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Abstract

This thesis addresses the molecular processes which are important in the for-
mation of bile fluid. The polar liver cells (hepatocytes) secrete the bile fluid
at their apical (canalicular) membrane into tubular bile canaliculi (BC) which
are formed between adjacent cells. The basolateral membrane of hepatocytes
faces the blood vessel. Bile fluid possesses a remarkable specificity regarding
its lipid composition. Even though phosphatidylcholine (PC) contributes to
only 35 % of the phospholipids in the canalicular membrane, it constitutes 95 %
of biliary phospholipids. In this thesis possible mechanism that might lead to
the specificity in biliary lipid secretion are analysed and discussed.

Phospholipids are secreted from the outer leaflet of the canalicular mem-
brane into bile by the effect of bile salts. The interaction of bile salts with
phospholipids was shown to be independent of the phospholipid headgroup.
Solubilisation of phosphatidylserine (PS) and phosphatidylethanolamine (PE)
by bile salts could be prevented by the action of an aminophospholipid translo-
case (APLT) which actively pumps these lipids to the cytoplasmic leaflet of
the membrane. Experiments to demonstrate a canalicular APLT activity were
performed to proof this hypothesis. For this, the hepatoma cell line HepG2
which is able to polarise and to form a canalicular vacuole (BC) was utilised.
A panel of fluorescent lipid analogues with different affinities to this transporter
was used and first characterised at the basolateral membrane of HepG2 cells,
where an APLT activity was already demonstrated. The rapid APLT mediated
uptake of aminophospholipid analogues representing appropriate substrates of
APLT was reduced by applying the inhibitor suramin. The affinity of a pair
of PS analogues with diether NBD-PS as a poor APLT substrate and diacyl
NBD-PS representing a suitable substrate was confirmed. In a next step the
enrichment of the same phospholipid analogues in the BC was investigated.
There was a striking correlation between APLT mediated uptake of phospho-
lipid analogues at the basolateral membrane and absence of these analogues
from the BC. In the case of phospholipid analogues that were no or poor sub-
strates of APLT the BC appeared highly fluorescent, indicating that indeed
a canalicular APLT is responsible and sufficient for biliary absence of amino-
phospholipids.

Further experiments were aimed on the investigation of the role of MDR
proteins (as MDR3) in biliary lipid secretion. It has been proposed that MDR3,
which is crucial for biliary phospholipid secretion, acts as a specific flippase for
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PC. However, different MDR inhibitors did not completely abolish the en-
richment of fluorescent phospholipid analogues in the BC in this study. This
observation can be explained assuming that MDR3 is responsible for the expo-
sure of PC at the lumenal side of the canalicular membrane rather than for its
transport across the membrane. Such a “liftase” activity of MDR could make
endogenous PC accessible to the detergent bile salts which is not necessary for
its more hydrophilic fluorescent analogues.

The third part of this thesis addressed the role of sphingolipids and the
formation of detergent resistant rafts in the canalicular membrane. Rafts are
thought to prevent sphingolipid solubilisation into bile. Fluorescent sphingo-
lipid analogues were found to enrich in the BC even at low temperatures,
however. These experiments suggest that the applied analogues might not
suitably represent the majority of sphingolipids in the canalicular membrane.

The final part of this study provides the basis for a method to investigate
the physico-chemical processes occurring during lipid secretion at the canalic-
ular membrane. The sensitivity of fluorescence life times on environmental
changes was analysed using fluorescent lipid analogues in a set of model envi-
ronments and its utility for predicting biliary lipid organisation is discussed.
Especially the interaction of different bile salts with lipid analogues and flu-
orescence energy transfer between distinct lipid analogues was characterised.
These data can be utilised for characterisation of the organisation of biliary
enriched lipid analogues in vivo at a microscopic level in future.

Keywords:
bile fluid, aminophospholipid translocase, phospholipids, MDR, fluorescence



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit den molekularen Prozessen der Li-
pidanreicherung in der Gallenflüssigkeit. Leberzellen (Hepatozyten) sind polare
Zellen, die für die Sekretion der Gallenflüssigkeit verantwortlich sind. Die An-
bindung an den Blutkreislauf besteht über die basolaterale Membran. Durch
die gegenüberliegende, sogenannte apikale Membran werden zwischen benach-
barten Leberzellen tubuläre Stukturen (bile canaliculi, BC) gebildet, in die
die Gallenflüssigkeit abgesondert wird. Daher wird diese Membran auch als
Canalicularmembran (CM) bezeichnet.

Die Gallenflüssigkeit besitzt hinsichtlich ihrer Lipidzusammensetzung eine
bemerkenswerte Spezifität. Obwohl der Anteil von Phosphatidylcholin (PC) an
den Phospholipiden der CM nur 35 % beträgt, macht es 95 % der Phospholipide
der Gallenflüssigkeit aus. Mögliche Mechanismen, die zur Spezifität der Lipid-
sekretion in die Gallenflüssigkeit führen, werden untersucht und diskutiert.

Phospholipide werden aus der äußeren Lamelle der CM durch Gallensal-
ze herausgelöst. Die Wechselwirkung von Gallensalzen mit Phospholipiden ist
kopfgruppenunspezifisch. Eine Solubilisierung von Phosphatidylserin (PS) und
Phosphatidylethanolamin (PE) durch Gallensalze könnte durch die Wirkung
einer Aminophospholipidtranslokase (APLT) verhindert werden, die diese Li-
pide aktiv auf die zytoplasmatische Seite der Membran pumpt. Zur Überprü-
fung dieser Hypothese wurden Versuche durchgeführt, um die Aktivität einer
APLT in der CM nachzuweisen. Dabei wurde die Hepatomazelllinie HepG2
eingesetzt, die in der Lage ist, Canalicularvakuolen (BC) zu bilden. Zunächst
wurde die Einwärtsbewegung einer Reihe fluoreszierender Lipidanaloga mit
unterschiedlicher Affinität zur APLT charakterisiert. Dies geschah an der ba-
solateralen Membran von HepG2 Zellen, wo eine APLT-Aktivität bereits be-
kannt ist. Die Aufnahme geeigneter APLT-Substrate konnte durch den APLT-
Inhibitor Suramin reduziert werden. Ebenso wurde die Affinität eines Paares
von PS-Analoga bestätigt, von denen Diether PS ein „schlechtes“ und Diacyl
PS ein „gutes“ APLT-Substrat darstellt. Im zweiten Schritt wurde die An-
reicherung der gleichen Analoga in BC von HepG2 Zellen untersucht. Es ergab
sich eine auffallende Korrelation zwischen einer APLT vermittelten Aufnah-
me von Phospholipidanaloga an der basolateralen Membran und dem Fehlen
dieser Analoga im Lumen der BC. Wenn Zellen mit Phospholipiden markiert
wurden, die keine oder nur „schlechte“ APLT-Substrate darstellen, erschienen
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die BC stark fluoreszierend. Diese Beobachtungen zeigen, dass eine APLT-
Aktivität in der CM von Hepatozyten vorhanden ist, welche das Fehlen der
Aminophospholipide in der Gallenflüssigkeit erklärt.

Ein zweiter Schwerpunkt dieser Arbeit war die Untersuchung der Rolle von
MDR-Proteinen (wie MDR3) bei der Lipidsekretion in die Gallenflüssigkeit.
Aufgrund bisheriger Arbeiten wird vermutet, dass MDR3 daran als spezifischer
Membrantransporter für PC beteiligt ist. In der vorliegenden Arbeit konnte
jedoch gezeigt werden, dass verschiedene MDR-Inhibitoren die Anreicherung
fluoreszierender Phospholipidanaloga in den BC von HepG2 Zellen nur we-
nig reduzieren. Diese Beobachtung kann unter der Annahme erklärt werden,
dass MDR3 eher für die Exposition von PC an der lumenalen Seite der CM
verantwortlich ist, als für den Tranport von PC über die Membran. Solche
„Liftase“-Aktivität von MDR3 könnte endogenes PC der Detergenzwirkung
von Gallensalzen zugänglich machen, ein Prozess, der für die hydrophileren
fluoreszierenden PC-Analoga nicht nötig ist.

Im dritten Teil wird die Rolle von Sphingolipiden und die Bildung von
„Rafts“ in der CM behandelt. Solche Membrandomänen sollten die Solubilisie-
rung von Spingolipiden in die Gallenflüssigkeit verhindern. Eine Anreicherung
fluoreszierender Sphingolipidanaloga in den BC wurde jedoch nachgewiesen,
was darauf hindeutet, dass die verwendeten Analoga das Verhalten endogener
Sphingolipide in der CM nicht korrekt wiederspiegeln.

Im abschließenden Teil dieser Arbeit wurden die Grundlagen für eine Metho-
de zur Aufklärung der physikochemischen Prozesse der Lipidsekretion an der
Canalicularmembran gelegt. Die starke Umgebungsabhängigkeit der Fluores-
zenzlebensdauer für verschiedene fluoreszierende Lipidanaloga wurde in einer
Reihe von Modellumgebungen analysiert und deren Nutzbarkeit für die Vor-
hersage der Lipidorganisation geprüft. Insbesondere wurde die Wechselwirkung
verschiedener Gallensalze mit Lipidanaloga und der Fluoreszenzresonanzener-
gietransfer zwischen verschiedenen Lipidanaloga charakterisiert. Diese Daten
sind Ausgangsbasis für die mikroskopische Charakterisierung der Organisation
von Lipidanaloga in den BC in vivo.

Schlagwörter:
Gallenflüssigkeit, Aminophospholipidtranslokase, Phospholipide, MDR, Fluo-
reszenz
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ABC . . . . . . . . . . . . ATP binding cassette

APLT . . . . . . . . . . aminophospholipid translocase

ATP . . . . . . . . . . . . adenosin triphosphate

BC . . . . . . . . . . . . . bile canaliculus/bile canaliculi

BP . . . . . . . . . . . . . band pass

BSA . . . . . . . . . . . . bovine serum albumin

BSEP . . . . . . . . . . . bile salt export pump

CCD . . . . . . . . . . . charge coupled device

CGamF . . . . . . . . . cholylglycylamidofluorescein

CLSM . . . . . . . . . . confocal laser scanning microscopy / microscope

CM . . . . . . . . . . . . . canalicular membrane(s)

CMC . . . . . . . . . . . critical micellar concentration

DFP . . . . . . . . . . . . diisopropyl fluorophosphate

DHC . . . . . . . . . . . sodium dehydrocholate

DHE . . . . . . . . . . . . dehydroergosterol

DMEM . . . . . . . . . Dulbecco’s modified eagle medium

DPBS . . . . . . . . . . Dulbecco’s modified phosphate buffered saline

DPBS+ . . . . . . . . . DPBS supplemented with glucose, pyruvate, and HEPES

EDTA . . . . . . . . . . ethylene diamine tetra-acetate

ER . . . . . . . . . . . . . endoplasmic reticulum

EYPC . . . . . . . . . . egg yolk phosphatidylcholine

EYSM . . . . . . . . . . egg yolk sphingomyelin

FCS . . . . . . . . . . . . foetal bovine serum

FRET . . . . . . . . . . fluorescence resonance energy transfer

FWHM . . . . . . . . . full width of half maximum

GalCer . . . . . . . . . galactosyl ceramide
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ABBREVIATIONS 2

GC . . . . . . . . . . . . . sodium glycocholate

GlcCer . . . . . . . . . . glucosyl ceramide

HBSS . . . . . . . . . . . HANK’s buffered salt solution

HBSS+ . . . . . . . . . HBSS supplemented with Ca2+ and Mg2+

HI . . . . . . . . . . . . . . hydrophobicity index

IRF . . . . . . . . . . . . . instrument response function

iRNA . . . . . . . . . . . interference ribonucleic acid

LP . . . . . . . . . . . . . . long pass

LUV . . . . . . . . . . . . large unilamellar vesicle

MCP . . . . . . . . . . . micro channel plate

MDR . . . . . . . . . . . multidrug resistance

MRP . . . . . . . . . . . multidrug resistance related protein

NBD . . . . . . . . . . . 7-nitrobenzo-2-oxa-1,3-diazol-4-yl

N -Fl-PE . . . . . . . . 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-carboxy-

fluorescein

N -Rh-PE . . . . . . . L-α-phosphatidylethanolamine-N -(lissamine rhodamine B

sulfonyl)

NTCP . . . . . . . . . . sodium-dependent taurocholate cotransporting polypep-

tide

OATP . . . . . . . . . . organic anion transport protein

OCT . . . . . . . . . . . organic cation transport protein

PA . . . . . . . . . . . . . phosphatidic acid

PBS . . . . . . . . . . . . phosphate buffered saline

PC . . . . . . . . . . . . . phosphatidylcholine

PC-TP . . . . . . . . . phosphatidylcholine transfer protein

PE . . . . . . . . . . . . . phosphatidylethanolamine

PFIC . . . . . . . . . . . progressive familiar intrahepatic cholestasis

PI . . . . . . . . . . . . . . phosphatidylinositol

PL . . . . . . . . . . . . . . phospholipid(s)
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PM . . . . . . . . . . . . . plasma membrane

PS . . . . . . . . . . . . . . phosphatidylserine

PSC 833 . . . . . . . . 3’-oxo-4-butenyl-4methyl-threonine1)-(Val2)-cyclosporin

POPC . . . . . . . . . . 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

Rho123 . . . . . . . . . rhodamine 123

SEM . . . . . . . . . . . . standard error of mean

SHG . . . . . . . . . . . . second harmonics generation

SM . . . . . . . . . . . . . sphingomyelin

SUV . . . . . . . . . . . . small unilamellar vesicle

TC . . . . . . . . . . . . . sodium taurocholate

TCSPC . . . . . . . . . time correlated single photon counting

TDC . . . . . . . . . . . sodium taurodeoxycholate

TGN . . . . . . . . . . . trans-Golgi network

TLC . . . . . . . . . . . . sodium taurolithocholate

TLChr . . . . . . . . . . thin liquid chromatography

UDC-NBD . . . . . . ursodeoxycholyl-(Nε-NBD)-lysine

λem . . . . . . . . . . . . . wavelength of emission

λex . . . . . . . . . . . . . wavelength of excitation

τ , τFl . . . . . . . . . . . experimental fluorescence life time

χ2 . . . . . . . . . . . . . . figure of merit parameter describing the goodness of a fit



1 Introduction

1.1 The Liver and the Genesis of Bile Fluid

The liver is the central organ of metabolism and fulfils a variety of functions.

These are, among others, the synthesis of plasma proteins, urea, hormones, and

lipids, detoxification, degradation and storage of a great number of substances,

and secretion of bile fluid. The liver is therefore a multifunctional organ which

comprises different cell types. Hepatocytes, the major liver cells, make up

60–70 % of the liver cell mass and are (like the cholangiocytes which form the

bile duct) of epithelial origin [1]. They are organised into folded sheets that face

the blood filled sinusoids at one side, which are separated from the hepatocytes

by a single layer of endothelial cells. At their other side, hepatocytes form a

system of minute channels called biliary canaliculi (BC) into which they secrete

the bile fluid (see figure 1.1). The flow of blood and bile is always in opposite

direction [2]. Besides their function in transporting the emulsifying bile, BC

also serve to secrete waste products into the gut [2].

Bile that is secreted by the hepatocytes is called primary bile. During its

passage through the bile duct to the gallbladder it is modified and concen-

trated by resorption of water and electrolytes forming the so called secondary

bile. The primary bile is an aqueous solution containing lipids, proteins, and

bilirubin conjugates. Lipids form the most abundant solid component of the

bile fluid [2].

BC are surrounded by the canalicular membranes (CM), domains of the

plasma membrane (PM) of adjacent cells. Secretion of bile from the hepato-

cytes occurs via these CM, usually by the action of specific membrane trans-

port proteins. Biliary lipids may also be solubilised directly from the CM (see

below).

4
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vein

hepatocyte

sinusoid
endothelial

Kupffer cell

BC

fibroblast

Hering channel
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Figure 1.1: Structure of the liver lobule. (Schematic picture adapted from
[2, 3, 4].) Hepatocytes are organised as plates of cells that form a layer which is about
two cells thick. They are radially disposed from the central vein to the periphery of
the lobule. A system of sinusoids interlaces the cells with mixed portal and arterial
blood (red arrows). These sinusoids are separated from the hepatocytes by a single
layer of endothelial cells and Kupffer cells. Kupffer cells are specialised macrophages
that serve to eliminate cell fragments, bacteria etc. Hepatocytes form the BC (green)
as minute channels between adjacent cells. Bile is collected in the opposite direction
of blood flow into Hering channels (black arrow). The latter is the first part of the
intrahepatic bile duct. At the edges of the hexagonal lobule the portal triad is located
which consists of the interlobular vein (portal vein), the interlobular artery (hepatic
artery), and the interlobular bile duct (not shown). [5]
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1.2 Cellular Membranes

As biliary lipids are secreted from a specialised cellular membrane, it is worth

to have a look on general features of biological membranes and the differences

between certain types of them. Also membrane transport proteins shall be

introduced in this section, with a special focus on those, which are involved in

bile formation.

Biological membranes are build up by a bilayer of lipids (mainly phospho-

lipids (PL), glycolipids and cholesterol) with embedded proteins. However,

lipids have far more functions than forming the backbone of the membrane.

The transbilayer distribution of lipids influences important physiological func-

tions as cell viability, (phosphatidylserine (PS) is exposed to the exoplasmic

leaflet of the PM of apoptotic cells) membrane fusion and cell - cell recognition.

The composition of the different cellular membranes is quite specific, with

a lipid-to-protein ratio varying from 0.2–0.8 depending on the cell type and

its function. The PM and the several intracellular membranes differ with

respect to their lipid and protein composition. Even within one membrane

the lipid composition may be different between separated domains as baso-

lateral and apical domains of the PM of polarised cells. Even smaller domains

(microdomains, rafts) were found, which are especially enriched in sphingo-

myelin and cholesterol and are defined by their insolubility in the detergent

TritonX100 [6]. Rafts might play a role in signalling processes, membrane

sorting, membrane fusion etc.

As hepatocytes are polarised cells they have distinct PM domains. The

apical or canalicular membrane which faces the BC is separated from the rest

of the PM by tight junctions at the exoplasmic leaflet. The basolateral or sinu-

soidal membrane which faces the blood endothelial cells, and the lateral mem-

brane domain which is located at the contact side between different hepatocytes

form a continuum.
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Within the membrane, lipids are able to move laterally (usually distances

in the range of micrometres within seconds). However, spontaneous transversal

movement of lipids carrying a polar head-group across a pure lipid bilayer is

very rare (typical half-time of hours to days depending on the size and charge of

the head group) [7]. In the presence of proteins, an increased transversal move-

ment of lipids may occur due to a partial disturbance of the bilayer structure.

Also, specific proteins involved in lipid transbilayer movement are embedded

in biological membranes. The activity of these proteins may be highly selec-

tive (for instance for the head-group of PL) or unspecific. Some of these lipid

transporters facilitate flip-flop of lipids and allow them to equilibrate between

the two membrane leaflets independently of ATP (passive transport). Others

specifically transport lipids against their concentration or electrochemical gra-

dient consuming ATP and generating and/or maintaining a transbilayer lipid

asymmetry in the membrane (active transport) [8].

Proteins are also responsible for the transport of non-lipid substances like

amphiphatic drugs, ions, and nutrients across cellular membranes.

1.2.1 ABC Transport Proteins

Among others, ATP binding cassette (ABC) proteins play a role in active

lipid transport across cellular membranes. Proteins belonging to this large

superfamily found ubiquitously in prokaryotes and eukaryotes are responsible

for the transport of a variety of substances across cellular membranes under

the consumption of ATP. The ABC-proteins are characterised by their ATP

binding domain of about 200–250 amino acids containing the conserved motifs

Walker A and Walker B which are responsible for ATP binding [9].

In the past three decades, multidrug resistance (MDR) proteins belonging

to the ABC transporter superfamily have been studied intensely. Their ability

to transport cytotoxic drugs out of the cell makes them a medical challenge,

for instance in chemotherapy. Their role in lipid transport has only recently
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attracted interest in medical research. Now it becomes clear, that more ABC

transporters may have a function in lipid transport than previously assumed.

In humans, 48 ABC proteins are currently known, which are classified into

7 families (A–G) according to sequence similarities [9]. Several of these were

suggested to be involved in lipid transport after having been found to be mu-

tated in lipid-linked diseases, involving members of the families A, B, C, D,

and G. So far, direct transport of lipid substrates has only been shown for a

small number of human ABC proteins.

The ABC transport proteins that are located in the hepatocyte PM shall

be introduced in the following part. The role of the ABC transporters in

hepatobiliary transport and bile secretion is only fully investigated for a few

members of this family. Current research is focussed on the identification of

the physiological role of newly investigated family members.

Most ABC proteins are relatively specific for a particular set of substrates.

MDR1 Pgp (ABCB1), however, seems to be rather unspecific. In addition to

the transport of a variety of structural unrelated compounds [10], it was also

shown to transport lipid analogues [11, 12, 13, 14].

Due to its low substrate specificity, MDR1 Pgp might affect the transverse

distribution of endogenous lipids, in particular of species which are normally

predominant on the cytoplasmic PM leaflet, such as PS and PE [12, 14]. It

was further shown to be involved in cholesterol redistribution across the PM

[15]. MDR1 Pgp is also located in the apical plasma membrane of hepatocytes

where it is thought to mediate the export of cationic cytotoxic drugs into the

bile [16]. The protein is localised in low density membrane fractions enriched in

sphingolipids and cholesterol. Cholesterol depletion, however, had no influence

on its function in HepG2 cells [17].

ABCB4 (also termed MDR3 in human, corresponding to murine mdr2)

is a close relative of MDR1 Pgp, sharing 75% of its amino acid sequence.

Unlike MDR1 Pgp, MDR3 is highly specific, exclusively transporting PC and
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its analogues [11]. High accumulation of MDR3 is found in the canalicular

membrane of hepatocytes, lower levels in the adrenal, heart, striated muscle,

spleen, and tonsils [18, 19]. The physiological function of mdr2/MDR3 appears

to be PC secretion into the bile [20, 21]. In some cases of progressive familiar

intrahepatic cholestasis (PFIC), type III, MDR3 has indeed been found to be

defective [22, 19].

ABCB11 which is also known as “sister of P-glycoprotein” (sPgp) or “bile

salt export pump” (BSEP) was shown to act as an ATP-dependent canalicular

bile salt transporter [23]. This protein is defective in PFIC, type II [24, 25]

which is characterised by an accumulation of bile salts in the hepatocytes

leading to injury, apoptosis and/or necrosis [24].

Members of the ABCC or MRP family, the so called “family of conjugate

export pumps” are involved in the transport of a variety of conjugated sub-

stances out of the hepatocyte.

MRP1 and MRP2 (ABCC1 and ABCC2, respectively) are the best char-

acterised members of this subfamily. They are closely related sharing about

49 % of amino acid sequence identity [26]. Both proteins function in detoxifi-

cation of the cell and have a similar substrate specificity including glutathione-

S-conjugates, oxidised gluthathione, and bilirubin diglucoronide [26, 27, 28].

MRP1 was also found to transport NBD labelled phospholipid analogues [29,

30, 31]. Transport of endogenous lipids was not reported for MRP1, however.

While MRP1 is only expressed to a low amount in the liver (in the lateral

membrane of hepatocytes [32]), MRP2 is abundant in the canalicular mem-

brane of hepatocytes [33, 28]. MRP2 which is also known as canalicular multi

organic anion transporter (cMOAT) is lacking in Dubin-Johnson syndrome, a

conjugated hyperbilirubinemia, which is associated by a deficiency in the se-

cretion of amphiphilic anions into bile [26, 34]. MRP2 was also shown to be

involved in the secretion of sulfated and glucurunidated bile salts across the

apical membrane [35, 36].
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MRP3 (ABCC3) is expressed at the basolateral membrane of hepatocytes

and mediates the transport of organic anions. It is upregulated when MRP2

is defective and might prevent the cell from toxic effects of substances that are

normally excreted into the bile while sharing a similar substrate specificity with

MRP2 [37, 38]. MRP3 was also shown to be able to transport bile salts and

thus might prevent the cell from their emulsifying effects when the function of

the bile salt exporters is disturbed [38].

MRP6 (ABCC6) which is highly expressed in the liver [39] was identified in

the lateral and in the canalicular membrane of hepatocytes [27, 40]. Substrates

are cyclic and linear hydrophobic peptides. Its physiological role, however,

remains to be elucidated [40]. Among other possible functions it was also

suggested to be involved in lipid transport and metabolism probably being a

determinant of plasma lipoproteins [41].

Members of the ABCG family are associated with cholesterol and PL trans-

port [42, 43]. ABCG5 and ABCG8 form a heterodimer in the membrane. When

disrupted, mice show similar pathology as human patients with sitosterolemia,

a disease that leads to the accumulation of plant sterols [44].

ABCG2, the human breast cancer resistance protein (BCRP) is abundant

in the canalicular membrane of hepatocytes [45]. Its function is not yet fully

understood. There is evidence that this protein is involved in sterol transport

[46] and in the transport of PL across the PM (H. Woehlecke, unpublished

observation).

1.2.2 P-type ATPases

The distribution of PL across the mammalian PM is not a random one. The

aminophospholipids PS and phosphatidylethanolamine (PE) are enriched on

the cytoplasmic side, whereas the PL containing a choline headgroup, PC and

sphingomyelin (SM), are located almost exclusively on the exoplasmic leaflet

of the PM [47]. The asymmetric distribution of PL across the PM seems
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to be an important feature of living cells. A perturbation of the asymmetry

is a signal in the process of apoptosis. The maintenance of this asymmetric

distribution of PL is a function of a putative protein called aminophospholipid

translocase (APLT). This protein transports the aminophospholipids PS and

PE from the exoplasmic to the cytoplasmic leaflet of the PM, hydrolysing one

molecule ATP per transported PL [48]. The affinity of APLT to PS is about

tenfold higher than to PE [49]. Using spin labelled PL analogues, the half

time of inward transport at the PM of red blood cells was found to be 2–5 min

for PS and about 30 min for PE [50]. The PL that are typically found at

the exoplasmic leaflet of the PM (e.g. PC, SM) are not recognised by APLT.

APLT activity was first demonstrated in erythrocytes [51, 52, 53, 54] and was

subsequently reported for a variety of mammalian cells [55, 56, 57, 58, 59, 60,

61, 62], including the basolateral membrane of hepatocytes [63, 64]. An APLT

activity and thus an asymmetric distribution of PL in the apical PM domain

of hepatocytes is assumed to be responsible for the almost complete absence

of aminophospholipids from bile [65, 66] (see below), but has not yet been

demonstrated.

Transport activity of APLT has been shown to be sensitive to vanadate

[51], the sulfhydryl group modifying agent N -ethylmaleimide [53, 49], and to

suramin, elaiophylin and eosin Y [67].

The activity of this protein has been known for about 20 years, but its

molecular identity is still unknown. Recent results imply that it is very likely

a member of the P-type ATPase family [67]. A possible candidate for APLT

was cloned from bovine chromaffin granules [68], which was shown to be the

first representative of a yet unknown subfamily of P-type ATPases. The homo-

logue ALA1 in plants was also identified as a possible APLT [69]. Mutants in

which the homologous protein in yeast (Drs2p) was defective were identified to

lack low temperature uptake of fluorescent PS at the PM, which could not be

confirmed by two independent groups [70, 71]. Later on Drs2p was shown to
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be located to the late Golgi [72], so the identification of this protein as APLT

is questioned. Recently, two other members of the P-type ATPase subfamily,

Dnf1p and Dnf2p, have been found to be involved in transbilayer movement of

fluorescent PL analogues of PS, PE, and PC in yeast [73]. Also other studies

demonstrated that active uptake of PL in yeast is not restricted to amino-

phospholipids, but also includes PC [74]. It is thus likely that different types

of P-type ATPase might function as PL translocases in different species. The

protein Ros3p, which is unrelated to P-type ATPases, was also suggested to

be involved in PL uptake in yeast, as deletions caused a reduced uptake of

fluorescent PE and PC across the PM [75]. However, it is more likely to play

another, perhaps regulative, role in the translocation machinery of the P-type

ATPases [73].

Also the Fic1 gene which is mutated in PFIC, type I was shown to code

for a P-type ATPase [76]. It is located in the apical membrane of hepatocytes

and cholangiocytes [77] and hence it was assumed to encode for an APLT in

the canalicular membrane. Recently, Ujhazy et al [78] have demonstrated a

Fic1 mediated PS translocation in transfected cells. However, as the authors

did not investigate the translocation of non-aminophospholipids, it remains

open whether Fic1 is a transporter specific for aminophospholipids. Fic1 might

alternatively be involved in canalicular bile salt export as mutations in its gene

show a similar pathology as PFIC II in which the canalicular BSEP is defective

(see above). The bile of patients with PFIC I mainly lacks hydrophobic bile

salts, so this protein might be a transporter for this type of bile salts [79]. At

our current knowledge, the Fic1 gene might encode for a bile salt pump by

itself or for a protein that is necessary for the functional incorporation of bile

salt pumps into the membrane [80, 77, 81].
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1.2.3 Other Membrane Transporters in Hepatocytes

The basolateral uptake of a variety of bile salts is largely mediated by the

sodium-dependent taurocholate cotransporting polypeptide (NTCP), which is

also able to transport other organic anions. The driving force of the uptake

of bile salts against the concentration gradient by this protein is the sodium

gradient across the PM [80]. Sodium independent transport of organic anions

including bile salts is performed by the family of organic anionic cotransport-

ing polypeptides (OATPs). LST-1, another basolateral sodium independent

organic anion transporter in humans was identified as a member of a new gene

family [82] and is the predominant sodium independent bile salt uptake system

in humans. LST-1 is also called OATP2 or OATPC although it is unrelated

to rat Oatp2 [24].

Moreover, organic cation transporters (OCT) are localised in the baso-

lateral membrane of hepatocytes, which are responsible for the hepatic clear-

ance of substances as tetraethylammonium [34, 83, 25].

A summary of the proteins that are involved in membrane transport in

hepatocytes is presented in figure 1.2.

1.3 Lipids in Bile

Biliary lipids comprise bile salts, phospholipids, and cholesterol. They function

as detergents emulsifying dietary fats and make them accessible to the action

of intestinal lipases.

As shown in table 1.1 the lipid composition of the bile varies between

different species and is highly specific regarding the different constituents.
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Figure 1.2: Membrane transport proteins in hepatocytes. Schematic picture
of two hepatocytes forming a BC by a specialised apical membrane domain (adapted
from [34, 83, 24, 80]). The localisation of the transport proteins in the different
membrane domains is indicated. The putative APLT of the apical membrane is
shown in pink. N-nucleus, black boxes represent tight junctions at the exoplasmic
leaflet of the PM. See text for further explanation.

Table 1.1: Comparison of lipid composition in different species. BS-bile salts,
PL-phospholipid, Ch-cholesterol; all values are given in mM. HI-hydrophobicity index
of biliary bile salts according to Heuman [84]; data were taken from the literature
[84, 85].

Human Rat Mouse

BS 150–200 37 83

PL 46–58 7 22

Ch 5.3–20 0.6 4

HI +0.32 -0.31 -0.45
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1.3.1 Bile Salts

Bile salts are the major lipid species in the bile fluid and make up 60–70 %

of the organic constituents of the bile in humans and most animals [85]. Bile

salts that are secreted into the BC by hepatocytes are called primary bile salts.

Only a small fraction of them is newly synthesised from cholesterol in hepato-

cytes. About 95 % of the bile salts are resorbed by the intestinal epithelium and

redirected to the hepatocytes, a process called enterohepatic circulation [24].

During their passage through the intestine, bile salts are modified by bacteria

becoming so called secondary bile salts. This process involves cleavage of an

amino group (deconjugation) and several hydroxyl groups (dehydroxylation).

The basolateral uptake of secondary bile salts is mediated by NTCP or OATPs

(see section 1.2.3) [83]. Microsomal enzymes in hepatocytes are responsible for

reconjugation and rehydroxylation of the secondary bile salts which are subse-

quently secreted into BC again [86]. Human bile salts are turned over about

6–10 times per day. About 0.5 g of the bile salts are lost through fecal excretion

daily, corresponding to about 15 % of the human adult bile salt pool [24].

The intracellular transport of bile salts to the apical membrane is medi-

ated by carrier proteins. If necessary (i. e. when bile salts are modified) these

carrier proteins also interact with intracellular compartments like the ER. [86]

Bile salts may also be transported through the cytoplasm in vesicles, espe-

cially when the intracellular bile salt concentration is high or bile salts are

more hydrophobic [87, 24]. The active secretion against an about 1000 fold

concentration gradient is mediated mainly by ABC proteins like BSEP and

MRP2 (see above) [80, 83, 24].
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1.3.2 Phospholipids

The PL composition of bile is very specific, as it mainly contains phosphatidyl-

choline (see table 1.2). Also the fatty acid composition of the PL in the bile

is different from that of any cellular membrane. Biliary PL generally possess

shorter fatty acid chains, as palmitic acid in sn1 -position and oleic, linoleic,

and arachidic acid in sn2 -position [88].

Table 1.2: Phospholipid composition of bile and the hepatocyte PM do-
mains. In contrast to its relative low content in the CM, PC is highly enriched in
the bile fluid. BM-basolateral membrane. Data are given as % of total PL according
to the literature [89].

BM (%) CM (%) bile (%)

PC 44.6 35.5 94.8

SM 11.0 22.1 0.1

PE 28.4 23.8 4.5

PS 7.6 11.2 –

PI 6.4 4.4 –

Biliary PC is largely reabsorbed in the intestine. However, it is not com-

pletely recycled as described for bile salts, but rapidly degraded. The choline-

head group is often reused to synthesise PC for biliary secretion. [90, 85]

The main fraction of biliary PC originates from a preformed intrahepatic

microsomal pool, or is transported to the sinusoidal membrane in a HDL bound

manner, where it is rapidly incorporated into the hepatocyte. Only about 14 %

of biliary PC is formed from choline that is newly synthesised in the liver.

[91, 92, 93] Two pathways exist for the intracellular transport of PC from

the sinusoidal to the apical domain of the PM. This transport occurs either

at the cytoplasmic leaflet of the PM or in vesicles through the cytoplasm

[94]. A phosphatidyl transfer protein (PC-TP) has also been suggested to be

involved in the intracellular transport of PC between the different membrane
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domains [95]. No defects in biliary lipid secretion were found in the absence of

PC-TP, however [96].

PL are secreted from the exoplasmic/lumenal leaflet of the canalicular mem-

brane [65] into the lumen of the BC by the detergent capacity of lumenal bile

salts. The interaction of bile salts with PL is independent of the head group

but depends on the fatty acid composition of the PL [65, 66].

The ABC transporter MDR3 is essential for the enrichment of PC in the bile

[21]. It is thus thought to represent a specific PC transporter which actively

pumps PC from the cytoplasmic to the lumenal leaflet of the CM. This process

makes PC accessible to the solubilising potential of bile salts (see section 1.2.1).

Even though Borst and his coworkers [20] showed a complete absence of

PC from the bile of mdr2 knock out mice, also an ATP independent transport

of PC across the canalicular membrane was reported [97, 98], which was not

influenced by the general MDR inhibitor Verapamil [99].

1.3.3 Cholesterol

Cholesterol represents the third class of biliary lipids. In humans, biliary se-

cretion is the only pathway for cholesterol elimination of the body. Newly

synthesised cholesterol comprises only about 8 % of biliary cholesterol, the ma-

jor part derives from preformed pools in the hepatocyte or from uptake at

the sinusoidal membrane bound to lipoproteins [85]. Intracellular transport

of cholesterol between the membrane domains and/or organelles is rapid and

mainly independent of vesicles [100, 101]. The secretion of cholesterol into the

BC is coupled to the secretion of PL which are solubilised from the apical mem-

brane by the action of bile salts [85]. Biliary cholesterol secretion depends on

the expression of the ABC transport proteins ABCG5 and ABCG8 which form

a heterodimer [44] (see section 1.2.1). It is assumed that these proteins activate

cholesterol in the CM and thus facilitate the disentanglement of cholesterol by

bile salt/phospholipid micelles or vesicles. This scenario is more likely than a
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cholesterol transport as cholesterol is able to cross the PM even without the

help of proteins much faster than PL [102].

1.4 Model for Biliary Lipid Secretion

The active secretion of bile salts and other organic anions as glutathione and

its conjugates into the BC is the major driving force of bile formation [25] and

results in the secretion of other bile constituents. Mechanisms that lead to

the specificity in biliary lipid contents, especially in its PL composition shall

be discussed in this section as well as the physico-chemical processes of lipid

secretion.

1.4.1 Phospholipid Asymmetry

The PL asymmetry of the PM (as described in section 1.2.2) which is most

likely mediated by APLT was demonstrated for a variety of cells and is believed

to be a general feature of mammalian cells. However, an APLT activity was not

yet demonstrated in the canalicular membrane of hepatocytes, even though the

Fic1 protein was suggested to harbour this function (see section 1.2.2) [78]. An

asymmetric distribution of PL in the apical membrane might be responsible for

the almost complete absence of aminophospholipids of the bile. As bile salts

solubilise only PL in the outer leaflet [65] the action of a putative APLT in

the canalicular membrane might prevent the aminophospholipids PS and PE

from solubilisation by pumping them to the inner leaflet [94]. This would also

explain the presence of a low amount of PE in the bile as APLT has a lower

affinity to PE than to PS [50].
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1.4.2 Bile Salt Resistance and Transbilayer Organisation

of the Canalicular Membrane

The amount of SM in the apical membrane is about twofold higher than in

the sinusoidal membrane of hepatocytes (see table 1.2). As sphingolipids and

cholesterol are known to form detergent insoluble rafts (see section 1.2), the

high amount of sphingolipids in the canalicular membrane might be necessary

to prevent a complete solubilisation of this membrane by the bile salts in the

lumen of the BC. The biliary PC (with its relatively short fatty acid chains)

might be located at the cytoplasmic leaflet of the canalicular membrane. The

transport activity of proteins like MDR3 (see section 1.3.2) would then be

necessary to make PC accessible to the detergent potential of bile salts in

the BC. This hypothesis is consistent with a lateral diffusion of PC at the

cytoplasmic side of the PM from the basolateral to the apical domain or a

transport of PC by PC-TP (see section 1.3.2). It would, however, also require

an asymmetric phospholipid distribution in vesicles that are targeted to the

canalicular membrane. PC synthesis takes place at the cytosolic leaflet of the

ER [103] and SM is synthesised at the lumenal leaflet of the Golgi apparatus

[104, 105, 106]. Contrary to SM, GlcCer is synthesised at the cytosolic leaflet

of the Golgi [107, 105]. GlcCer is rapidly flipped across the Golgi membranes

[64] which is necessary for further glycosylation at the lumenal side of the Golgi

[108, 109]. Transport vesicles could contain sphingolipids at the lumenal leaflet

whereas PC would be located at the cytoplasmic side [21, 110]. A fast flip-flop

for PC in the ER has been demonstrated [111, 112, 113] making it unlikely that

PC is restricted to the cytoplasmic leaflet of transport vesicles. However, if SM

is restricted to the exoplasmic leaflet as flippase activity for SM in the Golgi

is low [64], PC has to be located mainly at the cytoplasmic leaflet for sterical

reasons. Indeed, a preferential localisation of SM and glycosphingolipids like

GlcCer to the lumenal leaflet was demonstrated in TGN derived vesicles [114].
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1.4.3 Supramolecular Organisation of Lipids in the BC

The mechanism of solubilisation of PL from the canalicular membrane by bile

salts and the physico-chemical organisation of the lipids in the BC is still

not completely elucidated. Two mechanisms have been proposed how PL are

secreted into the bile: as vesicles or as micelles (see figure 1.3).

Cytoplasm

PC SM PS PE BS cholesterol

APLT MDR3 BSEP

Lumen of the BC

?

?

Figure 1.3: Possible mechanisms of solubilisation of PL into the BC. Bile
salts induce the release of PL from the canalicular membrane either as vesicles (right)
or micelles (left). Both way might also coexist in biliary PL secretion. Model adapted
from [115] and [21].

First investigations on the secretion mechanism of PL suggested a micel-

lar solubilisation, later experiments, however, preferred a vesiculation process
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[116, 117, 118]. The high bile salt concentration in the BC was thought to me-

diate a rapid transformation of a part of those primary vesicles into micelles

[116]. However, their is still some evidence for a micellation, especially in the

process of cholesterol solubilisation [102]. It is also likely that both processes

coexist during bile formation [119]. Micellation might take place besides vesic-

ulation even if the vesicular solubilisation of lipids into the bile is the main

path [120]. The mechanism of biliary PL secretion might further depend on

the bile salt species in the lumen of the BC [85]. The general lipid composi-

tion of the bile and especially the composition of different bile salts and their

hydrophobicity varies strongly between the different mammalian species (see

table 1.1). Thus the physico-chemical processes underlying bile secretion could

well be heterogeneous in different species.

Cholesterol is very poorly soluble by bile salts, addition of PL strongly in-

creases its solubility. This fact might be responsible for the coupling of choles-

terol to PL secretion (see section 1.3.3). If the secretion of PC is disturbed (as

in the case of PFIC I), cholesterol is secreted to a very low extent, which most

likely represents the amount of cholesterol that leads to saturation of the bile

salts. Application of more hydrophilic bile salts enables a higher amount of

cholesterol solubilisation [102].

One assumption about cholesterol solubilisation is that the main part of

cholesterol that is exposed by ABCG5/ABCG8 in the CM is solubilised by

mixed bile salt/phospholipid micelles. If the bile salt concentration in the BC

is low, a solubilisation of cholesterol by mixed vesicles is supposed. [102].

The physico-chemical composition of bile is crucial for its functionality.

The formation of gallstones from cholesterol crystals is dependent on the ratio

of vesicles to micelles in bile as well as on the hydrophobicity of bile salts

[121, 85]. The elucidation of the exact mechanism of biliary lipid secretion will

be the basis for the treatment of hepato-biliary diseases.
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1.5 Methods for Investigation of Lipid Enrich-

ment and Organisation in Bile

The uptake of lipids at the sinusoidal membrane domain, their transport to

the apical domain and the secretion of lipids into the bile fluid have been a

subject of investigation for many years. Several methods have been used to

investigate the enrichment of specific substances in the bile fluid, however they

all have their specific advantages and disadvantages [88]. Only the combination

of results and conclusions from different experimental designs might reveal the

mechanism that leads to the specificity of bile composition.

One method involves radiolabelled precursors of biliary lipids that are fed

to animals or applied to isolated perfused liver. The origin and metabolism of

biliary lipids can be quantified. This allows mathematical analysis of vectorial

solute movement, metabolic pathways and enterohepatic circulation. However,

the data provide no insight into the mechanisms on a cellular level as measure-

ment are possible only several orders of magnitude away from the scale of

intracellular operations. Furthermore they can only provide informations on

the “average” hepatocyte and do not take into account the differences arising

from the situation of the hepatocyte within the liver lobule [88].

Another method is the isolation and analysis of subcellular fractions which

also allows to trace radiolabelled substances. Organelle subfractions can then

be analysed regarding lipid transport capacities, proteins involved in transport

processes and lipid content. The latter gives indications about the origin of bil-

iary lipids. However, the reliability of measurements on isolated organelles may

be questionable as the in vitro environmental conditions might lack important

factors that are present in vivo, such as membrane potential and cytoplasmic

factors [88].

Morphological studies using microscopic techniques are another category

of methods that is applied to study biliary secretion. Electron microscopy
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provides detailed information on the structure and organisation of organelles.

However, as cells have to be fixed, dynamic processes cannot be investigated.

Fluorescence microscopy allows to monitor intracellular trafficking of fluores-

cence labelled substances. It is, however, often challenged that the fluorescence

group might influence the behaviour of the investigated substance. Microscopic

studies also require isolated cells and are characterised by the unability to study

cellular functions in situ [88].

Isolated hepatocytes or hepatocytic cell lines are often used as model sys-

tems. The polarity of primary hepatocytes, however, is lost in cell culture

making them improper objects for investigations on biliary lipid secretion. Al-

ternatively, hepatocyte couplets can be isolated by incomplete separation of

cells. These couplets reestablish their polarity when treated in a special way

[122]. However, the life time of hepatocyte couplets in cell culture is limited.

Continuous cell lines avoid the disadvantage of a limited life time. However,

as they are derived from carcinoma cells, they often have lost most of their cell

type specific functions. Only a few cell lines are able to form polarised cells

and mimic biliary secretion. One of them is the human hepatoma cell line

HepG2 which was used for this study and which shall be introduced in more

detail in the following part.

1.5.1 HepG2 Cells

HepG2 cells have been isolated from a liver tumour biopsy and were described

as well differentiated epithelial carcinoma [123].

HepG2 cells are able to grow polarised and form a canalicular vacuole be-

tween two adjacent cells [124]. This vacuole resembles the BC of the liver

in many ways [125, 126]. Synthesis and secretion of bile salts takes place in

HepG2 cells and is similar to that of human hepatocytes [127, 128]. For this

reason, HepG2 cells have been used for a variety of studies concerning biliary

secretion.
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1.5.2 Lipid Analogues

Phospholipid Analogues

To monitor lipid trafficking in cells and across membranes, lipids have to carry

reporter groups that emit a detectable signal. For this study fluorescent lipid

analogues were used. The most widely used fluorescence reporter group for

lipids is the green fluorescent NBD that can be attached to phospholipids at a

fatty acid chain or at the head group. Many studies use lipid analogues were the

reporter group is attached to a short fatty acid chain in sn2 -position making

these phospholipids less hydrophobic. This enables easy incorporation in and

extraction from membranes which is essential to introduce lipid analogues into

living cells. Extraction of lipid analogues from the membrane allows to monitor

the transbilayer distribution of the latter. Such short chain NBD labelled

phospholipids were also applied to this study. A red fluorescent PC analogue

carrying the BODIPY fluorophore at a short fatty acid chain was further used

for colocalisation experiments. In addition, head-group labelled PE analogues

carrying a fluorescein or rhodamine group were used. The chemical structure

of some of the PL analogues used in this study is shown in figure 1.4.

The use of fluorescent lipid analogues is sometimes questioned regarding

their ability to represent the behaviour of endogenous PL. Indeed, a so called

“back looping” of the fatty acid chain that carries the fluorescent reporter

group to the membrane surface has been described [129]. However, previous

studies have shown that fluorescent lipid analogues are faithful reporters of

the behaviour of endogenous lipids, as experiments with radioactive and spin

labelled analogues gave similar results as those with fluorescent analogues in

the erythrocyte membrane [54, 130, 51]. Moreover the use and comparison of

lipid analogues carrying different fluorophores can rule out the influence that

might derive from a fluorescent reporter group.

Another argument against the use of fluorescent PL analogues is their rapid
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Figure 1.4: Chemical structure of fluorescent PL analogues. Some acyl chain
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shown. Both the diacyl and the diether green fluorescent NBD analogues were applied
to this study. In addition a diacyl PC analogue labelled with the red fluorescent
moiety BODIPY was used.
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degradation by cellular phospholipases. This disadvantage can be overcome by

the use of diether PL analogues which are not recognised by phospholipases

[131]. Diether-NBD analogues of PC and PS have been used (see figure 1.4) in

addition to diacyl analogues. The intracellular trafficking of diether analogues

might be different from that of diacyl analogues in some cases due to the

substitution of the ester bonds by ether bonds. Trafficking of diether NBD-

PC and diacyl BODIPY-PC was compared by colocalisation experiments. The

different affinities of analogues to APLT have furthermore been utilised. While

the PC head group is not recognised by APLT the affinity of the transporter

for aminophospholipid analogues is determined by the glycerol backbone as

well as a modification of the head group [50]. This leads to a reduced affinity

of diether PS to APLT [131] which was employed to study the influence of

APLT to biliary lipid specificity.

Fluorescent Bile Salts

Fluorescent bile salts carrying a NBD or a fluorescein reporter groups were

recently synthesised [132] (see figure 1.5). They were utilised to verify the

functional polarity of adherent HepG2 cells and the integrity of their BC.

Furthermore the change of their fluorescence life times upon interaction with

unlabelled bile salts was investigated.

1.5.3 Fluorescence Life Time Analysis

The experimentally measured fluorescence life time is defined as the inverse

rate of depopulation of the first excited singlet state after optical excitation

from the ground state. Different decay pathways, radiative and non-radiative

ones, compete in this process, which depend on the microenvironment of the

fluorophore [133]. This causes a strong dependency of the fluorescence life

time of a given chromophore on its physico-chemical environment which can be
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also utilised to investigate intra- and intercellular organisation of fluorescent

molecules [134]. The application of fluorescence life time analysis is a very

recent development to study biological questions. It is a promising technology

to investigate supramolecular organisation in model systems as well as in living

cells.

In this thesis fluorescence life time measurements were applied to fluores-

cent lipid analogues in different physico-chemical environments. The charac-

terisation of the fluorescence properties of lipid analogues were performed in

cuvette experiments using pulsed lasers as excitation source. The fluorescence

life time can be determined by essentially two methods. Using pulse fluorome-

try the fluorescence life time is measured in the time domain, whereas applying

phase and modulation fluorometry the decay time is recalculated from the fre-

quency domain [133]. The latter is more useful to characterise longer (i. e. ten

nanoseconds to microseconds) life times. Here, for characterising fluorescent

lipid analogues time correlated single photon counting (TCSPC) was used.

The measurements shall be utilised to monitor the subcellular organisation

of fluorescent lipid analogues on a microscopic level.

Further on, fluorescence resonance energy transfer (FRET) can be used

to determine whether distinct substances (i. e. bile salts and PL) bearing ap-

propriate fluorophores are in close neighbourhood (i. e. in the same micelle or

vesicle). A typical FRET pair with a NBD-lipid as donor and a rhodamine

labelled lipid as acceptor was characterised during this study.



2 Scope

The specificity of biliary lipid composition seems to play an important physio-

logical role as changes in lipid constitution lead to severe hepatobiliary diseases

as formation of gallstones and cholestasis. To identify mechanisms leading to

the enrichment of specific lipids in bile, while others are shielded from biliary

secretion, is a first step in developing suitable treatments or preventions for

the outlined diseases. Understanding lipid specificity includes to elucidate the

physico-chemical processes leading to bile formation, and the organisation of

biliary lipids in the BC immediately after secretion.

Prevention of Aminophospholipid Secretion

Biliary PL composition is very different from that of cellular membranes. PS

is not found and PE is only a minor constituent of the bile fluid making up

about 4.5 % of biliary PL, whereas PC resembles about 95 % of the PL in

bile. An APLT activity pumping PE and PS from the exoplasmic to the

cytoplasmic leaflet is known from the PM of many mammalian cells. However,

it has not yet been demonstrated whether APLT is also localised in the apical

membrane of hepatocytes. Assuming an APLT activity in the CM, pumping

PS and PE to the cytoplasmic leaflet, might prevent their solubilisation by

canalicular bile salts. This would explain one component leading to biliary lipid

specificity. The first part of this thesis shall demonstrate an APLT activity

in the canalicular membrane of HepG2 cells and clarify if this APLT activity

is sufficient to prevent biliary enrichment of aminoPL. For this reason several

PL analogues which are known to differ in their affinity to APLT are applied.

To probe whether these analogues are suitable for demonstration of an APLT

activity, their transport rate is characterised at the basolateral membrane of

HepG2 cells, in which an APLT activity has already been reported [63, 64].

29
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To inhibit the activity of an APLT, the APLT inhibitor suramin is applied.

The APLT activity of the canalicular membrane has to be monitored indi-

rectly by the accumulation of the different PL analogues in the BC. Absence

of specific PL analogues from the lumen of the BC is related to a canalicular

APLT activity.

Involvement of MDR proteins in biliary PL secretion

Mutations of the murine ABC transporter mdr2 (corresponding to human

MDR3) have been shown to lead to a complete absence of PL from the bile [20].

Thus MDR3 is thought to be responsible for transporting PC to the exoplas-

mic leaflet of the apical membrane from where it is solubilised by canalicular

bile salts. However, an ATP independent PC transport in the CM has been

reported on isolated membranes [97, 99]. An ATP independent transbilayer

movement of PC, however, has not yet been shown in vivo. Here it will be

addressed whether MDR independent transport of lipids might contribute to

biliary PL secretion. To investigate the influence of MDR proteins in biliary

enrichment of PC and aminophospholipid analogues, different MDR inhibitors

are applied.

Organisation of Lipids in Biliary Model Systems

The physico-chemical mechanisms that lead to biliary lipid secretion are still

not understood. It is not yet clear if biliary lipids are secreted as vesicles or mi-

celles. So far, the knowledge about physico-chemical organisation of early bile

originates from the investigation of animal material. However, lipid composi-

tion of the widely used rodents is quite different from that of other mammals

and humans especially regarding its hydrophobicity. It is therefore essential

to develop a method allowing to determine the supramolecular organisation of

early bile in situ.
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To investigate the physico-chemical organisation of fluorescent lipid ana-

logues, the analysis of the fluorescence life times of the latter is a powerful

technique. The third part of this thesis was aimed at characterising the fluo-

rescence decay of lipid analogues in possible physiological environments. This

problem is addressed using different model systems as membranes or bile salt

suspensions of different concentration in which fluorescent lipid analogues are

incorporated. These investigations will provide the basis for a determination

of lipid organisation in the BC in vivo in the near future.

Combining fluorescence life time measurements with FRET the neighbour-

hood and interaction of different lipid species can be determined. Therefore,

it is a further aim of this thesis to characterise suitable FRET pairs in model

experiments.



3 Materials and Methods

3.1 Materials

Fatty acid free bovine serum albumin (BSA), sodium dithionite, (±)-Vera-

pamil hydrochloride (Verapamil), suramin, rhodamine 123 (Rho123), and

the lipids (in highest purity) egg yolk phosphatidylcholine (EYPC), egg

yolk sphingomyelin (EYSM), cholesterol, sodium taurocholate (TC), sodium

glycocholate (GC), sodium taurolithocholate (TLC), sodium taurodeoxy-

cholate (TDC), and sodium dehydrocholate (DHC) were obtained from Sigma

(Deisenhofen, Germany). 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC), 1-palmitoyl-2-[6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproyl]-

sn-glycero-3-phosphocholine (diacyl NBD-PC), 1-palmitoyl-2-[6-[(7-nitrobenz-

2-oxa-1,3-diazol-4-yl)amino]caproyl]-sn-glycero-3-phosphoserine (diacyl NBD-

PS), (1-palmitoyl-2-[6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproyl]-sn-

glycero-3-phosphoethanolamine (diacyl NBD-PE), 6-((N-(7-nitrobenz-2-oxa-

1,3-diazol-4-yl)amino)hexanoyl)sphingosylphosphocholine (C6-NBD-SM),

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein (N -Fl-

PE), and L-α-phosphoethanolamine-N –(lissamine rhodamine B sulfonyl (egg)

(N -Rh-PE) were obtained from Avanti Polar Lipids (Birmingham, AL, USA).

2-(4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-

pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (β-BODIPY-PC)

was purchased from Molecular Probes (MoBiTec, Göttingen, Germany).

Dulbecco’s modified eagle medium (DMEM) and foetal bovine serum (FCS)

were obtained from GIBCO BRL (Life Technologies, Paisley, Scotland).

Collagen A, penicillin/streptomycin, HANKS’ balanced salt solution (HBSS),

Dulbecco’s modified phosphate buffered saline (DPBS), and trypsin/EDTA so-

lution (0.05 % (w/v) trypsin, 0.02 % (w/v) EDTA in PBS) were from Seromed
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(Biochrom, Berlin, Germany). HBSS+ refers to HBSS supplemented with

1.25mM CaCl2 ·2 H2O and 0.5mM MgCl2 ·2 H2O. Diisopropylfluorophosphate

(DFP) was obtained from Fluka (Feinchemikalien GmbH, Neu-Ulm, Germany).

(3’-oxo-4-butenyl-4methyl-threonine1)-(Val2)-cyclosporin (PSC 833) was from

Novartis, Basel, Switzerland. Cholyl-glycyl-amido-fluorescein (CGamF)

and ursodeoxycholyl-[Nε-(7-nitro-2-1,3-benzooxadiazol-4-yl)amino]-lysine

(UDC-NBD) were a generous gift from Alan F. Hofmann (MD) (University

of California, San Diego, USA). 1-octadecanoxy-2-[6-[(7-nitrobenz-2-oxa-1,3-

-diazol-4-yl)amino]hexanoxy]-sn-glycero-3-phosphoserine (diether NBD-PS)

and 1-octadecanoxy-2-[6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]hexanoxy]-

-sn-glycero-3-phosphocholine (diether NBD-PC), 1-O-βD-glucopyranosyl-6-

((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl)sphingosine (C6-NBD-

GlcCer), 1-O-β-D-galactopyranosyl-6-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-

amino)hexanoyl)sphingosine (C6-NBD-GalCer) were a gift from Philippe F.

Devaux (Institut de Biologie Physico-Chimique, Paris, France).

3.2 Cell Culture

HepG2 cells were purchased from DSMZ, Braunschweig, Germany.

HepG2 cells were grown in DMEM containing 4.5 g/l glucose, supplemented

with 10% heat-inactivated FCS and penicillin/streptomycin. Cells were rou-

tinely passaged in 25 cm2 plastic culture flasks coated with collagen A, medium

was changed every 3–4 days.

For preparation of cell suspensions, cells were cultured in 175 cm2 plastic

culture flasks coated with collagen A, medium was changed at the day prior to

experiment. Cell suspensions were prepared in that cell monolayers were rinsed

two times with HBSS and harvested by incubation with trypsin/EDTA solu-

tion for 5 min at 37 ℃. Subsequently, cells were resuspended in 50ml culture

medium. After keeping the suspension for 30 min on ice, the cells were washed
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twice with PBS and resuspended in DPBS+ (DPBS supplemented with 20 mM

glucose, 1 mM sodium pyruvate and 10 mM HEPES to prevent ATP-depletion

and pH-shift) for labelling.

3.3 Cell Labelling

3.3.1 Preparation of Aqueous Solutions of PL Analogues

PL marked with NBD, fluorescein, or rhodamine, were stored at -20 ℃ in

chloroform or chloroform/methanol. Aliquots of these phospholipid analogues

were transferred to a glass tube and dried under nitrogen. The analogues were

then resuspended in ethanol (final ethanol concentration below 1 % v/v) and

vortexed with HBSS+ (for labelling adherent cells) or DPBS+ (for labelling

suspended cells).

Due to its higher hydrophobicity compared to NBD labelled analogues, β-

BODIPY-PC was bound to fatty acid depleted BSA before labelling the cells

[135]. Briefly, 75 nmole of the lipid analogue in methanol:chloroform (1:1) were

evaporated under nitrogen and redissolved in 400 µl ethanol. This ethanolic

solution was then carefully injected into 1 ml of PBS containing 75 nmole of

fatty acid depleted BSA while vortexing the BSA-solution. To remove the

ethanol, the mixture was dialysed against several changes of PBS for 16 h.

Subsequently, the dialysate was centrifuged at 100,000×g for 20 min twice. The

supernatant, containing the BSA bound analogue, was stored under argon at

4 ℃.

3.3.2 Labelling of Adherent Cells

Before labelling, polarised cells on cover glasses were washed two times with

HBSS+. Labelling with the short chain diacyl and diether PL analogues of PC

and PS, and the sphingolipids C6-NBD-SM, C6-NBD-GlcCer, and C6-NBD-
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GalCer was performed for 20min on ice (final label concentration 4 µM in

HBSS+), subsequently cells were washed with HBSS+ and incubated for 30 min

at various temperatures (2 ℃, 14 ℃, and 37 ℃) [94]. Taking into account the

less efficient incorporation of the diacyl NBD-PE compared to PS and PC

[136] labelling with this analogue was performed by incubating the cells for

30 min with the analogue at 37 ℃ followed by washing with HBSS+ and further

incubation for 30 min at 37 ℃. This protocol was also applied to the head-

group-labelled phospholipid analogues N -Fl-PE and N -Rh-PE. In some cases

cells were further incubated with 5 % (w/v) BSA in HBSS+ twice, to remove

fluorescent lipids from the exoplasmic leaflet of the basolateral membrane.

The fluorescent bile salts CGamF and UDC-NBD were diluted in HBSS+

from an ethanolic stock solution to a final concentration of 10 µM (final ethanol

concentration about 0.1 %) and cells were labelled with this solution at 37 ℃

for 15 min. Subsequently cells were washed with HBSS+.

3.3.3 Double-Labelling of Adherent Cells

To study the intracellular transport and canalicular enrichment of the diether

analogues of PS and PC, and of diacyl PS in comparison to diacyl PC, colocali-

sation experiments were performed. HepG2 cells were double labelled with the

red fluorescent diacyl β-BODIPY-PC and one of the green fluorescent lipids

diether NBD-PC, diether NBD-PS, or diacyl-NBD-PS.

For double-labelling, polarised cells on cover glasses were incubated with

4 µM of a NBD labelled lipid analogue for 20min on ice. After removing this

green fluorescent analogue, the cells were labelled with 10 µM β-BODIPY-PC

bound to BSA for 10 min at 37 ℃, washed and further incubated for 30 min at

37 ℃.
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3.3.4 Labelling of Suspended Cells

For measurements in suspensions, cells (4 ·107 cells) were incubated with 600 µl

DPBS+ containing the respective lipid analogue. Labelling was performed for

5 min with 12 nmole of diacyl analogues or 15 min with 24 nmole of diether ana-

logues on ice to achieve comparable extent of labelling. To prevent hydrolysis

of the diacyl lipid analogues 5 mM DFP was added to the respective samples in

parallel and was present in all following steps. Subsequently, cells were washed

with DPBS.

3.4 Inhibition of MDR

To inhibit the canalicular MDR transporters the non-specific MDR inhibitor

Verapamil [137, 138, 139, 140, 141, 142] and the cyclosporin analogue PSC 833

which is specific for MDR1 Pgp [143, 140, 144, 145] were used. After washing,

cells were preincubated with 20 µM Verapamil or 10 µM PSC 833 in HBSS+ for

15 min at 37 ℃ followed by labelling as described in section 3.3 in the presence

of the inhibitor.

As a control for the inhibition of MDR by the inhibitors the green flu-

orescent MDR1 Pgp substrate Rho123 was used [146, 147, 145]. Cells were

labelled with 3 µM of this fluorophore in HBSS+ for 30 min at 37 ℃. MDR in-

hibited cells were preincubated with 20 µM Verapamil or 10 µM PSC 833 and

the respective inhibitor was present during labelling with Rho123.

3.5 Inhibition of APLT by Suramin

A competitive inhibition of APLT by suramin was described by Devaux and

coworkers [67]. Cells were incubated with 200 µM suramin in the respective

incubation buffer for 30min at 37 ℃ prior to labelling. The inhibitor was

present during all following steps. For adherent cells, in some cases, cells were
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labelled and incubated for 30 min at 37 ℃ to allow internalisation of analogues,

and subsequently incubated with suramin for 30 min at 37 ℃.

3.6 Measurements of Analogue Internalisation

in Cell Suspensions

Labelled cells were incubated at 37 ℃, 22 ℃, or 14 ℃. After various times,

aliquots were transferred into a fluorescence cuvette containing 2.4 ml ice-cold

DPBS+. Fluorescence was monitored at 540 nm (λex=470 nm) (Aminco Bow-

man Series 2 Spectrofluorometer, Polytec, Waldbronn, Germany) at 4 ℃ while

continuously stirring the suspension. Dithionite was added from a freshly pre-

pared 1.5 M stock solution in 100mM Tris (pH 9.5) to give a final concentration

of 50 mM as described earlier [148, 62]. Dithionite quenches the fluorescence

by chemical reaction with the NBD group. Since dithionite permeates very

slowly across membranes at low temperature [62], only the fluorescence of ana-

logues on the exoplasmic leaflet is quenched. After the fluorescence intensity

was reduced by dithionite to a plateau value, Triton X 100 was added to a

final concentration of 2 % (w/v) making the NBD-PL on the cytoplasmic side

accessible to dithionite. The amount of PL on the cytoplasmic side (PLi) was

determined according to:

PLi =
Fp − Fb

Fi − Fb

with Fp being the fluorescence of the plateau after dithionite reduction, Fb

the background fluorescence after addition of Triton X 100, and Fi the initial

fluorescence intensity before addition of dithionite.
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3.7 Fluorescence Microscopy

Labelled cells grown on cover glasses were analysed with an inverted Axio-

vert 100 standard epifluorescence microscope (Carl Zeiss, Inc. Oberkochen,

Germany) equipped with a PlanApo 100×/1.3 numerical aperture objective, a

standard fluorescein filter set (BP 450 to 490 nm excitation filter, FT 510 nm

dichroic mirror, and LP 520 nm emission filter), and a standard rhodamine

filter set (BP 546/12 nm excitation filter, FT 580 nm dichroic mirror, and LP

590 nm emission filter) (Carl Zeiss, Oberkochen, Germany) as described pre-

viously [94]. Canalicular vacuoles (BC) were identified by phase contrast mi-

croscopy. The percentage of BC containing the fluorescent lipid analogue was

quantified by counting labelled and non-labelled BC. BC having a fluorescence

intensity in the BC as low as cellular autofluorescence levels were defined as

non-labelled BC.

Localisation of the NBD-labelled lipid analogues in the BC was confirmed

by addition of dithionite which can diffuse into the BC and react with NBD-

labelled analogues in the lumen and at the lumenal membrane leaflet of the

BC [149]. Remaining fluorescence of the canalicular membrane originates from

PL analogues located at the cytoplasmic side of this membrane. Cells were

covered with HBSS+ supplemented with 20mM HEPES (pH 7.4) to prevent

any pH shift and were incubated with 30 mM sodium dithionite (added from

a fresh 1 M stock solution in 100 mM Tris, pH 9.5) for 10 min on ice [94].

Photographs were taken using Kodak Ektachrome Panther P1600 films,

which were push-processed to 3200 ASA and scanned using a CanoScan 2700F

scanner (Canon, Tokyo, Japan) or by a cooled CCD camera (Coolsnap fx,

Visitron Systems, Puchheim, Germany) using Metamorph software (Universal

Imaging, Downingtown, USA).
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3.7.1 Confocal Laser Scanning Microscopy

For confocal laser scanning microscopy (CLSM) of cells labelled with diacyl

NBD-PS and treated with suramin a Leica Confocal laser scanning microscope

(Leica Lasertechnik GmbH, Wetzlar, Germany) equipped with NPL Fluotar

40×/1.3 oil and PL Fluotar 100×/1.32 oil objectives (Leitz, Wetzlar, Germany)

and an argon/krypton-ion laser emitting at 488 nm was used.

3.8 Metabolism of Diacyl NBD-Analogues

To measure hydrolysis of cell associated lipid analogues, cells in suspensions

or in monolayers were labelled as described above. Subsequent to labelling,

cell suspensions were incubated for 60min, monolayers for 30min at 37 ℃ (see

section 3.3). For lipid extraction, monolayers were scraped from the dish and

resuspended in 1 ml HBSS+.

Lipids were extracted from the aqueous solution as described previously

[150]. Briefly, 3.2 ml methanol:chloroform (2.2:1) were added to 1ml of cells

and incubated for 30min at room temperature. After phase separation by

adding 1 ml chloroform and 1 ml 40 mM acetic acid, lipids in the chloroform

phase were collected. The aqueous phase was washed with 1ml chloroform,

and the two combined chloroform phases were dried under a nitrogen stream.

The lipids were resuspended in a small volume of chloroform:methanol (1:1)

and applied to a TLChr plate. Plates were developed in two dimensions using

chloroform:methanol:ammonia (13:5:1) as basic solvent and acetone : chloro-

form :methanol : glacial acetic acid : water (8:6:2:2:1) as acidic solvents. Spots

on the dried TLChr plates were analysed using a Fluorescence Image Analyser

FLA-3000 (Raytest Isotopenmessgeräte GmbH, Germany) and AIDA image

analysis software.
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3.9 Vesicle Preparation

Aliquots of EYPC, POPC, or EYSM and cholesterol, stored at -20 ℃ in chloro-

form were transferred to a glass tube and dried under nitrogen. The lipids were

resuspended in a small volume of ethanol (final ethanol concentration below

1 % (v/v)) and HBSS+ was added to give a final lipid concentration of 1 mM.

Small unilamellar vesicles (SUVs) were prepared by sonification of the solution

20 min on ice (Branson Sonifier 250, Schwäbisch Gmünd, Germany, intensity

2, cycle 80 %). To prepare large unilamellar vesicles (LUVs) five freeze-thaw

cycles were performed followed by extrusion of the lipid solution 10× at 40 ℃

through two 0.1 µm polycarbonate filters (extruder from Lipex Biomembranes

Inc., Vancouver, Canada, filters from Costar, Nucleopore GmbH, Tübingen,

Germany). For symmetrical labelling of the two leaflets the PL analogues

were added to the solution of endogenous lipid before evaporation. Fluores-

cent bile salts were introduced symmetrically into the LUVs by adding the

respective amount of analogues in ethanol to the dried lipids on the glass sur-

face (final ethanol concentration below 1 % (v/v)). The molar concentration

of the fluorescent lipids was 1 mol% of the endogenous lipids. In the case of

FRET experiments the acceptor phospholipid N -Rh-PE was incorporated to

a molar concentration of 3mol% of the endogenous lipids.

3.10 Measurement of Fluorescence Life Times

3.10.1 Investigated Systems

The influence of the chemical environment on the fluorescence life time of PL

analogues (as diacyl C6-NBD-PC) and of bile salt analogues (UDC-NBD and

CGamF) was studied. These were either dispersed in HBSS+ or incorporated

into liposomes composed of EYPC, POPC, or a mixture of EYSM and choles-

terol.
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The influence of different bile salts on these model systems was analysed

by adding the bile salts TC, TDC, GC, TLC, or DC from a 200 mM stock

solution in HBSS+ to the above described model solutions (analogues in vesicles

or aqueous suspension). The final bile salt concentration was varied between

1 mM and 30mM.

3.10.2 Instrumental Setup

Fluorescence life time was measured using a time correlated single photon

counting (TCSPC) setup [133] as outlined in figure 3.1. Briefly, the time

between excitation and emission of the first fluorescence photon was measured

for a huge number of single molecules. The decay of fluorescence is represented

by a histogram of these measured times.
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Figure 3.1: Experimental setup of TCSPC. The two possible excitation sources
are shown in dashed boxes. L - lens, FSP - shortpass filter, FBP - bandpass filter, P -
polariser, C - cuvette, M - mirror, BS - beam sampler, MCλ -monochromator, MCP -
micro channel plate, PD - photo diode. See text for further explanation.

Two different pulsed lasers were used to excite the samples. In one case

(option 1), excitation was achieved by an actively acousto optic mode locked

Ar+-ion laser (Innova 305, COHERENT, Santa Clara, USA; APE µ 60, APE

Berlin). The latter had a repetition rate of 125 MHz and a pulse width of about

150 ps, resulting in a full width of half maximum (FWHM) of the instrument
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response function (IRF) of 150 ps. The laser line emitting at a wavelength of

476 nm was used.

In the second case (option 2), samples were excited by a solid state titan

sapphire laser (Ti:Sa) (MIRA 900D, COHERENT, Santa Clara, USA) coupled

to a home build second harmonics generation setup (SHG) using a β-barium-

borate-crystal (BBO). The repetition rate of the Ti:Sa-laser was 76 MHz and

pulses had a pulse width of about 100 fs, resulting in a FWHM of the IRF of

about 90 ps.

During the course of this study this laser was improved by the installation

of a new mirror set (XWAVE mirror set, COHERENT, Santa Clara, USA).

Using the XWAVE mirror set the highest achievable wavelength was extended

from 440 nm to 465 nm. As the excitation maximum of the NBD fluorophore

is at about 470 nm the wavelength of 465 nm was used when available. Former

measurements using an excitation at 440 nm were possible due to the broad

excitation peak of NBD. Results obtained with different excitation sources

were comparable as the fluorescence life time is independent of the excitation

wavelength [151].

To generate the synchronisation signal a small amount of excitation light

was split off (BS in figure 3.1) and focussed onto a fast photo diode determin-

ing the exact time of excitation. The intensity was adjusted by a variable grey

filter to ensure excitation of only a single molecule. Attenuation was chosen in

that only one percent of the laser shots resulted in excitation of a fluorophore.

The resulting beam was focussed by a lens with long focal length (50 cm) into

the sample. Fluorescence of the sample was detected perpendicular to excita-

tion. A bandpass filter (FBP) was used to block Rayleigh scattered excitation

light. Polarisation filtering (magic angle [152]) is necessary to avoid unwanted

detection of rotational polarisation effects. Due to Raman scattering of water

the use of a monochromator is crucial to detect fluorescence only. Fluores-

cence photons were detected by a thermo electric cooled micro channel plate
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(MCP) (R3809U-01, Hamamatsu Photonics Deutschland GmbH, Herrsching,

Germany). Amplified MCP signals (HFAC-26dB, Becker & Hickl, Berlin, Ger-

many) and synchronisation signals were processed by a personal computer

card (SPC300, Becker & Hickl, Berlin, Germany). All measurements were per-

formed at 22 ℃. The resulting data were analysed using a home made program.

Model functions were first to third order exponentials folded by the instrument

response function (IRF), considering the periodicity of the IRF and a possible

time shift between IRF and decay data. The Downhill Simplex Algorithm [153]

was used to vary the parameters of the model functions to fit the data.

3.10.3 Determination of FRET

FRET between lipid analogues carrying the NBD group (donor) and the rho-

damine group (acceptor) was investigated by the decrease of the fluorescence

life time of the donor. Both lipid analogues were incorporated into LUVs or

SUVs to ensure that the fluorophores were in an appropriate short distance to

each other. Diacyl C6-NBD-PC or UDC-NBD were used as donors and added

in a concentration of 1mol% of the endogenous vesicle lipids, the acceptor lipid

N -Rh-PE was incorporated to 3 mol% of the endogenous lipids.

FRET was determined by measuring the fluorescence life time of the donor

in the presence and absence of the acceptor using the instrumental setup de-

scribed above.



4 Results

4.1 Enrichment of Fluorescent Bile Salts in the

BC of Polarised HepG2 Cells

To verify that HepG2 cells were functionally polarised, the transport of flu-

orescent bile salts to the BC was investigated. Although these cells do not

express all bile salt transport proteins identified in the basolateral membrane

of hepatocytes [154], labelling with the two different bile salt analogues CGamF

(figure 4.1 A, B) and UDC-NBD (figure 4.1 C, D) resulted in bright fluores-

cence of the BC. The number of BC which became enriched in the fluorescent

bile salts was about 80% for both analogues (figure 4.2).

A B

C D

Figure 4.1: Enrichment of fluorescent bile salt analogues in the BC of
polarised HepG2 cells. HepG2 cells were labelled with 10 µM CGamF (B; A:
phase contrast to B) or 10 µM UDC-NBD (D; C: phase contrast to D) for 15 min at
37 ℃. Arrows point to labelled BC. Bar, 20 µm.

44
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Figure 4.2: Percentage of BC labelled with the fluorescent bile salts
CGamF and UDC-NBD. HepG2 cells were labelled with 10 µM of the fluores-
cent bile salt analogues for 15 min at 37 ℃ and the amount of fluorescent BC was
determined. Data represent mean±SEM (n≥3).

4.2 Identification of an APLT Activity in the

CM

To identify and characterise an APLT activity in the CM, diacyl and diether

analogues of PS and PC and a diacyl analogue of PE each bearing the fluores-

cent NBD moiety at the short sn2 -fatty acid chain (C6) were used. Further-

more, two head group labelled diacyl PE analogues carrying a fluorescein or

a rhodamine group were investigated. These analogues differ in their affinity

to and transport by APLT which is primarily determined by the head group

as well as the glycerol backbone of PL [50]. As shown for various mammalian

cells, PC analogues are not transported by APLT [131, 136, 62, 155]. In con-

trast to PC, diacyl NBD-PS and, although to a lesser extent (see section 1.2.2)

diacyl NBD-PE are substrates of APLT. However, the transport of a diether

analogue of PS by APLT is very slow in comparison to diacyl NBD-PS [131].

First, the transbilayer redistribution of these analogues across the PM of

suspended HepG2 cells was characterised to verify that the respective ana-
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logues behave in a similar manner to that found for other mammalian cells

(see section 1.5.2). Subsequently, the enrichment of aminophospholipid ana-

logues in the BC of polarised HepG2 cells in monolayer cultures was studied.

4.2.1 Internalisation of Diacyl and Diether NBD Lipid

Analogues in Suspended HepG2 Cells

Using the dithionite assay, the amount of NBD labelled lipid analogues redis-

tributed to the cytoplasmic side of labelled HepG2 cells, being non-accessible to

dithionite, was determined at 4 ℃ after various periods of incubation at 37 ℃,

22 ℃ and 14 ℃. In figure 4.3 a typical kinetics of the fluorescence decrease

upon addition of dithionite is shown. An initial rapid decline of fluorescence

intensity was observed corresponding to reduction of the analogues on the

exoplasmic leaflet. Subsequently, only a very slow fluorescence decrease was

observed which, very likely, is due to slow permeation of dithionite and reduc-

tion of analogues on the cytoplasmic side. To estimate the extent of reduction

of analogues on the cytoplasmic side, the slow fluorescence decrease was mea-

sured over a period of 6 min and the last 100 s before addition of Triton X 100

were fitted to a linear function (see figure 4.3). The slope of the line was found

to be −7 · 10−3 %/s, indicating that during kinetic measurements (which reg-

ularly took about 300 s) the reduction of intracellular localised analogues did

not exceed 2 %. Thus the influence of the permeation of dithionite across the

PM of HepG2 cells at 4 ℃ is negligible.

In figure 4.4 the kinetics of internalisation of NBD-lipid analogues in sus-

pended HepG2 cells is shown. To differentiate between uptake by endocytic

activity and by transbilayer movement from the exo- to the cytoplasmic leaflet,

internalisation was measured not only at 37 ℃ (figure 4.4 A, B), but also at

the lower temperatures 22 ℃ (figure 4.4 C, D), and 14 ℃ (figure 4.4 E, F). En-

docytosis is strongly reduced at the latter temperature [156, 157]. During the
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Figure 4.3: Measurement of inward redistributed analogues by dithionite
reduction of NBD at 4 ℃ Cells in suspension were labelled with diacyl NBD-PS
and incubated at 37 ℃ for 20 min. Subsequently, an aliquot of the suspension was
taken and incubated at 4 ℃. Fluorescence intensity was monitored and after 30 s
dithionite was added. Remaining fluorescence from intracellular located analogues
was reduced by adding Triton X-100 and thus solubilising the cells, after 6 min of
measurement. Fitting the decrease of NBD-fluorescence intensity of the last 100 sec
before addition of Triton to a linear function (solid line) reveals a slope of−7·10−3%/s
(for details see text).

labelling procedure a low amount of NBD-analogues was lost from the exoplas-

mic leaflet indicated by the offset at t= 0 of the respective plots.

At 37 ℃ the internalisation of diacyl NBD-PS was rapid, about 75 % of the

analogue was internalised with a half-time of about 5 min (figure 4.4 A). Also,

a rather rapid uptake of the analogue with respect to the other analogues was

observed, even at the lower temperatures (figure 4.4 C, E).

Although the internalisation of diacyl NBD-PE was slower in comparison

to diacyl NBD-PS, it was still faster with respect to the PC analogue (see

below). The rapid internalisation of diacyl NBD-PS and -PE across the PM
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Figure 4.4: Internalisation of NBD labelled PL analogues in suspended
HepG2 cells. HepG2 cells in suspension were labelled with NBD analogues as
described in section 3.3.4. Subsequently, suspensions were incubated at 37 ℃ (A, B),
22 ℃ (C, D), and 14℃ (E, F). After various incubation periods, aliquots were taken
and the percentage of analogues internalised was measured by the dithionite assay.
Triangles up - diacyl NBD-PS, triangles down - diether NBD-PS, circles - diacyl NBD-
PE, squares - diacyl NBD-PC, diamonds - diether NBD-PC; filled symbols without
suramin, open symbols in the presence of 200 µM suramin (see section 3.5). For
each analogue the mean out of 2 to 7 measurements is shown. Error bars represent
the SEM, or in the case of two measurements the difference between both values.
Kinetics were fitted to a monoexponential function (lines). Note the different scaling
of the time axes (A–D versus E, F).
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was diminished by preincubation of the cells with suramin, an inhibitor of

APLT (figure 4.4 A, C, E): the plateau of redistribution kinetics was about

3–4 fold lower compared with that in the absence of suramin. These results

are consistent with an APLT activity in HepG2 cells.

The internalisation of diacyl NBD-PC was different to that of the diacyl

aminophospholipid analogues. The fraction of diacyl NBD-PC localised in the

exoplasmic leaflet of the PM decreased much slower (figure 4.4 A). At 37 ℃

only about 20 % were found non-accessible to dithionite after 1 h of incuba-

tion. Again, the kinetics of internalisation were significantly reduced upon

lowering the temperature (cf. figure 4.4 C, E). About 15% and 10 % of PC

analogues redistributed to cytoplasmic side within one hour at 22 ℃ and 14 ℃,

respectively. Preincubation of cells with suramin did not affect the transbilayer

dynamics of diacyl NBD-PC (data not shown).

The inward redistribution of diacyl NBD-PC and -PS at 37 ℃ is visualised

in figure 4.5. Fluorescence microscopic pictures of suspended cells immediately

after labelling were taken before and after addition of dithionite. The cell mem-

brane was bright labelled initially (figure 4.5 A, I) and almost all fluorescence

was reduced by addition of dithionite (figure 4.5 B, J) for both analogues in-

dicating that at the time point t=0 the analogues were located in the outer

leaflet of the PM. Further pictures were taken after incubating the labelled

cells for 30min at 37 ℃. Again the PM was brightly fluorescent by both ana-

logues (figure 4.5 C, K) before addition of dithionite. Dithionite was added to

reduce analogues associated with the outer leaflet of the PM, and in the case

of PC reduced almost all of the cell associated fluorescence (figure 4.5 D). In

contrast to PC, cells labelled with the diacyl PS analogue remained intracel-

lularly fluorescent after dithionite addition (figure 4.5 L), demonstrating that

this analogue became internalised and redistributed also among subcellular

compartments much more efficiently than the PC analogue.
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Figure 4.5: Internalisation of diacyl NBD lipid analogues in suspended
HepG2 cells. HepG2 cells in suspension were labelled with diacyl NBD analogues
as described in section 3.3.4. Immediately after labelling, aliquots were placed on a
microscopy dish and photographs were taken before (A, I) or after (B, J) reducing the
accessible analogues by dithionite. Labelled cells were further incubated at 37 ℃ for
30 min and again photographs were taken before (C, K) and after (D, L) dithionite
reduction. A–D: Cells labelled with diacyl NBD-PC, E–H: phase contrast to A–D;
I–L: Cells labelled with diacyl NBD-PC, M–P: phase contrast to I–L. Bar, 20 µm.
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Internalisation kinetics of diether NBD-PC was very similar to that of the

diacyl analogue (figure 4.4) at all investigated temperatures. However, the in-

ternalisation of diether NBD-PS was slower with respect to the diacyl analogue

(figure 4.4 B, D, E) which is consistent with previous observation on fibroblasts

and red blood cells indicating a very low affinity of APLT for diether NBD-PS

[131]. In agreement with this, suramin only had a marginal influence on the

inward reorientation of this analogue (data not shown). However, the internal-

isation of diether NBD-PS was still faster in comparison to both PC analogues

(figure 4.4 B, D, E).

In agreement with these findings, fluorescence microscopy showed bright

labelling of the plasma membrane by both diether analogues before addition

of dithionite, whereas almost no fluorescence was detectable after addition of

the reducing agent even after incubating the labelled cells for 30 min at 37 ℃

(figure 4.5).

4.2.2 Enrichment of Fluorescent NBD-PL Analogues in

the BC of Polarised HepG2 Cells

Next, the enrichment of various fluorescent lipid analogues in the BC of po-

larised HepG2 cells was compared by fluorescence microscopy. Subsequent to

labelling of the basolateral membrane on ice, the accumulation of lipid ana-

logues in the BC was monitored after incubation of cells for 30 min at 37 ℃

(figure 4.7) or at 14 ℃ (figure 4.10). For diacyl NBD-PC, an extensive labelling

of the BC was found at 37 ℃ (figure 4.7 A, B). About 80% of the BC were

labelled with the analogue (figure 4.8). The punctuate intracellular staining

observed originates from endocytic uptake of the analogue [94, 158]. The same

pattern of intracellular labelling was observed for diether NBD-PC, in particu-

lar regarding the enrichment of this analogue in the BC (figure 4.7 C, D). The

amount of labelled BC was similar to that of diacyl NBD-PC (figure 4.8).
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Figure 4.6: Internalisation of diether NBD lipid analogues in suspended
HepG2 cells. HepG2 cells in suspension were labelled with diether NBD analogues
as described in section 3.3.4. Immediately after labelling, aliquots were placed on a
microscopy dish and photographs were taken before (A, I) or after (B, J) reducing the
accessible analogues by dithionite. Labelled cells were further incubated at 37 ℃ for
30 min and again photographs were taken before (C, K) and after (D, L) dithionite
reduction. A–D: Cells labelled with diether NBD-PC, E–H: phase contrast to A–D;
I–L: Cells labelled with diether NBD-PC, M–P: phase contrast to I–L. Bar, 20 µm.
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Figure 4.7: Transport of diacyl and diether NBD-PL analogues to the BC
of polarised HepG2 cells at 37 ℃. The basolateral membrane of HepG2 cells was
labelled with 4 µM diacyl (A, B, E, F) or diether NBD-PL analogues (C, D, G, H) for
20 min on ice. After washing and incubation for 30 min at 37 ℃, cells were washed
again and incubated with 5 % (w/v) BSA in HBSS+ for 10 min at room temperature
twice to remove remaining label from the exoplasmic leaflet of the basolateral cell
membrane. B and F - fluorescence microscopy of diacyl NBD-PC and -PS labelled
cells, respectively. A and E are phase contrast images of the same field as shown
in B and F, respectively. For diacyl NBD-PC, enrichment in the BC indicated by
bright labelling of this structure and punctuate staining of vesicular structures were
observed (B). For diacyl NBD-PS, a diffuse cytoplasmic labelling was detected, but
no enrichment of the analogue in the BC. D and H - fluorescence microscopy of diether
NBD-PC and -PS labelled cells, respectively. C and G are phase contrast images of
the same field as shown in D and H, respectively. Both analogues enriched in the BC,
although it was more pronounced for diether NBD-PC. Labelled BC are indicated
by white arrows, non-labelled BC by white arrowheads. Bar, 20 µm.

The pattern of intracellular fluorescence was very different for the PC and

diacyl aminophospholipid analogues. For the latter, a diffuse fluorescence dis-

tribution in the cytoplasm was observed (figure 4.7 E, F; only shown for diacyl

NBD-PS). No punctuate staining of endocytic vesicles, as detected using PC

analogues, was detectable using diacyl NBD-PS. In most cases no labelling of

BC with the diacyl aminophospholipid analogues was found. (figure 4.7 E, F).

Only about 20 % of the BC were labelled with diacyl NBD-PS after 30min at

37 ℃ (figure 4.8). In these BC the fluorescence intensity was lower than that
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of BC labelled with PC analogues. This indicates a reduced enrichment of the

PS analogue compared to PC.

Unlike diacyl NBD-PS, diether NBD-PS became enriched in the BC (fig-

ure 4.7 G, H). The percentage of labelled BC was almost identical to that of

PC analogues (figure 4.8). However, in comparison to PC analogues, the punc-

tuate staining within the cytoplasm was less pronounced, instead a somewhat

diffusive fluorescence in the cytoplasm was noted.
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Figure 4.8: Percentage of BC labelled with NBD-PL analogues. The baso-
lateral membrane of HepG2 cells was labelled with 4 µM of various NBD-PL ana-
logues and, subsequently, treated as described in the legend to figure 4.7 and in sec-
tion 3.3.2. The amount of NBD-positive BC in the absence (white bars) and in the
presence of 200 µM suramin (filled bars) was determined as described in section 3.7
. Data are expressed as mean±SEM (number of experiments≥6).

Similar to diacyl NBD-PS, diacyl NBD-PE was excluded from the BC but

less rigorously as diacyl NBD-PS. Enrichment of this PE analogue was found

in about 30% of the BC (figure 4.9). In contrast to this fatty acid labelled

analogue, the head group labelled PE analogues N -Fl-PE and N -Rh-PE be-

came enriched in about 80 % of the BC (figure 4.9), indicating that modifying

the head group of a phospholipid by attaching a fluorophore makes that lipid

unrecognisable for the head group specific transporter.
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Figure 4.9: Percentage of BC labelled with different PE analogues The
basolateral membrane of HepG2 cells was labelled with 4 µM of acyl chain (Diacyl-
PE) and head group labelled analogues (N -Fl-PE and N -Rh-PE) PE analogues and
the cells were further treated as described in section 3.3.2. The amount of fluorescent
BC was determined as described in Materials and Methods. Data are expressed as
mean±SEM (number of experiments≥5).

Endocytosis and transcytosis of vesicles from the basolateral to the api-

cal membrane in polarised cells are temperature dependent and are strongly

reduced at 14 ℃ [11]. However, also under this condition bright labelling ex-

clusively of the BC was found for both PC analogues and diether NBD-PS

(figure 4.10). In contrast, BC were not labelled by diacyl NBD-PS. Similar to

the observation at 37 ℃, a bright and diffuse cytoplasmic staining was found

for the PS analogue.

In the presence of suramin, a significant enrichment of diacyl NBD-PS in BC

was found. Suramin treatment increased the amount of BC labelled by diacyl

NBD-PS to about 50 % (figure 4.8). Interestingly, punctuate intracellular stain-

ing was observed indicating that endocytic pathways contribute significantly

to the uptake of the PS analogues under those conditions. When suramin was

washed out, the amount of labelled BC decreased to a value found for cells

that had not been treated with the inhibitor (figure 4.11). The half time of the
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Figure 4.10: Transport of diacyl and diether NBD-PC and -PS to the BC
of polarised HepG2 cells at 14 ℃. The basolateral membrane of HepG2 cells
was labelled with 4 µM diacyl (A, B, E, F) or diether NBD-PL analogues (C, D,
G, H) for 20 min on ice. After washing and incubation for 30min at 14 ℃, cells
were washed again and incubated with 5 % (w/v) BSA (in HBSS+) for 10 min on ice
twice to remove remaining label from the exoplasmic leaflet of the basolateral cell
membrane. B and F - fluorescence microscopy of diacyl NBD-PC and -PS labelled
cells, respectively. A and E are phase contrast images of the same field as shown in
B and F, respectively. Bright labelling almost exclusively of the BC was found for
diacyl NBD-PC (arrow), punctuate staining was strongly reduced in comparison to
37 ℃ (figure 4.7B). For diacyl NBD-PS, a diffuse cytoplasmic labelling was detected,
but no enrichment of the analogue in the BC. D and H - fluorescence microscopy of
diether NBD-PC and -PS labelled cells, respectively. C and G are phase contrast
images of the same field as shown in D and H, respectively. Both analogues enriched
in the BC, although it was more pronounced for diether NBD-PC. Labelled BC are
indicated by white arrows, non-labelled by white arrowheads. Bar, 20 µm.

process was in the order of about 15 min. Suramin affected neither the number

of labelled BC with diacyl NBD-PC and with diether NBD-analogues nor the

punctuate staining seen for PC analogues.

The localisation of diacyl NBD-PS in the BC after suramin treatment was

further confirmed using CLSM. As shown in figure 4.12 A–D diacyl NBD-PS

was enriched in the lumen of BC after suramin treatment. When the inhibitor

was washed out and cells were incubated for 30 min at 37 ℃, the lumen of

the BC appeared empty while a staining of the canalicular membrane was

detectable (figure 4.12 E–H).
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Figure 4.11: Influence of APLT inhibitor suramin on the labelling of BC by
diacyl NBD-PS. Polarised cells on coverslips were pretreated with 200 µM suramin,
labelled with diacyl NBD-PS at 4 ℃ and further incubated in the presence of the
inhibitor for 30 min at 37 ℃. Subsequently suramin was washed out, and the amount
of fluorescent BC was determined at distinct time points after further incubation of
the cells at 37 ℃ as described in Materials and Methods. Data represent mean±SEM
of three independent measurements.

Diacyl NBD-PS was also enriched in the BC when cells were treated with

suramin after internalisation of the PS analogue (see Materials and Methods).

To this end, cells were labelled with diacyl NBD-PS and incubated for 30 min

at 37 ℃ to allow internalisation of the analogue. At this point there was only

low labelling of the BC (see above). Subsequent addition of suramin led to a

bright labelling of BC (data not shown).

4.2.3 Reduction of BC Associated NBD Fluorescence by

Sodium Dithionite

As dithionite is able to permeate across the tight junctions and thus reduce

the BC associated NBD fluorescence, it is a useful tool to investigate whether

fluorescence of BC originates from analogues located in the BC lumen or on the

lumenal side of the CM [149] (see section 3.7). Dithionite permeates across



4. RESULTS 58

A B

C

E

G

F

D

H

Figure 4.12: Enrichment of diacyl NBD-PS in the lumen of BC after
suramin treatment studied by confocal laser scanning microscopy. Po-
larised cells on cover glass were preincubated with 200 µM suramin for 30 min at
37 ℃, and labelled with 4 µM diacyl NBD-PS. Non-bound label was removed, and
the cells were further incubated at 37 ℃ for 30 min. Subsequently, cells were back
exchanged to 5 % BSA at room temperature twice. The inhibitor was present during
all steps. CLSM revealed a bright labelling of BC (B, arrows; A phase contrast to
B). The lower BC was scanned with a higher resolution (C). A line scan along the
white line shown in C demonstrates that the analogue is enriched in the lumen of BC
(D). When suramin was removed and the cells were further incubated at 37 ℃ only
the CM but not the lumen of the BC was fluorescent (F, arrow; E phase contrast
to F). Such a BC was scanned with higher resolution (G) resulting in the line scan
shown in F. The fluorescence in the CM is about twice as high as in the lumen of
the BC.
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the PM very slowly at 4 ℃ [62], ensuring that analogues located on the cy-

toplasmic leaflet of the canalicular membrane are shielded from its reducing

property. When cells labelled with PL analogues that are found associated

to the BC (i. e. diacyl NBD-PC and diether NBD-PC and -PS) were incu-

bated with dithionite for 10min on ice following the labelling procedure (see

section 3.3.2), the number of BC that appeared fluorescent was about 10 %,

indicating that these analogues are located at the lumenal side of the BC.

4.2.4 Colocalisation of Diether and Diacyl NBD-PL Ana-

logues with Diacyl β-BODIPY-PC

To confirm the difference in localisation between diacyl NBD-PS and diether

NBD-PS as well PC analogues, cells were double labelled with NBD-PS ana-

logues and a diacyl β-BODIPY-PC analogue. It was previously shown that

β-BODIPY PC specifically enriches in the BC and colocalises with the green

fluorescent diacyl NBD-PC. [94]. As labelling with both diacyl analogues bear-

ing different fluorophores results in a similar fluorescence pattern, one can as-

sume that their distribution reflects the intracellular allocation of endogenous

lipids, too [94]. In agreement with that, β-BODIPY-PC redistributed rapidly

to the lumen of the BC (figure 4.13 C), which was not observed for diacyl

NBD-PS (figure 4.13 B). In contrast to this, diether NBD-PS colocalised with

β-BODIPY-PC in the BC (figure 4.13 D–F).

The intracellular transport and canalicular enrichment of the diether NBD-

PC analogue was compared to diacyl β-BODIPY-PC in polarised cell, too (fig-

ure 4.14. Labelling with the diether NBD-PC analogue results in virtually the

same fluorescence pattern as labelling with the red fluorescent diacyl analogue.
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Figure 4.13: Colocalisation of diacyl and diether NBD-PS and diacyl β-
BODIPY-PC analogues. Polarised cells on cover glasses were double labelled
with diacyl NBD-PS (B) and β-BODIPY-PC (C) or diether NBD-PS (E) and β-
BODIPY-PC (F) (see section 3.3.3) and further incubated at 37 ℃ for 30 min. A
bright labelling of the BC by β-BODIPY-PC occurred (C), while diacyl NBD-PS
was absent from the BC (B). A: phase contrast to B and C. In contrast, both diether
NBD-PS and β-BODIPY-PC enriched in the BC (D–F).

A CB

Figure 4.14: Colocalisation of fluorescent diether and diacyl PC analogues
in polarised HepG2 cells. Cells were colabelled with diether NBD-PC (B) and
diacyl β-BODIPY-PC (C) (see section 3.3.3); A: phase contrast to B and C. Arrows
point to double labelled BC. Bar, 20 µm.
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4.3 Influence of the MDR Inhibitors on BC La-

belling Pattern

To investigate the involvement of MDR proteins, especially MDR3 in the trans-

port of various PL from the cytoplasmic to the lumenal side of the BC the

non-specific MDR inhibitor Verapamil and the MDR1 Pgp specific inhibitor

PSC 833 were used. It was shown that in HepG2 cells the number of BC that

were labelled with diacyl NBD-PC was reduced from about 80 % in the ab-

sence of inhibitors to about 65 % in the presence of each of the inhibitors [159].

However, the number of BC that remained fluorescent after adding dithionite

to Verapamil treated cells (about 45% of the total BC) was not significantly

different from the number of BC when dithionite was absent. When cells were

treated with PSC 833 the number of fluorescent BC was significantly reduced

after dithionite treatment. From these data the author concluded that the

detected fluorescence of the BC in the presence of Verapamil originated from

analogues on the cytoplasmic leaflet of the canalicular membrane and that

Verapamil strongly inhibited the transport of diacyl C6-NBD-PC across the

canalicular membrane [159].

The ability of Verapamil and PSC 833 to inhibit the transport of the di-

ether and diacyl NBD analogues of PC and PS across the canalicular mem-

brane was studied. The efficiency of inhibition was probed by the fluorophore

Rho123 which is transported by MDR1 Pgp across the canalicular membrane

and becomes highly enriched in the BC (figure 4.15). In the presence of MDR

inhibitors Rho123 is excluded from the BC (figure 4.15).

Confirming previous studies [159] the number of BC that appeared fluo-

rescent after incubation with diacyl NBD-PC was reduced from about 90 % in

the absence of the inhibitor to about 65% in the presence of Verapamil. A

similar tendency of Verapamil was found for diether NBD-PC (figure 4.15).

This reduction of the number of fluorescent BC was significant as tested by
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Figure 4.15: Influence of the MDR inhibitors Verapamil and PSC 833 on
the percentage of BC labelled with various PL analogues. The basolateral
membrane of HepG2 cells was labelled with the fluorophore Rho123 or various NBD-
PL analogues as described in section 3.3.2. The amount of NBD positive BC in the
absence (white bars) of inhibitors and in the presence of 20 µM Verapamil (light grey
bars) or 10 µM PSC 833 (dark grey bars) was determined as described in section 3.7.
In the case of diacyl NBD-PS additional inhibition of the APLT by suramin is indi-
cated which was performed in the control and in the MDR inhibited cells. Data are
expressed as mean±SEM (number of experiments≥ 5).

an unpaired t-test (α = 0.05). The specific MDR1 Pgp inhibitor PSC 833

reduced the number of BC labelled with diacyl NBD-PC significantly to about

70 %. Unlike for diacyl NBD-PC no reduction of the number of diether NBD-

PC labelled BC in the presence of PSC 833 compared to control was found

(see figure 4.15). Only a slight decrease of NBD-positive BC in the presence

of MDR inhibitors compared to control was found for both diether and di-

acyl NBD-PS which was significant for the diacyl analogue, but not for the

diether analogue (one side unpaired t-test, α = 0.05). When enrichment of

diacyl NBD-PS was enhanced by inhibition of the APLT an effect of the MDR

inhibitors became more evident. A significant reduction of the number of dia-

cyl NBD-PS labelled BC in the presence of the APLT inhibitor suramin was

observed for both MDR inhibitors. The number of labelled BC with diacyl
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NBD-PS in the presence of suramin and either of the MDR inhibitors was not

significantly different for Verapamil and PSC 833 treated cells (figure 4.15).

In contrast to former observations [159] the number of fluorescent BC after

addition of dithionite was significantly reduced in cells that were treated with

Verapamil for all investigated analogues (figure 4.16). No significant difference

of the number of labelled BC after dithionite treatment in control and Vera-

pamil inhibited cells could be observed. These data indicate that if BC appear

fluorescent, the signal originates essentially from the lumenal side.
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Figure 4.16: Comparison of the number of fluorescent BC in Verapamil
treated and control cells in the presence and absence of dithionite. The
basolateral membrane of HepG2 cells was labelled with diether NBD-PL analogues
as described in section 3.3.2. The amount of NBD positive BC in the absence (white
bars) and in the presence of 20 µM Verapamil (grey bars) was determined as described
in section 3.7. Hatched bars represent the BC that remained fluorescent after 10 min
incubation with 30 mM sodium dithionite on ice. Data are expressed as mean±SEM
(number of experiments≥ 5).
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4.4 Enrichment of Sphingolipid Analogues in the

BC of HepG2 Cells

The accumulation of the NBD labelled (glyco)sphingolipid analogues C6-NBD-

SM, C6-NBD-GlcCer, and C6-NBD-GalCer was studied at different tempera-

tures. In contrast to endogenous sphingolipids which are not found in bile, the

transport to and accumulation in BC of NBD labelled sphingolipid analogues

has been reported [149, 94, 160].

As shown in figure 4.17 labelling with the sphingolipid analogues resulted

in bright fluorescence of the BC when incubated at 37 ℃.

Figure 4.17: Transport of NBD labelled sphingolipid analogues to the BC
of polarised HepG2 cells at different temperatures. The basolateral mem-
brane of HepG2 cells was labelled with 4µM C6-NBD-SM (A–D), C6-NBD-GlcCer
(E–H), or C6-NBD-GalCer (I–L) for 20 min on ice. After washing cells were further
incubated for 30 min at 2℃ (A–B, E–F, I–J) or 37 ℃ (C–D, G–H, K–L), BC (ar-
rows) appeared fluorescent for all investigated analogues, even when incubated at
2 ℃. However, at this temperature the fluorescence intensity in the BC was lower
than at 37℃. Left panels represent phase contrast images of the corresponding right
fluorescence pictures. Bar, 20 µm.



4. RESULTS 65

When the incubation temperature was lowered to 4 ℃ the fluorescence in-

tensity in the BC was slightly reduced compared to that of incubation at 37 ℃.

However, the analogues were still associated with the BC indicating that they

have reached the BC by a non-vesicular way, as vesicular transport is abolished

at this temperature (figure 4.17).

4.5 Metabolism of the Lipid Analogues

The intracellular hydrolysis of the diacyl NBD-analogues and their metabolic

conversion to other fluorescent lipids are summarised in table 4.1. For cells in

suspension, between 10 and 20 % of diacyl analogues analogues were hydrolysed

after incubation at 37 ℃ for 60 min. In monolayers of polarised cells, 6–8 % of

diacyl NBD-PE and -PC and about 17% of diacyl NBD-PS were hydrolysed

after incubation for 30min at 37 ℃. In the presence of DFP, hydrolysis was

reduced to a level of 2–4 % of total analogues. However, polarised cells were

not treated with DFP for studying intracellular localisation of analogues, be-

cause DFP reduces the life time of adherent cells under the additional stress

of microscopic observations. For both, cells in suspension and polarised cells

a metabolic conversion of diacyl NBD-PS to PE and PA was observed which

was not affected by DFP (table 4.1).
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Table 4.1: Metabolism of diacyl NBD-PL analogues in polarised and sus-
pended HepG2 cells in the absence and presence of DFP. Analysis was
performed by 2D-TLChr (see section 3.8). Spots corresponding to products of ana-
logue metabolism were quantified as percentage of the sum of all NBD containing
spots. Data represent mean±deviation (in %) from the mean of two independent
measurements. FA corresponds to the hydrolysed fluorescent fatty acid residue in
the sn2 -position.

Polarised cells (monolayers) Cells in suspension

Analogue Additional spot -DFP +DFP -DFP +DFP

diacyl-NBD-PC FA 6.4±0.4 2.6±1.6 12.2±2.5 3.1±1.0

diacyl-NBD-PS FA 16.9±2.3 3.1±2.5 17.2±2.0 1.9±1.0

fluorescent PE∗ 6.6±0.8 10.6±5.5 19.2±1.5 19.4±4.1

fluorescent PA∗ 5.3±0.8 6.0±2.0 3.4±0.1 6.1±2.8

diacyl NBD-PE FA 7.9±1.8 3.2±2.5 20.8±7.5 4.1±1.3

* Spots correspond to those observed for diacyl NBD-PE and diacyl NBD-PA.
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4.6 Characterisation of the Fluorescence Life Time

of Lipid Analogues

The phospholipid analogue diacyl C6-NBD-PC and the bile salt analogues

UDC-NBD and CGamF were incorporated into several biliary model environ-

ments. The influence of the physico-chemical environments on the fluorescence

life time(s) of the lipid analogues was monitored.

The fluorescence life time of the investigated lipid analogues was first char-

acterised in their most suitable organic solvent at 22 ℃. The decay curves

could be fitted monoexponentially. Fluorescence life times are summarised in

table 4.2.

Table 4.2: Fluorescence life times of lipid analogues in organic solvents. τ

represents the fluorescence life time and n the number of determinations. Data are
expressed as mean±SEM.

Analogue Solvent τ / ns n

diacyl C6-NBD-PC chloroform 9.21± 0.10 4

UDC-NBD ethanol 6.70± 0.01 3

CGamF ethanol 4.38± 0.01 3

4.6.1 Interaction of Bile Salts with Lipid Analogues

The interaction of bile salts with lipid analogues which were either dissolved

in HBSS+ or incorporated into LUVs was monitored by the change of the

fluorescence life time(s) of the analogues. Data collected by TCSPC after

excitation by a pulsed laser source were fitted to bi- or triexponential model

functions (see section 3.10.2).

A typical biexponential fit of diacyl C6-NBD-PC in aqueous solution is

shown in figure 4.18 A. Diacyl C6-NBD-PC incorporated into LUVs had to be
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fitted to a triexponential function to give acceptable χ2-values (figure 4.18 B),

the same was true when 6 mM TC were added to both model systems (red lines

in figure 4.18). The different fluorescence life times correspond to the same

analogue in a different physico-chemical environment. Each organisational

appearance of fluorescent analogues is termed as a “species” of analogues in

the following part.
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Figure 4.18: Typical fluorescence decay curves of diacyl C6-NBD-PC in
different environments. The fluorescence life time of diacyl C6-NBD-PC was
measured by TCSPC after excitation with a pulsed Ti:Sa laser (dots). Data points
were fitted to a periodic bi- or triexponential model function (lines). The standard
deviation of each point from the fitted function is given below. A: diacyl C6-NBD-
PC in aqueous solution in the absence (black) and presence (red) of 6 mM TC. B:
diacyl C6-NBD-PC incorporated into LUVs composed of EYSM:cholesterol (2:1) in
the absence (black) and presence (red) of 6 mM TC.

From the bi- or triexponential fits of fluorescence decay times the contri-

butions of the species of analogues yielding the different fluorescence life times

was calculated. The total fluorescence of the solution after one single excitation

by a δ-function is represented by the integral over the decay function:

I =
∫ ∞
0

∑
n

an e−t/τn dt
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Thus, the contribution of the species n with the fluorescence life time τn to

the total fluorescence intensity is given by:

In = an · τn

The amplitude an is proportional to the quantum yield Φn of the species n and

its concentration:

an ∝ Φn · cn

Measuring the fluorescence decay time of HBSS+ indicated that this buffer

exhibits an autofluorescence with three different fluorescence life times. This

autofluorescence, however, was much lower than that measured from any lipid

analogue samples. Figure 4.19 shows the autofluorescence decay curve of

HBSS+ compared to that of diacyl C6-NBD-PC in the same buffer. The con-

tribution of the autofluorescence is even lower for diacyl C6-NBD-PC in other

environments as the quantum yield of the analogue raises when incorporated

into a non-fluorescent lipid environment (see below).
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Figure 4.19: Autofluorescence of HBSS+ compared to fluorescence decay of
diacyl C6-NBD-PC in the same buffer. The autofluorescence of HBSS+ (red) is
compared to the fluorescence decay of 10µM diacyl C6-NBD-PC in HBSS+ (black).
Fluorescence decay curves were obtained after excitation with a pulsed Ti:Sa laser.
Excitation intensity and duration of measurement were equal for both samples.
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Diacyl C6-NBD-PC in Aqueous Solution

Diacyl C6-NBD-PC dispersed in aqueous solution exhibited a fluorescence de-

cay curve which was best fitted to a biexponential function (figure 4.18 A). The

short time of about 0.1 ns (white diamonds in figure 4.20) was found in most

samples measured (see below). Its contribution to the total fluorescence inten-

sity is very low and decreases with increasing intensities of the other species

(i. e. when bile salts are added, see below). This fluorescence life time might

represent diacyl C6-NBD-PC in self-quenching micelles. Due to the quenching

process the quantum yield of this lipid species is lowered dramatically. Thus,

its contribution to the total curve is very low, even in case a relatively high

amount of the analogue is organised into such micelles. The second fluores-

cence life time of diacyl C6-NBD-PC in an aqueous environment is about 1 ns

(figure 4.20, light grey squares). It is likely that this life time represents free

monomers of the analogue. Upon addition of various bile salts a third species

(grey circles in figure 4.20) of fluorescent analogues with life times longer than

1 ns appeared which most likely corresponds to aggregates of diacyl C6-NBD-

PC and bile salts (mixed micelles or submicellar aggregates [161]). The flu-

orescence life time and the contribution to the total fluorescence intensity of

this species increased with increasing bile salt concentration, and depending

on the hydrophobicity of the bile salts (table 4.3). Upon stepwise bile salt

addition, the fluorescence life time of the second species probably representing

diacyl C6-NBD-PC monomers in aqueous dispersion increased slightly, too.

Also, the unconjugated synthetic non-micelle forming [162] bile salt DHC

induced the appearance of a third species of fluorescent analogues with a longer

fluorescent life time (about 4.6 ns). Its contribution to the total fluorescence

was about 50 % at 6 mM DHC concentration (data not shown).

The maximum fluorescence life times of diacyl C6-NBD-PC incorporated

into different bile salt micelles are summarised in table 4.3 and compared to

the hydrophobicity of the bile salts known from the literature.
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Figure 4.20: Interaction of bile salts with diacyl C6-NBD-PC. The bile salts
TC (A), GC (B), TDC (C), and TLC (D) were added stepwise from a stock solution
to a 10 µM dispersion of diacyl C6-NBD-PC in HBSS+. Fluorescence life times
were fitted to bi- or triexponential model functions. The resulting fluorescence life
times and the contribution of the corresponding species of fluorophores are shown
(white diamond representing diacyl C6-NBD-PC in self-quenched micelles, light grey
squares corresponding to monomeric analogue, and grey circles for analogue in bile
salt complexes). Data represent mean±SEM, n≥3. Note the different scaling of the
abscissae. See text for further explanation.
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Table 4.3: Maximum fluorescence life time of diacyl C6-NBD-PC in differ-
ent bile salt micelles compared to their hydrophobicity. The maximum life
time of bile salt bound diacyl C6-NBD-PC species in bile salt suspension is compared
to the hydrophobicity index (HI) of the corresponding bile salt (classified according
to [84]).

Bile Salt τ / ns HI [84]

TC 6 +0.00

GC 5.5 +0.07

TDC 5.7 +0.59

TLC 8.7 +1.00

DHC 4.6 n.d.

Upon interaction with TC, also the head-group labelled PL analogue N -

Fl-PE showed an increased contribution of a longer life time of about 3.5 ns to

the total fluorescence compared to a shorter life time of about 0.7 ns. However,

both life times were also present when TC was absent (data not shown).

Diacyl C6-NBD-PC in LUVs

The fluorescent analogue diacyl C6-NBD-PC was incorporated into two distinct

membrane environments: vesicles composed of POPC (which represents the

major biliary PC species) and vesicles composed of EYSM and cholesterol in

a molar ratio of 2:1.

All decay curves were best fitted to triexponential functions. Again, a very

short time with little contribution to the total intensity (white diamonds in

figure 4.21) occurred. As outlined above this life time may represent diacyl

C6-NBD-PC in self quenching micelles. A second life time (about 1.2 ns, light

grey squares in figure 4.21) representing monomeric analogue was found in

agreement with the measurements of the analogue in aqueous solution (see

above). The remaining life time (grey circles in figure 4.21) is interpreted to

correspond to a species of diacyl C6-NBD-PC incorporated into LUVs. The
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latter had a life time of about 5.9 ns or 10.7 ns when LUVs were composed of

POPC or EYSM/cholesterol, respectively (see figure 4.21).

Addition of bile salts as TC and TDC to the LUVs lowered the fluorescence

life time of the membrane bound component to a value which is typical for the

analogue bound to micelles of the corresponding bile salt (see above) in the

case of EYSM/cholesterol LUVs. When LUVs were composed of POPC the

fluorescence life time of the membrane bound species of diacyl C6-NBD-PC

was already very similar to that of the analogues in bile salt micelles of TC or

TDC. Thus, no major changes in the fluorescence life time of this species was

observed upon adding TC. However, when TDC was added, the fluorescence life

time of the membrane associated component decreased at low concentrations

of the bile salt and raised again at higher concentrations. The fluorescence

life time of monomeric diacyl C6-NBD-PC increased slightly upon addition of

bile salts as was already found for diacyl C6-NBD-PC in aqueous solution (see

above). Also the contribution of this component increased when adding TDC

(see figure 4.21).

Fluorescent Bile Salts

The fluorescence life time of the bile salt analogues CGamF and UDC-NBD

was investigated.

Fluorescence decay curves of CGamF were best fitted to a monoexponential

function giving a live time of 4.01±0.02 ns in HBSS+. Adding TC to this

solution increased the live time slightly to 4.38±0.02 ns at a concentration of

9 mM TC. Also, when the analogue was added during preparation of EYPC

LUVs the fluorescence decay was still monoexponential with almost the same

life time (3.93±0.02 ns) as found for the monomers in HBSS+.

The decay curve of UDC-NBD in aqueous solution was biexponentially,

again with a small contribution of a very short life time (white diamonds in

figure 4.22), which might again be due to self-quenching effects of aggregated
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Figure 4.21: Interaction of bile salts with diacyl C6-NBD-PC in
LUVs. Diacyl C6-NBD-PC was incorporated to 1 mol% into LUVs composed of
EYSM:Cholesterol (2:1) (A, B) or POPC (C,D). The bile salts TC (A, C), and TDC
(B, D) were added from a stock solution stepwise. Fluorescence life times were fitted
to triexponential functions. The resulting fluorescence life times and the contribution
of the corresponding species of fluorophores are shown (white diamond correspond-
ing to diacyl C6-NBD-PC in self-quenched micelles, light grey squares representing
monomeric analogues, and grey circles for analogues incorporated into liposomes or
in bile salt complexes). Data represent mean±SEM, n=3. Note the different scaling
of the axes.
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analogues. The main component of the fluorescence decay curve of UDC-NBD

in HBSS+ had a life time of about 2 ns (light grey squares in figure 4.22). When

bile salts were added to this solution a third component appeared (grey circles

in figure 4.22). The fluorescence life time of this species of UDC-NBD rose with

increasing bile salt concentration to a maximum of about 5.7 ns for both TC

and TDC (see figure 4.22). The fluorescence life time of about 2 ns remained

rather constant upon addition of bile salts. The contribution of the latter

to the total fluorescence intensity decreased with increasing concentration of

endogenous bile salts (figure 4.22).
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Figure 4.22: Interaction of endogenous bile salts with UDC-NBD. The
bile salts TC (A), and TDC (B) were added stepwise from a stock solution to a
10 µM dispersion of UDC-NBD in HBSS+. Fluorescence life times were fitted to
bi- or triexponential model functions. The resulting fluorescence life times and the
contribution of the corresponding species of fluorophores are shown (white diamond
probably corresponding to complexed UDC-NBD, light grey squares representing
monomeric analogue, and grey circles for membrane bound analogues or UDC-NBD
in bile salt complexes). Data are expressed as mean±SEM, n=3 for TDC, n≥9 for
TC. Note the different scaling of the axes. See text for further explanation.
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When UDC-NBD was added to LUVs composed of EYPC, which is simi-

lar to PC of the bile fluid, fluorescence decay curves became triexponentially.

The first component of the decay curve had a very short life time with little

contribution to the curve (white diamonds in figure 4.23) eventually repre-

senting self-quenching analogues. The second component (light grey squares

in figure 4.23) had a fluorescence life time of about 1.7 ns which is similar to

that of UDC-NBD monomers in aqueous solution (see above). The third com-

ponent (grey circles in figure 4.23) most likely representing membrane bound

UDC-NBD had a live time of about 6.5 ns. Adding bile salts to this solution

decreased the fluorescence life time of the membrane bound species at low bile

salt concentrations. At higher bile salt concentrations the fluorescence life time

of the third component increased again to a final value of about 5.7 ns which

was also found for UDC-NBD in pure bile salt micelles (see above). The life

time of the free UDC-NBD species remained almost constant upon addition of

bile salts (figure 4.23).

The contribution of the putative free analogue species to the total inten-

sity increased at low bile salt concentrations and decreased again when the

concentration of TC or TDC was raised (figure 4.23). This behaviour was

similar, although more pronounced to that of diacyl C6-NBD-PC in LUVs of

EYSM/cholesterol (figure 4.21 A, B).

4.6.2 FRET

FRET between NBD as donor and rhodamine as acceptor is widely used to

study interaction of molecules. This FRET pair is especially useful as a mem-

brane probe when both fluorophores are attached to lipids [163, 164].

Here, FRET between NBD attached to two different donor lipids and N -Rh-

PE was characterised by the decrease of the fluorescence life time of the donor.

Both lipid analogues were incorporated into vesicles to ensure an appropriate

distance of the fluorophores well below the Förster-radius [165].
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Figure 4.23: Interaction of bile salts with UDC-NBD in LUVs. UDC-NBD
was added to 1 mol% into LUVs composed of EYPC. The bile salts TC (A), and TDC
(B) were added from a stock solution stepwise. Fluorescence life times were fitted to
bi- or triexponential model functions. The resulting fluorescence life times and the
contribution of the corresponding species of fluorophores are shown (white diamond
probably corresponding to complexed UDC-NBD, light grey squares representing
monomeric analogues, and grey circles for analogue in bile salt complexes). Data
represent mean±SEM, n≥3. Note the different scaling of the axes. See text for
further explanation.

In figure 4.24 the fluorescence decay curves of diacyl C6-NBD-PC in LUVs

(A) and of UDC-NBD in SUVs (B) are shown in green. Both decay curves

were fitted to biexponential functions (table 4.4).

When N -Rh-PE was incorporated into such liposomes in a concentration of

3 mol%, the fluorescence life time at the donor wavelength decreased strongly

(figure 4.24, red lines). The decay curves of the vesicles containing both donor

and acceptor lipid analogues were best fitted to triexponential functions (ta-

ble 4.4).
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Figure 4.24: FRET between NBD labelled lipid analogues and N -Rh-PE.
The fluorescence life times of the NBD group were measured by TCSPC after exci-
tation with a pulsed Ar+ laser (dots). Data points were fitted to a periodic bi- or
triexponential model function (lines). The standard deviation of each point from the
fitted function is given below. A: diacyl C6-NBD-PC (1 mol%) in LUVs of EYPC
in the absence (green) and presence (red) of 3 mol% N -Rh-PE in the same vesicle
population. B: UDC-NBD (1 mol%) in SUVs of EYPC in the absence (green) and
presence (red) of 3 mol% N -Rh-PE in the same vesicle population.
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Table 4.4: Fluorescence life times of NBD lipid analogues in liposomes in
the presence and absence of N -Rh-PE. Diacyl C6-NBD-PC and UDC-NBD
were incorporated to 1 mol% of total lipids into LUVs or SUVs, respectively. Fluo-
rescence life times of the donor (λem=535 nm) were measured after excitation with
a pulsed Ar+ laser at 476 nm in the presence or absence of 3 mol% of the acceptor
N -Rh-PE. Fluorescence life times (τ), contributions of the different life times (c) ,
and number of determinations (n) are indicated. Data are expressed as mean±SEM
or as mean±deviation from mean in the case of two measurements.

Donor Donor+Acceptor

Analogue c / % τ / ns n c / % τ / ns n

NBD-PC 94.7± 1.6 7.18± 0.07 4 32.5± 4.1 2.82± 0.18 2

5.3± 1.6 1.46± 0.27 46.3± 5.1 0.66± 0.06

21.2± 1.0 0.10± 0.01

UDC-NBD 89.0± 0.1 5.19± 0.01 3 91.0± 0.3 1.81± 0.01 3

11.0± 0.1 0.73± 0.03 7.2± 0.3 0.50± 0.04

1.8± 0.1 0.04± 0.01



5 Discussion

The present study was aimed at providing experimental evidence for mech-

anisms that explain the specificity in biliary lipid composition. The human

derived hepatoma cell line HepG2 was used for functional studies in vivo. This

well characterised cell line has the advantage that it is easy to handle and has

an unlimited life time. Using two different fluorescent bile salt analogues the

polarity of HepG2 cells and the functionality of their canalicular vacuoles was

confirmed.

One essential result is the identification of an APLT activity in the canalic-

ular membrane. This canalicular APLT was thought to be responsible for

the absence of aminophospholipids from the bile for a long time. However,

its activity was not proven in vivo. Characterising the canalicular APLT in

HepG2 cells identified a mechanism that explains the almost complete absence

of aminophospholipids from bile.

The involvement of MDR proteins in biliary lipid secretion was investigated

employing MDR inhibitors. Especially MDR1 Pgp and MDR3 were charac-

terised regarding their substrate specificity. One main conclusion from these

experiments is that MDR proteins are not essential for the enrichment of short

chain PL analogues in bile.

The interaction of PL analogues with bile salts was characterised using

their fluorescence life times to access how the fluorescence life time of lipid

analogues depends on their supramolecular organisation. The goal is to provide

an approach which allows to determine the organisation of lipids in the BC in

vivo by fluorescence life times of lipid analogues.

80
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5.1 APLT Activity

The first part of this study addressed the underlying mechanism for the absence

of aminophospholipids from bile. In particular, it was investigated whether

the access of the aminophospholipids PS and PE to the lumen of the BC is

prevented by an APLT activity in the CM by analysing the redistribution

of various fluorescent analogues to the BC lumen. The main result is that

aminophospholipid analogues which are not or only inefficiently transported by

APLT are enriched in the BC. Analogues that represent suitable substrates of

APLT are transported away from the lumen of BC, where they accumulate only

when APLT activity is inhibited. It can be concluded that the CM harbours an

APLT activity essential for preserving the specific phospholipid composition

of the bile. This APLT activity is sufficient to explain the virtual absence of

aminophospholipids from bile.

It may be asked whether the fluorescent analogues used are faithful re-

porters of natural PL movements because they may locally perturb the lipid

bilayer (see section 1.5.2). The large differences in translocation between vari-

ous lipid analogues demonstrate a selectivity to the head group/glycerol back-

bone and not the fluorescent NBD moiety. Indeed, the active transport of

aminophospholipids in red cells first discovered using spin-labelled lipids [51]

was confirmed with fluorescent probes [130] as used here, as well as with ra-

diolabelled long-chain lipids [54]. Thus, the same conclusions could be drawn

employing very different families of lipid probes. Therefore, one can be con-

fident that in HepG2 cells studying PL translocation based on trafficking of

fluorescent probes is a valid approach. This is also strongly supported by the

fact, that labelling of BC by fluorescent diacyl PL analogues reflects the specific

phospholipid composition of bile, while aminophospholipids are barely found,

phosphatidylcholine is enriched in bile.
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5.1.1 Mechanisms of Phospholipid Analogue Internalisa-

tion in HepG2 Cells

Since most of the fluorescent analogues used in this study have not been tested

in HepG2 cells previously, they were first characterised regarding their inter-

nalisation from the exoplasmic leaflet to the cytoplasmic side on suspended

cells. The inward movement of diacyl NBD-PS and of diacyl NBD-PE was

much faster than that of diacyl NBD-PC which is consistent (i) with results

of many studies on other mammalian cells (for review see [166]) and (ii) with

the presence of an APLT activity in HepG2 cells [63].

The higher rate of diacyl PS internalisation with respect to PE is in agree-

ment with a lower transport affinity of APLT for PE, in particular for diacyl

NBD-PE [167, 136]. The rapid disappearance of the analogues originates nei-

ther from their hydrolysis (see section 4.5) nor from endocytic uptake since a

rapid inward redistribution of the PS analogue was found even at 14 ℃ where

endocytosis is reduced and transcytosis blocked [156, 157]. Furthermore, if

endocytic activity was the main component of analogue uptake, one would not

expect such great differences among the various analogues. Only after inhi-

bition of APLT activity by suramin, endocytosis became relevant in the case

of diacyl aminophospholipids at 37 ℃ as indicated by punctuate intracellular

staining.

The inward redistribution of diacyl NBD-PS and -PE in HepG2 cells is

not as fast as that of the respective spin-labelled analogues [63]. This has

been also found for other mammalian cells [136, 168, 62, 66, 131]. Presumably,

the bulky fluorescence moiety and its polarity reduces the affinity of NBD

aminophospholipid analogues to APLT. However, this is of minor relevance as

it was not the objective of this study to determine the absolute rates of PL

transport across the membrane. The transport rate of endogenous PL might

be different from that of any of the analogues. However, the relative rates of
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PL analogue transport comparing PC to PE and PS analogues is very similar

to that found for endogenous PL.

In comparison to the respective diacyl analogues, the internalisation of

diether NBS-PS was significantly reduced. These data confirm previous studies

on the PM of human fibroblasts and red blood cells showing a low transport

activity of APLT for diether PS using NBD and spin labelled analogues [131].

They are also consistent with the fact that the glycerol backbone of PL affects

the transport of lipids by APLT [50].

The uptake of diacyl NBD-PC and diether NBD-PC is similar. Apparently,

the fraction of diacyl NBD-PC and diether NBD-PC on the exoplasmic leaflet

decreased much slower in comparison to diacyl NBD-PS and -PE. Recently

it was shown that diacyl NBD-PC is internalised in HepG2 cells at 37 ℃ by

two routes, by endocytic uptake and by transbilayer movement facilitated by

a yet unknown transporter [94]. Upon endocytosis diacyl NBD-PC was also

transported into a recycling compartment containing transferrin [94]. Due to

subsequent exposure of PC analogues to the PM, the fraction of analogues

internalised at 37 ℃ is underestimated. Declining endocytosis by lowering the

temperature, the amount of internalised PC analogues was reduced. However,

in relation to red blood cells [62, 131] the uptake of the PC analogues was

still enhanced and much faster than possible by passive diffusion alone. In-

dications for the existence of PC transporters in the PM of eukaryotic cells

were already obtained from other cells. Experimental evidence for an ATP-

dependent protein-mediated uptake of PC in polarised Va-2 cells [169] and

MDCKII cells [170] was given. A screen for yeast mutants has recently led to

the identification of Ros3p, an evolutionary conserved transmembrane protein

whose removal caused a major reduction in the non-endocytic uptake of diacyl

NBD-PC and -PE [75]. Remarkably, Ros3p is unrelated to any known ATPase

and localises to multiple organelles, including the PM and ER.

Taken together, during this study a pattern of inward redistribution of
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various NBD lipid analogues was found for the PM of HepG2 cells which is

very similar to that of other mammalian cells. In particular a high affinity of

APLT to diacyl NBD-PS, a slightly lower affinity to diacyl NBD-PE, and a

very low affinity to diether NBD-PS was observed.

5.1.2 Presence of an APLT Activity in the CM

Having established this pattern of inward redistribution, the labelling of BC by

fluorescence microscopy after incorporation of fluorescent analogues into the

basolateral membranes of polarised HepG2 cells was analysed. Reorientation

of fluorescent lipid analogues to the lumenal leaflet of the CM can be followed

by the subsequent uptake of these analogues into the BC lumen [94]. A strong

correlation between a low degree of BC labelling and APLT mediated inter-

nalisation of the analogue could be demonstrated (see table 5.1). Analogues

that were not or only inefficiently transported by APLT such as the PC ana-

logues and diether NBD-PS were rapidly enriched in the BC. Remarkably the

labelling pattern for diacyl and diether NBD-PC was very similar. This was

also confirmed by colocalisation experiments of diether NBD-PC with diacyl

β-BODIPY-PC. The latter was shown to colocalise with diacyl NBD-PC in the

BC [94]. Thus the transport and biliary enrichment of PC might be indepen-

dent of the kind of linkage of the fatty acid chains. For the aminophospholipid

analogues diacyl NBD-PS and -PE that were shown to be transported effi-

ciently by an APLT activity in HepG2 cells (see above), only a low percentage

of BC were enriched in the respective analogue (see table 5.1). Importantly,

the diacyl PE analogue was less rigorously excluded from the BC. This can be

explained by the lower affinity of APLT to PE (see section 1.2.2), which can

also rationalise the small amount of PE found in bile [89] (see table 1.2). In

contrast to diacyl PE which carried the label group on its fatty acid chain, head

group labelled PE was highly enriched in the BC. This can be explained by the

inability of the transporter to recognise analogues with modified head-groups.
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The metabolic conversion of diacyl NBD-PS (table 4.1) cannot account for

the low degree of BC labelling. Even after incubation for 30min at 37 ℃, about

70 % of internalised diacyl NBD-PS were not metabolised.

Table 5.1: Qualitative correlation between inward movement of analogues
at the basolateral membrane (BM) of suspended HepG2 cells and per-
centage of labelled BC in polarised HepG2 cells. +++ high, ++ medium, +
low. The inward movement of analogues is a combined process of APLT mediated
transport and APLT independent (passive) transport. If low, it is probably indepen-
dent of APLT activity, whereas if fast inward movement is detected APLT mediated
movement accounts for most of it. The correlation between APLT mediated inward
movement and absence of these analogues from the BC is evident. See text for further
details.

inward number of

analogue movement at BM labelled BC

diacyl NBD-PS +++ +

diacyl NBD-PS + suramin + ++

diacyl NBD-PE ++ ++

diether NBD-PS + +++

diacyl NBD-PC + +++

diether NBD-PC + +++

Labelling of BC by diacyl NBD-PS increased upon treatment of cells with

suramin, an inhibitor of APLT. Suramin did not influence the labelling pattern

of PC analogues and their enrichment in BC indicating that the transport

pathways of PC [94] are not affected by the inhibitor. These results strongly

suggest that low labelling of BC by diacyl NBD-aminophospholipids is related

to an APLT activity in the CM pumping aminophospholipids from the lumenal

to the cytoplasmic leaflet, and that inhibition of this APLT activity, e.g. by

suramin, leads to labelling of the BC by the analogues.

One may wonder whether the rapid inward movement of diacyl NBD-PS

and -PE by an APLT activity on the basolateral membrane may specifically
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prevent the access of the analogues to the BC. First of all, it should be empha-

sised that tight junctions prevent both lateral diffusion of analogues from the

basolateral to the apical membrane on the exoplasmic leaflet and access of the

analogues to the BC by aqueous space [94, 171, 172]. Thus, analogues have

to be delivered to the BC via intracellular pathways, or at least by accessing

the cytoplasmic leaflet of the plasma membrane. During this study bright

diffuse intracellular staining for both diacyl NBD-PS and -PE, but no labelled

endocytic vesicles were found. This shows that the major route of intracellular

uptake of these analogues is the rapid transport from the exoplasmic to the

cytoplasmic leaflet by APLT, while the endocytic pathway plays only a minor

role if at all. Once on the inner leaflet of the PM, both analogues equilibrate

rapidly with the cytoplasmic leaflet of subcellular membranes presumably by

monomer diffusion [167]. Thus, these analogues have access to the canalicu-

lar/apical membrane by lateral diffusion in the cytoplasmic leaflet of the PM

and/or by diffusion through the cytoplasm. The diffuse intracellular labelling

observed in the case of diether NBD-PS suggests that this analogue may have

access to the canalicular membrane in a similar manner.

It might be argued, that enrichment of diacyl aminophospholipid analogues

in the BC upon treatment with suramin is related solely to an inhibition of

APLT activity of the basolateral membrane but does not argue for an APLT

activity of the CM. This concern is ruled out by the following observations.

Firstly, when cells were treated with suramin after internalisation of diacyl

NBD-PS or -PE, the original low labelling of BC changed to a bright labelling

of BC indicating strongly that APLT activity of the CM was inhibited. Sec-

ondly, bright labelling of the BC by diacyl aminophospholipid analogues of

suramin treated HepG2 cells was reversed upon removal of suramin suggesting

that the restored APLT activity of the CM caused a redistribution of the ana-

logues from the lumenal to the cytoplasmic leaflet of the CM. However, the

process is slower in comparison to that found for APLT-mediated inward re-



5. DISCUSSION 87

distribution of diacyl aminophospholipid analogues in suspended HepG2 cells

(compare figure 4.4 and figure 4.11). Several reasons may account for this:

(i) A lower surface density of APLT in the canalicular membrane. (ii) The

concentration of enriched analogues in the BC may cause saturation of APLT.

(iii) Transport from the cytoplasmic to the lumenal side of the canalicular

membrane counterbalancing APLT activity. (iv) The partition behaviour of

the analogues between the lumen and the membrane of the BC may affect

the kinetics of analogue depletion in the BC. (v) The recovery of full APLT

activity after removing the inhibitor might slow down the transport of PS.

The clearance of BC labelling after removal of the inhibitor indicates that

the solubilisation of PL from the CM by bile salts is a reversal process. Most

likely PL of the exoplasmic leaflet of the CM and that solubilised in the BC

are at equilibrium. This repartition of PL to the PM might be enhanced by

the use of the short chain PL analogues.

Notably, the repartition of PC analogues, of diether NBD-PS and - in the

presence of suramin - of diacyl NBD-aminophospholipids to the BC lumen is

in agreement with previous observation that solubilisation of analogues by bile

salts is independent of their head group [65, 66]. Thus, low labelling of the

BC by diacyl aminophospholipid analogues in the absence of suramin cannot

be explained by a failure of bile components to solubilise these analogues from

the lumenal leaflet.

Direct evidence for an APLT activity in the apical membrane would require

incorporation of phospholipid analogues directly into the BC and subsequent

observation of their redistribution to the cytoplasmic side. While BC of fixed

cells have been labelled by microinjection [173], labelling of BC of living HepG2

cells by this method was not successful despite strong efforts.

In conclusion, this study provides evidence for an APLT activity in the

canalicular/apical membrane of polarised HepG2 cells. In the light of the

finding, that solubilisation of PL from the membrane by bile salts is indepen-
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dent of the PL head group, and thus, does not offer a mechanism to ensure

the specific PL composition of bile fluid (see section 1.3.2), the presence of

an APLT activity in the canalicular membrane may provide an alternative

explanation for the absence of aminophospholipids from bile. This activity

excludes aminophospholipids from the lumenal leaflet of the BC in a very

efficient manner. Remarkably, this activity is even sufficient to prevent BC

enrichment of diacyl NBD-PS which can be solubilised by bile salts much

more efficiently than endogenous PS having two long fatty acid chains [65].

It remains to be established if APLT of the canalicular membrane is encoded

by the Fic1 gene as previously suggested [78] or if this P-type ATPase car-

ries out other functions in the process of biliary lipid secretion. The physio-

logical relevance of the absence of aminophospholipids from the bile remains

unclear. It seems unlikely that partly substitution of the biliary PC by amino-

phospholipids causes such severe defects as found in patients with PFIC I. On

the other hand, it was demonstrated that aminophospholipids incorporated

into PC LUVs reduce the binding of bile salts to thess vesicles [174]. Thus,

the asymmetric distribution of aminophospholipids in the CM might facilitate

the secretion of PC by lightening the access of bile salts to this phospho-

lipid.

5.2 Influence of ABC Proteins on Biliary PL En-

richment

Several ABC transporters are localised in the CM of hepatocytes [175] (see

section 1.2.1). ABC transporters, e. g. MDR1 Pgp and MDR3 have been shown

to transport PL including PC and PE as well as ether lipids [11, 176, 177].

Recently, it was shown that MDR1 Pgp is also able to transport diacyl NBD-

PS and endogenous PS [14]. However, the transport activity of MDR1 Pgp

was much lower in comparison to that of APLT.
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To investigate the role of MDR proteins in biliary PL secretion two MDR

inhibitors were applied. PSC 833 which is a specific inhibitor of MDR1 Pgp

had no influence on the secretion of diether NBD-PC and reduced the secretion

of diacyl NBD-PC slightly. Using the non-specific MDR inhibitor Verapamil,

which was shown to block MDR1 Pgp and MDR3, a reduction of canalicular

enrichment was found for both diacyl and diether NBD-PC in agreement with

previous observations on diacyl NBD-PC [159]. Both inhibitors significantly

reduced the secretion of diacyl NBD-PS which became even more evident af-

ter inhibition of APLT. However, no significant reduction of diether NBD-PS

enrichment in the BC was found in the presence of Verapamil or PSC 833.

Addition of dithionite reduced the number of BC labelled with diacyl NBD-

PC as well as with the diether NBD analogues significantly in the presence of

Verapamil. This is in contrast to a recent report [159]. Using diacyl NBD-PC,

in the presence of Verapamil a small reduction from about 65% NBD positive

BC in the absence of dithionite to about 40 % in the presence of dithionite

was found which was not considered to be significant [159]. To test whether

this reduction is significant or not would have required more experiments. The

results presented here, clearly indicate also in the presence of Verapamil a

significant reduction of the number of fluorescent BC when dithionite is added

for each of the analogues that accumulate in the BC, similar to that found in

the absence of inhibitors.

As the number of labelled BC was unchanged by PSC 833 for the diether

PC analogue it is unlikely that MDR1 Pgp is involved in the translocation of

this analogue. Verapamil had a small but significant effect on the number of

BC labelled with diether NBD-PC indicating that probably MDR3 influences

secretion of this analogue. Diacyl NBD-PC secretion was partly inhibited by

both PSC 833 and Verapamil. However, the effects of the non-specific inhibitor

Verapamil were higher than that of the MDR1 Pgp specific inhibitor PSC 833.

Assuming that MDR1 Pgp is equally blocked by PSC 833 and Verapamil (as
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shown by inhibiting the enrichment of Rho 123 in BC), the stronger inhibition

in the case of Verapamil is due to inhibition of another protein, which is very

likely MDR3. Thus, both MDR1 Pgp and MDR3 are probably involved in the

transport of diacyl NBD-PC.

Both PSC 833 and Verapamil had about similar effects on the secretion of

diacyl NBD-PS. Thus, it is likely that MDR1 Pgp is involved in the secretion

of this analogue. However, this becomes only relevant when APLT is blocked.

MDR1 Pgp mediated translocation of PS was recently reported in human gas-

tric carcinoma cells, too [14]. None of the inhibitors had a significant influence

on the secretion of diether NBD-PS.

The conclusions on the involvement of MDR proteins in the secretion of

various lipid analogues into the BC are summarised in table 5.2. From the

inhibition pattern of secretion of various analogues into the BC one can con-

clude that MDR1 Pgp is not markedly involved in secretion or transport of

diether analogues. PC secretion is supported by MDR1 Pgp and another pro-

tein inhibited by Verapamil which probably represents MDR3. PS secretion

is only influenced by MDR1 Pgp which is in agreement with previous studies

[11]. However, each of the inhibitors had only a small effect on the secretion

of PL analogues into BC.

Table 5.2: Comparison of the involvement of MDR proteins in secretion
of various PL analogues. + influence on secretion, – no influence on secretion.

analogue MDR1 Pgp MDR3

diacyl NBD-PC + +

diether NBD-PC – +

diacyl NBD-PS + –

diether NBD-PS – –

The enrichment of PC in bile fluid was shown to be absolutely dependent

on human MDR3 or murine mdr2 [20, 21] (see section 1.2.1). However, the
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reduction of the number of BC that were labelled with diether or diacyl NBD-

PC upon addition of Verapamil was low. Two reasons could account for this:

Firstly, Verapamil might not efficiently block MDR3 and represent a better

inhibitor for MDR1 Pgp than for MDR3. At least MDR1 Pgp was sufficiently

blocked as tested by exclusion of Rho123 from the BC. Secondly, other (ATP

independent) transporters might be essentially responsible for PC translocation

across the canalicular membrane as suggested previously [97, 98, 99]. But if

other proteins are essential for transport of PC to the lumenal side of BC, what

could be the function of mdr2/MDR3 in specific lipid enrichment in bile? As

mentioned before mdr2 deficiency leads to a complete absence of PL from bile

in mice [20].

An alternative function of mdr2/MDR3 would be that the ABC transporter

acts as a “liftase” rather than as a membrane transporter making PC accessi-

ble for solubilisation by canalicular bile salts. A similar function in exposing

cholesterol was recently suggested for the ABC transporters ABCG5/ABCG8

[102] (see section 1.3.3). The activity as an ATP-dependent “liftase” would

explain why the absence of mdr2/MDR3 has a dramatic effect on biliary en-

richment of endogenous lipids but not on lipid analogues. The solubilisation of

NBD-labelled PL by bile salts should be more efficient than that of endogenous

lipids due to their lower hydrophobicity. A “liftase” activity might therefore be

necessary to solubilise endogenous PL but not their NBD labelled analogues

which were used here.

Previous studies identified MDR3 mediated transbilayer movement of lipid

analogues in MDR3 transfected cells. It might be that mdr2/MDR3 possesses

both a “liftase” and a flippase activity. When overexpressed the flippase activity

might become relevant which may not be the case when other ATP independent

transporters facilitate transbilayer movement with a faster kinetics, as it is

probably the case in hepatocytes.

A MDR1 Pgp mediated transbilayer movement was reported for a variety
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of lipid analogues including PS [11, 14]. MDR1 Pgp mediated flipping might

be the reason for enrichment of PS in the BC after blocking APLT, as PS is

generally found at the cytoplasmic leaflet of the PM. It can not be stated at

this point whether MDR1 Pgp might act as a “liftase”, too.

5.3 Interplay of APLT and MDR Transporters

An APLT mediated transport of diacyl NBD-PS and NBD-PE analogues from

the lumenal to the cytoplasmic leaflet in HepG2 cells was demonstrated. On

the other hand MDR1 Pgp is involved in the outward transport of diacyl amino-

phospholipids as shown for diacyl NBD-PS here. Thus, two ATP dependent

transport proteins operate in opposite direction raising the question if APLT

activity is sufficient to compensate for MDR1 Pgp mediated outward move-

ment of PS. This problem shall be addressed by a quantitative consideration.

Evaluating the inward movement of PL analogues at the basolateral mem-

brane (see section 4.2.1) of suspended cells, cells were labelled with about

300 pmole of diacyl analogue per million cells. Assuming that about 80% of

the analogue incorporated into the membrane during the labelling procedure

cells were labelled with about 250 pmole of the respective analogue per one mil-

lion of cells. As the PL contents of HepG2 cells is about 64 nmole per million

cells [63], and the plasma membrane of hepatocytes resembles about 8 % of cel-

lular membrane surface [178] the amount of internalised analogue corresponds

to about 5 % of PM phospholipids. In the erythrocyte membrane APLT ac-

tivity was shown to be saturated by such concentrations of PS analogues [49].

Assuming a similar saturation behaviour of APLT in HepG2 cells this would

mean that the initial velocity of PS translocation corresponds to the maximum

velocity of APLT mediated transport. However, APLT activity in HepG2 cells

was found to be higher than in erythrocytes [63], so using the initial veloc-

ity of APLT mediated inward movement might somewhat underestimate the
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maximum velocity of APLT mediated transport.

The initial velocity of translocation of various analogues was recalculated

from the inward movement which was fitted to a monoexponential function.

Knowing the amount of PL analogues in the PM the initial velocity of APLT

mediated transport was estimated as 22 pmole per minute and million cells and

2.3 pmole per minute and million cells for diacyl NBD-PS and diacyl NBD-PE,

respectively. This is in agreement with an about 10 fold lower affinity of the

APLT for PE compared to PS [49]. After inhibition of the APLT with suramin

the initial velocity of inward transport of diacyl NBD-PS decreased to about

3.6 pmole per minute and million cells. For comparison, the inward movement

of diacyl NBD-PC was about 0.1 pmole per minute and million cells.

As discussed above (section 5.1) the inward movement of PS in the api-

cal membrane after removal of the APLT inhibitor suramin was found to be

somewhat lower than that in the basolateral membrane. However it was in the

same order of magnitude and thus one can be confident that the data obtained

at the basolateral membrane can also provide a good estimation of the APLT

activity in the apical membrane.

The MDR3 mediated PC secretion in intact liver is about 50 pmole per

minute and million cells (R. P. J. Oude Elferink, personal communication).

Thus, the MDR3 mediated PC secretion is about 500 times higher than the

spontaneous inward movement of PC.

The kinetics of MDR1 Pgp mediated transport was not thoroughly in-

vestigated in general and has not been studied at the apical membrane of

HepG2 cells. Characterisation of MDR1 Pgp mediated transport of NBD la-

belled phospholipid analogues led to controversial results using different ap-

proaches. While during one study no MDR1 Pgp mediated translocations of

diacyl NBD-PC could be detected [141], others find that MDR1 Pgp is as effi-

cient as MDR3 in translocating diacyl NBD-PC [11]. According to the kinetics

of outward movement of diacyl NBD-PS in a MDR1 Pgp overexpressing gastric
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carcinoma cell line published recently [14] the initial velocity of MDR1 Pgp

mediated movement is about 1.7% of available lipid analogues per minute.

Applying this kinetics to the HepG2 system described above would mean that

the MDR1 Pgp mediated transport of diacyl NBD-PS is about 4 pmole per

minute and million cells. Certainly, this can only be a rough estimation. Of

course, the MDR1 Pgp mediated outward movement depends critically on the

concentration of this protein in the membrane. It is, however, likely that the

activity of MDR3 in lipid transport is higher than that of MDR1 Pgp as the

latter is a very unspecific transporter which mainly serves in detoxification of

the cell.

As has been pointed out recently [14], it is very likely that APLT transport

efficiency is much higher than that of MDR1 Pgp at least for PS. Furthermore,

it is not reasonable that two ATP consuming processes operate in opposite

directions on the same substrate, thus MDR1 Pgp might mainly serve in drug

elimination and lipid translocation may represent rather a side effect.

As APLT affinity for PE is lower than that for PS, MDR1 Pgp mediated

transport may significantly account for its transbilayer distribution, and thus,

higher exposure of PE to the lumenal side of the CM compared to PS. This

might explain that PE is found to minor levels in bile [89]. It could also

account for the higher amounts of diacyl NBD-PE compared to diacyl NBD-

PS located in the BC of HepG2 cells described in this study. Also, the APLT

inhibitor suramin lowered the initial velocity of diacyl NBD-PS transport to

a level at which MDR1 Pgp mediated outward movement might show similar

kinetics. In fact, inhibition of HepG2 cells with suramin led to an enrichment of

diacyl NBD-PS in about 50% of the BC compared to about 80–90 % labelled

BC by analogues which are no substrates of APLT. This could be due to a

compensation of APLT mediated inward movement, and MDR1 Pgp mediated

outward movement if both transporters exhibit similar transport kinetics.
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5.4 Enrichment of Sphingolipid Analogues in the

BC

The exoplasmic leaflet of the PM is especially enriched in PC and sphingo-

lipids (see section 1.2.2). However, PC contributes to about 95 % of biliary PL

and only trace amounts of SM are found in bile. One hypothesis to explain

this phenomenon is the preferential localisation of sphingolipids in detergent

resistant rafts [6] which are not solubilised by lumenal bile salts and thus

prevent a complete solubilisation of the apical membrane [110].

Confirming earlier studies [149, 94, 160] it could be demonstrated here that

NBD-labelled (glycol)sphingolipids enrich in the BC of HepG2 cells. This is in

contrast to the absence of sphingolipids from bile. Even at 4 ℃, where vesicular

trafficking is inhibited, NBD-labelled sphingolipids became enriched in the BC.

Thus, NBD labelled sphingolipid analogues are able to reach the BC either

by diffusion from the basolateral membrane on the cytoplasmic leaflet or by

monomer exchange through the cytoplasm. This would, however, result in an

enrichment of these analogues at the cytoplasmic leaflet of the CM preventing

a secretion into the BC.

One can assume that NBD labelled sphingolipids do not represent endoge-

nous SM properly as they might be excluded from sphingolipid-cholesterol rich

rafts due to their lower hydrophobicity. This lower hydrophobicity could also

facilitate a non-vesicular movement of these analogues to the BC which might

not be the case for endogenous lipids.

A detergent soluble SM pool was identified at the cytoplasmic leaflet of the

PM of mammalian cells [179, 180] which is most likely involved in signalling

processes. NBD labelled sphingolipid analogues are more likely to behave like

those signalling lipids due to their reduced hydrophobicity. Also the trace

amounts of SM in the bile fluid which are mainly enriched in palmitic acid are

more hydrophilic than the sphingolipids of the CM [181].



5. DISCUSSION 96

Sphingolipids carrying a NBD marker were shown to be transported by var-

ious ABC transporters [11, 182, 29]. Only NBD labelled sphingolipids but not

radiolabelled short chain analogues were identified as substrates of MRP1 [29].

This again indicates that NBD analogues might not be suitable for representing

the behaviour of endogenous sphingolipids.

Transport by MDR1 Pgp or MRP1 can explain the enrichment of NBD

labelled lipid analogues in the lumen of the BC assuming an otherwise prefer-

ential cytoplasmic orientation of these analogues.

Taken together these data question the suitability of NBD labelled ana-

logues to represent the behaviour of endogenous sphingolipids which are very

hydrophobic and preferentially located in sphingolipid-cholesterol rafts. It is

unlikely that endogenous sphingolipids are enriched in the BC like their NBD-

labelled analogues. However, the absence of sphingolipids from bile could alter-

natively be explained by the presence of a canalicular sphingomyelinase which

might rapidly degrade solubilised sphingolipids. Indeed, an alkaline sphin-

gomyelinase was identified in human and guinea pig bile [183, 184], but was

absent in bile of rat, pig, sheep, and cow [184]. The activity of this enzyme

was shown to be dependent on bile salts [185]. However its function is the

degradation of dietary sphingomyelin [184] rather then degradation of secreted

sphingolipids from the canalicular membrane.

5.5 Fluorescence Life Times of Lipid Analogues

Fluorescence life times of lipid analogues were measured using TCSPC. As

expected, the fluorescence decay of lipid analogues in organic solvents was

monoexponential, as all fluorescent analogues experience the same physico-

chemical environment. Fluorescence decay curves of NBD labelled lipid ana-

logues in aqueous solution were bi- or triexponential indicating that more than

one species of analogues was present, differing in their molecular organisation.
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In most cases a component with a short fluorescence life time of 0.05–0.3 ns

appeared in addition to other life times. The contribution of this component

was quite low, it never exceeded 10 % of the total fluorescence intensity of a

sample. It could be excluded that this component was due to Rayleigh scat-

tering of vesicles or to Raman scattering of water by measuring a solution of

unlabelled vesicles or pure buffer. One can explain the short life time of dia-

cyl C6-NBD-PC as representing molecules that are organised at self-quenching

conditions, i. e. micelles of the analogue [129, 161]. This conclusion is justi-

fied by the following observation: the contribution of the short time compo-

nent to the total decay curves was lowest when diacyl C6-NBD-PC was below

its CMC (40 nanomolar) compared to measurements using diacyl C6-NBD-PC

well above its CMC (i. e. 1–10micromolar). As the quantum yield of the self-

quenched species of diacyl C6-NBD-PC is very low, the contribution of this

time to the decay curve is minimal. Nevertheless, it is likely that most of the

molecules are organised into micelles in aqueous solution above the CMC of

diacyl C6-NBD-PC.

5.5.1 Incorporation of Lipid Analogues into Bile Salt Mi-

celles

As discussed above, diacyl C6-NBD-PC forms micelles in aqueous solution in

which NBD fluorescence is self-quenched [129, 161]. Upon addition of bile salts

the fluorescence intensity increased as mixed micelles between the analogues

and bile salts were formed [66]. This is due to spatial separation of diacyl

C6-NBD-PC molecules by bile salts leading to a dequenching.

The fluorescence life time of diacyl C6-NBD-PC monomers in aqueous so-

lution was much shorter then in organic solvents or when incorporated into

a membrane. This may be caused by the reduced hydrophobicity of the sol-

vent as well as vibrational relaxation due to hydrogen bounding between the
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fluorophore and the solvent [186]. The fluorescence life time of about 1 ns pre-

sented here is very similar to that of other NBD labelled PL analogues or fatty

acids found in previous studies [187, 186].

When adding bile salts to a suspension of diacyl C6-NBD-PC in aqueous

solution a third fluorescence life time appeared which was longer than that of

the analogue in aqueous solution. The fluorescence life time and the contri-

bution of this third component to the total intensity increased with increasing

bile salt concentration both reaching a maximum which seems to depend on

bile salt hydrophobicity and CMC. The concentration dependency of this pro-

cess was very similar to that found by a dequenching assay for TC, GC, and

TDC [66].

As demonstrated before [66] the fluorescence intensity increased by adding

bile salts to diacyl C6-NBD-PC in aqueous solution due to dequenching. Also,

the quantum yield of monomer diacyl C6-NBD-PC in aqueous solution is lower

than that of mixed micelles with bile salts or when incorporated into a mem-

brane [187]. For this reason, the fraction of diacyl C6-NBD-PC which is not

incorporated into mixed micelles is underestimated by the evaluation procedure

used here.

Also the fluorescence life time which corresponds to diacyl C6-NBD-PC

monomers (see above) not incorporated into mixed micelles increased slightly

with increasing bile salt concentration. The reason for this behaviour might

be a loose association of diacyl C6-NBD-PC with bile salt molecules reduc-

ing the number of hydrogen bound to the solvent or increasing the solvent

hydrophobicity.

Surprisingly, also addition of DHC, which is known as non-micelle form-

ing bile salt [162], generated a species of diacyl C6-NBD-PC analogues with a

longer fluorescence life time. The contribution of this species to the total fluo-

rescence intensity was lower than for the other investigated bile salt, however.

Probably this bile salt is able to intercalate into micelles of diacyl C6-NBD-PC
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or form submicellar aggregates with the analogues [161], and thus stabilises

the S1-state of lipid analogues.

As demonstrated in table 4.3, the fluorescence life time is not solely de-

pendent on the hydrophobicity of the utilised bile salt. More hydrophobic

bile salts generally yield longer fluorescence life times. But probably also the

size of the micelles influences the fluorescence life time of the incorporated

lipid analogues. Primary bile salt micelles are formed by 2-9 molecules. The

aggregation number is dependent on the chemical structure of the bile salt

and is higher for TDC than for TC [188]. Secondary micelles are aggregates

of primary bile salts and are only found for dihydroxy bile salts [162]. The

concentration of bile salts, needed to reach highest life times and maximum

contribution of the longer life time to the total intensity, is also dependent on

the hydrophobicity of the bile salt and is strongly reduced for TDC and TLC

compared to TC. This concentration might be near or above the CMC of the

respective bile salt. However, different methods to measure the CMC of bile

salts yield very different results (range of 0.5–20 mM) [188], therefore an exact

value of the respective CMC is not available. Most investigation revealed a

lower CMC for TDC compared to TC, however [188, 189].

Investigating the interaction of the fluorescent bile salt UDC-NBD with

the bile salts TC and TDC resulted in a similar picture as found for diacyl

C6-NBD-PC. In aqueous solution UDC-NBD exhibits a fluorescence life time

of about 2 ns. Also, a species with a shorter fluorescence life time was found

which might correspond to aggregates of UDC-NBD. The CMC of endogenous

UDC was determined to be in the range of 1–6 mM depending on the method

used [190]. NBD labelled UDC might exhibit a lower CMC. Thus, one can not

predict if the analogue in the concentration range used here (10–20 µM) forms

micelles. However, also submicellar aggregates of bile salts have been reported

[161], making an interaction between UDC-NBD analogues at this concentra-

tion reasonable. Self-quenching of UDC-NBD is much lower as found for diacyl
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C6-NBD-PC as judged by the quantum yield of the substances (not shown).

Adding endogenous bile salts to this solution results in an additional fluores-

cent species with a longer fluorescence life time which probably corresponds to

mixed micelles between UDC-NBD and TC or TDC.

The fluorescence decay curve of the bile salt CGamF which is labelled with

fluorescein was monoexponential with a live time of about 4 ns. Adding TC

to this solution only slightly increased the fluorescence life time of CGamF

which was still fitted by a single exponential function to a value very close

to that of CGamF in ethanol. The effects of bile salts on the fluorescein

labelled phospholipid N -Fl-PE were also less pronounced than on diacyl C6-

NBD-PC. These data indicate that the fluorescein fluorophore is less sensitive

to environmental changes probably due to the lack of hydrogen bounds between

the fluorophore and the solvent.

5.5.2 Release of Lipid Analogues from LUVs by Bile Salts

Incorporating diacyl C6-NBD-PC into LUVs of different composition yielded

three different life times of the fluorophore, which derive from different species

of diacyl C6-NBD-PC. Two species exhibited a life time of about 0.1–0.3 ns and

1 ns as was already found for the analogue in aqueous solution. These life times

represent analogues organised as self-quenched micelles or monomeric diacyl

C6-NBD-PC, respectively. The third fluorescence life time which contributed

to most of the total intensity originates from diacyl C6-NBD-PC incorporated

into the membrane and was dependent on the lipid composition of the LUVs.

For LUVs composed of the relatively hydrophilic POPC this live time was

about 5.9 ns, when LUVs where made of EYPC the life time increased to 7.2 ns.

Diacyl C6-NBD-PC in LUVs composed of EYSM/cholesterol displayed a life

time which was even longer than that of the analogue in chloroform indicating

that this vesicular environment is very hydrophobic and rigid. The fluorescence

life time of diacyl C6-NBD-PC in LUVs of EYPC was again similar to that
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found for a head group labelled NBD-PL analogue in EYPC liposomes in a

previous study [187]. This is consistent with the localisation of the NBD moiety

of diacyl C6-NBD-PC close to the membrane surface [191]. A dependency of

the fluorescence life time of NBD labelled PL on the molar concentration of

the analogues in vesicles was found before [187], which is probably due to

quenching. At the concentration used here (analogue concentration 1 mol% of

endogenous lipids), the fluorescence life time of the analogue was almost at

maximum [187].

When UDC-NBD was incorporated into LUVs of EYPC, the fluorescence

decay curve of this solution indicated the presence of two or three species with

different supramolecular organisation, too. Concluding from the behaviour of

UDC-NBD in aqueous solution, the first species with a live time of about 1.7 ns

should represent UDC-NBD not associated with vesicle. In some cases also a

very short life time of 0.2–0.5 ns was found probably representing UDC-NBD

aggregates. The part of analogue that was incorporated into LUVs displayed a

fluorescence life time of about 6.5 ns. The contribution of this longer life time

to the total fluorescence intensity was only 65 % compared to about 80–90 %

when diacyl C6-NBD-PC was incorporated into LUVs. These differences most

likely represent the different partitions of the analogues between the aqueous

phase and the membrane.

Addition of bile salts to the liposomes containing NBD labelled lipid ana-

logues resulted in a decrease of the longer fluorescence life time at low con-

centrations of the bile salt. At higher bile salt concentrations the fluorescence

life time increased again to reach a value which was similar to that of mixed

bile salt analogue micelles at the same bile salt concentration (see above). The

contribution of the longer life time decreased upon addition of bile salts. In

EYPC-LUVs containing UDC-NBD incubated with TC the contribution of the

longer life time decreased dramatically upon addition of low amounts of bile

salt and increased again at higher concentrations. This effect was also found
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for diacyl C6-NBD-PC in LUVs composed of EYSM/cholesterol upon addition

of both TC or TDC, although less pronounced. A possible explanation of this

phenomenon might be that low bile salt concentrations loosen the membrane

integrity and thus lower the thermodynamical barrier for exchange of the ana-

logues to the aqueous phase [192]. This might force a higher percentage of the

relatively hydrophilic analogues into the aqueous phase. At increasing bile salt

concentrations the vesicles might become completely solubilised and the diacyl

C6-NBD-PC molecules are integrated into mixed micelles as discussed above.

Remarkably, at high bile salt concentrations the fluorescence life times, and

their contributions to total fluorescence intensity are very similar for samples

originally containing the lipid analogues (diacyl C6-NBD-PC or UDC-NBD)

in LUVs or in aqueous solution. The final organisation of analogues that were

incorporated into LUVs after addition of large amounts of bile salts seems to be

similar to that of analogues with bile salts in aqueous solution. These findings

indicates that LUVs become completely solubilised at high bile salt concentra-

tions or that the lipid analogue is completely extracted from the vesicle. As

bile salt concentration in the BC is high [193] it is likely that lipids in the BC

are organised into an environment that is mainly determined by bile salts, i. e.

mixed micelles of bile salts with PL.

The shorter live time of the analogues corresponding to the non-membrane

bound species was constant upon addition of bile salts in the case of UDC-

NBD and increased slightly for diacyl C6-NBD-PC probably due to a loose

association of this analogue with bile salt micelles (see above).

Surprisingly, the bile salts TC and TDC had similar or even higher effects on

the solubilisation of diacyl C6-NBD-PC from LUVs composed of EYSM/cholesterol

compared to LUVs of POPC. One would expect a rapid solubilisation of POPC

LUVs, as they have a similar composition as biliary PL. The composition of

liposomes from EYSM/cholesterol should, however, rather represent the be-

haviour of detergent resistant rafts. This controversy might be explained by
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the fact that the high affinity of cholesterol to SM is lost in the presence of bile

salts [194], allowing a cholesterol secretion into bile. Diacyl C6-NBD-PC might

alternatively be easily extracted from EYSM/cholesterol LUVs leaving the li-

posome intact. It shall be emphasised that by the technique of fluorescence life

time analysis one can only receive clear predictions for the environment of the

investigated fluorescent molecule, which was in any case a short chain phos-

phatidylcholine analogue. Solubilisation of short chain lipid analogues from a

membrane is much easier than that of endogenous lipids due to the lower hy-

drophobicity of the analogue. Statements about the membrane of endogenous

lipids from which the analogue is solubilised can only be assumptions.

The data presented here also point out the limits of the fluorescence life time

technique in investigating organisation of lipid analogues. As the fluorescence

life time of diacyl C6-NBD-PC in TC micelles and in LUVs of POPC is very

similar, one would not be able to discriminate these species in vivo. On the

other hand biliary PC does not solely comprise POPC and different bile salts

exist in the BC. It is thus likely that one can distinguish between vesicles

and micelles in the BC. However, for proper interpretation of future in vivo

experiments probably more cuvette experiments are necessary using bile salt

and PL mixtures.

5.5.3 Characterisation of FRET between NBD and Rho-

damine

Fluorescence resonance energy transfer between the NBD-fluorophore attached

to lipids and N -Rh-PE was characterised by the decrease of the fluorescence

life time of the donor. To ensure that FRET pairs were in close neighbourhood

both lipid analogues were incorporated into liposomes composed of EYPC. In

the absence of the acceptor two distinct fluorescence life times of the donor were

identified corresponding to free and membrane bound analogues (see above).
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In the presence of the acceptor the fluorescence decay at the donor wavelength

became triexponential. The distribution of the life times in the presence of

the acceptor indicates that also the analogue species with the shorter life time,

i. e. the analogues in aqueous dispersion were able to perform FRET indicating

that they are somehow associated with the membrane, too.

The FRET efficiency and thus the lowering of the fluorescence life time

of the donor is dependent on the distance between donor and acceptor. The

distances between the various FRET-pairs are distributed statistically. A tri-

exponential model functions can therefore only estimate for the mean distances

between FRET pairs and will not fit the experimental data appropriate. The

distance between donor and acceptor in the liposomal system investigated here

is estimated to about 3 nm assuming an area of 96 Å2 per PL molecule and 3 %

acceptor concentration. This distance is well below the Förster radius as the

donor fluorescence life time decreases by a factor greater than two.

5.6 Conclusions

The specificity of biliary PL composition is strikingly in that mainly PC, car-

rying palmitic acid in sn1 -position and oleic, linoleic, or arachidic acid in sn2 -

position [88], is found in bile. This study revealed physiological mechanisms

that are responsible for this specificity (summarised in figure 5.1). It could be

demonstrated that an APLT activity in the CM of hepatocytes is responsible

for the almost complete absence of aminophospholipids from bile.

The involvement of the ABC transporters MDR1 Pgp and MDR3 in biliary

phospholipid secretion was studied applying different MDR inhibitors. The

data presented here question the previously reported function of mdr2/MDR3

as a lipid flippase [141, 20]. It seems more likely that the MDR proteins

function as a “liftase” making endogenous PC accessible for secretion by bile

salts that act as detergents.
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Figure 5.1: Mechanisms of to achieve biliary lipid specificity. A canalic-
ular APLT is pumping aminophospholipids PS and PE to the cytoplasmic leaflet
of the CM preventing their solubilisation by lumenal bile salts. MDR proteins
(especially mdr2/MDR3) make PC accessible to solubilisation by bile salts. The
physico-chemical way of biliary lipid secretion (i. e. vesicular or micellar) is not yet
understood. This thesis introduces a method to investigate molecular mechanisms of
biliary secretion by the use of the fluorescence life times of lipid analogues. Applying
this method on a microscopic level to hepatocytes with BC enriched in fluorescent
lipid analogues could reveal underlying physico-chemical processes.



5. DISCUSSION 106

Enrichment of NBD-labelled (glyco)sphingolipids could be demonstrated

in the BC of HepG2 cells. Aware of the absence of sphingolipids from bile,

the suitability of NBD-labelled sphingolipid analogues is questioned especially

as they turn out to be more hydrophilic then the endogenous sphingolipids.

The strong hydrophobicity of the latter is the reason for their preferential

localisation in detergent insoluble rafts [6].

Although the identification of lipid transport processes across the CM re-

veals mechanisms for specific enrichment of lipids in bile, they are not able

to address the supramolecular organisation of lipids in the BC. For this rea-

son, the interaction of bile salts with lipid analogues has been studied by their

fluorescence life times. These investigations on lipid analogues in a panel of

model environments provide the basis for future studies in an in vivo sys-

tem. Investigating fluorescence life times of lipid analogues enriched in the BC

on a microscopic scale will reveal the molecular organisation of lipids in the

early canalicular bile fluid. To interpret future data from an in vivo system,

knowledge about the behaviour of lipid analogues in certain model system, as

presented here, is crucial. For this reason FRET-pairs were characterised in

this study, too. Measuring FRET between different lipid analogues in vivo

allows to predict about distances between the analogues.

Previous investigations on the mechanism of biliary PL secretion were

mainly performed using rats or mice. The hydrophobicity of their bile salts is

much lower than that of humans. Furthermore the cholesterol content of hu-

man bile is much higher than that of rodents (see table 1.1) [85]. It is thus risky

to conclude from the results obtained with animal material on the behaviour of

human cells, as has been done sometimes. Therefore, when concluding about

mechanisms of lipid secretion one has to be careful about the investigated sys-

tem. The use of the fluorescence life time techniques might provide a method

for investigating different model systems (as human and animal cell lines) and

compare them.
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5.7 Future Prospects

This study provided evidence that an APLT located in the apical membrane

of hepatocytes is sufficient to prevent the enrichment of aminophospholipids

in bile by maintaining membrane asymmetry. It remains to be established

how PC is specifically extracted from the exoplasmic leaflet of the BC from a

mixture of PL that comprise mainly PC and sphingolipids.

The role of sphingolipids and their preferential localisation in detergent re-

sistant rafts has been discussed in section 5.4. As NBD labelled SM enriches in

the BC of HepG2 cells one could prove a possible canalicular sphingomyelinase

applying fluorescence life time studies on NBD-SM and its degradation prod-

ucts. Measurement of the fluorescence life time of NBD-SM analogues and its

degradation products in vitro and comparison with the fluorescence life time

of NBD-SM labelled BC in vivo would then reveal if this analogue is degraded.

The role of the Fic1 protein which was supposed to represent the canalicular

APLT remains to be established. The expression of Fic1 in HepG2 cells could

be blocked using iRNA. Investigations whether this blocking shows similar

effects on the accumulation of aminophospholipid analogues in the BC as de-

scribed for suramin in this thesis would clarify the role of Fic1 in amino-

phospholipid translocation.

The fluorescence life time measurements of lipid analogues in different envi-

ronments provide a basis for in vivo measurements of fluorescence life times of

lipid analogues in the BC. Comparing the fluorescence life time of fluorescent

bile salts and PLs measured on the microscopic level in the BC with that of

the same analogues in model systems as used here, the physico-chemical envi-

ronment of lipids in the BC can be evaluated. Furthermore, FRET between

different PL analogues or bile salt and PL analogues in the BC can be utilised

to analyse which lipids are in close neighbourhood in the BC.

The measurement of fluorescence anisotropy of lipid analogues in different
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environments (i. e. micelles and vesicles) in cuvette experiments and its com-

parison to the anisotropy of the same analogue in the BC would provide an

even better tool to elucidate the canalicular lipid organisation. So far, fluo-

rescence anisotropy was not applied to the investigate lipid analogues because

of their photo instability. A setup which allows quasi simultaneous record-

ing of both polarisation states (parallel and perpendicular to excitation) of

the fluorescence light could overcome this problem. This setup is presently in

preparation.

The role of cholesterol in the physico-chemical composition of the canalic-

ular lipids should be further investigated. The fluorescent cholesterol analogue

DHE is a widely used cholesterol analogue as its structure is very similar to that

of endogenous cholesterol. The only modifications to cholesterol are three addi-

tional double bounds making it fluorescent, and a methyl group. This natural

yeast sterol is very similar to cholesterol regarding its physico-chemical be-

haviour in model membranes [195, 196, 197]. Even though differences between

cholesterol and DHE in the ability to be extracted by cyclodextrins were re-

ported [198], DHE remains one of the best fluorescent cholesterol analogues as

it does not carry a bulky reporter group. The accumulation of DHE in the BC

of HepG2 cells has already been investigated [101]. FRET between DHE and

PL carrying a dansyl group has been reported [199, 200] and might be used

to measure interaction of DHE with PL in the BC. It has to be elucidated

whether DHE is able to perform FRET with other fluorescent lipid analogues.

Furthermore measurements of the fluorescence life time of DHE in cuvette ex-

periments (as performed for other fluorescent lipid analogues during this study)

and in vivo could enable a description the complex interplay of different lipids

in bile. It is evident that this interplay of lipids is altered in hepatobiliary

disease like gallstone formation [201, 202, 203]. With the measurement of flu-

orescence life time of lipid analogues in vivo and its comparison to that of

the well defined system in vitro, a method to elucidate the changes in bile
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composition in affected individuals can be established. The knowledge of the

changes in the mechanism of biliary lipid secretion in healthy and unhealthy

individuals might lead to a therapy of hepatobiliary diseases.
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