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Abstract

The lack of a liquid market for implied correlations requires traders to estimate

correlation matrices for pricing multi-asset equity options from historical data. To

quantify the precision of these correlation estimates, we devise a block bootstrap pro-

cedure. The resulting bootstrap distributions are mapped on price distributions of

three standard types of multi-asset options. ‘Minimal’ bid-ask spreads that reflect the

risk from estimating the unknown correlations are quoted as quantiles of the price

distributions. We discuss the influence of different market regimes and different pay-

off structures on the price distributions and on the the size of the resulting bid-ask

spreads.

Keywords: Multi-Asset Options, Correlation Derivatives, Correlation Risk, Bid-Ask Spreads,

Block Bootstrapping, Market Making, Equity Derivatives
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1 Introduction

In recent years, various types of multi-asset equity options emerged in the markets. They

are either sold separately over-the-counter or as an ‘equity kicker’ of bond-like structures,

where they usually offer a certain participation in equity performance or a large coupon

conditionally on a defined performance of a basket of stocks. The latest kinds of these

products are heavily path-dependent options with a very large lifetime (up to 10-15 years),

and contain intrinsic barriers, or even some of their underlyings may be withdrawn at certain

fixing dates, Overhaus [2002] and Quessette [2002].

Apart from the sophisticated payout structures, the inherent challenge of pricing and hedging

multi-asset equity options is the illiquidity of implied correlations due to the lack of stan-

dardized multi-asset contracts. Consequently, equity correlation risk cannot be hedged as

precisely as volatility risk. This is unlike to foreign exchange (FX) markets: Here, hedging

correlation risk is possible, since volatilities and correlations of currency pairs are linked to-

gether via the exchange rate mechanism, as has been shown in a geometric interpretation by

Wystup [2002]. Unfortunately, this does not hold for equity markets, as stocks are traded for

cash and not in pairs like currencies. Therefore, at equity derivatives desks, traders monitor

the statistics of their correlation exposure and try to avoid risk peaks in certain correlation

pairs by managing the product flow via dynamic price margins. Spread positions between

index options and baskets of single stock options may hedge the ‘average’ correlation risk

within the index basket, but specific correlation risk in individual stock pairs remains.

Correlation risk stems particularly from two sources: First, correlations cannot directly be

observed, but must be estimated. Second, as has recently been documented by Walter and

Lopez [2000] and Neftci and Genberg [2002] for the FX markets, correlation may change
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over time in the sequel of different market regimes. To cope with these facts, an obvious way

to proceed would be to directly model time dependent correlations via multivariate genera-

lizations of general autoregressive conditionally heteroscedastic (GARCH) processes such as

the BEKK-model suggested by Baba et al. [1990]. However, multivariate GARCH modelling

is a challenge, since the number of parameters even in very moderate dimensions is high.

Furthermore, the log-likelihood function is often found to be flat, thus rendering parameter

identification difficult, Fengler and Herwartz [2002]. Finally, since these types of processes

typically converge very quickly to their unconditional means, forecasting performance of the

correlations will be low.

In this study, we are not concerned about time-dependent modelling of correlations, but

about the quality of the correlation estimates. We propose to ‘price’ correlation risk by

constructing ‘minimal’ bid-ask-spreads derived from the asymptotic distribution of the cor-

relation estimates. These spreads are minimal in the sense that they cover the risk from

estimating the unknown correlations up to a certain degree of confidence. Thus, when quot-

ing multi-asset option prices, one can translate the statistical confidence in the precision of

the correlation estimate directly into the price margins. Since the distribution of correlation

estimates is nonstandard, we devise a bootstrap methodology for its derivation. We apply

this procedure to three prominent examples of multi-asset equity options such as a simple

basket option, and a maximum and a minimum option, where the option writer either de-

livers the best or the worst performing asset, if exercised. We also discuss the specific risk

exposure of these options and hedging.

This paper is organized as follows: in Section (2) the underlying asset price model is pre-

sented, and pricing and hedging of the options is discussed. Section (3) explains the bootstrap

procedure and Section (4) discusses the results. Section (5) concludes.
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2 Multi-Asset Options

2.1 Pricing model for European multi-asset equity options

We treat European multi-asset equity options in the standard Black/Scholes framework, i.e.

we model n correlated Brownian motions Wi for the n underlying assets with spot prices

Si(t) and constant parameters for the correlations ρij, volatilities σi, dividend yields qi and

the risk-free rate r:

dSi(t) = (r − qi)Si(t)dt + σiSi(t)dWi(t) (1)

ρijdt = dWi(t)dWj(t) (2)

The literature suggests various pricing methods for European multi-asset options. For spe-

cific payout structures, analytical formulae are known, see Margrabe [1978], Stulz [1982], and

Johnson [1987]. For arbitrary continuous payouts in lower dimensions (n ≤ 2), numerical

PDE solvers like Fast Fourier Transforms are advantageous, Engelmann and Schwendner

[1998]. In higher dimensions, usually Monte Carlo integration or low-discrepancy series are

used, Engelmann [2002]. For our numerical examples, we choose the standard Monte Carlo

scheme.

We discuss three different option types with the following payout structures, Table (1): An

at-the-money (ATM) call option on an equally weighted basket of n stocks, an option on the

maximum performance of n assets and an option on the minimum performance of n assets.

We define our payouts in percent of the underlying price to make them better comparable.

Payouts at some terminal date T are defined relative to Si(0), i.e. the asset price at time

t = 0 when the option is issued.

Insert Table (1) here
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The risk management of multi-asset options at the trading desk usually involves monitoring

the first and second order spot and volatility risks: the delta vector ∂C/∂Si, the gamma

matrix ∂2C/∂Si∂Sj, the vega vector ∂C/∂σi and the volga matrix ∂2C/∂σi∂σj. First-order

correlation risk (‘correlation vega’) can be calculated as a triangular matrix ∂C/∂ρij with

i < j. The standard hedge instruments, single stocks and plain vanilla options on single

stocks, hedge only the delta and vega risks and the diagonal elements of the gamma and

volga matrix. The remaining risks, i.e. the nondiagonal elements of the gamma and volga

matrix (‘cross gamma’ and ‘cross volga’) and the correlation vega, can only be hedged by

involving other multi-asset options.

2.2 Drivers of correlation risk

To get an intuitive understanding of the influence of correlation on the price of our selected

option types, we discuss two different drivers for the correlation risk:

• the influence of correlation on the volatility of the whole basket,

• the influence of correlation on the dispersion of individual assets in the basket against

each other.

The impact of these drivers on the different option types can be summarized as follows,

Table (2):

1. Basket option: The basket option is affected by the basket volatility, only. The disper-

sion of individual assets does not influence the option price, because the payout does
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only depend on the sum of the asset prices at maturity. As higher correlations increase

basket volatility and thus the option price, basket options are long in correlation.

2. Max option: The max option is affected by both drivers. Increasing dispersion of

individual assets increases the chance of any asset to reach particularly high values at

maturity. This effect grows with declining correlations. So for max options, the two

drivers work in opposite directions. For the parameter spectrum in our application, i.e.

from moderate to high correlation, we observe option prices to decrease with increasing

correlation: hence, the dispersion effect outpaces the basket volatility effect and the

holder of our max options is short in correlation. However, this is the initial exposure

when the Si(0) are fixed. Situations are possible where the max option is both short

and long in correlation depending on the specific levels of correlation and spot prices.

3. Min option: The min option is affected by both drivers as well, but both take the same

direction. The dispersion effect increases option prices as correlations become higher,

since the holder of the option is interested in a small dispersion of the single assets

in the basket. This minimizes the probability that any asset reaches particularly low

levels at maturity and maximizes the value of the min option contract. Thus, the net

position of min options is long correlation. As both drivers reinforce each other, the

correlation sensitivity is especially high for this option type.

Insert Table (2) here

2.3 Stability of vega hedges

The mechanisms that affect correlation sensitivity also have an impact on the quality and

stability of the vega hedges. However, it is difficult to give a coherent picture, since for
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all products the quality of vega hedges hinges in a complex manner on current volatility,

correlation and spot price levels. Hence we only discuss the vega hedge shortly after fixing

the Si(0), and not a hedge over the entire life-time of the option.

Buying a basket and max option, one is vega, volga and cross volgas long: Thus when

implied volatility rises, additional profits accrue due to increased basket volatility. For the

max option this effect is even stronger as the dispersion between the stocks also increases

with increasing volatility.

The min option is more involved: One is vega, volga and cross volga long in implied volatili-

ties of all underlyings, but vega and volga short in the one belonging to the underlying with

highest implied volatility. For the former, the basket effect exceeds the dispersion effect. For

the latter, due to the one-sided risk profile, one expects the underlying with highest implied

volatility to be the worst performing. Thus increasing implied volatility in this asset reduces

the value of the min option and the dispersion effect tends to outperform the basket effect,

which works in the opposite direction. Since highest implied volatility rises relatively to the

other implied volatilities, the effect is even aggravated: hence the volga short position. On

the other hand, one is cross volga long with respect to the other underlyings, since increasing

volatility reduces the dominance of the ‘highest implied volatility’ position.

However, it needs to be mentioned that this picture may change considerably as stocks move

away from their initial values, and implied volatility or even correlation changes during the

holding period of the option. E.g. in the min option it may happen that one becomes

vega short in two implied volatilities. Also for the case of the max option correlation may

generate ‘surprising effects’ on the vega hedges through volga and cross volga. As our

numerical simulations show, although being of second order magnitude, through cross volga
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effects, which are not necessarily smaller than the volga itself, the vega hedge in one asset

can be significantly distorted even if another implied volatility moves. Thus, to ensure the

quality of the vega hedge, in multi-asset options, volga and cross volga need to be monitored

carefully.

3 Bootstrapping Correlations

The bootstrap is a Monte Carlo ‘resampling’ method for estimating the distribution of an

estimator or a test statistic, when the distribution is known to exist, but is difficult to com-

pute or explicit approximations are poor. This situation is particularly obvious in the case

of the correlation coefficient ρ. Being bounded between minus and plus one, the estimator

of the correlation coefficient has a nonstandard distribution, and can well be approximated

using the bootstrap.

The bootstrap has been introduced by Efron [1979]. Here, we present the technique only.

For the necessary theoretical background, we refer the reader to the literature, such as the

monographs by Hall [1992] and Mammen [1992]. Härdle et al. [2002] give a lucid review on

the most recent developments of the bootstrap theory, especially focussing on the case of

dependent data. Bootstrapping the correlation coefficient for independently and identically

distributed (iid) random variables seems to be introduced by Lunneborg [1985] and Ras-

mussen [1987], however we are unaware of work on bootstrapping the correlation coefficient

in dependent data.

Among practitioners, who are concerned about portfolio allocation and optimization in the

Markowitz sense, a ‘portfolio resampling’ technique is popular, Michaud [1998] and Scherer
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[2002]. Portfolio resampling means sampling the mean and the covariance matrix for a

relatively small number of draws. For these draws optimal portfolio weights are calculated.

The average of the latter is then used to derive a ‘resampled frontier’. This procedure seems

to produce more stable portfolio weights for the computation of the true efficient frontier,

than only one optimization step, and is thus similar to our procedure. However, it seems

that dependence in the data is not explicitly taken into account.

For presentation of our bootstrap procedure, suppose for a moment that asset returns be

iid random variables. The case for dependent data is explained afterwards. We denote by

X def
= {Xt}T

t=1 a sample of return vectors Xt ∈ Rn of the n underlying assets, on which the

multi-asset options are based. The Xt belong to some common population distribution P0.

Furthermore, since we wish to estimate the correlation ρij between asset i and j, we assume

that the first and the second moments exist. We are interested in estimating the distribution

of the correlation estimator ρT , which will be denoted by LT (P0)
def
= L{ρT (X1, . . . , XT |P0)}.

Let P̃T be a consistent estimate of P0. The key insight of the bootstrap procedure is that

the bootstrap estimate of LT (P ) simply is LT (P̃T ). An approximate confidence interval with

significance level (1− α) can be based on the (1− α)-quantile of LT (P̃T ).

Since one can hardly compute LT (P̃T ) explicitly, it is approximated numerically. The method

works as follows:

Step 1. Generate a resample X ∗ = {X∗
t }T

t=1 from X as an unordered collection of T elements

drawn randomly and with replacement from X , such that the probability of each X∗
t to be

equal to any of the Xt′ is T−1: P (X∗
t = Xt′|X ) = T−1, 1 ≤ t, t′ ≤ T . This way the X∗

t are

iid distributed, conditional on X . Thus, the resample X ∗ may contain repeats or may not

contain some of the Xt at all.
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Step 2. Compute ρ∗T from X ∗.

Step 3. Repeat the steps one and two for a large number of times M .

Step 4. Approximate LT (P̃T ) by the empirical distribution of the pseudo random variables

ρ∗T,1 to ρ∗T,M .

The challenge in dependent data is that the bootstrap must be carried out in a way which

preserves the dependence structure present in the data. One possible solution is the block

bootstrap, Hall [1985] and Carlstein [1986]. Instead of drawing single values from X , the idea

is to draw entire blocks or subseries with replacement and to compute a pseudo time series

from these blocks. More precisely, split the data X into B blocks Yt
def
= {Xt, . . . , Xt+`−1}

such that block length ` = T/B (we assume for the sake of exposition that B ` = T exactly).

Blocks may be overlapping or non-overlapping, so either {X1, . . . , X`}, {X2, . . . , X`+1} etc.,

or {X1, . . . , X`}, {X`+1, . . . , X2`} and so forth. Under suitable assumptions on the underlying

stochastic process generating Xt, the approximate bootstrap distribution LT (P̃T ) is again

given by the empirical distribution of ρ∗T,1 to ρ∗T,M , Härdle et al. [2002]. Note however that

overlapping block bootstrap ensues a bias since observations at both far ends of the original

sample have less probability in entering the bootstrap samples than those in the middle,

which needs to be corrected for. This is why we prefer the non-overlapping bootstrap.

Choice of the block length ` is an intricate question: The optimal ` intimately depends on the

underlying data generating process and must increase with sample size T in order to achieve

asymptotically correct coverage probabilities of the confidence intervals. Depending on the

particular assumptions on the stochastic process and on the object to be estimated, a number

of asymptotically optimal block lengths have been derived. Typically, they range between

` ∝ T 1/5 to ` ∝ T 1/3 (Härdle et al. [2002] and references therein), which – with a sample size
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of around 250 days in our application – amounts to 3 to 6 days. We experimented between

these values and did not find any strong deviations among the bootstrapped distributions.

Since our returns are not, or at most mildly serially correlated, we believe a short block

length to be sufficient to capture the local dependence of the data, and decided for ` = 3.

4 Empirical Results

4.1 General Set-up

In our empirical analysis we took times series of six major stocks in the German DAX

index, adjusted for stock splits: Allianz (ALV), BMW, Commerzbank (CBK), Deutsche Bank

(DBK), DaimlerChrysler (DCX), Deutsche Telekom (DTE). The data was kindly provided

by Sal. Oppenheim jr. & Cie.

We choose two time periods with entirely different market regimes to investigate the pricing

results. As an example of a bullish trending market, where correlations are relatively low, we

take the year 1999, whereas 2002 is an example of a bearish market, where correlation tends

to be higher. In each case we price multi-asset options with a maturity of one year. Returns

are calculated as log differences. We compute correlation from lagged returns, where the

time window of past returns corresponds to the life time of the option, i.e. around 250. This

is in line with market conventions. Statistically speaking, this convention implies that the

market assumes stationarity of the model over the life time of the option. As spelled out in

Section (3) we bootstrap in blocks of ` = 3 days M = 20 000 times. Proceeding this way, we

generate in the case of the three asset model (n = 3) a trivariate distribution of correlations,
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in the case of the six-asset model (n = 6) an n(n−1)
2

= 15-dimensional distribution.

Correlation distributions are mapped via the multi-asset pricers into an option price distri-

bution. The first basket contains the three stocks CBK, DBK and DTE, the second basket

contains all six stocks from Table (3). In Table (3) we also display the implied volatility and

dividend yields under which we price. Since we like to focus on correlation risk only, they

were not altered in the 1999 and 2002 scenarios. Interest rate is fixed at r = 5% throughout.

All options are assumed to be of European type and priced via the discounted mean of the

payout function after 50 000 simulations. The maturity is T = 1 year. Bid and ask spreads

are computed from the empirical price distribution as the 90% confidence around the mean.

The resulting price distributions are exploited for the derivation of bid-ask prices. In our

application we stipulate a confidence level of α = 10% percent. A 90%-confidence interval

around the (fair) mean value is hence given by computing the α/2 and 1 − α/2 quantiles

of the price distribution. Note however, although the statistical coverage of this interval is

90%, from a trading point view it is 95%, since the trader faces only a one-tailed risk for his

bid and ask price.

Insert Table (3) here

4.2 Discussion

Tables (4) and (5) summarize general statistics of the bootstrapped distributions. For the

sake of clarity, we focus in our discussion on the three asset case, only. (Statistics on the

six asset case may be obtained from the authors upon request). Large differences between

the two different market scenarios are visible: During 1999 mean correlation between the
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bank stocks DBK/CBK and DTE is low, around 0.25–0.27, and within the two bank stocks

moderately, 0.54. However, as is expected, in 2002 correlations sharply rise: All correlations

range from 0.56 (DTE/CBK) up to 0.74 (DBK/CBK). At the same time standard deviation

of correlations drops almost by one half. Thus precision of correlation estimates becomes

more accurate in the bad market, whereas in the stable upward trending market the precision

is lower. For instance, from the distribution of the correlation estimates one can infer that

the hypothesis of a correlation for DBK/DTE of only ρ = 0.15, i.e. of 10 basis points lower

than the mean, is well within the 95% confidence, whereas in the 2002 market for a mean

of 0.67, the hypothesis of ρ = 0.57 is safely rejected at the 5% level. Thus, hedges taking

a correlation estimate of ρT = 0.25 for granted, can be misled, even if the data generating

process is stationary.

Figures (1) and (2) display bivariate contour plots of the (marginal) bivariate correlation

distributions. From the general position of the ellipses it is visible that the correlation struc-

ture between the estimates varies among the different assets: Whereas for DBK/DTE and

DBK/CBK cross correlation between estimates is low, as is seen from the concentric circles

(this holds also for DBK/CBK and CBK/DTE), in the case of DBK/DTE and DTE/CBK

correlation estimates are positively correlated, see also Table (5). During the bearish market

in 2002 the general orientation of the ellipses from ‘correlation of correlation point of view’

is almost unchanged, but due to the dropped standard deviation, it is more aggravated (note

that the width between contour lines is 5 in both plots). This is also economically plausible:

One would expect correlation pairs between two different sectors (banking sector versus a

cross sector) to be not or only little correlated, whereas pairs of common cross sector cor-

relations should be correlated, if common, sector specific shocks exist that hit the market.

Interestingly, the correlation of correlation remains relatively stable across the different mar-
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ket regimes. This evidence corresponds with the findings of Neftci and Genberg [2002] who

investigate the correlation of implied volatilities between each other.

Stable correlations of correlations have also important implications for hedging: In this case,

it may be sufficient to hedge the ‘average’ correlation risk, e.g. to hedge a short correlation

position by selling single stock vega and buying index vega. If correlations rise, we gain on

the index vega position which in turn offsets the losses in the short correlation position.

Insert Table (4) here

Insert Table (5) here

Insert Figure (1) about here

Insert Figure (2) about here

In Tables (6) and (7), we present descriptive statistics of the price distributions obtained

from mapping the correlation distribution via the option pricers. Since in the bootstrap the

mean of the price distribution is preserved, the mean corresponds to the fair price directly

obtained from the correlation estimate in the time period under consideration. In order to

remove level effects in our dispersion measure, we also report the coefficient of variation of the

distributions, which is defined as standard deviation divided by mean. In our discussions, we

do not discuss the absolute difference between bid and ask. Rather we focus on the bid-ask

spreads relative to the mean, since one typically is interested in the spread relative to the

fair price of the option. Figures (3) and (4) also display the discussed price distributions.

Basket option

Comparing the three versus the six asset cases, regardless of the correlation scenarios, one

observes that the basket option becomes cheaper, the more assets are included into the

payout. Clearly, this is a risk diversification effect: The more assets are included in the
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basket, the less its volatility, the lower its price. On the other hand, increasing the number of

assets should introduce additional risk of the unknown correlations. Standard deviation and

the bid-ask spreads increase only moderately. Coefficient of variation also indicates a very

slight increase in dispersion when one moves from three to six assets. Thus diversification

seems to almost compensate the risk from correlations. As is to be expected, with increasing

correlations between different market scenarios the diversification effect deteriorates, and

prices increase. However, since estimates of correlations become more precise minimal bid-

ask spreads can be reduced.

Maximum option

Max options are by far the most expensive ones accounting for up to 60% of the spot. Since

the payout is directed only at the performance of the best asset, prices strongly increase,

the more assets we include in the basket. So do bid-ask spreads. Level adjusted coefficients

of variation indicate an increase of dispersions also. As is explained in Section (2), for max

options two competing drivers influence option prices: a dominating dispersion and a basket

volatility effect. When correlation is low it is more probable that some stock is performing

well when others do not. Thus a max option holder is short in correlation. Observe that this

effect can be very strong: option prices are 15% lower in the three asset case and 20% in the

six asset case. Bid-ask spreads (and coefficients of variation also) stay approximately of same

size in both scenarios. Thus the effect of higher estimation precision of the correlation, which

diminishes the spread, is dominated by the fact that the correlation sensitivity increases as

correlations rise.

Minimum option

Since the buyer of the option receives always the worst performing asset, the price of min

option falls the more assets are included. Due to the dispersion effect bid-ask spreads increase
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with a growing number of assets. This is particularly evident in the 6 asset minimum option

for 1999. Increasing correlation reduces both dispersion and volatility of the entire basket

resulting in increasing prices for 2002 compared with 1999. At the same time higher precision

of correlations reduces bid-ask spreads relative to the low correlation scenario. This effect is

stronger than the increased correlation sensitivity in high correlation situations.

Insert Table (6) here

Insert Table (7) here

Insert Figure (3) about here

Insert Figure (4) about here

Although we do not compute formal tests for normality, our figures for skewness and kurtosis

seem to confirm that using a normal variate for the computation of minimal risk premia for

multi-asset basket options, such as the well known ‘two-times-sigma’ rule will not be too bad

an approximation to the quantiles of the price distribution. Under the normal distribution,

coefficient of variation and spread per mean are multiples of the same quantity and thus

always move in the same direction. In case for the min options the normal distribution may

not be good, because non-negligible skewness is emerging, the closer the price approaches

zero. However, when prices are close to zero, using a normal approximation may not be

advisable anyway.
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5 Conclusions

Pricing and hedging multi-asset equity options requires estimating correlations. Even when

time series of stock prices are assumed to be stationary, correlation estimates from historical

time series involve estimation errors. We quantify this error by approximating the asymp-

totic distribution of the correlation estimate via block bootstrapping. The bootstrapped

correlation distributions are mapped on prices of three standard types of multi-asset options

(basket option, minimum and maximum option). Bid-ask spreads of the prices are computed

as statistical quantiles of the resulting price distributions. The resulting bid-ask spreads can

be considered as ‘minimal’ spreads since they accommodate the risk from estimating un-

known correlations only.

We discuss hedging the correlation products and present numerical results for two different

market regimes (1999 and 2002), two different numbers of stocks (three and six) and three

payout types. The shown differences in the bid-ask spreads can be attributed to two drivers of

correlation risk acting differently for the three payout types: basket volatility and dispersion.

These drivers influence both the absolute level of the prices and bid-ask spreads of the three

individual options in a significantly different manner.

Also, the two market regimes affect the bid-ask spreads: typically, in a bearish market regime

correlations and statistical confidence in the estimates are high, whereas in the bullish market

correlations may be moderate, while having low statistical confidence at the same time. Thus

bid-ask spreads are influenced in two ways: first via the correlation sensitivity of the option

and second via the confidence that can be attributed to correlation estimates in the current

regime.
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We point out that traders quoting bid-ask spreads of multi-asset equity options need the same

thorough correlation analysis as do investors considering these products for their portfolios.
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Table 1: Payout structures of the multi-asset options

Option Type Payout

ATM call on a basket of n assets basket option max
{

1
n

∑n
i=1

Si(T )
Si(0)

− 1, 0
}

ATM call on the maximum of n assets max option max
{
(maxn

i=1
Si(T )
Si(0)

)− 1, 0
}

ATM call on the minimum of n assets min option max
{
(minn

i=1
Si(T )
Si(0)

)− 1, 0
}

Si(T ) denotes the (uncertain) spot value of asset i at some terminal date T , Si(0) denotes its value
at time t = 0 when the payouts for the at-the-money options (ATM) are fixed.

Table 2: Influence of correlation on option prices

Correlation driver

basket volatility asset dispersion net effect

Basket option + 0 +

Max option + – –

Min option + + ++

Influence of correlation on the option prices via the volatility and dispersion driver. ‘+’ indicates
a positive influence of the respective correlation driver when correlation levels rise, ‘−’ a negative
influence. Reported net effects as observed from our numerical examples.
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Table 3: Underlying assets: assumed properties

Sector stock Reuters code implied vol. div. yield

insurance Allianz ALV 52 1.5

automobiles BMW BMW 42 1.7

banking Commerzbank CBK 60 4.9

banking Deutsche Bank DBK 48 2.8

automobiles DaimlerChrysler DCX 47 3.3

telecommunication Deutsche Telekom DTE 51 2.9

Implied volatilities and dividend yield quoted in percent. Numbers are fixed in all calculations and
supposed to reflect average market conditions, not the specific 1999 and 2002 scenarios, since the
focus is on correlation risk, only.
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Table 4: Summary statistics of bootstrapped correlations in the three asset case

year correlation pair min. max. mean std.

1999 DBK/DTE 0.01 0.49 0.25 0.06

DBK/CBK 0.33 0.67 0.53 0.04

DTE/CBK 0.03 0.45 0.27 0.06

2002 DBK/DTE 0.49 0.79 0.67 0.03

DBK/CBK 0.61 0.84 0.74 0.03

DTE/CBK 0.40 0.74 0.56 0.04

Reported variables: minimum (min.), maximum (max.), mean and standard deviation (std.). Boot-
strap distributions obtained after 20 000 block draws from the original asset returns sample, block
length ` = 3 days.

Table 5: Correlation of correlations in bootstrap distributions

year correlation pair DBK/DTE DBK/CBK DTE/CBK

1999 DBK/DTE 1 0.01 0.54

DBK/CBK 1 0.17

DTE/CBK 1

2002 DBK/DTE 1 0.23 0.64

DBK/CBK 1 0.37

DTE/CBK 1

Correlations between correlation pairs computed from the bootstrap distributions as described in
Table (4).
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Table 6: Descriptive statistics of option price distributions, 3 asset case

Option type year mean std. coeff. var. skew. kurt. bid ask spread/mean

Basket option 1999 16.03 0.31 0.019 -0.262 3.159 15.51 16.51 0.06

2002 18.31 0.20 0.011 -0.111 3.060 17.99 18.60 0.04

Max option 1999 44.35 0.68 0.015 0.121 3.073 43.26 45.49 0.05

2002 37.70 0.71 0.019 -0.008 3.032 36.52 38.87 0.06

Min option 1999 3.43 0.33 0.097 -0.002 3.034 2.89 3.98 0.32

2002 7.14 0.45 0.063 0.092 3.032 6.42 7.91 0.21

Reported variables are fair price (mean), standard deviation (std.), coefficient of variation (coeff.
var.), skewness (skew.), kurtosis (kurt.), bid-ask spread (5% and 95% quantiles), spread per fair
price (spread/mean). DBK, DTE and CBK are included in the basket. Prices obtained by Monte
Carlo simulation.

Table 7: Descriptive statistics of option price distributions, 6 asset case

Option type year mean std. coeff. var. skew. kurt. bid ask spread/mean
Basket option 1999 14.35 0.36 0.025 -0.144 3.001 13.75 14.92 0.08

2002 17.23 0.20 0.012 -0.129 2.989 16.89 17.55 0.04
Max option 1999 60.68 1.38 0.022 0.028 2.969 58.42 62.96 0.07

2002 47.67 1.09 0.023 0.022 2.977 45.89 49.52 0.08
Min option 1999 1.07 0.19 0.175 0.298 3.081 0.79 1.40 0.57

2002 3.90 0.34 0.086 0.124 3.005 3.35 4.47 0.29

Reported variables are fair price (mean), standard deviation (std.), coefficient of variation (coeff.
var.), skewness (skew.), kurtosis (kurt.), bid-ask spread (5% and 95% quantiles), spread per fair
price (spread/mean). All assets available from Table (3) included in the basket. Prices obtained
by Monte Carlo simulation.
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Figure 1: Contour plots, 1999 data
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Bivariate contour plots of the (marginal) bootstrap distributions of estimated correlations in the
three asset case. Obtained via a kernel smoothing procedure. Initial contour line starts at 5, step
width between contour lines is also 5.

Figure 2: Contour plots, 2002 data
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Bivariate contour plots of the (marginal) bootstrap distributions of estimated correlations in the
three asset case. Obtained via a kernel smoothing procedure. Initial contour line starts at 5, step
width between contour lines is also 5.
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Figure 3: Price Densities and Bid-Ask Spreads, three asset case

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5

de
ns

ity

�

Call on a basket of three stocks

1999 2002

0

0.2

0.4

0.6

0.8

1

1.2

34 36 38 40 42 44 46

de
ns

ity

�

Call on the maximum of three stocks

19992002

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7 8 9

de
ns

ity

�

Option Price [%]

Call on the minimum of three stocks

1999 2002

Price densities obtained from a kernel smoothing procedure. Fair price denoted by a black bullet,
bid-ask spreads, quoted as the 5% and the 95% interval, indicated by vertical lines. DBK, DTE
and CBK are included in the basket. Prices obtained by Monte Carlo simulation.

Figure 4: Price Densities and Bid-Ask Spreads, six asset case
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Price densities obtained from a kernel smoothing procedure. Fair price denoted by a black bullet,
bid-ask spreads, quoted as the 5% and the 95% interval, indicated by vertical lines. All assets
available from Table (3) included in the basket. Prices obtained by Monte Carlo simulation.


