
pholipids, cholesterol, and lung-specific apolipoproteins infection, preeclampsia or eclampsia (6).
which line the alveolar surface. Phosphatidylcholine Even in normal pregnancies plasma carnitine levels at
species are by far the most abundant component of delivery are decreased to about half of the concentra-
the phospholipid fraction. Dipalmitoyl phosphatidylcho- tions seen in non-pregnant women (7-10). As shown
line (l,2-dipalmitoyl^72-glycero-3-phospho-choline) is for rats, maternal carnitine levels are also significantly
mainly responsible for surface activity (1, 2). lower in tissues (11). Maternal administration of ,-car-
A lack of surfactant causes a disturbance of alveolar gas nitine during P^gnancy increased the content of dipal-
exchange. TOs is seen in immature infants suffering from 1 *°̂  phosphatidylcholine in the foetal rat lung (12,
respiratory distress syndrome (3). Pulmonary instillation 13)· Matemal administration of carnitine in pregnancies

with the risk of imminent premature delivery reduced
') Supported by «Medizinisch-Wissenschaftlicher Fonds des both the incidence of respiratory distress syndrome and
Bürgermeisters der Bundeshauptstadt Wien" foetal morbidity (14). Carnitine is essential for the trans-
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port of long chain fatty acids into the mitochondrial ma-
trix. Furthermore carnitine is important as a reversible
sink for acyl residues and the generation of free coen-
zyme A (15).
Glucocorticoids, especially betamethasone, are fre-
quently used to accelerate foetal pulmonary maturity and
to decrease the risk of respiratory distress syndrome in
preterm infants (16, 17). However, a considerable
number of infants fail to respond to this therapy (16).
The concept that glucocorticoids only trigger receptors
on foetal lung fibroblasts and/or type II cells to induce
synthesis of surfactant lipid and protein components has
been judged much too simplistic, especially since gluco-
corticoids cause foetal growth retardation in rabbit (18)
and rat foetuses (19).
The initial purpose of this study was to evaluate whether
the glucocorticoid dosage which is known to be effec-
tive on foetal lung development also induces changes
of the dipalmitoyl phosphatidylcholine content and the
phosphatidylcholine molecular species composition in
maternal rat lungs. The second aim was to compare the
effects of different betamethasone-L-carnitine combina-
tions on the phosphatidylcholine species composition of
foetal and maternal lungs, since this drug combination
is under investigation in clinical trials.

Materials and Methods
Study design
Sixty pregnant Wistar rats with an average weight of 300 g and an
expected gestation period of 22 days were prospectively random-
ised and divided into 6 subgroups. The day after mating was con-
sidered day 1 of gestation. The rats received intraperitoneal injec-
tions of different doses of betamethasone, L-carnitine, and L-camit-
ine-betamethasone combinations, or saline (controls) from day 16
to day 18 of gestation. In all groups the foetuses were delivered
by Cesarean section on day 19 of gestation.

Animal procedures
The rats were intubated and anaesthetised with piritramide (Dipido-
lof®, 15 μg/kg) and an additional injection of D-glucochloralose
(5%) as necessary. The animals were ventilated with a tidal volume
of 15 ml/kg. Immediately after delivery the foetal trachea was
clamped before spontaneous inspiration could occur. The foetuses
were thoracotomised by two parasternal incisions and the lungs
were removed. The lungs of the foetuses of each litter were pooled
and homogenised. A hypodermic syringe was inserted in the mater-
nal vena cava, and the lung was rinsed by passing physiological
saline via the right ventricle. Thereafter the lung was removed
and homogenised.

Lipid extraction
Lipids were extracted and washed using the method of Folch et
al. (20). The main phospholipid classes were separated by one-
dimensional thin-layer chromatography using the solvent system
chlorofornVmethanol/10 g/1 aqueous potassium chloride (43 + 47
+ 4, by vol.) (12).

Determination of phosphatidylcholine molecular
species

Dipalmitoyl phosphatidylcholine and other phosphatidylcholine
species were determined as the corresponding diacylglycerol tri-

methylsilylether derivatives by gas^liquid chromatography (21). A
10 m (0.32 mm I. D.) fused silica capillary column with chemically
bonded DB-5 (0.15 μιπ coating thickness) was used for all analy-
ses. Hydrogen was used as the carrier gas at 40 kPa (8-10 ml/min
flow rate) and nitrogen as the make-up gas. The oven temperature
was programmed from 260 °C to 320 °C, at a rate of 3 °C/min.
The analyses were carried out on a Dani Model 86.10HT and a
Dani Model 8521 gas Chromatograph (Dani SpA., Monza, Italy)
each equipped with a programmed temperature vaporiser injector.
Recording, converting, peak area calculation, and data processing
were carried out by personal computer using Chrom-Card software
(Fisons Instrument SpA, Milan, Italy). The results of quantitative
determinations are expressed as amounts per g dry weight of the
lungs, since this measurement tends to underestimate rather than
overestimate changes in dipalmitoyl phosphatidylcholine content
in the different treatment groups (22).

Chemicals

Chloroform, methanol, ethanol, pyridine, hexamethyldisilazane,
and thin-layer chromatography plates (silica gel 60) were obtained
from E. Merck (Darmstadt, Germany). Bacillus cereus-denved
phospholipase C was obtained from Boehringer-Mannheim (Ger-
many). Dimyristoyl-s/i-glycero-3-phosphocholine was supplied by
Sigma Chemical Company (St. Louis, MO) and L-Carnitine-Leo-
pold® by Leopold Ltd. (Graz, Austria). Betamethasone was
purchased from Boehringer Ingelheim (Germany).

Statistical analysis

Statistical comparisons between groups were made using analysis
of variance followed by Dunne f s t-test for multiple comparison
(23). All values are given as mean ± SD.

Results and Discussion

The present study is the first to systematically examine
the effects of treating the mother animal with betametha-
sone, Ζ,-carnitine, and betamethasone-Z,-carnitine combi-
nations. A rat model was used, because rabbits are not
suitable: prenatal carnitine levels are low in man, rats,
piglets, and sheep, but not in rabbits and guinea pigs
(24). A disadvantage of the rat model is, however, that
for technical reasons it is impossible to lavage or deter-
mine the mechanical properties of the lungs in animals
on the 19th gestational day (25), and that survival analy-
sis cannot be performed, since rat foetuses delivered on
day 19 of gestation do not survive (26). Thus we eval-
uated the effects of the different drugs on the dipalmi-
toyl phosphatidylcholine content and the phosphati-
dylcholine species composition of foetal and maternal
lungs.

Dipalmitoyl phosphatidylcholine content.

Injection of the mother with 0.10 and 0.20 mg/kg body
weight betamethasone or 100 mg/kg body weight Ζ,-car-
nitine resulted in a significant (p < 0.05) increase of the
dipalmitoyl phosphatidylcholine content in the foetal
lungs, whereas in the maternal lungs only treatment with
0.20 mg/kg betamethasone caused a significant increase
of the dipalmitoyl phosphatidylcholine content, com-
pared with control values (tab. 1). Combinations of both
0.05 or 0.10 mg/kg betamethasone with 100 mg/kg
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Tab. 1 Phosphatidylcholine species in foetal and maternal rat lung containing two Cj6-fatty acids

Treatment 16:0/16:0-PC*
(g/kg dry weight)

16 : 0/16 : 0-PC* 16 : 1/16 :0-PC**
(Fraction of total phosphatidylcholines, %)

16:0/16: 1-PC***

Foetal rat lung
NaCl (Controls) 8
Betamcthasone (0.1 mg/kg) 8
Betamethasone (0.2 mg/kg) 8
Carnitine (100 mg/kg) 8
Camitine (100 mg/kg) + 8
Betamethasone (0.05 mg/kg)
Carnitine (100 mg/kg) + 8
Betamethasone (O.I mg/kg)

Maternal rat lung
NaCI (Controls) 8
Betamethasone (0.1 mg/kg) 8
Betamethasone (0.2 mg/kg) 8
Camitine (100 mg/kg) 8
Carnitine (100 mg/kg) + 8
Betamethasone (0.05 mg/kg)
Camitine (100 mg/kg) + 8
Betamethasone (0.1 mg/kg)

5.8 ±0.7
7.9a ± 2.5
8.2° ± 1.9
7.6a ± 0.6
8.4b ± 0.8

9.4b± 1.2

16.0 ±2.9
15.8 ±3.4
21.2 ±7.8
18.9 ±3.4
19.6n± 1.5

20.0a± 1.7

18.4 ±2.3
21.1 ±2.4
18.4 ±3.5
18.2 ± 1.1
22.4 ± 2.2

20.7 ± 2.6

33.2 ±4.9
41.1a±3.0
41.9a± 5.8
36.7 ±3.7
35.1 ±2.1

38.9a ± 2.5

4.4 ± 0.4
4.0 ± 1.0
3.9 ± 0.4
4.2 ± 0.3
3.3 ± 0.3

3.0 ± 0.2

6.7 ± 1.3
7.3 ± 0.7
7.3 ± 0.4
6.5 ± 0.8
7.2 ± 0.2

7.4 ± 0.4

6.7
7.0
6.0
5.9

±0.7
± 1.9
± 1.7
± l.l

8.4a ± 0.9

8.3" ± 1.3

4.7 ±0.7
4.4 ±0.5
4.7 ±0.4
4.5 ±0.7
5.4a ± 0.3

5.3a ± 0.3

The values are given as mean ± SEM.
n indicates the number of experiments.
a p<0 .05 , bp<0.01.

* 1,2-Dipalmitoyl-M-glycero-3-phosphocholine
** 1 -Palmitoleyl^-palmitoyl-s/i-glycero-S-phosphocholine

*** 1 -Palmitoyl-2-palmitoleyl-i'/j-glycero-3-phosphocholine

L-carnitine also increased the dipalmitoyl phosphati-
dylcholine content of the foetal and maternal lungs sig-
nificantly above control levels (p < 0.05). Doubling of
the betamethasone dosage from 0.10 to 0.20 mg/kg
caused only a minor further increase of the dipalmitoyl
phosphatidylcholine content of the foetal lungs, whereas
the adult lungs showed a significant increase (tab. 1).

Several mechanisms may be responsible for the different
glucocorticoid dose effects in the foetal and adult lung.
In response to glucocorticoids a polypeptide, the fibro-
blast-pneumocyte-factor, is produced and secreted by
foetal lung fibroblasts (27, 28). It seems plausible that
the effects of the lower betamethasone dose on the foetal
lung is mediated by this factor, since higher concentra-
tions of glucocorticoid are required to produce an effect
on type II cells (27, 28). This is supported by previous
findings that in glucocorticoid-treated animals differen-
tiation of foetal lung tissue was advanced in regions with
broad epithelial-mesenchymal contact, i. e. in the termi-
nal branches of the pseudoglandular outgrowths in the
subpleural regions (29).

In foetal lung the effect of hormones on the CTP : cho-
line-phosphate-cytidylyl-transferase2) is due to activa-
tion of existing enzyme rather than stimulation of its
synthesis (1). This is in accordance with evidence that
the foetal lung contains a large amount of this enzyme
in the active form; in contrast, more of the enzyme in

2) Enzyme:
CTP : choline^phosphate-citidylyltransferase (EC 2.7.7.15)

the adult lung is in the active form (30). Consequently
in the adult lung glucocorticoid stimulation of CTP :
choline-phosphate-cytidylyltransferase activity occurs
via the classical mechanism, mediated by the glucocorti-
coid receptor and dependent on mRNA and protein syn-
thesis (31), for which higher doses of the hormone are
necessary.

Furthermore there is ample evidence that monoenoic
fatty acids induce a shift from the inactive form of CTP:
choline-phosphate-cytidylyltransferase to the active spe-
cies and thus play a key role in the developmental regu-
lation of this enzyme. Late pregnancy is characterised
by increased levels of cholesterol esters, triacylglycer-
ols, and unesterified fatty acids (32). This implies that
the enzyme activity is not only linked to developmental
and drug-induced changes, but also to pregnancy-related
changes of lipid metabolism.

Foetuses of several species, including humans, accumu-
late carnitine in the last trimester of pregnancy (24). The
corresponding maternal carnitine levels are significantly
lower not only in blood but also in tissues (11). It is well
known that carnitine promotes phospholipid synthesis in
different tissues (12, 13, 33, 34). This effect may be
even more pronounced in carnitine-treated animals with
insufficient tissue carnitine levels.

Phosphat idylcholine molecular species
containing pa lmi t ic - and palmitoleic acid

As previously described (21) the gas Chromatographie
method employed distinguishes between two isomeric
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Tab. 2 Relative phosphatidylcholine species composition in foetal and maternal rat lungs

Treatment

Maternal rat lung
NaCl (Controls) 8
Betamethasone (0.1 mg/kg) 8
Betamethasone (0.2 mg/kg) 8
Camitine (100 mg/kg) 8
Carnitine (100 mg/kg) + 8
Betamethasone (0.05 mg/kg)
Camitine (100 mg/kg) + 8
Betamethasone (0.1 mg/kg)

PC-30* PC-32* PC-34*
(Fraction of total phosphatidylcholines, %)

PC-36* PC-38*

Foetal rat lung
NaCl (Controls)
Betamethasone (0.1 mg/kg)
Betamethasone (0.2 mg/kg)
Carnitine (100 mg/kg)
Carnitine (100 mg/kg) +
Betamethasone (0.05 mg/kg)
Carnitine (100 mg/kg) +
Betamethasone (0. 1 mg/kg)

8
8
8
8
8

8

4.6
4.6
4.0
3.5a

4.6

4.6

±0.8
±0.9
±0.9
±0.4
±0.6

±0.7

30.6
32.0
27.9
27.8
33.0

34.6a

± 1.8
±3.4
±3.6
±2.3
±2.9

±3.9

37.8
35.5
36.1
37.1
32.6a

32.7a

±2.7
±3.3
±2.2
± 1.4
± 1.5

± 1.3

19.8
19.7
21.3
21.2
18.9

18.8

±2.3
± 1.3
±2.6
±2.4
±1.6 r

±2.0

7.4
7.9

10.0
10.3
8.8

7.7

±2.3
± 1.8
±2.8
± 1.8
±0.9

±3.4

4.8 ± 0.9
4.7 ± 0.4
4.7 ± 0.6
4.4 ± 0.4
5.3 ± 0.8

5.3 ± 0.4

46.0
53.6a

54.3a

49.2
47.6

±5.9
± 3.0
± 6.1
±4.9
± 1.7

50.8 ±2.8

29.2 ± 1.8
27.2 ± 1.2
27.6 ± 2.1
28.8 ± 0.9
27.0 ± 1.2

27.7 ± 0.8

15.1
11.la

10.4a

13.5
13.4

±3.1
± 1.8
±2.6
±2.7
± 1.2

4.3 ±3.1
1.7a±0.7
2.2a ± 0.6

±2.4
± 1.5

3.2
4.2

12.3 ±2.9 3.3 ± 1.9

The values are given as fraction (%) of total of phosphatidylcholine
species ± SEM.
n indicates the number of experiments.

* PC-30 etc., total carbon atoms in acyl residues is 30 etc.
a p < 0.05.

monoenoic species with 16 carbon atoms in each acyl
residue. With regard to these phosphatidylcholine mo-
lecular species, there are striking differences between
adult and foetal lungs (tab. 1). l-Palmitoleyl-2-palmi-
toyl-s/z-glycero-3-phosphocholine predominates in the
maternal lung, whereas in the foetal lung the major pho-
sphatidylcholine monoenoic species with two Ci6-acyl
residues is l-palmitoyl-2-palmitoleyl-5iw-glycero-3-cho-
line. In the foetal and maternal lungs the fraction of lung
palmitoyl palmitoleyl phosphatidylcholine species was
significantly increased by treatment with betametha-
sone-Z,-carnitine combinations but not in those groups
administered either ,-carnitine or betamethasone alone.

Palmitoyl palmitoleyl phosphatidylcholine may be a
precursor of dipalmitoyl phsophatidylcholine synthesis
by the acyl residue remodelling pathway (35). Increased
dipalmitoyl phosphatidylcholine synthesis by this path-
way is not necessarily accompanied by a reduction of
phosphatidylcholine species with 34 carbon atoms in the
acyl residues as shown for the developing lung (tab. 2).

Composition of the phosphatidylcholine
molecular species

The higher dipalmitoyl phosphatidylcholine content in
L-carnitine treated animals, resulting from an increase
in the rate of the de novo synthesis of phosphatidylcho-
line, is dependent on the composition of fatty acids
available and not necessarily associated with changes in
the composition of phosphatidylcholine molecular spe-
cies (tab. 2).

Late pregnancy in the rat (gestational ages 16—21
days) has been reported to be accompanied by a spe-
cific increase in hepatic phosphatidylcholine molecular
species containing palmitic acid at the sn-l position
and polyunsaturated essential fatty acids at the sn-2
position (36). Similar metabolic changes may occur in
the lung. Prenatal betamethasone treatment increased
the fraction of phosphatidylcholine with 16 carbon
atoms in each acyl residue (PC-32) in maternal but
not in foetal lungs. This increase was compensated by
ä reduction of other phosphatidylcholine species in the
higher mass range.
It is well established, that the palmitoyl linoleyl molecu-
lar species undergoes a remodelling mechanism in the
adult lung, thereby serving as the main source for the
surfactant dipalmitoyl phosphatidylcholine (2). Conse-
quently, if betamethasone treatment induced a higher
rate of dipalmitoyl phosphatidylcholine synthesis via the
phosphatidylcholine species remodelling pathway, a re-
duced amount of phosphatidylcholine with a sum of 34
carbon atoms in the acyl residues (PC-34) will result.
This has been described previously (2) and is confirmed
by our data for foetal lung tissue (tab. 2). However, sur-
prisingly a different picture emerges for adult lung tis-
sue. Here a rise in the PC-32 fraction is accompanied
by a reduction of the contribution of the PC-36 and PC-
38, but not the PC-34 species. This suggests that gluco-
corticoids stimulate fatty acid synthesis with the main
product palmitic acid converted to PC-32 or that they
activate a remodelling mechanism converting PCr-36 and
PC-38 'species to dipalmitoyl phosphatidylcholine.
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