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Abstract

Protein interactions are essential to many aspects of cellular function. On the one
hand, they reflect direct functional relationships, i.e., if two proteins interact with
each other they are often involved in the same biological process or pathway. On
the other hand, alterations in protein interactions, e.g., caused by mutations in their
interfaces, perturb natural cellular processes and contribute to diseases. In this thesis
we analyze both the functional and the pathological aspect of protein interactions
to infer novel protein function for uncharacterized proteins and to associate yet
uncharacterized proteins with disease phenotypes, respectively.
The first part of this thesis addresses the functional characterization of proteins.

Knowing a protein’s function is fundamental to understand the molecular and bio-
chemical processes that sustain health or cause disease. Different experimental and
computational approaches have been developed in the past to investigate the ba-
sic characteristics of proteins systematically. Yet, a substantial fraction of proteins
remains uncharacterized, particularly in human. In this work, we present a novel
approach to predict protein function from protein interaction networks of multiple
species. The key to our method is to study proteins within modules defined by evo-
lutionary conserved processes, combining comparative cross-species genomics with
functional linkage in interaction networks. We show that integrating different evi-
dence of functional similarity allows to infer novel functions with high precision and
a very good coverage. For instance, when considering the combination of human,
fly and yeast, we achieve a precision of 84% to 87%. Overall, our method generates
novel functional knowledge for every species included in the analysis at varying, yet
always high levels of precision. For human we predict 27,100 novel annotations with
an estimated precision of 83%.
In the second part, we investigate the role of proteins in human diseases as for

many genetic diseases it is not known which gene products are involved in their
pathogenesis. Elucidating the underlying pathological mechanisms is important for
understanding the onset of diseases and for developing diagnostic and therapeutic
approaches. We introduce a network-based framework for identifying yet unchar-
acterized disease-related gene products by combining protein interaction data and
protein function with network centrality analysis. Given a disease, we first extract
all genes associated with this disease. We then compile a disease-specific network
by integrating directly and indirectly linked gene products using protein interac-
tion and functional information. Proteins in this network are ranked based on their
network centrality. We demonstrate that using indirect interactions significantly
improves disease gene identification, i.e., the cross-validation recovery rate increases
by up to 20%. Predicted functions, in turn, enhance the ranking of disease-relevant
proteins. However, the functional enrichment integrates many global “hub” proteins
which feature a high centrality but are mostly unspecific for a disease. To adjust
the ranking for a bias toward hub proteins in disease networks, we introduce a novel
normalization procedure which decreases the fraction of highly ranked hub proteins
(by 23%) while increasing the fraction highly ranked disease proteins at the same
time (by 22%). Finally, we use our framework to detect novel surface membrane fac-
tors that are involved in a cascade of events contributing to HIV-1 infection. Their
involvement includes serving as co-receptors for cell entry, mediating trans-infection
or activating immune cells to inducing viral production from latently infected cells.
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Zusammenfassung

Proteininteraktionen sind entscheidend für verschiedene Aspekte zellulärer Funk-
tion. Interaktionen reflektieren einerseits direkte funktionale Beziehungen zwischen
Proteinen, anderseits tragen Veränderungen in spezifischen Interaktionsmustern zur
Entstehung von Krankheiten bei. In dieser Arbeit werden sowohl die funktionalen
als auch die pathologischen Aspekte von Proteininteraktionen analysiert, um Funk-
tionen für bisher nicht charakterisierte Proteine vorherzusagen und Proteine mit
Krankheitsphänotypen zu assoziieren.
Der erste Teil der Arbeit befasst sich mit der funktionalen Charakterisierung von

Proteinen. Die Funktionsweise von Proteinen ist von grundlegender Bedeutung, um
die molekularen und biochemischen Prozesse, die Gesundheit oder Krankheiten ver-
ursachen, zu verstehen. Verschiedene experimentelle und computergestützte Metho-
den wurden in den letzten Jahren entwickelt, die die funktionalen Eigenschaften von
Proteinen untersuchen. Dennoch bleibt ein wesentlicher Teil der Proteine, insbeson-
dere menschliche, uncharakterisiert. In dieser Arbeit wird eine neue Methode zur
Vorhersage von Proteinfunktionen vorgestellt, die auf Proteininteraktionsnetzwer-
ken verschiedener Spezies beruht. Dieser Ansatz analysiert Proteine innerhalb von
funktionalen Modulen, die über evolutionär konservierte Prozesse definiert werden.
In konservierten funktionalen Modulen werden neue Proteinfunktionen gemeinsam
über Orthologie-Beziehungen und Interaktionspartner vorhergesagt. Die Evaluie-
rung dieser Methode zeigt, dass die Integration verschiedener funktionaler Ähnlich-
keiten die Vorhersage von neuen Proteinfunktionen mit hoher Genauigkeit und sehr
guter Abdeckung ermöglicht. Der Vergleich der Interaktionsnetzwerke von Mensch,
Fliege und Hefe resultiert beispielsweise in einer Vorhersagegenauigkeit von 84% bis
87%. Insgesamt generiert unsere Methode neue funktionale Annotationen für ver-
schiedene Spezies mit variierender aber hoher Präzision. Für den Menschen werden
27.100 neue Annotationen mit einer geschätzten Genauigkeit von 83% vorhergesagt.
Im zweiten Teil der Arbeit wird der Einfluss von Proteinen auf die Pathogenese

menschlicher Krankheiten untersucht. Die Aufklärung der zugrunde liegenden Me-
chanismen ist wichtig, um die Entstehung von Krankheiten zu verstehen und dia-
gnostische und therapeutische Ansätze zu entwickeln. Wir stellen einen netzwerkba-
sierten Ansatz für die Identifizierung krankheitsrelevanter Genprodukte vor, der auf
der Kombination von Proteininteraktionsdaten, Proteinfunktionen und Netzwerk-
Zentralitätsanalyse basiert. Gegeben eine Krankheit, werden zunächst alle Gene
extrahiert, die bereits mit dieser Krankheit assoziiert sind. Anschließend werden
krankheitsspezifische Netzwerke durch die Integration von direkt und indirekt in-
teragierender Genprodukte und funktionalen Informationen generiert. Proteine in
diesen Netzwerken werden dann anhand ihrer Zentralität sortiert. Es wird gezeigt,
dass das Einbeziehen indirekter Interaktionen die Identifizierung von Krankheits-
genen deutlich (um bis zu 20%) verbessert. Die Verwendung von vorhergesagten
Proteinfunktionen wiederum verbessert das Ranking von krankheitsrelevanten Pro-
teinen. So konstruierte Netzwerke enthalten häufig globale Hub-Proteine, die eine
hohe Zentralität aufweisen, jedoch unspezifisch für eine Krankheit sind. Aus diesem
Grund wurde eine Methode zur Normalisierung des Rankings entwickelt, mit Hilfe
derer der Anteil hoch gerankter Hub-Proteine um 23% reduziert wird und gleich-
zeitig der Anteil hoch gerankter Krankheitsproteine um 22% erhöht wird. Unsere
Methode verwenden wir außerdem, um bisher unbekannte rezeptor-ähnliche Fakto-
ren zu identifizieren, die maßgeblich an HIV-1 Infektion beteiligt sind.
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1 Introduction

The past decade has seen a revolution in genomic sequencing technologies, in particular,
so-called next-generation sequencing delivers fast and accurate data about genome and
more recently also about metagenomic projects (Schloss and Handelsman, 2005; Metzker,
2010). As of March 2011, 1609 bacterial, 85 archaeal, and 299 eukaryotic genomes have
been completely sequenced1, while several other genomes are just about to be finished.
Transferring this wealth of data into biological knowledge is a fundamental challenge in
the post-genomic era.
The completion of a new genome is commonly followed by a process known as genome

annotation to predict, among others, its protein coding regions and to associate biological
information to them (Stein, 2001). Elucidating the functional role of each individual
gene product in development, physiology, and pathology is one of the major challenges
in molecular biology and bioinformatics. It is fundamental to understand biological
processes, cellular mechanisms, evolutionary changes and the onset of diseases (Eisenberg
et al., 2000; Frishman, 2007).
Traditionally, biochemical experiments, such as functional assays, knock-out exper-

iments or targeted mutations, have been used to determine the biological function of
single genes (Whisstock and Lesk, 2003). These in vivo approaches, largely based on
the one-gene one-function concept (Vidal and Furlong, 2004), led to impressive discov-
eries. For instance, knock-out studies in mice advanced molecular biology in particu-
lar by enhancing the understanding of genes in higher organisms (Kühn et al., 1995).
Comparative genomics allows for transferring functional knowledge derived from such
experiments to those human genes which are direct counterparts of the investigated
genes in mouse (Pennacchio, 2003). Other model organisms, such as yeast and fly, are
also widely used for studying biological phenomena in species that are more difficult to
analyze directly.
Despite of technical advances in so-called high-throughput methods, such as DNA mi-

croarrays (Schena et al., 1995), RNA interference (RNAi) (Kamath and Ahringer, 2003)
and large-scale systematic deletions (Que and Winzeler, 2002), many fundamental bio-
logical questions remain unanswered for several reasons. First, experimental characteri-
zation of proteins cannot keep up with the pace at which sequence data is produced (Fr-
ishman, 2007). Second, even detailed biochemical studies often cannot determine the full
repertoire of biochemical activities within cells (Whisstock and Lesk, 2003). Third, con-
clusions from in vitro experiments might be limited as particularly eukaryotic proteins
cannot be investigated in conditions close to their natural environment. Thus, even for
well-known model organisms, such as yeast, a substantial fraction of proteins remains

1http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi
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1 Introduction

functionally uncharacterized (Sharan et al., 2007).
An important aspect of proteins is their role in human diseases (Goh et al., 2007).

For many human diseases it is not yet known which genes are involved in their patho-
genesis. As of May 2011, more than 7,000 Mendelian disorders are documented in
OMIM (McKusick, 2007). However, for approximately 4,000 of them the molecular ba-
sis is still unknown. Elucidating the underlying pathological mechanisms is crucial for
understanding the onset of diseases and for the development of specific diagnostic and
therapeutic approaches. Traditional gene-mapping approaches, such as linkage analy-
sis and association studies, are able to associate chromosomal regions, so-called linkage
intervals, with a disease (Botstein and Risch, 2003). Yet, knowing the genomic region
is often not sufficient to detect the associated gene(s). These regions are often large,
typically comprising several megabases (Jorde, 2000). Investigating all candidates in the
intervals experimentally is time-consuming and expensive. Furthermore, many genetic
diseases are rare, which leads to a lack of samples and thus makes robust association
studies impossible. The discovery process is even more complicated for diseases without
confirmed or with multiple associated genomic regions. Finally, pleiotropy of genes (i.e.
the ability of some genes to produce multiple phenotypes) and the heterogeneity of multi-
factorial diseases pose limitations to traditional gene-mapping approaches (Giallourakis
et al., 2005). For instance, type II diabetes (T2D), characterized by insulin resistance
and dysfunction of β-cells, is a common multifactorial disease in which genetic alter-
ations as well as environmental factors contribute to the onset of the disease (Stumvoll
et al., 2005). To date, more than 40 loci have been confidently associated with T2D (Mc-
Carthy, 2011), but the individual genes that mediate susceptibility to T2D have yet to
be determined (Voight et al., 2010).
Cellular function but also malfunctioning of proteins mostly emerges from the complex

molecular interplay between proteins, metabolites, functional RNAs and genes (Barabási
et al., 2011). For instance, the tumor suppressor protein p53 mediates its natural func-
tion, namely cell cycle regulation, through several target proteins (Vogelstein et al.,
2000). Protein p53 is activated upon intra- and extracellular stimuli, such as DNA dam-
age, activated oncogenes or oxidative stress. The activation induces the transcription of
p53-regulated genes, e.g., p21 or Bax, through which cell cycle arrest, cellular senescence,
apoptosis and DNA repair are mediated, depending on the physiological circumstances
and cell type (see Figure 1.1). Mutations in p53 disrupt the complex network of stress
response pathways leading to uncontrolled proliferation of damaged cells and eventually
to various types of cancer (Hollstein et al., 1991). This emphasizes that the relationship
between genotypes and phenotypes is mostly determined by complex mechanisms which
cannot be discerned by studying the respective gene in isolation. Albeit the function of
a single gene might present a molecular description of cellular phenotypes, it is often not
sufficient to provide mechanistic explanations on the particular process. The question of
how a single genotype gives rise to distinct phenotypes remains a major challenge since
Mendel’s wrinkled peas (Mendel, 1866) and Morgan’s white-eyed fruit flies (Morgan,
1910).
To understand the relationships between genotype, environment and phenotype, one

has to consider the complex and nonsequential interaction patterns formed between

2
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Figure 1.1: The p53 network. p53 is the central component within the complex network of
stress response pathways (adapted from Vogelstein et al. (2000)). The activation of the network
upon DNA damage, stress or activated oncogenes induces the modification of p53 and its negative
regulator MDM2. Activated p53 initiates the expression of several target genes, such as p21, Bax or
Fas, to mediate various functions including cell cycle arrest, DNA repair, apoptosis, and senescence.

the different sets of cellular entities. Advanced experimental techniques, such as DNA
and protein microarrays, high-throughput localization studies and protein interaction
mapping approaches, assist in determining how and when these molecules interact with
each other. Several types of interaction networks, such as metabolic, signaling, pro-
tein interaction, and transcription-regulatory networks, emerge from the variety of these
interactions (Barabási and Oltvai, 2004). Systematic studies of these networks for elu-
cidating their basic function, structure and dynamics have become one of the key topics
in systems biology and bioinformatics (Zhang, 2009).
In this work, we analyze cellular function in both physiological and pathological con-

texts by using one of the most commonly studied types of biological networks, i.e.,
protein-protein interaction networks. Protein interaction networks represent proteins
that interact physically with each other. Such interactions are crucial to many aspects
of cellular function, such as signal transduction, gene regulation, cell cycle control and
metabolism (Piehler, 2005). Numerous experimental techniques have been developed
for detecting protein interactions and their characteristics, both in small- and in large-
scale (Phizicky and Fields, 1995).
Despite being still incomplete and error-prone, protein interaction networks have be-

come particularly important for functional analysis, especially in human. On the one
hand, protein interactions are direct and robust manifestations of functional relation-
ships, i.e., if two proteins interact with each other they are likely to be involved in the
same biological process or pathway (Sharan et al., 2007). On the other hand, alter-
ations in protein interactions disturb cellular processes and contribute to many diseases,

3



1 Introduction

such as cancer (Ideker and Sharan, 2008). Mutations in protein interaction interfaces
are often associated with loss of function or gain of function (Schuster-Böckler and
Bateman, 2008). For instance, the cancer-predisposing mutation Tyr42Cys in BRCA2
compromises its interaction with replication protein A, a protein involved in DNA repair,
replication and recombination (Wong et al., 2003). A lack of this interaction is presumed
to inhibit the recruitment of double stranded break repair proteins and eventually leads
to an accumulation of carcinogenic DNA changes.
Both the functional and the pathological aspect of protein interaction networks will

be considered in this work to derive novel protein function for uncharacterized proteins
and to associate yet uncharacterized proteins with disease phenotypes, respectively. The
specific contributions to both problems are outlined in the following section.

1.1 Contribution
The central theme of this dissertation is the study of protein interaction networks with
respect to two closely related problems: (1) protein function prediction and (2) inference
of disease-gene associations.
As the first main contribution we present a method for predicting protein function

from protein interaction networks. The proposed approach compares protein interac-
tion networks across multiple species to detect evolutionarily and functionally conserved
subgraphs, so-called conserved and connected subgraphs (CCS). Within each CCS we
infer novel protein functions from orthology relationships across species and along con-
served interactions of neighboring proteins within a species. Specific contributions to
the objective of protein function prediction are summarized below:

• We develop a framework for integrating various small- and large-scale protein inter-
action data sets from six public databases into a meta-database called PiPa. This
framework allows to combine heterogeneous data sets to provide comprehensive
protein interaction networks as basis for this thesis.
• We introduce the idea of identifying functional modules in protein interaction
networks by exploiting subgraphs that are evolutionary conserved across multiple
species.
• As protein interaction data are known to be inherently noisy and incomplete, we
implement a strategy to account for data quality as well as evolutionary variation
by using two different definitions for identifying conserved interactions: a strict
and a relaxed definition.
• We eventually integrate three different sources of evidences, namely evolutionary
conservation of functional modules, orthology relationships, and direct and indirect
protein-protein interactions into a single, comprehensive prediction method which
yields high-quality predictions with very good coverage.

In comparison to three related methods, CCS-based function prediction clearly outper-
forms Neighbor Counting and χ2. A comparable or even better performance is achieved

4



1.2 Outline of this Thesis

when comparing against FS-Weighted Averaging. We further contribute to the field of
protein function prediction with a comprehensive survey on the different methodologies
for protein function prediction, providing insights on current progress and limitations.
As second main contribution we present a linkage interval-independent, network-based

algorithm to identify disease-related genes. We introduce a network biology framework
that integrates protein interaction, protein function, and network centrality analysis. To
detect disease-related genes with a particular disease, we first extract all genes that are
known to be involved in this disease. We compile a disease-specific network by integrating
directly and indirectly linked gene products based on protein-protein interaction and
functional information. Proteins in this network are ranked based on their network
centrality. Specific contributions to disease gene identification are summarized below:

• In our approach, we integrate genes indirectly linked to other disease genes. Thus,
we uncover susceptibility genes that are not directly linked but that are part of the
same pathway. This leads to more comprehensive disease networks and significantly
increases cross-validation re-discovery rates by up to 20%.
• The extension by indirect interaction partners might lower the precision since larger
networks naturally integrate many global “hub” proteins that get high centrality
ranks but are mostly unspecific for a particular disease. To cater for this effect,
we introduce a novel normalization procedure. Adjusting the centrality scores
decreases the fraction of highly ranked hub proteins (by 23%) while increasing the
fraction of highly ranked disease proteins at the same time (by 22%).
• In contrast to previous approaches, we also include predicted functional infor-
mation to address the problem that yet uncharacterized proteins can neither be
captured nor sensibly ranked by previous methods, which in turn prevents the
detection of truly novel disease-gene associations.

In contrast to most previous works, our algorithm is particularly applicable for complex
diseases without associated or with multiple causative genomic regions. Furthermore,
the benchmark comparison with two state-of-the-art approaches demonstrates that our
disease-specific framework significantly outperforms PRINCE (Vanunu et al., 2010). In
comparison to RWR (Köhler et al., 2008), we achieve comparable results.
Another important feature of our method is its generality. Albeit we developed the

framework for finding novel genes/proteins associated with genetic disorders, it can be
used to address various biological questions, e.g., detecting further members of cellular
processes, pathways or other definable mechanisms. In a comprehensive case study,
we apply our framework successfully to identify novel surface membrane factors that
contribute to HIV-1 infection.

1.2 Outline of this Thesis
Chapter 2 provides background information relevant throughout this work. We briefly
review proteins, their basic biochemistry as well as their role in human diseases. Next,
we introduce properties and types of physical protein-protein interactions, and give an
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overview on protein interaction networks including their properties and significance for
bioinformatics and experimental research.

Chapter 3 presents a comprehensive overview on protein function prediction; starting
with a general introduction to protein function, followed by a survey on computational
approaches for protein function prediction.

Chapter 4 describes our novel approach for protein function prediction, namely CCS-
based function prediction, that combines link-based and module-based prediction with
orthology. We depict an algorithm to analyze proteins within modules that are defined
by evolutionary conserved processes. We also discuss related work on network-based
protein function prediction.

Chapter 5 presents the systematic evaluation of the proposed protein function pre-
diction method. We apply our strategy to different sets of species and use leave-one-out
cross-validation to assess its performance in terms of precision and recall. We consider
different evaluation settings and discuss inherent properties of our method. In addition,
we benchmark our approach against two baselines and three related prediction methods.

Chapter 6 first gives a short introduction into the field of disease-gene association.
We review the broad range of methods available for disease gene identification. In the
main part of the chapter, we present our network-based approach for identifying disease-
causing proteins in a genome-wide setting. The chapter is completed with a thorough
survey of related work along with a discussion of the various methodological differences.

Chapter 7 presents the systematic evaluation of the developed disease gene identifi-
cation approach. We verify whether disease proteins are central in their disease-specific
networks and study the ability of our method to identify novel disease-related protein
using leave-one-out cross-validation across all known disease proteins. We compare the
performance of our method with two other published methods. In addition, we ap-
ply our method in case studies to elucidate genes associated with two types of cancer,
namely classical Hodgkin Lymphoma and colorectal cancer, as well as to identify surface
membrane factors contributing to HIV-1 infection.

Chapter 8 summarizes the thesis, its main contributions and concludes with an
outlook to future work.

Appendix A provides information on databases and terminologies that are used in
the experiments throughout this work.

Appendix B provides additional results discussed in the main part of the thesis.

1.3 Own prior work and contributions

Chapter 4 of this thesis describes the function prediction approach initially proposed
in Jaeger and Leser (2007) and further extended in Jaeger et al. (2010a). Chapter 5
presents the evaluation of this method and is mainly based on Jaeger et al. (2010a).
The contributions described in both chapters can be attributed to the authors as fol-
lows: Leser conceived and supervised the project. Jaeger proposed and implemented the
distinct methods for identifying conserved protein interaction subgraphs and for pre-
dicting protein functions. All evaluations were performed by Jaeger. Sers assessed the
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manual verification of function predictions in context of colorectal cancer described in
Section 5.5. Leser, Jaeger and Sers contributed to the manuscript.
Chapter 6 presents the framework for genome-wide disease gene identification which

has been applied by Jaeger et al. (2010b) for finding novel surface membrane factors
of HIV-1 infection as described in Section 7.5 of Chapter 7. Experiments in this study
were conceived and designed by Jaeger, Ertaylan and van Dijk. The respective data
were analyzed by Jaeger, Ertaylan and van Dijk. All experiments were performed by
Jaeger and Ertaylan, and both authors wrote the manuscript. Leser and Sloot critically
revised the manuscript and supervised the work.
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2 Biological Background

This chapter provides background information on proteins, protein-protein interactions
and protein interaction networks relevant throughout this work.
Section 2.1 briefly reviews the history of protein research and introduces their basic

biochemistry including structural and functional characteristics. We discuss the role of
proteins in human diseases regarding alterations which impact their natural function
and which may lead to cell malfunction and, eventually, to a disease.
Section 2.2 focuses one of the most important types of biomolecular relationships

among proteins: protein-protein interactions. We introduce specific properties of differ-
ent types of protein-protein interactions, and summarize the techniques that can be used
to identify them experimentally. Furthermore, we discuss strengths and limitations of
the individual techniques that are reflected in the resulting quality and coverage of the
data. We complete this section with a survey on common protein interaction databases.
Section 2.3 discusses protein interaction networks. We give an overview on their

properties and their significance for bioinformatics and experimental research.

2.1 Proteins

2.1.1 Historical background

The true nature of proteins and the origin of their basic biochemistry had not been
understood until the late 18th century when proteins were recognized as a distinct type
of biological molecule. Systematic protein research started in the early 19th century by
studying their chemical composition. In 1838, Gerhard J. Mulder firstly described the
chemical composition of the nitrogen-containing substances fibrin, white of egg, blood
serum and wheat albumin (Tanford and Reynolds, 2001). Mulder hypothesized from his
experiments that proteins are composed from one fundamental substance (Grundstoff ).
Based on this assumption Jöns J. Berzelius proposed the term ‘protein’, derived from the
Greek word πρωτειoς (proteios) meaning ‘primary’, ‘in the lead’ or ‘standing in front’,
to describe this type of molecule.
The central role of proteins in living organisms was only fully acknowledged in 1926

when James B. Summer demonstrated that the enzyme urease is a protein (Sumner,
1926), a controversial assumption at the time (Perrett, 2007). Ever since then, pro-
teins have been subjects of experimental studies in molecular biology. Sequencing the
B chain of insulin (Sanger and Tuppy, 1951b,a) and elucidating the structures of myo-
globin (Kendrew et al., 1958) and hemoglobin (Perutz, 1960) at atomic resolution led to
the modern age of protein research.
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Figure 2.1: Basic principles of protein biosynthesis. The central dogma of molecular biology
describes the conversion of a gene to protein via the transcription and translation phases.

Nowadays proteins are known to be one of the most important macromolecules in living
organisms. They form the basic modules of cells and participate in virtually all cellular
processes. Proteins are amazingly versatile molecules, capable of catalyzing an extraor-
dinary range of biochemical reactions, functioning as antibodies in the immune system,
providing structural stability to the cell, actively transporting molecules, controlling cell
growth and differentiation, and regulating gene function (Lodish et al., 2007). Although
this tremendous functional scope is common knowledge these days, it has taken over
200 years and numerous controversial discussions, disputes and advanced technologies
to move from the concept of a single unique ‘protein’ to our present understanding of
thousands of distinct proteins in an organism (Perrett, 2007).

2.1.2 Protein composition and structure

Proteins are macromolecules that are manufactured by transcribing their coding genes
into mRNA, which is then translated into a polypeptide, as shown in Figure 2.1.
The main building blocks of proteins are amino acids whose linear arrangement is

defined by the nucleotide sequences of the genes encoding a protein. There are 22 pro-
teinogenic amino acids that can be incorporated into proteins. Twenty of them are
directly encoded in the universal genetic code whereas two, selenocysteine and pyrroly-
sine, originate from unique synthesis mechanisms (Ambrogelly et al., 2007). All amino
acids can be found in all eukaryotes, except for pyrrolysine which is currently only known
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Figure 2.2: Formation of a dipeptide from two amino acids. Amino acids are linked to each
other by a peptide bond that is formed through a condensation reaction that includes the removal
of a water molecule.

for certain species of methanogenic archaea and one bacterium.
Amino acids have a common basic structure. They contain an amino group (NH2), a

carboxyl group (COOH) and a variable but specific residue (or side chain). The residues
differ in properties such as size, form, charge, hydropathy and chemical reactivity, giving
each amino acid its distinct biochemical characteristics. Individual amino acids are
linked by peptide bonds (see Figure 2.2) to form one or more linear polypeptide chains
which in turn constitute the backbone of a protein. The specific combination of residues
and their distinct biochemical properties characterize the structure and function of each
protein while the exponential number of combinations of amino acids accounts for the
vast functional diversity of the proteins.
Proteins have highly variable sequence lengths and molecular weights. This variety

partly reflects the diversity of the functional roles for proteins within different organ-
isms (Lipman et al., 2002). Proteins in prokaryotes, for instance, have on average shorter
sequences than proteins in eukaryotes (Galperin et al., 1999) reflecting the greater com-
plexity of eukaryotic cells, e.g., multi-domain and multifunctional units (Brocchieri and
Karlin, 2005).
However, a minimal number of amino acids is necessary to form a functional protein

that fulfills its designated biological functions. Approximately 40 to 50 residues are
thought to be the lower limit for a functional domain. Protein sequences range from
this lower limit up to several thousands of residues in multifunctional and structural
proteins. The median protein length in human measures around 375 residues (Brocchieri
and Karlin, 2005) whereas the largest known human protein, Titin, a component of the
contractile apparatus in muscle cells, consists of 34,350 amino acids2 and 350 protein
domains.

Protein structure

Proteins fold into specific spatial conformations. The folding of the linear strand of
amino acids into a fully functional protein is one of the most complex challenges within
the cellular protein factory and crucial for the functionality of each protein. An unique
protein conformation arises from non-covalent interactions, such as hydrogen bonding,
ionic interactions, Van Der Waals forces, and hydrophobic packing, between the amino
acids of a sequence (Lodish et al., 2007). The structural organization of a protein is
commonly described on four different hierarchical levels:

2http://www.uniprot.org/uniprot/Q8WZ42
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2 Biological Background

Figure 2.3: Quaternary structure of the human hemoglobin A. The model shows the
assembly of the two α (red) and the two β (blue) subunits into a functional complex together with
the iron-containing heme groups (illustrated with POLYVIEW-3D, Porollo et al. (2004)).

• The linear arrangement, or sequence, of amino acids in a polypeptide chain con-
stitutes the primary structure of a protein.
• The secondary structure refers to intra- and intermolecular hydrogen bondings

between amino acids of the linear sequence. Common secondary structures include
α-helix, β-sheet, β-turn and random-coil structures which might occur separately
or jointly within a protein.
• The tertiary structure describes the stable spatial conformation of local secondary
structures and non-covalent interactions between specific amino acid residues. The
tertiary structure presents the highest level of structural organization.
• Proteins with more than one polypeptide chain are only functional if their different
subunits assemble to a larger complex. Depending on the protein, subunits might
be identical, homologous (with similar functions) or completely distinct contribut-
ing to disparate tasks. The quaternary structure defines the spatial conformation
of the distinct non-covalently linked subunits within such a multimer. Figure 2.3
shows the tertiary and quaternary structure of the human hemoglobin A which
is assembled from two α- and the two β-globins. Other classical examples with a
quaternary structure are actin, immunoglobin, ribosome and proteasome.

2.1.3 Protein function and their role in diseases
Protein structure and function are intrinsically tied to each other as a protein’s function
is largely determined by its three-dimensional conformation. Functionally, proteins are
versatile macromolecules that evolved to carry out a wide range of functions (Lodish
et al., 2007). According to their different cellular roles, proteins can be classified into
distinct functional classes:

• Enzymes present the largest class of proteins. They catalyze and accelerate the
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rates of biochemical reactions that take place in a cell. Enzymes are typically
named based on the reaction they facilitate. For instance, the enzyme tripeptide
aminopeptidase is a hydrolase that cleaves off the amino-terminal amino acid from
a polypeptide.
• Regulatory proteins or messenger proteins regulate the ability of other proteins to

perform their biological functions. They transmit signals to coordinate biological
processes between different cells, tissues, and organs. A classical regulatory protein
is insulin – a hormone that regulates the glucose metabolism.
• Transport proteins serve as carriers that bind and transfer small molecules within
cells and throughout the organism. Two different types of transport proteins can
be distinguished: (i) those that transport molecules within cells or organisms, such
as hemoglobin that transports oxygen from lungs to tissues, and (ii) membrane-
bound proteins that serve as gateways for shuttling molecules, such as glucose,
vitamins and amino acids, across otherwise impermeable cell membranes.
• Storage proteins function as biological reservoir for small molecules, e.g., metal ions
and amino acids, which are mobilized and utilized for maintenance and growth of
organisms. For instance, ferritin stores iron, an important component of heme
which in turn is essential for binding oxygen by hemoglobin. Others encapsulate
small molecules to protect cells, for instance, from metabolites that might be toxic
when being released in the wrong cell compartment.
• Contractile and motile proteins endow cells with unique capacities for special forms
of movement. Cell division, muscle contraction and cell motility present basic ways
in which cells achieve motion. Prominent examples include actin and myosin as
important contractile muscle proteins or tubulin, a major component of micro-
tubules which facilitate cell division. Another class of proteins involved in motion
are so-called motor proteins that control the movement of vesicles, granules, and
organelles.
• Structural proteins are, in terms of molecular weight, the heaviest class of pro-
teins. These fibrous molecules, typically insoluble, provide strength, structure and
support for cells. α-keratins are the crucial proteins in skin, hair, and fingernails.
Another example is collagen, a major component of bone, connective tissue, ten-
dons, and cartilage.
• Scaffold proteins act as adaptors by linking various proteins to form scaffolds upon
which certain protein or protein-DNA complexes are assembled. Scaffold proteins
are crucial for regulating signaling pathways by tethering signaling components,
localizing these components to specific compartments of the cell, regulating signal
transduction by coordinating feedback signals and insulating correct signaling pro-
teins from competing proteins. Prominent scaffold proteins include, for instance,
KSR and MEKK1 in the MAPK pathway, HOMER in calcium signaling and DLG1
in T-cell receptor signaling.
• Protective and exploitive proteins are essential elements for cell defense and protec-
tion. Classical members of this class are immunoglobulins (or antibodies), critical
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components of the immune system that locate and indirectly neutralize molecules
that are not intrinsic to the host system. Other important examples are blood
clotting proteins, e.g., thrombin and fibrinogen, that help to prevent severe loss of
blood upon damage of the circulatory system.
• Transcription factors are proteins involved in the regulation of gene expression.
They recognize and bind specific DNA sequences (motifs), thereby attracting other
transcription factors to create a complex which eventually induces the recruitment
of RNA polymerase to specific genes. The most common transcription factors
include TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH.

It should be emphasized that numerous proteins, particularly in higher eukaryotes,
posses multiple different functions rather than only a single one. An intriguing class
of such multifunctional proteins are so-called moonlighting proteins that perform mul-
tiple autonomous but often unrelated functions without separating these functions into
distinct protein domains (Huberts and van der Klei, 2010). Moonlighting proteins con-
tribute to basic cellular functions, such as metabolism, angiogenesis, cell motility, DNA
synthesis or repair, as well as in physiological functions and biochemical pathways that
are involved in cancer and other diseases. Other striking examples are enzymes, which
in addition to their catalytic function are involved in completely unrelated processes,
such as autophagy, protein transport or DNA maintenance (Huberts and van der Klei,
2010).

Proteins and their role in diseases
A particular important aspect of proteins is their role in human diseases. Diseases
are pathological conditions that impair the normal state of an organism by altering
or destroying its vital functions (Merskey, 1986). Abnormal functioning is caused by
inherited genetical defects or variations, spontaneous mutations, internal dysfunctions
and environmental influences, such as stress, infection or other external factors, that
directly or indirectly affect genes and their products (Mackenbach, 2006). Even slight
alterations, for instance, in a single gene, might yield an aberrant protein, which may lead
to cell malfunction and, eventually, to a disease. Furthermore, many known variations
do not necessarily cause a disease but might increase the risk of developing a particular
disease.
Disease-related alterations, e.g., mutations or dysregulations may affect proteins in

various ways and on several functional levels. However, most alterations will eventually
perturb the cellular machinery and its biological processes by impairing the natural
function of a protein. Protein function can be severely disrupted by aberrations that
affect either the specific protein expression, post-translational modification patterns, the
folding into a stable tertiary structure or the combination of such events.

Protein expression

The expression of biologically active proteins is determined by the expression of their
encoding genes which is regulated in many different ways. Precise expression control
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is vital for cells to synthesize gene products whenever they are needed and to adapt to
environmental changes, external signals or damages to the cell (Perdew et al., 2006).
Gene expression is mostly controlled at the level of the transcription initiation and

transcription rate but also through microRNA. Transcriptional activity is responsible
for the steady state levels of mRNA of the regulated gene, which in turn correlates
with protein levels for most genes. Modifications in the regulatory sequences, chromatin
structure and proteins that trigger the transcription of a gene, might alter the cellular
concentration of particular proteins which in turn perturbs the sensible balance within
a cell. Aberrant expression patterns in central regulatory proteins, such as transcription
factors that control cell proliferation and differentiation, are known to be a major cause
of cancer (Delgado and León, 2006). In particular, (proto-)oncogenes and tumor sup-
pressor proteins that regulate the cell cycle or promote apoptosis are typically over- and
underexpressed, respectively, in various types of cancer (Weinberg, 1996; Croce, 2008).

Post-translational modification

Nascent proteins emerging from the translational machinery are often subjected to co-
valent chemical modifications that alter their amino acid residues. Post-translational
modification is a common biological mechanism contributing to the vast diversity in
protein structure, function and dynamics (Seo and Lee, 2004; Walsh, 2006). Various
biochemical modifications, such as phosphorylation, glycosylation and proteolysis, in-
crease the diversity of functional groups beyond the inherent properties of proteinogenic
amino acids and extend the functional and structural repertoire encoded in a genome.
Amino acid substitutions and other sequence variations might disrupt designated post-

translational modification sites in proteins. This may have severe functional conse-
quences including conformational changes, alterations in subcellular locations, modu-
lation of enzyme activity and abnormal interaction patterns (Walsh, 2006). Aberrant
post-translational modifications are, for instance, involved in the pathogenesis of Hunt-
ington’s disease (Wang et al., 2010), Alzheimer’s disease (Gong et al., 2005) and different
types of cancer (Krueger and Srivastava, 2006; Radivojac et al., 2008; Reis et al., 2010).
However, also imbalances and alterations in the close proximity of modification sites
have been found to be causative for human diseases (Baenziger, 2003; Li et al., 2010).

Protein folding

The cellular function of proteins depends primarily on their tertiary structure. Alter-
ations in the protein sequence, either emerging from inherited or spontaneous variations
or aberrant amino acid modifications, may interfere with the folding process and result in
incorrectly folded proteins. Misfolding of proteins might have serious implications rang-
ing from functional insufficiency and loss-of-function to perturbation of cellular pathways
to aggregation of abnormally folded proteins causing cell damage (Dobson, 2003).
Different diseases have been associated with protein misfolding (Chiti and Dobson,

2006; Gregersen, 2006), often classified into two types: loss-of-function pathogenesis
caused by protein degradation and gain-of-function pathogenesis induced by protein
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accumulation (Winklhofer et al., 2008).

• In the first case, aberrant proteins are prematurely eliminated by the degrada-
tion systems, which results in loss-of-function pathogenesis and protein deficiency
diseases (Gregersen, 2006). Cystic fibrosis, Marfan syndrome and some types of
cancer, are characterized by the absence of central proteins that have been recog-
nized as misfolded and thus degraded by the proteasome. For instance, the loss-
of-function of the crucial tumor suppressor p53 induced by misfolding is thought
to be a frequent cause of cancer (Nigro et al., 1989; Lubin et al., 2010).
• Aberrant proteins, which circumvent the cellular surveillance and accumulate to
intractable aggregates, induce toxic gain-of-function pathogenesis and amyloido-
sis (Merlini and Bellotti, 2003; Aigelsreiter et al., 2007). Large quantities of ac-
cumulated proteins in the intra- or extracellular space may damage and destroy
cells through mechanisms which just have started to be elucidated (Selkoe, 2003).
Alzheimer’s disease, Parkinson’s disease and Type II diabetes, are directly associ-
ated with the deposition of such aggregates in tissues, including brain, heart and
spleen (Jaikaran and Clark, 2001; Shah et al., 2006; Irvine et al., 2008).

2.2 Protein-Protein Interactions
Once it was widely presumed that proteins are rather isolated entities acting mostly
independently of their surroundings. Proteins were assumed to diffuse freely within cells
while biochemical reactions result from random encounterings between two proteins.
Today it is widely established that this picture is far too simplistic to explain the complex
mechanisms that coalesce within living systems.
Specific proteins have evolved to bind every conceivable molecule – from small simple

ions to large complex molecules like fats, sugars, (ribo-)nucleic acids, and other pro-
teins (Lodish et al., 2007). They mediate their function within complex networks of
highly connected macromolecules rather than in isolation (see Figure 2.4). Enzymes,
for instance, bind substrates to catalyze biochemical reactions, antibodies attach to
viruses and bacteria to inactivate them directly or target them for degradation, α- and
β-hemoglobin chains assemble into heterotetramers for transporting oxygen from lungs
to tissues, and transcription factors bind the DNA to induce transcription.
One of the most important types of biomolecular relationships are protein-protein

interactions3. Virtually all cellular mechanisms rely on the physical binding of two or
more proteins to accomplish a particular task. To understand these processes and the
importance of protein-protein interactions on a molecular and biophysical level, one
needs to identify the different types of interactions, discern the extent to which they
take place in the cell, and determine their consequences (Piehler, 2005).
Protein-protein interactions are commonly defined as physical contacts involving mo-

lecular docking between two or more gene products (Rivas and Fontanillo, 2010). From
3In this work we are primarily focusing on protein-protein interactions. Terms like ‘protein interaction’
or ‘interaction’ will refer in the following chapters to protein-protein interactions only. When talking
about other biological relationships we will point this out.
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Figure 2.4: The human Wnt signaling pathway. Members of the Wnt pathway form a family
of highly conserved, secreted signaling molecules that regulate cell-to-cell interactions during em-
bryogenesis. Mutations in Wnt pathway components lead to specific developmental effects. Various
human diseases, including cancer, are caused by abnormal Wnt signaling (hsa04310 retrieved from
KEGG (Kanehisa et al., 2010)).

Figure 2.5: Molecular docking. Binding of the human growth hormone (yellow) to the ex-
tracellular portion of its homodimeric receptor (light and dark gray, taken from Ofran and Rost
(2007)).
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the physical point of view, any two proteins can interact – but on what conditions
and at which strength? An important aspect for the formation of an interaction is the
biological context. Whether two proteins do physically interact with each other depends
on the cell type, cell cycle phase and state, environmental conditions, developmental
stage, post-translational modifications and the presence of cofactors and other binding
partners (Rivas and Fontanillo, 2010).
Protein-protein interactions are non-covalent interactions of two proteins primarily

driven by hydrophobic effects, hydrogen bonds and electrostatic interactions (Nussinov
and Tsai, 2005). Protein interactions differ based on their diverse structural and func-
tional characteristics. Several types of interfaces facilitate the specific binding of proteins
to each other. The most common way for proteins to interact is through the precise
matching of two complementary, rigid protein surfaces. These interactions often target
just a single interaction partner from the different proteins found in a cell. A second
type of interaction is established among two α-helices, one from each protein, that pair
together to form a coiled-coil. Finally, proteins may interact by linking the rigid surface
on one protein to an extended loop of the polypeptide on a second protein (Lodish et al.,
2007).
Protein interactions differ in their strength, specificity and the type of their interacting

subunits (Shoemaker and Panchenko, 2007a). Strength depicts whether an interaction is
permanent or transient. Permanent interactions are usually associated with proteins that
are part of multi-subunit protein complexes whereas transient interactions are tempo-
rary and typically require specific conditions for stimulating this interaction. Transient
interactions are believed to regulate the majority of cellular processes (Perkins et al.,
2010). Specificity refers to the selective binding of interaction partners. Highly spe-
cific interactions are those where a protein only binds one or few proteins out of the
different ones it may encounter. Non-specific interactions, on the other hand, include
bindings that a protein experiences during its life cycle when being translated, folded,
modified, quality checked or degraded. All proteins, for instance, interact with the ri-
bosome, many of them contact chaperones and the degradation machinery. The type of
interacting subunits specifies whether an interaction forms a hetero-oligomer with several
different subunits or a homo-oligomer with only one type of protein subunit.

2.2.1 Identification of protein interactions
Detecting all possible physical interactions within an organism – the interactome (Cusick
et al., 2005) – is an essential step toward deciphering the complex molecular relationships
in living systems. Different experimental and computational methodologies have been
developed to identify the specific mechanisms of protein recognition at the molecular
level and to elucidate the global picture of protein interactions in the cell. We briefly
introduce (1) two established experimental methods, (2) literature curation and (3)
in silico techniques for discovering protein interactions and discuss their methodical
capabilities and limitations.

4In vivo methods refer to experiments performed in living cells while in vitro methods are carried out
in a controlled environment.
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Table 2.1: Experimental methods for detecting protein interactions and their charac-
teristics. The table summarizes for each technique whether it is suitable for large-scale analysis
(+ vs. −), whether it is an in vivo or in vitro system4, the type of interaction it detects (binary
vs. complex) and the type of interaction characterization. (Table adapted from Shoemaker and
Panchenko (2007a))

Large-scale Type of Type of
Method approach Cell assay interaction characterization

Yeast two-hybrid + in vivo binary Identification
Tandem affinity purification–
MS

+ in vitro complex Identification

Protein microarrays + in vitro complex Identification
Phage display + in vitro complex Identification
Co-immunoprecipitation − in vivo complex Identification
Surface plasmon resonance − in vitro complex Kinetic, dynamic characteriza-

tion
Electron microscopy − in vitro complex Structural and biological char-

acterization
Fluorescence Resonance En-
ergy Transfer (FRET)

− in vivo binary Biological characterization

X-ray Crystallography, NMR
spectroscopy

− in vitro complex Structural and biological char-
acterization

2.2.1.1 Experimental detection methods

Experimental elucidation of interactions between gene products is done either at small-
or large-scale (Rivas and Fontanillo, 2010). Experiments detecting less than 100 protein
interactions are commonly considered to be small-scale while the others are denoted
as large-scale (Patil et al., 2011). Methods that identify direct physical interactions
among protein pairs are called binary methods. Approaches that determine physical
interactions between a group of proteins, without distinguishing between direct and
indirect interactions, are co-complex methods.
Numerous experimental methods have been developed for protein interaction detec-

tion, see Table 2.1 and Phizicky and Fields (1995) for a review. Traditionally, protein
interactions have been detected by genetic, biochemical or biophysical techniques, such
as X-ray crystallography or fluorescence resonance energy transfer (FRET). Such small-
scale studies focus on individual proteins for generating specific interaction maps (Fin-
ley and Brent, 1994; Mayes et al., 1999; Goehler et al., 2004). However, the increasing
availability of fully sequenced genomes and the speed at which proteins are discovered
increased the interest in techniques that screen large sets of candidates systematically.
Two widely established large-scale methodologies are the yeast two-hybrid (Y2H) sys-
tem (Fields and Song, 1989) and tandem affinity purification coupled to mass spectrom-
etry (TAP-MS) (Rigaut et al., 1999); the former system is a binary and the latter a
co-complex method. Both methodologies have been used for large-scale experiments
in different model organisms, including yeast, fly, worm and human. The majority of
interaction data currently available in the databases IntAct and MINT, for instance,
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Figure 2.6: Overview on the number of protein interactions per detection method as
provided in the public databases IntAct and MINT (March 2011).

is derived from Y2H and its variants. A general overview on the number of protein
interactions per detection method is shown in Figure 2.6.
In the following, we briefly introduce Y2H and TAP-MS as the work presented in this

thesis largely relies on protein interaction data derived from such experiments. We will
highlight the systematic and methodological limitations inherent to each method. These
effects have to kept in mind as the amount of experimental errors inevitably affects the
outcomes of further analysis.

Yeast two-hybrid assay (Y2H) The Y2H assay determines whether two proteins physi-
cally interact with each other by using the principle of transcriptional activation. Genet-
ically modified yeast strains are used to express two fusion proteins (two hybrids), which,
if they interact, induce the expression of a reporter gene. Fusion proteins are created
by linking proteins to separable protein domains of transcription factors. One protein,
the bait, is fused to the DNA-binding domain that is capable to bind the promoter of a
reporter gene. A potential binding partner, the prey, is linked to the activator domain
that activates transcription by facilitating the binding of the RNA polymerase to the
promotor. If both proteins interact, their complex forms an intact, functional transcrip-
tional activator which mediates the transcription of the reporter gene (see Figure 2.7).
Reporter genes encode proteins whose function provides a simple readout, such as LacZ
from E. coli which causes a colorimetric reaction within the cell (Brueckner et al., 2009).
Large-scale library screens can be performed by using a cDNA library instead of a

single prey protein. Y2H has been extensively applied in several large-scale screens (Uetz
et al., 2000; Ito et al., 2001; Rual et al., 2005; Stelzl et al., 2005) and for individual
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Transcription of reporter gene 

Bait protein 
Prey protein 

DNA binding domain Transcriptional activation domain 

Promoter 

RNA Polymerase 
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Figure 2.7: The yeast two-hybrid system for detecting binary protein-protein interac-
tions (adapted from Alberts (1998)). A target protein, the bait, is fused to a DNA-binding
domain that localizes it to the promoter region of a reporter gene. A potential binding partner,
the prey, is linked to an activator domain. The interaction of both fusion proteins forms an intact,
functional transcriptional activator which triggers the expression of the reporter gene.

experiments (Finley and Brent, 1994; Mayes et al., 1999; Davy et al., 2001).
Overall, Y2H is an established in vivo technique, well-suited for large-scale analysis.

It allows to detect both transient and stable interactions, independently of endogenous
protein expression. Albeit yeast cells are utilized for expressing fusion proteins, Y2H is
not restricted to interactions between yeast proteins; in principle, the genetic code of any
fusion protein may be introduced into the yeast cell. The major drawback of the yeast
two-hybrid assay is its poor reliability. Y2H is performed in the nucleus, hence many
proteins are not analyzed in their native compartment. Thus, two proteins may interact
in the experiment although they would not do so in their natural environment (Koegl
and Uetz, 2007). In turn, essential post-translational modifications of non-yeast proteins
may not be carried out, or the fusion process might interfere with the true interactions
between proteins. In consequence, Y2H data are associated with a large number of false
positive and false negative interactions. Early estimates on distinct data sets indicated
that only 30–50% of the detected interactions are biologically meaningful. More recent
quality assessments suggested that Y2H data contain less false positives as previously
presumed. Nevertheless, Y2H screens are still far from being reliable and the rate of
interactions not detectable by Y2H remains substantial (Yu et al., 2008).

Tandem affinity purification mass spectrometry (TAP-MS) In this technique, indi-
vidual proteins are first fused to a protein fragment (the ‘tag’) which is used as an anchor
for biochemical purification of protein complexes. The modified proteins are expressed
and purified from cell extracts using the tag. Other proteins bound to the tagged protein
are co-purified and subsequently identified by mass spectrometry (see Figure 2.8).
In contrast to Y2H assays, data derived from co-complex approaches, such as TAP-
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MS or co-immunoprecipitation, cannot be directly translated into binary interactions.
Co-complex methods only identify proteins involved in a given complex rather than
the direct interactions between them. Different models are employed to translate the
group-based observations into pairwise interactions. The matrix model assumes that all
proteins of a purified complex interact whereas the spokes model infers only interactions
between the tagged protein and each co-purified protein. The latter one is often used,
as it yields a smaller number of false positives (Hakes et al., 2007). Bader and Hogue
(2002) estimated, for instance, that the number of false positives is three times larger in
the matrix model.
Genome-wide TAP-based studies have been successfully performed for yeast (Krogan

et al., 2006; Gavin et al., 2006), and for a smaller number of proteins in human (Ewing
et al., 2007) and E. coli (Butland et al., 2005). Contrary to Y2H, TAP-MS detects
protein complexes and interactions within the native cellular environment and is able to
capture several members of a complex. In turn, protein complexes that are not present
under the given conditions might be missed, loosely associated proteins of a complex
might be washed of during purification and the tagging of a protein may interfere with
the complex formation. Accordingly, the coverage of TAP-MS is limited as a large frac-
tion of interactions, e.g., transient interactions, might be missed. Yet, false positive
and false negative rates are much lower than for other experimental techniques (Kem-
meren et al., 2002; von Mering et al., 2002), including Y2H, as interaction information
are obtained under more natural physiological conditions than those induced by Y2H.
However, both methods detect rather complementary types of interaction and only the
combination of different approaches with bioinformatic tools will eventually yield a more
complete characterization of physiologically relevant protein interactions in a given cell
or organism (Brueckner et al., 2009).

Literature curation

Protein interaction data, retrieved from small- and large-scale experiments, are com-
monly published in the scientific literature. To make this knowledge available to the
scientific community, interaction data have to be curated and archived in specialized
databases.
Literature curation translates information on physical interactions between proteins

from free-text publications into a structured format (Chatr-aryamontri et al., 2007). Cu-
rators read through the literature, identifying and extracting all significant information:
the organism being studied, the gene product annotated, the proteins that interact, the
type of experiment performed, and an identifier (typically the PubMed ID) as the source
of information. This allows for quality control of the data.
However, the volume and growth of biomedical literature makes it hard to curate all

newly published information (Hunter and Cohen, 2006; Chatr-aryamontri et al., 2007).
In addition, relevant data may be missed by oversight, an intrinsic weakness of purely
human curation, and literature curation is ‘hypothesis-driven’ with prior assumptions
of what could be learned. Accordingly, literature-curated data are often biased toward
better-characterized genes and proteins (Cusick et al., 2009). In consequence, only a
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Figure 2.8: TAP-MS procedure for characterizing protein complexes. A target protein,
the bait, is fused to a protein fragment - the TAP tag - comprising a protein A-IgG binding domain
(ProtA), a calmodulin binding peptide (CBP) and a TEV protease cleavage site. The modified
protein is then expressed in cells where it may carry out its natural function participating in one
or more protein complexes. Protein complexes are purified from cell extracts by two subsequent
affinity chromatographies using the TAP tag. Co-purified proteins bound to the bait are then
identified by standard mass spectrometry.

small fraction of all published interactions has been captured in the interaction databases
so far.

Computational detection approaches

As discussed above, experimental detection methods and literature curation have several
limitations and do not yet come close to elucidate full interactomes. Thus, several
computational methods have been proposed for predicting protein-protein interactions in
silico based on various evidence. A complete review of the available approaches including
their strengths and limitations is beyond the scope of this section. We shall briefly
introduce established concepts for predicting protein interactions and refer interested
readers to extensive reviews (Valencia and Pazos, 2002; Shoemaker and Panchenko,
2007b; Liu et al., 2008) as predicted protein interactions are not used in this work.
A common approach for inferring novel protein interactions is based on the analysis

of protein domains to determine which domains participate in an interaction. Given a
set of protein domains that interact frequently in known interactions, novel interactions
can be predicted between proteins containing the same domain pairs (Deng et al., 2002;
Chen and Liu, 2005; Jothi et al., 2006). Another established methodology relies on
the concept of ‘interologs’, which refers to pairs of homologous proteins interacting in
different organisms (Matthews et al., 2001). Novel protein interactions are thus inferred
by identifying evolutionarily conserved protein interactions in related genomes (Sharan
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et al., 2005; Wiles et al., 2010). Additional methods employ:

• phylogenetic profiles (Pellegrini et al., 1999; Goh and Cohen, 2002),
• gene fusion events (Rosetta stone) (Marcotte et al., 1999b; Enright et al., 1999),
• co-localization information, such as gene neighborhood or gene cluster (Dandekar
et al., 1998; Overbeek et al., 1999),
• patterns of co-occurrence or co-expression (Jansen et al., 2002; Ge et al., 2001),
• sequence and structural similarities between interacting proteins (Comeau et al.,
2004; Sikić et al., 2009).

2.2.2 Quality and coverage of interaction data

Over the last decade there has been an increase in the quantity and quality of interaction
data (Yu et al., 2008). Yet, current data sets are still limited in both terms. Hence,
critical evaluations are essential to quantify the reliability of any specific data set to
identify interactions that actually occur in a cell at a given state.
When evaluating the reliability of interaction data, quality and quantity have to be

considered together. Reference sets of trusted interactions from manually curated protein
complexes, e.g., MIPS and CORUM (Mewes et al., 2002; Ruepp et al., 2010), are used as
benchmarks to assess the quality of experiments and prediction methods by determining
the proportion of reported interactions that is reproducible. However, this comparison
is not always fair as interactions are often derived under different conditions. Further,
the evaluation depends largely on the reference sets which are naturally incomplete and
might be biased themselves.

2.2.2.1 Data quality

The different approaches for identifying protein interactions have different strengths
and limitations, and the systematic methodological differences are often reflected in the
quality of the resulting data sets.

• Low-throughput interaction data largely result from small-scale experiments where
individual proteins are studied after careful selection by biologists (Yoon et al.,
2003). These data are presumed to be highly reliable with a low number of false
positives since these types of experiments are performed under precise control.
Despite their high quality, interaction data from small-scale experiments are limited
to the specific processes studied. Thus, many laborious small-scale studies are
necessary to obtain a global picture of a cell.
• High-throughput interaction data derived from large-scale studies are often unre-

liable and still incomplete. A large number of interactions from such screens has
been shown to be false, i.e., not occurring in the cell. For instance, 50–70% of the
interactions detected for yeast are assumed to be false positives (Sprinzak et al.,
2003; Bork et al., 2004). In addition, most studies have not reached saturation
while others are limited or biased toward particular proteins (von Mering et al.,
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2002). For instance, proteins with high abundance are often favored which implies
that a large fraction of interactions for proteins with lower abundance remains
undiscovered. Other methods are biased toward particular cellular localizations
of the interacting proteins. The incompleteness and unreliability of data sets is
evidenced in the small overlap between such sets (von Mering et al., 2002; Rivas
and Fontanillo, 2010). Albeit recent data sets have improved in quality and cover-
age (Gavin et al., 2006; Krogan et al., 2006), missing interactions and incorrectly
identified interactions remain a major problem.
• Literature-curated interaction data derived from manual curation of small-scale
experiments are commonly presumed to be more reliable than high-throughput
data (Reguly et al., 2006; Gandhi et al., 2006). However, recent assessments of
different data sets question the superior reliability of literature-curated data in-
dicating that these data might contain a larger fraction of false positives than
previously anticipated (Ramirez et al., 2007; Mackay et al., 2007; Cusick et al.,
2009; Wu et al., 2009; Venkatesan et al., 2009).
In fact, large-scale curation of primary literature is ambitious. One of the main
challenges is the lack of formal representation of interactions in published manu-
scripts (Cusick et al., 2009). Interaction data are typically reported either as free
text or in tables of variable format, often lacking key pieces of information that are
important for a detailed understanding of the experiments (Orchard et al., 2007).
Inconsistencies and missing information hinder the curation process considerably
and lead to misinterpretation and time-consuming, error-prone attempts to derive
missing evidence by other means. For instance, protein and gene names are often
mistaken as their synonyms are hard to trace back to their canonical names, infor-
mation on the species of each interactor are hidden or missing and standardized
descriptions of the detection methods are absent (Turinsky et al., 2010). To address
this issue, the minimal information required for reporting a molecular interaction
experiment (MIMIx) was proposed to define a community-wide consensus on what
information is required to appropriately describe a molecular interaction (Orchard
et al., 2007). Submitting species, protein names, identifiers and methodological
descriptions in a standardized format upon publication, as already required for se-
quences, microarray data and protein structures, will facilitate the accurate extrac-
tion of relevant information for curators and further improve the curation process
and the reliability of literature-curated data (Lehne and Schlitt, 2009).

Given the varying data quality, different concepts have been proposed to increase
the confidence in experimental interaction data especially from high-throughput exper-
iments. These concepts include filtering for interactions that have been observed in
multiple experiments or in multiple species, and assigning weights to interactions de-
pending on their detection method (Suthram et al., 2006; Braun et al., 2009). Other
measures assess the degree to which interacting proteins are associated with the same
functional categories and cellular locations to estimate confidence values.
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Figure 2.9: Number of protein interactions per species in the different databases
(March 2011).

2.2.2.2 Coverage of interaction data

The majority of known protein interactions accounts so far for human and yeast, as
illustrated in Figure 2.9. Assessing the current coverage requires an estimate of the
complete set of interactions. Table 2.2 shows the anticipated number of protein inter-
actions for human and yeast in comparison to the number of interactions discovered so
far. Different attempts for appraising the potential interactome sizes yield clear discrep-
ancies in the expected number of interactions, even for the well-studied model organism
yeast. Empirical estimates for yeast range from 13,500 up to 75,000 interactions between
the 5,800 proteins of yeast. The expected number of interactions in human also varies
greatly, from 130,000 up to 650,000. These estimates deviate, in particular for yeast,
significantly from the number of currently known interactions in the public databases.
There are two possible explanations:

• A large number of experimentally determined interactions in the database are false
positives (Rivas and Fontanillo, 2010).
• Another explanation might be the fact that the potential size of the yeast interac-
tome has been under estimated.

2.2.3 Interaction databases and repositories

Several publicly available databases and repositories have been designed to collect, store
and organize protein interaction data on a large scale as well as across studies and
methods.
Interaction data are accumulated in three types of databases:

1. Primary databases – containing only experimentally proven interactions.
2. Meta-databases – integrating interactions from several primary databases.
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Table 2.2: Expected number of protein interactions vs. known number of protein inter-
actions for human and yeast. The number of known protein interactions has been accumulated
from the in-house interaction databases PiPa which is compiled from integrating six different public
protein interaction databases (see Section 5.1).

Species Known interactions Potential interactome size

Human 81,868
130,000 Venkatesan et al. (2009)

154,000 to 369,000 Hart et al. (2006)
650,000 Stumpf et al. (2008)

Yeast 70,990

13,500 to 22,500 Yu et al. (2008)
16,000 to 26,000 Grigoriev (2003)
25,000 to 35,000 Stumpf et al. (2008); Blow (2009)

75,000 Hart et al. (2006)

3. Prediction databases – combining predicted and experimentally detected interac-
tions.

Primary databases focus on experimentally verified protein interactions from small-
and large-scale studies. The major primary protein interaction databases are the Bio-
logical General Repository for Interaction Datasets – BioGRID (Stark et al., 2006), the
Database of Interacting Proteins – DIP (Salwinski et al., 2004), the IntAct molecular
interaction database – IntAct (Aranda et al., 2010), the Molecular Interaction Database
– MINT (Ceol et al., 2010), the Human Protein Reference Database – HPRD (Prasad
et al., 2009) and the Biomolecular Interaction Network Database – BIND5 (Bader et al.,
2003). Specific characteristic of each database, including size, species and references, are
shown in Table 2.3.
Each database captures the interacting proteins and their species, the original pub-

lication and experimental method(s) that verified the individual interaction. Although
these databases document only experimentally derived interactions, they differ greatly
in scope and content. For instance, IntAct focuses primarily on high-throughput screens,
e.g., Y2H and TAP-MS (see Figure 2.6) whereas HPRD focuses entirely on human in-
teractions taking also small-scale studies into account (Lehne and Schlitt, 2009). Given
the different foci, the interaction data in such databases have little overlap amongst each
other. In fact, when comparing interaction data of the six resources there are only three
human interactions that are contained in all six of them whereas the number of interac-
tions exclusively reported in each database is much larger, e.g., 19,659 in HPRD (Rivas
and Fontanillo, 2010).
Due to the heterogeneity and complementarity in the databases, data sets from differ-

ent databases are often combined to generate more comprehensive data sets (Chaurasia
et al., 2007; Chatr-Aryamontri et al., 2008). However, integrating interaction data from
distinct databases is demanding. For instance, different gene or protein identifiers are
used, even within the same database (Lehne and Schlitt, 2009). Moreover, interaction

5Note, BIND is now part of the Biomolecular Object Network Databank (BOND) and was subsequently
acquired by the company Thompson Reuters.
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data are often provided in many different formats capturing various details. To over-
come this problem the International Molecular Exchange (IMEx) consortium defined an
XML-based proteomics standard, the proteomics standards initiative – molecular inter-
action (PSI-MI, Hermjakob et al. (2004b)), to enable data exchange for improving data
quality and curation. DIP, IntAct, MINT and BioGRID are current members of the
IMEx consortium.
To obtain interaction data from the different sources, meta-databases have evolved to

extract and integrate protein interaction data consistently into single formats (see Fig-
ure 2.10). To date, APID (Prieto and Rivas, 2006), PIANA (Aragues et al., 2006) and
PiPa (in-house database, to appear) represent the most comprehensive meta-databases.
A number of other meta-databases exist, but these focus on specific species (Chaurasia
et al., 2007; Goll et al., 2008) or incorporate other types of interactions, e.g., com-
putationally predicted ones (Jensen et al., 2009; Chen et al., 2009b). Although these
meta-databases provide access to more comprehensive datasets, they do have certain
restrictions:

• First, they often do not allow the complete download of their data. In most cases
their content is only accessible over the web on a per-protein basis, which renders
them useless for systematic large-scale analyses. Even if the database content is
available for download, it often excludes certain sources due to licensing issues.
• Second, many systems employ complex and task-specific data selection procedures,
leading to an incomplete coverage of the integrated sources.
• Finally, meta-databases are often less up to date since the update intervals of these
systems often are irregular and not adjustable by users.

In this work, we used PiPa to integrate interaction data from multiple sources into one
centralized database (see Section 5.1). In contrast to most meta-databases in this field,
PiPa does not perform any semantic integration itself; instead, data from the sources are
integrated as such into the system (for instance, no duplicate detection is performed),
leaving the decision onto which form of aggregation or quality filtering to perform to the
user. Moreover, PiPa features a graphical administration tool for monitoring databases
and for triggering updates allowing the user to control data import and update cycles.
Prediction databases provide relationships between proteins inferred by a variety of

in silico methods combined with experimentally verified interactions. STRING (Jensen
et al., 2009) is one of the most established databases dedicated to combine known and
predicted functional associations, including direct physical and indirect functional in-
teractions. Information from numerous sources are weighted and integrated, including
experimental repositories, computational prediction methods and public text collections,
to map all interaction evidence onto a large set of genomes and proteins. POINT (Huang
et al., 2004) and OPHID (Brown and Jurisica, 2005), on the other hand, have been specif-
ically designed to extend the human interactome using model organism data. Human
protein interactions in these databases are inferred primarily based on available ortholo-
gous interactome datasets, domain-domain co-occurrence, co-expression and functional
similarity of proteins.
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2 Biological Background

Figure 2.10: Overview on meta-databases and their data exchange patterns
(from Klingström and Plewczynski (2010)). Primary protein interaction databases are shown
in blue, pathway databases are represented in green and meta-databases are indicated in red. Three
distinctive approaches to data meta-mining are illustrated. (1) APID, MiMI and UniHI unify
data from source interaction databases to generate a centralized repository. (2) ConsensusPathDB
(CPDB) and Pathways Commons provide a similar service aimed at integrating different pathway
databases. (3) DASMI, in turn, maps to several databases rather than integrating them.

2.3 Protein-Protein Interaction Networks

Binary biomolecular interaction data can be represented as biological networks (see
Figure 2.11). Analyzing such biomolecular networks has become one of the key topics in
systems biology and bioinformatics (Zhang, 2009). Understanding biological networks
at a systems-wide level allows to elucidate basic function, structure and dynamics of the
network as well as the underlying essential mechanisms in living systems (Cusick et al.,
2005).
Systematic studies of protein interaction networks are particularly important for de-

ciphering the relationships between network structure and function (Yook et al., 2004;
Pandey et al., 2010), discovering novel protein function (Sharan et al., 2007), identifying
functionally coherent modules (Spirin and Mirny, 2003; Dittrich et al., 2008) and con-
served molecular interaction patterns (Sharan et al., 2005; Jaeger and Leser, 2007). In
addition, interaction networks have become essential tools for associating proteins with
distinct phenotypes and diseases (Goh et al., 2007; Ideker and Sharan, 2008), as well as
for studying pharmacological drug-target relationships (Berger and Iyengar, 2009).
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Figure 2.11: Visualization of the yeast protein interaction network used in this study.

2.3.1 Basic network nomenclature
Biological networks, in general, present abstractions of complex biological systems
(Barabási and Oltvai, 2004). Nodes within a network commonly represent biomolecules,
e.g., genes, proteins or metabolites. Edges indicate physical or functional interactions,
including genetic interactions, protein-protein interactions, transcriptional binding, bio-
chemical reactions, and many others. The probability or strength of an interaction can
be modeled by assigning weights to the edges.
Depending on the nature of the interactions, edges can be directed or undirected.

In directed networks, interactions between two molecules have well-defined directions,
which represent, for instance, the flow of material from a substrate to a product in a
metabolic reaction, or the flow of information from a transcription factor to the gene
it regulates. In undirected networks, such as protein interaction networks, links only
present mutual binding relationships.
To comply with the common nomenclature from biology and computer science, we

use the term ‘network’ for discussing biological aspects and ‘graph’ when referring to
algorithmic concepts; however, in principle, both terms can be used synonymously.

Basic graph concepts

For computational analysis, biological networks are commonly modeled as graphs, which
allows to analyze the underlying data using graph-theoretical methods. Formally, a graph
G = (V,E) comprises two types of elements, namely nodes V and edges E where an
edge e = (u, v) connects two vertices u and v.
Different data structures are available for representing graphs. The most common are

adjacency (incidence) lists and adjacency (incidence) matrices. The choice of the data
structure depends mainly on its intended application. Adjacency lists, for instance, are
preferred for presenting sparse graphs.
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2.3.2 Properties of protein interaction networks

An important advance toward understanding biological systems is the realization that
biological networks follow basic principles which determine at least partly their structural
and functional properties (Yook et al., 2004). Several graph-theoretical concepts have
been established to study the organization of biological networks on different levels. For
instance, elementary graph measures, such as degree distribution, clustering coefficient
and centrality, can be used to describe global and local network characteristics that
provide insights into network evolution, stability and dynamics (Tyson et al., 2001).
A number of topological features in biological networks overlap significantly with that

in other complex systems, such as the world wide web or social networks. Despite
the difference between these networks, their architecture is determined by few principles
which allow to employ the knowledge from large and well-mapped non-biological systems
to characterize the interwoven relationships in a cell. For instance, small-world property,
scale-free degree distribution and hierarchical modularity are typical features that also
characterize biological networks (Almaas, 2007). In the following, we will introduce
selected topological features that are important for protein interaction networks and for
this thesis.

2.3.2.1 Degree distribution

One of the basic characteristics of a node v is its degree k, generally defined by the
number of links it has to other nodes in the network. The node degree is commonly
used to determine the degree distribution, P (k), which yields the probability that an
arbitrary node has exactly k links. P (k) is computed by determining the number of
nodes N(k) with k = 1, 2, . . . , n links and dividing it by the total number of nodes N
in the network. The degree distribution is an elementary measure to characterize the
topology of a network and allows to distinguish between different classes of networks,
such as random networks, hierarchical networks and, most importantly for us, scale-free
networks (Barabási and Oltvai, 2004).

2.3.2.2 Scale-free topology

Several types of biological networks approximate a scale-free topology which is charac-
terized by a power-law degree distribution. This means, that the probability P (v) of a
node v having k links is P (k) ∼ k−γ , where γ is the degree exponent that ranges between
2 and 3 in most networks (Barabasi and Albert, 1999). An important characteristic of
such networks is their non-uniformity, i.e., most nodes have only few links while few
nodes, so-called hubs, have many links. In particular, the absence of a typical node
degree (or scale) that can be used to describe the nodes within a network characterizes
the scale-free topology.
Two mechanisms are responsible for the emergence of scale-free topologies: growth and

preferential attachment. Growth implies that networks evolve through the successive ad-
dition of new nodes whereas preferential attachment means that new nodes are attached
preferentially to nodes that are already highly connected. Hubs are generated jointly
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through a ‘rich-gets-richer’ mechanism as strongly connected nodes will acquire new links
at a higher rate than less connected nodes which turns them into hubs (Barabási and
Oltvai, 2004).
Scale-free organization is a typical feature of protein interaction networks. Most

proteins participate in only few interactions while few proteins participate in dozens.
Growth and preferential attachment in interaction networks are thought to have a com-
mon evolutionary origin: gene duplication (Pastor-Satorras et al., 2003). The duplication
of a gene yields two identical gene products. This induces growth as new nodes are added
to the network. Further, duplicated gene products will interact with the same proteins as
their ancestor proteins due to their structural similarity. Thus, proteins interacting with
duplicated proteins acquire additional links whereas highly connected proteins are more
likely to establish new interactions to duplicated proteins than less connected proteins.
Power-law distribution and scale-freeness seem to be common characteristics of bio-

logical networks. Yet, it is important to point out that other distributions with simi-
lar qualitative features, i.e., the existence of hub nodes, might explain their topological
properties and their dynamical behavior (Lima-Mendez and van Helden, 2009). Such dis-
tributions include, for instance, generalized Pareto law, truncated power-law, stretched
exponential distribution, geometric distribution, or a combination of the above (Khanin
and Wit, 2006).

2.3.2.3 Network centrality

Network centrality is a quantitative measure that determines the relative position of a
node in a network, which in turn can be used to assess its relative importance in the
global network organization. Centrality represents a node property that quantifies the
structural impact of a particular node on the processes within a network. Yet, the defi-
nition of ‘central’ varies depending on the context. In biological networks, for instance,
centrality analysis is frequently used to identify interesting molecules within a network
that are essential for biological processes, metabolic pathways or diseases. Network cen-
trality, such as proximity and connectivity, offer effective means for identifying proteins
that are either essential for viability or implicated in human diseases (Estrada, 2006;
Lage et al., 2007; Navlakha and Kingsford, 2010). Highly central proteins in interaction
networks, for instance, are thought to be of essential functional and evolutionary impor-
tance as the deletion of such nodes is associated with lethality (Jeong et al., 2001; Fell
and Wagner, 2000).
The notion of centrality can be formally defined as a function C that assigns numerical

values C(v) to every node v ∈ V in a given graph G. When considering the ranking of
the nodes in G, a node u is defined to be more central, i.e., important, than another
node v if and only if C(u) > C(v) (Koschützki and Schreiber, 2008). Diverse node and
edge characteristics can be used to determine centrality. Some emerged from biological
sciences while others have been transferred from different fields, such as social network
analysis. Traditional measures for network analysis, e.g., degree, closeness, betweenness
and eigenvector centrality, are defined as follows (Junker et al., 2006):
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• Degree centrality is based on the connectivity of a node v. Given the degree of v,
its degree centrality can be calculated as

CD(v) = degree(v). (2.1)

CD determines the amount of direct influence a particular node has on the network.
• Closeness centrality measures the centrality of a node v according to its distance to
all other nodes in the network. The distance between two nodes δ(v, u) is defined
as the length of the shortest path between them. Closeness is also often defined as
inverse distance of v to every other node in the network:

CC(v) = 1∑
u∈V \v δ(v, u) . (2.2)

The rational behind CC is that important nodes are typically close to many other
nodes in the network to enable a quick communication.
• Betweenness centrality is based on the fraction of shortest paths going through a
node v. It is formally defined as the number of shortest paths between two nodes,
s and t, that pass v, σst(v), divided by the total number of shortest paths from s
to t, σst:

CB(v) =
∑
s∈V \v

∑
t∈V \v

σst(v)
σst

(2.3)

CB measures the control of a node over the flow of information within a network.
Nodes that occur on many shortest paths between other nodes, i.e., as bridges
between pairs of nodes, are considered to be more central.
• Eigenvector centrality measures the relative importance of a node within a network
based on the assumption that not all relationships are equally important. The
eigenvector centrality of a node v is proportional to the sum of the centralities of
its neighbors u.

CE(v) = 1
λ

∑
u∈N(v)

CE(u) (2.4)

where N(v) denotes the set of neighbors of v and λ is a constant. Links to highly
central nodes contribute more to the eigenvector centrality of a node than links to
less central nodes. A common variation of this measure is the PageRank central-
ity (Brin and Page, 1998).

Table 2.4 illustrates the different ranking outcomes for an example graph in Figure 2.12.
The most important nodes according to degree centrality are F and K. The former node
has the highest eigenvector centrality while the latter one is most important with re-
spect to betweenness centrality. In contrast, the highest closeness centrality is assigned
to L. The choice of centrality measure depends mainly on the biological network and the
underlying question that is studied. Some measures can only be applied to undirected
networks while others perform better on denser networks (Koschützki and Schreiber,
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Figure 2.12: Example graph to illustrate the differences in the outcomes of the in-
dividual centrality measures. As specified in Table 2.4, the most important nodes according
to degree centrality are F and K. The former node has the highest eigenvector centrality while
the latter one is most important with respect to betweenness centrality. In contrast, the highest
closeness centrality is assigned to L.

2008). In this work, we investigate the four discussed centrality measures (see Sec-
tion 7.2). Eventually, we apply betweenness centrality to determine the importance of a
node in a network as we are particularly interested in identifying bottlenecks, i.e., nodes
controlling the flow of information within networks.

Table 2.4: Ranking of the vertices of the example graph in Figure 2.12 according to
degree, closeness, betweenness and eigenvector centrality. The five most central nodes are
listed for each measure.

Centrality measure

Rank Degree Closeness Betweenness Eigenvector

1 F/K L K F
2 D F F D
3 L K L L
4 C/G D D K
5 A G G C

2.3.2.4 Modular organization of networks

Modular organization is another important topological feature of biological networks.
Complex networks often exhibit modular structures defined by groups of nodes, so-
called modules (or cluster), which are more densely connected within each other than
across these modules (Newman, 2006). Structural modularity can be divided into two
types: classical and hierarchical modularity. The first concept indicates that most nodes
within such modules have approximately the same number of links. The latter implicates
a power-law distribution of the node links as, for instance, observed in most biological
networks.
Modularity in biological networks is presumed to reflect the modular organization of

complex cellular function (Hartwell et al., 1999). Highly interlinked subnetworks are
believed to represent coherent functional units, e.g., cellular components and their inter-
actions, that accomplish particular functions (Ravasz and Barabási, 2003). In protein

35



2 Biological Background

interaction networks, two types of functional modules can be distinguished: protein
complexes and dynamic modules (Spirin and Mirny, 2003).

• Protein complexes comprise groups of proteins that interact with each other at
the same time and place, e.g., transcription factor complexes or RNA splicing
machinery.
• Dynamic modules, on the contrary, involve proteins that participate in a particular
cellular process through consecutive interactions without being co-localized in time
and space, such as the CDK/cyclin module responsible for cell proliferation and
MAP signaling cascades.

Classifying functional modules into complexes and dynamic modules requires temporal
and spatial information which are rarely captured in static protein interaction data.
Thus, further evidence, e.g., co-expression data, are typically integrated to distinguish
dynamic modules from static complexes (Lin et al., 2010). In this work, we will focus
on protein complexes as functional modules in protein interaction networks.

2.3.2.5 Identification of functional modules

The existence of topological modules in cellular networks is commonly reflected by a high
clustering coefficient. The clustering coefficient Cv of a node v quantifies its tendency
to cluster based on the connectivity of its neighbors. Cv is defined as follows:

Cv = 2Ev
Nv(Nv − 1) (2.5)

where Nv denotes the number of neighbors in the direct neighborhood of v and Ev equals
the number of interactions between these neighbors. Cv equals 1 if all neighbors of v
interact with each other, and 0 if there are no interactions between the neighbors of
v. Based on Cv, the average cluster coefficient C̄ of a network can be computed to
determine the overall tendency of the nodes to form cluster:

C̄ = 1
|V |

∑
v∈V

Cv. (2.6)

Identifying biologically relevant modules in interaction networks is far more challenging
as the concept of modules does not imply clear boundaries between the modules or
distinctive module sizes. Distinct methods have been proposed for decomposing networks
into functional modules by exploiting either the network topology alone or in combination
with functional genomic data (Sharan et al., 2007).
Cluster analysis is a common methodology for extracting functional modules from

interaction networks by dividing proteins into groups based on common properties.
Distance-based clustering approaches consider different distance measures while graph-
based techniques exploit the network topology. Common clustering techniques include
the identification of k-cores (Bader and Hogue, 2003), restricted neighborhood search
clustering (King et al., 2004), and Markov clustering (Pereira-Leal et al., 2004). More
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advanced techniques, such as co-clustering, integrate the similarity of gene expression
patterns and network topology into a combined distance measure that is used for hierar-
chical clustering (Hanisch et al., 2002). Network alignment can also be used to identify
functional modules through evolutionary conserved modules. These methods combine
the interaction topology and protein similarity to detect protein complexes and path-
ways that are evolutionarily conserved across different species (Jaeger and Leser, 2007;
Kalaev et al., 2008).
The detected functional modules can be validated experimentally or by comparison

to well-known manually curated protein complexes and modules (Mewes et al., 2002;
Ruepp et al., 2010). However, it is difficult to assess to which extent extracted clusters
reflect true modules within an organism.

2.4 Evolution of protein interaction networks

The evolution of biological networks contributed largely to the diversification of living
organisms. On an evolutionary time-scale protein interaction networks evolved through
two fundamental mechanisms: (i) gene duplications and (ii) gain and loss of interactions
through mutations (Berg et al., 2004). The first mechanism contributes primarily to
network growth while the latter one accounts for functional divergence.
The duplication of a single gene generates a pair of genes whose products have initially

identical binding partners. Duplication events are followed either by gene silencing in
which one of the duplicates is immediately inactivated upon formation or by functional
divergence of the duplicates (Berg et al., 2004). About 90% of the duplicated genes in
yeast are silenced directly after duplication indicating that gene duplication itself does
not govern network evolution (Wagner, 2003). Yet, gene duplications occur frequently
in eukaryotes at high rates, which accounts for the fact that up to 50% of a eukaryotic
genome may consist of duplicate genes (Lynch and Conery, 2000).
Functional divergence after duplication, i.e., acquiring (partially) new function, re-

sults from changes in the interaction patterns of the duplicated proteins. Point mu-
tations in their genes affect the interface of the interacting proteins leading to gain
and loss of protein interactions. Although duplicated proteins may share interaction
partners, the fraction of duplicates without common interaction partners is significantly
higher (Makino and Gojobori, 2007). Empirical studies in yeast show that evolutionary
rates of duplicates are considerably accelerated shortly after duplication due to their dif-
ferentiation (Lynch, 2007). In consequence, the number of shared interactions between
duplicates decreases according to their evolutionary distance (Wagner, 2001). Different
studies indicated that the prevalence of degenerative mutations, i.e., mutational loss
of interactions after gene duplications contributes most to the diversification (Wagner,
2003). Moreover, interactions are often lost asymmetrically, where one of the duplicates
loses most of its original interactions while the other retains them.
The evolutionary rate of proteins depends on their interaction strength, i.e., transient

and stable interactions (see Section 2.2). Proteins involved in the formation of stable
complexes have been shown to evolve at similar rates (Fraser et al., 2002). Residues in
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their interfaces evolve at slower rate, and appear to co-evolve. This means, substitutions
in one protein induce complementary alterations in its interaction partner to preserve
the functionality of the interaction (Mintseris and Weng, 2005). In contrast, proteins
participating in transient interactions show little evidence of co-evolution and thus are
presumed to evolve at different rates.
Overall, gain and loss of protein interactions is the primary evolutionary force which

shapes the structure of interaction networks while gene duplications affect, in first place,
its size (Berg et al., 2004).
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Prediction

The following chapter provides a comprehensive overview on approaches to protein func-
tion prediction. We start with a general introduction on protein function emphasizing
its importance for the post-genomic era. Subsequently, we briefly discuss traditional
experimental methods for elucidating protein function and highlight their limitations
for characterizing human proteins. Section 3.2 surveys established approaches that have
been developed to circumvent technical and ethical drawbacks of experimental meth-
ods by computational means. We explain the most important concepts behind common
sequence-, structure and genome-based function prediction methods. Section 3.3 focuses
on the principles of network-based function prediction which is a central theme in this
thesis. We summarize the benefits and limitations of the distinct methodologies to cat-
egorize our proposed protein function prediction approach (see Chapter 4) within the
scope of network-based prediction methods.

3.1 Protein function

The large number of genome sequencing projects provide a wealth of knowledge on
hundreds of organisms. The interpretation of this wealth of data is a fundamental
challenge of the post-genomic era. Completing a new genome is commonly followed by a
process known as genome annotation to predict, among others, its protein coding regions
and to associate biological information to them (Stein, 2001). Elucidating the functional
role of each individual gene product is one of the major challenges in molecular biology
and bioinformatics, fundamental to understand biological processes, cellular mechanisms,
evolutionary changes and the onset of diseases (Eisenberg et al., 2000; Frishman, 2007).
Traditionally, protein function has been determined for single proteins, one at a time,

using classical biochemical and molecular biological experiments. Function derived from,
e.g., knock-out experiments, targeted mutations and functional assays (Whisstock and
Lesk, 2003), has been commonly reported in the biomedical literature, which in turn
is assessed by database curators. Manual curation of such experimental data provides
comprehensive and accurate knowledge for genes/proteins (Dimmer et al., 2008) which
is widely considered as gold standard for functional annotation.
However, experimental characterization of protein function cannot compete with the

pace at which genomic data is being produced (Frishman, 2007). Performing functional
assays for each uncharacterized gene in every genome is technically and ethically impos-
sible. This has several reasons:
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• Even detailed biochemical studies often cannot identify the full repertoire of func-
tional activities (Whisstock and Lesk, 2003).
• Conclusions from in vitro experiments might be limited as particularly eukaryotic
proteins cannot be studied in conditions close to their natural environment.
• Knock-out experiments in human beings are prohibited for the obvious ethical
reasons.

Annotation of protein function becomes more and more a bottleneck in the progress
of biomolecular sciences. The gap between available sequence data and functionally
characterized proteins is widening (Frishman, 2007). Even for the best-studied model
organisms, such as yeast and fly, a substantial fraction of proteins is still uncharacter-
ized (Sharan et al., 2007). In attempt to close that gap, numerous high-throughput
methods have been developed to study the basic properties of gene products system-
atically. Techniques such as DNA microarrays (Schena et al., 1995; Lockhart et al.,
1996), yeast two-hybrid systems (Fields and Song, 1989), RNA interference (RNAi) (Fire
et al., 1998; Kamath and Ahringer, 2003) and large-scale systematic deletions (Que and
Winzeler, 2002) generated a variety of data sets. However, the huge amount of data,
accumulated over the last years, rendered biological discovery via manual analysis im-
possible (Baumgartner et al., 2007; Dimmer et al., 2008).
Facing these circumstances, scientists turn increasingly toward advanced in silico

methods for annotating the vast amount of biological data. Numerous approaches have
been developed exploiting the different biological data for assigning functions to unchar-
acterized proteins. Note that today, functional annotation of newly sequenced genomes
relies primarily on computational methods (Friedberg, 2006; Pandey et al., 2006; Frish-
man, 2007; Sleator and Walsh, 2010).
In the following sections, we present distinct computational methodologies for predict-

ing protein function from various types of input data. Before we introduce the different
approaches, we will first define biological function and the means of describing it by
using standardized machine readable ontologies, such as the Gene Ontology.

Definition of protein function

Function is a highly context-sensitive concept covering all functional activities a gene
product may be involved in (Sleator and Walsh, 2010). When speaking of function, one
might refer to the molecular, biochemical, cellular, developmental or physiological char-
acteristics of a protein. For instance, the function of a protein kinase, in a biochemical
aspect, involves the phosphorylation of the hydroxyl group of specific substrates. In a
physiological aspect, the kinase is part of distinct signaling pathways, where proteins
both phosphorylate, and are phosphorylated by, interaction partners. A mutation in
this kinase might implicate a disease, so yet another functional aspect is a phenotypic
one. Clearly, the exact meaning of function depends on the biological context in which
it is used (Rost et al., 2003; Friedberg, 2006).
Because of its various facets, the “functions” under study need to be clearly defined

to be subject of computational studies. Specifying function in a concise manner is
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difficult as it should reflect the complexity of the concept. In first place, functional
information is typically not available in machine-readable format but described in the
scientific literature using natural language. However, for studying and inferring function
computationally, function needs to be presented in a controlled and well-defined format.
To this end, different vocabularies and annotation schemes have been devised to stan-

dardize the description of protein function, typically in a hierarchical fashion starting
with generic function and progressing toward more specific function. The first system-
atic scheme, the Enzyme Classification (EC), was proposed in 1992 to classify enzymes
based on their enzymatic activity using a four-level hierarchy (Nomenclature Committee
of the International Union of Biochemistry and Molecular Biology, 1992). Several other
functional classification systems emerged (Ruepp et al., 2004; Keseler et al., 2009), often
in context with individual species or protein families (see Rison et al. (2000); Ouzounis
et al. (2003) for an overview).

Gene Ontology

In this work, protein function is defined by the Gene Ontology (GO) (Ashburner et al.,
2000), the most widely adopted vocabulary for representing function in a systematic
manner. GO consists of two components: the ontology itself, defined by concepts and
relationships between concepts (GO ontology); and the associations between gene prod-
ucts and concepts (GO annotations). GO covers three major aspects of function, each
structured as an independent subontology:

• Molecular function describes the fundamental biochemical activities of a gene pro-
duct at the molecular level.
• Biological process describes the series of molecular events or functions that are
crucial for the functioning of cells, tissues, organs, and organisms.
• Cellular component characterizes the compartments of a cell or its extracellular
environment.

Currently, there are about 32,000 concepts defined in GO but more will be included as
the ontology continues to mature, see Table 3.1.

Table 3.1: Gene Ontology statistics for its three categories, molecular function (MF),
biological process (BP), and cellular component (CC). Data have been retrieved from the
Gene Ontology website (January 2011) and its archives (January 2005 and April 2008).

Date Molecular Function Biological Process Cellular Component

2005 (Jan) 6,962 8,924 1,397
2008 (Apr) 8,260 14,659 2,064
2011 (Jan) 8,933 20,188 2,796

Each subontology is modeled as a directed acyclic graph (DAG) where nodes represent
GO terms and edges denote the different relationships between them (see Figure 3.1).
Initially, two relationship types have been used to link terms: is a and part of. GOA
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Figure 3.1: Example of the Gene Ontology. Visualization of a small excerpt of the GO
subontology biological process, i.e., showing the GO term cell cycle, including its parent terms,
children and the different types of relationships between them.

is a GOB means that GOA is a subtype of GOB, e.g., mitotic cell cycle is a subtype of
cell cycle which in turn is a subtype of cellular process (see Figure 3.1). The transitivity
of this relation implies that mitotic cell cycle is also a subtype of cellular process. Part
of indicates part-whole relationships where a relation is only added if a concept GOB is
necessarily part of another concept GOA. For instance, whenever cell cycle process exists,
it is part of cell cycle. Hence, the presence of the first term implies the presence of latter
one. The part of relation has been recently extended by three other types of relationships
to distinguish gene products that play more regulatory than direct roles in biological
processes (Gene Ontology Consortium, 2010). Regulates and its sub-relations positively
regulates and negatively regulates are similarly used to specifically mean necessarily-
regulates.
Associating gene products with GO annotations can be performed either manually

by database curators or automatically through prediction methods. Each association
includes an evidence code referencing the type of information the annotation is based
upon (Rhee et al., 2008). Such evidence codes can be broadly divided into four categories:
experimental, computational analysis, author statements, and curatorial statements6.
Out of the many different codes, only one is not assigned by curators but automated
methods. Annotations without curatorial judgment are associated with the ‘inferred
from electronic annotation’ (IEA) evidence code.
Annotations derived manually from direct experimental evidence are generally thought

to be of higher quality than those inferred from computational or indirect evidence. How-
ever, over 98% (September 2009) of the annotations in GO are automatically assigned
and have not been curated yet (Gene Ontology Consortium, 2010). To ensure a high

6http://www.geneontology.org/GO.evidence.shtml
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quality basis for function prediction, we only use annotations with curatorial judgment
throughout this work and disregard annotations with evidence code IEA.
In summary, GO circumvents the primary shortcomings of natural language descrip-

tions, namely ambiguity and lack of structure, by defining a set of terms and relationships
in a controlled and structured manner (Azuaje et al., 2006). This enables the analysis
of gene products based on their annotations for inferring functional relationships and
common characteristics beyond the traditional sequence-based approaches as we will
demonstrate in the following chapters.

Other functional categories

Other functional classification schemes, such as the Yeast Proteome Database (YPD,
Costanzo et al. (2001)) and the Functional Catalogue (FunCat, Ruepp et al. (2004)), have
been widely used in the past for manual and automatic genome annotation as well as for
systematic analyses of large-scale transcriptome and proteome data. YPD, for instance,
covers, similar to GO, three categories of yeast protein function: biochemical function,
cellular role and subcellular localization. However, the different categories have only 57,
41 and 22 members, respectively. FunCat, in turn, represents a hierarchically structured,
species-independent classification system with 28 categories describing general protein
features such as metabolism, cellular transport and transcription. The distinct main
categories cover more than 1,300 subcategories which enable a more detailed functional
characterization of proteins than provided by YPD.
The size and complexity of ontologies often influences the performance evaluation

of computational methods. Evaluating, for instance, function prediction methods on
small ontologies increases the likelihood to predict correct terms purely by chance as
compared to evaluations using GO in which methods have to choose between up to
20,188 functional categories. Previously reported results on the YPD scheme dropped
significantly when applying the same methods to GO (Chua et al., 2007; Jaeger et al.,
2010a) (see Section 5.4).

3.2 Computational approaches for protein function prediction
Different data mining and machine learning techniques have been employed to systemat-
ically exploit genomic and large-scale experimental data that depict distinct functional
protein characteristics. Early approaches used mostly protein sequences as basis. Sub-
sequent methods utilized other types of biological data, including protein structure,
phylogenetic and gene expression data, protein complexes and interaction networks.
Function prediction methods can be loosely divided into sequence-, structure- and

genome-based approaches (see Figure 3.2). Independently of the data used, most meth-
ods rely on the identification, characterization, and quantification of similarities between
a protein of interest and proteins for which functional information is available. The
challenge of each method is to capture the true relation between the respective protein
information and its functional characteristics. This can be typically achieved by (1)
inferring relationships from characterized proteins that permit the transfer of functional
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Figure 3.2: Overview on the different protein function prediction approaches
(from Sleator and Walsh (2010)). The large arsenal of methods can be loosely divided into
sequence-, structure- and genome context-based approaches.

annotations and (2) elucidating the correlation between the detected similarities and the
actual level of functional relatedness (Loewenstein et al., 2009).
In the following, we briefly discuss the most important principles behind the different

strategies. We refer the reader to Pandey et al. (2006) for a more comprehensive survey
on automated protein function prediction. In Section 3.3 we provide a detailed overview
on methods which rely on protein interaction data since our method is based the same
data source for inferring function (see Chapter 4).

3.2.1 Sequence-based approaches
Protein sequences provide the most fundamental information about proteins as their
amino acid residues define the structural and functional characteristics of proteins. There
are two basic approaches for predicting protein function from amino acid sequences alone:
overall sequence similarity and sequence signature patterns.

3.2.1.1 Sequence similarity

Sequence similarity results either from convergence (similarity without common evolu-
tionary history) or descent from a common ancestor, also known as homology. Although
similarity due to convergence, often limited to small gene regions, can be useful for some
functional predictions (Henikoff et al., 1997), similarity-driven prediction methods are
usually based on significant similarities originating from homology.

Homology-based transfer Inferring protein function from homology is based on the as-
sumption that highly similar sequences evolved from a common ancestor and thus have
similar, if not identical, functional properties (Whisstock and Lesk, 2003). Homologous
sequences can be retrieved from databases using BLAST (Altschul et al., 1997) and func-
tion is transferred from the highest scoring homolog(s) to the protein of interest (Tomb
et al., 1997).
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Albeit the concept is straightforward, homology-based function prediction has severe
limitations and systematic errors associated with this paradigm have become increasingly
apparent in the databases (Valencia, 2005). Gene duplication, domain shuffling, moon-
lighting proteins, evolutionary divergence in distantly related species and propagation of
incorrect annotations contribute primarily to erroneous function prediction (Friedberg,
2006; Punta and Ofran, 2008).

Orthology-based transfer An important aspect in refining sequence-based function
prediction is the distinction between orthologous and paralogous sequences: orthologs
originate from a common ancestor through speciation events, while paralogs result
from gene duplications within the same genome (Fitch, 1970). Both concepts are well-
established, and have been further extended to describe more complex events associated
with extensive gene duplications commonly observed in eukaryotic species (Dolinski and
Botstein, 2007). Paralogs can be further classified into out- and in-paralogs, denoting
genes that have been duplicated either before or after the speciation event, respec-
tively (Sonnhammer and Koonin, 2002). Orthologs and in-paralogs are more likely to
retain equivalent or similar function over evolutionary time, while (functionally redun-
dant) out-paralogs have diverged in their functions, e.g., through point mutations and
domain recombinations (Li et al., 2003b; Koonin, 2005).
Identifying orthologs is particularly challenging for higher eukaryotes due to their

larger genome size, the presence of large protein families, the complexity of protein
domain architectures and extensive gene duplications (Dolinski and Botstein, 2007). To
address these difficulties, distinct strategies have been employed to distinguish orthologs
and in-paralogs from out-paralogs using, for instance, phylogeny, evolutionary distance
metrics and bi-directional best hits followed by sequence clustering (Alexeyenko et al.,
2006). Depending on their concepts these methods differ in their ability to distinguish
orthologs from paralogs which results either in small but functionally pure groups or
larger groups that may include out-paralogs.
Deriving functional annotation from the closest ortholog(s) improves the reliability of

function assignment considerably (Gabaldón and Huynen, 2004). Yet, most methods are
still limited in their predictive power as sequence clustering classifies levels of similarity
rather than accurately infers evolutionary relationships (Eisen et al., 1998). Moreover,
the coverage provided by identifiable orthologs tends to be smaller than the one achieved
by homology detection (Lee et al., 2007).

3.2.1.2 Sequence patterns

Proteins also can be classified by considering only locally conserved sequence patterns,
instead of complete sequences. Proteins with related functions but diverged sequences
usually share one or more sequence patterns that determine their structure and func-
tion (Punta and Ofran, 2008). Such patterns may suffice to preserve the function of the
protein even if the sequence evolved further. Also, non-homologous proteins might have
acquired the same functional motif convergently (Friedberg, 2006).
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Several computational tools extract common distinctive features, i.e., motifs, domains
or patterns, from functionally related sequences and provide them in large repositories,
such as Pfam (Finn et al., 2010). Newly sequenced proteins can be compared against
these resources and, if well-characterized motifs are found, the proteins can be associated
to the corresponding family. Functional annotation are then implied by the presence
of a particular domain based on curated mappings between domains and GO terms,
e.g., Interpro2GO (Camon et al., 2005). More advanced methods use, for instance,
classification models (Hayete and Bienkowska, 2005), rule-based predictors (Schug et al.,
2002) or probabilistic approaches (Forslund and Sonnhammer, 2008), to predict protein
function at the domain level.

3.2.2 Structure-based approaches

The structure of a protein is usually more informative than the underlying amino acid
sequence as it is more conserved, particularly in distantly-related proteins (Whisstock
and Lesk, 2003). Thus, structural information allows to elucidate functional relationships
which could not have been detected even with the most sensitive sequence analysis
methods (Skolnick et al., 2000).
Structural data can be utilized in various ways (Watson et al., 2009). Similar to

sequence-based methods, two methodological concepts can be distinguished: global and
local structural similarity.

• Global similarity: Global methods proceed by searching for structurally similar
proteins associated with function. Structural alignment tools (Kolodny et al., 2005)
compare newly determined structures against structural classification databases or
the Protein Data Bank (PDB, Berman (2008)). Proteins with significant structural
similarity are likely to share similar or identical functions as structural similarity
is a strong indicator for similar function (Shapiro and Harris, 2000).
• Local motifs: Proteins with low structural similarity or novel structures are often
neglected when considering global similarity for function prediction (Shapiro and
Harris, 2000). For such proteins functional information can be deduced by focusing
on local structures (Friedberg, 2006). Structurally defined motifs, commonly de-
rived from functionally related proteins, describe conserved functional aspects, such
as potential binding or active sites (Punta and Ofran, 2008). Different databases
have evolved for searching and recognizing structural features in a protein of in-
terest. Functional knowledge associated with such features can be integrated into
functional predictions (Jones and Thornton, 2004; Polacco and Babbitt, 2006).

Functional inference from structure is a promising approach, yet, with a limited scope
as only ∼64,500 experimentally solved structures are currently available in the PDB
(March 2011). On the other hand, particularly alignment-based methods suffer from
analogous limitations as their sequence-based counterparts. Similar structure, for in-
stance, does not always imply similar function and vice versa (Punta and Ofran, 2008).
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3.2.3 Genome-based approaches
Proteins without structural or sequence similarity but with related functions are pre-
sumed to share other features that indicate functional association. Non-homology-based
methods use, for example, subcellular localization (Jensen et al., 2002) while genome-
based methods exploit complementary data, such as phylogenetic, gene expression or
protein interaction data (Galperin and Koonin, 2000).

3.2.3.1 Gene expression-based prediction

Genes with common biological function tend to exhibit similar expression patterns across
different experimental conditions (Eisen et al., 1998; Quackenbush, 2006). Based on
this assumption, two techniques are commonly applied for function prediction: cluster-
ing (D’haeseleer, 2005) and classification (Asyali et al., 2006). The former technique
clusters genes into different functional classes using similarity (or distance) measures
defined on the expression behavior, while the latter considers function prediction as a
classification problem. Once a group of co-expressed genes has been identified, functional
annotation can be inferred using the ‘guilt-by-association’ principle (Walker et al., 1999).
Genes, co-expressed with genes involved in particular cellular processes, are assigned to
the same processes using, for instance, the most common annotation or the annotation
of the nearest neighbor in the respective cluster (Li et al., 2006; Miozzi et al., 2008).

3.2.3.2 Phylogenetic data

Protein function changes as a result of evolution. Hence, several approaches attempt to
reconstruct the evolutionary history of gene products to facilitate the inference of protein
function. For analyzing protein function from an evolutionary perspective, evolutionary
knowledge is commonly exploited in terms of phylogenetic profiles and phylogenetic
trees (Bittar and Sonderegger, 2009).

• Phylogenetic profiles represent the evolutionary history of a protein by indicating
whether it is present or absent in a set of genomes. Proteins with highly similar
profiles are expected to be functionally related (Pellegrini et al., 1999). Thus,
function can be inferred by matching the phylogenetic profile of a protein of interest
to those with known function.
• Phylogenetic trees can be used to encode evolutionary information (Sjölander,

2004). In general, a phylogenetic tree is constructed from homologous sequences.
The tree is overlaid with annotations and its topology is used to distinguish or-
thologs from paralogs. Protein function is then inferred based on the orthologs
identified by this process (Brown and Sjölander, 2006).

Function prediction based on phylogenetic profiles (Date and Marcotte, 2005) or
trees (Engelhardt et al., 2009) has been shown to perform significantly better than
homology-based approaches (Marcotte et al., 1999a). However, phylogenomic inference
is not often used in practice, most likely due to the preceding construction of phyloge-
netic trees. This process is more complicated than simple database searches as it requires
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more expertise and computational resources making it impractical for high-throughput
applications (Brown and Sjölander, 2006).

3.3 Network-based function prediction
An important source for functional information is provided by protein interaction data.
Protein interactions depict, in contrast to sequences, a complementary type of function
describing the role of a protein within cells rather than its specific biochemical activity.
Further, interaction partners often share similar function. Therefore, protein interaction
data are ideally suited to form the basis for function prediction methods (Sharan et al.,
2007).
A wide range of methods has been developed for studying protein interaction networks

in order to predict protein function (Sharan et al., 2007). Most of them rely on the
concept of guilt-by-association, where proteins are annotated based on the function of
their interaction partners. Network-based prediction approaches can be categorized into
two main classes (see Figure 3.3):

1. Direct prediction methods infer novel functions for a protein by transferring known
functions from directly or indirectly interacting proteins. This may be achieved by
studying the set of neighbors (Schwikowski et al., 2000), considering the position
of the protein within its neighborhood (Huynen et al., 2003), or looking at the
position of the protein in the entire interaction network (Vazquez et al., 2003;
Karaoz et al., 2004).

2. Module-based methods assign functions to proteins by first computing clusters (or
modules) within the protein network (Bader et al., 2003). Based on the hypothesis
that cellular function is organized in a highly modular manner (Hartwell et al.,
1999), all members of a cluster are assigned annotations that are enriched within
the module (Sharan et al., 2005).

In the following, we will provide a short overview on the basic concepts of direct and
module-based methods. A more detailed description of selected approaches can be found
in the Related Work of Chapter 4.

3.3.1 Direct prediction methods
The rational behind direct prediction methods is the correlation between network and
functional distance: the closer two proteins are in a network, the more similar are their
functional annotations (Sharan et al., 2007). Direct methods differ primarily in whether
they utilize local or global properties of the interactome to discern and exploit this
correlation.

3.3.1.1 Local approaches

Local approaches utilize the close neighborhood of a protein to transfer the most pre-
dominant function among these neighbors to the protein of interest (Schwikowski et al.,
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Module-assisted annotation scheme Direct annotation scheme 

Figure 3.3: Direct versus module-based approaches for functional annotation. The
scheme illustrates the principles behind the two basic network-based approaches for function pre-
diction (adapted from Sharan et al. (2007)). Proteins with known functions are indicated by different
colors and proteins without functions are white. Direct prediction methods (left) infer functions
for uncharacterized proteins based on their direct and indirect neighbors. Module-based methods
(right), first identify modules based on their density and associate proteins then with functions that
are prevalent in the module.

2000). More advanced methods move beyond the direct neighborhood and consider
also the local network topology, i.e., by assigning different weights to direct and distant
neighbors (Hishigaki et al., 2001; Chua et al., 2006).
Though the neighborhood approach is straightforward, it suffers from several limita-

tions. For instance, the predictive power of local methods is often limited as interaction
and/or annotation data are often sparse. The presence of contradictory annotations
among neighbors hinders the derivation of coherent predictions and thus compromises
the quality of predictions.

3.3.1.2 Global approaches

Global approaches are commonly based on the same concepts as local methods. However,
they also take the global network topology into account, usually by computationally more
expensive and less intuitive transfer algorithms which employ graph theory and iterative
stochastic approaches. Such methods aim to optimize, either directly or indirectly, an
objective function which is defined on the entire network determining properties the
network should possess once all its proteins have been characterized (Pandey et al.,
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2006).
Cut-based approaches, for instance, minimize the number of protein interactions across

different functional classes or maximize the functional similarity among neighboring pro-
teins in a network (Vazquez et al., 2003; Karaoz et al., 2004). Flow-based approaches
simulate the spread of function throughout a network by measuring the amount of func-
tional flow each uncharacterized protein receives during the simulation (Nabieva et al.,
2005) while probabilistic approaches determine the likelihood that a protein performs a
particular function depending on the number of neighbors featuring this function and
those that do not (Deng et al., 2003).
Global approaches circumvent a number of limitations associated with neighborhood-

based methods. Although these techniques are presumed to provide a substantial advan-
tage over the simple guilt-by-association rule, several studies suggest that global methods
do not significantly improve on the simpler local approaches (Murali et al., 2006; Chua
et al., 2006). These inconsistent observations emphasize the need for common annotation
benchmarks and evaluation methodologies to assess the growing number of functional
prediction systems.

3.3.2 Module-based prediction methods

This class of prediction methods is based on the hypothesis that cellular functions are
organized in a highly modular manner (see Section 2.3.2.4). Module-based methods iden-
tify first modules (or cluster) within an interaction network that are likely to represent
functional units and associate then functions to the proteins within the module.
Module-based methods differ mostly in their module detection approach; identify-

ing functional units is often their primary intention rather than functional assignment.
Most methods use the assumption that proteins within modules are more densely con-
nected than proteins in different modules for identifying modules (Spirin and Mirny,
2003). As discussed in Section 2.3.2.5, graph clustering, hierarchical clustering and
decomposing protein interaction networks according to topological properties or evolu-
tionary conservation are common approaches for module detection. A systematic evalu-
ation of several network clustering methods, namely NetworkBlast (Kalaev et al., 2008),
CFinder (Adamcsek et al., 2006), MCL (Enright et al., 2002), DPClus (Altaf-Ul-Amin
et al., 2006), MCODE (Bader and Hogue, 2003) and SpectralMode (Newman, 2006) re-
vealed substantial differences (Song and Singh, 2009). NetworkBlast and CFinder, for
instance, have been shown to discover high quality modules within dense and well-studied
interactomes while MCL is more applicable for very sparse and incomplete interaction
networks. Overall, there is no clustering approach which is able to consistently outper-
form the other methods.
Once a module is identified, simple strategies are usually used for predicting function

within the module. For example, functional annotations shared by the majority of the
module’s proteins can be transferred to the uncharacterized proteins in the module.
Alternatively, the overrepresentation of a function can be considered using, for instance,
hypergeometric distribution. Functions enriched in a module, i.e., having a p-value below
some threshold, are then associated with all members in the module (Sharan et al., 2005).
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3.4 Conclusion
Direct and module-based function prediction methods have their benefits and their draw-
backs as summarized in Table 3.2. To the best of our knowledge, no systematic com-
parison of network-based function prediction including both methodologies has been
performed yet.
Interaction-based prediction methods provide a better coverage than module-based

approaches but are more sensitive to the high level of false-positives and false negatives
in current interaction data sets (von Mering et al., 2002; Hart et al., 2006). Module-
based methods are more robust to missing or wrong interactions, but are often only able
to predict function within dense regions of a species network disregarding, for instance,
chain-like pathways. This largely reduces their coverage (Bader et al., 2003; Spirin and
Mirny, 2003). Module-based methods have been shown to be less accurate than, for
example, simple guilt-by-association approaches but their performance improves in net-
works with less functional coverage (Sharan et al., 2007; Song and Singh, 2009). Local
prediction methods are often limited to proteins that interact with characterized pro-
teins while module-based methods are also able to predict novel functions for proteins
interacting with proteins of unknown function. Furthermore, both methods in first place
only work within a species, which disregards the wealth of information that might be
available in evolutionary related species (this is particularly true for humans). This lim-
itation can be circumvented by including annotations of orthology protein relationships
underpinned by interologs as we will demonstrate in Chapter 4.

Table 3.2: Overview on benefits and limitations of direct and module-based prediction
methods.

Approach Benefits Drawbacks

Direct methods + High prediction accuracy − Sensitive to FP and FN interactions
+ High prediction coverage − Lower performance in networks with low

functional coverage
− Cross-species information not used

Module-based
methods

+ Robust to FP and FN interactions − Reduced prediction coverage

+ Performance increase in networks
with low functional coverage

− Lower prediction accuracy

− Cross-species information not used
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As we have emphasized in the previous chapter, knowing a protein’s function is funda-
mental for understanding the molecular and biochemical processes that sustain health
or cause disease. In this chapter, we describe a novel algorithm for protein function
prediction based on protein interaction networks that combines the benefits of direct
and module-based prediction approaches with orthology to overcome the respective lim-
itations of the individual approaches. The key of our method is to analyze proteins
within functional modules that are defined by evolutionarily conserved processes, com-
bining comparative cross-species genomics and functional linkage within species-specific
networks. To this end, we first compare protein interaction networks to identify interac-
tions that are highly conserved within a given set of species. These so-called interologs
are then assembled to conserved and connected subgraphs (CCS).
The underlying assumption of exploiting CCS for function prediction is that proteins

and their interactions, forming the topological structure of a CCS, are involved in the
same biological context as complex cellular function is assumed to be carried out in a
highly modular manner (Hartwell et al., 1999). This functional modularity is thought to
be reflected in modular network structures where proteins are grouped according to their
biological function as discussed in Section 2.3.2. On the other hand, evolutionary con-
servation of interaction patterns across several species indicates functional conservation
of the underlying processes since proteins and interactions evolve together to preserve
their functionality (Mintseris and Weng, 2005). Thus, CCS are presumed to represent
functional modules or complexes which are biologically coherent and meaningful. For
a given protein, we then predict functions from proteins in the same CCS using both
directly interacting proteins within the same species as well as orthology relationships
across species.
This chapter is organized as follows: We explain in Section 4.1 how putative functional

modules can be identified from a set of protein interaction networks by employing a two-
step algorithm. We then describe how conserved functional modules and complexes
can be assessed to verify whether they represent biological meaningful and functionally
coherent modules. In Section 4.2, we propose a novel approach for functional inference
which is based on the previously detected conserved and connected subgraphs. We end
the chapter in Section 4.4 with a discussion of related work in the field of network-based
function prediction.

4.1 Network Comparison
The key to our prediction approach is to study protein function within evolutionarily
conserved subnetworks. To this end, we first compare protein interaction networks across
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Figure 4.1: Illustration of the detection of CCS. Protein interaction networks are compared
across different species to identify evolutionarily conserved and connected subgraphs (CCS). First,
orthology relationships across multiple species are determined by using OrthoMCL. Second, all pairs
of conserved interactions (interologs) are identified between the orthologs. Adjacent interologs are
then assembled to CCS.

different species to detect subgraphs that are evolutionarily conserved. Such subgraphs
are presumed to represent functional modules. The proposed algorithm follows a three-
step strategy, as illustrated in Figure 4.1 (from left to right):

• First, we identify orthology relationships, i.e., proteins with high sequence homol-
ogy, across multiple species.
• Second, all pairs of conserved interactions (interologs) are detected between the
orthologs within the species.
• Third, adjacent interologs are assembled into maximal conserved and connected
subgraphs (CCS).

In the following, we will explain each of the individual steps in detail. Lastly, we
present a GO-based scoring scheme which allows to study detected CCS according to
their functional coherence.

4.1.1 Identification of orthologous proteins

Orthology is the backbone of our network comparison methodology. As explained in
Section 3.2.1.1, orthology detection is particularly challenging for higher eukaryotes.
Therefore, we employ an established approach, called OrthoMCL (Li et al., 2003b), for
identifying putative orthology relationships across multiple species.

OrthoMCL

This approach has been selected for several reasons:
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• First, OrthoMCL discriminates orthologs and in-paralogs from functionally unre-
lated (out-)paralogs at a reasonable balance of specificity and sensitivity (Chen
et al., 2007a), i.e., identifying functionally pure groups while eliminating out-para-
logs.
• Second, OrthoMCL is a robust method for excluding out-paralogs that occur when
comparing distantly related species to more closely related species, although it does
not completely avoid such erroneous assignments (Alexeyenko et al., 2006).

OrthoMCL (Li et al., 2003b) is based on sequence similarity and a Markov cluster-
ing (MCL) algorithm to classify protein sequences into families (Enright et al., 2002).
Given a set of species, it first performs all-against-all BLASTP comparisons to identify
putative orthologous relationships by finding reciprocal best similarity pairs. Subse-
quently, potential in-paralogs are detected for each putative ortholog as sequences that
are (reciprocally) more similar to each other within the same genome than either is to
any sequence from another genome. Putative orthologous and paralogous relationships
are converted into a graph structure where nodes represent proteins and weighted edges
describe their relationships. This graph is modeled as a symmetric similarity matrix
to which the MCL algorithm is applied. MCL employs flow simulation to separate di-
verged paralogs, distant orthologs erroneously assigned by (weak) reciprocal best hits,
and sequences with distinct domain structures. An important parameter for the clus-
tering is the markov inflation index that controls the cluster granularity (increasing this
index increases cluster tightness, and the number of clusters). We used a comparatively
strict inflation value of 4 (default 1.5) to obtain functionally coherent groups. For the
BLAST search we used the default E-value cut-off of e−5. Cluster with sequences from
at least two species form the final output, and each cluster either represents one-to-one,
one-to-many or many-to-many orthology relationships.
We applied OrthoMCL to the distinct interaction data sets described in Section 5.1.

Accordingly, the number of orthologous protein cluster differs depending on the number
of species being compared as well as on their evolutionary distance and their current
interactome coverage. For instance, 3,882 orthologous protein groups are identified be-
tween mouse and human of which 2,801 involve at least one protein of each species.
These 2,801 groups cover about 91% and 29% of the mouse and the human proteins,
respectively, whereas the significant difference in the coverage originates from the differ-
ent sizes of the protein sets, e.g., 3,701 proteins in mouse vs. 14,218 proteins in human.
In contrast, the comparison between human, fly and yeast results in 6,190 cluster of
which only 1,114 contain at least one protein of each species (see Table Appendix B,
Table B.1).

4.1.2 Detection and assembly of conserved interactions

Once orthology relationships have been identified, we proceed to detect evolutionary
conserved and connected subgraphs (CCS) within a set of k species. For each species
m we generate a specific protein interaction network by integrating interaction data
from various public databases (see Section 5.1) which is represented as a graph Gm with
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m ∈ {1, . . . , k}. Given k species-specific protein interaction networks G = {G1, . . . , Gk},
we aim to find all maximal connected subgraphs Cs ⊆ G1, Cs ⊆ G2, . . . , Cs ⊆ Gk as
CCS.
To this end, we consider all orthologous protein groups that comprise at least one pro-

tein of each species under consideration and use an adaption of an algorithm for frequent
subgraph discovery (Koyutürk et al., 2004). This includes (1) identifying conserved bi-
nary interactions, so-called interologs (Matthews et al., 2001), and (2) assembling them
into CCS. Both steps are described in detail below, pseudo-code is given in Algorithms 1
and 2.
First, we identify all interactions (interologs) that are conserved across the different

species (see Algorithm 1). Note, interaction implies here that at least one protein from
each orthologous group interacts with a protein from the other group. For identifying
interologs we use two different definitions depending on the number of species that are
involved: a strict and a relaxed definition.

• When comparing only two species, we use the classical, strict definition considering
only those interactions as interologs that are present in both species.
• Requiring perfect conservation is too strict when studying more than two species,
especially due to the incompleteness (Hart et al., 2006) and noise of interaction
data (von Mering et al., 2002), evolutionary variation and experimental errors.
Therefore, we relax our strict demand on interologs when comparing multiple
species and consider each interaction as interolog that is present in at least 50% of
the species.

As indicated in Algorithm 1, identifying interologs depends primarily on the number of
orthologous protein groups, |O|, and thus has a complexity of O(k · |O|2).
To assemble interologs into CCS, one interolog is chosen as subgraph seed and all in-

terologs adjacent to this subgraph are added recursively (see Algorithm 2). If a subgraph
cannot be further extended we store this maximal and connected subgraph as CCS. The
complexity of assembling interologs is O(|I|) while the overall complexity of detecting
CCS is O(k · |O|2 + |I|).
From an abstract point of view, we are able to identify all CCS, C = {C1, C2, . . . , Cn},

that are either perfectly or approximately conserved across a given set of k protein
interaction networks G = {G1, . . . , Gk}. Each CCS, CS = (O, I), is specified by its set
of orthologous proteins (O) and the set of interologs (I). CCS differ in their orthologous
proteins and interologs depending on the species they belong to. We refer to a CCS
within a particular species m as CmS with m ∈ {1, . . . , k}. Accordingly, we denote
its species-specific set of orthologs and interologs with Om and Im, respectively. An
individual orthologous group is indicated by oi ∈ O while its species-specific form is
denoted by omi . Similarly, interologs between orthologous groups are denoted by l =
(oi, oj) and lm = (omi , omj ), respectively.
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Algorithm 1 Identification of interologs across k interaction networks G
Input: Set of orthologs O = {o1, . . . , on}; Set of interaction networks G = {G1, . . . , Gk}
Output: Set of interologs I
1: I = ∅
2: for all (oi, oj) ∈ O2 ∧ i ≥ j do
3: count ← 0 {counts the presence of an interaction across G1, . . . , Gk}
4: for all Gm ∈ G do
5: if (omi , omj ) ∈ Gm then
6: count ← count + 1
7: end if
8: end for
9: if |G| = 2 ∧ count = 2 then

10: I ← I ∪ (oi, oj)
11: end if
12: if |G| > 2 ∧ count ≥ |G| ∗0.5 then
13: I ← I ∪ (oi, oj)
14: end if
15: end for
16: return I

Algorithm 2 Assembly of interologs I into CCS
Input: Set of interologs I
Output: Set of CCS C
1: C = ∅
2: while I 6= ∅ do
3: I ← {any interolog I ∈ I}
4: CS ← {I}
5: I← I \ {I}
6: for all J adjacent to I ∈ CS do
7: CS ← CS ∪ {J}
8: I← I \ {J}
9: end for

10: C ← C ∪ {CS}
11: end while
12: return C

4.1.3 Functional coherence of CCS

In the previous section we elaborated on the detection of putative functional modules
through evolutionarily conserved proteins and interaction patterns. As we identify mod-
ules entirely on the conserved topology of the interaction networks, it is important to
study whether structural conservation correlates with functional conservation within
such modules.
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To this end we verify whether CCS present biologically meaningful and functionally
coherent modules that can be exploited for function prediction later on. We employ a
GO-based scoring scheme to assess the functional coherence within CCS based on the
functional annotations of the participating proteins. This measure will be used later to
exclude CCS from function prediction that are too heterogeneous due to the noise and
incompleteness in the existing interaction and annotation data sets (see Section 4.2.4).
We use an information content based measure to first determine the similarity of

two GO terms which is then extended to determine the functional similarity of two
proteins annotated with several GO terms. Finally, we compute for each CCS its average
functional similarity across the species (Simortho – similarity between orthologs) and
within a species (Simneigh – similarity between neighboring proteins).

4.1.3.1 Semantic similarity between GO terms

We use the approach proposed by Lin (1998) to define semantic similarity between two
GO terms. Following Lin’s definition, the information content of a GO term t is defined
as follows:

IC(t) = − log
(

freq(t)
freq(root)

)
, (4.1)

where the frequency of a term is defined as the number of times a term or any of its
descendants occurs. Thus, less frequent terms and terms with few occurring descendants
are considered more informative.
Based on this measure, the semantic similarity between two terms is defined as ratio of

the information content of their most informative common ancestor and the information
content of both concepts (Lin, 1998). The information content of the most informative
common ancestor is given by:

shareIC(t1, t2) = max {IC(t)|t ∈ CA(t1, t2)} , (4.2)

where CA(t1, t2) is the set of all common ancestors between terms t1 and t2. The
similarity between two terms is then defined as:

sim(t1, t2) = 2 ∗ shareIC(t1, t2)
IC(t1) + IC(t2) . (4.3)

Note that sim(t1, t2) ∈ [0, 1] by definition.

4.1.3.2 Semantic similarity between proteins

The semantic similarity between proteins is determined based on the pairwise similarity
of their associated GO terms. Since proteins are often annotated with more than one
term, the similarity of a protein p1 to a protein p2 is defined as average similarity of its
terms t(p1) to the most similar terms in t(p2) (where t(p) is the set of terms associated
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with protein p):

Sim(p1, p2) =

∑
t1∈t(p1)

max {sim(t1, t2)|t2 ∈ t(p2)}

|t(p1)| . (4.4)

It should be noted that Sim(p1, p2) is an asymmetric measure as Sim(p1, p2) does not
necessarily equal Sim(p2, p1). The reason is that t2 ∈ t(p2) being the most similar term
to t1 ∈ t(p1) does not imply that t1 is the most similar term for t2.
We use the definition of Couto et al. (2007) to determine the GO similarity between

two proteins as the average similarity of their GO terms:

GOSim(p1, p2) = Sim(p1, p2) + Sim(p2, p1)
2 . (4.5)

4.1.3.3 Functional similarity within CCS

Finally, we determine the functional similarity within CCS. Given the two sources of
conservation in CCS, namely orthologs and interologs, we measure functional similar-
ity separately between orthologs across the species (Simortho) and between interacting
proteins within a species (Simneigh).

Orthology-based similarity – Simortho For functional similarity between orthologs we
first compute all pairwise similarities between the proteins within an orthologous group
oi ∈ O. Subsequently, we add all pairwise protein similarities and divide the sum by
the number of protein comparisons n = k∗(k−1)

2 within a group oi to obtain the average
score for oi:

GOSim(oi) =

k∑
m,p(m<p)

GOSim(omi , o
p
i )

n
. (4.6)

The individual similarity scores of each group are added and divided by the number of
orthologous groups (|O|) in the CCS:

Simortho(CS) =

∑
oi∈O

GOSim(oi)

|O|
. (4.7)

Interaction-based similarity – Simneigh This measure determines the functional simi-
larity between the interaction partners of one species within a CCS. To compute Simneigh

for species m we first determine the functional similarities between all interacting or-
thologs of m within the CCS which are then added and divided by the number of edges
(|I|) in the CCS:

Simneigh(CmS ) =

∑
(i,j)∈I,i<j

GOSim(omi , omj )

|I|
. (4.8)
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Simortho and Simneigh range between 0 and 1, where 1 indicates functional equality
and 0 indicates maximal functional distance. CCS lacking protein annotations result in
a decreased semantic similarity due to missing annotations. Both measures will be used
to filter CCS that do not provide a reliable functional basis for inferring novel functions.

4.2 Prediction of Functional Annotation
This section introduces our novel algorithm for predicting protein function (see Fig-
ure 4.2) that uses interaction data from multiple species and combines three different
sources of evidence for functional similarity:

• evolutionary conservation of functional modules in protein interaction networks,
• orthology relationships, and
• direct and indirect protein-protein interactions.

While we introduced the first evidence as a filter in Section 4.1, we will discuss the two
remaining types of evidence, namely orthology relationships and conserved neighbor-
hood, in the following. First, we present each evidence individually and demonstrate
how these evidence can be combined to form a function prediction algorithm.

Prediction within the 

conserved neighborhood 

Prediction along 

orthology relationships 

Figure 4.2: CCS-based function prediction. The three complementary approaches, namely
orthology relationships, evolutionary conserved functional modules, as well as direct and indirect
protein-protein interactions, are integrated into a single prediction strategy.

Additionally, we discuss two strategies to further increase the accuracy of our method:
CCS filtering and CCS pre-processing. The first technique filters functionally incoherent
CCS by using the GO-based evaluation scheme described in Section 4.1.3 while the
latter accounts for large CCS which are, due to their sheer size, usually functionally
heterogeneous. We complete this section with a description of the evaluation procedure
that shall be used for validation, see Section 4.3.

4.2.1 Prediction using orthology relationships
To predict function from orthology in CCS, we determine orthologous groups that differ
significantly in their individual functional similarity from the similarity score of the CCS
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by computing the standardized z-score (Freedman et al., 1998). The z-score specifies the
difference between the similarity within an orthologous group o and the similarity of the
CCS normalized by the standard deviation of the orthologous similarities in the CCS
(stdccs):

z-score(o) = GOSim(o)− Simortho(CCS)
stdccs

(4.9)

Based on the z-score we derive a p-value to determine whether an observed difference is
significant. P-values smaller than the significance level of α = 0.01 are considered to be
significant.
Protein groups that differ significantly (p-value < 0.01) from the otherwise function-

ally coherent CCS are likely to lack functional annotations. In such groups we transfer
all known protein annotations to poorly annotated or uncharacterized orthologs. Note
that an orthologous protein group might consist of more than one protein per species
(orthologs and in-paralogs). Although all proteins within such a group should be func-
tionally highly similar, this is, probably due to missing or wrong annotations, not always
reflected in the data. Therefore, we define the consensus annotation of all proteins of
one species in an orthologous group to be the set of all GO terms that are associated to
more than half of the annotated proteins of that species in that group. When considering
more than two species we combine the species-specific sets of consensus annotations and
transfer them to the other proteins in the same group.

4.2.2 Prediction using neighboring proteins
To infer protein function from direct links between proteins we consider the functional
annotations of the neighbors of a protein. Given a protein in a CCS, we decide for each
GO term associated to any of its neighbors whether it can be also annotated to the
protein itself.
Let A be the set of terms annotated to at least one neighbor of a target protein u,

and let N(u) be the set of direct neighbors interacting with u. We first determine the
functional similarity between u and each of its neighbors v ∈ N(u) (see Eq. 4.5). We
transfer g ∈ A to u if the number of proteins in N(u) annotated to g, with a functional
similarity to u higher than a given threshold t, exceeds a threshold f . Both thresholds
have been optimized towards precision using manual grid search. Finally, we set t = 0.7
and f = 0.5.
This method has the major flaw that for candidate proteins without annotation, we

cannot compute the semantic similarity to its neighbors and thus cannot predict novel
function. Therefore, we also consider the pairwise functional relations between its in-
teraction partners, assuming that a high functional similarity between indirectly linked
interaction partners of the protein has to be reflected in the protein itself. Again, if their
pairwise similarity exceeds the threshold t we predict their common GO annotations for
our target protein.
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4.2.3 Combined CCS-based function prediction

Finally, we integrate the three complementary approaches, namely orthology relation-
ships, evolutionary conserved functional modules, as well as direct and indirect protein-
protein interactions, into a single prediction strategy. Any protein that is only weakly
and incompletely characterized or not annotated at all is a candidate for CCS-based
function prediction. For each candidate we infer novel protein function (a) within func-
tionally coherent CCS by exploiting its (b) orthology relationship across other species
as well as (c) the information shared by its neighboring proteins as explained in Sec-
tions 4.2.1 and 4.2.2, respectively.

4.2.4 Filtering for candidate CCS

CCS are presumed to comply with functional modules whose proteins participate in the
same biological processes and pathways. However, not all detected CCS are qualified
candidates for function prediction due to the noise and incompleteness within the existing
interaction and annotation data sets. Therefore, we first filter CCS that are simply too
small or too heterogeneous to be used for function prediction.
In detail, we only process CCS further which contain more than two proteins as

smaller CCS are unlikely to present biologically meaningful processes. Furthermore, we
only consider CCS whose similarity score exceeds a given threshold. We determine for
each CCS its average functional similarity within a species (see Eq. 4.8) and across the
species (see Eq. 4.7), and apply three different thresholds (low: 0.3, medium: 0.5, high:
0.7) to Simortho and Simneigh to study the performance of our method for different levels
of functional coherence. This scheme is applied separately for each subontology of GO
(molecular function, biological process, cellular component).

4.2.5 Processing large CCS

Comparing evolutionarily close species (such as human and mouse) might result in very
large CCS with up to several hundreds of proteins. However, biological processes typ-
ically involve only between 5 and 25 proteins (Spirin and Mirny, 2003). Consequently,
large CCS often encompass various functions. For instance, the largest CCS between
human, fly, worm and yeast illustrated in Figure 4.3 clearly contains several highly con-
served clusters, probably forming discrete protein complexes. Functional analysis of its
proteins reveals that the CCS encompasses at least four different biochemical activities,
e.g., protein degradation, translation, signaling and protein transport, indicating a re-
duced functional homogeneity. Our results confirm this fact, as large CCS always get
low coherence scores (see Section 5.3.4.1).
To adequately treat such CCS, we split CCS with more than 25 proteins into smaller,

overlapping sub-subgraphs. Sub-subgraphs are built by considering each protein of the
CCS as seed of a new, smaller CCS. We add all direct neighbors of this seed to the new
CCS as exemplified in Figure 4.4. Subgraphs with less than three proteins are removed.
We then consider each of these subgraphs as an independent CCS.
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Pathways 
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MAPK/VEGF/ErbB 

signaling pathway 

Figure 4.3: Different biological subprocesses within the largest CCS from human, fly,
worm and yeast. This CCS consists of 61 proteins and 108 interologs and encompasses different
biochemical activities, such as protein degradation, translation, signaling and protein transport.
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Figure 4.4: Processing large CCS for function prediction. CCS with more than 25 proteins
are split into smaller, overlapping sub-subgraphs by considering each protein of the CCS as seed
(green node) of a new, smaller CCS. All direct neighbors of this seed are added to the new CCS.
Sub-subgraphs with less than three proteins are removed. For example, P1 is used as seed and its
direct neighbors P3 and P4 are added to form the new sub-subgraph CCSP1 . Splitting the entire
CCS results in five independent sub-subgraphs, but only CCSP1 and CCSP4 are considered further
for function prediction while the others are pruned (those having less than three proteins).

4.3 Evaluation methods

To assess the performance of our CCS-based function prediction approach we use preci-
sion (P) and recall (R). Both concepts present well-established measures for evaluating
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prediction algorithms. Precision indicates the fraction of correctly predicted annotations,
true positives (TP), amongst all predictions, both true positives and false positives (FP):

P = TP
TP + FP (4.10)

Recall, on the other hand, depicts the fraction of correctly identified predictions amongst
all known functions, true positives and false negatives (FN):

R = TP
TP + FN (4.11)

We assess the performance of CCS-based function prediction according to the following
criteria (which are explained in detail below):

• First, leave-one-out cross-validation is used to estimate the expected precision and
recall of each single and the combined function prediction methods.
• Second, we evaluate our approach by comparing it with two baselines, namely
orthology and neighbor baseline.
• Third, we validate our approach against two classical prediction methods: Neighbor
counting (Schwikowski et al., 2000) and χ2 (Hishigaki et al., 2001). We also com-
pare it with FS-Weighted Averaging (Chua et al., 2006), a method that considers
indirect functional associations and topological weights.

Cross-validation and the two baselines are defined below while the detailed description
of the three related prediction strategies is provided in the Related Work of this chapter
(see Section 4.4.1).

4.3.1 Cross-validation

For cross-validation we blind the known annotations for each protein before applying our
algorithm. Predicted terms are then compared to the held out annotations. We count a
GO term as correctly predicted if the proposed term is an ancestor of the original term
on the path to the root or the term itself. Otherwise, the prediction is considered to be
incorrect (false positive).
Precision and recall are determined for proteins within CCS that exceed a given simi-

larity threshold. Note, for all methods involving CCS, we give recall values on the basis
of all annotations of proteins within qualifying CCS. We call this measure per-protein
recall. It must be distinguished from the traditional per-species recall (Eq. 4.11) which
is also used frequently, but which punishes all methods that first filter proteins. When
determining the per-protein recall (Rpp) we consider only proteins p that are part of a
CCS:

Rpp =

∑
p ∈ CCS

TPp∑
p ∈ CCS

TPp + FNp
(4.12)

64

sec:related_work_CCS_chapter


4.3 Evaluation methods

To also give an idea of the per-species performance, we always complement precision
and recall values with coverage, which simply counts the total number of predictions.

4.3.2 Baselines

For evaluation we also defined an orthology and a neighbor baseline. The orthology
baseline considers only OrthoMCL orthology relationships ignoring structural network
conservation. We randomly select 500 orthologous protein groups, remove annotations
from one protein in the group and predict their functions using only its orthologs. The
neighbor baseline takes only direct interaction partners into account, independent of
evolutionary and structural network conservation. For each species we randomly choose
one third of the proteins from the corresponding interaction network and exploit their
direct neighbors for deriving novel functions. We repeat this procedure 100 times for
each baseline and compute average precision and recall including their standard deviation
across all runs.

4.3.3 Further evaluations

We shall use the cross-validation setting described above to assess further features of our
approach according to the following aspects (see Section 5.3.5):

• First, we study CCS-based function prediction with respect to the three GO sub-
ontologies: molecular function, biological process and cellular component, and de-
termine subontology-specific precision and recall. Further, we examine the average
depth of predicted terms in the GO hierarchy (see Section 5.3.5.4).
• Second, we assess whether specific GO branches are better predictable than others
and if those correlate with evolutionarily conserved functions and processes. To
this end, we determine for each GO term a term-specific precision and recall (see
Section 5.3.5.4).
• Third, we analyze how CCS-based function prediction performs on proteins with-
out any or with only very little functional information by considering all novel
predictions for these proteins which are counted as false positives in the cross-
validation (see Section 5.3.5.5).
• Fourth, we study whether there is a difference in the prediction performance be-
tween more general genes, such as housekeeping genes, or specific genes. There-
fore, we extract tissue-specific and housekeeping genes from microarray studies.
Human proteins are then classified according to this list (if possible). Protein-
specific precision and recall is determined and compared between the two groups
(see Section 5.3.5.6).

Finally, we discuss predicted functions for selected proteins that are highly relevant for
colorectal cancer (see Section 5.5). Specifically, we study the gene products MLH1,
PMS2 and EPHB4, which receive 14, 16, and 15 novel annotations using our method.
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4.4 Related Work

In Chapter 3 we provided a broad overview on the different approaches to protein func-
tion prediction. In this section, we review prediction strategies that utilize protein
interaction data for functional annotation (see classification scheme in Section 3.3). We
describe direct, local and global, as well as module-based methods and discuss their
distinctive features with respect to the CCS-based prediction approach.

4.4.1 Direct local prediction approaches

Direct local prediction methods utilize the close interaction neighborhood of a protein
to infer protein function.

4.4.1.1 Neighbor counting

Schwikowski et al. (2000) proposed the first local prediction method, known as majority-
vote or neighbor-counting, based on the most common function(s) annotated to the direct
interaction partners of a protein. Each uncharacterized protein is associated with the
k ≤ 3 most frequent functions of its direct neighbors.
Cross-validation has been performed on yeast interaction data annotated with func-

tional categories from YPD which covers three categories of yeast protein function:
biochemical function, cellular role and subcellular localization. During evaluation only
cellular role and yeast proteins with at least one annotated interaction partner have been
considered. In this setting, majority-vote achieves a prediction precision of 72%.
The concept of majority-vote is simple but has several drawbacks compared to CCS-

based function prediction. First, the poor reliability of protein interaction data (see
Section 2.2.2) is not accounted for. Thus, protein function might be derived from false
positive interactions without biological relevance. Further, missing protein interactions
largely reduce the coverage of this approach. We address both limitations by exploiting
only evolutionarily conserved interactions for function prediction. Using interologs ex-
cludes spurious interactions and thus increases the quality of the underlying data which
in turn improves prediction precision (see Section 5.3.3). On the other hand, missing
interactions are implicitly inferred by using the relaxed interolog definition when consid-
ering more than two species. Second, majority-vote can only derive function for proteins
with annotated interaction partners. However, large fractions of uncharacterized pro-
teins interact with proteins of unknown function. We circumvent this restriction by
including cross-species information. We further increase the coverage of our method
by considering the indirect relationships between the direct interaction partners of a
protein. The last drawback concerns the bias of majority-vote toward more general
functions. Considering the most frequent functions in a neighborhood favors functions
that are either less specific or more broadly annotated within the network. Thus, more
general functions tend to be associated with proteins (Pandey et al., 2006). In contrast,
we consider each function as potential prediction as long as it is supported by sufficient
biological evidence.
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4.4.1.2 χ2 approach

The χ2 algorithm extended the majority approach by moving beyond direct neighbor-
hood and by considering the background frequency of a functional annotation (Hishigaki
et al., 2001). This approach analyzes the k–neighborhood of a protein, i.e., all neighbors
that can be reached via k links, and computes a χ2-score for each function. The χ2-
score for a protein u and a function j is determined based on the number of neighbors
associated with j, nu(j), and the expected number of neighbors annotated with j, eu(j).
eu(j) is defined as |(N(u))| f(j) where N(u) corresponds to the neighbors of u and f(j)
denotes the frequency of j among all proteins, i.e., the background frequency of j. Given
these parameters, the χ2-score can be calculated as follows:

χ2
u(j) = (nu(j)− eu(j))2

eu(j) . (4.13)

Those functions with the best χ2-score are assigned to the protein of interest. Cross-
validation has been performed on interaction data from yeast and the functional cat-
egories from YPD. The χ2 approach predicts subcellular localization, cellular role and
biochemical function with precision of 72.7%, 63.6% and 52.7%, respectively, when con-
sidering either the k = 1– or k = 2–neighborhood.
Using χ2 statistics alleviates shortcomings of the simple majority-vote and improves

the statistical significance of predictions considerably (Pandey et al., 2006; Chua et al.,
2007). However, the network topology is not taken into account during the annotation
process. Equal weights are assigned to direct and distant neighbors, while in practice
immediate neighbors are more likely to share the same function with the protein in
question.
χ2 statistics suffers mostly from the same limitations as majority-vote. Contrary to

CCS-based function prediction, the quality of experimental interaction data is not taken
into account. This reduces, on the one hand, the level of accuracy as function prediction
is based on false positive interactions. On the other hand, proteins without available
interaction data are neglected which limits the overall coverage of the method. Another
advantage of our method is the usage of functional information of established model
organisms such as yeast or fly (see Section 5.3.5.3). This allows to infer function for pro-
teins with uncharacterized interaction partners that are disregarded otherwise. Similar
to CCS-based function prediction, the χ2 approach also uses indirect relationships by
considering the k–neighborhood of a protein. However, except for biochemical function,
the prediction performance decreases significantly when going beyond direct interaction
partners. This indicates that noise and redundancies impact the function prediction, if
too many neighbors are considered without differentiating between direct and indirect
neighbors. By contrast, we only consider the shared functions between indirect interac-
tion partners assuming that these also pertain to the protein under consideration.
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4.4.1.3 Functional Similarity Weighted Averaging

A further extension of the simple neighborhood approach has been proposed by Chua
et al. (2006). In addition to the indirect neighborhood, their method considers the
relationship between functional similarity and network distance. Focusing on direct and
indirect neighbors (1- and 2-neighborhood), they assign weights to each neighboring
protein according to their functional similarity with the target protein, considering the
local network topology as well as the reliability of experimental sources. The Functional
Similarity Weighted Averaging (FS-WA) method predicts functions for proteins based
on their weighted frequencies in the neighboring proteins (Chua et al., 2006, 2007).
The performance of FS-WA has been measured in two ways. First, cross-validation

has been performed on yeast interaction data and functional categories from FunCat
and YPD (see Section 3.1). In their study, the authors do not report specific numbers
for precision and recall but only show precision vs. recall graphs for varying FS-Weight
thresholds. When using FunCat, the precision ranges from 46% to 85% having a recall
of 40% to 10%, respectively. Slightly better results have been achieved for the three
YPD categories (Chua et al., 2006). The second evaluation setting uses interaction data
from seven different species, including yeast, human, and functional annotations from
GO. For yeast, precision ranges from 58% to 92% in a recall interval of 40% to 10%. In
contrast, a precision of only 10% to 35% can be achieved for human proteins.
FS-WA differs in several aspects from our CCS-based approach. Similar to the pre-

viously described methods, FS-WA considers only one species and does not incorporate
cross-species information, i.e., function from orthologs. This reduces the functional cov-
erage of the method, especially when studying species whose proteins are only sparsely
annotated. The varying quality of protein interactions is considered by integrating the
reliability of the different experimental sources into the similarity weight. In contrast,
we use evolutionary conservation to account for the data quality. This presumably re-
duces the amount of false positive interactions but also accounts for missing data and
variations. The latter aspect is not covered by the reliability measure of FS-WA, thus
incomplete interaction data remain a problem.

4.4.2 Direct global prediction approaches

Interaction networks are commonly modeled as graphs suggesting the application of
graph-theoretic algorithms for their functional analysis. Three main strategies have
been followed: cut- and flow-based as well as probabilistic approaches. Although direct
local- and module-based methods are more relevant to this work, we also present a global
approach to exemplify the basic principles of such methods.

4.4.2.1 Cut-based prediction

A number of approaches utilize the concept of graph cuts, i.e., partitioning the vertices of
a graph into disjoint subsets, when considering the entire network, including its topology
and functional annotations. Function prediction is formulated as a global optimization
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problem to maximize the number of interactions that connect proteins with the same
function.
Vazquez et al. (2003) assign functional classes to unannotated proteins by minimizing

the number of protein interactions across different functional classes. A scoring func-
tion measures the number of interacting proteins associated with the same function.
This score is associated with any given functional assignment determined for the set of
uncharacterized proteins. The contribution to the overall score is computed from the
number of protein neighbors annotated with that function. A function σu is assigned to
each unclassified protein u by minimizing the following scoring function ε:

ε = −
∑

(u,v)∈E′
δ(σu, σv)−

∑
u

hu(σu), (4.14)

where E′ corresponds to the set of edges incident to two unannotated proteins, δ(σu, σv)
is the discrete δ function which equals 1 if σu = σv and 0 otherwise, and hu(σu) denotes
the number of interaction partners of u associated with σu. The first term of the op-
timization problem concerns the unclassified proteins whereas the second one accounts
for interactions between unannotated and previously annotated proteins. Simulated
annealing is employed to minimize all scoring functions simultaneously.
The approach of Vazquez et al. (2003) has been assessed on interaction data of yeast

and functional categories from MIPS. For evaluation the function of 40% of the pro-
teins in the network has been removed. The estimated precision for sparsely connected
proteins, i.e., with one or two neighbors, is 30% and increases up to 74% for proteins
with eight or more interaction partners. In average the prediction precision varies be-
tween 60 and 70% for proteins with more than one interaction partner. Leave-one-out
cross-validation yields a precision of approx. 80%.
One of the main differences between CCS- and cut-based function prediction is the

extent to which the network topology is exploited. Vazquez et al. (2003) follow a global
approach while we integrate a local method into a module-based approach. Another
important aspect is the varying reliability of protein interaction data. In contrast to
CCS-based function prediction, the quality of the protein interaction data is not taken
into account. Although this method has been shown to perform robustly in the presence
of noisy and incomplete interaction data, high levels of error inevitably compromise the
quality of predictions. Spurious and missing interactions interfere with the optimization
principle of the assignment procedure in which unclassified proteins with unclassified
interaction partners must be associated with functions that are consistent with those
assigned to their partners. Last, functional information from other species is not incor-
porated into cut-based function prediction.

4.4.3 Module-based methods

Module-based methods exploit functionally coherent groups of proteins to derive novel
functions for uncharacterized members within these groups. As discussed in Section 3.3.2
several methods have been proposed for finding modules. Methods developed specifi-
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cally for function prediction differ in their module detection strategy but use a common
prediction approach.
One of the first approaches in this category has been developed by Sharan et al. (2005).

They proposed a framework for analyzing protein interaction networks by integrating
interaction data with sequence information to create a network alignment graph. Each
node in this graph corresponds to a group of potentially orthologous proteins (p1, ..., pk),
one of each species, whose sequences are sufficiently similar (BLAST e-value < 10−7).
Two protein groups (p1, ..., pk) and (q1, ..., qk) are connected by an edge if and only if
one of the following conditions is satisfied with respect to the pairs (pi, qi):

1. One protein pair (pi, qi) interacts directly with each other while the remaining ones
interact indirectly at distance two (through a third protein);

2. All protein pairs interact indirectly with each other at distance two;
3. At least max{2, k − 1} of the protein pairs interact directly with each other.

A heuristic search is conducted over the network to detect conserved network struc-
tures, i.e., linear paths of interacting proteins and densely connected protein cluster.
High-scoring subnetwork seeds are identified within the alignment graph and then ex-
tended by using a probabilistic model for scoring candidate subnetworks. The signifi-
cance of conserved subnetworks is then evaluated by comparing their probability scores
against randomized data sets.
Protein function is inferred within the conserved subnetwork whenever (i) the sub-

network is significantly enriched for a particular GO function, p-value < 0.01, and (ii)
at least half of its proteins are associated with this function. Cross-validation has been
performed for proteins involved in conserved subnetwork between worm, fly and yeast.
A prediction specificity of 58%, 60% and 63% could be achieved for GO biological pro-
cess depending on the species. On the same species combination we achieve an overall
precision of 82%, 81% and 79% (see Chapter 5, Table 5.11).

Sharan et al. (2005) follow a similar strategy as we do. Evolutionary modules are
identified across different species to predict protein function. However, there are several
differences between both approaches. For instance, the detection of putative orthology
relationships is simplified by only considering sequence similarities between proteins. In
contrast, we apply OrthoMCL to discriminate between in- and out-paralogs which is
crucial for function prediction (see Section 4.1.1). In addition, reliability estimates for
protein interactions are included into the search heuristic and subnetworks with more
reliable interactions receive higher scores. Another major difference in their approach
is the limitation of the size of detectable network structures to 15 proteins. Contrary
to our approach, larger conserved subnetworks are disregarded although those represent
strong indicators for conserved functions (see Section 5.3.4.1).
For function prediction, Sharan et al. (2005) use the hypergeometric distribution to de-

tect and then transfer significantly enriched functions to all proteins within a conserved
subnetwork. By this means, cross-species function prediction is achieved implicitly. Fur-
ther, these functions are then associated with each member of the module. In contrast,
we transfer such function more accurately along defined orthology relationships. Note
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that the rationale behind transferring overrepresented protein functions to all proteins
within a module might be only valid for GO’s biological process. For molecular func-
tion and cellular component this concept might be too general. For instance, when
considering proteins within a pathway these proteins will be involved in the same bio-
logical process but they will also exhibit specific molecular functions. To capture this
functional diversity more differentiated approaches are needed to ensure high quality
predictions. For this purpose, we consider either the orthologous partner proteins (in-
cluding in-paralogs) or the direct neighbors and their indirect relationships for retrieving
novel functions.
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In this chapter, we present the evaluation of the CCS-based protein function prediction
approach outlined in Chapter 4. We apply our strategy to different sets of species, rang-
ing from species pairs to groups of up to six species. Throughout this evaluation, we will
focus on selected species combinations covering different interactome sizes and evolu-
tionary distances to discuss results and properties of our function prediction technique.
Chapter 5 is organized as follows. First, we describe in Section 5.1 the protein in-

teraction data that provide the basis for this evaluation. We characterize the protein
interaction networks of the different species by describing distinctive features as well as
functional coverage. Section 5.2 describes the outcomes of the CCS assembly across dif-
ferent species and discusses the impact of using either the strict or the relaxed interolog
definition. Section 5.3 proceeds with a detailed evaluation of our function prediction
method.
We show that combining different sources of evidence for functional similarity between

proteins reaches very high prediction precision, especially for multiple species (three and
four). For instance, for the combination of human, fly and yeast we achieve a precision
of 87%, 84% and 87%, respectively. Furthermore, we predict many novel functions for
uncharacterized or only weakly characterized proteins. When integrating novel predic-
tions from different species combinations, our method produces 27,100 novel annotations
for human with an estimated precision of 83%, and 10,586 for mouse with 80% preci-
sion. However, also weakly characterized proteins of the well-studied species yeast and
fly, whose functional annotations are still incomplete, benefit from our method. These
results underline the importance and power of combining different function prediction
methods into ensembles and of studying different species for deriving novel functions.
We also demonstrate that our predictions are rather specific, which is reflected in

a mean GO-depth of 8 for humans and 7 for mice. Systematic evaluations regarding
the different GO subontologies and their specific GO branches reveal branches and pro-
cesses that are more precisely predictable than others. Essential processes associated
with housekeeping genes, such as protein biosynthesis and transcription, yield significant
higher prediction precision than more (species-)specific function like mating behavior or
response to drug. Further investigations show that our method performs better on evo-
lutionary conserved genes, such as housekeeping genes. Yet, our method is not limited
to well-studied housekeeping proteins as we also predict function for (tissue-)specific
proteins with comparable precision.
In Section 5.4 we report on the performance comparison against three recent function

prediction methods from the literature, namely Neighbor Counting (Schwikowski et al.,
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2000), χ2 (Hishigaki et al., 2001), and FS-Weighted Averaging (Chua et al., 2006). We
show that our CCS-based method performs significantly better than those methods in
almost all settings we studied, especially in terms of precision.
We complete this chapter with an extensive literature evaluation by manually verifying

a number of predictions in the context of colon cancer to confirm our estimated precision
values, see Section 5.5. We study the gene products of MLH1, PMS2 and EPHB4, which
receive 14, 16, and 15 novel annotations through our method, and discuss their relevance
with respect to their known cellular function and their role in colorectal cancer. Detailed
literature analysis indicates that at least 73% of the novel functions actually are true
predictions.

5.1 Protein interaction data
We use interaction data of the well-studied model organisms S. cerevisiae, D. melano-
gaster and C. elegans, and the mammals R. norvegicus, M. musculus and H. sapiens.
Baker’s yeast, fruit fly and the nematode worm are widely used model organisms for
studying biological phenomena in species that are more difficult to analyze directly.
However, higher eukaryotes often possess evolutionarily more evolved features, e.g., the
complex immune system, that are unlikely to have direct counterparts in those simple
model organisms. Thus, genetically closer models, i.e., mammalian models are often
employed to study and develop novel therapeutic strategies in human (Taketo, 2006;
Craig et al., 2006).
For each selected species we obtained protein interaction data from the major public

databases: DIP, IntAct, MPPI (Pagel et al., 2005), HPRD, MINT and BioGRID (except
for BIND7). We integrated the interaction data from multiple sources into one central-
ized database, called PiPa, as the performance of computational analysis methods often
depends largely on the completeness of their input data.

PiPa

PiPa is a system for integrating protein interaction (PiPa) and pathway data (PiPa) au-
tomatically into a homogeneously structured MySQL database. The integration process
involves three stages:

• First, PiPa downloads source files from the respective databases, typically in PSI-
MI 2.5 XML format.
• Second, each source file is parsed to extract and insert essential information about
the proteins and their interactions into the database. As most database identifiers
differ between the distinct resources, we map the various protein identifiers to their

7Interaction data of BIND have not been considered as the database is no longer maintained, i.e.,
active curation ended in 2005. Since then a significant amount of interaction information has been
corrupted mostly as database identifiers become out of date. Gene and protein identifiers referenced
in BIND, for instance, slowly deteriorate as they refer to retired or altered protein identifiers (Isserlin
et al., 2011).
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5.1 Protein interaction data

unique UniProt IDs. This allows for an unambiguous integration of the different
data sets. Protein interactions are then stored as undirected links between proteins
while additional information, such as the type of experiment used to confirm the
interaction as well as references to PubMed, are associated with each entry in the
database, if such information is available.
• In the last step, proteins are annotated with important attributes such as sequence
or chromosomal location as well as further information describing their function,
domains in their primary sequence, and associations with diseases (see Figure 5.1).
In particular, functional information are complemented by using UniProt (UniProt
Consortium, 2010) and EntrezGene (Wheeler et al., 2008) as well as species-specific
databases, such as FlyBase (FlyBase Consortium, 2003), MGD (Bult et al., 2008),
RGD (Twigger et al., 2007), SGD (Hong et al., 2008) and WormBase (Bieri et al.,
2007) (see Appendix A for a listing of the different data sources).

In addition to the MySQL database, PiPa features a graphical administration tool to
monitor the databases, to trigger updates and to compute statistics on the included data
sources.

Figure 5.1: Overview of data sources integrated in PiPa.

Protein interaction networks
By means of PiPa we integrated various data sets from multiple sources to generate
comprehensive species-specific protein interaction networks. We apply the spokes model
when incorporating interaction data from co-complex methods to avoid the inclusion of
more false positive interactions (see Section 2.2.1.1). The characteristics of the resulting
protein interaction networks are summarized in Table 5.1.
The distinct protein interaction networks differ significantly in their size and com-

plexity. The largest network is assembled for human with 14,218 proteins and 81,868
protein interactions while the yeast network exhibits the highest density with approxi-
mately 20.3 interactions per protein and 70,990 interactions in total. The smallest set
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5 Evaluation of CCS-based Protein Function Prediction

Table 5.1: Characteristics of the integrated species-specific protein interaction net-
works. For each species the total number of proteins and protein interactions as well as the
average (and median) number of protein interactions per protein is specified.

Species Acronym #Proteins #Interactions Interactions per protein

R. norvegicus rno 1,396 1,661 2.3 (1)
M. musculus mmu 3,701 5,582 2.9 (2)
H. sapiens hsa 14,218 81,868 10.3 (4)
D. melanogaster dme 8,272 27,646 5.6 (2)
C. elegans cel 4,364 10,216 3.7 (2)
S. cerevisiae sce 5,845 70,990 20.3 (9)

of interactions is obtained for rat and mouse. The majority of interactions for both
species has been obtained from the MIPS–MPPI database which focuses primarily on
(manually curated) mammalian interaction data from small-scale experiments. On this
account only few interaction data are available yet. Early interaction studies in human
have been performed in small-scale to analyze signal transduction pathways or diseases,
such as the TGF pathway or Huntington disease (Goehler et al., 2004). However, given
the potential of protein interaction for elucidating function and disease mechanisms,
more and more large-scale studies have been conducted since then. The variety of small-
scale experiments and high-throughput studies contributed to the increasing number of
interactions for human (Rivas and Fontanillo, 2010).
For each of the species-specific networks we determined the distribution of interactions

per protein as shown in Figure 5.2. The log-log plot emphasizes that most proteins
participate in few interactions while some proteins participate in several hundreds of
interactions. The human and the yeast network, for instance, comprise 15 proteins with
more than 300 interactions, including Ubiquitin-60S ribosomal protein L40 with 345
interactions in human and 713 in yeast, respectively. This analysis demonstrates that,
independent of the network size, the generated protein interaction networks exhibit a
scale-free topology (see Section 2.3.2.2).
Table 5.2 summarizes the functional coverage of proteins within the protein interac-

tion networks. Proteins of rat and mouse are functionally well-characterized with on
average 15.3 and 12.8 GO annotations per protein, respectively. As mentioned above,
protein interactions of both species have been mainly detected in specific small-scale ex-
periments. These studies often yield supplementary information regarding, for instance,
function, interaction partners and disease phenotypes that help to characterize proteins.
Thus, such proteins are often functionally better characterized than proteins analyzed
in high-throughput studies. Yeast proteins, for instance, are associated with about six
annotations on average (and a median of five). However, in comparison to the other
species, yeast proteins have a fairly high functional coverage, mainly due to yeast’s role
as model organism in various research areas. Human, fly and worm proteins are mostly
poorly annotated.
We also investigated whether the number of GO terms annotated to a protein is related

to the number of its protein interactions. Figure 5.3 shows that the amount of functional

76



5.1 Protein interaction data

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Number of protein interactions per protein

N
u

m
b

e
r 

o
f 

p
ro

te
in

s

 

 

sce

hsa

dme

cel

mmu

rno

Figure 5.2: Degree distribution in the protein interaction networks. The log-log plot
of the node degrees, i.e., number of interactions per protein, in the different interaction networks
approximates a power-law distribution indicating that the generated protein interaction networks
are scale-free, as discussed in Section 2.3.2.2.

information on a protein does not correlate with its number of interactions. The lack
of correlation can be explained by the fact that functional characterization of proteins
is more challenging than retrieving protein interactions in large-scale. Yet, a higher
correlation is expected as proteins with a large number of interactions are assumed to
be multifunctional, i.e., being involved in diverse biological processes.
To complete the overview on the functional coverage of the interaction data, we de-

termined the fraction of proteins with and without function for each species and subon-
tology. Figure 5.4 mostly reflects the conclusions from Table 5.2. The majority of rat,
mouse and yeast proteins is associated with at least one function while a large number
of proteins in human, fly and worm remains uncharacterized. However, contrary to Ta-
ble 5.2, Figure 5.4 indicates that yeast proteins feature the best functional coverage as
only a small fraction of proteins is completely uncharacterized. Overall, there is only
one protein in fly which is not annotated in neither of the three subontologies.

Table 5.2: Functional annotation data for proteins within the protein interaction net-
works. For each species the average (and median) number of GO terms per protein as well as
the average (and median) depths of the respective GO terms is specified in general and per GO
subontology: molecular function (MF), biological process (BP) and cellular component (CC).

Species GO per protein Depths MF Depths BP Depths CC Depths

rno 15.3 (10) 6.4 (6) 3.1 (2) 4.2 (4) 7.8 (3) 7.1 (7) 4.3 (3) 6.8 (7)
mmu 12.8 (8) 6.5 (6) 2.9 (2) 3.8 (4) 6.7 (3) 7.5 (7) 3.2 (2) 6.9 (7)
hsa 5.8 (3) 6.4 (6) 1.5 (1) 4.0 (4) 2.8 (1) 7.3 (7) 1.5 (1) 7.2 (7)
dme 4.7 (3) 6.1 (6) 1.4 (1) 3.6 (2) 2.4 (1) 7.2 (7) 0.9 (0) 7.3 (7)
cel 3.5 (1) 4.8 (5) 0.6 (0) 2.8 (2) 2.6 (1) 4.9 (5) 0.4 (0) 6.9 (7)
sce 6.0 (5) 6.2 (6) 1.8 (2) 3.6 (3) 2.2 (2) 7.2 (8) 1.8 (2) 7.4 (7)
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Figure 5.3: Functional characterization of a protein with respect to its number of
protein interactions. For each protein in a species, the number of protein interactions is plotted
against its overall number of GO terms. Dotted lines represent the angle bisector and thus a
perfect linear correlation between both data sets while solid lines represent the regression of the
data indicating the actual correlation.

5.2 Network comparison

After constructing protein interaction networks for rat (rno), mouse (mmu), human
(hsa), fly (dme), worm (cel) and yeast (sce) (see Table 5.1) we performed network
comparisons across different species combinations, ranging from pairs to groups of up to
six species, to identify evolutionarily and functionally conserved subgraphs. Conserved
sub-networks are assembled by combining conserved interactions, called interologs, using
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Figure 5.4: Functional coverage of proteins in the interaction data. For each species, the
fraction of proteins with and without function is specified with respect to the three subontologies:
molecular function, biological process and cellular component.

two different definitions of interologs as described in Section 4.1.2.

1. In the classical, strict definition an interolog is defined as an interaction present in
any species under consideration.

2. The relaxed definition defines an interolog as interaction which is present in at
least 50% of the species being compared.

Overall, we computed CCS for 15 combinations of two species, 20 combinations with
three, 15 with four species, six with five species, and one with six species, for both in-
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5 Evaluation of CCS-based Protein Function Prediction

Table 5.3: Overview on the outcomes of the selected network comparisons. For each
combination the number of orthologous groups, interologs and CCS from strict and relaxed definition
is presented as well as the size of the largest CCS.

Species Criteria # OrthoMCL # Interologs # CCS (≥3) Largest CCS
groups Proteins (Edges)

mmu sce strict 551 126 48 (17) 13 (26)
relaxed 4762 2 (1) 539 (4761)

hsa dme sce strict 1114 119 65 (12) 13 (12)
relaxed 959 127 (23) 344 (727)

hsa dme cel sce strict 552 22 19 (3) 3 (2)
relaxed 477 67 (12) 200 (372)

mmu hsa dme sce strict 395 16 11 (3) 4 (3)
relaxed 433 53 (14) 146 (324)

rno hsa dme cel sce strict 206 0 – –
relaxed 35 19 (2) 11 (12)

terolog definitions. In the following, we will focus on five selected species combinations
covering different interactome sizes and evolutionary distances. By means of these exam-
ples we discuss results and properties of our function prediction approach. An overview
on the respective network comparison of mmu-sce, hsa-dme-sce, hsa-dme-cel-sce, mmu-
hsa-dme-sce and rno-hsa-dme-cel-sce is presented in Table 5.3. For each combination we
summarized results for using strict and relaxed interolog definition. Complete results
are given in Appendix B, Table B.1.
As expected, the number of orthologous protein groups, interologs and identified CCS

differ significantly depending on the number of compared species, their evolutionary
distance as well as their current interactome coverage. Strict comparison of mouse and
yeast, for instance, results in 17 CCS (out of 48) qualifying for function prediction. In
contrast, (strict) multiple comparisons do rarely result in any or only very few CCS with
two or more proteins (see Table B.1). While hsa-dme-sce results in 12 qualifying CCS
(out of 65), we yield only few rather small CCS (three to four proteins) for hsa-dme-cel-
sce and mmu-hsa-dme-sce. In turn, only few predictions can be derived for such a small
number of CCS (see Section 5.3.5.1).
The usage of the relaxed interolog definition considerably increases the number and

size of the detected CCS (see Table 5.3 and B.1). For instance, we identify 53 CCS for
mmu-hsa-dme-sce of which 14 comprise more than two proteins. These CCS are shown in
Figure 5.5. On the contrary, we only found 11 CCS using the strict interolog definition of
which only three were larger than two proteins. Similarly, species combinations without
any qualifying CCS from strict comparison do now result in a reasonable number of CCS.
Figure 5.6 exemplarily illustrates the increasing number and size of CCS for combinations
of three species.
Strikingly, even combinations with five and six species yield qualifying CCS. For in-

stance, mmu-hsa-dme-cel-sce produces nine CCS with more than two proteins. A com-
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Figure 5.5: CCS conserved among mouse, human, fly and yeast. 14 (out of 53) subgraphs
with more than two proteins are approximately conserved between the four species. The largest
CCS comprises 146 proteins and 324 interologs. Proteins are colored according to their functional
coverage in human within molecular function; from no function (light blue) to functionally well-
characterized (dark blue).

bination of all six species yields still two CCS (out of 15) with the largest comprising five
proteins (see Table B.1). These observations emphasize that being less strict allows for a
significant improvement of the coverage of our network comparison method. The impact
of the relaxed interolog definition on CCS-based function prediction will be discussed in
Section 5.3.5.1.
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Figure 5.6: Comparison of the number of qualifying CCS from strict and relaxed
network comparison for combinations of three species. Strict CCS are represented by
circles while relaxed CCS are presented by stars. The size of each CCS can be determined from x-
and y-axis which show the number of orthologs (x-axis) and interologs (y-axis), respectively.
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We also tested the effect of applying the relaxed definition of interologs to species pairs.
This leads to very few (often only one) yet very large CCS (e.g. 539 proteins and 4,761
interologs for mmu-sce), as it only creates the union of interactions between orthologous
proteins of the two species. However, this does not reflect evolutionary conservation of
protein interactions and therefore misses the important signals of functional conservation.
For this reason, we use the classical, strict definition for pairs of species and the relaxed
definition when comparing multiple species.

5.3 Protein function prediction
We use orthology relationships, functionally conserved modules as well as direct and
indirect protein interactions to predict functional annotations for proteins in qualifying
CCS. Qualifying CCS are those (a) with more than two proteins and (b) exceeding a
given similarity threshold to ensure evolutionary and biological conservation. Precision
and per-protein recall, as defined in Section 4.3, are computed for the following thresh-
olds: low (0.3), medium (0.5) and high (0.7) functional coherence. Keep in mind that,
as always when comparing to an incomplete gold standard, cross-validation inherently
considers any new annotations as false, although new annotations are the primary target
of function prediction. This penalizes any novel prediction the algorithm derives, even
if it is correct. In consequence, the observed number of false positives is higher than in
reality. Thus, precision and recall documented throughout the evaluation present lower
bounds as both are typically underestimated.
We evaluated our approach in several ways. First, we compared our combined strategy

to baseline methods which disregard conservation in networks. Second, we compared it to
the results obtained from using orthology and PPI neighborhood within CCS in isolation.
Third, we performed a comparison to three recent function prediction methods from
the literature. Further, we assess several important features of our function prediction
method and discuss their impact on the prediction performance.

5.3.1 Baselines

We first show the performance of our two baseline methods, orthology and link-based,
for function prediction (see Section 4.3.2). Precision for predictions based solely on
orthology relationships varies between 22% and 70% (see Table 5.4). Precision rises
the more species are considered. Recall is roughly the same for two and three species
combinations (34% to 61%), but decreases steeply with the number of species being
compared reaching, for instance, 8% to 16% for rno-hsa-dme-cel-sce. Precision of the
link-based baseline ranges from 23% to 48%. Contrary to the orthology baseline, recall
is mostly low, varying between 4% and 41% (see Table 5.5).

5.3.2 Orthology Relationships in CCS

We use orthology relationships underpinned by interologs to infer novel functions from
multiple species. Considering only orthology relationships for transferring functions to
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Table 5.4: Baseline for utilizing OrthoMCL orthology relationships for function pre-
diction. Precision (P) and recall (R) are estimated from randomly sampling 1/3 of the OrthoMCL
groups from a species combinations and predicting function along orthology within the groups.
Results are averaged across 100 runs.

Species # Terms ∅ P (± Std) ∅ R (± Std)

mmu 103573 0.52 (0.01) 0.61 (0.01)
sce 161855 0.38 (0.01) 0.38 (0.01)

hsa 18643 0.45 (0.02) 0.55 (0.01)
dme 17496 0.43 (0.02) 0.44 (0.01)
sce 12169 0.69 (0.01) 0.34 (0.01)

mmu 5654 0.62 (0.03) 0.29 (0.02)
hsa 6400 0.52 (0.03) 0.28 (0.02)
dme 6411 0.48 (0.04) 0.34 (0.02)
sce 4634 0.70 (0.03) 0.30 (0.02)

hsa 3318 0.42 (0.03) 0.09 (0.01)
dme 2289 0.51 (0.04) 0.11 (0.01)
cel 5643 0.22 (0.03) 0.17 (0.01)
sce 1686 0.60 (0.03) 0.09 (0.01)

rno 662 0.63 (0.06) 0.08 (0.01)
mmu 1215 0.49 (0.08) 0.08 (0.02)
hsa 968 0.50 (0.05) 0.10 (0.02)
dme 2010 0.25 (0.04) 0.16 (0.02)
cel 666 0.68 (0.05) 0.08 (0.01)

Table 5.5: Baseline for link-based function prediction within species-specific PPI net-
works without utilizing interologs. Precision (P) and recall (R) are estimated from sampling
randomly 1/3 of the proteins of each interaction network independently of any species combination.
Results are averaged across 100 runs.

Species # Terms ∅ P (± Std) ∅ R (± Std)

rno 3153 0.44 (0.04) 0.04 (0.007)
mmu 22901 0.31 (0.01) 0.10 (0.005)
hsa 141129 0.27 (0.02) 0.29 (0.006)
dme 30445 0.23 (0.01) 0.12 (0.005)
cel 8960 0.30 (0.02) 0.14 (0.011)
sce 58653 0.48 (0.01) 0.41 (0.008)

proteins within CCS results in predictions with medium to high precision. Table 5.6
shows precision and per-protein recall estimated for the selected examples. Precision
reaches 85% to 93% for yeast proteins and 76% to 81% for mouse proteins when com-
paring mmu-hsa-dme-sce. Precision values increase considerably with higher coherence
thresholds for CCS (see Section 5.3.4.2), but this improvement comes at the cost of
lower coverage, that is, less predictions. Contrary to the coverage, the per-protein recall
increases with the functional coherence. This behavior differs from the standard recall
which typically decreases when filtering for certain criteria, i.e., less proteins are taken
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into account at higher thresholds. Yet, annotations of proteins passing the thresholds
are recovered with higher coverage. Particularly low numbers of predictions are obtained
for comparisons involving species with low interaction coverage. Low coverage limits the
number of qualifying CCS which, in turn, limits the number of function predictions.
This is especially prominent for rno-hsa-dme-cel-sce, where the network comparison re-
sults in two qualifying CCS yielding only 5 predictions for rno, hsa and sce – but with
a precision of 100%.
Besides the coherence threshold, also the number of species being compared has a

strong impact on performance. Higher precision is achieved when analyzing more species.
For instance, we achieve an average precision of 71% for mmu-hsa-dme-sce at the lowest
threshold of 0.3 which is almost as good as precision for mmu-sce with 76% at the
highest coherence threshold of 0.7. This shows that using more species implicitly selects
functions that are conserved more strongly, which underlines the impact of evolutionary
conservation for protein function (see Section 5.3.4.2). This fact also shows up when
comparing to the orthology baseline (Table 5.4): Precision and per-protein recall using
orthology within CCS are much higher, in particular for medium and high functional
conservation, but the overall coverage is much lower. This means that CCS strongly
restrict the number of proteins for which predictions are made, but this restriction is
done in a very sensible way removing mostly false positive predictions.

Table 5.6: Prediction results from exploiting only orthology relationships within CCS
derived by exact (pairs) and approximative (multiple) network comparisons. Precision
(P) and per-protein recall (Rpp) are estimated for low (0.3), medium (0.5) and high (0.7) functional
similarity/conservation thresholds. Missing numbers (−) indicate combinations where no CCS is
homogeneously enough to pass the respective similarity threshold.

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

mmu 7488 0.41 0.55 4742 0.50 0.63 763 0.71 0.75
sce 5368 0.46 0.47 3344 0.57 0.49 478 0.81 0.74

hsa 26156 0.54 0.32 698 0.55 0.32 52 0.71 0.34
dme 20926 0.59 0.41 695 0.59 0.39 67 0.70 0.80
sce 14619 0.81 0.34 462 0.81 0.34 57 0.83 0.34

mmu 8486 0.76 0.27 486 0.78 0.56 207 0.79 0.57
hsa 9712 0.63 0.24 447 0.75 0.56 181 0.76 0.59
dme 8403 0.64 0.30 382 0.93 0.68 148 0.99 0.66
sce 5931 0.85 0.25 413 0.90 0.64 168 0.93 0.87

hsa 791 0.57 0.15 8 0 0 0 − −
dme 390 0.74 0.13 0 − − 0 − −
cel 853 0.25 0.30 21 0 0 0 − −
sce 293 0.92 0.11 0 − − 0 − −

rno 171 0.90 0.18 5 1.00 0.09 0 − −
hsa 271 0.69 0.19 5 1.00 0.18 0 − −
dme 344 0.51 0.22 12 0.54 0.71 0 − −
cel 187 0.78 0.13 7 0.71 0.62 0 − −
sce 189 0.46 0.21 5 1.00 0.36 0 − −
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5.3.3 Neighborhood in CCS
The second part of our approach infers protein function by considering the conserved
interaction neighborhood within CCS. Table 5.7 shows precision and recall for inferring
functions from interaction partners only. Compared to predicting function based on
orthology within CCS, precision is higher, while per-protein recall roughly stays the
same. At the same time, neighbor-based prediction has a considerable better coverage.
For instance, when considering rno-hsa-dme-cel-sce about 1,250 predictions are retrieved
at 0.7 for human with an estimated precision of 99%. Precision and per-protein recall
correlate again with the functional coherence of CCS and the number of compared species
(see Section 5.3.4.2), but the impact of multiple species is less pronounced. Compared
to the link-based baseline (see Table 5.5), considering CCS also leads to a clear and
significant increase in precision and per-protein recall at any threshold while coverage
decreases. This effect can be explained by the fact that using interologs (strict or relaxed)
instead of single interactions largely improves the reliability of protein interactions (Saeed
and Deane, 2008), since false positive interactions are unlikely to be reproduced across
multiple species.

Table 5.7: Precision (P) and per-protein recall (Rpp) for function prediction along
interactions within CCS derived by exact (pairs) and approximative (multiple) network
comparisons.

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

mmu 2736 0.70 0.20 1739 0.79 0.26 993 0.81 0.30
sce 3342 0.86 0.22 3325 0.86 0.24 2565 0.88 0.42

hsa 43484 0.43 0.41 2009 0.79 0.47 881 0.85 0.49
dme 16393 0.56 0.28 3088 0.70 0.34 961 0.91 0.60
sce 17194 0.79 0.35 17056 0.79 0.50 2130 0.89 0.50

mmu 12072 0.55 0.29 4130 0.73 0.48 320 0.91 0.49
hsa 18395 0.44 0.32 672 0.81 0.65 564 0.91 0.69
dme 9335 0.54 0.26 1626 0.70 0.30 846 0.86 0.63
sce 8783 0.74 0.30 8725 0.74 0.31 901 0.87 0.54

hsa 20567 0.51 0.35 344 0.49 0.18 0 − −
dme 8922 0.52 0.22 3981 0.67 0.34 230 0.83 0.34
cel 4284 0.56 0.24 4111 0.56 0.24 72 0.65 0.13
sce 8016 0.82 0.30 7134 0.83 0.31 689 0.91 0.34

rno 694 0.96 0.48 609 0.99 0.67 609 0.99 0.67
mmu 1261 0.99 0.71 1261 0.99 0.71 1248 0.99 0.72
hsa 412 0.63 0.21 219 0.74 0.62 0 − −
dme 116 0.87 0.20 116 0.87 0.20 116 0.87 0.53
cel 433 0.97 0.42 433 0.97 0.42 433 0.97 0.59
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5.3.4 Combining module, orthology and link-based PPI evidence

We hypothesized that the integration of orthology relationships, evolutionary conserved
functional modules, and direct and indirect protein-protein interactions into a single
prediction strategy will combine the strengths of the three individual methods. To
this end, we unify predicted functions from each approach. Selected results from this
combined strategy are shown in Table 5.8. As before, precision varies (from 42% to 99%)
depending on the species combination and the threshold for functional coherence. Best
results are obtained for hsa-dme-sce at a threshold of 0.7, with precision of 84%, 89%
and 89%, respectively, as well as rno-hsa-dme-cel-sce with precision of 95%, 99%, 87%
and 97%, respectively.
As mentioned before, one of the major drawbacks of using only CCS orthology rela-

tionships is the low number of predictions due to the restriction to orthologous proteins
with at least one known function (see Table 5.6). In contrast to orthology-only, the
combined approach creates much more predictions (2- to 10-times more). It generates
hundreds or even thousands of predictions also for those cases where the orthology-only
method could not predict any function.
Comparing the combined method and CCS link-based only (see Table 5.7) shows an

increase within the amount of predictions (e.g. about 2-times for mmu from mmu-sce),
although it is less steep than observed for orthology-only. This increase has mostly only
minor influence on precision and recall. Precision reaches similar levels and the recall
increases slightly. Note, for few combinations the combined method yields the same
results as link-based-only because no predictions could be inferred through orthology
relationships.

5.3.4.1 Impact of large CCS

One essential feature of our prediction strategy remains to be discussed: the processing
of large CCS. Large CCS with more than 25 proteins become increasingly frequent
when using the relaxed interolog definition or when studying closely related species (see
Table 5.3). However, such CCS naturally encompass various biological functions. In
consequence, their functional homogeneity is often too low which excludes the entire CCS
from function prediction. The functional similarity, orthology- and interactor-based, for
large CCS in hsa-dme-sce, mmu-hsa-dme-sce and hsa-dme-cel-sce is depicted in Table 5.9.
These measures confirm that most large CCS receive low coherence scores while only
few exhibit medium and none exhibits high functional similarity. Thus, considering such
large CCS as a whole is insufficient. For this reason, we modified our approach for
large CCS by breaking them up into sub-subgraphs (see Section 4.2.5). Applying this
procedure to CCS from Table 5.9 yields 248, 104 and 131 sub-subgraphs, respectively.
Assessing the functional coherence of the considerably smaller sub-subgraphs reveals an
increase in their functional homogeneity. In consequence, a larger number of subgraphs
exceeds the coherence threshold for medium and high functional similarity, see Figure 5.7,
and thus can be subjected to our function prediction method.
The impact of splitting large CCS on precision and recall is exemplarily shown in

86
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Table 5.8: Prediction results when combining CCS, orthology relationships, and neigh-
boring proteins. Precision (P) and per-protein recall (Rpp) are estimated for low (0.3), medium
(0.5) and high (0.7) functional similarity/conservation thresholds.

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

mmu 8405 0.42 0.43 5091 0.50 0.55 1398 0.74 0.44
sce 7007 0.54 0.37 5061 0.64 0.34 2494 0.87 0.48

hsa 57020 0.44 0.54 2394 0.74 0.51 932 0.84 0.49
dme 28496 0.52 0.46 3537 0.66 0.37 1028 0.89 0.60
sce 24670 0.76 0.48 17332 0.79 0.36 2187 0.89 0.50

mmu 15945 0.59 0.37 4262 0.73 0.48 449 0.82 0.49
hsa 22742 0.47 0.42 831 0.75 0.62 594 0.89 0.67
dme 13590 0.54 0.38 1746 0.72 0.31 873 0.86 0.63
sce 11314 0.75 0.39 8876 0.74 0.31 947 0.85 0.54

hsa 21046 0.51 0.36 352 0.49 0.17 0 − −
dme 9115 0.52 0.23 3981 0.67 0.34 230 0.83 0.34
cel 4903 0.53 0.25 4125 0.56 0.24 72 0.65 0.13
sce 8173 0.82 0.31 7134 0.83 0.31 689 0.91 0.34

rno 694 0.96 0.48 609 0.99 0.67 609 0.95 0.67
hsa 1261 0.99 0.71 1261 0.99 0.71 1248 0.99 0.74
dme 539 0.63 0.21 219 0.74 0.62 0 − −
cel 412 0.87 0.20 116 0.87 0.20 116 0.87 0.53
sce 116 0.97 0.42 433 0.97 0.42 433 0.97 0.59

Table 5.9: Functional similarity of large CCS determined between orthologs across the
species (Simortho) and between interacting proteins within a species (Simneigh).

Largest CCS Simortho Simneigh

Species # Proteins # Interologs MF BP CC Species MF BP CC

hsa 0.35 0.42 0.44
hsa dme sce 344 727 0.44 0.40 0.41 dme 0.52 0.46 0.50

sce 0.50 0.66 0.65

mmu hsa dme sce 146 324 0.42 0.39 0.42

mmu 0.27 0.47 0.51
hsa 0.35 0.42 0.46
dme 0.44 0.44 0.46
sce 0.54 0.63 0.62

hsa dme cel sce 200 372 0.36 0.28 0.28

hsa 0.37 0.46 0.46
dme 0.55 0.46 0.53
cel 0.21 0.62 0.09
sce 0.49 0.68 0.65

Table 5.10 and B.2 for combinations yielding CCS with more than 25 proteins. As can
be seen, processing large CCS creates significantly more predictions with mostly better
precision. For example, when comparing split and non-split results from hsa-dme-sce
the number of predictions multiplies almost tenfold for human proteins at a similar or
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Figure 5.7: Number of splitted sub-subgraphs of hsa-dme-sce in which (a) the
interactor-based similarity or (b) the orthology-based similarity exceeds the functional
coherence threshold of 0.3, 0.5 and 0.7.

even better precision. A similar increase in the number of predictions can be observed
for fly and yeast proteins. The same holds for mmu-hsa-dme-sce and hsa-dme-cel-sce
(see Table B.2). This underlines the importance of processing large CCS for function
prediction with high coverage and more importantly a high level of precision.
The complete results of the combined CCS-based prediction approach for pairs and

multiple species combinations from exact (pairs) and approximative (multiple) network
comparisons, including processing large CCS, is shown in Table 5.11. Overall, the impact
of our combined approach is positive, especially in terms of the number of predictions.
Precision drops for some combinations compared to the single methods. However, the
decrease of precision does not indicate a lower prediction quality. It rather indicates
that the combined method yields many more novel predictions that can not be vali-
dated during cross-validation rather than successfully reproducing known function for
well-characterized proteins (see Section 5.3.4.3 for a thorough discussion of selected pre-

Table 5.10: Impact of processing large CCS on function prediction in multiple species.
CCS with more than 25 proteins are splitted into smaller, overlapping sub-subgraphs.

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

Non-split
hsa 57020 0.44 0.54 2394 0.74 0.51 932 0.84 0.49
dme 28496 0.52 0.46 3537 0.66 0.37 1028 0.89 0.60
sce 24670 0.76 0.48 17332 0.79 0.36 2187 0.89 0.50

Split
hsa 51957 0.61 0.20 27868 0.69 0.23 9489 0.87 0.23
dme 33546 0.59 0.18 19674 0.72 0.20 6556 0.84 0.21
sce 35349 0.79 0.19 28936 0.81 0.18 18806 0.87 0.21
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dictions). Precision is affected the least for the highest similarity threshold (0.7) fostering
the most reliable precisions.

Table 5.11: Complete results of the combined CCS-based prediction approach for pairs
of species and three, four, five and six species combinations. CCS are derived from exact
(pairs) and approximative (multiple) network comparisons and CCS with more than 25 proteins
are splitted into smaller, overlapping sub-subgraphs. Precision (P) and per-protein recall (Rpp) are
estimated for low (0.3), medium (0.5) and high (0.7) functional similarity/conservation thresholds.
Species combinations discussed in more detail throughout the chapter are highlighted in gray.

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

rno 29626 0.67 0.19 15572 0.69 0.18 3462 0.72 0.27
hsa 52116 0.39 0.34 23227 0.41 0.53 5505 0.43 0.64

mmu 416 0.67 0.14 344 0.70 0.17 52 0.94 0.34
cel 199 0.28 0.18 180 0.24 0.24 48 0.75 0.22

rno 578 0.46 0.28 155 0.74 0.18 117 0.75 0.33
cel 164 0.24 0.18 28 0.50 0.11 28 0.50 0.11

hsa 44085 0.36 0.28 12055 0.52 0.36 2442 0.71 0.43
dme 27880 0.50 0.24 11916 0.71 0.21 4601 0.81 0.29

rno 9322 0.76 0.36 7116 0.84 0.38 5097 0.91 0.43
mmu 15485 0.64 0.41 13363 0.64 0.44 10627 0.66 0.51

rno 3021 0.42 0.36 954 0.62 0.53 189 0.86 0.26
sce 3476 0.36 0.45 1095 0.48 0.72 102 0.84 0.32

dme 11510 0.41 0.42 6464 0.51 0.47 1448 0.65 0.31
sce 8459 0.62 0.31 6098 0.69 0.31 3245 0.81 0.30

dme 808 0.55 0.22 572 0.62 0.20 357 0.66 0.21
cel 1211 0.32 0.25 660 0.48 0.24 348 0.55 0.22

rno 691 0.36 0.41 569 0.33 0.45 0 − −
dme 225 0.44 0.36 214 0.46 0.35 59 0.69 0.17

mmu 145901 0.67 0.18 95592 0.69 0.20 35714 0.73 0.32
hsa 175748 0.45 0.23 103161 0.46 0.29 40609 0.50 0.41

mmu 8644 0.45 0.36 5834 0.49 0.40 795 0.68 0.55
dme 4536 0.58 0.35 3395 0.64 0.47 479 0.65 0.35

mmu 8405 0.42 0.43 5091 0.49 0.55 1398 0.74 0.44
sce 7006 0.54 0.37 5060 0.64 0.34 2493 0.87 0.48

cel 798 0.42 0.16 511 0.55 0.23 300 0.53 0.59
sce 1219 0.81 0.25 974 0.92 0.31 835 0.93 0.41

hsa 4516 0.64 0.26 1578 0.91 0.41 1129 0.97 0.51
cel 2173 0.52 0.17 1167 0.63 0.15 317 0.73 0.22

hsa 105760 0.48 0.21 54010 0.56 0.28 18290 0.69 0.33
sce 66586 0.62 0.22 47973 0.70 0.20 27455 0.84 0.24

hsa 27914 0.68 0.21 18581 0.77 0.25 9009 0.89 0.29

Continued on next page

89



5 Evaluation of CCS-based Protein Function Prediction

Table 5.11 – (continued)

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

cel 8206 0.53 0.12 5902 0.59 0.11 2128 0.71 0.11
sce 16345 0.82 0.18 15284 0.85 0.19 11574 0.89 0.25

rno 873 0.50 0.12 317 0.64 0.24 0 − −
mmu 951 0.58 0.19 107 0.81 0.35 0 − −
cel 643 0.41 0.19 417 0.45 0.20 0 − −

rno 2925 0.68 0.08 1759 0.69 0.10 816 0.91 0.30
hsa 3116 0.66 0.19 1201 0.95 0.33 911 0.97 0.55
cel 1894 0.35 0.11 695 0.52 0.10 384 0.65 0.20

rno 761 0.75 0.29 117 0.85 0.14 33 0.97 0.17
mmu 1191 0.58 0.30 167 0.65 0.15 33 0.97 0.17
sce 748 0.35 0.15 494 0.25 0.10 32 0.69 0.20

mmu 10031 0.57 0.09 3317 0.77 0.15 737 0.84 0.39
hsa 8036 0.53 0.13 1633 0.73 0.25 569 0.81 0.38
cel 4935 0.45 0.13 2478 0.58 0.14 276 0.57 0.17

rno 36582 0.74 0.12 27423 0.79 0.14 9621 0.88 0.26
mmu 50380 0.72 0.13 35738 0.77 0.16 12861 0.83 0.28
hsa 63967 0.42 0.15 44705 0.44 0.23 20231 0.46 0.38

hsa 11720 0.54 0.25 4078 0.70 0.39 133 0.76 0.29
dme 7481 0.59 0.16 4316 0.67 0.21 818 0.79 0.20
cel 3744 0.55 0.15 2340 0.63 0.15 631 0.69 0.13

rno 6618 0.68 0.15 3969 0.65 0.12 1403 0.92 0.32
hsa 7977 0.58 0.25 3052 0.71 0.29 1053 0.99 0.56
dme 5953 0.42 0.13 1898 0.60 0.09 512 0.74 0.09

mmu 2843 0.54 0.13 1067 0.67 0.30 44 0.16 0.14
dme 1519 0.64 0.19 1025 0.65 0.22 99 0.57 0.20
cel 833 0.45 0.14 672 0.47 0.16 295 0.63 0.17

hsa 51957 0.61 0.20 27868 0.69 0.23 9489 0.87 0.23
dme 33546 0.59 0.18 19674 0.72 0.20 6556 0.84 0.21
sce 35345 0.79 0.19 28932 0.81 0.18 18806 0.87 0.21

mmu 1694 0.58 0.30 790 0.81 0.33 609 0.88 0.41
cel 546 0.55 0.12 493 0.58 0.13 34 0.47 0.10
sce 1543 0.85 0.25 1463 0.85 0.28 931 0.88 0.40

rno 2183 0.69 0.26 782 0.79 0.32 12 1.0 0.55
mmu 2382 0.65 0.24 1082 0.68 0.27 12 1.0 0.55
dme 1588 0.43 0.17 1143 0.48 0.15 67 0.64 0.41

rno 934 0.77 0.16 651 0.92 0.34 575 0.95 0.45
cel 467 0.63 0.15 418 0.62 0.16 269 0.69 0.29
sce 574 0.79 0.14 433 0.97 0.23 377 0.98 0.52

mmu 25502 0.58 0.17 15688 0.63 0.20 5799 0.68 0.23
hsa 25201 0.59 0.16 14428 0.67 0.24 4448 0.79 0.27
sce 22313 0.67 0.18 19599 0.69 0.17 9925 0.83 0.20

Continued on next page
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Table 5.11 – (continued)

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

mmu 27932 0.66 0.13 14354 0.73 0.14 2366 0.86 0.17
hsa 25215 0.56 0.17 9448 0.66 0.23 1369 0.80 0.39
dme 25211 0.54 0.14 13773 0.61 0.14 3349 0.76 0.16

mmu 8413 0.63 0.25 5502 0.72 0.25 2184 0.85 0.22
dme 6733 0.58 0.23 4369 0.65 0.31 1049 0.81 0.29
sce 7441 0.73 0.23 5615 0.82 0.22 2846 0.91 0.25

rno 3048 0.71 0.37 2150 0.74 0.61 1022 0.91 0.72
dme 3384 0.47 0.35 765 0.73 0.54 220 0.76 0.62
sce 1823 0.77 0.32 1042 0.80 0.38 823 0.83 0.66

dme 2289 0.66 0.18 1647 0.75 0.20 543 0.82 0.25
cel 1755 0.57 0.17 1345 0.62 0.18 416 0.81 0.23
sce 3422 0.75 0.20 3155 0.78 0.21 2629 0.79 0.25

rno 8008 0.68 0.21 5907 0.72 0.21 3192 0.79 0.31
hsa 9864 0.67 0.22 6128 0.75 0.52 2724 0.85 0.75
sce 9761 0.51 0.19 6584 0.57 0.17 2188 0.86 0.30

rno 875 0.66 0.20 654 0.71 0.28 414 0.76 0.28
dme 369 0.66 0.09 342 0.68 0.14 190 0.61 0.15
cel 325 0.25 0.15 293 0.26 0.28 64 0.56 0.18

rno 1928 0.70 0.24 1574 0.72 0.44 1044 0.93 0.66
dme 962 0.60 0.20 347 0.64 0.63 0 − −
cel 880 0.65 0.24 737 0.66 0.23 35 0.83 0.60
sce 1044 0.82 0.2 889 0.84 0.31 749 0.85 0.61

mmu 22505 0.60 0.14 12508 0.70 0.17 4941 0.83 0.27
hsa 21552 0.61 0.14 10762 0.75 0.22 3757 0.87 0.32
dme 17023 0.59 0.14 9863 0.72 0.21 3411 0.85 0.35
sce 17111 0.75 0.16 14223 0.77 0.15 8624 0.85 0.23

rno 5487 0.71 0.21 5061 0.71 0.22 2551 0.77 0.30
hsa 6129 0.73 0.26 4258 0.82 0.49 3474 0.87 0.75
dme 6257 0.43 0.15 2631 0.61 0.24 512 0.73 0.57
sce 4176 0.76 0.17 3685 0.76 0.16 2131 0.82 0.33

rno 6709 0.57 0.15 5537 0.57 0.16 1839 0.54 0.14
mmu 9283 0.51 0.15 2773 0.60 0.17 1039 0.73 0.30
hsa 4167 0.58 0.08 2061 0.59 0.32 736 0.62 0.29
sce 5320 0.53 0.13 3382 0.63 0.13 979 0.78 0.20

mmu 9323 0.59 0.13 5401 0.67 0.15 2131 0.87 0.28
hsa 10493 0.56 0.15 5320 0.71 0.21 1751 0.80 0.27
cel 4303 0.48 0.09 3082 0.56 0.09 1023 0.70 0.09
sce 7932 0.76 0.15 7450 0.76 0.15 4349 0.84 0.21

rno 5348 0.68 0.19 4616 0.71 0.21 2986 0.80 0.28
hsa 7840 0.64 0.22 4677 0.81 0.36 1794 0.99 0.56
cel 2108 0.52 0.12 1373 0.66 0.12 1029 0.69 0.12
sce 3292 0.78 0.15 3074 0.79 0.14 1907 0.91 0.24

Continued on next page
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Table 5.11 – (continued)

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

mmu 12659 0.58 0.09 6792 0.68 0.11 1327 0.83 0.19
hsa 8374 0.62 0.13 2785 0.74 0.20 984 0.86 0.31
dme 9369 0.57 0.10 6864 0.58 0.11 1641 0.65 0.12
cel 5107 0.50 0.11 3263 0.55 0.11 1232 0.57 0.11

rno 266 0.54 0.10 131 0.46 0.12 0 − −
mmu 304 0.50 0.13 7 1.0 0.07 0 − −
cel 213 0.62 0.14 186 0.58 0.17 0 − −
sce 167 0.44 0.05 60 0.48 0.02 0 − −

rno 1071 0.59 0.26 854 0.58 0.41 83 0.96 0.22
mmu 1468 0.60 0.41 87 0.97 0.26 86 0.97 0.26
dme 1208 0.39 0.17 108 0.40 0.28 21 1.0 0.45
sce 589 0.45 0.12 172 0.65 0.09 69 0.67 0.16

rno 7771 0.67 0.09 5247 0.66 0.10 967 0.92 0.19
mmu 10170 0.63 0.09 4697 0.66 0.10 400 0.76 0.15
hsa 9807 0.51 0.11 2656 0.64 0.21 243 0.94 0.32
dme 6862 0.40 0.08 2940 0.47 0.07 540 0.80 0.10

rno 3749 0.62 0.06 2044 0.56 0.05 165 0.78 0.08
mmu 5804 0.61 0.07 1352 0.63 0.07 82 0.61 0.09
hsa 5272 0.48 0.09 605 0.62 0.15 5 1.0 0.38
cel 2456 0.44 0.09 1007 0.60 0.09 165 0.60 0.10

rno 983 0.67 0.13 415 0.72 0.17 42 0.74 0.28
mmu 1430 0.53 0.16 12 1.0 0.21 0 − −
dme 659 0.62 0.13 456 0.64 0.10 0 − −
cel 565 0.56 0.19 327 0.58 0.16 0 − −

rno 2405 0.65 0.08 1444 0.79 0.12 781 0.95 0.38
hsa 2443 0.76 0.20 1566 0.94 0.42 1326 0.99 0.59
dme 2563 0.46 0.07 1178 0.57 0.07 161 0.61 0.09
cel 1728 0.50 0.12 1223 0.60 0.12 466 0.67 0.19

mmu 3190 0.61 0.29 1531 0.63 0.35 566 0.84 0.42
dme 2341 0.55 0.22 915 0.75 0.28 345 0.78 0.44
cel 1280 0.57 0.18 715 0.56 0.14 0 − −
sce 2282 0.82 0.27 2171 0.82 0.27 848 0.92 0.36

hsa 23497 0.63 0.17 14722 0.69 0.20 6380 0.88 0.23
dme 12813 0.58 0.13 7484 0.74 0.18 4593 0.82 0.29
cel 7801 0.51 0.11 5043 0.57 0.09 1747 0.68 0.10
sce 13005 0.85 0.16 12135 0.86 0.16 9420 0.91 0.23

rno 350 0.58 0.06 271 0.65 0.16 0 − −
mmu 837 0.39 0.08 5 1.0 0.04 0 − −
hsa 143 0.57 0.10 15 0.47 0.50 0 − −
dme 456 0.64 0.11 422 0.64 0.11 86 0.55 0.16
cel 376 0.54 0.20 287 0.56 0.24 265 0.55 0.25

rno 0 − − 0 − − 0 − −

Continued on next page
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Table 5.11 – (continued)

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

mmu 0 − − 0 − − 0 − −
dme 0 − − 0 − − 0 − −
cel 0 − − 0 − − 0 − −
sce 0 − − 0 − − 0 − −

rno 694 0.96 0.48 609 0.99 0.67 609 0.99 0.67
hsa 1261 0.99 0.71 1261 0.99 0.71 1248 0.99 0.72
dme 412 0.63 0.21 219 0.74 0.62 0 − −
cel 116 0.87 0.20 116 0.87 0.20 116 0.87 0.53
sce 433 0.97 0.42 433 0.97 0.42 433 0.97 0.59

rno 11 0.27 0.01 0 − − 0 − −
mmu 0 − − 0 − − 0 − −
hsa 0 − − 0 − − 0 − −
cel 19 0.42 0.02 19 0.42 0.02 0 − −
sce 2 1.0 0.0 2 1.0 0.0 0 − −

rno 651 0.94 0.40 543 0.97 0.73 543 0.97 0.73
mmu 1167 0.65 0.64 848 0.68 0.76 83 0.96 0.32
hsa 190 0.97 0.40 189 0.97 0.40 189 0.97 0.40
dme 550 0.36 0.16 202 0.64 0.56 20 1.0 0.57
sce 184 0.64 0.11 179 0.65 0.11 158 0.63 0.25

mmu 1524 0.80 0.39 1361 0.81 0.38 733 0.86 0.41
hsa 2121 0.70 0.46 1216 0.82 0.41 561 0.88 0.47
dme 896 0.70 0.23 650 0.72 0.27 346 0.80 0.44
cel 440 0.48 0.10 349 0.52 0.11 25 0.80 0.28
sce 1183 0.86 0.27 1130 0.87 0.27 899 0.91 0.41

rno 214 0.75 0.19 203 0.78 0.33 83 0.96 0.32
mmu 227 0.67 0.28 83 0.96 0.32 83 0.96 0.32
hsa 189 0.97 0.40 189 0.97 0.40 189 0.97 0.40
dme 429 0.38 0.14 45 0.93 0.37 20 1.0 0.57
cel 264 0.53 0.25 250 0.54 0.25 25 0.80 0.28
sce 99 0.75 0.10 99 0.75 0.10 80 0.74 0.33

5.3.4.2 Impact of functional and evolutionary conservation

As indicated in Table 5.11, the results of our prediction method vary depending on the
amount of interaction data and functional annotations available for the species under
considerations. They are mostly better for well-annotated species, such as yeast, rat
or mouse. This is an inherent property of methods that transfer annotations, since
better annotated species provide more source functions. This property underpins the
importance of comparative genomics for elucidating the function of human proteins.
Further, precision correlates with the functional coverage of a species (see Figure 5.8).
Prediction methods perform better on well-studied organisms than on species that are
functionally less well characterized, e.g., worm, as new findings in such species are always
counted as false positives, independently of their real, biological relevance.
As briefly discussed for selected combinations in Section 5.3.2 and 5.3.3, prediction
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Figure 5.8: Correlation of prediction precision with functional coverage. Functional cov-
erage is determined as the average fraction of proteins with at least one functional annotation across
the three subontologies. Precision for each species is estimated across all species combinations.

precision correlates with functional conservation (see Figure 5.9(a)). The median predic-
tion precision increases significantly from 58% (low similarity) to 82% (high similarity).
Obviously, the functional conservation threshold is an important possibility to tune our
method to the specific needs of an application. A similar correlation can be observed
along the degree of evolutionary conservation of CCS (see Figure 5.9(b)). The more
species we consider the higher is the evolutionary conservation of the respective CCS
which, in turn, is reflected in an increased prediction precision. The median precision
improves, for instance, from 73% for pairwise to 96% for multiple CCS of six species.
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Figure 5.9: Correlation of prediction precision with (a) functional and (b) evolutionary
conservation, respectively. (a) Prediction precision is estimated across all species combination
for each of the three similarity thresholds (low: 0.3, medium: 0.5, high: 0.7) indicating the level
of functional conservation. (b) Precision with respect to the evolutionary conservation of CCS
indicated by the number of involved species.
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5.3.4.3 Novel protein function

Altogether, our method predicts thousands of protein functions for every species included
in the analysis at varying, yet always high levels of precision. Table 5.12 presents for each
species the total number of newly derived GO annotations and their estimated average
precision and per-protein recall using low, medium and high coherence thresholds. For
human, for instance, we predict 27,100 novel functions with a precision of at least 83%
or 69,200 functions with a precision of 72%.
Assessing truly novel functions is challenging. Novel functions are typically verified by

finding supporting evidence in the literature or databases. However, given the amount
of predictions manual curation is impossible. For this reason, we compared GO an-
notations derived from the CCS-based function prediction method to function inferred
by electronic annotation (IEA). Table 5.13 shows the fraction of CCS-based function
predictions that have been associated with proteins by other computational methods.
About 25% of our predictions for human within biological process have been also inferred
automatically while only 7.5% of the predictions for yeast within the same ontology are
supported by IEA annotations. However, these numbers do not directly confirm CCS-
based prediction but indicate their relevancy and novelty. Therefore, we performed an
extensive literature evaluation to verify the correctness of novel annotations of selected
proteins (see Section 5.5).
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Table 5.13: CCS-based function predictions compared to annotations inferred from
electronic annotation.

Species Molecular function Biological Process Cellular Component

rno 15.3% 6.2% 20.3%
mmu 22.3% 13.2% 20.8%
hsa 39.8% 24.4% 33.3%
dme 19.7% 9.2% 13.1%
cel 51.3% 14.7% 29.8%
sce 11.9% 7.5% 6.8%

5.3.5 Further evaluations
We use the cross-validation setting applied above to evaluate and discuss further prop-
erties of our methods according to the following aspects:

• First, we determine the effect of utilizing relaxed CCS on the performance of CCS-
based function prediction (see Section 5.3.5.1).
• Second, we study the diversity of function predictions derived from the orthology-
and link-base methods (see Section 5.3.5.2).
• Third, we examine whether our prediction strategy benefits from analyzing several
species combinations (see Section 5.3.5.3).
• Fourth, we evaluate CCS-based function prediction according to the three GO
subontologies: molecular function, biological process and cellular component and
their specific GO branches (see Section 5.3.5.4). We determine the performance
of our approach with respect to each subontology. Further, we study whether
particular GO branches are better predictable than others and if those correlate
with evolutionarily conserved function and processes.
• Fifth, we analyze how CCS-based function prediction performs on proteins with-
out any or with only very little functional information by considering all novel
predictions for these proteins which are typically counted as false positives in the
cross-validation (see Section 5.3.5.5).
• Sixth, we assess whether there is a difference in the prediction performance be-
tween more general genes, such as housekeeping genes, or specific genes (see Sec-
tion 5.3.5.6).
• Last, we study the impact of filtering for high density CCS on function prediction
(see Section 5.3.5.7).

Note that in the following evaluations, based on exact or relaxed CCS, we apply the
combined prediction strategy including the processing of large CCS with more than 25
proteins.
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5.3.5.1 Strict vs. relaxed CCS

For comparing protein interaction networks we used two criteria to identify interologs
(see Section 4.1.2): the strict and the relaxed definition. As reported in Section 5.2,
we experimented with using the strict interolog definition for multiple species which
often results in zero or only very few and small CCS. In contrast, applying the relaxed
definition generally yields a considerable higher number of CCS (see Table 5.3 and B.1
for strict and relaxed results).
Table 5.14 illustrates the impact of relaxed CCS by comparing the number of pre-

dicted terms along with precision and recall for CCS identified by strict and relaxed
network comparisons for: hsa-dme-sce and mmu-hsa-dme-sce. Utilizing strict CCS leads
to a small but highly precise set of function predictions. For instance, a precision of
86% to 95% is achieved for CCS from hsa-dme-sce. However, being less strict leads to
a significant improvement in the coverage of our prediction method, e.g., the number
of predictions increases drastically (10- to 15-times), at comparable precision (see Ta-
ble 5.14). The effect is most dominant for rno-hsa-dme-cel-sce where no (strict) CCS
could be identified and consequently no predictions could be derived. The influence on
prediction precision is mostly smaller and in some cases negative (< 10%). Notably,
especially the predictions with highest reliability (threshold 0.7) are the least affected in
terms of precision and often there is an increase, e.g., from 86% to 87% and 73% to 80%
for hsa and dme in mmu-hsa-dme-sce, respectively.
Altogether, the usage of the relaxed definition considerably increases the number of

qualifying CCS for three or more species and has a significantly positive impact on
function prediction.

5.3.5.2 Diversity of orthology- and link-based predictions

We combine orthology- and link-based function prediction within CCS to benefit from
the strengths of both methods. To study whether predictions of the individual methods
result in the same or complementary sets of predictions we determined the overlap of GO
terms predicted by either strategy. For hsa-dme-sce, the respective numbers are shown
as Venn diagrams in Figure 5.10. In general, the major fraction of unique predictions is
derived from neighboring proteins. The overlap between both sets is comparably small
and decreases when increasing the similarity threshold. This shows that both methods
complement each other very well as they predict rather different sets of functions.
This behavior is also observable when predictions are analyzed separately per species

(see Appendix B, Figure B.1). However, contrary to yeast proteins (see Figure B.1(c)),
the amount of orthology and link-based predictions is less diverging for human and fly
proteins (see Figure B.1(a) and Figure B.1(b)), particularly for low functional coherence,
which can be explained by the much denser interaction and functional data available for
yeast (see Table 5.1 and Table 5.2). This observation emphasizes that different species
profit differently from our method. Especially less characterized species, such as human,
benefit strongly from the functional knowledge of model organisms.
Further, we investigated the overlap per subontology. Figure 5.11 shows the fraction
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Table 5.14: Impact of the strict and relaxed interolog definition on function prediction
in multiple species.

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

Strict
hsa 7637 0.52 0.55 2166 0.83 0.68 1119 0.95 0.66
dm 3873 0.54 0.48 1423 0.76 0.50 355 0.86 0.48
sce 3143 0.79 0.42 2382 0.82 0.50 1317 0.92 0.50

Relaxed
hsa 51957 0.61 0.20 27868 0.69 0.23 9489 0.87 0.23
dme 33546 0.59 0.18 19674 0.72 0.20 6556 0.84 0.21
sce 35349 0.79 0.19 28936 0.81 0.18 18806 0.87 0.21

Strict
mmu 548 0.78 0.31 484 0.77 0.29 112 0.86 0.37
hsa 766 0.67 0.29 405 0.77 0.46 133 0.86 0.36
dme 447 0.58 0.24 338 0.67 0.39 44 0.73 0.59
sce 448 0.86 0.34 404 0.89 0.37 382 0.88 0.34

Relaxed
mmu 22505 0.60 0.14 12508 0.70 0.17 4941 0.83 0.27
hsa 21552 0.61 0.14 10762 0.75 0.22 3757 0.87 0.32
dme 17023 0.59 0.14 9863 0.72 0.21 3411 0.85 0.35
sce 17112 0.75 0.23 14224 0.77 0.15 8625 0.85 0.23

of common predictions for molecular function, biological process and cellular component
determined at a coherence threshold of 0.3. Regarding the ontology-specific Venn di-
agrams two further observations can be made. First, the total number of predictions
differs significantly among the three ontologies (see Section 5.3.5.4). Second, in contrast
to biological process and cellular component, the number of orthology and link-based
predictions is quite similar for molecular function (with a fairly small overlap of 515).
In this case the significantly smaller number of predictions from the neighbor-based ap-
proach might be explained by the following: Proteins within protein complexes/modules
represented by CCS are very likely to participate in the same biological process within

(a) Threshold 0.3 (b) Threshold 0.5 (c) Threshold 0.7

Figure 5.10: Overlap between predicted functions derived from the orthology- (orange)
and link-based (purple) method for CCS from hsa-dme-sce.
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(a) Molecular function (b) Biological process (c) Cellular component

Figure 5.11: Overlap between predicted functions derived from the orthology- (orange)
and link-based (purple) method for CCS from hsa-dme-sce for molecular function,
biological process and cellular component. Note that the overlap between orthology- and
link-based predictions for molecular function is 515.

the same cellular compartments. However, such proteins do not necessarily have the
same but highly diverging biochemical functions. Thus, fewer functions are derived
from neighbors in this ontology as molecular function is likely to be less coherent among
interacting proteins.

5.3.5.3 Diversity of predictions from different species combinations

In addition to the overlap between the neighbor-based and orthology-based method, we
examine whether our prediction strategy benefits from analyzing several species combi-
nations. For this purpose, we assess the overlap between function predictions for human
proteins derived from distinct species pairs by defining an overall and a per-protein over-
lap. The overall overlap, determined by dividing the number of overlapping predictions
through the total number of predictions of a combination, represents the overall func-
tional space commonly covered by two species. A low overlap indicates that the species
cover complementary functional areas of GO while a high overlap implies a rather com-
mon functional basis. The per-protein overlap in turn measures the information gain
for proteins when being considered by different species. This overlap is computed for
human proteins that are considered by distinct species from different combinations. A
low overlap indicates that common proteins receive rather distinct predictions. A high
overlap denotes that predictions for the same proteins are quite similar.
Table 5.15 shows the overall and the per-protein overlap between predictions for human

proteins inferred from different species pairs. The overall overlap in Table 5.15(a) varies
significantly from 0.13 to 0.9 largely depending on the number of proteins within a
species and their functional coverage. For instance, the overlap for worm is fairly high
as its proteins are quite sparsely annotated. In turn, the overlap between rat and mouse
is particularly high for rat. This might be explained by the low number of rat proteins in
the data and the fact that both species are mammals, thus their underlying annotations
are expected to be more similar. Overall, the data demonstrate that proteins from
distinct species contribute differently to predictions for human proteins, i.e., covering
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Table 5.15: Fraction of overlapping function predictions for human proteins derived
from different species pairs. The overlap is defined as the number of overlapping predictions
divided by the total number of predictions. Each cell value – i/j – specifies the overlap based on
the total number of predictions of the two combinations. i is the overlap between the non-human
species from row i and column j. j is the overlap between non-human species from column j and
row i.

(a) Overall overlap between species pairs

mmu hsa hsa dme hsa cel hsa sce

rno hsa 0.85/0.40 0.42/0.47 0.22/0.69 0.49/0.39
mmu hsa − 0.30/0.72 0.13/0.90 0.35/0.59
hsa dme − − 0.29/0.85 0.56/0.40
hsa cel − − − 0.81/0.20

(b) Per-protein prediction overlap between species pairs

mmu hsa hsa dme hsa cel hsa sce

rno hsa 0.61/0.58 0.45/0.29 0.20/0.24 0.37/0.31
mmu hsa − 0.38/0.43 0.36/0.41 0.47/0.35
hsa dme − − 0.61/0.60 0.53/0.43
hsa cel − − − 0.46/0.43

different functional aspects.
The per-protein overlap, shown in Table 5.15(b), is mostly below 50% and strongly

depends on the evolutionary distance between the species. For example, the overlap
between human predictions derived from mouse and those derived from rat is much
larger than the overlap between rat and worm. Likewise, predictions inferred from fly
and worm are more similar than those obtained from rat as both species are closer
related. An overlap of 0.31/0.37 between rat and yeast implies that predictions derived
from both species are highly diverse and complementary to each other. The same holds
for combinations of three and four species (data not shown). Yet, the diversity decreases
the more species we combine as we focus indirectly on evolutionary conserved functions.
This becomes more clear when studying predictions for highly conserved housekeeping
proteins (see Section 5.3.5.4 and 5.3.5.6).
Our findings emphasize that not only predictions from the different approaches com-

plement each other but also predictions inferred from different species combinations are
rather complementary.

5.3.5.4 Performance on GO

Until now, we only focused on the prediction performance regarding the different species
and approaches. We now evaluate our approach with respect to the different GO sub-
ontologies and specific GO branches. First, we study CCS-based function prediction
separately for molecular function, biological process and cellular component, and de-
termine subontology-specific precision and recall. Both subontology-specific precision

101



5 Evaluation of CCS-based Protein Function Prediction

Table 5.16: Subontology-specific precision and per-protein recall determined separately
for molecular function (MF), biological process (BP) and cellular component (CC) for
proteins from hsa-dme-sce.

0.3 0.5 0.7
# Terms P R # Terms P R # Terms P R

hsa 5020 0.51 0.17 1924 0.51 0.21 348 0.55 0.33
MF dme 3541 0.64 0.19 2360 0.74 0.22 1053 0.81 0.21

sce 3492 0.77 0.19 2765 0.79 0.18 1343 0.83 0.19

hsa 31318 0.62 0.18 18157 0.69 0.21 7768 0.89 0.23
BP dme 18709 0.51 0.14 9863 0.64 0.15 2784 0.80 0.19

sce 19683 0.74 0.16 15772 0.77 0.14 10875 0.84 0.31

hsa 15619 0.62 0.28 1114 0.73 0.31 1373 0.82 0.23
CC dme 11296 0.71 0.26 1181 0.82 0.30 2719 0.90 0.25

sce 12174 0.86 0.27 10399 0.88 0.26 6588 0.91 0.27

and per-protein recall determined for hsa-dme-sce are shown in Table 5.16. Overall, our
CCS-based method performs comparably consistent across the three subontologies, in
particular at a threshold of 0.7. However, precision is generally higher for cellular com-
ponent across the thresholds than for biological process and molecular function, 91%,
84% and 83%, respectively for yeast.
The largest number of predictions is obtained for biological process followed by cellular

component and molecular function (see also Figure 5.11). In human, for instance, the
number of predictions derived for biological process is two- to six-times larger than for
cellular component and molecular function, respectively. When considering the depth
of derived GO functions, annotations are predicted at a median level of 10 for cellular
component, 9 for biological process and 4 for molecular function (at a threshold of 0.7).
Note that the median depth of a GO term in GO is 5 for molecular function, 8 for
biological process and 8 for cellular component. This demonstrates that we are able
to infer very specific functions and not only general annotations (see Section 5.5 for a
discussion of novel functions).
Compared to other methods presented in the literature, our method has also the

important property that it is not limited to so-called “informative” GO terms (Zhou
et al., 2002). Many prediction methods use only GO terms that are associated to more
than ten or 30 genes (Deng et al., 2003; Chua et al., 2007). Such an approach implicitly
disregards more specific annotations, although those are the most valuable ones. For
example, in 2007 82.5% of GO annotations in human were associated with less than ten
genes (Tao et al., 2007) leaving only 17.5% as annotation basis. GO-based methods have
been shown to result in higher precisions when applied on a small number of frequently
annotated GO terms. In contrast, we are able to generate accurate predictions also for
rarely used GO terms.

Branches of GO Since our prediction strategy is mainly based on evolutionary and
functional conservation, we study if this is reflected in the predictions. We assess whether
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5.3 Protein function prediction

there are particular GO terms and branches that are better predictable than others and
if those correlate with evolutionarily conserved functions and processes. To this end, we
determine for each GO term a term-specific precision and recall.
Figure 5.12 presents predicted GO terms within molecular function. GO annotations

are colored according to their precision from 0 (yellow) to 1 (green). The figure re-
veals branches with more precise predictions (green areas) and less precise predictions
(yellow areas). Predictions with high precision include, for instance, DNA and RNA
polymerase activity, DNA-dependent ATPase activity, and H3 histone acetyltransferase
activity, while predictions with low precision comprise functions such as juvenile hormone
response element binding, retinal binding and androgen binding.

Evolutionarily conserved functions Given the evolutionary framework of our method,
we also assume that functions which are evolutionary highly conserved are more precisely
predicted by our method. We use housekeeping genes and their annotated functions to
validate this hypothesis. Housekeeping genes are known to be constitutively expressed
to maintain cellular function essential for cell viability, such as transcription, translation
and signaling (Eisenberg and Levanon, 2003; Zhu et al., 2008). We define a set of house-
keeping functions by extending a list generated by Ferrari and Aitken for classifying
housekeeping genes (Ferrari and Aitken, 2006). This list comprises GO terms that are
exclusively associated with at least one housekeeping gene. We extend this list by anno-
tations that are known to be over-represented in this gene group (Tu et al., 2006). The
set of housekeeping-specific function is displayed in Table 5.17. Again, we determine GO
term-specific precision and recall and compare the results for housekeeping-specific func-
tions against non-housekeeping specific functions. Note that for this evaluation we only
consider biological process since the majority of GO terms belong to this subontology.
Housekeeping functions yield an average precision of 93%. When considering predic-

tions for human proteins from hsa-dme-sce we obtain average precisions of 62%, 69% and
89% at 0.3, 0.5, 0.7 (see Table 5.16). The housekeeping-specific precision is significantly
higher, with p-values of 8.6·10−15, 5.9·10−11 and 0.0021, respectively, when comparing
it to the average precisions at the three different threshold. However, not only those
housekeeping-specific function but also other essential processes, such as macromolecule
biosynthetic process, ribosome localization, RNA catabolic process and mRNA export
from nucleus, are inferred with precisions between 89% and 100%. This shows, that
evolutionary conserved processes are better predictable by our prediction method.

103



5 Evaluation of CCS-based Protein Function Prediction

F
ig
ur
e
5.
12
:
G
O

te
rm

sp
ec
ifi
c
pr
ed

ic
ti
on

pr
ec
is
io
n
fo
r
fu
nc
ti
on

pr
ed

ic
ti
on

s
in

m
ol
ec
ul
ar

fu
nc
ti
on

.
N
od

es
re
pr
es
en
t
G
O

te
rm

s
w
hi
ch

ar
e
co
lo
re
d
ac
co
rd
in
g
to

th
ei
r
pr
ec
is
io
n;

fr
om

0.
0
(y
el
lo
w
)
to

1.
0
(g
re
en

).
T
he

no
de

si
ze

co
rr
el
at
es

w
ith

th
e
de

pt
hs

of
a
G
O

te
rm

w
ith

in
th
e
G
O

hi
er
ar
ch
y.

104
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Table 5.17: Functional GO annotation specific for human housekeeping genes.

GO Identifier Description Subontology Reference

GO:0006412 Protein biosynthesis BP Ferrari and Aitken (2006)
GO:0003735 Structural constituent of ribosome MF Ferrari and Aitken (2006)
GO:0005840 Ribosome CC Ferrari and Aitken (2006)
GO:0022625 Cytosolic large ribos. subunit (sensu Euk.) CC Ferrari and Aitken (2006)
GO:0030529 Ribonucleoprotein complex CC Ferrari and Aitken (2006)
GO:0006414 Translational elongation BP Ferrari and Aitken (2006)
GO:0006350 Transcription BP Tu et al. (2006)
GO:0006091 Generation of precursor metabolites and

energy
BP Tu et al. (2006)

GO:0046907 Intracellular transport BP Tu et al. (2006)
GO:0015031 Protein transport BP Tu et al. (2006)
GO:0006996 Organelle organization and biogenese BP Tu et al. (2006)
GO:0007049 Cell cycle BP Tu et al. (2006)

5.3.5.5 Performance on weakly and uncharacterized proteins

An important goal of protein function prediction is to derive novel functions for proteins
without any or with only very little functional information. We analyzed how our method
performs on such proteins. We define any protein with an information content below
a certain cutoff c as weakly annotated protein (WAP). The information content of a
protein p is defined as the maximal information content of any of its GO terms assigned
a priori in our data:

IC(p) = max {IC(ti)|ti ∈ t(p)} . (5.1)

Recall the information content of a GO term correlates with its frequency and speci-
ficity. Thus, proteins with less frequent terms and terms with few occurring descendants
are more informative. The cutoff for weak annotation is set for each species and ontol-
ogy as 25 percentile of the IC(p) distribution across the proteins within the respective
species. Proteins with an information content below c are considered to be weakly an-
notated. For WAP analysis, we count annotations as new if they are more specific than
the existing ones or if they belong to another sub-branch in the subontology. Note such
annotations are counted as false positives in our evaluation as they cannot be validated
from our gold standard data.
Figure 5.13 shows the number of predicted functions for proteins without any an-

notations within CCS from hsa-dme-sce. As expected, the highest number of proteins
without any annotation can be found in human. Annotation coverage of fly is not as
good as for yeast but still much better than in human. For example, CCS at threshold
0.3 contain 583 human proteins without any functional annotation in biological process.
By means of our method, we predict 703 annotation for 191 of those proteins. Similarly,
96 fly proteins out of 313 are annotated with 235 GO annotation in biological process.
In contrast, only very few yeast proteins are not annotated at all in any of the three
ontologies. However, also well-studied species still contain many WAPs that benefit from
our approach as illustrated in Figure 5.14. For instance, about 240 yeast proteins are
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Figure 5.13: Number of predicted functions for proteins without annotations within
CCS from hsa-dme-sce. For each subontology and similarity threshold the number of proteins
without any annotation (olive), the number of proteins receiving new annotations (orange) and the
total number of novel annotations are shown (yellow). Recall that a higher coherence threshold for
CCS leads to less proteins being included in function predictions; thus, numbers generally decrease
with higher thresholds.

only weakly characterized for cellular component and for more than a third of them we
predict about 200 functions. Overall, the fraction of proteins receiving new annotations
decreases for each species with increasing similarity threshold.

5.3.5.6 Performance on general and specific proteins

Additionally, we study whether there is a difference in the prediction performance be-
tween more general genes, such as housekeeping genes, or specific genes. In contrast to
Section 5.3.5.4 in which we focused on functions specific to such genes, we now evalu-
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Figure 5.14: Function prediction for weakly annotated proteins (with low information
content) within CCS from hsa-dme-sce. For each subontology and similarity threshold the
number of weakly annotated proteins (olive), the number of proteins receiving new annotations
(orange) and the total number of novel annotations are shown (yellow). Note only annotation that
are more specific then existing ones are counted as novel.

ate our method on the protein level. We compiled a list of tissue-specific and house-
keeping genes from microarray studies that focus on housekeeping (Warrington et al.,
2000; Hsiao et al., 2001; Eisenberg and Levanon, 2003) and tissue-specific genes (War-
rington et al., 2000; Hsiao et al., 2001; Ge et al., 2005). This results in 1177 house-
keeping and 1780 tissue-specific genes encoding human proteins in our data set. Gene
lists are available as supplementary material on a CD (see housekeeping_genes.tsv and
tissuespecific_genes.tsv).
We determine protein-specific precision and recall for human proteins from the species

combination: hsa-dme-sce. Proteins are then classified as housekeeping or tissue-specific
(if possible) and precision and recall are compared between both protein groups. As
expected the overall number of housekeeping genes involved in CCS is significantly larger

107



5 Evaluation of CCS-based Protein Function Prediction

0.25 0.50 0.75 1
0

0.2

0.4

0.6

0.8

1

Precision per protein

F
ra

c
ti
o

n
 o

f 
H

K
 /

 T
S

 p
ro

te
in

s

(a) Molecular function

0.25 0.50 0.75 1
0

0.2

0.4

0.6

0.8

1

Precision per protein

F
ra

c
ti
o

n
 o

f 
H

K
 /

 T
S

 p
ro

te
in

s

(b) Biological process

0.25 0.50 0.75 1
0

0.2

0.4

0.6

0.8

1

Precision per protein

F
ra

c
ti
o

n
 o

f 
H

K
 /

 T
S

 p
ro

te
in

s

 

 
Housekeeping proteins (HK)

Tissue−specific proteins (TS)

(c) Cellular component

Figure 5.15: Comparison of the prediction performance on housekeeping and tissue-
specific proteins of CCS from hsa-dme-sce. The fraction of proteins above a certain precision
threshold is determined for each of the two protein groups.

than the number of tissue-specific genes as we focus on evolutionary conserved subgraphs
in our studies. Housekeeping genes tend to be more conserved than tissue-specific genes
as they evolve more slowly than tissue-specific genes (Zhang and Li, 2004).
The prediction performance of our method on the two sets of proteins has been as-

sessed by determining the fraction of proteins above a certain precision within each
set. Figure 5.15 shows the fraction of housekeeping and tissue-specific proteins hav-
ing a protein-specific precision larger than 0.25, 0.50, 0.75 and 1.0. Except for cellular
component, the fraction of housekeeping proteins above a certain precision is mostly
higher than the fraction of tissue-specific proteins. The difference between both frac-
tions correlates with the increasing precision but the discrepancy is not significant. As
assumed these results indicate, that our method favors evolutionary conserved genes,
such as housekeeping genes. Yet, we are not limited to them and do not only predict
functions for well-studied housekeeping genes but also for (tissue-)specific proteins at a
comparably high level of precision.

5.3.5.7 Module density

Our proposed method considers evolutionarily conserved subgraphs with high functional
coherence as functional modules. However, our definition of functional modules differs
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Figure 5.16: Impact of CCS density on the number of qualifying CCS and the function
prediction for (a) hsa-dme-sce and (b) hsa-dme-cel-sce. The number of CCS per density is
displayed (left y-axis) as well as the influence on the prediction precision (right y-axis).

from the traditional ones that primarily consider dense complexes, with a high connec-
tivity or clustering coefficient, as modules (Bader et al., 2003; Spirin and Mirny, 2003;
Altaf-Ul-Amin et al., 2006). Therefore, we evaluated the effect of requiring CCS to be
“module-like”, i.e., to exhibit a certain density of interactions between its members. To
study the impact of subgraph density on function prediction we performed an experi-
ment where we only consider candidate CCS with a certain density D. CCS-density CD
is defined as:

CD = 2 ∗ |I|
|O|(|O| − 1) (5.2)

where I presents the interologs as edges and O denotes the orthologous proteins groups
as nodes within a CCS. The influence of high density on the number of candidate CCS
and on the prediction precision is demonstrated for hsa-dme-sce and hsa-dme-cel-sce
in Figure 5.16. The number of candidate CCS decreases with an increasing density
threshold, e.g., only 83 out of 270 CCS and 24 out of 142 CCS have a density above
0.7 in hsa-dme-sce and hsa-dme-cel-sce, respectively. On the other hand, the increasing
density correlates mostly with an increasing prediction precision, e.g., in human from
88% without filtering up to 98% for a density of 1.0, see Figure 5.16(b). The effect is
less pronounced in hsa-dme-sce as precision is fairly constant, see Figure 5.16(a). For
worm and fly we observe a decrease in the precision for very high densities (CD ≥ 0.9).
An optimistic hypothesis might be that among the predictions in very dense CCS are
many that are incorrectly counted as false positives, due to the incompleteness of the
gold standard used for evaluation.
However, filtering for highly connected CCS disregards pathways and modules that

are less linked, most likely due to the incompleteness of the data. Thus, limiting CCS
to highly connected subgraphs improves prediction precision further but at the expense
of coverage. The number of predictions decreases significantly, for instance, for human
from 6,380 without filtering to 1,583 for a density of 0.7 down to 382 for a density of 1.0.
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5 Evaluation of CCS-based Protein Function Prediction

5.4 Comparison to related methods
We evaluate our approach using two classical prediction methods, namely Neighbor
Counting (NC, Schwikowski et al. (2000)) and χ2 statistics (Hishigaki et al., 2001). We
also compare our approach with FS-Weighted Averaging (FS-WA, Chua et al. (2006)),
a method that considers indirect functional associations and topological weights (see
Section 4.4 for a detailed description of the individual methods). We did not compare
to purely module-based prediction methods, as link-based techniques have been shown
to outperform those (Sharan et al., 2007; Song and Singh, 2009). Further, Chua et al.
(2006) demonstrated earlier that the FS-Weighted Averaging significantly outperforms
local and global network approaches, e.g., methods that are based on Markov random
fields or functional flow (Deng et al., 2003; Vazquez et al., 2003).
For comparing the three approaches to our CCS-based approach we use a script pro-

vided by Chua et al. that implements the three methods. This script was also used to
perform the comparison of those methods in (Chua et al., 2006, 2007). To allow for a fair
comparison with the CCS-based prediction we adjusted few parameters before applying
the script:
• First, we do not limit predictable GO terms to informative annotations. Other
methods restrict their data to frequently annotated functions (see Section 5.3.5.4)
to obtain statistically sound conclusions (Deng et al., 2003; Chua et al., 2007)
which, in turn, implicitly disregards more specific functions. As we consider both
frequent and rare annotations in our approach, we do not exclude non-informative
GO terms when comparing against the three methods.
• Second, we do not limit predictable GO terms to annotations above a certain GO
level in the GO hierarchy as we do not exclude more general terms at lower levels
from our approach, unlike Chua et al. (2006, 2007).

Further, we alter our original per-protein recall computation (see Eq. 4.12) to generate
comparable precision – recall graphs. Recall is therefore based on proteins of all CCS
rather than only on CCS passing a particular similarity threshold. The modified recall
decreases, in contrast to the per-protein recall, with increasing similarity threshold as less
proteins are considered during the evaluation. Precision and recall for CCS-based pre-
diction are determined across hsa-dme-sce and mmu-hsa-dme-sce for varying similarity
thresholds ranging from 0.1 to 1.0.
Figure 5.17 presents precision – recall graphs for predictions for human proteins sep-

arated by the three GO subontologies. Our combined CCS-based approach significantly
outperforms NC and χ2 statistics, especially in terms of precision. Precision and re-
call obtained from the latter two are very low and even below our baselines. This also
holds for fly and yeast (see Appendix B, Figure B.2 and B.3). Furthermore, precision
for NC and χ2 is significantly lower than reported in the respective original publica-
tions (Schwikowski et al., 2000; Hishigaki et al., 2001). There are three explanations for
this drop (from ∼70% to 15% precision):
• First, both methods have been previously evaluated on the functional classifica-
tion scheme from YPD. This scheme covers, similar to GO, three categories of
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5.4 Comparison to related methods

yeast protein function: biochemical function, cellular role and subcellular local-
ization (see Section 3.1). However, categories have only 57, 41 and 22 members,
respectively. Compared to our evaluation using GO, in which methods have to
chose between up to 20,188 functional categories (see Table 3.1), this increases
the chances to predict correct terms purely by chance. Furthermore, yeast is a
particularly well-studied organism, while we applied the method also to less-well
covered species. A similar performance drop was observed by Chua et al. (2007),
who also applied both methods to GO term prediction, with precision decreasing
to 60% (NC) and 20% (χ2) for yeast and to 20% (NC) and 16% (χ2) for fly.
• The second point concerns the amount of interaction data. For example, results
from Schwikowski et al. (2000) are based on only 2,709 interactions among 2,039
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Figure 5.17: Performance comparison for human proteins. CCS-based precision and recall
are compared against Neighbor Counting (NC), χ2 statistics and FS-Weighted Averaging (FS-WA)
for (a) molecular function, (b) biological process and (c) cellular component.
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5 Evaluation of CCS-based Protein Function Prediction

proteins. In contrast, we integrated six different databases, leading to, for instance,
almost 71,000 interactions for 6,000 proteins in yeast. Thus, we cover many more
proteins and interactions which also increases the probability of false positives.
• Third, many prediction methods, including the two studies compared to here,
consider only annotated proteins with at least one annotated interaction partner
for their studies (Schwikowski et al., 2000; Hishigaki et al., 2001; Deng et al., 2003;
Chua et al., 2006). We did not exclude those proteins because we believe that
especially weakly or uncharacterized proteins must be a primary target for function
prediction. In our combined approach, such proteins often receive functions from
orthologous proteins in other species, an option missing in NC and χ2. However,
functions predicted for non-annotated proteins are necessarily counted as false
positives although these are truly novel findings. Thus, disregarding such proteins
results in higher precisions.

When comparing FS-WA results with our approach, CCS-based function prediction
performs comparably well or even better. Depending on species and subontology we
achieve either higher precision at a similar recall or an improved precision and recall.
For instance for human proteins, CCS-based prediction performs consistently well across
the three subontologies. Comparing the performance on fly proteins shows that our
method clearly outperforms FS-WA, achieving much higher precision at higher recall
(see Figure B.2). A similar tendency is also observable for yeast. Precision is mostly
similar but recall is higher (see Figure B.3). Notably, our method achieves significantly
better results in species with less comprehensive interaction coverage, such as fly.

5.5 Predictions for Selected Human Proteins∗

In the following, we discuss specific predictions for proteins that are relevant for colorectal
cancer. Note, these predictions were counted as false positives in our evaluation because
they are not contained in the Gene Ontology annotations at all or only marked as
putative (mostly “inferred from electronic annotation”, IEA). However, we show that
many predictions already have strong experimental support in the literature. Thus, the
group of novel predictions falls into two classes – those that, given the current literature,
can be considered as true but have not yet made it into the annotation databases and
those for which we could not find conclusive evidence in the literature. We argue that,
given the large amount of predictions that fall in the first class, predictions from the
second class should be considered as promising candidates for further studies.
We discuss predicted functions for the gene products of MLH1, PMS2 and EPHB4,

all of which have an established importance for colorectal cancer (Jiricny, 2006; Kumar
et al., 2009). Overall, literature curation largely confirms the predictions for these three
genes by different experimental studies.

∗Joint work with Christine T Sers (Institute of Pathology, Charite - Universitätsmedizin Berlin).
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MLH1 and PMS2

The DNA mismatch repair protein MLH1 and the mismatch repair endonuclease PMS2
belong to the main components of the post-replicative DNA mismatch repair (MMR)
system (see Figure 5.18) (Li, 2008). The MMR system is required for correcting base mis-
matches and insertion or deletion loops resulting from DNA replication, DNA damage,
or from recombination events between non-identical sequences during meiosis (Jiricny,
2000). Curated annotation for MLH1 and PMS2 from UniProt and EntrezGene and
newly inferred functions are listed in Table 5.18 and 5.19.

Figure 5.18: Components of the post-replicative DNAmismatch repair system (MMR).
The illustrated subgraph is part of a larger CCS identified between human, fly and yeast, and clusters
proteins that are involved in mismatch repair. Proteins associated to colorectal cancer are indicated
in red.

The majority of our predictions (terms are set italics in the following) is directly re-
lated to the functionality of the MutLα complex which is formed by MLH1 and PMS2.
Rich supporting evidence can be found from the respective orthologs in yeast and mouse.
For instance, PMS1, the PMS2 ortholog in yeast, contributes to dinucleotide insertion
or deletion binding, loop DNA binding (Habraken et al., 1997). Mlh1, the mouse ortholog
of MLH1, is annotated to guanine/thymine mispair binding (ichi Yoshioka et al., 2006)
and likely plays a role in the formation, stabilization and/or the resolution of Holliday
junction intermediates (four-way junction DNA binding) (Baker et al., 1996). High and
low affinity ATP binding sites have been observed for MLH1 and PMS1 in yeast (Hall
et al., 2002) which supports the ATP binding and ATPase activity predictions for their
human orthologs (Guarné et al., 2001). Moreover, PMS2 contains a conserved metal-
binding motif constituting part of the active site for the endonuclease activity of the
protein and might enable magnesium ion binding (Hsieh and Yamane, 2008). Consider-
ing protein homodimerization activity, the dysregulated gene expression of PMS2, either
as a monomer or homodimer, can disrupt MMR function in mammalian cells (Gibson
et al., 2006). Note that although we support our predictions by literature evidence that
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5 Evaluation of CCS-based Protein Function Prediction

are mostly based on orthologs, our algorithm actually inferred them from conserved in-
teraction partners as the orthologs in most cases do not carry the annotation we found
in the literature.
Our algorithm also generates a number of predictions that are not as clearly supported

by the existing literature, such as guanine/thymine mispair binding, single guanine and
thymine insertion binding or oxidized DNA binding. Moreover, we associate both pro-
teins to base-excision repair as well as postreplication repair and MLH1 to maintenance
of DNA repeat elements. These are interesting hypotheses supported by recent findings
from Erdeniz et al. who suggested that the endonuclease activity of PMS2 in MutLα is
not only important in MMR-dependent mutation avoidance but also for suppression of
homologous recombination, DNA damage signaling, and damage response functions (Er-
deniz et al., 2007). Association of yeast PMS1 with meiotic mismatch repair and DNA
recombination (Stone and Petes, 2006) further support these predictions. Regarding their
cellular components both proteins are associated to the MutLα complex (Jiricny, 2006),
an annotation predicted jointly from orthology and the CCS neighborhood. MutLα com-
plex is a clearly sensible refinement of the existing annotation nucleus and only seven
others genes are annotated to this term, which emphasizes the specificity of our method.

EPHB4

Ephrin type-B receptor 4 is a transmembrane receptor for the ephrin-B family. It belongs
to the family of receptor tyrosine kinase (RTK) and is usually expressed in endothelial
and neuronal cells. Known and predicted functional annotations are displayed in Ta-
ble 5.20.
Several predicted functions, such as protein, enzyme and ATP binding, SH3/SH2 adap-

tor and enzyme regulator activity and protein amino acid phosphorylation, derived both
from conserved interactions and orthology, are evidently consistent with the characteris-
tics of receptor tyrosine kinases. Although those functions are well-known in literature,
they are not yet curated and established in the corresponding databases.
Two functions inferred by orthology are transmembrane-ephrin receptor activity and

transmembrane receptor protein tyrosine kinase signaling pathways. Both are supported
by annotations from highly related receptors, such as Ephb1 in mouse and EPHB2 in
human (Ikegaki et al., 1995; Birgbauer et al., 2001). Less evident predictions are, for
instance, cell-cell signaling (Himanen and Nikolov, 2003), cell migration (Sturz et al.,
2004), angiogenesis and behavior (Pasquale, 2005). These functions were not predicted
by orthology alone but only in combination with the conserved interaction neighborhood
of EPHB4. EPHB4 participates in the axon guidance pathway and in this context predic-
tions like axon guidance or axon guidance receptor activity can be integrated (Brambilla
and Klein, 1995; Dickson, 2002; Huot, 2004).
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6 Disease Gene Identification

Once the function of a gene or gene product has been characterized, this knowledge can
be utilized to study its (potential) role in diseases. This chapter focuses on the association
of genes or proteins with particular diseases through interaction and functional data.
Section 6.1 introduces the relationships between genes and diseases such as genetic

factors that cause a disease. We briefly review the broad range of methods available
for disease gene identification – from traditional gene-mapping methods to advanced
bioinformatic techniques that emerged to accelerate classical disease gene discovery. We
present in Section 6.3 a novel network-based approach for identifying disease-causing
proteins in a genome-wide setting. We give a detailed description of the method itself
and the evaluation procedure that is used in Chapter 7. There, we show that our
method yields promising results even without an associated locus. The chapter ends
with a discussion of related work in Section 6.4.

6.1 Genes and Diseases
In Section 2.1.3 we elaborated on the role of proteins in human diseases with respect to
alterations that impact their natural function and which may lead to cell malfunction
and, eventually, to a disease. In the following, we focus on the genetic origins of changes
in functional, structural and metabolic protein properties that account for the onset of
disease but also for susceptibility to disease under particular circumstances.
Diseases are pathological conditions that impair the normal state of an organism

by altering or destroying its vital functions. Abnormal functioning can be caused by
inherited genetical defects, somatic or spontaneous mutations, internal dysfunctions and
environmental influences, such as stress or infection (Mackenbach, 2006). Diseases rarely
originate from abnormalities in single genes but rather reflect the perturbation of the
complex intra- and intercellular network that links tissue and organ systems (Barabási
et al., 2011). Elucidating the underlying disease mechanisms is crucial for understanding
the onset of diseases and the development of disease-specific diagnostic and therapeutic
approaches.
Many human diseases have a strong genetic component. Diseases caused by abnor-

malities in an individual’s genome are generally referred to as genetic diseases or genetic
disorders8. More than 7,000 (classical) genetic diseases have been characterized (McKu-
sick, 2007); from widely recognized disorders like Down syndrome, Spina bifida and
Sickle cell anemia, to lesser known diseases, e.g., Tay-Sachs and Fray disease. Most dis-
eases are neither purely genetically nor purely environmentally induced. Heredity can

8Both concepts are used synonymously in clinical settings.
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6 Disease Gene Identification

predispose to diseases of primarily environmental origin while environment can influence
diseases of mostly genetic origin (Porter, 1982).
Four different types of genetic diseases can be distinguished depending on the abnor-

malities contributing to the disease:

1. Mendelian (or monogenic) diseases are caused by mutations in a single gene (Pelto-
nen and McKusick, 2001). These rather rare disorders can segregate as autosomal
recessive, autosomal dominant, X-linked or Y-linked traits (Read and Strachan,
2003). Classical Mendelian diseases include Sickle cell anemia, Huntington’s dis-
ease or Cystic fibrosis.

2. Multifactorial (or polygenic) diseases are caused by a combination of environmental
factors and mutations in multiple genes, each contributing a small effect to the
disease (Peltonen and McKusick, 2001). For instance, several genes that influence
breast cancer susceptibility have been found on chromosomes 6, 11, 13, 14, 15, 17,
and 22. The majority of human diseases belongs to this category, including several
congenital defects and a number of adult-onset diseases, such as Alzheimer’s or
Parkinson’s disease and autoimmune diseases (Hunter, 2005).

3. Chromosomal diseases are caused by abnormalities in the chromosome structure,
namely, extra chromosomes (addition or duplication), missing chromosomes (dele-
tion), or the relocation of parts of one chromosome onto another (translocation)
(Gillberg, 1998). Down syndrome (or Trisomy 21), for instance, is a common
chromosomal disorder caused by the duplication of chromosome 21 (Roizen and
Patterson, 2003).

4. A relatively rare type of genetic disorders, mitochondrial diseases, is caused by
mutations in the nonchromosomal DNA of mitochondria (Schaefer et al., 2004).
Mitochondrial defects have been implicated in a wide variety of degenerative dis-
eases, such as aging, and cancer (Wallace, 1999; Schapira, 2006).

Determining the association between a disease and its causal genes, i.e., genes con-
tributing to a disease when being mutated (further referred to as disease genes), remains
a major challenge for molecular medicine. For many human diseases it is not yet known
which genes are involved in their pathogenesis. For instance, currently more than 7,000
Mendelian and genetic disorders are documented in OMIM (McKusick, 2007) but for
∼4,000 of those the molecular cause is still unknown.
Identifying the origin of human genetic diseases is mainly based on finding statisti-

cal associations between genomic variations and clinical phenotypes (Cardon and Bell,
2001). Traditional gene-mapping approaches, such as genetic linkage analysis and gene
association studies, are used to associate chromosomal regions with a disease (Botstein
and Risch, 2003). Yet, knowing the associated genomic region is often not sufficient to
detect the associated gene(s). Most efforts yield large genomic intervals of 0.5–10 cen-
timorgan9 with up to several hundreds of candidate genes (Jorde, 2000; Glazier et al.,
2002) as pedigrees are often too small and reproduction cycles are too long, particularly

9In humans one centimorgan corresponds to approx. one million base pairs on average (Lodish et al.,
2007).
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6.1 Genes and Diseases

Table 6.1: List of genomic regions associated with Alzheimer’s disease (AD) in OMIM.
AD is a genetically heterogeneous disorder. The different AD subtypes are linked to several chromo-
somal regions with different sizes (in mega base pairs, Mb) and a varying number of genes located
in each region (determined by Biomart). Note that the prefix (#) represents phenotypes whose
molecular basis are known while (%) denotes phenotypes or susceptibility loci whose molecular
basis are unknown.

AD type OMIM ID Locus Locus size in Mb # of genes

AD 1 #104300 21q21 15.2 181
AD 2 #104310 19q13.2 4.4 185
AD 3 #607822 14q24.3 5.5 110
AD 4 #606889 1q31-q42 51 924

AD 5 %602096 12p11.23-q13.12 22.1 290
AD 6 %605526 10q24 7.7 232
AD 7 %606187 10p13 5 84
AD 8 %607116 20p 27.1 487
AD 9 %608907 19p13.2 5.7 274
AD 10 %609636 7q36 11.3 224
AD 11 %609790 9p22.1 1.4 25
AD 12 %611073 8p12-q22 76 1198
AD 13 %611152 1q21 10.9 545
AD 14 %611154 1q25 12.8 244
AD 15 %611155 3q22-q24 18.9 311
AD 16 %300756 Xq21.3 12 73

for rare diseases. Experimental studies for testing all candidates are time-consuming
and costly. Often it is simply impossible to establish the true disease-gene relationship
by inspecting genes within an interval.
Detecting genetic factors for diseases without confirmed or with multiple associated

genomic regions is even more complicated than for monogenic diseases. Alzheimer’s dis-
ease, for instance, is linked to more than 16 chromosomal regions containing up to 1,198
genes. However, only four loci are associated with a causal gene yet (see Table 6.1). The
pleiotropy of genes, i.e., their ability to produce multiple phenotypes, and the hetero-
geneity of multifactorial diseases that do not obey the standard Mendelian patterns of
inheritance pose limitations to traditional gene-mapping approaches (Giallourakis et al.,
2005). In addition, genetic factors often account only partially for complex phenotypes.
Thus, alternative techniques emerged for studying such disease phenotypes. These

use single nucleotide polymorphisms (SNPs) (Marchini et al., 2007), microarray expres-
sion analysis (Farber and Lusis, 2008), serial analysis of gene expression (SAGE) (Hene
et al., 2007) and more recently also copy number variations (CNVs) (Mardis, 2008) to
analyze alterations in diseases. Genome-wide surveys, for instance, systematically assess
the contribution of common SNPs or CNVs to complex diseases by discovering statisti-
cally significant associations between SNP genotypes or CNV measurements with gene
expression phenotypes (Stranger et al., 2007; McCarroll and Altshuler, 2007). How-
ever, such methods generate typically large sets of potential candidate genes for a given
phenotype (Tiffin et al., 2009).
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6 Disease Gene Identification

6.1.1 Bioinformatic approaches to disease gene identification

To overcome experimental limitations and accelerate disease gene identification, the con-
cept of disease gene prioritization emerged, i.e., integrating computational biology with
the broad range of genomic data. Disease gene prioritization aims for identifying the
most promising genes from large candidate sets obtained either from genome-wide asso-
ciation studies or from the (multiple) causative regions associated with a disease under
consideration. The basic principles of this concept are similar to function prediction as
inferring function of a gene or its implication in a disease are two closely related prob-
lems. However, associating genes with diseases is far more challenging as diseases often
imply intricated mechanisms involving distinct molecular functions and pathways (Myers
et al., 2006).

• Functional annotations 

• Protein-protein interactions 

• Pathways  
Data sources 

• Set of Keywords 

 

• Set of Genes 

Prior Disease 
Knowledge 

• Differentially expressed genes 

• Genomic Interval 

• Genome 

Candidate 
Search Space 

• Network centrality analysis 

• Statistical analysis 

• Random Walk 

Priorization 
Strategy 

• Ranking 

 

• Selection 
Output 

Figure 6.1: Basic work flow of disease gene prioritization.

One of the first approaches addressing this problem has been proposed by Perez-
Iratxeta et al. (2002). The data-mining system for associating genes with genetically
inherited diseases has later been implemented as a web application, namely G2D (Perez-
Iratxeta et al., 2005). Since then, various methodologies have been developed for iden-
tifying disease-related genes which will be discussed in detail in Section 6.4. These
methods differ primarily in (i) the data sources they use, (ii) the included prior knowl-
edge about a disease of interest, (iii) the candidate search space, (iv) the prioritization
strategy and (v) the outcome they deliver (Tranchevent et al., 2010) (see Figure 6.1):

• Data sources: Different experimental data can be used to represent gene charac-
teristics that may correlate with disease phenotypes (Tiffin et al., 2009). The most
important ones are sequence features, gene expression data, pathway data, protein
interactions, and functional annotations. Some methods exploit only a single data
source while others integrate several complementary evidence (Aerts et al., 2006;
Franke et al., 2006).
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6.1 Genes and Diseases

• Prior disease knowledge: Prior knowledge represents the current information about
the disease under consideration. Such knowledge can, for instance, be defined
by a set of keywords describing the different aspects of the disease or by a set
of genes known to play a role in the disease. In the latter case, training sets
are compiled from genes associated with the disease of interest. Alternatively,
when no disease genes are available, proteins associated with pathways or processes
perturbed by the disease can also be employed. The prior knowledge is used to
deduce relationships between disease-causing and potentially related genes.
• Candidate search space: The candidate search space refers to the set of genes
that represents the candidates for prioritization. Prioritization methods are often
applied to genomic regions that have been associated with the disease, e.g., by
linkage analysis. The average linkage interval in OMIM contains, for instance,
108.8 genes (Lage et al., 2007). Otherwise, a list of differentially expressed genes
can be used as candidates. In case no candidate set can be defined beforehand,
e.g., due to the lack of associated genomic regions, the whole genome must be
explored as candidate search space.
• Prioritization strategy: The core of each prioritization strategy is the algorithm

for relating genes to a disease. Typically, several types of experimental evidence
are first integrated and then different scoring methods, such as network centrality,
order statistics or Bayesian predictor, are applied to score disease-gene associ-
ations (Ideker and Sharan, 2008). The common idea behind all scoring meth-
ods is the guilt-by-association principle: the most promising candidate(s) will be
the one(s) that are most similar to the genes already associated with the dis-
ease (Tranchevent et al., 2010).
• Prioritization outcome: Two types of prioritization outcomes can be distinguished:
ranking or selection of candidate genes. In the ranking scenario, candidates are
ranked according to their associated scores such that the highest scoring genes
present the most promising candidates for further studies. A selection returns a
subset of the original candidates comprising only the most promising candidate
genes. A selection can be obtained either directly from a scoring method or from
a ranking by using a threshold.

Leave-one-out cross-validation is generally used to evaluate prioritization methods.
To this end, a known association of a gene with a disease is removed from the data
to assess whether the algorithm recovers the hidden disease gene and at which rank.
The set of potential candidates used in an evaluation differs depending on the search
space. For instance, linkage interval dependent methods are commonly evaluated on
artificial linkage intervals, i.e., defined as list of 100 – 110 genes located around the
disease gene of interest according to their genomic distance on the chromosome (Lage
et al., 2007; Köhler et al., 2008). Genome-wide methods, on the other hand, consider
the entire genome for cross-validation. Others define candidates as a set of randomly
selected genes and the blinded gene (Aerts et al., 2006).
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6 Disease Gene Identification

6.1.2 Using protein interaction data for disease gene association

Human diseases are often caused by perturbations in multiple genes. Mutations in genes
with similar function often lead to the same or similar phenotype(s) which indicates
that the underlying genes are likely to be functionally related. For instance, genes
associated with the same disease share up to 80% of their functional annotations and
protein domains (Turner et al., 2003). Also genes from related biological pathway exhibit
significant sequence similarity with other pathway members (Aerts et al., 2006). Several
functional characteristics correlate with disease phenotypes which can be exploited to
identify novel genes for particular disease phenotypes (Tiffin et al., 2009).
In particular, the increasing availability of protein interaction data provides valuable

evidence through which disease-gene associations can be inferred (Navlakha and Kings-
ford, 2010). Because physically interacting proteins tend to be involved in the same
cellular processes, interactions are direct and robust manifestations of functional rela-
tionships. In the context of understanding disease mechanisms at molecular level, several
observations motivate the usage of protein interactions (Ideker and Sharan, 2008). Genes
associated with a particular disease phenotype

• interact preferentially with genes known to be involved in the same disease (Ideker
and Sharan, 2008),
• tend to exhibit a higher connectivity within the interaction network than non-
disease gene products (Jonsson and Bates, 2006),
• occur in central network locations and
• often share topological network features with each other (Gandhi et al., 2006; Xu
and Li, 2006).

Another important aspect which is also exploited in this work is the concept of mod-
ularity (see Section 6.3.1). Several genetically heterogeneous hereditary diseases are
known to be caused by mutations in gene products that participate in the same pro-
tein complexes. Such phenotypes might reflect underlying mechanisms in which the
disease-related genes form some kind of functional module, e.g., a signaling pathway or
multi-protein complex (Brunner and van Driel, 2004).
One example is Fanconi Anemia, a genetically heterogeneous disease associated with

chromosomal instability, congenital abnormalities, progressive bone-marrow failure and
cancer susceptibility. Fanconi Anemia originates from mutations in at least one of 13
distinct FANC genes whose products are believed to be involved in a common DNA
repair signaling pathway – the Fanconi Anemia (FA) pathway (Kennedy and D’Andrea,
2005). As illustrated in Figure 6.2, these proteins cooperate closely with DNA repair
proteins to prevent DNA from damage, induced through DNA interstrand cross-links
and double-strand breaks, during replication (Patel and Joenje, 2007). Eight of the
FANC proteins form a large core complex which is thought to play a central role in
sensing and repairing DNA damage or in stabilizing chromosome structures. Mutations
in any of these proteins disrupt the function of the FA pathway which in turn may result
in chromosomal instability (Kennedy and D’Andrea, 2005).
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Figure 6.2: Schematic representation of the Fanconi Anemia DNA pathway. At least
eight FANC proteins (A, B, C, E, F, G, M, L and possibly I) form the nuclear FA core complex
which is activated upon DNA damage by DNA damage sensor proteins, such as ataxia telangiectasia
mutated (ATM) or ataxia telangiectasia mutated and Rad3-related (ATR). The activation triggers
the monoubiquitination of FANCD2 through the E3 ligase function of the FA complex. FANCD2
co-locates thereupon to the damage site and forms a DNA damage inducible foci with DNA repair
proteins, e.g., BRCA1 and RAD51, which induces DNA repair. FANCD2 is deubiquitinated after
DNA repair and the DNA replication fork proceeds (Patel and Joenje, 2007).

6.2 Overview
In this chapter, we present an interval-independent, network-based algorithm to identify
disease-related genes. Our algorithm is particularly applicable for complex diseases
without associated or with multiple causative genomic regions. For a given disease,
we first extract all genes that are known to be associated with this disease (as seed
genes). We compile a disease-specific network by integrating directly and indirectly
linked gene products based on protein-protein interaction data and functional similarity.
Proteins in this network are ranked based on network centrality. While the general
approach is similar to those of other methods (see Related Work in Section 6.4), we use
two distinctive features that improve our results considerably, in particular for diseases
without associated loci.

• We consider genes indirectly linked to a seed gene. Thus, we uncover susceptibility
genes that are not directly linked but that are part of the same pathway. This leads
to more comprehensive disease networks and significantly increases recall. How-
ever, it also lowers precision, as larger networks naturally integrate many global
“hub” proteins that also receive high centrality scores. The role of such hubs, i.e.,
proteins with an extremely high number of interaction partners, in diseases is con-
troversial. Although hubs tend to be essential for many processes (He and Zhang,
2006; Zotenko et al., 2008), they mostly are disease-unspecific (Goh et al., 2007).
Therefore, we developed a normalization procedure to down-rank such unspecific
proteins.
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6 Disease Gene Identification

• We use predicted functional information to overcome the incomplete functional cov-
erage of the human genome (Chen et al., 2009b). Most methods cannot consider
genes that are functionally uncharacterized, which in turn prevents the detection
of truly novel disease-gene associations. In contrast, we use predicted functions
to increase the outreach of our networks and to assist the proper ranking of pro-
teins without confirmed functional annotations. However, this also yields larger
networks which makes an appropriate normalization even more important.

An important property of this approach is its generality. Although we introduced
the framework for identifying novel proteins associated with genetic disorders, it can be
used to address various biological questions, e.g., detecting further members of cellular
processes, pathways or other definable mechanisms. For instance, in Section 7.5 we will
report on how the framework can be employed to infer surface membrane factors that
contribute to HIV-1 infection, a phenotype which clearly cannot be reduced to a genomic
region.

6.3 Network-based disease gene identification
We developed a generic framework that infers novel disease-gene associations from
disease-specific networks using network centrality analysis. The underlying assump-
tion of our method is that the most central genes/proteins in a specific disease network
are likely to be related to the disease (Özgür et al., 2008; Chen et al., 2009a).
The workflow comprises three steps as illustrated in Figure 6.3:

1. First, a seed set is defined from proteins that share specific characteristics of in-
terest. This can be a set of proteins associated with a certain disease, involved in
specific pathways, or transcripts that are differentially expressed in a condition of
interest.

2. In the second step, a disease-specific similarity network is compiled. Starting from
the seed set a graph is build by adding proteins based on their functional similarity
to the seed set. In first place functional annotation and interaction data are used
but other genomic data, such as expression data, sequences and phenotypes, can
be integrated.

3. Finally, network centrality analysis is performed to rank proteins with respect
to their relative importance within the network. The most central proteins are
presumed to be of functional importance for the specific network.

In the following, we explain the details of the proposed framework with respect to
the identification of novel disease genes. However, one should keep in mind that the
framework is neither domain nor disease specific.

6.3.1 Building Disease Networks
Given a disease, we first map the genes that are associated with the disease in OMIM to
their protein(s). These proteins are used as seeds for generating a disease network (Goh
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Figure 6.3: Conceptual framework for disease gene ranking. The method consists of three
components. I) Definition of a seed set from genes/proteins sharing specific characteristics of inter-
est; II) Generation of a disease-specific similarity network by including functionally related proteins
(see Figure 6.4); III) Network centrality analysis to score candidate genes. The final step is the
experimental validation of the identified candidate genes/proteins. Confirmed genes/proteins then
can be included in the seed set and steps I-III can be repeated.

et al., 2007). The disease-specific network is initialized with the seeds and then extended
by adding all proteins that interact either directly or indirectly with any seed protein
or that are functionally similar to at least one seed (see Figure 6.4). We call the set of
directly linked partners d1 neighbors and the set of directly or indirectly linked part-
ners (through one common interactor) d2 neighbors (d1 ⊆ d2). Functional similarity
between two proteins is determined by using the semantic similarity measure defined in
Eq. 4.1.3.2 (Couto et al., 2007) using only annotations from the GO subontology biologi-
cal process (see Section 7.1). In principle, proteins are considered as functionally similar
if their semantic similarity to a seed protein is above a pre-defined threshold. Thereby,
we only consider close and significant biological relationships.
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Figure 6.4: Illustration of the main steps in the prediction method. Starting from known
disease proteins we add proteins that either 1) interact directly or indirectly with any of them
(blue solid edges) or 2) that are functionally similar (green dashed edges) to at least one disease
protein. This yields a disease-specific network. Proteins are then ranked according to their centrality
within the network. Proteins in shaded areas represent highly central proteins and thus promising
candidates.
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Functional enrichment As the functional coverage of human proteins is limited, i.e.,
currently only a fraction of the genome is annotated with pathways, functions and pheno-
types (Chen et al., 2009a), we integrate predicted functions into the framework. We ap-
ply the network-based prediction method described in Chapter 4 to infer function (Jaeger
et al., 2010a). Predicted functions are used in the same way to infer functional relation-
ships as original annotations. This improves in first place the ranking of disease proteins
(see Section 7.2) but also increases the overall cross-validation recovery rate (see Sec-
tion 7.3).

6.3.2 Disease Network Centrality Analysis
Once a disease-specific network has been generated, we apply network centrality analysis
to identify the most relevant candidates for the disease. Different centrality measures
have been proposed for analyzing various types of biological networks (Junker et al., 2006;
Koschützki and Schreiber, 2008). We investigated the following centrality measures (see
Section 2.3.2.3 for definitions):

• Degree centrality
• Closeness centrality
• Betweenness centrality
• PageRank centrality.

We chose betweenness centrality for all further experiments because it (a) performs
best on our data (see Section 7.2 for a comparison of the four measures) and (b) also
showed favorable properties for generating new hypotheses on disease-gene associations
by others (Özgür et al., 2008). Accordingly, we rank all proteins with respect to their
betweenness centrality within the network using the igraph library in R (Csardi and
Nepusz, 2006).

6.3.2.1 Normalization for Hub Proteins

Betweenness centrality is applied to identify proteins that are central within disease-
specific networks (local hubs). However, the ranking of disease-relevant elements becomes
more difficult in large disease networks, for instance, when integrating d2 neighbors or
considering diseases with a large number of seed genes.
An important property of whole cell protein interaction networks is their scale-free

topology (Albert, 2005), as discussed in Section 2.3.2.2. Thus, the more proteins are
integrated in a disease network the higher is the likelihood of including global hubs, e.g.,
proteins with many interaction partners, independent of any disease context. These
hubs affect the ranking since they often will be central due to their general high (but
unspecific) connectivity rather than due to a particular relevance for a disease. However,
hubs cannot be simply removed from a disease network because this would destroy their
topology and might also affect disease-relevant local hubs (by means of missing links).
To account for these effects, we adjust the ranking for all proteins by considering their

individual distribution across many disease networks. This is based on the assumption
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that proteins that are involved in various disease networks are less disease-specific than
those that occur only in particular networks. Highly ranked proteins, integrated in many
disease networks, are likely to present global hubs that are not disease relevant.
We generate all disease networks for OMIM diseases and count for each protein P in

how many disease networks it is involved. We define a normalized betweenness centrality
score BCN for P in a disease network D by normalizing the betweenness centrality score
BC by the frequency of P across all disease networks:

BCN (P |D) = BC(P |D)
|{k|P ∈ Dk}|

(6.1)

Proteins are then ordered according to their BCN score for further analysis. Thus,
proteins occurring in many disease networks (especially global hubs) are adjusted down-
wards.
The effect of the proposed hub normalization is exemplarily illustrated in Figure 6.5.

The figure shows the prioritized d1 disease networks, with and without hub correction, for
Familial Atypical Mycobacteriosis (OMIM Id 209950), a tuberculosis-like disease caused
by mycobacteria other than Mycobacterium tuberculosis. The mycobacteriosis network
has been generated from five seeds proteins and comprises in total 119 proteins of which
six are global hubs with more than 23 interactions (see Section 7.2). Proteins in the
network are ranked according to their betweenness centrality whereas the rank of each
protein is reflected in the node size, i.e., the larger the node the higher is its centrality
and its rank.
Figure 6.5(a) indicates that most disease proteins are fairly central. Two seeds are

ranked among the top five proteins while the remaining seeds are found among the top
53 proteins. However, also hub proteins are very central due to their high number of
interactions which compromises the ranking of disease proteins. For instance, three hubs
(of which one is a seed) are among the top 5 proteins. Yet, not all of them are disease
relevant. Normalizing the centrality scores according to the protein frequencies estimated
across all disease networks corrects most of the hubs downwards (see Figure 6.5(b)). In
consequence, only one hub protein, the (hub-)seed, is found among the top five proteins.
In turn, the ranking of true disease proteins improves considerably, e.g., the set of seed
proteins can be found within the top 23 proteins. Figure 6.5(b) also demonstrates that
our normalization effects mostly non-specific hubs as the rank of the hub-seed protein is
not altered by the correction. Note that for more clarity we considered a fairly simple d1
example disease network. The impact of hub proteins and the hub normalization on the
ranking is much more pronounced in d2 disease networks as we will show Section 7.2.

6.3.3 Evaluation methods
We shall evaluate our method in three ways. First, we verify whether (known) disease
proteins are highly ranked in their disease-specific networks. Second, we assess the ability
of our method to discover novel disease proteins by performing a leave-one-out-validation
over all known disease proteins. For both cases, we study the top k% ranked proteins
within a disease network for different values of k (from 1% to 100%). We compare the
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(a) Ranking without hub normalization (b) Ranking with hub normalization

Figure 6.5: Effect of hub normalization on the protein ranking in a d1 disease network
generated for Familial Atypical Mycobacteriosis. Known disease proteins are shown in red.
Hub proteins are represented as hexagons (green for non-seeds and red for seeds). The size of each
node correlates with its betweenness centrality score and thus with its rank.

performance of our methods against two related methods, namely random walk with
restart (RWR) applied by Köhler et al. (2008) and PRINCE (Vanunu et al., 2010).
Centrality analysis and cross-validation are defined below while the detailed descrip-

tion of the two related strategies is provided in Section 6.4.2.

6.3.3.1 Centrality of disease proteins

We determine the amount of highly ranked disease proteins in a disease network by
counting the number of seed proteins among the top k% ranked proteins of the network.
Clearly, we expect the majority of seed proteins to be highly ranked in the prioritized list,
since we build the disease networks around them which naturally puts them in a central
position. However, not all seed proteins are central in their disease networks, and many
non-seed proteins are highly ranked. We are especially interested in the latter since these
present promising candidates for novel disease-gene relationships (Özgür et al., 2008).
Note that this type of evaluation is often used for analyzing the performance of dis-

ease gene identification methods (see Section 6.4). Yet, this evaluation only reflects a
method’s ability to score and to rank candidates with respect to a particular disease
rather than its predictive power as all disease genes remain in the data set. To assess
whether a method is capable of de novo identification, disease gene associations have to
be removed from the data (see below).
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6.3.3.2 Cross-validation

For leave-one-out cross-validation, we consider all OMIM diseases with two or more
known disease proteins, since our method requires at least one disease protein as seed.
For each disease, we remove one associated protein from its set while using the re-
maining ones as seeds. We apply our method as described and count how often the
blinded disease-associated protein is re-discovered. We consider only those proteins as
re-discovered that rank among the top k% proteins of the prioritized list. We repeat
this procedure for each seed per disease and determine an average relative recovery rate
for different values of k (using macro average).
The inclusion of additional evidence leads to larger networks and thus to a higher

number of potential candidates. Hence, the ratio between promising and false positive
candidates decreases and the number of proteins in a top-k% list increases. To assess
whether we truly gain additional information from our extended networks, we also study
the absolute recovery rate by performing cross-validation as explained above using only
the top 100 proteins within each network.

Further evaluations

We shall use the two evaluation settings described above to further assess the perfor-
mance of our approach according to the following aspects:

• First, we measure the effect of integrating predicted protein functions into the
framework. We compare the ranking of disease-related proteins in functionally
enriched disease networks with their ranking in non-enriched networks. We will
demonstrate, that predicted functions enhance the ranking of disease-related pro-
teins (see Section 7.2).
• Second, we assess the impact of utilizing indirect interactions on finding disease-
related gene products. To this end, we compare the recovery rates achieved when
considering either direct (d1) or also indirect interaction partners (d2) against each
other. We will show, that the inclusion of indirectly linked proteins significantly
improves the cross-validation recovery rate (see Section 7.3).
• Third, we verify our hypothesis that the inclusion of indirect interaction partners
also yields a higher number of (disease-unspecific) hub proteins which in turn
compromises the ranking of proteins relevant to the disease of interest. In addition,
we assess the impact of the hub normalization on the ranking and show that the
proposed strategy is most effective for filtering proteins unrelated to a particular
disease (see also Section 7.2).
• Fourth, we quantify the influence of the number of known disease-related genes on
the performance of our method. Therefore, we analyze the cross-validation recovery
rates with respect to the number of initial seed proteins (see Section 7.3.2).
• Fifth, we study whether the specific disease type influences the prediction quality of
our method. To this end, we group OMIM diseases into 22 distinct disease classes
according to a disease classification scheme proposed by Goh et al. (2007) and
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consider the recovery rates with respect to each disease class (see Section 7.3.3).
• Sixth, we assess how much our method could benefit from utilizing information on
genomic regions, i.e., disease loci. Related methods are mostly evaluated on artifi-
cial linkage intervals with around 100 to 110 genes including the target gene which
is incomparable to evaluations considering an entire genome (see Section 6.4).
Therefore, we perform a cross-validation in which we filter all proteins from the
ranked candidate list that are not located on the same chromosome as the left-
out protein. This mimics a scenario where the candidate search is restricted to a
particular genomic region, i.e., a chromosome in this case (see Section 7.3.1).

Finally, we show in two biologically relevant use-cases that our approach is highly
applicable for diseases with complex and incompletely known genetic background. First,
we apply our method to investigate classical Hodgkin Lymphoma (cHL) and colon cancer
(see Sections 7.3.4 and 7.3.5). Second, we utilize our method to study surface membrane
factors that might contribute to HIV-1 infection, a phenotype which cannot be limited
to particular chromosomal regions (see Section 7.5).

6.4 Related Work

In the following, we discuss related work in the field of computational disease gene
identification focusing on (interaction) network-based approaches. We start with a clas-
sification of the different methodologies based on their underlying ideas. Representative
methods will be briefly discussed regarding their main concepts and distinctive features
with respect to our approach.
The currently existing prioritization strategies can be classified into three categories:

1. Local methods infer disease association for a gene product by investigating either its
direct or indirect interaction partners or the shortest paths between the candidate
and known disease genes (Oti et al., 2006; George et al., 2006).

2. Global methods model the flow of information within the cell to assess the connec-
tivity and proximity between known disease genes and candidate genes (Franke
et al., 2006; Köhler et al., 2008; Vanunu et al., 2010).

3. Disease module-based methods associate proteins with diseases based on the hy-
pothesis that common phenotypes are associated with dysfunction in proteins par-
ticipating in the same complex or pathway. These methods first construct disease-
specific networks around a set of genes related to the condition of interest which
are assumed to present modular disease-machineries (Chen et al., 2006; Gonzalez
et al., 2007; Özgür et al., 2008). Different scoring functions are then used to score
and rank proteins in such networks according to their relevance to the disease.

According to this classification scheme, we follow a module-based strategy, by gener-
ating disease-specific networks, and employing a global similarity measure for identifying
disease-related genes within such networks.
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6.4.1 Local prioritization methods

The rational behind local prioritization methods is based on the following assumption:
if two gene products interact with each other, the known association of one protein
with a disease indicates that its interaction partner is also associated with the same
disease (Goh et al., 2007; Oti and Brunner, 2007; Ideker and Sharan, 2008).
An early approach (Oti et al., 2006) inferred disease-causing genes for heterogeneous

diseases in which some causative genes have been already elucidated, while for others
only locus information have been detected. Given a disease, they first determine the di-
rect interaction partners for each associated causative gene product. Interaction partners
that are located in a previously identified locus are then predicted to be candidate genes
for the disease of interest. The work demonstrated that the systematic use of protein
interaction data facilitates disease gene prediction. The likelihood for finding the correct
disease gene product in a given locus ranges from 9% to 17% for different high-throughput
data sets and reaches 58% when using HPRD, a data source known to be biased toward
disease proteins. When disregarding locus information, the combined high-throughput
set of interaction data yields a prediction accuracy of 0.7%. Although this accuracy is
still higher than finding causative genes by chance in the genome (0.005%), the low per-
formance emphasizes the large dependence of the approach on defined linkage intervals
for achieving reasonable outcomes.
The method of Oti et al. (2006) has two major flaws compared to the prioritization

method presented in this thesis. First, its dependence on defined genomic regions ex-
cludes diseases without associated causative loci. Second, their strategy considers only
direct interaction partners disregarding indirect relationships between disease-related
proteins. Further limiting aspects are sparseness and quality of interaction data (see
Section 2.2.2) which are inherent to all methods that are largely based on this data
type. Missing interactions hinder the disease gene identification as the large fraction
of proteins without available interaction data are neglected. Spurious interactions, on
the other hand, induce associations without biological relevance which reduces the level
of accuracy. Navlakha and Kingsford (2010), for instance, extended the method of Oti
et al. (2006) by requiring more corroborating interactions to support a disease-gene
association, i.e., at least two or three causative proteins had to interact with the respec-
tive candidate to consider it as prediction. This modification increases the predictive
confidence as spurious interactions can be excluded. However, the successively higher
precision comes also at expensive of a lower recall.

6.4.2 Global prioritization methods

Global prioritization strategies are based on the same assumption as local methods but
take the global structure of interaction networks into account by modeling, for instance,
the flow of information to assess the connectivity between known disease genes and
candidate genes. Two prominent global strategies are those proposed by Köhler et al.
(2008) and Vanunu et al. (2010). The idea behind both methods is to identify disease-
related proteins as those which are most often visited when iterating over a network.
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Proteins interacting with several disease proteins will receive high weights, as well as
those that may not directly interact with any disease protein but are in close network
proximity.

6.4.2.1 Random walk with restart

Köhler et al. (2008) proposed a global distance measure based on random walks with
restart (RWR) to rank candidates. RWR computes the similarity between two gene
products i and j based on the probability that a random walk through the network
starting in disease protein i ends in candidate j when taking all possible paths into
account. Given a disease of interest and an associated linkage interval, RWR ranks each
positional candidate based on its relative location to all related genes of the disease.
Cross-validation has been performed on manually selected disease families and on

artificial linkage intervals to evaluate RWR. Disease families have been compiled on the
basis of OMIM, domain knowledge and additional literature or database information.
RWR performs well in the described benchmark setting achieving an area under the
ROC curve between 91% and 98%. However, these numbers apply only for diseases with
associated linkage intervals. Furthermore, disease families used in this evaluation are,
with about seven genes per family, much larger than the average disease in OMIM with
about 1.25 genes (see Section 7.1). Thus, it remains unclear how the performance is
influenced by a smaller but more realistic number of genes per disease.
The work of Köhler et al. (2008) differs in three aspects from ours. First, the method

depends on associated genomic regions and disregards diseases without known linkage
intervals. Second, it is only applicable for proteins with protein interaction data. Al-
beit predicted interactions are included in the global interaction network to overcome
the incompleteness of interaction data, other sources of functional relationships are not
considered. Third, the presence and impact of hub proteins on the distance measure are
not taken into account in this work. Thus, hub proteins might receive higher similarity
scores as they will be connected through multiple paths although they are not necessarily
relevant for the disease.

6.4.2.2 PRINCE

Vanunu et al. (2010) developed a propagation-based approach which integrates protein
interaction data and disease information in terms of phenotype similarity to score the
strength of a potential association of proteins with a disease of interest. A scoring
function is defined based on a network propagation algorithm that simulates an iterative
process where proteins with prior information pump flow to their network neighbors.
Each protein propagates the flow it received in the previous iteration to its neighboring
proteins. The scoring is designed to be smooth over the network, i.e., adjacent nodes are
assigned with similar values to exploit prior information on the involvement of proteins
in the same or similar diseases. The propagated flow converges after several iterations
and the final score for each proteins is determined by the amount of flow a protein
received during the iterations.
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Cross-validation has been performed to evaluate PRINCE on 1,369 OMIM diseases
with at least one associated gene product in the interaction data using artificial linkage
intervals. 34% of the top-scoring candidates have been correctly re-discovered. PRINCE
outperformed two other state-of-the art global approaches: RWR and Cipher (Wu et al.,
2008) achieved inferior results with 28.8% and 24.7%, respectively, when considering the
top-ranked candidate as prediction.
PRINCE is one of the few prioritization methods that has been applied in a genome-

wide setting although its performance has so far only be assessed on shorter linkage
intervals. In contrast to our framework, the algorithm does not reduce the number of
relevant candidates by considering only functionally related proteins for the ranking.
This complicates the prioritization process as ranking in such large networks becomes
much more difficult (Wu et al., 2008). Albeit PRINCE exploits protein interaction data
and phenotype similarity, other relevant data, such as function or predicted information,
are not taken into account. Lastly, the effect of hub proteins on the flow simulation
is neither examined nor taken into account. Consequently, hub proteins will receive a
larger amount of flow due to their higher connectivity within the network.

6.4.3 Disease module-based methods

The modularity of the cellular interactome indicates that many genes perform their
function as components of protein complexes or functional modules (see Section 2.3.2.4)
which might also have implications for diseases. For instance, mutations in single genes
might disrupt the complete module while mutations in multiple proteins constituting
such a module might induce the same phenotype. Thus, several approaches follow a
modular approach toward identifying novel disease-causing. Most approaches proceed
from a number of disease associated genes and grow a network around them by adding
physical or functional interaction data. Once disease-related modules have been identi-
fied, scoring strategies known from direct methods can be applied to prioritize candidates
from the network (Chen et al., 2006; Gonzalez et al., 2007; Özgür et al., 2008).

6.4.3.1 Method of Chen et al. (2006)

Chen et al. (2006) proposed a method to identify proteins associated with Alzheimer’s
Disease (AD). They first collect an initial seed list of genes known to be involved in
AD which is expanded by integrated protein interaction data to generate an Alzheimer-
specific protein interaction (sub-)network. The AD-specific network is then analyzed to
prioritize proteins according to their relevance for AD using a heuristic scoring function
that ranks proteins based on their connectedness in the network, reflecting their overall
role and contribution to the AD-specific interaction (sub-)network.
A major drawback of this approach is its bias toward known AD-related proteins.

When building the network, only interactions among seeds and between seeds and their
direct neighboring proteins are considered while interactions among the neighbors are
disregarded. In consequence, only one out of 20 proteins presents a novel finding when
assessing the top-20 candidates. The remaining proteins are initial seeds. See below for
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a comparison to our method.

6.4.3.2 Method of Özgür et al. (2008)

Özgür et al. (2008) proposed a similar approach using literature mining and network
analysis. They start with an initial list of seed genes known to be associated with
a disease of interest and generate a disease-specific interaction network by extracting
interactions among the seed genes and their neighbors from the biomedical literature.
Next, network centrality analysis is applied to rank the genes in the network according
to their relevance to the disease, assuming that genes which are central in the disease-
specific network are likely to be related with the disease. This assumption was verified
on prostate cancer using four centrality measures: degree, eigenvector, closeness and
betweenness centrality metrics. Degree and eigenvector centrality have been shown to
achieve highly accurate results, for instance, 95% of the top-20 genes are actually related
to the disease. Closeness and betweenness centrality yield genes that are currently not
associated with the disease of interest.
Although both seed-based methods are very similar to ours, they differ in several

points. First, only direct interaction partners are considered when constructing the net-
work while we also include indirect interactions. In addition, Chen et al. (2006) disregard
interactions between non-seed proteins which favors known disease proteins. Özgür et al.
(2008) derived interactions only from the literature. However, methods relying on text
mining data are inherent to a knowledge bias and thus might perform better on known
historical data than in a prospective setting in which new disease-related genes are ex-
plored (Lage et al., 2007; Köhler et al., 2008). Third, no additional data sources have
been exploited which limits the coverage of each method. The true predictive power of
both approaches remains unclear as cross-validation has not been performed.

6.4.3.3 Phenome-interactome protein complexes implicated in genetic disorders

A more advanced approach has been proposed by Lage et al. (2007) based on the ob-
servation that mutations in different members of a protein complex lead to comparable
phenotypes. Lage et al. (2007) apply a Bayesian predictor to prioritize candidate genes
from linkage intervals by assigning candidates to protein complexes based on the pheno-
types associated with its members. Given a particular phenotype and a linkage interval,
candidate genes are ranked as follows:

• First, direct interaction partners are extracted for each positional candidate which
are used to constitute a so-called candidate complex.
• Second, proteins within each complex are annotated with disease information.
The similarity of each protein to the candidate is determined by measuring the
phenotypic overlap among the proteins and the candidate using text mining.
• In the final step, a Bayesian predictor is used to score each candidate by assigning
posterior probabilities based on the phenotypes associated with the proteins in the
candidate complex.
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Positional candidates are ranked according to this score and a prediction is made if the
score exceeds a certain threshold. Validation was performed on 1,404 linkage intervals
and only candidates scoring above 0.1 were considered as predictions which accounted for
25% of the candidate complexes. 45% of the candidates ranked as top-scoring proteins
have been correctly identified as gene products relevant to the disease of interest. This
very good performance can be attributed to a combination of different factors. First,
protein interaction data are integrated with a phenotype similarity scheme which allows
to take advantage of the entire clinical spectrum of related human diseases. In addition,
only high confidence protein interaction data (either supported by network topology,
different publications, reliable small-scale experiments, reproducibility or a combination
of these) are considered. Further, cross-species interaction data are incorporated to
increase the limited coverage of human interaction data and to provide a comprehensive
data basis.
The major drawback of this approach, compared to the method developed in this

thesis, is its dependence on linkage intervals as source for positional candidates which
renders it inapplicable for diseases without associated linkage intervals. Another lim-
iting aspect is the usage of only direct interaction partners when generating candidate
complexes. Relationships through indirect interactions cannot be captured which hin-
ders the ability to incorporate interaction partners associated with a similar phenotype
as the relevant protein into the candidate complexes.

6.4.4 Integrative approaches

As most of the interaction-based methods are limited by the quality and sparseness of
the experimental data, several techniques follow an integrative approach, leveraging,
for instance, functional annotations, gene expression data, protein sequences and their
features to complement protein interaction data (Chen et al., 2007b). The current state-
of-the-art method among the more integrative systems is Endeveaour (Aerts et al., 2006).

6.4.4.1 Gene prioritization through genomic data fusion

Endeavour is based on the integration and comparison of various gene characteristics to
prioritize candidate genes according to their similarity to a set of known disease genes.
The prioritization is carried out as a three-step analysis:

• First, information is gathered from a set of (training) genes known to be associated
with the process of interest by considering various data sources, e.g., functional
annotation, literature, EST and microarray expression, and protein domains.
• In the second step, a set of candidate genes is defined as, e.g., list of differentially
expressed genes, chromosomal region, linkage interval or full genome. Candidate
genes are then ranked according to their similarity to the functional properties
reflected in the training set. This yields one prioritized list for each data source.
• In the last step, the rankings of each data source are fused into one global ranking
using order statistics. Order statistics is able to handle missing values, thereby
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avoiding penalizing incomplete genomic data sources while minimizing the bias for
well-characterized genes.

One of the key strength of Endeavour is the usage of multiple data sources. Currently
26 distinct data sources can be selectively incorporated (Tranchevent et al., 2008). En-
deavour is also one of the few methods, including ours, which is capable of prioritizing
genes involved in particular biological pathways. However, albeit Endeveaour is able to
perform genome-wide prioritization this has not been evaluated yet for human diseases
but only for receptor-signaling pathways in Drosophila (Aerts et al., 2009).
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In this chapter, we present the evaluation of the algorithm for genome-wide identification
of disease-related genes described in Chapter 6. We apply our strategy to diseases
documented in OMIM. We compile disease-specific networks for each disease with at least
one associated gene and study each network with respect to the disease. Throughout
this evaluation, we focus in particular on the effects of utilizing indirect interactions and
predicted functions as well as on the impact of hub correction.
Chapter 7 is organized as follows. First, we describe in Section 7.1 the disease data

providing the basis for this evaluation. We also investigate functional relationships be-
tween proteins associated with the same disease. In Section 7.2 we verify whether disease
proteins are central in disease networks. We show that predicted functions enhance the
ranking of disease-relevant proteins. Furthermore, we study the impact of global hub
proteins on the ranking and discuss the effect of the proposed normalization strategy.
We demonstrate that our hub correction decreases the fraction of highly ranked hub
proteins while increasing the fraction of disease proteins. Section 7.3 proceeds with an
extensive leave-one-out cross-validation of our proposed method. We show that indirect
interactions significantly improve cross-validation recovery rates. In Section 7.3.1 we
mimic a more constrained search by filtering for chromosomal regions which increases
our recovery rates significantly. We also investigate whether the number of disease-
associated proteins or the disease type influences the performance of our method (see
Sections 7.3.2 and 7.3.3).
To test the ability of our algorithm to handle complex phenotypes not associated with

any particular genomic region, we further assess its performance on classical Hodgkin
Lymphoma (cHL) and colorectal cancer (CRC). In Section 7.3.4 we apply our method
to epigenetic and gene expression data from cHL to (i) re-identify genes related to cHL
pathogenesis and to (ii) discover new candidates that are not yet associated with this
phenotype. Genes highly ranked by our method (i) overlap significantly with transcripts
identified by in vitro cHL studies and (ii) are known to be involved in Hodgkin-related
pathways. Novel candidates, such asMYC, show a number of interesting features making
them important targets for further investigations. In a similar setting we compile a
CRC-specific network from genes associated with this type of cancer in OMIM (see
Section 7.3.5). Based on our method we infer novel CRC-related proteins from this
network. We analyze the potential association of the most promising candidates by
considering knowledge from literature, KEGG pathways and expression profiles.
Section 7.4 reports on the performance comparison with two network-based state-of-

the-art approaches for associating diseases with genes, namely RWR (Köhler et al., 2008)
and PRINCE (Vanunu et al., 2010). We apply our disease-specific approach as well as
the two related methods to different disease sets and compare their performance. We
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show that our approach performs significantly better than PRINCE across all disease
settings we studied. A comparable performance can be achieved when comparing to
RWR.
In another application we modify our framework to infer surface membrane factors

that contribute to HIV-1 infection, a phenotype which cannot be reduced to a genomic
region (see Section 7.5). We identify ten surface proteins that are involved in a cascade of
events in HIV-1 infection. Their involvement ranges from serving as co-receptors for cell
entry (CCR1 and CCBP2 ), mediating trans-infection (DARC ), activating immune cells
(CD97 ) to inducing viral production from latently infected cells (CSF3R, TNFRSF3
and CD2 ).

7.1 Disease Data

The most comprehensive source for human disease-gene association data is the On-
line Mendelian Inheritance in Man (OMIM) database, curated by the NCBI and Johns
Hopkins University (McKusick, 2007). OMIM catalogs all human diseases with a genetic
component, and links them – when possible – to the relevant genes in the human genome.
Additionally, further references are provided as well as tools for genomic analysis of the
documented genes. OMIM initially focused on classic monogenic disorders but has been
extended to include complex traits and their associated genetic mutations that confer
susceptibility to these common disorders. Although this focus introduces some bias, and
the disease gene record is still far from being complete, OMIM represents currently the
most complete and up-to-date repository of known disease genes and the disorders they
contribute to (Goh et al., 2007).
For this reason, we utilize OMIM as the source for disease-gene association data to

evaluate our method. We used OMIMs Morbid Map10 to extract diseases including
their corresponding disease names and cytogenetic location(s). Genes associated with a
disease have been retrieved from the OMIM Gene Map. As of May 2011, 7,061 mendelian
diseases are documented in OMIM (see Table 7.1). 4,061 are associated with a defined
phenotypic locus and 3,077 are associated with at least one gene contributing to the
disease outcome. In turn, the underlying molecular basis of app. 4,000 diseases remains
to be characterized.
Throughout this evaluation, we consider all disease-gene associations that encompass

gene products in our data set. This comprises 3,077 diseases with on average 1.25
disease-related genes per disease (std ± 1.28, max = 27). Before we proceed with the
different evaluation scenarios, we first investigate the functional relationships utilized
in our framework. To this end, we study direct and indirect interaction relationships
as well as functional similarity between proteins associated with the same disease and
compare our findings against the same number of randomly selected protein pairs.
Figure 7.1 shows the fraction of disease proteins as well as randomly selected proteins

that interact either directly or indirectly with each other. Figure 7.1(a) indicates that
10The OMIM Morbid Map presents a list of diseases documented in OMIM and their associated cyto-

genetic locations.
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Table 7.1: OMIM statistics (May 2011). Number of disease entries in OMIM by entry type
and genetic origin. (+) describes genes associated with a sequence and a disease phenotype. (#)
indicates phenotypes with multiple loci (with and without associated genes). (%) denotes a con-
firmed mendelian phenotype or phenotypic locus for which the underlying molecular basis is not
known. Phenotypes marked with (+) and (#) contribute to the 3077 diseases considered in this
work. Note that the total number of both entry types is larger than 3077 as not all phenotypes are
associated with a gene.

Entry type Autosomal X-linked Y-linked Mitochondrial Total

+ Gene with known sequence and phe-
notype

314 18 0 2 334

# Phenotype description with multi-
ple loci

2725 236 4 28 2993

% Mendelian phenotype or locus,
molecular basis unknown

1632 134 5 0 1771

Other, mainly phenotypes with sus-
pected mendelian basis

1831 130 2 0 1963

Total 6502 518 11 30 7061

a significantly larger number of disease proteins interact indirectly with each other than
directly (p-value = 4.1·10−10). On average 15% of the proteins associated with the same
disease interact directly with each other while 28% of them interact through a common
interaction partner. There are three possible explanations for this difference:

• First, given the incompleteness of human interaction data (see Section 2.2.2.2),
not all relationships between disease proteins are represented in the data yet.
• Second, the smaller fraction of direct interactions between disease proteins might
also indicate a stronger indirect relationship between disease proteins.
• Third, disease proteins do not necessarily interact with each other.

These findings underline the potential of including indirect interaction partners when
attempting to identify disease-associated genes. Figure 7.1(b) shows the fraction of
interactions among randomly selected protein pairs. Contrary to disease proteins, only
0.3% and 1% of the proteins interact directly or indirectly with each other, respectively.
Although the fraction of directly interacting disease proteins is fairly low, it is still
significantly larger (p-value = 4.3·10−15) than the fraction of interactions among random
protein pairs.
Figure 7.2 presents functional similarity for disease proteins and random protein pairs

in terms of molecular function, biological process and cellular component. In general,
the functional similarity among disease proteins is significantly higher than between
random protein pairs across all subontologies (p-value ≤ 6.3·10−62). The highest cor-
relation between disease relatedness and functional similarity is detected for biological
process followed by cellular component and molecular function. The difference between
the subontologies is highly significant for molecular function (p-value = 1.5·10−13) and
still significant for cellular component (p-value = 1.1·10−4), respectively. As disease
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relationships are reflected best in biological process, we consider only this subontology
when exploiting functional similarity for disease gene association.
In summary, our findings indicate that proteins associated with the same disease are

more likely to interact with each other. Furthermore, they also tend to share common
functions to a higher extent than non-disease proteins.
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Figure 7.1: Fraction of (a) disease proteins (involved in the same disease) and (b)
randomly selected protein pairs that interact either directly or indirectly with each
other. Note that the fraction of directly interacting random protein pairs approximates |P P I|

|P |2 .
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Figure 7.2: Average functional similarity between (a) disease proteins and (b) randomly
selected protein pairs per subontology.

7.2 Centrality of Disease Proteins

As proof-of-concept, we first verify whether disease proteins are central in disease net-
works. To this end, we determine the number of seed proteins among the top k% ranked
proteins (see Section 6.3.3) across four different disease network configurations:
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7.2 Centrality of Disease Proteins

Table 7.2: Disease network characteristics. For each network configuration the average (and
median) number of proteins and edges is specified as well as the size of the largest disease network.

Average (median) network size Largest network

Disease network type # Proteins # Edges Proteins Edges

DN −GO d1 100 (58) 4,750 (440) 1,688 163,689
DN −GO d1 enrich 130 (73) 8,295 (867) 2,089 172,469
DN −GO d2 674 (359) 11,132 (3,397) 8,017 179,138
DN −GO d2 enrich 700 (384) 15,797 (4,639) 8,125 236,206

• DN – GO d1: direct interaction data as well as manually curated functional anno-
tation
• DN – GO d2: direct and indirect interaction data as well as manually curated
functional annotation
• DN – GO d1 enrich: direct interaction data as well as manually curated and
predicted functional annotation
• DN – GO d2 enrich: direct and indirect interaction data as well as manually
curated and predicted functional annotation

The network-specific characteristics, i.e., average number of nodes and edges of the
different network types, are summarized in Table 7.2.
Before we assess if predicted functional annotations and indirect interactions enhance

the ranking of disease proteins, we investigate the performance of the four centrality
measures described in Section 2.3.2.3: degree centrality, closeness centrality, between-
ness centrality, and PageRank centrality. The difference in the ranking among these
measures is illustrated in Figure 7.3. Betweenness centrality clearly outperforms the
other centrality measures. However, it does not only perform best on our data but also
shows favorable characteristics for generating new hypothesis on disease-gene associa-
tions (Özgür et al., 2008). Accordingly, we use this centrality measure for all further
experiments.
Figure 7.4 shows the fraction of highly ranked seed proteins within the four different

disease network configurations. In general, we find more than 88% of the seed proteins
among the 5% most central proteins which supports our hypothesis that disease proteins
are central in their specific disease networks. Clearly, we expect the majority of seed
proteins to be highly ranked in the prioritized list since we build the disease networks
around them which puts them naturally in a central position. Yet, high centrality
in disease networks is a characteristical feature of disease proteins (see Figure B.4).
Comparing the ranking within disease and random networks, i.e., built from random
proteins sets, shows that disease proteins exhibit a significantly higher centrality (p-
value = 4.5·10−7) in the generated networks than random proteins.
The best ranking with respect to disease proteins is obtained when considering disease

networks built from direct links including predicted functions, followed by using only
original annotations (see Figure 7.4). The inclusion of predicted functions yields superior
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Figure 7.3: Comparison of the performance of the four different centrality measures:
betweenness, degree, closeness and PageRank, in non-enriched d1 disease networks.

ranking in both d1 and d2 networks compared to the non-enriched networks, in particular
for k ≤ 10%, which emphasizes the power of integrating predicted functional information
into the disease gene ranking framework.
Using indirect links leads in the first place to a lower fraction of seed proteins among

the top ranked proteins due to a higher amount of (disease unrelated) hub proteins (see
Section 6.3.2.1). Such hubs do not strongly impact the ranking in d1 disease networks,
since in those they are mainly only connected to the seeds. However, the inclusion of
indirect neighbors also integrates all their interaction partners which puts the hubs into
a central position.

7.2.1 Normalization for hub proteins

To verify whether unspecific hubs compromise the ranking, we consider the number
of highly ranked hub proteins within the networks as well as the relative frequency
of each protein across all networks. Hub proteins are determined by examining the
degree distribution across the human interaction network. The node degree at the 90th
percentile of this distribution is set to be the cut-off for defining a hub protein. Thus, we
consider any protein as hub if it has more than 23 interactions in the human interaction
network (consistent with Aragues et al. (2007)) which applies to 1,485 proteins (10% of
proteins).
Figure 7.5 shows the distribution of proteins across disease networks generated from

direct as well as indirect interaction data. The comparison indicates that proteins from
d2 networks occur more frequently in the different disease networks. For instance, the
most frequent protein in d1 disease networks, namely GRB2, is included in 8.5% of the
disease networks. In contrast, UBC, UBB, RPS27A and UBA52 occur in almost half
of the generated d2 networks (47.3%). Such highly frequent proteins are unlikely to be
specific for particular disease networks. In turn, studying highly ranked proteins reveals
that the amount of hub proteins within the most central network regions is significantly
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Figure 7.4: Centrality of disease proteins within disease networks (DN). Disease networks
are compiled from direct and indirect interaction data (d1 and d2) as well as manually curated and
predicted functional annotations (enrich).
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data (y-axis in log-scale).
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Figure 7.6: Fraction of highly ranked hub proteins in the four disease network types
with (dashed lines) and without hub correction (solid lines).

higher for d2 disease networks, e.g., 72% and 76% compared to 18% and 22% in d1
networks for k = 1% (see Figure 7.6).
To account for unspecific hub proteins we normalize the betweenness centrality score

of each protein by the number of its occurrence across all networks (see Section 6.3.2.1,
Eq. 6.1). Figure 7.7(a) – 7.7(d) shows that the proposed hub correction leads to a
considerable increase in the fraction of disease proteins (up to 22%) among the most
central proteins in the d2 disease networks. Overall, the impact of the normalization
is most striking for k < 10% and decreases the more proteins of a disease network are
considered. The hub normalization also improves the ranking in d1 networks but its
impact is less significant than in d2 networks. The improvement in ranking with respect
to disease proteins is also reflected in a decreasing number of highly ranked hub proteins
(see Figure 7.6). The fraction of highly ranked hub proteins decreases, for instance, by
23% for enriched d2 networks. Both observations demonstrate that our normalization is
an effective approach to filter proteins unrelated to the given disease.
In the following evaluations we only consider rankings with hub normalization.

7.3 Cross-validation
For assessing the ability of our method to identify novel disease genes in a genome-wide
setting we performed leave-one-out cross-validation. In contrast to the centrality analysis
in the previous section, this is the ‘true’ setting for evaluating disease gene identification
methods. As described in Section 6.3.3.1, we only consider diseases with at least two
seed proteins during cross-validation, since our method needs at least one disease protein
as seed. This applies for 284 out of 3,077 diseases with at least one protein. For each
left-out disease protein we determine whether it can be re-discovered using our method.
Figure 7.8 shows the cross-validation recovery rates with hub normalization across the
ranked networks using disease networks generated from different functional associations.
In total, we re-discover 41%, 46%, 55% and 59% of the blinded disease-protein as-

146



7.3 Cross-validation

0 5 10 20 30 40 50 60 70 80 90 100
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1

Rank in % within disease network

F
ra

c
ti
o
n
 o

f 
d
is

e
a
s
e
 p

ro
te

in
s

 

 

DN − GO d
1

DN − GO d
1
 normalized

(a) Disease networks - GO d1

0 5 10 20 30 40 50 60 70 80 90 100
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1

Rank in % within disease network

F
ra

c
ti
o
n
 o

f 
d
is

e
a
s
e
 p

ro
te

in
s

 

 

DN − GO d
2

DN − GO d
2
 normalized

(b) Disease networks - GO d2

0 5 10 20 30 40 50 60 70 80 90 100
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1

Rank in % within disease network

F
ra

c
ti
o
n
 o

f 
d
is

e
a
s
e
 p

ro
te

in
s

 

 

DN − GO d
1
 enrich

DN − GO d
1
 enrich normalized

(c) Disease networks - GO d1 enrich
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Figure 7.7: Impact of the hub correction on the ranking of disease relevant proteins
within the four different disease network types: (a) direct interactions and original anno-
tations, (b) direct and indirect interactions and original annotations, (c) direct interactions and
original and predicted annotations and (d) direct and indirect interactions and original and pre-
dicted annotations.

sociations when considering direct interaction and functional annotation alone, and in
combination with predicted functions and indirect neighbors, respectively. Combining
indirectly linked proteins and functionally enriched networks significantly increases the
amount of re-discovered proteins, up to 20%.
The inclusion of additional evidence leads to larger networks and thus to a higher

number of potential candidates. In consequence, the ratio between promising and false
positive candidates decreases with the increasing number of proteins in a top-k% list.
To assess whether we truly gain additional information from our extended networks, we
also study the absolute recovery rates. To this end, we performed an analysis using only
the top 100 proteins within each network. The results confirm that using the enriched
networks clearly leads to better results (see Figure 7.9) which in turn underlines that the
improved recovery rates result from a more comprehensive representation of the proteins
within the networks rather than from the larger network sizes.

7.3.1 Filtering chromosomal regions

Comparing the performance of methods for predicting disease-related genes is a difficult
undertaking. Related methods usually constrain the set of genes under study, either
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Figure 7.8: Cross-validation recovery rates (with hub correction) from disease net-
works with direct and indirect interaction as well as original and predicted functional
annotations.
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Figure 7.9: Absolute cross-validation recovery rates (with hub correction). Considering
only the top 1 ≤ k ≤ 100 proteins in disease networks with direct and indirect interaction as well
as original and predicted functional annotations.
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(a) Filtering in d1 disease networks
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(b) Filtering in d2 disease networks

Figure 7.10: Effect of chromosomal filtering on the absolute recovery rates, 1 ≤ k ≤
100, in (a) d1 and (b) d2 disease networks.

by focusing on particular disease-gene families or, most often, by focusing on defined
chromosomal regions. Such constraints act as stringent filters, making the resulting
disease networks much smaller and thus strongly restricting the set of gene candidates.
Most approaches are commonly evaluated on artificial linkage intervals with around
100 to 108 genes including the target gene (Perez-Iratxeta et al., 2002; Franke et al.,
2006; Lage et al., 2007; Wu et al., 2008). In contrast, our unconstrained networks
usually contain several hundred proteins. Enriched d2 networks, for instance, involve on
average about 700 proteins (std ± 405, see Table 7.2). Ranking in such large networks
becomes much more difficult (Wu et al., 2008), but only region-independent methods are
applicable to diseases where no regions are associated yet. This applies to about 43% of
the OMIM diseases.
To test how much our method would benefit from utilizing information on chromo-

somal regions, we performed another leave-one-out evaluation in which we filtered all
proteins from the ranked lists which are not located on the same chromosome as the
left-out protein, which mimics a search constrained to a chromosome. Note that human
chromosomes contain on average 1,341 genes, ranging from 379 genes on chromosome 11
to 4,220 on chromosome 1. Figure 7.10 shows that such filtering improves the recovery
rates significantly. For instance, the recovery rate almost doubled when considering the
top k = 20 proteins in the enriched d2 networks (see Figure 7.10(b)). Note that this task
is still considerably more difficult than the one solved by most other methods as we still
need to first reach the target protein while growing the disease network – in contrast to
artificial linkage intervals where the target gene is initially included.

7.3.2 Impact of the number of initial seeds on the performance

OMIM documents Mendelian disorders and a number of more complex multifactorial
diseases that comprise several genes and disease loci. Currently, the number of known

149



7 Evaluation of Disease Gene Identification

Figure 7.11: Distribution of the number of seed proteins per OMIM disease. Note that
diseases with only one seed protein (2,771) are disregarded in the figure as they are not considered
in our validation.

disease genes in OMIM ranges from one to 27, but on average only 1.28 gene is associated
with each disease (see Section 7.1). Most studies validate their methods on diseases with
a large number of known causative genes or specifically defined disease families (Aerts
et al., 2006; Köhler et al., 2008; Chen et al., 2007a, 2009b). Yet, a good predictive
performance is also necessary for diseases with only few known genes. To this end, we
assess the impact of the number of known causative genes on the performance of our
method by analyzing the recovery rates according to the number of seeds s available
for a disease. Figure 7.11 gives an overview on the number of seed proteins per OMIM
disease. As expected the number of diseases decreases with the increase in the number
of seed proteins. For instance, 154 diseases are associated with two disease proteins
while 23 are associated with eleven disease genes or more. To obtain statistically sound
conclusions for seed numbers with only a small number of diseases, we group diseases
according to their number of seed proteins for larger s.
Figure 7.12 shows the seed-number-dependent recovery rates for OMIM diseases with

s = {2, 3, 4, 5, 6− 10, 11− 15, 16− 27} seed proteins computed from enriched d2 disease
networks (see Figure B.5 for individual recovery rates per s). The overall recovery rates
correlate clearly with the number of disease genes known a priori. The recovery rate
increases, for instance, from 51% for diseases associated with two disease proteins up to
79% for diseases with 16 seeds or more which emphasizes that finding relevant genes for
a disease is even more challenging when only little is yet known on that disease.
Comparing seed-size-specific results for d1 and d2 disease networks highlights again

the benefit of using indirect interaction data. Recovery rates for s = {2, 3, 4} increase
significantly, e.g., from 35% to 51% and from 46% to 61% for s= 2 and s= 4, respectively,
when considering indirect interaction data (see Figure B.6). In general, a successful
recovery of a known disease protein correlates with the number of available seed genes
as most methods perform better on diseases with more seed genes. However, using
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Figure 7.12: Seed-number-specific recovery rates for OMIM diseases with s =
{2, 3, 4, 5, 6− 10, 11− 15, 16− 27} seed proteins.

indirect neighbors increases the recovery rates for diseases with only few known genes
significantly which underlines the value of indirect functional links.

7.3.3 Results for different disease types

In addition to the influence of the number of seeds, we study whether the disease type
impacts the performance of our method. To distinguish between different disease types
we used a classification scheme proposed by Goh et al. (2007). Goh et al. manually
classified OMIM diseases into 22 distinct types of disorders according to the physiological
system perturbed by the disease, e.g., immunological, metabolic or neurological system
(see SI Table S1 in Goh et al. (2007) for details). Disorders with multiple clinical features
are assigned to a “multiple” class while disorders without sufficient information for clear
assignment were associated with an “unclassified” class. Using this classification scheme
we assign 1,757 diseases to one of 22 disorder classes (see Table B.3).
Again, we perform cross-validations across all diseases with two or more seed proteins

and determine the recovery rates with respect to their associated disorder class. In
total, 256 of the 284 diseases have been considered in this particular cross-validation.
Figure 7.13 shows the disease-specific recovery rates for the different types of diseases.
Overall the performance of our method varies widely when performing cross-validation
on a per-disease type basis. For more clarity we grouped disease types according to
their performance compared with the average cross-validation recovery rate obtained for
functionally enriched disease networks with direct and indirect interaction data (DN –
GO d2 enrich).
Figure 7.13(a) shows disease classes with superior performance. Diseases affecting,

for instance, the dermatological, hematological or the renal system yield strikingly high
recovery rates of 71%, 75% and 96%, respectively. However, also for cancer, which is
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Figure 7.13: Disease-specific cross-validation recovery rates. Disease classes are grouped
according to their performance compared to the average cross-validation recovery rate obtained for
functionally enriched d2 disease networks: (a) disease classes with superior performance, (b) disease
classes with similar performance and (c) disease classes with inferior performance.

known to be a particular complex disease caused by several genomic alterations, we
achieve a recovery rate of 65%. Figure 7.13(b) illustrates disease classes on which our
methods performs similar or slightly worse compared to the average recovery rate of 59%.
The overall recovery rates range between 47% and 55%. In turn, for disease types shown
in Figure 7.13(c) our method performs poorly. Only 11% to 33% of the blinded disease
proteins can be recovered during cross-validation. The compiled disease networks seem to
provide only little information for diseases assigned to, e.g., the endocrine or respiratory
class, indicating that additional data is required to study such diseases successfully.
Based on this assumption, we compared the functional relationships between disease

proteins associated with disease types performing either better, similar or worse than the
average recovery rate across all OMIM diseases. Figure 7.14 shows that disease proteins
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(c) Disease types with inferior performance

Figure 7.14: Disease-class-specific protein characteristics. Functional relationships between
disease proteins associated with disease types with (a) superior performance, (b) similar performance
or (c) inferior performance.

assigned to disease types with the best recovery rates interact to a significantly higher
extent with each other than, for instance, proteins from disease types with low recovery
rates. There are two possible explanations for this difference. On the one hand, proteins
of such disease types are more likely to share other protein characteristics rather than
interaction partners. On the other hand, proteins involved in endocrine, respiratory or
cardiovascular diseases might be less studied. Therefore, less functional information is
available for them yet, which in turn hinders the discovery of novel proteins related to
such diseases.

7.3.4 Classical Hodgkin Lymphoma†

To show the ability of our method to handle highly complex diseases involving complex
genomic alterations, we apply our approach to unravel molecular mechanisms involved
in the pathogenesis of classical Hodgkin Lymphoma (cHL). cHL is a peculiar type of
†Joint work with Karin Zimmermann (Humboldt Universtität zu Berlin), Volkhard Seitz and Michael
Hummel (Charite - Universitätsmedizin Berlin).
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7 Evaluation of Disease Gene Identification

Figure 7.15: Venn diagram (created with Venny (Oliveros, 2007)) displaying the in-
tersect of the top 5% and the tail 5% of the predicted gene list with the upregulated
genes in classical Hodgkin Lymphoma (cHL).

lymphoma genotypically derived from B-cells (Küppers et al., 1994) which reside in an
extensive cellular background of various types of non-malignant bystander cells (WHO
Classification 2008).
For identifying novel disease-related candidates for cHL, we first analyze epigenetic

data to define an initial set of genes involved in the pathogenesis of cHL. To this end,
we compared two independent data sets: (i) specifically acetylated genes in Hodgkin
cell lines (n = 172) and (ii) genes being up-regulated upon epigenetic treatment of B-
cell lines (n = 435) with demethylating and acetylating agents (5-Aza-dC/Trichostatin
A) (Seitz et al., 2011) inducing a Hodgkin-like phenotype (Ehlers et al., 2008).
Based on 22 experimentally linked cHL-seed genes (see Table B.4) we compiled an en-

riched d1 lymphoma-specific network with 2,258 proteins and rank its proteins according
to their normalized betweenness centrality. We first find that many cHL-related proteins
are highly ranked in the corresponding network. 12 out of 22 seeds are found among the
top 33 proteins. To associate novel proteins with cHL we selected the top 5% proteins
from the network, 119 proteins not including the 22 seed proteins, for further evaluation
(see Table 7.3 for the top 20 candidates and Table B.5 for the full list). We compare
this list to a set of Hodgkin-characteristic transcripts that are differentially expressed in
Hodgkin cell lines versus B cell lines. From the initial set of 396 genes described by Seitz
et al. (2011), 273 transcripts could be mapped to gene products in our data. The overlap
between these two sets (10 genes) is highly significant (p-value 0.003, see Figure 7.15)
and contains many genes known to be cHL-related, such as STAT3, FAS, NFKB2 and
CFLAR (Seitz et al., 2011). In contrast, no significant overlap (p-value 0.70) is found
when conducting the same comparison for the lowest ranked 5% proteins.
The remaining 109 proteins have not been previously discussed as Hodgkin-related

and may represent an important and independent expansion of the present knowledge.
We studied those using expert knowledge and by searching the literature. 10 proteins
are related to elevated proteasome activity. Proteasome inhibition is know to block the
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Table 7.3: Top 20 candidate proteins inferred from the lymphoma-specific network that
are not associated with cHL (sorted by rank). Candidates are specified by gene symbol, gene
id, name and Uniprot id.

Gene

Symbol ID UniProt Name Mentioned in
cHL context

HIST1H1C 3006 P16403 Histone H1.2 Hodgkin-
related

ACTL6B 51412 O94805 Actin-like protein 6B
HIST1H2AM 8329 P0C0S8 Histone H2A type 1
HIST1H3J 8350 P68431 Histone H3.1
SMCHD1 23347 O75141 Structural maintenance of chromosomes flex-

ible hinge domain containing 1
HIST2H3A 126961 Q71DI3 Histone H3.2
NUF2 83540 Q5SXK4 NDC80 kinetochore complex component, ho-

molog
EPS15 2060 P42566 Epidermal growth factor receptor substrate

15
VPS25 84313 Q9BRG1 Vacuolar protein-sorting-associated protein

25
PREB 10113 Q9HCU5 Prolactin regulatory element-binding protein
HIST2H2BF 440689 Q5QNW6 Histone H2B type 2-F
VPS36 51028 Q86VN1 Vacuolar protein-sorting-associated protein

36
HIST3H3 8290 Q16695 Histone H3
CHD3 1107 Q12873 Chromodomain-helicase-DNA-binding pro-

tein 3
PSMA1 5682 P25786 Proteasome subunit alpha type-1 Proteasome

complex
LCP1 3936 P13796 Plastin-2
HIST1H2BB 3018 P33778 Histone H2B type 1-B
TRA@ 6955 Q6PJ56 TRA@ T cell receptor alpha locus
TSC22D3 1831 Q99576 TSC22 domain family protein 3
HNRNPD 3184 Q12771 Heterogeneous nuclear ribonucleoprotein D

(AU-rich element RNA binding protein 1,
37kDa)

pro-apoptotic NF-κB activity which in turn induces apoptosis of Hodgkin and Reed-
Sternberg (HRS) cells. This molecular mechanism is currently discussed as a therapy
option for patients with cHL (Zhao et al., 2008). Furthermore, various signaling path-
ways are constitutively active in cHL, most importantly the nuclear factor-κB (NF-κB)
and Janus Kinase (Jak)-Stat pathway (Küppers, 2009). Interestingly, several proteins
related to those known Hodgkin-related pathways, such as TNF-Receptors, Jak/STAT
and NF-κB, are also found within the 103 proteins but were not identified by other
approaches (Salghetti et al., 1999). Genetic lesions in these pathways are thought to be
involved in the activation in HRS cells (Küppers, 2009). The complete list of candidates
including supporting evidence for an association with cHL is given in Table B.5.
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7 Evaluation of Disease Gene Identification

MYC, an important oncogene, which was so far not in focus of cHL research is also
present within the top 5% proteins. MYC is a central transcription factor known to
be involved in many cellular activities including cell proliferation and apoptosis (Li
et al., 2003a). MYC also regulates genes involved in ubiquitin-mediated proteolysis
which is thought to be responsible for MYC degradation (Salghetti et al., 1999; Li
et al., 2003a). Although MYC is not specific for cHL, the identification of MYC by
our approach highlights its potential role in cHL on protein level and hints to hitherto
unknown functions of MYC.

7.3.5 Colorectal cancer
We applied our strategy to identify genes that are directly or indirectly involved in
the pathogenesis of colorectal cancer (CRC), the third most common cause of cancer
deaths for both men and women in the United States and Europe (Grothey et al.,
2004). CRC arises from the colorectal epithelium in consequence to the accumulation of
genetic aberrations in defined oncogenes and tumor suppressor genes as well as epigenetic
alterations including aberrant DNA methylation and chromatin modifications (Grady
and Carethers, 2008). Most CRC-causing mutations are somatic, i.e., occurring in the
perturbed tissue during carcinogenesis. Yet, similar to most cancer types, CRC also has a
hereditary component caused by mutations which affect the germline and account for the
initiation of carcinogenesis (de la Chapelle, 2004). So-called high-penetrance11 mutations
confer susceptibility to CRC, for instance, in Lynch syndrome caused by mutations in
mismatch repair genes (Lynch and Smyrk, 1996), and familial adenomatous polyposis
involving alterations in the tumor suppressor APC (Half et al., 2009). Low-penetrance
mutations accounting for the remaining familial cases as well as the large proportion of
sporadic CRC are less understood.
For associating proteins with CRC, we extracted all phenotype entries from OMIM

that are associated with CRC. Albeit several phenotypes describe different variants of
this cancer type, only few are already associated with causal genes (see Table B.6). To
identify gene products related to CRC in general we combine the different subtypes
to one set of 27 genes (see Table B.7) and grow a CRC-specific d2 network around
these seeds with 8,137 proteins. Before inferring CRC-related genes we first perform a
cross-validation over this set to study the trade-off between potential candidates and
false positives. For cross-validation we remove one seed protein from the initial list
and generate a CRC network from the remaining seeds in which we rank the proteins
according to their network centrality. Subsequently, we determine whether the left-out
protein can be re-discovered and at which position of the ranked list. We repeat this
procedure for each seed and determine the average recovery rate across all seeds which
is then normalized by the number of proteins considered at each rank k.
Both the original and the normalized recovery rate are shown in Figure 7.16. In total,

we re-discover 24 out of 27 colon cancer seed genes across the respective networks. When
considering the top 1% proteins of the networks (81 proteins), we find two of the blinded
11Penetrance indicates the frequency with which individuals exhibit the phenotype linked to a particular

mutation.
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Figure 7.16: Original and normalized cross-validation recovery rate for the colon cancer
specific seed gene set.

colon cancer proteins within the 81 most central proteins. Thus, the minimum likelihood
of identifying unknown genes relevant for colon cancer equals 2/81 = 2.5%. Note, this
probability is estimated from the cross-validation on known data and therefore provides a
lower bound since all novel findings are counted as false positives during cross-validation.
Naturally, this likelihood decreases significantly the more proteins of the network are
considered. Hence, we choose a cut-off of 1% when assessing the final predictions.
Applying this cut-off to the CRC-specific network results in 81 non-seed proteins

which are investigated with respect to CRC. Table 7.4 presents the top 20 candidates
(see Table B.8 for full list). Furthermore, we gathered evidence from literature, KEGG
pathways and expression profiles to assess the potential association of these proteins
with colorectal cancer. The large majority of the candidates is highly overexpressed in
cancerous colon tissue compared to healthy colon tissue (Yanai et al., 2005).
For at least 17 candidates we find strong evidence in the literature for an involvement

in the development and progression of colon cancer (see underlined entries in Table 7.4
and Table B.8). Some of them, e.g., SMAD2, SMAD3 and SMAD4, have already strong
support from the experimental field (Malek et al., 2002; Xie et al., 2003). Smad proteins,
for instance, are key components of the TGF-β signaling pathway which regulates a wide
range of cellular processes including cell proliferation, differentiation and apoptosis (Mas-
sagué and Chen, 2000). TGF-β stimulation induces the phosphorylation and activation
of Smad2/3 which in turn initiates the assembly of heteromeric complexes with Smad4.
These complexes accumulate in the nucleus where they regulate the transcription of tar-
get genes, i.e., genes crucial for cell cycle control (Sameer et al., 2010). Mutations in
Smad proteins impair the natural function of the TGF-β pathway (Woodford-Richens
et al., 2001) providing cellular resistance to TGF-β-induced growth inhibition which is
often observed in tumor cells (see Figure 7.17). Smad4 inactivation is particularly linked
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7 Evaluation of Disease Gene Identification

Table 7.4: Top 20 candidates predicted to be involved in colorectal cancer (sorted
by rank). Candidates are specified by gene symbol, gene id, name and Uniprot id. Pathway
information are derived from KEGG. Literature evidence supporting potential associations with
colon cancer is provided in Table B.8. Highly relevant predictions for CRC are underlined.

Gene

Symbol Id UniProt Name Pathways

PLA2R1 22925 Q13018 Secretory phospholipase A2 receptor −
CLN3 1201 Q13286 Battenin −
ATXN1 6310 P54253 Ataxin-1 −
MYC 4609 P01106 Myc proto-oncogene protein Colorectal cancer
YWHAG 7532 P61981 14-3-3 protein gamma −
EGFR 1956 P00533 Epidermal growth factor receptor Colorectal cancer
YWHAZ 7534 P63104 14-3-3 protein zeta–delta −
SRC 6714 P12931 Proto-oncogene tyrosine-protein kinase Src −
SH3GLB2 56904 Q9NR46 Endophilin-B2 −
SFN 2810 P31947 14-3-3 protein sigma −
SLX4 84464 Q8IY92 Structure-specific endonuclease subunit

SLX4
−

COPS6 10980 Q7L5N1 COP9 signalosome complex subunit 6 −
SMAD2 4087 Q15796 Mothers against decapentaplegic homolog 2 Colorectal cancer
PIK3R1 5295 P27986 Phosphatidylinositol 3-kinase regulatory

subunit alpha
Colorectal cancer

UBE2I 7329 P63279 SUMO-conjugating enzyme UBC9 −
CTNNB1 1499 P35222 Catenin beta-1 Colorectal cancer
MUC2 4583 Q02817 Mucin-2 −
RELA 5970 Q04206 Transcription factor p65 Pathways in cancer
PLK1 5347 P53350 Serine–threonine-protein kinase PLK1 −
SMAD4 4089 Q13485 Mothers against decapentaplegic homolog 4 Colorectal cancer

with late stage or metastatic colorectal cancer (Miyaki et al., 1999; Maitra et al., 2000).
Smad2 may act as a tumor suppressor in colorectal cancer while mutations in Smad3
have been associated with colorectal adenocarcinoma in mice (Zhu et al., 1998).
Other candidates, such as SRC and MYC, are known oncogenes encoding for proteins

that control cell proliferation, apoptosis, or both (Croce, 2008). Both genes are found to
be over-expressed and highly activated in a variety of human cancers (Irby and Yeatman,
2000; Nilsson and Cleveland, 2003) including colon cancer. The frequent dysregulation
of SRC in human colon cancer cells indicates its potential role in the development of
this cancer type (Malek et al., 2002). Furthermore, the increased activity of SRC has
been shown to enhance metastasis and the malignant progression of colon cancer (Kline
et al., 2009). The contribution of MYC is less conclusive yet. However, the depletion of
MYC in colon cancer cells inhibits cell growth and induces apoptosis (Hongxing et al.,
2008). Despite the strong evidence in the literature, the discussed candidates have not
yet been established in the particular databases.
A number of predictions, e.g., PLK1, are thought to be potential prognostic markers

for the disease. Polo-like kinase 1 (over)expression, for instance, is associated with
advanced tumor stages in colon cancer (Weichert et al., 2005). Further studies confirmed
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Figure 7.17: Colon cancer pathway (hsa05210) from KEGG.

the correlation of PLK1 expression with patient prognosis indicating that this kinase
is a prognostic marker for colon carcinoma patients (Takahashi et al., 2003). For the
remaining candidates we did not find literature evidence. Yet, several of them are
involved in cell cycle control (CDC20 ), in colon cancer (RAF1, see Figure 7.17) or other
cancer-related pathways. These findings emphasize that our method generates novel
hypotheses that are relevant for colorectal cancer. Yet, their true relevancy needs to be
elucidated in systematic follow-up experiments.

7.4 Comparison to related methods

For evaluating the performance of our developed algorithm we compared it with two
state-of-the-art methods for disease gene prioritization, namely PRINCE and RWR (see
Section 6.4 for details). Both algorithms have been shown to outperform existing lo-
cal approaches significantly (Köhler et al., 2008; Vanunu et al., 2010; Navlakha and
Kingsford, 2010). For this reason, we focus on the two methods in this performance
comparison12. PRINCE has been obtained from Vanunu et al. (2010) in June 2010. An
12Note that we also considered Endeavour as one of the state-of-the-art approaches for our performance

evaluation. However, for technical reasons we were not able to perform cross-validation in a genome-
wide setting. Therefore, we could not include Endeavour into this analysis.
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7 Evaluation of Disease Gene Identification

implementation of RWR is included in the DADA suite (Degree-aware algorithms for
network-based disease gene prioritization, Erten et al. (2011)) which is freely available
on the project website13 (downloaded June 2011).
The benchmarking has been performed on a subset of diseases classified by Goh et al.

(2007) (see Section 7.3.3). From the distinct disease types presented in Table B.3 we
selected six disease classes according to the performance of our method:

• Superior performance: dermatological diseases and cancer diseases
• Average performance: metabolic diseases and neurological diseases
• Inferior performance: respiratory diseases and endocrine diseases

RWR and PRINCE have been applied to the human interaction network generated in this
work. To assess and compare the performance of these methods we conducted leave-one-
out cross-validation as described in Section 6.3.3.2. Note that for a fair comparison we
considered the absolute ranks when determining the average recovery rates (using micro
average) as disease-specific networks and the human interaction network differ largely in
their size. Figure 7.18 shows the performance of the disease-specific approach and of the
two related approaches on the six different disease sets. Note that we focus on the top
500 proteins in the prioritized disease and human interaction network as biologists are
only interested in the most promising candidates, i.e., the top ranked candidates, rather
than in several thousands of genes.
The direct comparison of the different cross-validation recovery rates shows that our

approach clearly outperforms PRINCE. Most importantly, our method recovers the ma-
jor fraction of blinded disease proteins at an earlier stage in the networks. Thus, a
smaller number of genes has to be analyzed to find true disease-related proteins. This
is an important feature over PRINCE as disease gene identification methods aim for re-
ducing the number of potential candidates while delivering novel biological hypotheses.
This observation holds for disease classes with superior performance (see Figure 7.18(a)
and 7.18(b)) but also for diseases with average or inferior performance (see Figure 7.18(c)
– 7.18(f)).
When considering the recovery rates of RWR our disease-specific approach performs

comparably well. For instance, for dermatological, respiratory and neurological diseases
we achieve fairly similar or slightly better results. For cancer and endocrine diseases, on
the other hand, our overall recovery rate is lower than for RWR. Yet, the difference is
only minor. In contrast to these disease types, the recovery rate obtained for metabolic
diseases outperforms RWR significantly. Strikingly, about 50% of the blinded disease
proteins are found among the top 50 proteins within the disease-specific networks; twice
as much as for the other two methods.
Overall, we show that our disease-specific approach performs comparably well or even

better than state-of-the-art methods. Our analysis also indicates that, in comparison to
evaluations on linkage intervals, the performance of global network-based approaches de-
creases significantly when no information on genomic regions is available. In particular,
13http://compbio.case.edu/dada/
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(a) Dermatological diseases (24)
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(b) Cancer diseases (42)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Absolute ranks

C
ro

s
s
−

v
a
lid

a
ti
o
n
 r

e
c
o
v
e
ry

 r
a
te

 

 

PRINCE

RWR

Disease−specific networks

(c) Metabolic diseases (16)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Absolute ranks

C
ro

s
s
−

v
a
lid

a
ti
o
n
 r

e
c
o
v
e
ry

 r
a
te

 

 
PRINCE

RWR

Disease−specific networks

(d) Neurological diseases (18)
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(e) Respiratory diseases (7)
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Figure 7.18: Performance comparison with PRINCE and RWR for six disease classes.
For each disease type and method we determine the average recovery rate among the top 500
proteins in the prioritized disease-specific networks and the prioritized human interaction networks.
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7 Evaluation of Disease Gene Identification

PRINCE benefits largely from the filter that linkage intervals provide. These observa-
tions emphasize the need for efficient prioritization strategies that identify disease-gene
associations accurately even if no disease loci have been associate with the disease of
interest. An advantage of our module-based approach over global methods is the inher-
ent division of the original genomic data into smaller proportions. Using disease-specific
networks, for instance, reduces the complexity for prioritization by yielding shorter lists
of disease associated genes, in particular when following a genome-wide approach.

7.5 Case study: Inference of Surface Membrane Factors
contributing to HIV-1 Infection‡

One of the important characteristics of Human Immunodeficiency Virus (HIV) is its abil-
ity to interact with many cell types and its capacity to alter the function of chemokines
that otherwise work in harmony with the immune system. This interaction depends
on the phenotype of the virus, the receptor type residing on the cell as well as the
chemokines present in the environment. Structurally, its genome has evolved to interact
with many human proteins from various cellular pathways through viral proteins, such
as Tat, Gp120 or Nef (Cook et al., 2002; Piguet and Trono, 1999; Yang et al., 2009).
Typically, a HIV infection originates from the binding of HIV envelope proteins gp120

and gp41 to cell surface receptors CD4 and CCR5/CXCR4 which affects populations of T
helper cells, dendritic cells and macrophages. Cell types which are targeted in the course
of HIV infection often have different receptor expression profiles and do not necessarily
harbor main co-receptors CCR5 or CXCR4, which suggests the involvement of other
surface membrane factors (Gorry et al., 2007). Binding of HIV to cell surface factors
other than CD4 and chemokine receptors does not always permit viral entry but leads
to endocytosis of the viral particles. This promotes relocation of the infectious virions,
future trans-infection of adjacent cells (Dong et al., 2007) and leads to the activation of
the immune system. Therefore, it is imperative to bear in mind that there are surface
membrane factors interacting with HIV proteins, hence affecting the course of infection
indirectly. These observations lead to the following questions: What is the extent of
surface membrane factors contributing to HIV-1 infection and how do they influence the
outcome of the treatment?
HIV exploits the existing signaling and regulatory pathways in its host. The different

receptors or surface membrane proteins that are targeted in different cell types are
likely to be involved in the same (or closely related) functional pathways, because the
range of processes and pathways available to the virus is limited. The complexity in
finding the right factors arises from the several hundreds of surface membrane proteins
expressed on a wide variety of cells. However, experimental testing of hundreds of targets
from numerous pathways is not feasible. Therefore, we adapt the strategy from disease
gene discovery described in Chapter 6 to generate high quality hypotheses for wet-lab
experiments with the aim to identify surface membrane host factors contributing to

‡Joint work with Gökhan Ertaylan and David van Dijk (University of Amsterdam).
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Figure 7.19: Distribution of the functional protein domains across the HIV seed re-
ceptors documented in Table B.9.

HIV-1 disease outcome based on receptors that are known to interact with HIV.
Translating the developed framework into the context of identifying surface membrane

factors interacting with HIV-1 implies that proteins, which are related to known HIV
receptors through functional similarity or interaction with the same ligand(s), tend to
be part of the same pathway and often share the same biological function. Therefore, if
a network is built based on documented surface membrane factors (see Table B.9) that
is extended with related genes, yet undiscovered surface proteins should also be central
in the resulting network.
In the following, we briefly describe the setting of this case study and its outcomes.

First, we introduce the underlying data basis. Second, we translate the developed frame-
work into the context of identifying surface membrane. Finally, we present a set of novel
surface membrane factors and assess their relevancy for HIV infection by exploring the
literature, functional domains and their protein interfaces.

7.5.1 Human immunodeficiency virus type 1

In this case study, we use a set of known HIV receptors, their functional annotations and
the human protein interaction data as scaffold for building an HIV receptor network.
The initial list is compiled by mining the literature and the ’HIV-1, Human Protein
Interaction Database’ (Fu et al., 2009). A receptor is included if it is reported by at least
two independent studies. This applies to 16 HIV receptors. However, three of them,
namely Rdc1, Gpr15 and ChemR23, are not documented in the data gathered from the
protein interaction databases and thus have not been used in this study. Table B.9 shows
the final list of 13 HIV receptors including protein domain information (InterPro, see
also Figure 7.19) and their role in HIV infection. The list covers established primary
receptors such as CD4 and DC-SIGN, HIV co-receptors CCR5 and CXCR4 as well as
alternative co-receptors CCR2 and CCR3. Only recently reported co-receptors, such as
XCR1 (Shimizu et al., 2009), have not yet been included since they were not documented
by the time the study was conducted. However, cell surface proteins in Table B.9 are
reported to interact with HIV in a broad sense. Therefore, we do not limit our prediction
method to receptors that only permit the entry of HIV into the primary cells.
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7 Evaluation of Disease Gene Identification

7.5.2 Predicting novel HIV surface membrane factors
To determine yet uncharacterized surface membrane proteins based on their functional
similarity and topological closeness to receptors that are known to interact with HIV,
we integrated protein interaction, protein function and network centrality analysis as
elaborated in Chapter 6. The details of this process are summarized below:

• According to the framework proposed in Section 6.3.1, we first compiled an enriched
HIV receptor network from the 13 documented surface membrane factors (see
Table B.9) by populating it with functionally related proteins that either interact
directly with or show significant functional similarity to any known factor. The
resulting network comprises 739 proteins (726 candidates) and ∼80,000 functional
relationships.
• Subsequently, we used the PageRank centrality measure to discover novel surface
membrane factors that are involved in HIV-1 infection. Accordingly, we ranked all
proteins with respect to their PageRank centrality within the network. The under-
lying principle of the centrality analysis presumes that the most central proteins
in the HIV-specific network are likely to be of high functional relevance (van Dijk
et al., 2010).
• The list of centrality-ranked proteins is further analyzed to identify potentially
novel surface membrane factors. To this end, we investigated the trade-off between
discovering potential candidates vs. false positives by means of leave-one-out cross-
validation. The receptor-per-protein ratios are then used to define a cut-off to select
candidates from the prioritized list. We chose 3% as threshold, since it presents a
sensible trade-off between potential candidates and false positives while yielding a
reasonable number of novel candidates. Thus, the top 21 proteins in the ranked list
are considered as surface membrane factor candidates; seed receptors are removed
from this list since they are (by definition) highly ranked. Table 7.5 presents the
top-ranked candidates including their InterPro domains and cell types.

Table 7.5: List of inferred surface membrane factors. Potential surface membrane proteins
resulting from our method, including functional domains and cell types. Predictions associated with
HIV in earlier studies are marked with ’+’. ’−’ indicates predictions with negative evidence while
for predictions without literature on interaction the association remains unclear (shown by ’?’).

Receptor Receptor-specific domains Cell types Association
with HIV

7-TM GPCR and Other
HTR6 Not applicable Uniform expression14 +
HTR1B 5HT1B_rcpt Uniform expression14 ?
HTR1E 5HT1F_rcpt Uniform expression14 ?

Continued on next page

14Uniform expression in CD34, endothelial, B lymphoblasts, dendritic, myeloid, monocytes, NK, CD8
and CD4 T cells, and whole blood.
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Table 7.5 – (continued)

Receptor Receptor-specific domains Cell types Association
with HIV

RXFP2 LDL_rcpt_classA_cys-rich_rpt,
Leu-rich_rpt, LRR-contain_N,
Leu-rich_rpt_typical-subtyp,
Relaxin_rcpt

Low expression ?

RXFP1 LDL_rcpt_classA_cys-rich,
Leu-rich_rpt, LRR-contain_N,
Leu-rich_rpt_typical-subtyp,
Relaxin_rcpt

No expression profiles available ?

GPR17 P2_purnocptor Uniform expression14 ?
GPR182 G10D_rcpt Uniform expression14 ?
NPBWR2 Neuropept_W_rcpt Uniform expression14 −

7-TM GPCR and CCR_rcpt
CCR1 CC_1_rcpt High expression: whole blood,

monocytes, myeloid, dendritic
cell

+

CCBP2 CXC_4_rcpt Uniform expression14 +/−
7-TM GPCR

DARC Duffy_cmk_rcpt High expression: (early) ery-
throid, endothelial cells

+

Ig-like and Other
CD2 Ag_CD2, Ig-like_fold, Ig_C2-

set, Ig_V-set, T-cell_adhe-
sion_molc_CD2

High expression: dendritic,
myeloid, monocytes, NK, CD8
and CD4 T cells, whole blood

+

CSF3R FN_III,
Hematopoietin_rcpt_gp130_CS,
IgC2-like_lig-bd

High expression: myeloid cells,
monocytes and whole blood

+

IL1R1 Ig, Ig-like_fold, Ig_sub, IL1_rcpt_1,
IL1R_rcpt

No expression profile available –

CD79B Ig-like_fold, Ig_sub, Ig_V-set,
Phos_immunorcpt_sig_ITAM

High expression: CD34, endothe-
lial and dendritic cells

+

IL6ST FN_III,
Hematopoietin_rcpt_gp130_CS,
Ig-like_fold, IgC2-like_lig-bd

Uniform expression14 +

TNFR_Cys_rich_reg and Other
TNFRSF5 Fas_rcpt High expression: B lymphoblasts +
TNFRSF3 TNFR_3_LTBR High expression: myeloid, mono-

cytes and whole blood
+

Other
CD97 EGF-type_Asp/Asn_hydroxyl_site,

EGF_Ca_bd_2, GPCR_2_CD97,
GPCR_2_secretin-like, GPS_dom

High expression: CD34, B lym-
phoblast, dendritic cells, CD8
and CD4 T-cells, NK, myeloid,
monocytes

+

GP1BB LRR-contain_N, Cys-
rich_flank_reg_C

High expression: CD34, mono-
cytes and whole blood

?

GYPB Glycophorin High expression: (early) ery-
throid and endothelial cells

?

165



7 Evaluation of Disease Gene Identification

Figure 7.20: Subnetwork of the generated HIV receptor network. The subnetwork focuses
on the functional relationships between the seed receptors (red) and the predicted surface membrane
proteins (yellow) within the HIV receptor network. Non-seed and non-candidate proteins are not
shown to avoid confusion. Significantly enriched pathways within this subnetwork are additionally
highlighted.

Figure 7.20 illustrates a subnetwork from the full HIV receptor network that exhibits
only the direct functional relationships between seed receptors and predicted surface
membrane factors. The analysis of the known and predicted surface membrane fac-
tors regarding their annotated KEGG pathways (Kanehisa et al., 2010) revealed the
involvement of three pathways, namely the chemokine signaling pathway (hsa04062),
the hematopoietic cell lineage (hsa04640) and the intestinal immune network for IgA
production (hsa04672).

7.5.3 Support for predictions

In total, we predicted 21 surface membrane HIV factors that are potentially involved in
the different stages of infection influencing the progression of the disease. The relevancy
of these candidates is assessed by using evidence that supports an association with HIV.
We investigate the predictions with respect to functional domains, cell types, chromo-
somal locations and matching protein interfaces. Furthermore, we explore the literature
on expression levels, associated SNPs and reported clinical evidence.

7.5.3.1 Receptor domains

We analyze the most promising predictions by comparing their functional protein do-
mains to the domains of the known seed receptors assuming that overlapping functional
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7.5 Inference of Surface Membrane Factors for HIV-1 Infection

domains indicate similar protein properties, e.g., binding the same ligand, and functional
similarity (Zhang, 2009). The most common protein domains of the seed receptors are:

1. G-protein-coupled receptors (GPCR) rhodopsin-like superfamily and 7 transmem-
brane (7-TM) GPCR rhodopsin-like domains (7-TM GPCR)

2. Chemokine receptor domains (CCR_rcpt)
3. Immunoglobulin and related domains (Ig-like)
4. C-type lectin and related domains (C-type lectin like)
5. Integrin alpha and related domains (Integrin alpha)

The distribution of the domains among the seed receptors is shown in Figure 7.19.
Predicted surface membrane factors are grouped according to their functional do-

mains (see Table 7.5) which results in GPCR with chemokine domains, GPCR without
chemokine domains, Ig-like receptors and receptors without any overlapping domains.
The respective domain distribution is displayed in Figure 7.21. The largest domain over-
lap is found for 7-TM GPCR rhodopsin-like domains. Half of the predictions have this
particular domain, which is also overrepresented in the set of seed receptors (10 of 13,
see Figure 7.19). In addition, CCR1 and CCBP2 share a chemokine domain, which is
very frequent in the set of initial receptors (8 of 13). Moreover, five predicted surface
membrane factors have Ig-like domains that match the primary HIV receptor CD4.

36,4% 

9,5% 
23,8% 

4,8% 

9,5% 

14,3% 

7-TM GPCR & other

7-TM GPCR & CCR

Ig-like & other

7-TM GPCR

TNFR_Cys_rich & other

Other

Figure 7.21: Distribution of the protein domains for the predicted surface membrane
factors documented in Table 7.5.

The amount of overlapping functional domains indicates that the functional charac-
teristics of the initial HIV binding receptors are reflected in predicted surface factors.
In particular, GPCRs have a broad usage spectrum as co-receptors by primary isolates
of HIV (Shimizu et al., 2009) and specifically chemokine receptors are known as co-
receptors for HIV (Broder and Collman, 1997). Strikingly, CCR1 and CCBP2 share both
7-TM GPCR rhodopsin-like and chemokine domains and are reported as co-receptors
of HIV. However, receptors without any overlapping domains might present unprece-
dented characteristics that are not documented in the initial set but are reflected in
their complementary domain diversity (see Figure 7.21).
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7 Evaluation of Disease Gene Identification

7.5.3.2 Chromosomal locations

Genes with similar properties are sometimes located in the same regions of the human
genome. Thus, the genomic location of a gene is often taken into account when new
candidate genes are associated with a disease. The reason is that mapping those candi-
dates to a region containing other genes related to the same disease further supports the
association. For example, HIV binding human CC chemokine receptor genes are known
to cluster within the 3p21.3 region of the genome (Maho et al., 1999).
We determine the chromosomal location of the predicted surface proteins and study

whether they cluster together with other candidates or known seed factors. The chro-
mosomal location for each seed and prediction retrieved from EntrezGene is shown in
Table B.10. When considering the known receptors there is a group of six chemokine
receptors that map to the CCR cluster within 3p21.3, and also two receptors, CCR1 and
CCBP2, from the predicted set are associated with this region. However, the remaining
ones are located on different chromosomes. Only CD97 and DC-SIGN, and GPR17 and
CXCR4 are mapped together to 19p13 and 2q21, respectively.

7.5.3.3 Literature support

We explored the literature to gather further evidence to support the relevancy of the
predicted surface membrane factors. Overall, the involvement of co-receptors and surface
membrane proteins assisting HIV-1 infection and contributing to viral pathogenesis has
always been underestimated (Shimizu et al., 2009). Only a limited number of studies
aim to elucidate the role of surface membrane factors interacting with viral proteins,
even though they are potential amenable drug targets for HIV therapeutics (Zhou and
He, 2008; Dunn et al., 2004).
Remarkably, we inferred ten surface proteins that are involved in a cascade of events in

HIV infection. Among these cell surface proteins, three have confirmed functions in HIV
infection while seven have been reported by at least two other studies. Their involvement
ranges from serving as co-receptors for cell entry (CCR1 and CCBP2) (Shimizu et al.,
2009; Neil et al., 2005), mediating trans-infection (DARC) (He et al., 2008), activating
immune cells (CD97) (Zhou and He, 2008) to inducing viral production from latently
infected cells (CSF3R, TNFRSF3 and CD2) (Dunn et al., 2004; Coleman and Wu, 2009;
Shen et al., 2007). Our findings on experimentally confirmed predictions and predictions
with indirect experimental support are discussed in detail in (Jaeger et al., 2010b).
We also present eleven original predictions that deserve experimental investigation

(see Table 7.5). In particular, the platelet glycoprotein Ib (GPIb) is a surface mem-
brane protein of platelets. Mutations in the GPIb beta subunit are associated with
Bernard-Soulier syndrome which is characterized by thrombocytopenia, circulating gi-
ant platelets, and prolonged bleeding time (Hadjkacem et al., 2009). We speculate that
the prolonged interaction of blood platelet expressed GP1BB with HIV might be re-
sponsible for thrombocytopenia observed in HIV infection. Furthermore, the relaxin
receptors RXFP1 and RXFP2 are known to be expressed on the acrosome of elongated
spermatids (Filonzi et al., 2007; Gianesello et al., 2009). Their intron-rich gene organi-
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zation indicates alternatively spliced variants. This suggests the existence of different
protein isoforms that contribute to their diverse expression in-vivo. Their association
with HIV might explain the different rates of evolution observed in seminal versus blood
plasma of infected patients (Ghosn et al., 2004). Moreover, either one or both receptors
might be involved in viral hijacking of the spermatozoa in viral transmission (Kern and
Bryant-Greenwood, 2009).
Several seed receptors, such as CCR5, CCR2 and CX3CR1 (Passam et al., 2007; Singh

et al., 2008), have been associated with SNPs that contribute to different disease out-
come. Among the 21 predicted factors, except for the controversial –46C/C in DARC,
SNPs in CCR1, CCBP2, HTR6, HTR1B, HTR1E, CSF3R, IL1R1, TNFRSF5 are as-
sociated with one or more clinical phenotypes but their relation to HIV infection has
not been investigated. Thus, we encourage investigating the SNPs from the predicted
surface membrane factors for association with HIV to study their potential effect on HIV
infection.

7.5.3.4 Structural Matching

As indicated above, a large number of the predicted surface membrane factors are likely
to be involved in the different stages of HIV infection influencing the progression of the
disease. Albeit literature curation largely confirms the relevancy of our findings, we do
not predict with which particular HIV protein these factors might interact. To study this,
we used PRISM (Protein Interactions by Structural Matching, Keskin et al. (2008)) to
predict putative interactions between the predicted surface membrane factors and HIV
proteins. PRISM identifies potential interactions among proteins by comparing their
interfaces and structures against a subset of structurally and evolutionary representative
interactions from PDB. The rationale of this approach is that if two protein structures
exhibit particular surface regions that complement known interfaces, they are likely to
interact through these regions.
PRISM uses a template set of known interaction interfaces to infer potential inter-

actions between a set of target proteins. The template set is constructed from map-
ping binary interactions between human and HIV proteins to known protein complexes.
This set characterizes virus-host interactions with respect to their physical and chemical
properties. Note, only little information on the structural characteristics of interactions
between human and HIV proteins is known yet which limits the structural coverage of
our template set. Given the template set we run PRISM on the target set comprised of
known structures of the predicted surface membrane factors and HIV proteins.
Figure 7.22 presents the predicted binary interactions between the inferred surface

factors and HIV proteins. Six surface membrane factors are predicted to interact with six
HIV proteins according to their complementary protein interfaces. As proteins interact
through their interfaces, this structural analysis adds another level of confidence strongly
supporting our predictions. Predicted binding sites for CSF3R with gp120 and gp41 are
illustrated in Figure 7.23.
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7 Evaluation of Disease Gene Identification

Figure 7.22: Predicted interactions between the inferred surface membrane factors
(yellow circles) and HIV proteins (green hexagon).

(a) CSF3R with gp120 (b) CSF3R with gp41

Figure 7.23: Predicted protein interactions of CSF3R with (a) gp120, and (b) p41.
Physical binding between these proteins is inferred based on the structural matching of their inter-
faces (Keskin et al., 2008). CSF3R is shown in blue while gp120 and gp41 are colored in green and
red, respectively. Predicted binding sites are highlighted with spheres.
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8 Summary and Outlook
This thesis focused on the computational analysis of one of the most commonly studied
types of biological networks – protein interaction networks – which have become par-
ticularly important for functional analysis in several organisms, particularly in human.
Protein interaction networks are crucial to many aspects of cellular function (Piehler,
2005). On the one hand, they present direct and robust manifestations of functional re-
lationships (Sharan et al., 2007). On the other hand, alterations in protein interactions
perturb natural cellular processes and contribute to many diseases (Ideker and Sharan,
2008). Both correlations, the functional and the pathological one, have been considered
in this work to infer novel protein function for uncharacterized proteins as well as to
associate yet uncharacterized proteins with disease phenotypes, respectively.
As first main contribution we presented a novel approach to predict protein function

from protein interaction networks of multiple species. The key to our method is to
study proteins within modules defined by evolutionary conserved processes, combining
comparative cross-species genomics and functional linkage within interaction networks.
To this end, interologs are assembled to highly conserved protein sub-networks, so-called
connected and conserved subgraphs (CCS). Within each conserved subgraph we infer
novel protein functions from orthology relationships across species and along conserved
interactions of neighboring proteins within a species.
• Altogether, we integrate three different sources of evidence, namely evolutionary

conservation of functional modules, orthology relationships, and direct and indirect
protein interactions into a single, comprehensive prediction method which yields
high-quality predictions with very good coverage.
• We show that results can be further improved by processing large CCS in an
adequate manner. Failing to do so either restricts coverage of the method or leads
to higher false positive rates.
• In comparison to three related methods, CCS-based function prediction clearly
outperforms Neighbor Counting and χ2. A comparable or even better performance
is achieved when comparing against FS-Weighted Averaging.
• Overall, we infer thousands of protein functions for every species included in the
analysis at varying, yet always high levels of precision. A large amount of novel
functions can not be validated directly which shows that our method also generates
novel functional knowledge rather than only reproducing known functions for well-
characterized proteins.

As second main contribution we developed a region-independent, network-based
framework in which we integrate protein interaction, protein function, and network cen-
trality analysis to identify yet uncharacterized disease-related gene products. Given a
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disease, we first extract all genes known to be involved in this disease. We compile a
disease-specific network by integrating directly and indirectly linked gene products us-
ing protein interaction and functional information. Proteins in this network are ranked
based on their network centrality.
The general approach of our method follows the lines of others but in contrast to

previous methods, our approach does not depend on the availability of associated chro-
mosomal regions. This makes it applicable to a much wider range of diseases, such
as disorders with very few or even only a single known disease protein, diseases with
multiple, very large, or no associated loci, and even diseases without genetic origin. As
discovering disease-related genes is particularly challenging if no chromosomal regions
are associated yet, we employed distinctive features to address this complexity and to
enhance the disease gene discovery process:

• As disease genes are often not directly linked, we also include indirectly linked
proteins during network construction which increases cross-validation re-discovery
rates significantly, up to 20%.
• This extension lowers the precision since larger networks naturally integrate many
global “hub” proteins which are highly central but mostly unspecific for a disease.
We adjust the ranking for a bias towards hub proteins in disease networks which
decreases the fraction of highly ranking hub proteins (by 23%) while increasing the
fraction disease proteins up to 22%.
• Further, we integrate predicted functional information to overcome the incomplete
functional coverage of the human genome which is still one of the main limitations
in finding disease-related genes. Predicted functions increase the outreach of our
networks and assist the proper ranking of proteins without functional annotations.
• In a benchmark comparison with related approaches our disease-specific framework
outperforms PRINCE significantly and performs comparably well against RWR.
• In a case study, we identify 21 novel surface membrane factors that contribute to
HIV-1 infection; three have confirmed functions in HIV infection, seven have been
identified by at least two other studies, and eleven are novel predictions and thus
excellent targets for experimental investigation (Jaeger et al., 2010b).

Future directions

Protein function prediction and disease gene identification remain important challenges
in the post-genomic era (Friedberg, 2006; Botstein and Risch, 2003). In the following,
we will discuss several aspects to further improve our proposed approaches.

CCS-based function prediction

Our function prediction method is primarily based on functional modules defined by
evolutionarily conserved processes. Thus, the accurate detection of CCS is an important
aspect for precise function prediction. As indicated before, high coverage of our method
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is partially achieved by using a relaxed definition of interaction conservation when study-
ing multiple species. A logical extension of such approximate CCS is the inclusion of
orthologous groups which do not have direct counterparts in the species under consider-
ation. This can be implemented by considering gaps and mismatches during the network
comparison procedure (Ogata et al., 2000; Kelley et al., 2003). Analogously to sequence
alignments, gaps indicate that a protein interaction in one network omits a protein in the
other network. Mismatches occur if aligned proteins do not share sequence similarity.
Both concepts allow to account for evolutionary variations and experimental errors on
the protein level which in turn will improve module detection and function prediction.
As shown in Section 5.3.4.1, processing large CCS generates significantly more predic-

tions with mostly better precision. So far we splitted CCS with more than 25 proteins
into smaller subgraphs (see Section 4.2.5) since biological processes typically involve only
between 5 and 25 proteins (Spirin and Mirny, 2003). We initially chose the size of 25
without exploring other CCS sizes. Thus, it would be interesting to study whether the
definition of large CCS used throughout this thesis is optimal with respect to precision
and recall.
Apart from the promising results of our prediction approach, our method currently

only provides lists of yes/no predictions. This binary behavior is implicit in the way we
compute CCS and how we determine predicted terms and targets of prediction. For fur-
ther improvement and applicability we extended our approach in a diploma thesis by de-
riving confidence scores for each prediction based on multiple biological evidence (Pollex,
2011). Predictions ranked by reliability allow to focus experimental resources on hy-
potheses (predictions) that are more likely to be true. This is essential for biologists to
decide which proteins and predictions should be investigated further, e.g., in follow-up
experiments. Pollex (2011) introduced a method that represents annotations as vectors
in a feature space, in which every dimension presents specific evidence or feature of the
annotation. Confidence scores have been derived by using the weighted sum of all el-
ements in the feature vector obtained for a given annotation, so-called Sum of Scores.
Evaluating the Sum of Scores approach against our binary methods indicated that com-
bining all evidence into one score, rather than discarding weak evidence, improves the
overall coverage without decreasing precision. This promising approach can be further
improved, in particular in terms of precision, by assigning weights to the individual
features based on the idea that distinct features are more important for discriminating
between correct and incorrect predictions. Determining such weights brings up two fur-
ther challenges: (i) defining a target function to maximize/minimize and (ii) determining
a set negative annotation for optimizing the target function. In addition, more features,
such as the conservation of an interaction, could be incorporated into the score in order
to model function prediction even more accurately.

Disease gene identification

One of the key aspects in finding novel disease genes is the underlying data representing
relationships between gene products (Tranchevent et al., 2010). Both high quality and
high coverage data sources are essential to derive precise predictions. We have shown
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that utilizing indirect interaction data partially addresses the current incompleteness of
the human interactome. However, there is still a large number uncharacterized genes
for which only little or no functional data exist in the public databases. To further
improve the inclusion of such genes we plan to incorporate (i) functional relationships
extracted from the literature as wells as (ii) interactions indirectly inferred from CCS by
using the relaxed interolog definition. Furthermore, less common data, e.g., quantitative
protein expression, describing unique features not captured by the most widely used data
sources should be investigated. Such complementary data will yield more comprehensive
networks reflecting the processes related to a particular disease more accurately.
In contrast to our function prediction approach in which we use interologs to filter for

spurious interactions, we do not account for the varying quality of protein interaction
data yet. However, false interactions compromise disease gene identification as novel
hypotheses might be derived from relationships without biological relevance (Navlakha
and Kingsford, 2010). To avoid such cases it will important to assign confidence scores
to protein interactions (Braun et al., 2009). Several concepts have been discussed re-
cently for increasing the quality within interaction data sets (Lage et al., 2007; Chua
et al., 2007). Confidence scores might be based on the experimental setup as large-scale
experiments generally contain more false positives than small-scale experiments (von
Mering et al., 2002). Additionally, the number of distinct publications documenting an
interaction might be used as a score since interactions are often more reliable if they
have been reproduced in more than one individual experiment.
Another crucial point is the ranking of proteins with respect to their relevance for

a particular disease. For now we used the normalized betweenness centrality as score
for ranking proteins within disease networks. Yet, the more comprehensive the disease
networks become the more difficult becomes the ranking. To further improve the scoring
and consequently the ranking we plan to use a more probabilistic approach which models
the probability of a protein to be disease-related given its centrality score within the
respective network. The underlying idea of this model is based on the assumption that
true disease proteins receive high scores in their disease networks while unrelated proteins
obtain much lower centrality scores. Such a probability can be determined by considering
the ratio between the probability that a protein with a particular score is disease-related
and the probability that this protein is not disease-related. Both likelihoods are based
on the relative frequency of disease and non-disease genes, respectively, to receive a
particular score estimated across all disease networks. Thus, if a candidate protein
receives a centrality score which is more characteristic for disease genes than for non-
disease genes, its probability to be also involved in the disease will be higher than for
proteins with scores resembling non-disease genes. A further refinement of the proposed
disease probability could be achieved by also integrating the protein distribution across
the distinct disease networks into the probability model.
Using such a probability as prediction score also allows to determine a cut-off at which

we make predictions for a disease. Currently, we derive predictions for any disease under
consideration. Yet, as shown in Section 7.3.3 the performance of our approach varies
largely depending on the disease type; for some we perform very well while we are less
successful for others. By applying a probabilistic threshold we can further adjust disease
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gene identification toward precision and recall. The higher the threshold the higher will
be the likelihood that high-scoring candidates contribute to the disease in question. This
means, considering predictions for a disease only if the top-scoring candidate exceeds a
particular threshold will implicitly filter for diseases with weaker hypotheses and focuses
on diseases with more reliable predictions. In turn, a lower threshold will yield a larger
number of potential candidates. This might be useful if a broader picture about the
gene products involved in disease-related processes needs to be obtained.

Vision for Network Systems Biology
Network biology and its various applications for understanding cellular function and
organization contributed greatly to biomedical science in the last decade (Barabási and
Oltvai, 2004; Pujol et al., 2010; Barabási et al., 2011). However, the dynamic principles
within biological networks have been often neglected although dynamic interactions are
crucial for regulating the function of cells and organisms. While understanding individual
genes and proteins remains to be important, the current focus in research shifts toward
network systems biology which integrates the quantitative component missing in network
biology.
To move from static to dynamic interaction networks, physical and functional rela-

tionships between the cellular components have to be studied according to their spa-
tial, contextual or temporal context (Przytycka et al., 2010). Yet, most established
large-scale technologies for identifying protein interactions, such as Y2H and TAP-MS,
do not provide any spatial, temporal or contextual information. In absence of such
data, genome-wide experimental data can be utilized to associate static interactions
with dynamic information. Gene expression data, CHIP-chip data or phenotypic re-
sponses to perturbations obtained from knock-out studies or expression-quantitative
trait loci (e-QTL) are often integrated to elucidate protein interaction and network dy-
namics. Han et al. (2004) assessed, for instance, temporal characteristics of hub proteins
in yeast using gene expression data. According to their analysis, hub proteins exhibit
condition- or location-specific features which indicate dynamic modularity in interac-
tion networks. Dittrich et al. (2008) integrated lymphoma-specific expression data with
static interaction data to detect functional modules beyond classical pathways by means
of differentially expressed regions in human interaction networks.
Incorporating other data sources reflecting different types of dynamic information,

such as quantitative protein expression levels, protein localization and modification data,
will further advance network systems biology and its applications. However, also novel
experimental techniques are needed for directly capturing interaction dynamics in large-
scale. A promising approach with respect to protein interaction is FRET which has been
applied to detect protein interactions in the E. coli chemotaxis pathway for identifying
stimulation induced changes (Kentner and Sourjik, 2009). Yet, this is a small-scale
approach not applicable for large-scale analysis.
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Appendix A – Databases and terminologies

In the following, we provide information on databases and terminologies used in this
thesis.

DIP – Database of Interacting Proteins

• DIP documents experimentally verified protein interactions of several species. In-
teraction data are derived from literature, PDB, and high-throughput methods,
including Y2H, DNA and protein microarrays, and TAP-MS. The various sources
are combined to create a single, consistent set of protein-protein interactions. In
addition, core subsets are provided for each species comprising only the most reli-
able interactions.
• DIP is a member of the IMEX Consortium (International Molecular Exchange)
and adheres to standards developed for exchanging data with other interaction
databases (IntAct, MINT, etc.) to improve data quality and curation.
• Reference: Salwinski et al. (2004), http://dip.doe-mbi.ucla.edu

MIPS–MPPI – MIPS Mammalian Protein-Protein Interaction Database

• MIPS–MPPI collects manually curated mammalian interaction data. High-quality
data sets are compiled from the scientific literature by expert curators. MPPI
includes only data from individually performed experiments as they usually provide
the most reliable evidence for physical interactions.
• Reference: Pagel et al. (2005), http://mips.helmholtz-muenchen.de/proj/ppi

IntAct – Molecular Interaction Database

• IntAct provides information on physical interactions for various species derived
from small-scale and large-scale studies.
• IntAct is also a member of the IMEX Consortium and follows its standards to
cooperate with similar interaction databases, such as MINT and DIP.
• Reference: Hermjakob et al. (2004a), http://www.ebi.ac.uk/intact
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BioGRID – Database of Protein and Genetic Interactions

• BioGRID is a general repository for interaction data sets, protein and genetic in-
teractions, compiled from comprehensive curation efforts. BioGRID documents
molecular interactions derived from both high-throughput and small-scale experi-
ments.
• BioGRID is part of the IMEX Consortium.
• Reference: Stark et al. (2006), http://thebiogrid.org/

MINT – Molecular INTeraction database

• MINT is a public repository for molecular interactions reported in peer-reviewed
journals. It focuses on experimentally verified protein-protein interactions mined
from the scientific literature by expert curators.
• MINT adopted the PSI-MI standards for the annotation and for the representation
of molecular interactions and is a member of the IMEx consortium.
• Reference: Chatr-aryamontri et al. (2007), http://mint.bio.uniroma2.it/mint

HPRD – Human Protein Reference Database

• HPRD represents a centralized platform to describe and integrate information per-
taining to domain architecture, post-translational modifications, interaction net-
works and disease association for each protein in the human proteome. Information
in HPRD are manually extracted from the literature by expert biologists who read,
interpret and analyze the published data.
• Reference: Peri et al. (2003), http://www.hprd.org/

HIV-1, Human Protein Interaction Database

• The HIV-1, Human Protein Interaction Database catalogs the numerous interac-
tions between human immunodeficiency virus type 1 (HIV-1) proteins and human
proteins reported in the literature.
• Reference: Fu et al. (2009),

http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/

UniProt – Protein sequence and functional information

• UniProt is a central repository of protein sequences and functional information.
Annotations in UniProt include, amongst many others, sequence and related fea-
tures, isoforms, protein domains, Gene Ontology annotations, interactions, SNPs,
homology, associations with diseases, tissue specificity, enzymatic reactions, and
encoding genes.
• Reference: UniProt Consortium (2010), http://www.uniprot.org
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Entrez Gene – Database of genes from RefSeq genomes

• Entrez Gene curates gene-center information, including sequence, taxa, names and
synonyms, isoforms, chromosomal location, functional annotations and description
found in PubMed abstracts (GeneRIFs), gene products, associations with diseases,
interactions, and pathways.
• Reference:Wheeler et al. (2008), http://www.ncbi.nlm.nih.gov/sites/entrez/

?db=gene

Gene Ontology – Standardization of gene and gene product annotations

• GO is a widely accepted vocabulary for representing gene and protein function in a
systematic manner. GO is organized as an ontology, covering three major aspects
of function, each structured as an independent subontology: molecular function,
biological process, and cellular component.
• Reference: Ashburner et al. (2000), http://www.geneontology.org

OMIM – Online Mendelian Inheritance in Man

• OMIM is a comprehensive compendium of genetic disorders and human genes. It
catalogs all diseases with a genetic component, and links them – if possible – to
the relevant genes in the human genome. In addition, it provides references for
further research and tools for genomic analysis of each cataloged gene.
• Reference: McKusick (2007), http://www.ncbi.nlm.nih.gov/omim/

179

http://www.ncbi.nlm.nih.gov/sites/entrez/?db=gene
http://www.ncbi.nlm.nih.gov/sites/entrez/?db=gene
http://www.geneontology.org
http://www.ncbi.nlm.nih.gov/omim/




Appendix B – Additional Results

Table B.1: Complete results of the strict and relaxed network comparisons for pairs
of species and three, four, five and six species combinations. We compute CCS for 15
combinations of two species, 20 comparisons with three, 11 with four species, six with five species,
and one considering all species. For each combination the number of orthologous groups, interologs
and CCS from strict and relaxed definition are presented as well as the size of the largest CCS.
Species combinations discussed throughout Chapter 5 are highlighted in gray.

Species Criteria # OrthoMCL # Interologs # CCS (≥3) Largest CCS
groups Proteins (Edges)

rno sce strict 403 42 18 (3) 14 (14)
relaxed 3586 2 (1) 400 (3585)

hsa cel strict 1470 233 146 (34) 10 (11)
relaxed 7698 13 (1) 1412 (7686)

mmu dme strict 1182 94 57 (13) 10 (13)
relaxed 2688 13 (3) 1079 (2672)

dme cel strict 1236 97 75 (14) 4 (3)
relaxed 2568 17 (3) 1085 (2550)

rno cel strict 508 12 10 (2) 3 (2)
relaxed 905 8 (2) 475 (897)

rno dme strict 717 17 16 (1) 3 (2)
relaxed 1251 16 (1) 673 (1235)

rno hsa strict 1229 459 101 (28) 236 (287)
relaxed 6562 4 (1) 1221 (6557)

mmu cel strict 723 49 46 (2) 3 (2)
relaxed 1328 9 (1) 644 (1318)

rno mmu strict 791 95 47 (8) 29 (33)
relaxed 2026 11 (1) 762 (2016)

mmu hsa strict 2801 1550 188 (53) 914 (1249)
relaxed 22472 14 (1) 2777 (22456)

mmu sce strict 551 126 48 (17) 13 (26)
relaxed 4762 2 (1) 539 (4761)

hsa dme strict 2782 488 167 (50) 85 (102)
relaxed 17030 13 (2) 2684 (17017)

hsa sce strict 1484 1192 142 (22) 464 (969)
relaxed 19428 7 (1) 1468 (19422)

Continued on next page
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Table B.1 – (continued)

Species Criteria # OrthoMCL # Interologs # CCS (≥3) Largest CCS
groups Proteins (Edges)

dme sce strict 1219 210 94 (18) 25 (50)
relaxed 12732 6 (1) 1188 (12727)

cel sce strict 693 118 81 (15) 7 (7)
relaxed 6494 6 (1) 667 (6489)

rno hsa cel strict 405 8 7 (1) 3 (2)
relaxed 116 46 (11) 41 (49)

mmu hsa cel strict 618 28 27 (1) 3 (2)
relaxed 244 66 (14) 74 (101)

mmu dme cel strict 625 20 20 (0) 2 (1)
relaxed 86 60 (13) 5 (4)

rno dme cel strict 414 3 2 (1) 3 (2)
relaxed 33 25 (5) 4 (3)

rno hsa dme strict 586 7 6 (1) 3 (2)
relaxed 160 58 (11) 55 (66)

rno mmu sce strict 235 5 4 (0) 2 (1)
relaxed 29 15 (3) 9 (11)

rno mmu cel strict 324 6 6 (0) 2 (1)
relaxed 36 19 (3) 10 (13)

rno dme sce strict 346 2 2 (0) 2 (1)
relaxed 78 23 (5) 16 (17)

hsa dme sce strict 1114 119 65 (12) 13 (12)
relaxed 959 127 (23) 344 (727)

hsa dme cel strict 1116 67 57 (7) 4 (3)
relaxed 322 135 (34) 27 (30)

rno mmu dme strict 432 6 6 (0) 2 (1)
relaxed 43 21 (4) 12 (16)

rno hsa sce strict 348 12 10 (1) 3 (2)
relaxed 237 47 (12) 55 (90)

rno mmu hsa strict 707 71 39 (5) 20 (24)
relaxed 539 34 (5) 337 (501)

rno cel sce strict 267 3 3 (0) 2 (1)
relaxed 56 25 (6) 16 (18)

mmu hsa dme strict 1009 60 41 (11) 5 (5)
relaxed 497 88 (20) 230 (309)

dme cel sce strict 600 35 28 (6) 4 (3)
relaxed 176 78 (15) 28 (48)

mmu hsa sce strict 485 69 31 (6) 13 (25)
relaxed 474 68 (20) 144 (321)

Continued on next page
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Table B.1 – (continued)

Species Criteria # OrthoMCL # Interologs # CCS (≥3) Largest CCS
groups Proteins (Edges)

hsa cel sce strict 657 74 53 (7) 7 (6)
relaxed 541 87 (13) 215 (409)

mmu dme sce strict 460 20 16 (2) 4 (3)
relaxed 159 48 (11) 36 (43)

mmu cel sce strict 333 9 9 (0) 2 (1)
relaxed 85 44 (13) 8 (8)

rno mmu dme sce strict 211 0 − −
relaxed 44 18 (3) 11 (13)

mmu hsa dme cel strict 510 9 9 (0) 2 (1)
relaxed 263 58 (14) 113 (166)

rno hsa dme cel strict 330 2 2 (0) 2 (1)
relaxed 121 41 (6) 36 (50)

mmu hsa cel sce strict 286 7 7 (0) 2 (1)
relaxed 243 45 (13) 90 (168)

rno mmu dme cel strict 269 2 2 (0) 2 (1)
relaxed 38 17 (3) 11 (15)

rno mmu hsa sce strict 202 5 4 (0) 2 (1)
relaxed 145 39 (14) 36 (73)

rno mmu hsa cel strict 269 3 3 (0) 2 (1)
relaxed 130 32 (7) 50 (79)

rno hsa dme sce strict 291 0 0 (0) 0 (0)
relaxed 186 46 (10) 31 (58)

rno mmu hsa dme strict 368 3 3 (0) 2 (1)
relaxed 175 35 (6) 89 (120)

rno mmu cel sce strict 167 1 1 (0) 1 (1)
relaxed 31 17 (3) 7 (8)

rno hsa cel sce strict 222 3 3 (0) 2 (1)
relaxed 139 36 (9) 33 (62)

rno dme cel sce strict 234 0 − −
relaxed 73 21 (4) 17 (20)

mmu hsa dme sce strict 395 16 11 (3) 4 (3)
relaxed 433 53 (14) 146 (324)

mmu dme cel sce strict 308 6 6 (0) 2 (1)
relaxed 119 46 (12) 18 (24)

hsa dme cel sce strict 552 22 19 (3) 3 (2)
relaxed 477 67 (12) 200 (372)

rno mmu dme cel sce strict 166 0 − −
relaxed 7 6 (0) 2 (1)

Continued on next page
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Table B.1 – (continued)

Species Criteria # OrthoMCL # Interologs # CCS (≥3) Largest CCS
groups Proteins (Edges)

mmu hsa dme cel sce strict 271 3 3 (0) 2 (1)
relaxed 64 35 (9) 8 (11)

rno mmu hsa cel sce strict 147 1 1 (0) 1 (1)
relaxed 16 11 (1) 3 (3)

rno mmu hsa dme sce strict 181 0 − −
relaxed 23 12 (3) 5 (6)

rno mmu hsa dme cel strict 234 1 1 (0) 2 (1)
relaxed 30 17 (3) 8 (12)

rno hsa dme cel sce strict 206 0 − −
relaxed 35 19 (2) 11 (12)

rno mmu hsa dme cel sce strict 141 0 − −
relaxed 24 15 (2) 5 (6)

Table B.2: Impact of processing large CCS on function prediction in multiple species.
CCS with more than 25 proteins are splitted into smaller, overlapping sub-subgraphs.

0.3 0.5 0.7
Species # Terms P Rpp # Terms P Rpp # Terms P Rpp

Non-split
mmu 15945 0.59 0.37 4262 0.73 0.48 449 0.82 0.49
hsa 22742 0.47 0.42 831 0.75 0.62 594 0.89 0.67
dme 13590 0.54 0.38 1746 0.72 0.31 873 0.86 0.63
sce 11314 0.75 0.39 8876 0.74 0.31 947 0.85 0.54

Split
mmu 22505 0.60 0.14 12508 0.70 0.17 4941 0.83 0.27
hsa 21552 0.61 0.14 10762 0.75 0.22 3757 0.87 0.32
dme 17023 0.59 0.14 9863 0.72 0.21 3411 0.85 0.35
sce 17112 0.75 0.23 14224 0.77 0.15 8625 0.85 0.23

Non-split
hsa 21046 0.51 0.36 352 0.49 0.17 0 − −
dme 9115 0.52 0.23 3981 0.67 0.34 230 0.83 0.34
cel 4903 0.53 0.25 4125 0.56 0.24 72 0.65 0.13
sce 8173 0.82 0.31 7134 0.83 0.31 689 0.91 0.34

Split
hsa 23497 0.63 0.17 14722 0.69 0.20 6380 0.88 0.23
dme 12813 0.58 0.13 7484 0.74 0.18 4593 0.81 0.29
cel 7801 0.51 0.11 5043 0.57 0.09 1747 0.68 0.10
sce 13006 0.85 0.16 12136 0.86 0.16 9420 0.91 0.23
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(a) Human

(b) Fly

(c) Yeast

Figure B.1: Overlap within predictions derived from the orthology- (orange) and link-
based (olive) strategy for human, fly and yeast proteins from hsa-dme-sce.
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(a) Fly – Molecular function
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(b) Fly – Biological process
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(c) Fly – Cellular component

Figure B.2: Performance comparison for fly. CCS-based precision and recall are compared
against Neighbor Counting (NC), χ2 statistics and FS-Weighted Averaging (FS-WA) for molecular
function, biological process and cellular component.
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(a) Yeast – Molecular function
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(b) Yeast – Biological process
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(c) Yeast – Cellular component

Figure B.3: Performance comparison for yeast. CCS-based precision and recall are compared
against Neighbor Counting (NC), χ2 statistics and FS-Weighted Averaging (FS-WA) for molecular
function, biological process and cellular component.
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Figure B.4: Comparison of the ranking in disease and random d1 networks.

Table B.3: List of disease classes as defined by Goh et al. (2007). In addition, the number
of OMIM diseases associated with each class is given as well as the number of OMIM diseases per
class considered in the disease-specific crossvalidation (CV) in Section 7.3.3.

Disease class # OMIM diseases # OMIM diseases
studied in CV

Ophthamological 123 15
Immunological 70 12
Dermatological 84 24
Metabolic 248 16
Gastrointestinal 24 7
Muscular 70 8
Skeletal 72 7
Ear,Nose,Throat 46 3
Nutritional 7 2
Connective tissue
disorder

42 12

Endocrine 74 14
Cardiovascular 84 11
Cancer 101 41
Hematological 113 9
Renal 49 6
Bone 46 8
Developmental 39 7
Respiratory 13 7
Neurological 234 18
Psychiatric 19 5
Unclassified 18 1
Multiple 181 23

Total 1757 284
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(b) Diseases with 6 to 10 seeds
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(c) Diseases with 11 to 15 seeds
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Figure B.5: Seed-number-specific cross-validation recovery rates for s = {2, 3, ..., 27}
(complete results).
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Figure B.6: Comparison of the seed-number specific recovery rates between enriched
d1 and d2 disease networks for s = {2, 3, 4}.
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Table B.4: List of cHL-associated seed proteins experimentally linked to cHL by epi-
genetic studies.

Gene Symbol Gene ID UniProt Gene Name

TNFAIP3 7128 P21580 Tumor necrosis factor, alpha-induced protein 3
NCF2 4688 P19878 Neutrophil cytosol factor 2
VIM 7431 P08670 Vimentin
HIST2H4B 121504 P62805 Histone H4
RNF11 26994 Q9Y3C5 RING finger protein 11
HSPA1A 3303 P08107 Heat shock 70 kDa protein 1
FSCN1 6624 Q16658 Fascin
STAT1 6772 P42224 Signal transducer and activator of transcription 1, 91kDa
HIST1H2AC 8334 Q93077 Histone H2A type 1-C
IER3 8870 P46695 Radiation-inducible immediate-early gene IEX-1
MGST3 4259 O14880 Microsomal glutathione S-transferase 3
HIST1H2BI - P62807 Histone H2B type 1-C/E/F/G/I
OPTN 10133 Q96CV9 Optineurin
SLC2A3 6515 P11169 Solute carrier family 2, facilitated glucose transporter mem-

ber 3
BCL2A1 597 Q16548 Bcl-2-related protein A1
JUN 3725 P05412 Transcription factor AP-1
ATF3 467 P18847 Cyclic AMP-dependent transcription factor ATF-3
NOTCH2 4853 Q04721 Neurogenic locus notch homolog protein 2 precursor
RYBP 23429 Q8N488 RING1 and YY1-binding protein
ZMIZ2 83637 Q8NF64 Zinc finger MIZ domain-containing protein 2
ID2 3398 Q02363 DNA-binding protein inhibitor ID-2
CCR7 1236 P32248 C-C chemokine receptor type 7

Table B.5: Novel candidates inferred from the lymphoma-specific network that were
not yet associated to cHL (sorted by rank).

Gene Symbol Gene ID UniProt Gene Name Mentioned in
cHL context

HIST1H1C 3006 P16403 Histone H1.2 Hodgkin-
related

ACTL6B 51412 O94805 Actin-like protein 6B
HIST1H2AM 8329 P0C0S8 Histone H2A type 1
HIST1H3J 8350 P68431 Histone H3.1
SMCHD1 23347 O75141 Structural maintenance of chromosomes flex-

ible hinge domain containing 1
HIST2H3A 126961 Q71DI3 Histone H3.2
NUF2 83540 Q5SXK4 NDC80 kinetochore complex component, ho-

molog
EPS15 2060 P42566 Epidermal growth factor receptor substrate

15
VPS25 84313 Q9BRG1 Vacuolar protein-sorting-associated protein

25
PREB 10113 Q9HCU5 Prolactin regulatory element-binding protein
HIST2H2BF 440689 Q5QNW6 Histone H2B type 2-F

Continued on next page
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Table B.5 – (continued)

Gene Symbol Gene ID UniProt Gene Name Mentioned in
cHL context

VPS36 51028 Q86VN1 Vacuolar protein-sorting-associated protein
36

HIST3H3 8290 Q16695 Histone H3
CHD3 1107 Q12873 Chromodomain-helicase-DNA-binding pro-

tein 3
PSMA1 5682 P25786 Proteasome subunit alpha type-1 Proteasome

complex
LCP1 3936 P13796 Plastin-2
HIST1H2BB 3018 P33778 Histone H2B type 1-B
TRA@ 6955 Q6PJ56 TRA@ T cell receptor alpha locus
TSC22D3 1831 Q99576 TSC22 domain family protein 3
HNRNPD 3184 Q12771 Heterogeneous nuclear ribonucleoprotein D

(AU-rich element RNA binding protein 1,
37kDa)

DIAPH3 81624 Q9NSV4 Protein diaphanous homolog 3
ZFYVE16 9765 Q7Z3T8 ENDOFIN, zinc finger, FYVE domain con-

taining 16
DCP1A 55802 Q9NPI6 mRNA-decapping enzyme 1A
PSMA3 5684 P25788 Proteasome subunit alpha type-3 Proteasome

complex
TNFRSF10D 8793 Q9UBN6 Tumor necrosis factor receptor superfamily

member 10D
TNF

DPF2 5977 Q92785 Zinc finger protein ubi-d4 Apoptosis
NAP1L5 266812 Q96NT1 Nucleosome assembly protein 1-like 5
KIF15 56992 Q9NS87 Kinesin-like protein KIF15
PDE3A 5139 Q14432 cGMP-inhibited 3’,5’-cyclic phosphodi-

esterase A
DCP2 167227 Q8IU60 mRNA-decapping enzyme 2
HIST1H2AE 3012 P28001 Histone H2A type 1-E
OCRL 4952 Q01968 Inositol polyphosphate 5-phosphatase OCRL-

1
DEDD 9191 O75618 Death effector domain-containing protein Apoptosis
YWHAZ 7534 P63104 14-3-3 protein zeta/delta
PLS3 5358 P13797 Plastin-3 Hodgkin-

related
ATG12 9140 O94817 Autophagy-related protein 12
CASP8AP2 9994 Q9UKL3 CASP8-associated protein 2 Apoptosis,

TNF, NF-κ-
B pathway

STUB1 10273 Q9UNE7 STIP1 homology and U box-containing pro-
tein 1

U-protein lig-
ase activity

PDE4DIP 9659 Q5VU43 Myomegalin
SAP30BP 29115 Q9UHR5 SAP30-binding protein Apoptosis
MAPK14 1432 Q16539 Mitogen-activated protein kinase 14
PSMB1 5689 P20618 Proteasome (prosome, macropain) subunit,

beta type, 1
Proteasome
complex

KLK3 354 Q8NCW4 Prostate specific antigen precursor
CAPN1 823 P07384 Calpain-1 catalytic subunit

Continued on next page
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Table B.5 – (continued)

Gene Symbol Gene ID UniProt Gene Name Mentioned in
cHL context

PRKAB1 5564 Q9Y478 5’-AMP-activated protein kinase subunit
beta-1

NME2 4831 P22392 Nucleoside diphosphate kinase B
GH1 2688 P01241 Somatotropin precursor
PAN2 9924 Q504Q3 PAB-dependent poly
TRAF4 9618 Q9BUZ4 TNF receptor-associated factor 4 TNF
MCL1 4170 Q07820 Induced myeloid leukemia cell differentiation

protein Mcl-1
Apoptosis

TRAF6 7189 Q9Y4K3 TNF receptor-associated factor 6 TNF
VDAC1 7416 P21796 Voltage-dependent anion-selective channel

protein 1
TTR 7276 P02766 Transthyretin precursor
USP9X 8239 Q59EZ5 Ubiquitin specific peptidase 9, X-linked
CORO2B 10391 Q9UQ03 Coronin-2B
APIP 51074 Q96GX9 APAF1-interacting protein
DCP1B 196513 Q8IZD4 mRNA-decapping enzyme 1B
TIAF1 9220 O95411 TGFB1-induced anti-apoptotic factor 1
SUMO2 6613 P61956 Small ubiquitin-related modifier 2
CASP4 837 P49662 Caspase-4 Apoptosis
PSMA6 5687 P60900 Proteasome subunit alpha type-6 Proteasome

complex
TRADD 8717 Q15628 Tumor necrosis factor receptor type 1-

associated DEATH domain protein
TNF

H1F0 3005 P07305 Histone H1.0
NFKBIB 4793 Q15653 NF-kappa-B inhibitor beta NF-κ-B

pathway
TNIK 23043 Q9UKE5 TRAF2 and NCK-interacting protein kinase NF-κ-B

pathway
HIST1H2BD 3017 P58876 Histone H2B type 1-D
DEDD2 162989 Q8WXF8 DNA-binding death effector domain-

containing protein 2
Apoptosis

SLC2A2 6514 P11168 Solute carrier family 2, facilitated glucose
transporter member 2

TRAF3 7187 Q13114 TNF receptor-associated factor 3 TNF
LMO7 4008 Q8WWI1 LIM domain only protein 7
PSMA5 5686 P28066 Proteasome subunit alpha type-5 Proteasome

complex
ATXN1 6310 P54253 Ataxin-1 Hodgkin-

related
HIRIP3 8479 Q9BW71 HIRA-interacting protein 3
STAT3 6774 P40763 Signal transducer and activator of transcrip-

tion 3
Hodgkin-
related

RIPK2 8767 O43353 Receptor-interacting serine/threonine-
protein kinase 2

NF-κ-B
pathway

CASP3 836 P42574 Caspase-3 Apoptosis
TP53BP2 7159 Q05BL1 TP53BP2 protein Hodgkin-

related,
Apoptosis

Continued on next page
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Table B.5 – (continued)

Gene Symbol Gene ID UniProt Gene Name Mentioned in
cHL context

CFLAR 8837 O15519 CASP8 and FADD-like apoptosis regulator Hodgkin-
related,
Apoptosis

PSMA7 5688 O14818 Proteasome subunit alpha type-7 Proteasome
complex

HIPK3 10114 Q9H422 Homeodomain-interacting protein kinase 3 Apoptosis
KRT16 3868 P08779 Keratin, type I cytoskeletal 16
PAK2 5062 Q13177 Serine/threonine-protein kinase PAK 2
PSMC2 5701 P35998 26S protease regulatory subunit 7 Proteasome

complex
PSMF1 9491 Q92530 Proteasome inhibitor PI31 subunit Proteasome

complex
TNFRSF18 8784 Q5T7K5 Tumor necrosis factor receptor superfamily,

member 18
TNF

BIRC3 330 Q13489 Baculoviral IAP repeat-containing protein 3 Apoptosis,
TNF

RPS6KA5 9252 O75582 Ribosomal protein S6 kinase alpha-5
NCF1C 653361 P14598 Neutrophil cytosol factor 1
TNFRSF1A 7132 P19438 Tumor necrosis factor receptor superfamily

member 1A
TNF

NFKB2 4791 Q00653 Nuclear factor NF-kappa-B p100 subunit Hodgkin-
related,
NF-κ-B
pathway

FASLG 356 P48023 Tumor necrosis factor ligand superfamily
member 6

TNF

CDC42 998 P60953 Cell division control protein 42 homolog TNF
TNFRSF25 8718 Q93038 Tumor necrosis factor receptor superfamily

member 25
TNF

CTSL1 1514 P07711 Cathepsin L1 precursor
ROCK1 6093 Q13464 Rho-associated protein kinase 1
MYC 4609 P01106 Myc proto-oncogene protein
PASK 23178 Q96RG2 PAS domain-containing serine/threonine-

protein kinase
Hodgkin-
related

FAS 355 P25445 Tumor necrosis factor receptor superfamily
member 6 precursor

Hodgkin-
related, TNF

HIST2H2AC 8338 Q16777 Histone H2A type 2-C
PSMA2 5683 P25787 Proteasome subunit alpha type-2 Proteasome

complex
NFKB1 4790 P19838 Nuclear factor NF-kappa-B p105 subunit NF-κ-B

pathway
STAT2 6773 P52630 Signal transducer and activator of transcrip-

tion 2
JAK-Stat-
Signaling

VHL 7428 P40337 Von Hippel-Lindau disease tumor suppressor Proteasome
complex

TSC22D1 8848 Q6IBU1 TSC22 domain family, member 1
BCAR3 8412 O75815 Breast cancer anti-estrogen resistance protein

3

Continued on next page
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Table B.5 – (continued)

Gene Symbol Gene ID UniProt Gene Name Mentioned in
cHL context

BAG2 9532 O95816 BAG family molecular chaperone regulator 2
CDV3 55573 Q9UKY7 Protein CDV3 homolog
F10 2159 P00742 Coagulation factor X precursor
PSMD10 5716 O75832 26S proteasome non-ATPase regulatory sub-

unit 10
Proteasome
complex

CAPN2 824 P17655 Calpain-2 catalytic subunit precursor Hodgkin-
related

RARA 5914 P10276 Retinoic acid receptor alpha
DFFA 1676 O00273 DNA fragmentation factor subunit alpha Apoptosis
HIST3H2BB 128312 Q8N257 Histone H2B type 3-B
E2F4 1874 Q16254 Transcription factor E2F4
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Table B.6: Colorectal cancer types extracted from OMIM.

OMIM ID Phenotype

#114500 COLORECTAL CANCER; CRC
#120435 LYNCH SYNDROME I
#175100 ADENOMATOUS POLYPOSIS OF THE COLON; APC
+190182 COLORECTAL CANCER, HEREDITARY NONPOLYPOSIS, TYPE 6, INCLUDED;

HNPCC6, INCLUDED
246470 LEUKEMIA, ACUTE MYELOCYTIC, WITH POLYPOSIS COLI AND COLON

CANCER
+600258 COLORECTAL CANCER, HEREDITARY NONPOLYPOSIS, TYPE 3, INCLUDED;

HNPCC3, INCLUDED
+600259 COLORECTAL CANCER, HEREDITARY NONPOLYPOSIS, TYPE 4, INCLUDED;

HNPCC4, INCLUDED
+600678 COLORECTAL CANCER, HEREDITARY NONPOLYPOSIS, TYPE 5, INCLUDED;

HNPCC5, INCLUDED
+604395 COLORECTAL CANCER, HEREDITARY NONPOLYPOSIS, TYPE 7, INCLUDED;

HNPCC7, INCLUDED
#608456 COLORECTAL ADENOMATOUS POLYPOSIS, AUTOSOMAL RECESSIVE
#608615 OLIGODONTIA-COLORECTAL CANCER SYNDROME
%608812 COLORECTAL CANCER, SUSCEPTIBILITY TO, 1; CRCS1
#609310 COLORECTAL CANCER, HEREDITARY NONPOLYPOSIS, TYPE 2, INCLUDED;

HNPCC2, INCLUDED
%611469 COLORECTAL CANCER, SUSCEPTIBILITY TO, 2; CRCS2
#612229 COLORECTAL CANCER, SUSCEPTIBILITY TO, 3; CRCS3
%612230 COLORECTAL CANCER, SUSCEPTIBILITY TO, 5; CRCS5
%612231 COLORECTAL CANCER, SUSCEPTIBILITY TO, 6; CRCS6
%612232 COLORECTAL CANCER, SUSCEPTIBILITY TO, 7; CRCS7
%612589 COLORECTAL CANCER, SUSCEPTIBILITY TO, 8; CRCS8
%612590 COLORECTAL CANCER, SUSCEPTIBILITY TO, 9; CRCS9
%612591 COLORECTAL CANCER, SUSCEPTIBILITY TO, 10; CRCS10
%612592 COLORECTAL CANCER, SUSCEPTIBILITY TO, 11; CRCS11
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Table B.7: List of proteins associated with colorectal cancer in OMIM.

Gene Symbol Gene ID UniProt Gene Name

PLA2G2A P14555 5320 Phospholipase A2, membrane associated
CCND1 P24385 595 G1/S-specific cyclin-D1
PMS2 P54278 5395 Mismatch repair endonuclease PMS2
MSH6 P52701 2956 DNA mismatch repair protein Msh6
PMS1 P54277 5378 PMS1 protein homolog 1
MLH1 P40692 4292 DNA mismatch repair protein Mlh1
TLR4 O00206 7099 Toll-like receptor 4
ODC1 P11926 4953 Ornithine decarboxylase
AURKA O14965 6790 Serine/threonine-protein kinase 6
BUB1B O60566 701 Mitotic checkpoint serine/threonine-protein kinase BUB1

beta
MUTYH Q9UIF7 4595 A/G-specific adenine DNA glycosylase
SMAD7 O15105 4092 Mothers against decapentaplegic homolog 7
APC P25054 324 Adenomatous polyposis coli protein
GALNT12 Q8IXK2 79695 Polypeptide N-acetylgalactosaminyltransferase 12
PDGFRL Q15198 5157 Platelet-derived growth factor receptor-like protein
EP300 Q09472 2033 Histone acetyltransferase p300
MLH3 Q9UHC1 27030 DNA mismatch repair protein Mlh3
PTPRJ Q12913 5795 Receptor-type tyrosine-protein phosphatase eta
AXIN2 Q9Y2T1 8313 Axin-2
FLCN Q8NFG4 201163 Folliculin
TP53 P04637 7157 Cellular tumor antigen p53
TGFBR2 P37173 7048 TGF-beta receptor type-2
PIK3CA P42336 5290 Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic sub-

unit alpha isoform
TLR2 O60603 7097 Toll-like receptor 2
MSH2 P43246 4436 DNA mismatch repair protein Msh2
NRAS P01111 4893 GTPase NRas
AKT1 P31749 207 RAC-alpha serine/threonine-protein kinase
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Table B.8: Proteins predicted to be involved in colorectal cancer. Each gene product is
specified by gene symbol, gene id and uniprot id. Relevant literature supporting a potential associ-
ation with colorectal cancer is referenced by the respective PubMed Ids (PMIDs) and information
on colorectal or cancer pathways are derived from KEGG. Highly relevant predictions for CRC are
underlined.

Gene symbol Gene Id UniProt Gene name PMIDs Pathways

PLA2R1 22925 Q13018 Secretory phospholi-
pase A2 receptor

17970059 –

CLN3 1201 Q13286 Battenin – –
ATXN1 6310 P54253 Ataxin-1 – –
MYC 4609 P01106 Myc proto-oncogene

protein
20065031,
18454692

Colorectal
cancer

YWHAG 7532 P61981 14-3-3 protein
gamma

– –

EGFR 1956 P00533 Epidermal growth
factor receptor

20072938,
20070321,
19451802,
17562274,
19014499,
19033715,
18497962,
18413774

Colorectal
cancer

YWHAZ 7534 P63104 14-3-3 protein zeta–
delta

21385632 –

SRC 6714 P12931 Proto-oncogene
tyrosine-protein
kinase Src

12370817,
12420216,
19620276,
18839319

–

SH3GLB2 56904 Q9NR46 Endophilin-B2 – –
SFN 2810 P31947 14-3-3 protein sigma – –
SLX4 84464 Q8IY92 Structure-specific

endonuclease subunit
SLX4

– –

COPS6 10980 Q7L5N1 COP9 signalosome
complex subunit 6

– –

SMAD2 4087 Q15796 Mothers against
decapentaplegic
homolog 2

12967141 Colorectal
cancer

PIK3R1 5295 P27986 Phosphatidylinositol
3-kinase regulatory
subunit alpha

18245521,
19962665

Colorectal
cancer

UBE2I 7329 P63279 SUMO-conjugating
enzyme UBC9

– –

CTNNB1 1499 P35222 Catenin beta-1 20514474,
19190323,
12810642

Colorectal
cancer

MUC2 4583 Q02817 Mucin-2 11850585,
16816167

–

RELA 5970 Q04206 Transcription factor
p65

15112579,
15484295

Pathways in
cancer

Continued on next page
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Table B.8 – (continued)

Gene symbol Gene Id UniProt Gene name PMIDs Pathways

PLK1 5347 P53350 Serine–threonine-
protein kinase PLK1

16237758,
16052696

–

SMAD4 4089 Q13485 Mothers against
decapentaplegic
homolog 4

15814640,
15711891,
10340381,
12967141

Colorectal
cancer

UBB 7314 P0CG47 Polyubiquitin-B – –
UBC 7316 P0CG48 Polyubiquitin-C – –
RPS27A 6233 P62979 Ubiquitin-40S ri-

bosomal protein
S27a

– –

UBA52 7311 P62987 Ubiquitin-60S ri-
bosomal protein
L40

– –

SETDB1 9869 Q15047 Histone-lysine N-
methyltransferase
SETDB1

– –

RB1 5925 P06400 Retinoblastoma-
associated protein

– Pathways in
cancer

ATG4C 84938 Q96DT6 Cysteine protease
ATG4C

– –

CRMP1 1400 Q14194 Dihydropyrimidi-
nase-related protein
1

– –

CCNDBP1 23582 O95273 Cyclin-D1-binding
protein 1

– –

ATG4B 23192 Q9Y4P1 Cysteine protease
ATG4B

– –

MUC7 4589 Q8TAX7 Mucin-7 – –
PRKACA 5566 P17612 cAMP-dependent

protein kinase cat-
alytic subunit alpha

– –

PRKAB2 5565 O43741 5́-AMP-activated
protein kinase sub-
unit beta-2

– –

AKTIP 64400 Q9H8T0 AKT-interacting
protein

– –

RAF1 5894 P04049 RAF proto-oncogene
serine–threonine-
protein kinase

– Colorectal
cancer

PTP4A3 11156 O75365 Protein tyrosine
phosphatase type
IVA 3

11598267,
17440740

–

NDC80 10403 O14777 Kinetochore protein
NDC80 homolog

– –

FOXO3 2309 O43524 Forkhead box protein
O3

17615082 –

Continued on next page
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Table B.8 – (continued)

Gene symbol Gene Id UniProt Gene name PMIDs Pathways

ZBTB16 7704 Q05516 Zinc finger and BTB
domain-containing
protein 16

– Pathways in
cancer

IGSF1 3547 Q8N6C5 Immunoglobulin su-
perfamily member 1

– –

UBE2N 7334 P61088 Ubiquitin-
conjugating enzyme
E2 N

– –

JUN 3725 P05412 Transcription factor
AP-1

17510524 ,
15139522

Colorectal
cancer

PCNA 5111 P12004 Proliferating cell nu-
clear antigen

– –

MED31 51003 Q9Y3C7 Mediator of RNA
polymerase II tran-
scription subunit
31

– –

MAPK14 1432 Q16539 Mitogen-activated
protein kinase 14

18444174,
19845689

Colorectal
cancer

MAPK3 5595 P27361 Mitogen-activated
protein kinase 3

15735687,
18533112

Colorectal
cancer

ESR1 2099 P03372 Estrogen receptor 14500559,
20064828,
18727987,
18706253,
16788818

–

CREBBP 1387 Q92793 CREB-binding pro-
tein

– Pathways in
cancer

SMAD1 4086 Q15797 Mothers against
decapentaplegic
homolog 1

– –

CDC20 991 Q12834 Cell division cycle
protein 20 homolog

– –

DDB1 100290337 Q16531 DNA damage-
binding protein
1

– –

APOA1 335 P02647 Apolipoprotein A-I – –
MYD88 4615 Q99836 Myeloid differen-

tiation primary
response protein
MyD88

– –

BAG6 7917 P46379 Large proline-rich
protein BAT3

– –

PPP1CA 5499 P62136 Serine–threonine-
protein phosphatase
PP1-alpha catalytic
subunit

– –

AR 367 P10275 Androgen receptor – Pathways in
cancer

Continued on next page
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Table B.8 – (continued)

Gene symbol Gene Id UniProt Gene name PMIDs Pathways

MAP1LC3B 81631 Q9GZQ8 Microtubule-
associated proteins
1A–1B light chain
3B

– –

SERPINA1 5265 P01009 Alpha-1-antitrypsin – –
SMAD3 4088 P84022 Mothers against

decapentaplegic
homolog 3

9753318,
16528675

Colorectal
cancer

PRKDC 5591 P78527 DNA-dependent pro-
tein kinase catalytic
subunit

– –

SUMO2 6613 P61956 Small ubiquitin-
related modifier
2

– –

MDM2 4193 Q00987 E3 ubiquitin-protein
ligase Mdm2

– Pathways in
cancer

RAC1 5879 P63000 Ras-related C3 bo-
tulinum toxin sub-
strate 1

16551621,
18165265

Colorectal
cancer

SMURF2 64750 Q9HAU4 E3 ubiquitin-protein
ligase SMURF2

– –

RND2 8153 P52198 Rho-related GTP-
binding protein
RhoN

– –

XRCC6 2547 P12956 X-ray repair cross-
complementing pro-
tein 6

11731412 –

TSC22D1 8848 Q15714 TSC22 domain fam-
ily protein 1

– –

LRSAM1 90678 Q6UWE0 E3 ubiquitin-protein
ligase LRSAM1

– –

SP1 6667 P08047 Transcription factor
Sp1

15883203,
19593667

–

PPM1A 5494 P35813 Protein phosphatase
1A

– –

HDAC2 3066 Q92769 Histone deacetylase 2 – Pathways in
cancer

PPP2CA 5515 B3KUN1 Serine–threonine-
protein phosphatase

– –

CASP3 836 P42574 Caspase-3 17805550,
11894121

Colorectal
cancer

TOLLIP 54472 Q9H0E2 Toll-interacting pro-
tein

– –

CTDSP1 58190 Q9GZU7 Carboxy-terminal
domain RNA poly-
merase II polypep-
tide A small phos-
phatase 1

– –

Continued on next page
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Table B.8 – (continued)

Gene symbol Gene Id UniProt Gene name PMIDs Pathways

DDX24 57062 Q9GZR7 ATP-dependent
RNA helicase
DDX24

– –

OAZ1 4946 P54368 Ornithine decarboxy-
lase antizyme 1

– –

TSG101 7251 Q99816 Tumor susceptibility
gene 101 protein

– –

STX5 6811 Q13190 Syntaxin-5 – –
RUVBL2 10856 Q9Y230 RuvB-like 2 – –

Table B.9: Initial set of HIV seed receptors, including their role in HIV infection
indicated by the receptor type and their functional domains. Receptors are grouped
according to their functional domains (see Figure 7.19 for the distribution of those domains).

Receptor Receptor type InterPro domains

Ig-like and Other
CD4 Primary receptor for HIV Ag_CD4, CD4-extracel, Ig-like, Ig-

like_fold, Ig_C2-set, Ig_sub, Ig_V-
set_sub

7-TM GPCR and CCR_rcpt
CCR5 Co-receptor with CD4 7TM_GPCR_Rhodpsn, CC_5_rcpt
CCR3 Alternative co-receptor with CD4 7TM_GPCR_Rhodpsn, CC_3_rcpt
CCR2 Alternative co-receptor with CD4 7TM_GPCR_Rhodpsn, CC_2_rcpt,

CC_5_rcpt
CCR8 Alternative co-receptor with CD4 7TM_GPCR_Rhodpsn, CC_8_rcpt
CCR9 Alternative co-receptor with CD4 7TM_GPCR_Rhodpsn, CC_9_rcpt
CXCR4 Alternative co-receptor with CD4 7TM_GPCR_Rhodpsn, CXC_4_rcpt
CXCR6 Co-receptor 7TM_GPCR_Rhodpsn, CXC_6_rcpt
CX3CR1 Co-receptor with CD4 7TM_GPCR_Rhodpsn,

CX3C_fract_rcpt
7-TM GPCR and Other
APJ Alternative co-receptor 7TM_GPCR_Rhodpsn, APJ_rcpt
GPR1 Alternative co-receptor 7TM_GPCR_Rhodpsn, GPR1_rcpt
Integrin-α
ITGA4 Co-receptor with CD4 Int_alpha_beta-p, Integrin_alpha,

Integrin_alpha-2, Integrin_alpha_C
C-type lectin and Other
DC-SIGN Receptor for HIV AntifreezeII, C-type_lectin
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Table B.10: Chromosomal locations of known and predicted surface membrane factors.
Similar genomic regions are colored similarly.

Known factors Locus Predicted factor Locus

CXCR4 2q21 CD2 1q13.1
GPR1 2q33.3 DARC 1q21-q22
ITGA4 2q31.3 HTR6 1p36-p35
CCR9 3p21.3 CSFR3 1p35-p34.3
CCR3 3p21.3 IL1R1 2q12
CCR2 3p21.3 GPR17 2q21
CCR5 3p21.31 CCR1 3p21
CX3CR1 3p21|3p21.3 CCBP2 3p21.3
CXCR6 3p21 RXFP1 4q32.1
CCR8 3p22 GYPB 4q28-q31
APJ 11q12 IL6ST 5q11
CD4 12pter-p12 HTR1B 6q13
DC-SIGN 19p13 HTR1E 6q14-q15

TNFRSF3 12p13
GPR182 12q13.3
RXFP2 13q13.1
CD79B 17q23
CD97 19p13
TNFRSF5 20q12-q13.2
NPBWR2 20q13.3
GP1BB 22q11.21-q11.23|22q11.21
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