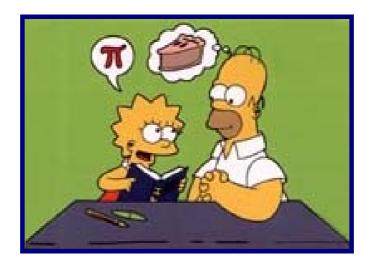
REGULATION OF SOCS-3 EXPRESSION

IN FETAL SHEEP TISSUES

Sheridan Gentili B.Sc. (Hons)



Discipline of Physiology School of Molecular and Biomedical Science The University of Adelaide South Australia

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

February 2006

- 5 June 1993 -

TABLE OF CONTENTS

Abstract .			vii
Declaratio	on		ix
Acknowle	dger	ments	x
Publicatio	ons a	rising from this thesis	xii
Commonl	ly use	ed abbreviations	xiii
List of tab	oles a	and figures	xvi
1.0 INT	ROD	DUCTION	1
1.1 Ov	/ervie	ew	.1
1.2 Th	ie JAł	K / STAT signal transduction pathway	2
1.2.1	Jan	nus Kinase and cytokine receptor activation	2
1.2.2	Sig	nal Transducers and Activators of Transcription proteins	4
1.2.3	Reg	gulation of the JAK / STAT signaling cascade	5
1.3 Th	ie fan	nily of Suppressor of Cytokine Signaling proteins	9
1.3.1	Rol	le of SOCS in the regulation of JAK / STAT activation1	3
1.3.2	SO	CS null mutant and transgenic models1	5
1.3	.2.1	SOCS-21	6
1.3	.2.2	CIS1	8
1.3	.2.3	SOCS-11	8
1.3	.2.4	SOCS-31	9
1.3.3	Upr	regulation of SOCS; JAK / STAT independent pathways2	!1
1.4 Pr	olacti	in2	2
1.4.1	The	e differential role of PRL and GH before birth2	3
1.4	.1.1	The GH receptor before birth2	24
1.4	.1.2	The role of GH in fetal growth and development2	:5
1.4.2	The	e role of PRL in growth and development2	26

	1.4.3	The regulation of PRL synthesis and secretion	28
	1.4.	3.1 Dopaminergic regulation of PRL secretion	28
	1.4.	3.2 The effect of the external photoperiod on PRL synthesis	and
	seci	etion	30
	1.4.	3.3 Impact of fetal growth restriction on PRL synthesis befor	re birth
			33
	1.4.4	Expression of PRLR in fetal tissues	34
	1.4.	4.1 Regulation of hepatic PRLR expression in the sheep	35
	1.4.	4.2 Regulation of the PRLR expression in the adipose tissue	e depots
	of th	e sheep	36
	1.4.	4.3 PRLR expression in the adrenal	37
1	1.5 Exp	pression of Suppressor of Cytokine Signaling-3 in vivo	38
	1.5.1	Regulation of SOCS-3 expression in the liver	38
	1.5.2	SOCS-3 expression in adipose tissue	39
	1.5.3	SOCS-3 expression in the adrenal	40
1	1.6 Exp	perimental hypotheses	42
2.0	SOC	S-3 PCR OPTIMISATION AND QUANTIFICATION IN FETA	۱L
TIS	SUES.		46
2	2.1 Abs	stract	46
2	2.2 Intr	oduction	46
2	2.3 Ma	terials and Methods	48
	2.3.1	Tissue collection	48
	2.3.2	Total RNA extraction	48
	2.3.3	SOCS-3 primer design and PCR product migration	49
	2.3.4	SOCS-3 RT-PCR product sequence analysis	54
	2.3.5	Optimisation of SOCS-3 PCR conditions	55

2.3.	5.1 Quantification of the SOCS-3 RT-PCR product5	5
2.3.	5.2 PCR cycle number50	6
2.3.	5.3 Taq, SOCS-3 specific primers, dNTP and MgCl ₂	
cond	centrations	6
2.3.	5.4 Annealing temperature5	8
2.3.	5.5 Varying the concentration of RNA or cDNA58	8
2.3.6	β -actin primer optimisation5	8
2.3.7	SOCS-3:β-actin RT-PCR assay variation5	9
2.3.8	Tissue study	9
2.3.9	Statistical analyses	0
2.4 Res	sults62	2
2.4.1	SOCS-3 primer design and PCR product migration6	2
2.4.2	SOCS-3 RT-PCR DNA sequence6	2
2.4.3	SOCS-3 RT-PCR optimisation60	6
2.4.4	β -actin primer optimisation70	0
2.4.5	SOCS-3: β -actin RT-PCR assay variation70	0
2.4.6	Tissue study72	2
2.5 Dis	cussion74	4
3.0 DIF	FERENTIAL REGULATION OF SUPPRESSOR OF CYTOKINE	
SIGNALIN	G-3 (SOCS-3) IN THE LIVER AND ADIPOSE TISSUE OF THE	
SHEEP FE	TUS IN LATE GESTATION	78
3.1 Abs	stract78	3
3.2 Intr	oduction79	9
3.3 Ma	terials and Methods8	1
3.3.1	Animals8	1
3.3.2	Tissue study8	1

3.3.3	Ontogeny study	81
3.3.4	Bromocriptine infusion study	82
3.3.5	Placental restriction study	83
3.3.6	Total RNA extraction from fetal tissues	84
3.3.7	Quantification of SOCS-3 and eta -actin mRNA expression by	RT-PCR
		85
3.3.8	Quantification of STAT5 by western blot analysis	86
3.3.9	STAT5 immunohistochemistry	87
3.3.10	Prolactin radioimmunoassay	88
3.3.11	Statistical Analyses	88
3.4 Re	sults	90
3.4.1	Ontogeny of SOCS-3 mRNA expression in the fetal liver an	d
perire	nal adipose tissue	90
3.4.2	The effect of placental restriction on hepatic SOCS-3 expre	ssion
		90
3.4.3	Effect of bromocriptine and exogenous oPRL on fetal plasn	na PRL
conce	ntrations	93
3.4.4	Relationship between SOCS-3 expression in the fetal liver	or
perire	nal adipose tissue and circulating PRL concentrations	93
3.4.5	STAT5 abundance in the fetal liver and perirenal adipose ti	ssue
		97
3.5 Dis	cussion	100
4.0 THE	REGULATION OF SOCS-3 EXPRESSION IN THE FETAL	ı.
ADRENAL		106
4.1 Abst	ract	106
4.2 Intr	oduction	107

TABLE OF CONTENTS

4.3 Ma	terials and Methods111
4.3.1	Animals111
4.3.2	Ontogeny study112
4.3.3	Fetal vascular surgery112
4.3.4	In vivo Prolactin study113
4.3.5	In vitro Prolactin study114
4.3.6	Placental Restriction study115
4.3.7	Cortisol infusion study115
4.3.8	HPD study116
4.3.9	Total RNA extraction and quantification of SOCS-3 & eta -actin mRNA
expres	ssion by RT-PCR117
4.3.10	Prolactin radioimmunoassay118
4.3.11	Statistical Analyses119
4.4 Re	sults120
4.4.1	Ontogeny of SOCS-3 expression in the fetal adrenal
4.4.2	Effect of bromocriptine and PRL on fetal plasma PRL
conce	ntrations120
4.4.3	PRL administration increases SOCS-3 expression in the fetal sheep
adrena	al
4.4.4	In vitro administration of PRL increases SOCS-3 expression in
culture	ed fetal adrenocortical cells122
4.4.5	Effect of intrauterine growth restriction on adrenal SOCS-3
expres	ssion
4.4.6	Effect of cortisol administration on SOCS-3 expression in the fetal
adrena	al125

4	4.7 The effect of cortisol replacement on SOCS-3 expression in	the
а	drenal of HPD fetuses	125
4.5	Discussion	129
5.0 GI	ENERAL DISCUSSION	137
5.1	Overview	137
5	5.1.1 Ontogeny of SOCS-3 expression	138
5	5.1.2 PRL regulation of SOCS-3 expression	141
5	5.1.3 The impact of placental restriction and cortisol on SOCS-3.	143
	5.1.3.1 Placental restriction	143
	5.1.3.2 Cortisol	145
5.2	Summary and concluding remarks	146
6.0	REFERENCES	148
7.0	APPENDIX	178

ABSTRACT

The suppressor of cytokine signaling (SOCS) proteins have been identified as important regulators of cytokine signaling. SOCS-3 has been identified as being essential for normal fetal growth and survival, with the null mutation of the *socs-3* gene resulting in embryo death. The specific role of SOCS-3 in fetal development, however, has yet to be characterized. Therefore, the overall aim of this thesis was to identify and quantify SOCS-3 mRNA in a range of fetal tissues in the sheep. After identification of SOCS-3 expression in fetal tissues, we then aimed to determine the ontogenic profile of SOCS-3 in three key fetal tissues; the liver, adipose tissue and adrenal gland, and whether SOCS-3 expression in these tissues was altered after withdrawal and stimulation of prolactin (PRL).

SOCS-3 mRNA was found to be differentially expressed in a range of fetal tissues in late gestation and was higher in the fetal liver than in the pancreas, spleen and kidney. SOCS-3 expression increased throughout gestation in the fetal liver, however, its expression decreased in the fetal adipose tissue and adrenal in late gestation.

The pituitary hormone PRL has previously been implicated as a fetal growth factor. In the sheep fetus, PRL receptors are expressed in the fetal liver, adipose tissue and adrenal. We aimed to determine whether PRL plays a role in the maintenance of SOCS-3 expression in the liver, adipose tissue and adrenal gland in late gestation, and whether SOCS-3 expression can be regulated by acute PRL stimulation

We have demonstrated that PRL withdrawal suppressed SOCS-3 expression in the liver, whereas acute PRL stimulation upregulated SOCS-3 expression in the adrenal. Neither PRL withdrawal nor stimulation had an effect on SOCS-3 expression in the adipose tissue.

In summary, the data presented in this thesis would suggest that SOCS-3 has tissue specific functions in late gestation. Furthermore, its expression is regulated in a tissue specific manner in response to the withdrawal or acute stimulation by PRL This provides the first evidence to suggest that the fetal liver and adrenal are both sensitive to either chronic or acute changes in plasma PRL concentrations, measured as the suppression or upregulation of SOCS-3. We speculate that changes in SOCS-3 mRNA expression relates to the regulation of growth and functional maturation of fetal tissues throughout gestation, and that PRL may represent an important factor which acts to alter SOCS-3 expression in key fetal tissues.

DECLARATION

This work contains no material which has been accepted for the award of any other degree of diploma in any other university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by any other person, except myself and where due reference is made in the text.

I give consent to this copy of my thesis being made available in the University Library.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder/s of those words.

rend

Sheridan Gentili February 2006

ACKNOWLEDGEMENTS

First and foremost I would like to thank those close to me that have supported me throughout the last 4 years. The late night conversations and fun times over a few beers have made these 4 very enjoyable years. I would like to thank the people who are the Department / Discipline of Physiology, past and present. I have thoroughly enjoyed working in such a relaxed, fun, inviting and extremely professional environment with a group of people who do great science. Physiology has provided me with a number of opportunities that I may not have been given had I undertaken a Ph. D. elsewhere.

I would like to thank the whole of 'Team McMillen'. As a group, many of us have bonded over the course of my Ph. D., and I feel that we are able to work very efficiently and professionally during, what are at times, very stressful situations. I would like to thank my supervisor Professor Caroline McMillen, the Pro Vice Chancellor and Vice President: Research and Innovation, for her guidance and support through my Ph. D. Thank you Caroline for 'tolerating' *our* sometimes *cheeky* behavior (I maintain it was my evil twin), and for recognizing the potential in me when sometimes I could not. It has truly been a privilege to have been able to work with you.

Severence, what a memorable few years! Luckily we have documented proof of some of the things we got up to, because I wouldn't believe half of it if I were told. Andrew (formally 'the R.A.', now member of 'the group'), thank you for all the long lunches, your patience as you listened to me complain, and long nights. Bill, thank you for your friendship and support over the years, particularly during the last 12 months.

Х

I would also like to thank Dan McHolm and Associate Professor Michael Roberts for the opportunity to undertake teaching and for all your support whilst working in the PTRC. I really did appreciate it. Jenni Peters, thank you for your friendship and help during what could have been a difficult period. Velta Vingalis, thank you for your words of encouragement throughout the teaching semesters, and for just being there to talk to. Dr Janna Morrison, thank you for your endless contribution to the lab group. The current group would not be where it is today if it weren't for your support and input. Thank you.

I want to thank everyone who directly contributed to the work completed during my studies. Thank you to Laura O'Carroll, Anne Jurisevic, and Beverly Mühlhäusler for you help with the sheep surgery and animal work. I'd also like to thank the entire "post mortem team", you know who you are. I would like to acknowledge all the staff in the Laboratory Animal Services for their professional care and support for the animal protocols. Thanks must also go to Andrew Snell, Mark Salkeld, Cathie Coulter and Jeff Schwartz who have helped me complete the molecular components, immunohistochemisty, and *in vitro* work presented in this thesis.

Mum, Yole, Nonna, Nonno, Sara and Lili... Thanks S You've all beared the brunt of me. You've tolerated my stubbornness, unreasonable requests, unbearable attitude and ridiculous shopping compulsions and obsessions. Yet, surprisingly only 1 member of the family chooses not to speak to me!

Finally, I'd like to thank the 'sponsors' of a Ph. D. in Physiology ...

ooher

PUBLICATIONS ARISING FROM THIS THESIS

GENTILI S, WATERS MJ AND MCMILLEN IC. Differential Regulation of Suppressor of Cytokine Signaling-3 (SOCS-3) in the Liver and Adipose Tissue of the Sheep Fetus in Late Gestation. *American Journal of Physiology – Regulatory, Integrative and Comparative Physiology* **290**, R1044-R1051

In preparation:

GENTILI S, SCHWARTZ JS, WATERS MJ, MCMILLEN IC. Prolactin and the expression of suppressor of cytokine signaling-3 (SOCS-3) in the sheep adrenal before birth.

Related publications, in preparation:

HYATT M, GOPALAKRISHNAN GS, BISPHAM J, **GENTILI S**, MCMILLEN IC, RHIND SM, RAE MT, KYLE CE, BROOKS AN, JONES C, BUDGE H, WALKER D, STEPHENSON T & SYMONDS ME. Maternal Nutrient Restriction in Early Pregnancy Programmes Hepatic Expression of GHR, PRLR, IGF-LIR, HGF, Bax and SOCS-3.

COMMONLY USED ABBREVIATIONS

ABC

ACTH	Adrenocorticotropic hormone
bp	Base pair(s)
Bromo	Bromocriptine
11βHSD	11 beta-hydroxysteroid dehydrogenase
cAMP	Cyclic adenosine monophosphate
cDNA	Complementary deoxyribonucleic acid
CIS	Cytokine inducible SH2 binding protein
CYP 11A1	Cytochrome P450 cholesterol-side chain cleavage
CYP 17	Cytochrome P450 17 α hydroxylase
DEF	
D₂R	Dopamine type 2 receptor
d	Day(s)
Da	Dalton(s)
DNA	Deoxyribonucleic acid
EDTA	Ethylenediamine tetraacetic acid
EPO	Erythropoietin
GHI	
GH	Growth hormone
GHR	Growth hormone receptor
h	Hour(s)
HPA-axis	Hypothalamo-pituitary-adrenal axis
HPD	Hypothalamo-pituitary disconnection
IFN-γ	Interferon-gamma
IGF	Insulin like growth factor
IL	Interleukin
IRS	Insulin receptor substrate
IL	Interleukin

COMMONLY USED ABBREVIATIONS

JKL	
JAK JNK	Janus kinase Jun N-terminal kinase
Kb kDa	Kilo base(s) Kilo Dalton(s)
LIF I-PRLR LPS	Leukemia inhibitory factor Long prolactin receptor Lipopolysaccharides
ΜΝΟ	
MAPK min mRNA	Mitogen activated protein kinase Minute(s) Messenger ribonucleic acid
oPRL	Ovine prolactin
PQR	
PL PO₂ PHDA PR PRL PRLR PKC	Placental lactogen Arterial partial pressure of oxygen Periventricular-hypophysial dopaminergic neurons Placental restriction Prolactin Prolactin receptor Protein kinase C
RT-PCR	Reverse transcription-polymerase chain reaction
STU	
Sal SH2 SH3 SOCS s-PRLR STAT TGE-6	Saline Src homology 2 domain Src homology 3 domain Suppressor of cytokine signaling Short prolactin receptor Signal transducer and activator of transcription factor Transforming growth factor-beta

TGF-β Transforming growth factor–beta

COMMONLY USED ABBREVIATIONS

THDA	Tuberohypophysial dopaminergic neurons
TIDA	Tuberoinfundibular dopaminergic neurons
TNF	Transforming nerve factor
UCP-1	Uncoupling protein -1

VWXYZ

Υ

Tyrosine

LIST OF TABLES AND FIGURES

Figure 1.1	JAK / STAT signaling cascade	. 6
Figure 1.2	PRLR isoforms	. 8
Table 1.1	Factors known to upregulate SOCS expression and that can	be
inhibited by	/ SOCS	10
Figure 1.3	The SOCS protein family	12
Figure 1.4	Inhibitory actions of SOCS proteins	14
Table 1.2	In vivo phenotypes associated with SOCS / CIS manipulation	in
mice		17
Figure 2.1	Multiple sequence alignment of partial SOCS-3 gene sequence	50
Table 2.2	SOCS-3 primer combinations	52
Figure 2.2	RT-PCR band quantification method	57
Table 2.4	Variables tested in the β -actin RT-PCR reaction assay	61
Figure 2.3	SOCS-3 RT-PCR products on an agarose gel; determining SOC	S-
3 primer co	ombinations which generate a single PCR band	63
Figure 2.30	C Migration of the SOCS-3 RT-PCR relative to the DNA molecu	lar
weight mar	ker pUC19	64
Figure 2.4	Partial ovine SOCS-3 DNA sequence	65
Figure 2.5	SOCS-3 RT-PCR optimization	68
Table 2.5	Total RNA and relative total RNA concentration used in the rever	se
transcriptio	n on PCR respectively	69
Figure 2.6	β -actin RT-PCR optimization	71
Figure 2.7	Agarose gel electrophoresis of SOCS-3 RT-PCR products in fe	etal
tissues bet	ween 144-145 d gestation	72
Figure 2.8	Signal intensity of SOCS-3 and β -actin in fetal sheep tissues	73

LIST OF TABLES AND FIGURES

Figure 3.1	Ontogeny of SOCS-3 expression in the liver and adipose tissue . 91
Figure 3.2	Hepatic SOCS-3 expression in control and growth restricted
fetuses	
Figure 3.3	Plasma PRL concentrations and SOCS-3 expression in the liver of
Sal + Sal, B	romo + Sal and Bromo + oPRL infused fetuses
Figure 3.4	Relationship between hepatic SOCS-3 expression and plasma PRL
in Sal + Sal	, Bromo + Sal and Bromo + oPRL infused fetuses
Figure 3.5	STAT5 localisation in the liver of Sal + Sal, Bromo + Sal and Bromo
+ oPRL infu	sed fetuses
Figure 3.6	Plasma PRL concentrations and STAT5 signal intensity in the liver
of Sal + Sal	, Bromo + Sal and Bromo + oPRL infused fetuses
Figure 4.1	Ontogeny of SOCS-3 expression in the fetal adrenal 121
Figure 4.2	Effect of bromocriptine and PRL on adrenal SOCS-3 expression
Figure 4.3	SOCS-3 expression in the <i>in vitro</i> fetal adrenal 124
Figure 4.4	Effect of placental restriction of adrenal weight and SOCS-3 mRNA
expression	
Figure 4.5	SOCS-3 expression in saline and cortisol infused fetuses 127
Figure 4.6	Adrenal SOCS-3 expression in intact and HPD fetuses following
either saline	e or cortisol infusion 128