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Recently, stochastic applications of large-scale applied simulation models of agricultural markets have become
more frequent. However, stochastic modeling with large market models comes with high computational and
management costs for data storage, analysis and manipulation. Gaussian Quadratures (GQ), are efficient
sampling methods requiring few points to approximate the central moments of the joint probability distribution
of stochastic variables and therefore reduce computational costs. For symmetric regions of integration, the
vertices of Stroud's n-octahedron (Stroud, 1957) are GQ formulas of degree 3 with a minimal number of points
which can make the stochastic modeling with large economic models manageable. However, we have the
conjecture that rotations of Stroud's n-octahedron have an effect on the accuracy of approximation of model
results; thus, we test eight different rotations using the European Simulation Model (ESIM). It was found that
the 45° rotation yields higher accuracy than the 0° rotation. With the 45° rotation and in models with large re-
gions or variables which strongly determine the outcome of model results such as soft wheat in ESIM, the ar-
rangement of the stochastic variables (A1 or A2) in the covariance matrix or the selected method to introduce
correlation (via the Cholesky decomposition –C– or via the diagonalization method –D–) may have a significant
effect on the accuracy of the quadratures.With the 45° rotation andwithmarketswhere the effect of the different
regions or variables onmodel outcomes aremore homogenous as in the case of rapeseed in ESIM, the selection of
the arrangements A1 or A2 and themethod of introducing correlation C or Dmay not have a significant effect on
the accuracy of the quadratures.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Notation

It is considered useful to first introduce the notation used throughout
the article. It can be divided in 4 groups: a) notation for spatial regions,
b) matrix and vector notations, c) notation used to describe formulas in
the European Simulation Model (ESIM), and d) other notation.

a). Notation for spatial regions

Cn the n-cube with centroid at the origin and vertices (±a,
±a, ⋯, ±a)

En Euclidean n-dimensional space
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Zimmermann).
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b). Matrix and vector notation

In general, matrices are denoted with upper case, bold letters;
column vectors with lower case, bold letters; row vectors with lower
case, bold, italic letters and a subscript indicating the row or variable;
and vectors of row vectors with lower case, bold, italic letters but
without a subscript.

The following are some specificities:
In the identity matrix of size n × n
i index to determine the elements (variables or coordinates)

of a column vector: i = 1, 2, ⋯, n
k index to determine the quadrature points in a matrix of

quadratures — these are column vectors: k = 1, 2, ⋯, N
L lower triangular matrix of the Cholesky factorization, Σ[z] =

LLT

N number of quadrature points or required evaluations of an
integrand
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3 The model is used by The Organisation for Economic Co-operation and Development
(OECD) and the Food and Agriculture Organization (FAO) of the United Nations for their
annual agricultural outlook. The model is also used by the European Commission (EC).
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n number of variables in a column vector — the number of
dimensions of a multivariate integration problem

R upper triangular matrix of the reverse Cholesky factorization,
Σ[z] = RRT

[]T transpose
U the orthogonalmatrix consisting of the eigenvectors ofΣ[z]—

these are situated in the columns of U
X matrix of quadrature points for the approximation of a multi-

variate normal probability density function:
x1;1 ⋯ x1;N
⋮ ⋱ ⋮

xn;1 ⋯ xn;N

2
4

3
5

x an independent variable
x a vector of variables whose components are denoted by

subscripts: x = (x1, x2, ⋯, xn)
Z matrix of deviates with n variables and m observations:

z1;1 ⋯ z1;m
⋮ ⋱ ⋮

zn;1 ⋯ zn;m

2
4

3
5

Γ matrix of quadrature points for the multivariate standard
normal probability density function or the Cn with vertices

(±1, ± 1, ⋯, ± 1):
γ1;1 ⋯ γ1;N
⋮ ⋱ ⋮

γn;1 ⋯ γn;N

2
4

3
5

μ the vector of means of the stochastic variables in a multi-
variate probability density function: μ = (μ1, μ2, ⋯, μn)

Σ the covariance matrix:
σ1;1 ⋯ σ1;n
⋮ ⋱ ⋮

σn;1 ⋯ σn;n

2
4

3
5 where σi,i = σi

2 =
Var(xi)

0 the zero vector with n-elements: 0 = (0, 0, ⋯, 0)T

c). notation used to describe formulas in ESIM

elastspcrops,crops own and cross price elasticity of supply
elastyd own price elasticity of yield
elastyi yield elasticitywith respect to the index of intermediate input

costs
elastyl yield elasticity with respect to the index of labor costs
indi cost index of intermediate inputs
indl cost index of labor inputs
intsp constant in the supply function
tp technical progress of yields or supply
intyd constant in the yield function

d). Other notation

d degree of precision of a quadrature formula
E[] expected value of the data in the content of the brackets
Qn the n-octahedron from Stroud's theorem from 1957

1. Introduction

Recently, stochastic applications of large-scale applied simulation
models of agricultural markets have become more frequent. These
analyses have different purposes. First, some intend to identify the
main sources of market uncertainty and to give an indication of alter-
native possible outcomes around baseline commodity market pro-
jections (FAPRI-MU, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010, 2011b, 2012, 2013; European Commission, 2011, 2012;
OECD/FAO, 2007, 2008, 2011, 2013; OECD, 2011). Second, some aim at
calibration of model parameters and model validation (Beckman et al.,
2011; Hertel et al., 2005; Valenzuela et al., 2007). Third, some aim at
policy analysis (Arndt and Hertel, 1997; Hertel et al., 2010; Verma,
Hertel and Valenzuela, 2011; Westhoff, Brown and Hart, 2006). With
the diversity of possible applications as well as the current interest in
understanding and assessing uncertainty, the increase in stochastic
modeling applications is likely to continue.

One important aspect of stochastic modeling with large economic
models is how to handle dimensionality. Stochastic simulations come
with high computational and management costs for data storage, anal-
ysis and manipulation. The Food and Agricultural Policy Research Insti-
tute (FAPRI) model, AGLINK-COSIMO,3 the European Simulation Model
(ESIM) and the Global Trade Analysis Project (GTAP) model are fre-
quently applied large market models that have been modified to incor-
porate stochastic features, although they handle dimensionality in
different ways (see FAPRI-MU, 2011a; Burrell and Nii-Naate, 2013;
Artavia, 2014; Pearson and Arndt, 2000 respectively, for a description
of the stochastic features in those models). The FAPRI model uses
Latin Hypercube Sampling (LHS) in combination with a reduced
model version with less detail than the deterministic version;
AGLINK-COSIMO runs over 500 LHS points with high computational
and simulation time requirements; and ESIM and the GTAP model
make use of Gaussian Quadratures (GQ), which are efficient sampling
methods requiring few points to approximate the central moments of
the joint probability distribution of the stochastic variables.

Stroud (1957) proposed a theorem for the generation of GQ formu-
las which have the advantage of being very simple to compute and re-
quiring the minimal number of points (Mysovskih, 1966 as cited by
Haber, 1970). In his theorem, Stroud has shown that for symmetric re-
gions of integration one can use the vertices of an n-dimensional octa-
hedron, Qn, with certain characteristics as a quadrature formula. In
stochastic modeling, a symmetric region of integration is for example
the multivariate normal distribution of the stochastic variables. With
Stroud's theoremwe are able to generate a Qn for themultivariate stan-
dard normal distribution with independent stochastic variables and we
call it the ‘reference Qn’. However, since we work with uncertainties
around commodity markets we want the quadratures to consider the
observed variance and covariance of the stochastic variables. In order
to induce a desired covariance matrix a linear transformation must be
applied to the matrix of quadratures obtained from the reference Qn.
We call the n-octahedron considering specific covariance matrices the
‘transformed Qn’.

The transformedQn can be rotated in spacewithout changing thede-
gree of precision of the quadrature formula. Nonetheless, in stochastic
modeling, the interest is not only in the degree of precision of the quad-
rature, but also in the location of the sample points. With the rotation of
the transformed Qn, the location of points sampling the marginal distri-
butions of the stochastic variables changes significantly and this may
have an effect on the accuracy of the quadratures. For example, func-
tions in large market models are often highly dimensional, depending
on complex cross relationships ormarket policies triggered at threshold
points (i.e., tariffs, tariff rate quotas— TRQs, export subsidies with quan-
tity limits, production quotas, etc.). This can make the evaluation point
of the function an issue that matters.

Stroud-based sampling approaches are convenient as they may re-
sult in a considerable reduction of the number of model solves needed
in stochastic analyses. However, the level of accuracy of approximation
of model results of different rotations of both, the reference and the
transformedQn, has not been sufficiently studied inmarketmodels. Fur-
thermore, the accuracy of different rotations has not been tested in large
partial equilibrium (PE)models of the agricultural sector as for example
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Fig. 1. Effect of the stochastic variable on supply curves.
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AGLINK-COSIMO, the FAPRI model or ESIM. Two articles deal with the
topic of accuracy of GQ in computable general equilibrium (CGE)
models. Preckel et al. (2011b) assess the performance of two linear
transformations of the reference Qn, namely, the ones computed via
the Cholesky decomposition and via the Eigensystem of the covariance
matrix (the procedure making use of the Eigensystem of the covariance
matrix is called the diagonalization method in this article (see
Section 3.3). The reference Qn evaluated is the one generated by using
Stroud's degree 3 formula (see Stroud, 1957) which presents 45° of ro-
tation (see Section 3.1). To avoid biases created by different models or
different correlation levels, Preckel et al. (2011b) use three models
and different covariance matrices. Their results show that for the two
smaller models, the choice of the transformation method does not
have a large impact on the accuracy of the quadrature. For the third
model, a highly aggregated version of a global general equilibrium
model (GTAP), results are inconclusive. Preckel et al. (2011a) explore
the sensitivity of model results to the breadth of the GQ sampling
using a reduced version of the model applied by Hertel, Martin and
Leister (2010) which is a GTAPmodel version that has been specifically
tailored to agricultural applications. Theymake two copies of theGQ de-
rived by either Stroud or Liu which are available in the Systematic Sen-
sitivity Analysis (SSA) in GEMPACK. They stretch one of the copies and
shrink the other so as to make it possible to maintain the variances
(Preckel et al., 2011b). Thus, their method results in a duplication of
the sample size. They find that the sampling breadth is an important as-
pect for highly non-linear models.

In this paper we have the hypothesis that different rotations of the
transformed Qn may have an effect on the accuracy of approximation
of the central moments of the output variables of commodity market
simulation models. Thus, the article has the purpose of assessing the
performance of alternative rotations of the transformedQn. For that pur-
pose different quadrature formulas are tested using ESIM. Like Preckel
et al. (2011b), we evaluate the accuracy of quadratures obtained with
the linear transformations of the reference Qn with 45° of rotation com-
puted via the Cholesky decomposition and via the diagonalization
method. Moreover, we also tests two alternative procedures in the gen-
eration of the transformedQnwhich have not been studied before: (i) to
use the reference Qn with the vertices lying on the coordinate axes (0°
rotation), and (ii) to use different arrangements of the coordinate sys-
tem (different arrangements of the stochastic variables in the covari-
ance matrix) when computing the linear transformation of the 45°
and 0° reference Qns. Note that the different procedures all result in dif-
ferent rotations of the transformed Qn.

The article is organized as follows: Section 2 gives an overview of
ESIM and of the stochastic version used; Section 3 provides the theoret-
ical background of Stroud's theorem and its application to stochastic
modeling; Section 4 presents the rotations evaluated; Section 5 intro-
duces the benchmark (the approximation of the true value of model re-
sults) for the assessment of the accuracy of the rotations tested;
Section 6 presents the results and identifies several factors which con-
tribute to the explanation of the observed differences in accuracy; the
final section offers conclusions and briefly describes the future research
agenda.

2. Stochastic version of ESIM

ESIM is a world, comparative static, partial equilibrium, net trade,
multimarket model which covers the main agricultural products. It
has been designed with a focus on the simulation of medium-term
(five to ten years) developments of agricultural markets in the
European Union (EU) and accession candidate countries (Croatia,
Turkey, and Western Balkan). Thus, it depicts the EU at the Member
State (MS) level and includes the market policies of the Common Agri-
cultural Policy (CAP) in detail. The ‘Rest of theWorld’ (ROW) ismodeled
as one aggregate with the exception of the United States of America
(USA) which is modeled separately. ESIM has rich cross and input/
output relationships between commodities and covers first-stage pro-
cessing products (dairy, plant oils and biofuels). The model is run with
a set of coherent macroeconomic and policy assumptions and solves
for the equilibrium where world net exports equal world net imports
to determine equilibrium world market prices. For this article, an ESIM
version documented in Banse, Grethe and Nolte (2005) is used and pol-
icy specifications as well as stochastic extensions are as documented in
Artavia (2014).

In the stochastic version the yields of wheat, barley and rapeseed in
all countries/regions are considered as stochastic, accounting for their
uncertainty around linear trends. The stochastic terms are incorporated
into the respective supply and yield equations. The crops are selected
due to their importance in the EU. All 3 crops are significant in terms
of their share of production in the EU andwheat and rapeseed especially
significant in terms of their political importance, wheat as a sensitive
food product and rapeseed as the main feedstock for the production of
biodiesel.

Due to its focus on the EU, in ESIM the equations for crop supply for
the EU Member States are divided in area and yield equations, supply
being then obtained by:

SUPPLY ¼ AREA� YIELD: ð1Þ

Crop supply for the rest of countries and regions –USA and ROW – is
only one isoelastic function:

SUPPLY ¼ intsp∏crops PP
elastspcrops;crops tp: ð2Þ

For the EU Member States crop yields are modeled with isoelastic
functions dependent on producer prices, on intermediate cost indices
and on technical progress as follows:

YIELD ¼ intydPPelastyd indielastyi indlelastyl tp: ð3Þ

Note that the yield equations are only subject to own price elastici-
ties. The cross price elasticities are considered in the area equations
which are not presented here.

For the stochastic version, the stochastic term stoch has been
included for the corresponding crops in all regions as a factor into
Eqs. (4) and (5) as follows.

For the USA and the ROW:

SUPPLY ¼ intsp∏ crops PP
elastspcrops;crops tp 1þ stochð Þ; ð4Þ

for the European countries:

YIELD ¼ intydPPelastyd indielastyi indlelastyl tp 1þ stochð Þ: ð5Þ



Table 1
Stochastic variables integrated to the yield and supply equations of soft wheat, barley and
rapeseed in different countries and country-groups and their standard deviation (in %:
0.10 = 10%).

Wheat Barley Rapeseed

EU-15 AT 0.10 AT 0.10 AT 0.12
BE–NL 0.09 BE–NL 0.09
DK–SW–FI 0.09 DK–SW 0.09 DK–SW–FI 0.10

FI 0.14
ES–PT 0.16 ES–PT 0.19
FR 0.08 FR 0.08 FR 0.12
GE 0.07 GE 0.07 GE 0.10
GR 0.17 GR 0.15
IT 0.08 IT 0.13
UK–IR 0.09 UK–IR 0.06 UK–IR 0.14

EU-12 CZ–SK 0.15 CZ–SK 0.17 CZ–SK 0.16
HU 0.23 HU 0.20 HU 0.17
PL 0.11 PL 0.13 PL 0.17
RO–BG 0.21 RO–BG 0.21

Other regions TU 0.11 TU 0.10
US 0.07 US 0.08
ROW 0.06 ROW 0.09 ROW 0.07

Note: The countries and regions are abbreviated in the following way: Austria (AT),
Belgium–Luxembourg (BE), BG: Bulgaria (BG), Cyprus (CY), Czech Republic (CZ),
Denmark (DK), Finland (FI), France (FR), Germany (GE), Greece (GR), Hungary (HU),
Ireland (IE), Italy (IT), Netherlands (NL), Poland (PL), Portugal (PT), Romania (RO), ‘Rest
of the World’ (ROW), Slovak Republic (SK), Spain (ES), Sweden (SW), Turkey (TU),
United Kingdom (UK), United States of America (USA).

Table 2
Final values of the elasticity adjustment parameter (ea) used as a factor to
reduce the input and output price elasticities of yield and supply equations.

eafor all commodities 0.300
eawheat 0.150
eabarley 0.200
earapeseed 0.155
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stoch contains the generated quadratures for x ~ N(0, Σ) which is the
assumed stochastic space of the random vector.

By running the model several times over the quadrature points
contained in stoch, the consequences of yield uncertainty on the stability
of markets can be studied. Fig. 1 shows the effect of the stochastic factor
on the crop supply curves. It can be observed how the factor shifts the
curve to the left and to the right.

For the determination of the stochastic terms, the EU MS are
grouped both to reduce the dimensionality of stochastic space and to
focus on the major sources of price uncertainty. Groups are formed ac-
cording to the level of correlation of yield deviates between MS as
well as to their share of production in the EU. MS with high correlation
are grouped together, e.g., Romania and Bulgaria; MS with small shares
of production are either put togetherwith a larger neighbor, e.g., Ireland
is groupedwith the UK, or are left in their deterministic version, e.g., the
Baltic States,Malta, and Cyprus. The grouping results in a total of 42 sto-
chastic variables: 16 for wheat, 17 for barley, and 9 for rapeseed (see
Table 1).

After the grouping, the stochastic part of the yield time series is de-
termined as the deviates from estimated linear trends, and the deviates
are captured as shares based on FAOSTAT data (1961–2006). For exam-
ple, let yi,j be any of the observed values for the variable i, where i =
(1, 2, ⋯, n), in the year j, where j=(1, 2, ⋯,m); and let ŷi,j be the estimat-
ed trend value for the same variable in the sameyear. Then the observed
deviate zi,j is captured by

zi; j ¼
yi; j
ŷi; j

−1: ð6Þ

Proceeding in this way for all variables and all years, the matrix of
deviates Zn × m is computed. The final matrix of deviates is arranged as
follows:

Zn�m ¼

zFR:w;1 zFR:w;2 ⋯ zFR:w;m
zGE:w;1 zGE:w;2 ⋯ zGE:w;m

⋮ ⋮ ⋮
zROW:w;1 zROW:w;2 ⋯ zROW:w;m
zFR:b;1 zFR:b;2 ⋯ zFR:b;m
zGE:b;1 zGE:b;2 ⋯ zGE:b;m

⋮ ⋮ ⋮
zROW:b;1 zROW:b;2 ⋯ zROW:b;m
zFR:r;1 zFR:r;2 ⋯ zFR:r;m
zGE:r;1 zGE:r;2 ⋯ zGE:r;m

⋮ ⋮ ⋮
zROW:r;1 zROW:r;2 ⋯ zROW:r;m

2
6666666666666666664

3
7777777777777777775

; ð7Þ

for n = 42 variables and m = 46 years.
In the elements of Z, the first index indicates the country and the

crop at the same time and the second index determines the observation
year. For example, FR. w, 1 is the value for wheat in France in year one
(1961). Thus, the variables of wheat in Eq. (7) are located in the upper
block of the matrix, those of barley in the middle block (indices with:
country. b) and rapeseed in the bottom block (indices with: country. r).

Since the elements ofZ are deviations from linear trends, the expect-
ed value of each stochastic variable is zero. The standard deviations of
the stochastic variables differ to an important degree from each other
and are presented in Table 1. Statistical tests showed thatmost variables
are stationary and normally distributed. Thus, for simplicity and since
the focus of this article is on the evaluation of different sampling tech-
niques, we assume stationarity and normal distribution for all stochastic
variables.

In its deterministic version, ESIM has been developed to simulate
medium-term adaptation of agricultural markets to external shocks. In
the stochastic version, themodel is run to simulate the effects of weath-
er induced short-term yield and supply shocks. For this reason, the
parameterization of behavioral yield and supply functions in ESIM is ad-
justed to simulate the short-run adaptation of markets. Own, input and
cross price elasticities of crops and livestock commodities are reduced
such that ESIM reproduces observedworldmarket price volatility. Devi-
ates from linear price trends calculated from data by Anderson and
Valenzuela (2008) are taken as the basis for the estimation of world
market price uncertainty. For the adaptation of elasticities, a new pa-
rameter per commodity, ea (elasticity adjustment parameter), is creat-
ed and both input and output price elasticities are adjusted by it. The
final values of the elasticity adjustment parameter are presented in
Table 2.

In the deterministic version, own price and input price elasticities
are relatively similar across countries while cross price elasticities di-
verge to a higher degree. This is a result of the calibration of the system
of elasticities to fulfill the conditions derived from economic theory,
which are homogeneity of degree zero in input and output prices, sym-
metry of compensated substitution effects and non-negativity of the
own price effect (Banse et al., 2007). In the calibration process, own
and input price elasticities are held constant and only cross price elastic-
ities are allowed to vary (Banse et al., 2007).
3. Theoretical background

The following 3 subsections present the theoretical background of
Stroud's theorem of numerical integration, its correspondence with
discrete approximations of probability distributions, and the trans-
formation of quadratures for the joint standard normal space to quad-
ratures for specific stochastic spaces.
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3.1. Stroud's theorem

Stroud's theorem from 1957 states:

A necessary and sufficient condition that 2n points x1, ⋯, xn, − x1, ⋯,
− xn form an equally weighted numerical integration formula of
degree 3 for a symmetrical region is that these points form the verti-
ces of a Qn whose centroid coincides with the centroid of the region
and lie on an n-sphere of radius r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

nI2=I0
p

.
[Stroud (1957, p. 259).]

Here, I0 is the n-volume of the region of integration and I2 is the
integral of the square of any variable over that region.

Stroud (1957), based on his theorem andwith the purpose of gener-
ating quadrature points which are interior to the integration region,
proposed the following formula for the n-cube (Cn) with vertices
(±1, ± 1, ⋯, ± 1).

Let γk denote the quadrature point (γ1, γ2, ⋯, γn)T, where:

γk; 2r−1 ¼
ffiffiffi
2
3

r
cos

2r−1ð Þkπ
n

γk; 2r ¼
ffiffiffi
2
3

r
sin

2r−1ð Þkπ
n

for r ¼ 1;2; ⋯; 1
2
n

� � ð8Þ

and if n is odd:

γk;n ¼ −1ð Þk=
ffiffiffi
3

p
ð9Þ

then, the points γ1, ⋯, γN for N = 2n, satisfy the conditions of the theo-
rem and all are interior to Cn (Stroud, 1957, p. 260).

Note that Stroud was confronted with the problem that for the Cn

with vertices (±a, ± a, ⋯, ± a) and for n N 3, the radius of the n-sphere
onwhich the vertices that theQnmust lie on is greater than a. Put anoth-
er way, for n N 3we have r N a. As a result, if the quadrature points lie on
Coordinates of the quadrature points:

0.41 -0.41 -0.82

0.71 0.71 0.00

-0.58 0.58 -0.58

Fig. 2. The octahedron for the 3 dimensional cube obt
the coordinate axes, these would be outside Cn as the calculation below
shows.

For Cn = [−a, a]n we obtain as its n-volume:

I0 ¼
Z

Cn
x0dx ¼ 2að Þn; ð10Þ

and the integral of the square of any variable over Cn is:

I2 ¼
Z

Cn
x2dx ¼

Z
Cn−1

dx
Z a

‐a
x2dx ¼ 2að Þn−1

Z a

−a
x2dx

¼ 2að Þn−1 1
3
x3

� �a
−a

¼ 2að Þn−1 2
3
a3

� �
¼ 2n

3
anþ2

:

ð11Þ

Consequently, for the radius of the Qn for the Cn we obtain:

r ¼
ffiffiffiffiffiffiffiffi
n
I2
I0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2n

3
anþ2

=2nan
� �s

¼
ffiffiffiffiffiffiffiffiffi
n
a2

3

s
¼ a

ffiffiffi
n
3

r
: ð12Þ

Thus, for n N 3, we have r N a.
Quadrature points outside the region of integration have the prob-

lem that the function being integrated may not be defined at those
points. To avoid points lying outside Cn, for n N 2, Stroud rotates the Qn

so that the vertices are as far as possible from the coordinate axes.
Fig. 2 shows the quadrature points obtained with Stroud's formula for
the Cn with vertices (±1, ± 1, ⋯, ± 1) for n = 3. Note that the quad-
rature points are enumerated – where vertices 1–4, 2–5, and 3–6 are
opposite to each other – and that the point in the middle indicates the
center of the region. It can be observed that the points are the vertices
of a Qn whose centroid coincides with the centroid of the region Cn

and lie on an n-sphere of radius r ¼ a
ffiffiffiffiffiffiffiffi
n=3

p ¼ 1. It can also be seen
how the Qn is rotated. Compared to a 3-octahedron with vertices on
the coordinate axes, the vertices of the octahedron in Fig. 2 are rotated
-0.41 0.41 0.82

-0.71 -0.71 0.00

0.58 -0.58 0.58

ained with Stroud's degree 3 formula from 1957.
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by 45° with respect to two axes (such as x and y) and then again by 45°
with respect to two other axes (such as x and z). It is difficult to imagine
howwith growing dimensions, the growingQn can still be fitted into the
Cn. However, note that in Eq. (8), the coordinates for all i and all k take
the minimum and maximum values of � ffiffiffiffiffiffiffiffi

2=3
p

, which occur when the
cosine or the sine part takes a value of ± 1. This shows that these points
are inside Cn for all n.

3.2. The reference Qn

Numerical integration formulas for joint distributions have the char-
acteristic that the regions of integration have an associated probability
distribution. Thus, their degree of precision is defined by the capacity
of matching the central moments of the joint probability distribution.
For example, a formula of degree 3 reproduces all central moments up
to the 3rd one.

The main difference between Stroud's Qn for the Cn with vertices
(±1, ± 1, ⋯, ± 1) and the reference Qn (for the joint standard normal
distribution) is its size. This is shown by the derivations below.

For the joint standard normal distribution:

I0 ¼ ∫
En
x0

1
2πð Þn=2 e

− xk k2
2 dx ¼ 1ð Þn ¼ 1 ð13Þ

and:

I2 ¼ ∫
En
x2i

1
2πð Þn=2 e

− xk k2
2 dx

¼ ∫
En−1

1
2πð Þ n−1ð Þ=2 e

− ∥x∥2−x2i
2 dx∫∞

−∞x
2
i

1ffiffiffiffiffiffi
2π

p e−
x2i
2 dx

¼ 1ð Þn−11 ¼ 1

ð14Þ

where ||x|| is the norm of the vector x.
Thus:

r ¼
ffiffiffiffiffiffiffiffi
n
I2
I0

s
¼ ffiffiffi

n
p

: ð15Þ

Note that the joint standard normal distribution is supported on the
entire Euclidian space, En (see Eqs. (14) and (15)). In this way the verti-
ces of the reference Qn will never lie outside the region of integration.
However, the marginal distributions could be limited to consider only
the intervals of high probability, for example [−3σ, 3σ] which would
cover around 99.7% of their probabilities. As a result, the region of inte-
gration would be an n-sphere and the vertices of the reference Qn could
be outside of it.

Note also that the weights of Stroud's theorem, wk ¼ I0
2n, applied to

multivariate probability distributions result in: pk ¼ 1
2n I0 ¼ 1

2n :

3.3. The transformed Qn

Specific stochastic spaces (the stochastic space expanded by the
stochastic variables used in an uncertainty analysis with specific
variance and covariance) divert from the definition of symmetric re-
gions used by Stroud (1957). These are still symmetric regions but
the Qn can no longer lie on an n-sphere. Different variances result
in the expansion or contraction of marginal probability distribu-
tions. Moreover, positive and negative correlation between stochas-
tic variables results in the partial connection of the marginal
distributions. If we limit the probability distribution of the stochas-
tic variables to the intervals of high probability, as mentioned in
Section 3.2, the region of integration would be an n-ellipsoid. In
this subsection we show how to transform the reference Qn to ob-
tain quadratures which consider specific covariance matrices. In
other words, if z is the vector of stochastic variables, it is shown
how to induce a desired covariance matrix, Σ[z], to the reference
Qn, in order to get a new matrix of quadratures, X, with Σ[x] =
Σ[z]. Further details of this procedure and a small example are
given in Artavia et al. (2009).

To begin with, we consider an equidistribution of N arbitrary points
x1, ⋯, xN∈ Enwithweight 1/N andmean E[x]= (1/N)(x1+ ⋯+ xN)= 0.
In this case the covariance matrix can be determined by simply gather-
ing these points in an n × N-matrix:

X ¼
x1;1 ⋯ x1;N
⋮ ⋱ ⋮

xn;1 ⋯ xn;N

2
4

3
5 ð16Þ

and then computing:

Σ x½ � ¼ 1
N
XXT

: ð17Þ

For the verticesγ1, ⋯,γN of the referenceQn gathered in thematrix Γ:

Σ γ½ � ¼ 1
N
ΓΓT ¼ In; ð18Þ

where In is the identity matrix of size n × n.
Now, let A be any regular n × n-matrix and consider the points xk =

Aγk for k = 1, 2, ⋯, N. This yields:

X ¼ Aγ1 ⋯j jAγN½ � ¼ AΓ ð19Þ

with:

E x½ � ¼ 1
2n

X2n
k¼1

xk ¼
1
2n

A
X2n
k¼1

γk ¼ A E γ½ � ¼ A0 ¼ 0 ð20Þ

and:

Σ x½ � ¼ 1
2n

XXT ¼ 1
2n

AΓ AΓð ÞT ¼ A
1
2n

ΓΓTAT ¼ AInA
T ¼ AAT

: ð21Þ

Thus, our problem is reduced to expressing the desired covariance
matrix, Σ[z], in the form AAT for a regular square matrix A. There are
countless possibilities of doing this. Three standard methods are
described below.

a) Diagonalization method (principal axes transformation):
Since Σ[z] is positive semidefinite, it can be written in the form
Σ[z] = UDUT, where D is the (non-negative) diagonal matrix of
eigenvalues of Σ[z] and U is orthogonal (consisting of the eigen-
vectors of Σ[z]). Notice that the vectors (eigenvectors) will be
the columns of U. Then, letting A ¼ U

ffiffiffiffi
D

p
yields AAT = Σ[z] as

desired.
b) Cholesky decomposition:

The positive semidefinite matrix Σ[z] has a Cholesky decomposi-
tion Σ[z] = LLT where L is a lower triangular matrix as follows:

L ¼
L1;1 0 ⋯ 0
L2;1 L2;2 ⋱ ⋮
⋮ ⋱ ⋱ 0

Ln;1 ⋯ Ln;n−1 Ln;n

2
664

3
775: ð22Þ

Then, choose A = L.
The Cholesky decomposition can also be of the form Σ[z] = LDLT,
where L is a lower triangular matrix and D is a diagonal matrix as



Table 3
The rotations tested.

0°A1C 45°A1C
0°A1D 45°A1D
0°A2C 45°A2C
0°A2D 45°A2D

Note: The names given to the rotations are composed of the following
elements: (0°) denotes the reference n-octahedron with vertices lying on
the coordinate axes; (45°) denotes the reference n-octahedron with
rotation from Stroud's degree 3 formula from 1957; (A1) and (A2) denote
the arrangements 1 and 2 of the stochastic variables in the covariance
matrix; (C) and (D) denote the methods to induce correlation to the
quadratures, via Cholesky decomposition (C) and via the diagonalization
method (D).

Fig. 3. The arrangement A2 of the stochastic variables in the matrix of data Z.
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follows:

LDLT ¼
1 0 ⋯ 0
L2;1 1 ⋱ ⋮
⋮ ⋱ ⋱ 0

Ln;1 ⋯ Ln;n−1 1

2
664

3
775

D1 0 ⋯ 0
0 D2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Dn

2
664

3
775

�
1 L1;2 ⋯ L1;n
0 1 ⋱ ⋮
⋮ ⋱ ⋱ Ln−1;n
0 ⋯ 0 1

2
664

3
775: ð23Þ

Then, choose A ¼ L
ffiffiffiffi
D

p
.

c) Reverse Cholesky decomposition:
The positive semidefinite matrix Σ[z] can also be decomposed in
Σ[z] = RRT where R is an upper triangular matrix. In this case,
choose A = R to obtain the desired conditions.
It is worth noting that different factorizations Σ[z] = AAT = BBT

simply differ by an orthonormal matrix factorO (the length of the
columns of O must be 1), e.g., B = AO. Consequently, each such
matrix O will yield a different factorization. Therefore, choosing
a different factorization, e.g., B instead of A, will result in BΓ =
AOΓ. Geometrically this means rotating the quadratures for the
multivariate standard normal distribution (the reference Qn) be-
fore applying the transformation to induce the desired covariance
matrix.

4. Rotations evaluated

The analysis consists of eight rotations of the transformed Qn. For
the generation of the quadratures we follow the procedure described
in Section 3: first, to generate the reference Qn and second, to trans-
form the reference Qn for the approximation of the specific stochastic
space.

The eight rotations tested are obtained by combining two rotations
(0° and 45°) of the reference Qn, twomethods to introduce correlation
(via the Cholesky decomposition of the covariance matrix and the di-
agonalization method; see Section 3.3), and two arrangements (A1
and A2) of z (the vector of stochastic variables in Z). With A1, the sto-
chastic variables are arranged in Z as in Eq. (7). With A2, the variables
zROW. w, zROW. b, and zROW. r, which are important for the price determi-
nation in ESIM, are located at the beginning of Z. Fig. 3 illustrates the
arrangements with A2. To distinguish between the matrices of sto-
chastic data with different arrangements these are called ZA1 and ZA2.

The combination of 0° and 45° rotations of the reference Qn, the
methods to induce correlation, and the different arrangements of the
coordinate system, results in different rotations of the transformed Qn.
Table 3 provides an overview of the tested rotations.

5. True value

The accuracy with which the numerical integration formulas
approximate the integral of f(x) depends not only on the degree of
accuracy of the formula, but also on the accuracy with which f(x) itself
can be approximated by polynomials (Haber, 1970). This depends on
the smoothness of f(x), i.e., the number of times that the integrand is
(continuously) differentiable (Haber, 1970). If we name the value
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obtained with a quadrature formula, Q(f(x)), then we can express its
approximation error by (Haber, 1970):

Z b

a
f xð Þdx−Q f xð Þð Þ: ð24Þ

For large-scale, complex stochastic simulationmodels, the true value
of ∫a

bf(x)dx cannot be computed since equilibrium conditions and
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multidimensionality make the analytical determination of the true
value practically impossible. Therefore, the true value can only be
approximated.

To compare the accuracy obtained by applying different rotations,
we choose global prices for the stochastic products as important
solution variables and compare them to the approximated true
value. The true value is approximated using theMonte Carlo approach
of numerical integration; more specifically, the LHSmethod (see Vose,
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2000 for an explanation of the LHS). This approach is not based on
interpolation procedures and it has the advantage that due to its na-
ture, the smoothness of f(x) is not essential. Its basic idea is to treat
the evaluation of the multiple integral as a probabilistic problem and
to investigate it by statistical experiments (Metropolis and Ulam,
1949). However, the disadvantage is that due to its reliance on ran-
dom sampling, to obtain the same degree of precision as quadrature
formulas based on interpolation, a much greater number of points
are required.

In this article, the true values are estimated by searching the conver-
gence point of model results with progressively increasing LHS sample
sizes of the stochastic spacedescribed in Z. ESIM is runusing LHS sample
sizes of 50, 100, 200, 500, 1000, 2000, and 4000 points. Fig. 4 shows the
results of the analysis. The coefficient of variation (CV), which is an indi-
cator of the second moment of the probability distribution of prices, is
the reference for the evaluation of convergence. The first moments are
easier to approximate and are thus not presented here.

Fig. 4 shows that convergence differs among crops. Convergence
of the CV of soft wheat prices is the most difficult to achieve, while
convergence of the CV of rapeseed prices is the easiest. For our analysis,
LHS4000 is used as the reference point for all three commodities.

Lesser convergence for soft wheat may result from the complex
price policies for this product, namely, an intervention price, tariff
rate quotas and a threshold price, which are triggered depending on
the net trade position of the EU. To test the effect of those price poli-
cies, ESIM is run again with LHS50–LHS4000, yet under the assump-
tion of a liberalized EU wheat market. The results are presented in
Fig. 5.

By comparing the soft wheat graph in Fig. 4 with Fig. 5 it can be seen
that convergence is achieved faster in the liberalized market. This indi-
cates that the simulated price policies add complexity to the numerical
integration problem. Apparently, the price polices generate function
surfaces ormanifolds of complicated shape, whichmake the integration
problem more complex.

In Figs. 4 and 5, it can also be seen that it is more difficult to approx-
imate theCVof prices of softwheat (even liberalized, see Fig. 5) andbar-
ley than rapeseed. Among other reasons, this behavior may occur
because, in ESIM, soft wheat and barley have stronger cross relation-
ships with each other than with rapeseed. Thus, stochastic dimensions
with a significant effect on the soft wheat and barley markets are
more than that for rapeseed, adding further complexity to thenumerical
integration of these variables.
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6. Results and discussion

6.1. Results

The accuracy of the eight rotations of the transformed Qn (see
Table 3) is evaluated in comparison to the estimated LHS4000 value.
Fig. 6 displays results and shows that the accuracy of the rotations dif-
fers substantially.

The core conclusions are: 1) the quadratures based on the 45°
rotation are more accurate than those based on the 0° rotation; 2) for
quadratures based on the 45° rotation and for soft wheat, the difference
between the arrangements of the coordinate system or the selected
method to introduce correlation are important; 3) for quadratures
based on the 45° rotation and for barley and rapeseed, the differences
between linear transformations of the reference Qn are ambiguous;
and 4) for quadratures based on the 45° rotation and for barley, system-
atic lower coefficients of variations than the approximated ‘true value’
are obtained.

Several factors are identified which contribute to the explanation of
the observed differences in accuracy:

a) the rotations tested result in very different samples of the stochastic
space (in another words, the rotations result in different discrete ap-
proximations of the marginal probability distributions of the sto-
chastic variables included as factors to the supply and yield
equations— see Eqs. (4) and (5));

b) in ESIM, supply changes in large producing countries have stronger
effects on prices than changes in small producing countries (asym-
metrical consequences on prices of supply shocks in different coun-
tries); and

c) in ESIM, the simulated supply shocks to the left and to the right in
one country (see Fig. 1) result in asymmetrical positive and negative
price changes due to the functional forms of supply and demand.

6.2. Rotations result in different samples

Fig. 7 illustrates how the rotations result in different samples of the
stochastic space. It presents the discrete approximations (samples) of
the marginal probability distributions of the stochastic variables for
soft wheat in the regions ‘ROW’ and the USA which are the two largest
producing regions in ESIM. In addition to the histograms of the samples
obtained with the 8 rotations, the histogram of the sample obtained
.33
24.24

24.02 24.05

500 LHS1000 LHS2000 LHS4000

heat

reasing size (N = 50, 100, …, 4000) under the scenario of a liberalized EU wheat market.



Fig. 6. Coefficient of variation (in %) of prices of soft wheat, barley, and rapeseed in the ‘Rest of the World’ obtained with the rotations tested and the LHS4000.
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Fig. 7. Histograms of the discrete probability distribution approximations of the stochastic variables regarding the two largest soft wheat producers in ESIM obtained with the rotations
tested and the LHS4000.
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with the LHS method with the size of 4000 points (the one used for the
generation of the ‘true value’) is also given and serves as the reference.
In Fig. 7 it can be seen how the rotation of the reference Qn, 0° or 45°, is
crucial for the determination of the allocation of the sample points.With
the 0° rotations (see left column in the figure) the samples are often
characterized by a concentration of points around zero and a few ex-
treme values at the ends of the tails of the marginal distributions. In
the case of the quadratures generated with the 45° rotations, the
samples are characterized by avoiding points on the tails of the distribu-
tions; a systematic concentration of points in one or some parts of the
domain of integration cannot be identified.

By analyzing the samples of all the stochastic variables we find that
for the 0° rotations, 48% of the variables are approximatedwith extreme
valueswhich are at least 20% lower or 20% higher than the referencemin
and max values of LHS4000, respectively. For the 45° rotations, 98% of
the discrete approximations present min and max points which are at
least 20% higher or 20% lower than the reference min and max values,
respectively.

The combination of the different samples of the stochastic space
with the 0° and 45° rotations and the asymmetries in ESIM (points
b and c above), explain the differences in the accuracy of the rota-
tions. The remainder of this section discusses the implication of the
asymmetries in ESIM.

6.3. Price changes and large and small producing countries

Fig. 8 shows a simplification of the price mechanism in ESIM, with
prices being determined at the equilibrium point where net exports
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equal net imports. In addition, the effect on world market prices of a
supply shock in one of the regions is shown. If the region is a large pro-
ducer, the effect of a supply shock will result in a significant price
change. If a country/region is a small producer, the same supply shock
(in %) will have only a small effect on the world market price.

Fig. 9 shows the supply and demand quantities of soft wheat, barley
and rapeseed in the largest regions in ESIM in 2015, the year in which
the stochastic runs are applied. Note that ESIM depicts the markets in
the EU at the MS level and not as an aggregate; nonetheless, the EU is
included in the figure for reference purposes only (bars with line
fillings).

In Fig. 9, it can be seen how soft wheat is particularly asymmetrical
with a large region (ROW), a medium size country (USA), and some
other rather small countries in the EU. Thus, the approximation of the
probability distribution of the stochastic variables of the large regions
is of special importance since changes in supply in these regions result
in significant changes in prices. This characteristic of the soft wheat
market explains the difference in accuracy obtained with the 45° rota-
tion and arrangements A1 and A2 of the covariance matrix Z. The sam-
ples of the probability distributions of the stochastic variables of these
large regions appear to be very significant in the determination of prices
and thus, the small changes in the allocation of the points of those sam-
ples in A1 and A2 result in different coefficients of variations of soft
wheat prices (see graph for soft wheat in Fig. 6). Note also that signifi-
cant differences are observed for rotations 45°A2C and 45°A2D. This in-
dicates that again, if some regions strongly influence the developments
of onemarket in themodel, then small changes in the stochastic sample
may significantly affect the approximation of themoments of model re-
sults (i.e. the coefficient of variation of prices).
6.4. Behavioral functions and price changes

The second important asymmetry in ESIM is thatwith isoelastic sup-
ply and demand functions, positive and negative shocks of equalmagni-
tude result in price changes of different sizes. These differences are
particularly strong with inelastic curves, exemplified in Fig. 10.

A situation as depicted in Fig. 10 occurs in the market for barley in
ESIM. The reaction of demand in the ROW, a region that covers around
70% of world demand, is very low. This explains why for all 45° rotations
the approximated CVs of barley prices are below the true value. Those ro-
tations avoid points on the tails of the distributionswhichwould result in
large price changes. Without those points, the generated CVs are smaller.
Note: (pa) denotes the price by autarky; (pw) denotes 

equals the domestic price; (S) denotes the supply curv
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Fig. 8. A simplification of the price de
The accuracy of the approximation of the CV of rapeseed prices is
easier to achieve since this market has fewer asymmetries. Unlike for
barley and wheat, neither world supply nor world demand are heavily
concentrated in one of the regions of the model. Furthermore, the de-
mand functions are more elastic which results in more symmetrical
price changes.
7. Conclusions and outlook

In this article, we explore the accuracy of i) an alternative (0°) rotation
to Stroud's degree 3 formula 45° rotation of the reference Qn, ii) different
methods to introduce covariance matrices to standard normal quadra-
tures (via the Cholesky decomposition or the diagonalization method of
the covariance matrix), and iii) different arrangements of the coordinate
system (A1 and A2). The quadratures are tested in ESIM which is a com-
plex PE simulationmodel of global agriculturalmarkets. The evaluation of
the accuracy of the different quadratures is achieved through comparison
with an approximated true value of model results.

It was found that the choice between the 0° and 45° rotation of the
referenceQn is crucial for the determination of the accuracy of the quad-
ratures. With high n, the quadratures based on the 0° rotation result in
samples with a concentration of points near the center and some few
extreme points at the latter ends of the tails of the marginal probability
distributions of the stochastic variables. The location of points of those
samples combinedwith asymmetries in ESIM result in an inaccurate ap-
proximation ofmodel results. The quadratures based on the45° rotation
result in sample points which avoid the tails of the marginal distribu-
tions of the stochastic variables; a systematic concentration of points
in one or some parts of the domain of integration cannot be identified.
These rotations yield greater accuracy.

In models with large regions or variables which strongly determine
the outcome ofmodel results as is the case of soft wheat in ESIM, the ar-
rangement of the coordinate system or the selected method to intro-
duce correlation may also have a significant effect on the accuracy of
the quadratures. In these cases, an analysis of the stability of results is
recommended. This can be done by repetitive model solves with differ-
ent arrangements of the stochastic variables in the covariancematrix or
by using different linear transformation methods.

With the 45° rotation and with markets where the effect of the dif-
ferent regions or variables on model outcomes are more homogenous
as in the case of rapeseed in ESIM, the selection of different arrange-
ments of the stochastic variables in the covariancematrix or of different
the world market price which under free trade 
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Fig. 9. Supply and demand (in million tonnes) quantities of soft wheat, barley and rapeseed in the largest regions in ESIM in 2015.
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methods to introduce correlation may not have a significant effect on
the accuracy of the quadratures.

The quadratures based on the 45° rotation give an accurate estimate
of the uncertainty of model results in ESIM and simplify stochastic
analyses by strongly reducing the number of solves required when
compared to the LHS sampling method. However, if models are highly
asymmetric or with many and strong threshold points, the quadratures
may lose accuracy. In these cases, the alternative of using Monte Carlo-
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based approaches should be evaluated. Factors such as higher
computational and management costs vs. accuracy gains must be
considered.

As a future research agenda for the refinement of the application of
Gaussian Quadratures in large-scale simulation models, one may test ro-
tations from the reference Qn slightly different from 45° (for example
30° or 40°). This may result in the inclusion of values from the tails of
the marginal distributions of the stochastic variables and in a higher di-
versity of points. On the other hand, the dependency on the arrangement
of the coordinates may increase.

Another area for future research is the stability of the quadratures
based on the 45° rotation with higher dimensions. Will the discrete ap-
proximations (samples) of the marginal distributions of the stochastic
variables always avoid the tail ends of the distributions? One may also
test whether and to what extent higher order quadratures approximate
the LHS4000 values more accurately.

Finally, the GQ can be evaluated in other PE and CGE models.
Through comparison of the performance of theGQ and ofmodel charac-
teristics, factors affecting the accuracy of the quadratures may be
identified.
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