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Abstract: A multi-stage stochastic pro-
gramming model for power scheduling un-
der uncertainty in a generation system
comprising thermal and pumped-storage
hydro units is developed. For its compu-
tational solution two different decompo-
sition schemes are elaborated: Stochas-
tic Lagrangian relaxation and scenario de-
composition. Numerical results are re-
ported for realistic data from a German
power utility.

Keywords: Power scheduling, uncertain elec-
trical load, stochastic Lagrangian decomposi-
tion, scenario decomposition.

1 INTRODUCTION

Uncertainty is an inherent feature of power
scheduling. Among the main sources of uncer-
tainty there are load profiles, generator outages,
streamflows in water units, and prices or mar-
ket situations in general. The latter will be of
increasing importance due to the ongoing liber-
alization in the European power industry.

The present paper aims at treating power op-
timization and uncertainty in a unified frame-
work. Based on the energy situation encoun-
tered at the German utility VEAG Vereinigte
Energiewerke AG Berlin we develop a multi-
stage stochastic programming model for power
scheduling under uncertainty of load profiles.
This provides challenges from the modelling
viewpoint and, at the same time, raises fun-
damental mathematical questions on the design
of solution methods. Inclusion of uncertainty
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leads to a tremendous increase in the complex-
ity of the traditional power optimization mod-
els. The remedy we propose is decomposition
which we will elaborate in two different ways.
The first is based on stochastic Lagrangian re-
laxation of coupling constraints and leads to
single-unit multi-stage stochastic programs of
tractable size. The second aims at decomposing
the full model according to scenarios and leads
to single-scenario problems that are quite simi-
lar to traditional deterministic power scheduling
models. For both decomposition approaches we
will present the theoretical underpinnings and
some initial computational experience.

2 MODELLING

We consider a power generation system compris-
ing (coal-fired and gas-burning) thermal units,
pumped-storage hydro plants and delivery con-
tracts and describe an optimization model for its
least-cost operation. In our model, T denotes
the number of time intervals of the optimiza-
tion horizon and {d’: ¢ = 1,..., T} the electrical
load forming a stochastic process (on some prob-
ability space (€2,.4,P)). We assume that the
load is known (at least) during the first time pe-
riod(s). Denoting by A; the o—field generated
by (d',...,d"), we obtain a nested sequence (fil-
tration) of o—fields: A; = {0,Q} C A, C ... C
A: C...C Ar C A.

Let I denote the number of thermal and J
the number of pumped storage hydro units. De-
livery contracts are regarded as particular ther-
mal units. According to the stochasticity of the
electrical load, the decisions for all units are
discrete-time stochastic processes as well:

{x* = (p,ul,st,wh):t=1,..,T}
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Here, the decision variable u! € {0,1} indicates
whether the thermal unit ¢ is in operation at
time ¢, p! (i = 1,...,I,t = 1,..,T) denotes
the output of the thermal unit ¢ at time ¢ and
S;" W§- (7 = 1,...,J,t = 1,....,T) are the gen-
eration and pumping levels, respectively, of the
pumped-storage hydro plant j at time ¢. The
following box constraints reflect output limita-

tions of all units

uip™ < pp < ufpher,
t max
0 S S‘]t S S] 7 t = 17 '7T7 (1)
0 < w; < wi,
0 S e] S EIIIH.X7
where p;nm, pit 7w denote minimal

and maximal outputs of the units and the maxi-
mal storage volumes in the upper reservoirs, re-
spectively. The dynamics of the storage volume,
which is measured in electrical energy, is mod-
eled by the equations:

l = E;’l — s} +77ng , t=1,..,T, @)

0 = 00 g =0 =1,
Here, E;-n and E;'nd denote the initial and final
volumes in the upper reservoir, respectively, and
n; is the cycle (or pumping) efficiency of plant
j. The cycle efficiency is defined as the quotient
of the generation and of the pumping load that
correspond to the same volume of water. The
equalities (2) show, in particular, that there oc-
cur no in- or outflows with the upper reservoirs
and, hence, that the pumped storage plants of
the system operate with a constant amount of
water. Constraints avoiding simultaneous gen-
eration and pumping in the hydro plants are dis-
pensable since it can be shown that such a defi-
ciency can not occur in optimal points.
Further single-unit constraints are minimum up-
and down-times and possible must-on/off con-
straints for each thermal unit. Minimum up-
and down-time constraints are imposed to pre-
vent the thermal stress and high maintenance
costs due to excessive unit cycling. Denoting by
7; the minimum down-time of unit ¢, the cor-
responding constraints are described by the in-
equalities:

ugil _ug <1- u;r,
r=t+1,..,min{t+7 -1, T}, (3)
t=1,..T

Analogous constraints can be formulated de-
scribing minimum-up times.

The subsequent load and reserve constraints
couple different power units. The load con-
straints say that the sum of the output powers
is greater than or equal to the load demand in
each time period t:

b+ L w2 d = L (1)

In order to compensate unexpected events
within a specified short time period, a spinning
reserve, describing the total amount of genera-
tion available from all units synchronized on the
system minus their present load, is prescribed.
The corresponding constraints are given by the
following inequalities:

I

> (p*uj—pj) >R, t=1,.,T, (5)
i=1

where R! > 0 is a specified spinning reserve in
period t.

Final constraints model the non-anticipativity
of the stochastic decision process. They say
that, at time ¢, decisions x! = (p!,u’,s?,w')
must not depend on future realizations of the
process {d’ : t =1,...,T}. In other words,

t w') is As;-measurable,

t=1,..,T.

The objective function is given by the expected
total costs for operating the thermal units over
the whole time horizon, i. e.,

F(x)=F(p,u,s,w)
I T (7)
=JE{ZZ [FCi(pt,ul)+SC! (uiﬂ},

i=1t=1

where I denotes expectation, F'C; are the fuel
cost functions and SC! are the start-up costs
for switching unit ¢ online during period ¢. We
assume that each F'C; is piecewise linear convex
(in the first variable) and each SC! is piecewise
constant in time reflecting the dependence on
the cooling time of the unit.

Altogether, the model (1) - (7) amounts to
a mixed-integer multi-stage stochastic program
which is loosely coupled with respect to oper-
ating units. The number of (stochastic) deci-
sion variables of the model, which computes as



2(I4+J)T, is (very) large even for power systems
of medium size. Figure 1 shows a typical weekly
(deterministic) load curve and the correspond-
ing cost-optimal hydro-thermal schedule.
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hydro generation -----|
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Figure 1: Load and hydro-thermal schedule
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Figure 2: Example of a scenario tree

For the numerical solution of the model we
now assume that the stochastic load process
has finitely many realizations (or scenarios).
It is well known (cf. [1, 2]) that the non-
anticipativity constraint (6) can be expressed by
linear equations for the scenarios x”, v =1, ..., r,
of the decision vector x (cf. Section 4) and that
(6) leads to a tree structure of the load scenar-
ios (see Figure 2). Since the decision vector x
exhibits the same tree structure as the load, the
model may easily become extremely large if the
number of nodes in the scenario tree increases.
Table 1 shows the dimensions of the model for
a weekly time horizon (7' = 168) and a medium
size generation system (I = 25 and J = 7)
and for scenario trees with equidistant binary
branches.

Since the huge size of the model (1) - (7) pre-
vents the application of state-of-the-art mixed-
integer LP solvers, decomposition techniques
may provide a practicable alternative. Ear-
lier decomposition approaches to similar mod-
els are described in ([4, 13, 12]). In the follow-
ing we present two types of (dual) decomposi-
tion schemes. The first one is based on dualiz-
ing constraints coupling across units (i.e. on a
stochastic version of the Lagrangian relazation
technique) and the second on a dualization of
the non-anticipativity constraints (i.e. on sce-
nario decomposition).

3 STOCHASTIC LAGRANGIAN
RELAXATION

The first decomposition approach to solving the
multi-stage stochastic programming model in
Section 2 makes use of the fact that the num-
ber of unit coupling (stochastic) constraints (4)
and (5) is small compared with the dimension of
the (stochastic) decision vector x = (p,u,s, w).
We associate stochastic Lagrange multipliers A
and p with these constraints, and consider the
Lagrangian L and the dual function D:

L(x; A, p) = F(x)

T I J
+IEY {A(d'=)_pi—> (sh—wh))(8)
t=1 i=1 j=1
I
+pd (=" (ulpf"™ — p}))}
i=1

DA, p) = min L(p,u,s,w; A\, ), (9)
(p,u,s,w)
where the minimization in (9) is subject to
the remaining constraints ((1), (2), (3) and (6).
Justified by general duality results for convex
multi-stage stochastic programs (see [11], [6]),
we consider the dual problem

max D (A, ) (10)

(Ap)
where the maximization is subject to the
constraints that A! and p! are A;-measurable
and nonnegative, and have finite first moments,
t=1,...,T. In particular, this means that both A
and p exhibit the same tree structure as d and
that the dimension of the dual problem (10) is



Scenarios Nodes Variables Constraints Nonzeros
binary continuous
1 168 4200 6552 13441 19657
10 756 18900 29484 60490 88462
20 1176 29400 45864 94100 137612
50 2478 61950 96642 198290 289976
100 4200 105000 163800 336100 491500

Table 1: Dimension of the model depending on the number of scenarios

twice the number of nodes in the scenario tree.
Moreover, the dual function decomposes into the
following form

I J
> Di(A )+ D)

i=1 . j=1 (11)

+IEY A" + p'RY,
t=1

DA, p) =

where D;(A,p) and Dj(A) are the opti-
mal values of stochastic single-unit thermal
and pumped-storage hydro subproblems, respec-
tively. The stochastic single-unit subproblems
take the following form:

T

. — mi [ FC; (pt.ut)—

Di(A,p) = min ) {min[FCi(p,ui)= 1)
t=1 Pj

(A" = p)pf] — p'uipy + SC}(wi)}

T
DiA) = min B3N (s - W] (19
Here, the inner minimization in (12) with re-
spect to the one-dimensional variable p! sat-
isfying upper and lower bounds (1) can be
carried out explicitly by examining all kinks
in the piecewise linear fuel cost function F'C;.
Hence, (12) represents a combinatorial multi-
stage stochastic program where the decision u
satisfies the constraints (3). The subproblem
(13) is a linear multi-stage stochastic program
and the minimization is subject to the con-
straints (1) and (2).
The algorithm based on this stochastic La-
grangian relaxation technique consists of the fol-
lowing ingredients:

(a) Construction of a scenario tree for the
stochastic load process,

(b) maximization of the nondifferentiable con-
cave dual function D by proximal bundle
methods using function and subgradient in-
formation ([7, 8]),

(c) efficient solvers for the stochastic single-
unit subproblems: stochastic dynamic pro-
gramming for (12) and a descent algorithm
for (13),

(d) Lagrange heuristics for determining a fea-
sible approximate solution for the optimal
first-stage decision of (1)-(7).

For a detailed discussion of state-of-the-art al-
gorithms, in particular proximal bundle meth-
ods, for nondifferentiable optimization problems
in the context of Langrangian relaxation we re-
fer to [6]. A description of the algorithms in
(c) and their implementations can be found in
[9, 10]. After having solved the dual problem
(10), its optimal value max()\#)D(/\, W) pro-
vides a lower bound for the optimal costs of the
model (1)-(7). In general, however, the corre-
sponding decision vector (pf,u?,s?, w!) violates
the constraints (4) and (5). To find a feasi-
ble first-stage solution the Lagrange heuristics
in (d) begins with taking the mean value func-
tion of the stochastic processes A, u, s and w.
This is followed by a water rescheduling proce-
dure in order to find improved hydro schedules
and by a thermal Lagrangian heuristics which
goes essentially back to [14]. After having the bi-
nary decisions fixed for the whole time horizon, a
fast economic dispatch algorithm (see [10]) com-
pletes the procedure in (d).

Test results for a hydro-thermal power system
with T=168, I=25 and J=7, and with randomly
generated scenario trees having different num-
bers of scenarios and nodes are displayed in Ta-
ble 2. Test runs were performed at an HP 9000
Workstation (770/J280). In addition to CPU-



Scenarios Nodes timel[s]/gap[%] Nodes timel[s]/gap[%)]
10 781 31.2 / 0.274 1043 52.93 / 0.138
20 1982 89.13 / 0.149 1627 93.62 / 0.101
30 2643 139.71 / 0.528 2643 138.61 / 0.528
50 4530 475.29 / 0.175 4060 274.43 / 0.096
80 6548 537.28 / 0.137 6501 597.04 / 0.114
100 9230 1183.25 / 0.108 9224 1072.18 / 0.131

Table 2: Numerical results

times Table 2 shows the relative optimality esti-
mates (gaps) obtained from the (deterministic)
costs of the primal solution and the optimal dual
(stochastic) costs.

4 SCENARIO DECOMPOSITION

In this section we view the multi-stage stochas-
tic program from Section 2 as a large-scale
mixed-integer linear program (MILP) consisting
of single-scenario MILPs coupled by the non-
anticipativity constraints. More specifically, the
model can be written in the following compound

form
r

.

min{ZW”cx” :x” € PV, H'x" = 0}. (14)

v=1 v=1

Here x” (v = 1,...,r) stands for the decision
vector corresponding to the scenario v. The
sets PV (v = 1,...,r) are the constraint sets
corresponding to the individual scenarios. It is
important to note that these are solution sets
to systems of linear inequalities with integer
requirements to certain variables, e.g., to the
on/off decisions for the thermal units. The load
scenarios enter the mentioned inequality sys-
tems as parts of the right-hand sides. By the lin-
ear equation Y., _, H'x" = 0 with suitable ma-
trices H” we model the non-anticipativity condi-
tions. Since the load scenarios do not enter the
objective function we have the same vector c¢ for
all scenarios. Finally, 7 (v = 1,...,r) denote
the probabilities for the individual scenarios.

It is easy to see that problem (14) were decom-
posable with respect to the scenarios if it wasn’t
for the coupling constraint )., _; H"x” = 0.
This motivates to set up a Lagrangian relaxation
of the mentioned constraint. To this end we for-
mulate the Lagrangian function

r r
L(x,A) = ZW”CX”+AZH”X”
v=1 v=1

,
= Z(w”cx” + AH"X")

v=1
T

= E:lfxxyaA)
v=1

where X is the Lagrange multiplier vector from
a FEuclidean space of suitable dimension and
LY (x,A) = n¥ex” + AH"x" for all v.

The Lagrangian relaxation of (14) then reads

D(A) = min{L(x,A) : x"eP’,v=1,...,r}
= Zmin{L”(x”,)\) . xVePVY,
v=1

and the Lagrangian dual is the optimization
problem maxy D(A).

From duality in mixed-integer linear program-
ming it is well known that the optimal value
of the Lagrangian dual rather provides a lower
bound for the optimal value of (14) than co-
incides with this number. However, the La-
grangian dual is a non-smooth concave maxi-
mization problem for which powerful algorithms
including implementations are available (see [7,
8]). Moreover, computing D(A) benefits from
the decomposition indicated in the above for-
mula. Instead of solving full-sized MILPs the
far smaller problems min{L"(x”,A) : x” € P"}
have to be solved. The latter corresponding to
the individual scenarios the method is termed
scenario decomposition. Note further that the
scenario subproblems are very similar to power
scheduling problems for each individual load
profile. The only difference is in the term AH"Yx"
that enters the objective. Therefore, experience
gathered with deterministic counterparts to our
stochastic power scheduling model can be im-
mediately exploited when solving the scenario
subproblems.

After having solved the Lagrangian dual we
obtain a lower bound to the optimal value of (14)



and together with the optimal A we have solu-
tions x” (v =1,...,7) to the scenario subprob-
lems. In the rare event where in addition it holds
Yoo—1 H'x” =0 we know that x¥ (v =1,...,r)
solve problem (14) as well. In general one has
to expect that the non-anticipativity condition
is violated by the solutions to the scenario sub-
problems. Then heuristics are employed using
the scenario subproblem solutions as input and
yielding feasible non-anticipative points whose
objective function values provide upper bounds
for the optimal value of (14), see [2] for a more
detailed description.

The (relative) difference between the upper
bound obtained by the above mentioned heuris-
tics and the lower bound from the Lagrangian
dual provides an optimality estimate for the out-
put of the heuristics. This can be further im-
proved by a branch-and-bound scheme on top
of the Lagrangian dual whose details are de-
scribed in [2]. Here the basic idea is to par-
tition the feasible region of (14) and to apply
the above scheme (lower bounding by the La-
grangian relaxation of non-anticipativity, upper
bounding by heuristics starting from subproblen
solutions) to each of the members of the parti-
tion. As in traditional LP-based branch-and-
bound or global-optimization-related branch-
and-bound we obtain tighter and tighter bounds
together with feasible points that are closer and
closer to the optimum. In theory, convergence to
the optimum may be ensured. In practice how-
ever, there is a substantial tradeoff between the
speed of convergence and the computing time.
This tradeoff is very much depending on the con-
crete problem at hand and has to be explored in
test runs. The final part of this section is de-
voted to a first step in that direction.

In [3] a power scheduling problem with uncer-
tain load is modelled as a two-stage stochastic
program. For lack of space we have to refer to
[3] for model details. Instead Table 3 gives an
impression on the sizes of two model types from
[3]. The columns correspond to the numbers of
scenarios, constraints, (integer and continuous)
variables, integer variables, and the dimension
of A, respectively.

For each of the model types, load scenarios
were generated to cover uncertainty caused by
generator failures and by forecast inaccuracy, see
[3] for details. In the implementation of our sce-

nario decomposition method we used CPLEX [5]
for solving mixed-integer linear programs arising
in the Lagrangian relaxation and NOA 3.0 [7, 8],
an implementation by K.C. Kiwiel of his proxi-
mal bundle method, for solving the Lagrangian
dual. Test runs were performed at a Digital Al-
pha Personal Workstation with 500 MHz pro-
cessor. Table shows the relative optimality esti-
mates (gaps) achieved after 10 minutes of CPU-
time.

Our preliminary results indicate that both
stochastic Lagrangian relaxation and scenario
decomposition bear some potential in solving
large-scale MILPs that arise in power schedul-
ing under uncertainty.
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