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Chapter 1

Introduction

1.1 Computational models of the sensory cortex

We experience the world in a highly structured and consistent way. We perceive it as composed by sep-
arate entities, and these entities and the relations between them vary continuously in time and space. Yet
if we consider the signals received by the sensory cortex we see that they are of a completely different
quality. The information about the salient features of the environment seems to be nonlinearly mixed and
dispersed among the receptors and to be lost in a huge amount of detailed and direct measurements of some
aspects of our physical reality (Fig. 1.1). How does the cortex manage to recover the high-level, stable, and
behaviorally relevant features of the environment from the sensory signals?

Physiological and anatomical studies have provided us with a great amount of data about the mech-
anisms by which the sensory input is processed by the cortex, especially in the first processing stages.
These studies give us mainly a phenomenological account of the properties of single neurons (optimal stim-
uli, response tuning curves, adaptation characteristics, etc.) and of the communications between neurons
(connections between different areas, inhibitory and excitatory connections, etc.).

An alternative approach is to look for a possible computational principle explaining the organization
of the sensory cortex [Attneave, 1954, Barlow, 1961, Field, 1994, Zetzsche and Krieger, 2001, Olshausen,
2003, Simoncelli, 2003], which would provide particular advantages for further encoding and processing.
The focus here is on the functional aspect of the cortex rather than on the mechanisms underlying the com-
putation, which represent one of the (potentially many) possible implementations of the principle (Fig. 1.2).
The importance of this approach has grown in the last couple of decades in response to the need of a theo-
retical framework to motivate experiments and to interpret their results [Olshausen, 2003]. Its role is best
illustrated with the famous example by Barlow [1961]: “The situation may be likened to trying to under-
stand how birds fly without knowledge of the principles of aerodynamics: no amount of experimentation
or measurements made on the bird itself will reveal the secret. The key experiment – measuring air pres-
sure above and below the wing as air is passed over it – would not seem obvious were it not for a theory
suggesting why the pressures might be different.” [Olshausen, 2003].

The computational point of view has a long tradition in psychology in terms of understanding percep-
tion as the internalization of the regularities of the environment [see Barlow, 2001, for a review]. It was
however not before the classic papers by Attneave [1954] and Barlow [1961] that these ideas were placed in
an information theoretical framework, which allowed to quantify these regularities. These first ideas were
based on the concepts of efficient coding and redundancy reduction, which are similar to the modern com-
pactness and independence principles (see below). Other computational principles that have been proposed
later are sparseness and temporal slowness. These basic concepts were further formalized and investigated
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Figure 1.1 Quality of the sensory input This figure illustrates the qualitative difference between the
sensory input received by the cortex and what we experience. The sensory receptors make raw, direct
measurements of the environment. This is comparable to reading the byte values in a file in a digital camera
or observing the pressure wave generated by someone speaking (left). Although the information about the
salient features is present (since for example the light intensity in a point of a visual scene depends on the
identity and position of objects and lights), it is nonlinearly mixed and dispersed over the input signals. The
quality of this representation is very different from what we experience (right).

to measure
time

to fly

function implementations

Figure 1.2 Function and implementation This figure illustrates the difference between a computational
approach to the brain, where the function of neural system is investigated, and a more phenomenological
approach, where the mechanisms underlying the computation are studied. The function is usually distinct
from its implementation and it can be realized by different mechanisms.



1.1. COMPUTATIONAL MODELS OF THE SENSORY CORTEX 3

with mathematical models and computer simulations, and have been applied with some success especially
to the first stages of visual processing: retina [Atick and Redlich, 1992, Atick et al., 1992], lateral geniculate
nucleus (LGN) [Dong and Atick, 1995a], and primary visual cortex (V1) [Hancock et al., 1992, Field, 1994,
Olshausen and Field, 1996, Bell and Sejnowski, 1997, van Hateren and van der Schaaf, 1998, Hyvärinen
and Hoyer, 2000, Zetzsche and Röhrbein, 2001, Einhäuser et al., 2002, Berkes and Wiskott, 2005b, see
Sect. 3.5 for a complete overview]. In this thesis we focus on the temporal slowness principle, which is
presented in detail in Chapter 2. In the following we give an overview of other computational principles
that have been proposed as a model for self-organization in the sensory system.

The idea behind compactness or compact coding is to represent the likely input with a small number
of components with minimal loss in the reconstruction, obtaining in this way a compressed and economi-
cal code. The redundancy of the input signals is reduced by eliminating the directions with low variance.
This hypothesis, however, does not fit the available physiological and anatomical data and the resulting
representation might make some of the task solved by the cortex difficult, like for example detecting asso-
ciations (since the neurons are activated by most of the input stimuli) [Barlow, 2001]. In the linear case the
mathematical formulation of compact coding is equivalent to principal component analysis (PCA). PCA
components of natural images are Fourier filters with increasing frequencies [Hancock et al., 1992, Field,
1994], where Fourier filters with equal frequencies can be mixed without changing the compactness objec-
tive. Most of the solutions do not resemble the receptive fields of neurons in V1 [Field, 1994]. For these
reasons the compact coding hypothesis has been rejected at least for the visual cortex.

According to the independence principle the code used by the cortex is such that the responses of
the units that form the cortical representation are statistically independent [Bell and Sejnowski, 1997, van
Hateren and van der Schaaf, 1998, Hoyer and Hyvärinen, 2000, Hyvärinen and Hoyer, 2000, Szatmáry and
Lõrincz, 2001]. This can be motivated as a way to recover the independent sources that generate the input,
or as an efficient code in terms of a reduction of the redundancy among different units, in the sense that
the information coded by a given unit is not duplicated. In addition, in an independent representation it is
possible to efficiently compute the joint probabilities of multiple events happening simultaneously, since
it is just the product of the probabilities of the single events alone [Olshausen, 2003]. Note that the total
redundancy does not decrease as in the compact coding case. The goal here is to model the redundancy
instead of reducing it [Barlow, 2001]. It has been noticed that in linear models the units learned with this
principle are not completely statistically independent. The remaining higher-order dependencies can be
transformed with an appropriate nonlinear function into second-order dependencies and optimized again in
a second stage [Zetzsche and Krieger, 2001, Zetzsche and Röhrbein, 2001, Karklin and Lewicki, 2003].

A closely related principle is that of sparseness [Field, 1994, Olshausen and Field, 1996, Olshausen,
2002]. According to this principle the transformation performed by the cortex is such that the resulting code
is optimally sparse, i.e. such that the number of units responding to a particular input is minimized. Every
unit has the same probability of responding, but for each individual unit the probability to respond is low.
In this way events in the world are described by a small number of simultaneously active units [Olshausen,
2003]. Sparse codes are advantageous because they increase the signal-to-noise ratio, improve the detection
of “suspicious coincidences”, and allow effective storage in associative memories [Field, 1994]. Recent
physiological experiments [Vinje and Gallant, 2000] seem to confirm that the response of neurons in V1
during natural vision is sparse. However, this might be the result of the high selectivity of the neurons, while
their response need not necessarily be maximally sparse. Although their motivation is slightly different,
sparseness and independence are found to be equivalent in some important cases [Hyvärinen et al., 2001].
Intuitively, this is because sparse signals are highly non-Gaussian and non-Gaussianity is commonly used
as an objective to perform independent component analysis. The independence and sparseness principle
have been shown to reproduce simple-cell receptive fields when applied to natural images (see Sect. 3.5).

An appealing aspect of computational models of sensory processing is that they are likely to have an
impact on technological applications. To cite Olshausen [2003]: “Neuroscientists are interested in under-
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standing how the cortex extracts certain properties of the visual environment [...] from the data stream
coming from the retina. Similarly, engineers are interested in designing algorithms capable of extracting
structure contained in images or sound, for example to identify and label parts within the body from medical
imaging data. These problems at their core are one and the same, and progress in one domain will likely
lead to new insights in the other.” The independence principle, for example, has been successfully applied
to image denoising, image classification, analysis of EEG recordings, telecommunications, etc. [Hyvärinen
et al., 2001, Lee and Lewicki, 2002]. The temporal slowness principle has been applied to nonstationary
time series to extract underlying driving forces [Wiskott, 2003a], which might have applications for exam-
ple in the analysis of financial data. In Chapter 5 we present an engineering application of this principle to
pattern recognition.

1.2 Overview
In this thesis we investigate the relevance of temporal slowness as a principle for the self-organization of
the sensory cortex and for technical applications.

In Chapter 2 we introduce and discuss the temporal slowness principle, and we give an overview of
previous work on the subject. This principle is then put in mathematical terms in Section 2.3. In the same
section we also define the slow feature analysis (SFA) algorithm, which solves the mathematical problem
for multidimensional, discrete time series in a finite dimensional function space. The algorithm is presented
in its formulation as a generalized eigenvalue problem that was introduced in [Berkes and Wiskott, 2003].
With respect to its original formulation in [Wiskott and Sejnowski, 2002] it is more efficient in terms of
memory requirements and speed (see Sect. 2.4.1).

In Chapter 3 we apply temporal slowness as a learning principle of receptive fields in the primary vi-
sual cortex. Using SFA we learn the input-output functions that, when applied to natural image sequences,
vary as slowly as possible in time and thus optimize the slowness objective. The resulting functions can
be interpreted as nonlinear spatio-temporal receptive fields. We find that they reproduce many properties
of complex cells in the primary visual cortex (V1), not only the two basic ones, namely a Gabor-like opti-
mal stimulus and phase-shift invariance, but also secondary ones like direction selectivity, non-orthogonal
inhibition, end-inhibition, and side-inhibition. This is illustrated both qualitatively and by quantitative
comparisons with the population statistics of complex cells in V1. These results demonstrate that a single
unsupervised learning principle can account for a rich repertoire of receptive field properties. We also per-
form a set of control experiments to investigate the role of the statistics of natural images and of the spatial
transformations used to create the image sequences.

In order to analyze the nonlinear functions learned by SFA in our model, we developed a set of math-
ematical and numerical tools to characterize quadratic forms as receptive field. We expanded them to be
of more general interest for second-order approximations and theoretical models of physiological receptive
fields, and present them here in a separate chapter (Chap. 4).

We conclude this thesis by showing the application of the temporal slowness principle to pattern recog-
nition (Chap. 5). We reformulate the SFA algorithm such that it can be applied to pattern recognition
problems that lack a temporal structure and present the optimal solutions in this context. We then apply this
system to a standard handwritten digits database.

At the end of each chapter we added a section with additional notes that concern more technical aspects
which might be useful to complete and deepen the general picture, but are not necessary to understand the
main results.

Original scientific contributions of this thesis include: i) The reformulation of the slow feature analysis
algorithm as a generalized eigenvalue problem; ii) The investigation of temporal slowness as a learning
principle of receptive fields in the primary visual cortex; iii) The development of mathematical and nu-
merical tools for the analysis and interpretation of quadratic forms as receptive fields; iv) The application



1.2. OVERVIEW 5

of the temporal slowness principle to pattern recognition to learn a feature space representation suitable to
perform classification with simple methods.
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Chapter 2

The temporal slowness principle

2.1 Motivation

The models presented in this thesis are based on the computational principle of temporal slowness. In this
chapter we illustrate the motivation behind slowness as a learning principle for the sensory cortex and as
a way to solve the technical problem of learning invariances from time series. We then give an overview
of different definitions used in other studies (Sect. 2.2). Finally, in Section 2.3 we introduce slow feature
analysis (SFA), an unsupervised algorithm that optimizes the slowness objective that will be used for the
simulations in this thesis.

The temporal slowness principle is based on the observation that the environment, sensory signals, and
internal representations of the environment vary on different time scales. The relevant variables in the
environment change usually on a relatively slow time scale, like for example the identity or position of
the objects that surround us. Sensory signals on the other hand consist of raw, direct measurements of our
physical reality, and are thus in general very sensitive to changes in the environment or the observer. As a
consequence, they vary on a faster time scale. For example, even a small eye movement or shift of a textured
object may lead to a rapid variation of the light intensity received by a receptor neuron and as a consequence
to a rapid variation of its output. The internal representations of the environment, finally, should vary on
a time scale similar to that of the environment itself, that is on a slow time scale. This is illustrated in
Figure 2.1. If we succeed in extracting slowly varying features from the quickly varying sensory signals,
these features are likely to reflect the properties of the environment and are in addition invariant or at least
robust to frequent transformations of the sensory input, such as visual translation, rotation, or zoom. For
these reasons the extraction of slowly varying signals out of the input sensory signals has been proposed as
a possible computational principle for the cortex [Mitchison, 1991, Földiák, 1991, Stone and Bray, 1995,
Wiskott and Sejnowski, 2002, Hurri and Hyvärinen, 2003a, Körding et al., 2004, Berkes and Wiskott,
2005a]. In Chapter 3 we investigate temporal slowness as a learning principle for receptive fields in the
primary visual cortex. The functions that vary most slowly in response to natural image sequences are
found to reproduce many properties of complex cells in V1.

From a more technical point of view, the temporal slowness principle can also be regarded as an unsu-
pervised learning principle to learn to represent salient features of an input stream of data in a way invariant
to frequent transformations. This is illustrated in Figure 2.2. Consider a particular feature of an input data
set, for example an object in a visual scene. Often the same feature is represented by a large set of different
instances: For example in Figure 2.2 the image on the left and that on the right are different, but they rep-
resent to the same object. Each individual instance represents one point in a multidimensional input space.
We can imagine that all points corresponding to the same feature form a surface, sometimes called invari-

7
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Figure 2.1 The temporal slowness principle This figure illustrates the temporal slowness principle. The
image sequence at the top shows a visual scene representing the environment. The light intensity at one
specific point in the scene is very sensitive to small changes in the environment (e.g. the translation of a
textured object) or in the observer (e.g. a movement of the head). As a consequence the output signals of
light-intensity receptors is sensitive to these changes, too, as shown in the plots at the bottom left. The
relevant variables in the environment, however, change on a much slower timescale (bottom right). If we
succeed in extracting slowly-varying signals out of the input data, we are likely to recover some salient
features of the environment.
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Figure 2.2 Invariance manifold The relevant features of the input space are often represented by a large
number of different instances. For example the same object can be represented by different images (in the
squared panels). We can imagine that the set of all image instances of an object form a surface in the input
space. A function that is invariant to the difference between individual instances will respond similarly to
all points on the surface. If the input has a temporal structure such that the underlying features are stable in
time (illustrated here by the path on the surface), an invariant function would change slowly in time.

ance manifold [Wiskott, 1998] (although it does not need to be a manifold in the mathematical sense). In
many cases it is useful to have a representation that is invariant to the differences between the instances of
a given feature. The functions gi that transform the input into such a representation would need to respond
in the same way to all points on the surface (i.e. the surface would be a level set of the functions, or a subset
thereof). More realistically, the functions would need to change as little as possible on the surface. If the
input data x has a temporal structure, the sequence of points x(t), t ∈ [t0, t1] forms a trajectory in the
input space. If we assume that neighboring points in time contain the same features they would lie on the
invariance manifold. An invariant function gi would thus change slowly in time when applied to the time
series. Conversely, if we require a function to vary as slowly as possible in time, it will need to be invariant
to frequent transformations of the instances. On the other hand, we also want the functions to distinguish
between different features, which is achieved in practice by imposing additional constraints, for example
by forcing the functions gi to have unit variance. This more technical point of view is applied in Chapter 5,
where we present the application of the temporal slowness principle to pattern recognition.

A secondary advantage of slowly varying signals is that they can be transmitted by channels with a
lower bandwidth [Körding et al., 2004]. It has also been suggested that learning is easier in a system where
variables change slowly [Körding et al., 2004]. However, this is not necessarily the case, as proved by the
fact that many learning algorithms do not consider the temporal structure of their input and one could thus
rearrange the input data to vary fast in time without affecting the efficiency of learning.
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2.2 Models based on temporal slowness
The temporal slowness objective has been formulated in different ways by different authors. In this section
we give an overview of the different definitions and of the results of other studies based on this principle.

In the rest of this thesis we will drop references to time in equations if they are not necessary for the
understanding. The input and output vectors x and y are always thought to form time series x(t) and y(t),
unless otherwise stated. Their components will be indicated with xi and yi. wij is the weight coefficient
between xj and yi, assuming a linear model yi =

∑
j wijxj or a model with fixed nonlinearities hj ,

yi =
∑

j wijhj(x). 〈·〉t indicates the mean over time.
An early description of temporal slowness was given by Hinton [1989, p. 208] as a principle for self-

supervised learning in backpropagation neural networks. He suggested that this might be “a sensible prin-
ciple if the input vectors are generated by a process whose underlying parameters change more slowly than
the input vectors themselves”. This method was meant to be applied to the units on the hidden layer of
a neural network as a way to simplify supervised learning in successive layers. An analogous idea was
applied by Peng et al. [1998] to a digit recognition problem using an objective that mixed a term related
to slowness and one related to sparseness. Similarly, the pattern recognition system presented in Chapter 5
makes use of temporal slowness in order to learn a feature space representation suitable to easily perform
the successive classification step.

In that paper Hinton did not present a mathematical formulation or results based on simulations. This
was first done in the models by Mitchison [1991] and Földiák [1991]. Földiák’s model was motivated by
the fact that the visual system has to recognize objects in a way invariant to viewpoint, position, size, defor-
mation, etc. His work was inspired by Fukushima’s and LeCun’s object recognition networks [Fukushima,
1980, LeCun et al., 1998], which are based on a hierarchical system of alternating layers of feature-detecting
units (S-units) and invariance units (C-units) that pool over the feature detectors. In their model translation
invariance is achieved by a weight-sharing mechanism for the S-units and by C-units that pool over S-units
detecting the same feature at different positions in an image. Földiák’s rule was intended as a way to learn
how to connect a C-unit to the S-units in order to be invariant to frequent transformations. He proposed a
modified Hebbian rule in which the weight updates are proportional to a trace of the outputs yi with decay
factor δ (i.e. to a low-pass filtered version of yi):

∆wij = αȳi (xj − wij) , (2.1)

where
ȳi(t) = (1− δ)ȳi(t− 1) + δyi(t) . (2.2)

The input components xj correspond in this model to the output of the S-units. The second term in (2.1)
was added to keep the weight vector bounded and a winner-take-all strategy was applied in order to have
the units learn different invariances. Wallis and Rolls [1997] used a hierarchical network similar to that
proposed by Fukushima [1980] and the trace update rule of Equation (2.1) to perform invariant face and
object recognition.

Mitchison [1991] proposed a learning rule to remove systematic temporal variations from the input of a
unit. To make the unit vary as little as possible in time, he proposed to minimize the objective function

E = 〈ẏ2〉t (2.3)

by gradient descent. For a linear unit y =
∑

wixi he obtained the anti-Hebbian rule

∆wi = −α∆xi∆y . (2.4)

To avoid the weights converging to zero (which would minimize Eq. 2.3), the length of the weight vector was
normalized to a fixed norm K at each iteration. As noticed in [Wiskott and Sejnowski, 2002] this is a scale-
sensitive operation, so that the optimal solution would depend on the range of the input variables. It seems
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thus more reasonable to normalize the weights according to the variance of the output. Mitchinson proved
that the solution w that optimizes Equation (2.3) is equal to the eigenvector with the smallest eigenvalue
of the covariance matrix of x (cf. Sect. 2.3). In order to learn a set of different units, a bias term ζ was
introduced that drives the unit toward a given response:

E = 〈ẏ2〉t + λ〈(ζ − y)2〉t , (2.5)

where λ > 0. This leads to the gradient-descent rule

∆wi = −α∆xi∆y + βxi(ζ − y) , (2.6)

where β = αλ. This additional term presumes of course a certain knowledge about desired solutions.
In case such knowledge is not available, a better solution could be to use a decorrelation constraint (cf.
Sect. 2.3.1).

Stone and Bray [1995] proposed an objective function that joins the necessity for a unit to vary in
order to code for some hidden variable (avoiding an explicit normalization of the weights as in the previous
model) and the fact that it should vary slowly in time according to the temporal slowness principle. The
variability and slowness of a unit are expressed by the short-term variance U , which should be minimized,
and the long-term variance V , which should be maximized. The proposed objective function is

E =
1
2

log
V

U
(2.7)

=
1
2

log

(∑
t (y(t)− ȳ(t))2∑
t (y(t)− ỹ(t))2

)
, (2.8)

where ỹ and ȳ are a short-term and a long-term average defined by a trace rule like that of Equation 2.2 with
different decay factors. The corresponding gradient-descent rule contains a Hebbian and an anti-Hebbian
term:

∂E

∂wj
=

1
V
〈(y − ȳ)(xj − x̄j)〉t −

1
U
〈(y − ỹ)(xj − x̃j)〉t (2.9)

This rule was first illustrated on the problem of learning to represent the position of one active element
in a one- or two-dimensional grating by the value of its coordinates [Stone and Bray, 1995]. In [Stone,
1996] the same setting was tested in a two-layer neural network to extract the disparity information from
random-dot stereograms and from images with artificially generated disparity. In [Stone, 2001] the problem
was then reformulated as a generalized eigenvalue problem and applied to blind source separation, i.e. to
the reconstruction of linearly mixed input sources.

Our work is based on the formulation of slowness given by [Wiskott, 1998, Wiskott and Sejnowski,
2002] and presented in more details in Section 2.3. The objective function is the same as in [Mitchison,
1991] (Eq. 2.3), with the addition of a unit variance and decorrelation constraint that permits to learn a whole
set of different slowly-varying functions. Wiskott extended the slowness problem to nonlinear functions
and introduced the slow feature analysis (SFA) algorithm that finds the global solutions by solving two
eigenvalue problems. We successively reformulated the algorithm as a generalized eigenvalue problem
[Berkes and Wiskott, 2003]. SFA is presented and discussed in Sections 2.3.2–2.3.4. In [Wiskott and
Sejnowski, 2002] SFA was applied to the extraction of disparity from artificial simple-cells output and to a
hierarchical network of SFA-modules. One-dimensional random objects were presented to the bottom layer,
representing a 1D-retina. On the top layer the system learned to represent the what and where information
of arbitrary 1D-objects (i.e. their identity and position) in an invariant fashion. These results have also
been derived analytically in [Wiskott, 2003b], where an analytical and algebraic approach to the analysis
of the solutions of the temporal slowness principle was introduced. SFA was also applied to the estimation
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of hidden variables underlying nonstationary time series [Wiskott, 2003b] and to blind source separation
[Blaschke et al., 2004].

Kayser et al. [2001] and Körding et al. [2004] were the first to apply the temporal slowness principle to
natural image sequences in order to make a comparison with receptive fields in the primary visual cortex
(V1). In their papers they showed that neural networks adapted to optimize a slowness objective on natural
image sequences reproduce the basic characteristics of complex cells in V1, i.e. a Gabor-like optimal stimu-
lus and phase-shift invariance. The objective function they used is the sum of a slowness and a decorrelation
term:

E = Eslowness + Edecorrelation (2.10)

=
∑

i

〈ẏi
2〉t +

∑
i 6=j

〈yiyj〉t (2.11)

which has to be minimized. The variance of the output signals of the units was normalized to be one, in order
to avoid the trivial constant solution and to make the temporal variation of different signals comparable.
The decorrelation term Edecorrelation was responsible for the learning of different units. The slowness term
Eslowness is similar to the one used in this work (cf. Eq. 2.13), except that the average of the temporal
variation of all units is optimized. Under some conditions, the resulting solutions are unique only up to
an orthogonal transformation of the units (see Sect. 3.5.3). These and other studies modeling complex and
simple cells are discussed in Section 3.5.

Hurri and Hyvärinen [2003a] proposed a definition of slowness, called temporal coherence, that has
different properties with respect to the ones in the models cited above (see also Sect. 3.5.3 and Sect. 3.6.7).
The basic idea is to make the energy of the output signal vary slowly by maximizing∑

i

〈
f(yi(t))f(yi(t + ∆t))

〉
t

, (2.12)

where f is an even and strictly convex nonlinearity. In the simulations f was set to f1(y) = y2, which
measures the energy of the signal, or to f2(y) = ln cosh(y), which is a robust version of f1. The output
signals yi is normalized such that they have unit variance and are decorrelated. Due to the even nonlin-
earity, strongly oscillating solutions can be optimal, since the sign is canceled out. This is illustrated in
Figure 2.3: The two signals have zero mean and unit variance. Their energy varies equally smoothly in
time (as indicated by the gray dashed curve for f = f1), so that they are equally temporal coherent with
respect to Equation (2.12). On the other hand, considering for example the objective of Equation (2.3),
the second curve would vary faster than the first since the derivatives are larger. Also in the case of non-
symmetric, rectifying nonlinearities the solutions found by (2.12) are different from the ones extracted using
Equation (2.3).

Ideas and learning rules related to temporal slowness can also be found in [Becker and Hinton, 1992,
O’Reilly and Johnson, 1994, Becker, 1996]. In [Becker and Hinton, 1992] two (or more) units received as
input different aspects of the same input. A measure of mutual information between their outputs was max-
imized, so that the units had to ignore the particular aspect they were considering and concentrate on hidden
variables common to both inputs, for example a common disparity signal underlying non-overlapping parts
of random-dot stereograms [Becker and Hinton, 1992]. Their model could be expressed in a temporal form
if the units would receive input from different points in time [Mitchison, 1991].

In the visual domain temporal and spatial slowness are closely related concepts. For example, temporal
slowness could be reformulated as a spatial one by adapting each unit to respond in a similar way to neigh-
boring visual regions. The slowness objective could thus be reformulated as a spatial optimization criterion
[Stone, 1996, Wiskott and Sejnowski, 2002]. However, the former seems more natural to us and easier to
implement in a biological system.
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Figure 2.3 Temporal coherence The two signals in (a) and (b) have zero mean and unit variance. Their
energy vary equally smoothly in time (as indicated by the gray dashed curve for f = f1), so that they are
equally temporal coherent with respect to Equation (2.12). On the other hand, considering the objective of
Equation (2.3), the second curve would vary faster than the first since the the derivatives are larger.

2.3 Slow feature analysis

2.3.1 Problem statement
In the previous section we have seen that the temporal slowness principle has been formulated in different
ways by different authors. In the rest of the chapter we give the mathematical formulation of the slowness
objective that will be used throughout this thesis and introduce slow feature analysis (SFA), an unsupervised
algorithm to determine the functions that optimize this objective.

As previously discussed our learning task is to find (scalar) functions gj(x) which generate output
signals yj(t) = gj(x(t)) from the input signal x(t) that vary as slowly as possible but carry significant
information. The latter is ensured by requiring the output signals to have unit variance and be mutually
uncorrelated. It is important to note that even though the objective is the slowness of the output signals
the process by which the output is computed from the input is very fast or in the mathematical idealization
even instantaneous. Slowness can therefore not be achieved simply by low-pass filtering. Thus only if the
input signal has some underlying slowly varying causes does the system have a chance of extracting slowly
varying output signals at all. It is exactly this apparent paradox of instantaneous processing on the one hand
and the slowness objective on the other hand which guarantees that the extracted output signals represent
relevant features of the underlying causes that gave rise to the input signal.

In mathematical terms the problem can be stated as follows [Wiskott and Sejnowski, 2002]: Given an
input signal x(t) = (x1(t), . . . , xN (t))T , t ∈ [t0, t1], find a set of real-valued functions g1(x), . . . , gM (x)
lying in a function space F so that for the output signals yj(t) := gj(x(t))

∆(yj) := 〈ẏ2
j 〉t is minimal (2.13)

under the constraints

〈yj〉t = 0 (zero mean) , (2.14)
〈y2

j 〉t = 1 (unit variance) , (2.15)
∀i < j, 〈yiyj〉t = 0 (decorrelation and order) , (2.16)

with 〈.〉t and ẏ indicating time averaging and the time derivative of y, respectively. Equation (2.13) intro-
duces a measure of the temporal variation of a signal (the ∆-value of a signal) equal to the mean of the
squared derivative of the signal. This quantity is large for quickly-varying signals and zero for constant
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signals. We will also use a more intuitive measure of slowness, the β-value, defined as

β(yj) =
1
2π

√
∆(yj) . (2.17)

A sine wave with period T and unit variance has a β-value of 1/T when averaged over an integer number
of oscillations. The zero-mean constraint (2.14) is present for convenience only, so that (2.15) and (2.16)
take a simple form. Constraint (2.15) means that each signal should carry some information and avoids
the trivial solution gj(x) = 0. Alternatively, one could drop this constraint and divide the right side of
(2.13) by the variance 〈y2

j 〉t. Constraint (2.16) forces different signals to be uncorrelated and thus to code
for different aspects of the input. It also induces an order, the first output signal being the slowest one, the
second being the second slowest, etc.

This optimization problem is in general extremely difficult to solve analytically. Wiskott [2003b] was
able to derive the analytical solution for free output signals, i.e. the solution obtained without the con-
straints coming from the input signals and the function space. The optimal free responses for cyclic or
free boundary conditions on the output signal have been found to be sine and cosine waves of increasing
frequency (Fig. 2.4). In the same paper, Wiskott introduced an algebraic framework that allowed him to
derive analytically the results obtained in [Wiskott and Sejnowski, 2002]. Otherwise, for arbitrary, multidi-
mensional time series and a finite-dimensional function space the solution to the slowness problem can be
found numerically with the SFA algorithm, that we will define in the next three sections.

Free boundary condition

Cyclic boundary condition
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Figure 2.4 Optimal free responses This image shows the optimal free responses for the slowness opti-
mization problem (Eqs. 2.13–2.16), i.e. the solutions obtained without the constraints coming from the input
signals and the function space. y-axes range from -4 to +4; t-axes are of length T . The expressions in the
plots indicate the β-value of the signals. (a) The first 4 optimal responses for cyclical boundary conditions.
(b) The first 4 optimal responses for free boundary conditions. (Images courtesy of Laurenz Wiskott.)
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2.3.2 The linear case

Consider first the linear case
gj(x) = wT

j x (2.18)

for some input x and weight vectors wj . In the following we assume x to have zero mean (i.e. 〈x〉t = 0)
without loss of generality. This implies that Constraint (2.14) is always fulfilled, since

〈yj〉t = 〈wT
j x〉t = wT

j 〈x〉t = 0 . (2.19)

We can rewrite Equations (2.13), (2.15) and (2.16) as

∆(yj) = 〈ẏj
2〉t (2.20)

= 〈(wT
j ẋ)2〉t (2.21)

= wT
j 〈ẋẋT 〉twj (2.22)

=: wT
j Awj (2.23)

and

〈yiyj〉t = 〈(wT
i x)(wT

j x)〉t (2.24)

= wT
i 〈xxT 〉twj (2.25)

=: wT
i Bwj . (2.26)

If we integrate Constraint (2.15) in the objective function (2.13), as suggested in the previous section, we
obtain:

∆(yj) =
(2.13,2.15)

〈ẏj
2〉t

〈y2
j 〉t

=
(2.23,2.26)

wT
j Awj

wT
j Bwj

. (2.27)

It is known from linear algebra that the weight vectors wj that minimize this equation correspond to the
eigenvectors of the generalized eigenvalue problem

AW = BWΛ , (2.28)

where W = (w1, . . . ,wN ) is the matrix of the generalized eigenvectors and Λ is the diagonal matrix of the
generalized eigenvalues λ1, . . . , λN [see e.g. Gantmacher, 1959, chap. 10.7, Theorem 8, 10 and 11]. The
vectors wj can be normalized such that wT

i Bwj = δij , which implies that Constraints (2.15) and (2.16)
are fulfilled:

〈y2
j 〉t = wT

j Bwj = 1 , (2.29)

〈yiyj〉t = wT
i Bwj = 0 , i 6= j . (2.30)

Note that, by substituting Equation (2.28) into Equation (2.27) one obtains

∆(yj) = λj , (2.31)

so that by sorting the eigenvectors by increasing eigenvalues we induce an order where the most slowly-
varying signals have lowest indices (i.e. ∆(y1) ≤ ∆(y2) ≤ . . . ≤ ∆(yN )), as required by Constraint (2.16).
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2.3.3 The general case
In the more general case of a nonlinear, finite-dimensional function space F , consider a basis h1, . . . , hM

of F . For example, in the standard case where F is the space of all polynomials of degree d, the basis will
include all monomials up to order d.

Defining the expanded input
h(x) := (h1(x), . . . , hM (x)) (2.32)

every function g ∈ F can be expressed as

g(x) =
M∑

k=1

wkhk(x) = wT h(x) . (2.33)

This leads us back to the linear case if we assume that h(x(t)) has zero mean (again, without loss of
generality), which can be easily obtained in practice by subtracting the mean over time 〈h(x)〉t =: h0 from
the expanded input signal.

For example, in the case of 3 input dimensions and polynomials of degree 2 we have

h(x) = (x2
1, x1x2, x1x3, x2

2, x2x3, x2
3, x1, x2, x3)T − h0 (2.34)

and

g(x) =
(2.33)

w1x
2
1 + w2x1x2 + w3x1x3 + w4x

2
2 + w5x2x3 + w6x

2
3

+ w7x1 + w8x2 + w9x3 −wT h0

(2.35)

Every polynomial of degree 2 in the 3 input variables can then be expressed by an appropriate choice of the
weights wi.

2.3.4 The SFA algorithm
We can now formulate the slow feature analysis algorithm [Wiskott and Sejnowski, 2002] (see also Sect. 2.4.1):

Non-linear expansion: Expand the input data and compute the mean over time h0 := 〈h(x)〉t to obtain
the expanded signal

z := h(x)− h0 (2.36)

= (h1(x), . . . , hM (x))T − h0 . (2.37)

Slow feature extraction: Solve the generalized eigenvalue problem

AW = BWΛ (2.38)
with A := 〈żżT 〉t (2.39)
and B := 〈zzT 〉t . (2.40)

The K eigenvectors w1, . . . ,wK (K ≤ M ) corresponding to the smallest generalized eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λK define the nonlinear input-output functions g1(x), . . . , gK(x) ∈ F :

gj(x) := wT
j (h(x)− h0) (2.41)

which satisfy Constraints (2.14)–(2.16) and minimize (2.13).
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In other words to solve the optimization problem (2.13) it is sufficient to compute the covariance matrix
of the signals and that of their derivatives in the expanded space and then solve the generalized eigenvalue
problem (2.38). In the simulations presented in this thesis, the derivative of z(t) is computed by the linear
approximation ż(t) ≈ (z(t + ∆t) − z(t))/∆t (∆t = 1 throughout the thesis). We performed some
simulations of the model described in Chapter 3 with cubic interpolation and obtained equivalent results.
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2.4 Technical remarks to Chapter 2

2.4.1 Alternative procedure to perform SFA
As originally defined in [Wiskott and Sejnowski, 2002] the SFA algorithm performs the slow feature ex-
traction step by solving two eigenvalue problems. First, the data in the expanded space is whitened with a
whitening matrix S, so that every orthonormal basis fulfills Constraints (2.14–2.16). Second, the covariance
matrix of the derivatives is computed and the eigenvectors wj corresponding to its smallest eigenvalues are
extracted. The input-output function are defined as

gj(x) := wT
j S(h(x)− h0) (2.42)

= (ST wj)T (h(x)− h0) (2.43)

The advantage of the formulation as a generalized eigenvalue problem is that it is possible to use efficient
algorithms that allow to compute just the set of eigenvectors we are interested in, while in the original
definition it is necessary to solve one complete eigenvalue problem (for the whitening step). Since the
dimensionality of the expanded space is usually very high, this leads an important reduction of memory
requirements and computation time.



Chapter 3

Temporal slowness as a model
for self-organization of receptive fields
in the primary visual cortex

3.1 Introduction

As discussed in the two introductory chapters, the working hypothesis in this thesis is that the sensory cortex
organizes according to the temporal slowness principle in order to build a consistent internal representation
of the environment. In this chapter we verify this hypothesis for the primary visual cortex.

Primary visual cortex (V1) is the first cortical area dedicated to visual processing. This area has been
intensively studied neurophysiologically since the seminal work by Hubel and Wiesel [1962], who also
introduced the standard classification of neurons in V1 into two main groups: simple and complex cells.
These neurons are conceived as edge or line detectors: simple cells respond to bars having a specific ori-
entation and position in the visual field; complex cells also respond to oriented bars but are insensitive to
their exact position. Idealized simple and complex cells can be described by Gabor wavelets [Pollen and
Ronner, 1981, Adelson and Bergen, 1985, Jones and Palmer, 1987], which have the shape of sine gratings
with a Gaussian envelope function. A single Gabor wavelet used as a linear filter (Fig. 3.1a) is similar to
a simple cell, since the response depends on the exact alignment of a stimulus bar on an excitatory (posi-
tive) subfield of the wavelet. Taking the square sum of the responses of two Gabor wavelets with identical
envelope function, frequency, and orientation but with a 90◦ phase difference (Fig. 3.1b) yields a model of
a complex cell that is insensitive to the exact location of the bar (following a rule similar to the relation
sin(x)2 + cos(x)2 = 1) while still being sensitive to its orientation. We will refer to these models as the
classical models of simple and complex cells. This idealized picture, however, is clearly not complete.
In particular complex cells in V1 show a much richer repertoire of receptive field properties than can be
explained with the classical model. For example, they show end-inhibition, side-inhibition, direction se-
lectivity, and sharpened or broadened tuning to orientation or frequency [Hubel and Wiesel, 1962, Sillito,
1975, Schiller et al., 1976a,b,c, De Valois et al., 1982a,b, Dobbins et al., 1987, Versavel et al., 1990, Skottun
et al., 1991, DeAngelis et al., 1994, Shevelev, 1998, Walker et al., 1999, Ringach et al., 2002].

In order to verify the slowness hypothesis we consider a large set of natural image sequences, extract
with SFA the functions that compute the slowest features from a space of nonlinear input-output functions
(the space of all polynomials of degree 2), and compare their properties to those of complex cells in V1
described in the literature.
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Figure 3.1 Classical models of simple- and complex-cells (a) Simple cells respond best to oriented
bars at a specific position in the visual field, and are well modeled by a linear Gabor filter [Jones and
Palmer, 1987]. (b) Complex cells respond to oriented bars but are insensitive to their local position. The
classical model (energy model) consists of two linear Gabor filters having the same shape except for a 90◦

phase difference. The square sum of the response of the two filters yields the output [Adelson and Bergen,
1985]. Orientation, frequency, and size of the subunits in this figure have been fitted to those of the optimal
excitatory stimulus of the unit shown in Fig. 3.8a for comparison.

The following section presents the input data set and the methods used to analyze the results. Sec-
tion 3.3 describes the simulation results and compares the learned functions with neurons reported in the
physiological literature. In Section 3.4 we investigate the role of spatial transformations, the statistics of the
input images, dimensionality reduction, and asymmetric decorrelation in our results with a set of control
experiments. The chapter concludes with a discussion in Section 3.5.

3.2 Methods

3.2.1 Input data

Our data source consisted of 36 gray-valued natural images extracted from the Natural Stimuli Collection of
van Hateren (available online at http://hlab.phys.rug.nl/archive.html). The images were
chosen to contain a variety of natural contents, including trees, flowers, animals, water etc. We avoided
highly geometrical human artifacts. The images were preprocessed as suggested in [van Hateren and
van der Schaaf, 1998] by block averaging (block size 2 × 2) and by taking the logarithm of the pixel
intensities. This procedure corrects possible calibration problems and reshapes the contrast of the images.
After preprocessing, the images were 768× 512 pixels large. An extensive discussion of the images and of
the preprocessing can be found in [van Hateren and van der Schaaf, 1998].

We constructed image sequences by moving a quadratic window over the images by translation, rota-
tion, and zoom and subsequently rescaling the frames (to compensate for the zoom) to a standard size of
16×16 pixels. The input window was not masked or weighted in any way. The initial position, orientation,
and zoom for each sequence were chosen at random. The transformations were performed simultaneously,
so that each frame differed from the previous one by position, orientation, and scale. If the window moved
out of the image, the sequence was discarded and a new one was started from scratch. Each individual
sequence was 100 frames long with a total of 250,000 frames per simulation. (The length of the sequences
is irrelevant to the algorithm as long as the total number of input vectors is preserved.) Each image con-
tributed an equal number of frames. Figure 3.2 shows one example sequence. The displacements per frame

http://hlab.phys.rug.nl/archive.html
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in horizontal and vertical direction were Gaussian distributed with zero mean and standard deviation 3.56
pixels. The angular speed measured in radians/frame and the magnification difference (defined as the dif-
ference between the magnification factor of two successive frames) followed a Gaussian distribution with
mean 0 and standard deviation 0.12 and 0.03, respectively. Other simulations showed qualitatively similar
results within a reasonable range of parameters, although the distribution of some unit properties might
vary. See Control Experiment 1 (Sect. 3.4.1) for a study of the influence of the individual transformations.
To include temporal information, the input vectors to SFA were formed by the pixel intensities of two con-
secutive frames at times t and t + ∆t, so that the second frame in one input vector was equal to the first
frame in the next, as illustrated in Figure 3.2. (The time difference ∆t was the same used to compute the
time derivative.) Note that with two frames as an input, processing in not strictly instantaneous anymore,
but slowness can still not be achieved by low-pass filtering.

�������

���
	��


������

�������

......

single frames input vectors

Figure 3.2 Natural image sequences A closeup of one of the natural images used in the simulations (left).
The numbered squares show the position, size and orientation of the input window for a short sequence of
20 frames. The content of the window is then rescaled to 16× 16 pixels (center). The input to SFA consists
of pairs of successive frames (right), to include temporal information.

The function space F on which SFA is performed is chosen here to be the set of all polynomials of
degree 2, as discussed extensively in Section 3.5.2. A run with SFA requires the computation of two large
covariance matrices having in the order of O(M2) elements, where M is the dimension of the considered
function space. In the case of polynomials of degree 2 this corresponds to a number of elements in the
order of O(N4), where N is the input dimension. Since this is computationally expensive, we performed a
standard preprocessing step using principal component analysis (PCA) to reduce the dimensionality of the
input vectors from 16× 16× 2 = 512 to N = 100, capturing 93% of the total variance (see Sect. 3.6.1 for
additional remarks). In Control Experiment 3 (Sect. 3.4.3) we present the results of a simulation performed
with smaller patches (10× 10 pixels) and no dimensionality reduction.

3.2.2 Analysis methods

SFA learns the set of units that applied to our input visual stimuli have the most slowly varying output
(which does not imply that processing is slow, see Sect. 2.3.1). They are ordered by slowness (the first one
being the slowest) and their outputs are mutually uncorrelated. The units receive pairs of image patches as
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input vectors and can thus be interpreted as nonlinear spatio-temporal receptive fields and be tested with
input stimuli much like in neurophysiological experiments.

Since the sign of a unit’s response is arbitrary in the optimization problem, we have chosen it here such
that the strongest response to an input vector with a given norm is positive (i.e. such that the magnitude of
the response to the optimal excitatory stimulus, x+, is greater than that to the optimal inhibitory stimulus,
x−; see below). The units can have a spontaneous firing rate, i.e. a non-zero response to a blank visual
input. As in physiological experiments we interpret an output lower than the spontaneous one as active
inhibition. The absolute value of the spontaneous firing rate is fixed by the zero mean constraint (Eq. 2.14)
and has no direct interpretation.

In the simulations presented here the function space F considered by SFA is the space of polynomials
of degree 2. Every polynomial of degree 2 can be written as an inhomogeneous quadratic form 1

2x
T Hx +

fT x + c, where H is an N ×N matrix, f is an N -dimensional vector, and c is a constant. For example for
N = 2

w1x
2
1 + w2x1x2 + w3x

2
2 + w4x1 + w5x2 + c

= 1
2

(
x1

x2

)T ( 2w1 w2

w2 2w3

)
︸ ︷︷ ︸

H

(
x1

x2

)
+

(
w4

w5

)
︸ ︷︷ ︸

f

T (
x1

x2

)
+ c .

(3.1)

This class of nonlinear functions has been used in some recent theoretical models and second-order approx-
imations of cortical receptive fields, but their analysis is complicated by a lack of appropriate tools. In the
course of this work we developed various methods and algorithms to study quadratic forms in a way similar
to receptive fields in physiology. Because of the complexity of the methods and since they are of a more
general interest, we present them in a separate chapter (Chap. 4). In the following we will introduce the
ones that are relevant for the simulations in this chapter.

In order to analyze the units, we first compute for each of them the optimal excitatory stimulus x+ and
the optimal inhibitory stimulus x−, i.e. the input that elicits the strongest positive and strongest negative
output from the unit, respectively, given a constant norm r of the input vector, i.e. given a fixed energy
constraint (Fig. 3.3). We choose r to be the mean norm of the training vectors, since we want x+ and x−

to be representative of the typical input. This is in analogy to the physiological practice of characterizing a
neuron by the stimulus to which the neuron responds best [e.g. Dayan and Abbott, 2001, Chap. 2.2]. Since
in our model we have an explicit definition of the input-output functions of our units, x+ and x− can be
computed analytically, as shown in Section 4.4. From the two x+ patches we compute the size and position
of the receptive field and by Fourier analysis the preferred frequency, orientation, speed, and direction of
a unit. In some units the preferred parameters for the patch at time t and that at time t + ∆t are slightly
different, in which case we take the mean of the two.

Although the optimal stimuli are very informative they only give a partial view of the behavior of a
unit, since these are nonlinear. To gain further insight into the response properties we use an appropriate
pair of test images (one at time t and one at time t + ∆t) and compute for each unit the corresponding
response image (Fig. 3.4). The response image is computed by cutting a 16 × 16 window at each point
of the test images, using it as the input to the unit and plotting its output at the corresponding point. To
study the response to a range of frequencies and orientations, we use a test image that consists of a circular
pattern of sine waves with frequency increasing from the circumference to the center. The frequency in-
crease is logarithmic (i.e. an equal distance along the radius corresponds to an equal frequency difference
in octaves) to make the comparison with physiological data easier. We let the ring patterns move outward
at the preferred speed of the unit (Fig. 3.4a). These images contain information not only about the whole
range of frequencies and orientations to which the unit responds or by which it is inhibited, but also about
the sensitivity of the unit to the phase of the grating. If a unit is sensitive, the response image shows os-
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Figure 3.3 Optimal stimuli Top five rows: Optimal excitatory stimuli (x+) and optimal inhibitory
stimuli (x−) of the first 35 units of the simulation described in the text. For most units x+ and x− look like
Gabor wavelets in agreement with physiological data. x+ gives information about the preferred frequency
and orientation of a unit and about the size and position of its receptive field. A comparison between the
patches at time t and at time t + ∆t hints at the temporal structure of the receptive field, e.g. its preferred
speed and direction. The units surrounded by a black frame are analyzed in more detail in Figs. 3.8, 3.11,
and 3.12. Bottom three rows: Optimal excitatory stimuli for Units 94–100, 194–200, and 394–400. The
Gabor-like shape of x+ begins to degrade around Unit 100, and becomes unstructured for successive units
corresponding to functions with quickly varying output. (More optimal stimuli can be found online as
indicated in Additional Material.)
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Optimal speed: 0.10 cycles/frame

t

x(t) x(t+dt)

g (x(t), x(t+dt))j

test images response image

input patches unit’s activity

a) b)
t+dt

Figure 3.4 Test and response images (a) This image illustrates how the response images are computed.
Given a test image at time t and at time t + ∆t, at every position two 16 × 16 input patches are cut
out and used as the input to the considered unit. Its output is then plotted at the corresponding point of the
response image. Gray values are normalized such that white corresponds to the maximal response and black
indicates inhibition. The square at the upper left corner of the response image indicates the size of the input
patches. The circular test image shown on the left is used to investigate the response of a unit to a range of
frequencies and orientations. The gratings move outward at the preferred speed of the considered unit, as
indicated by the white arrows. (b) Test image used to investigate end- and side-inhibition. The hexagonal
shape is oriented such that it is aligned to the preferred orientation of the considered unit, indicated by the
central bar. The gratings are tuned to the preferred frequency and move at the preferred speed of the unit in
the direction shown by the thin arrows.
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cillations in the radial direction, while if there are no oscillations the unit is phase-invariant. Moreover, at
two opposite points of a ring the orientation is equal but the grating is moving in opposite directions, and
different responses indicate selectivity to the direction of motion. An illustrative example for the classical
simple and complex cell model is shown in Figure 3.5. Since the gratings are curved, an additional factor
due to curvature selection might be present in the response images. However, we find that in general this
effect is negligible.

a) b)

Figure 3.5 Response images for the classical models of simple- and complex-cells (a) Response image
for the classical model of simple cells (Fig. 3.1a). The model shows a narrow orientation- and frequency-
tuning and oscillations due to phase sensitivity. (b) Response image for the classical model of complex
cells (Fig. 3.1b). The orientation- and frequency-tuning are the same as in a), but the oscillations have
disappeared because the model is phase-insensitive.

The circular response images are similar to the Fourier representation of neural responses used by
Ringach et al. [2002] (with the radial axis inverted), but they are more informative in that they contain also
information about phase shift behavior and direction selectivity. Experimental readers might be more fa-
miliar with orientation and frequency tuning curves. The circular response images contain this information,
too (a slice of the response image along the radial direction would give a frequency-tuning curve, while
a circular slice would give an orientation-tuning curve), and in addition it shows how the unit behaves at
non-optimal parameters.

We use hexagonal-shaped test images (Fig. 3.4b) to investigate end- and side-inhibition. The hexagon
is oriented such that two of the branches are aligned to the preferred orientation as indicated by the central
bar. The gratings are set to the preferred frequency and move at the preferred speed as shown by the arrows.
On the border of the branches of the hexagon the receptive field is only partially filled while in the middle
the grating occupies the whole input patch. If the response drops between border and center, the unit is end-
or side-inhibited. Of particular interest are the branches at the preferred orientation, on the additional four
branches it is possible to see if the inhibition is effective also at other orientations. The central hexagonal
part contains angles at various orientations, and is useful to study the curvature selectivity of the units. If
the preferred speed is not zero, in the second image there is one junction for each branch where the sine
gratings of two branches do not coincide anymore. This might in principle distort the response in those
areas. (Note that the hexagonal response image shown in Fig. 3.11b has preferred speed zero, and is thus
not affected.)

Test images with geometrical patterns and complex visual scenes have been used to study LGN and V1
neurons by Creutzfeldt and Nothdurft [1978], as shown in Figure 3.6. We are not aware of any successive
physiological study that used this technique.

We additionally performed experiments with drifting sine gratings in order to compute various unit
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LGN
response

Simple cell
response

Stimulus

(Creutzfeldt and Nothdurft, 1978, Fig. 3)

Figure 3.6 Response images of neurons in the visual system This image shows the response images
of an on-center cell in the LGN (middle) and of a simple cell in V1 (bottom) when presented with two
test images with a geometrical pattern (drawings were bright stimuli on dark background) and one visual
scene. (Adapted from [Creutzfeldt and Nothdurft, 1978], Fig. 3a, c, and e, with kind permission of Springer
Science and Business Media.)
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properties and compare them with physiological results. The sine grating parameters were always set to the
preferred ones of the considered unit. For example the polar plots of Figure 3.8a–c.3 were generated by
presenting to a unit sine gratings at different orientations and with frequency, speed, position, and size fixed
to the preferred ones. The plots show the response of the unit normalized by the maximum (radial axis)
vs. the orientation of the sine grating (angular direction). Unless stated otherwise, comparisons are always
made with experimental data of complex cells only.

3.3 Results
We now describe units obtained in a single simulation and make a comparison with corresponding cells
reported in the experimental literature. For each simulation SFA extracts a complete basis of the considered
function space ordered by decreasing slowness. In our case this corresponds to 5150 polynomials of degree
2. Of course, the last functions are actually the ones with the most quickly varying output signal and will
not be considered. We use the mean β-value of the pixel intensities as a reference, since we do not want
functions that compute a signal varying more quickly than their input. Figure 3.7 shows the β-values of
the first 400 units when tested on training data or on previously unseen sequences with a total of 400,000
frames. The units remain slowly varying also on test data, and their order is largely preserved. At about unit
number 100 the shape of the optimal excitatory stimulus begins to degrade (Fig. 3.3, bottom rows) and the
β-values come close to that of the input signal (> 90%). For these reasons we consider here only the first
100 functions. Although for illustrative purposes we mainly concentrate on individual units, we also find a
good qualitative and quantitative match on population level between the considered units and complex cells
in V1. We did not find any unit among the first 100 whose properties were in contradiction with those of
neurons in V1.

Gabor-like optimal stimuli and phase invariance: The optimal stimuli of almost all units look like Ga-
bor wavelets (Fig. 3.3) in agreement with physiological data. This means that the units respond best
to edge-like stimuli. The response of all these units is largely invariant to phase shift as illustrated
by the lack of oscillations in the response images (Figs. 3.8, 3.11, 3.12). To quantify this aspect
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Figure 3.7 Beta values The β-value of the first 400 units when applied to the training data (thin line)
or to the test data (novel sequences with a total of 400,000 frames, thick line). The units remain slow and
ordered also on test data. The horizontal solid line corresponds to the mean β-value of the input signals.
The horizontal dotted line corresponds to the β-value of unit number 100, which is slightly higher than 90%
of that of the input signals.
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we presented to each unit a sine grating tuned to the preferred orientation, frequency, speed, length,
width, and position as revealed by x+ and computed the relative modulation rate F1/F0, i.e. the ratio
of the amplitude of the first harmonic to the mean response. Neurons are classified as complex if
their F1/F0 ratio is less than 1.0, otherwise they are classified as simple, as defined in [Skottun et al.,
1991]. All units have a modulation rate considerably smaller then 1.0 (the maximum modulation rate
is 0.16) and would thus be classified as complex cells in a physiological experiment. 98 units out of
100 had both a Gabor-like x+ and phase-shift invariance, the missing two cells are described under
the paragraph Tonic cells. (See Sect. 3.6.2 for additional remarks.)

Active inhibition (orientation and frequency tuning): In the classical model complex cells have no inhi-
bition and are correspondingly restricted in their functional properties [see e.g. MacLennan, 1991]. In
physiological neurons, however, active inhibition is present and useful for example to shape the tun-
ing to orientation and frequency [Sillito, 1975, De Valois et al., 1982b]. (See Sect. 3.6.3 for additional
remarks.)

In our model inhibition is present in most units and typically makes an important contribution to
the output. As a consequence x− is usually well-structured and has the form of a Gabor wavelet as
well (Fig. 3.3). Its orientation plays an important role in determining the orientation tuning. It can
be orthogonal to that of x+ (Fig. 3.8a), but it is often not, which results in sharpened orientation
tuning (since the response must decrease from a maximum to a minimum in a shorter interval along
the orientation). On the other hand, we also find units that would be classified as complex by their
response to edges and their phase-invariance but which are not selective for a particular orientation
(Fig. 3.8b) (four units out of 100). Similar cells are present in V1 and known as non-oriented cells
[De Valois et al., 1982b]. Figure 3.9a compares the distribution of the orientation bandwidth of our
units with that of complex cells reported in [De Valois et al., 1982b, Gizzi et al., 1990]. Our units
seem to have a slightly broader tuning, but the difference is not significant (one-sided Kolmogorov-
Smirnov test, P > 0.8).

When the orientation of x− is very close to that of x+, it is possible to observe a second peak of
activity at an orientation orthogonal to the optimal one (Fig. 3.8c) known as secondary response

Figure 3.8 Active inhibition This figure illustrates the ways in which active inhibition can shape the
receptive field of a unit. Subfigures (a–d.1) show the optimal excitatory and inhibitory stimuli x+ and x−

of the considered units. Subfigures (a–d.2) show the response images corresponding to the circular test
image (Fig. 3.4a). The small square in the upper left corner represents the size of an input patch. Subfigures
(a–c.3) show a polar plot of the response of the unit to a sine grating. The orientation of the grating varies
along the angular direction, while the radial axis measures the response normalized to the maximum. In
Subfigures (a–c.4) we show for comparison equivalent plots showing the response in spikes/sec of neurons
of the primary visual cortex of the cat [De Valois et al., 1982b]. (a) This unit shows maximal inhibition at
an orientation orthogonal to the optimal excitatory one while there is no inhibition in frequency. The unit
has a relatively broad tuning to both orientation and frequency. (The cell shown in (a.4) has been classified
as simple but seems to be representative for complex cells as well.) (b) Although this unit responds to edges
(as shown by x+), the polar plot reveals that it is not selective for any particular orientation. The unit is
thus classified as non-oriented. There is a slight inhibition at lower frequencies. (c) This unit has inhibitory
flanks with an orientation near to the preferred one. In such a case it is sometimes possible to observe
a second peak of activity appearing at the orthogonal orientation, known in the experimental literature as
secondary response lobe. (d) x+ and x− of this unit have the same orientation but a different frequency.
This results in a very sharp frequency tuning. On the other hand the unit responds to a broad range of
orientations.
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Figure 3.9 Population statistics (a) Distribution or half-height orientation bandwidth in complex cells and
in our simulation. (b) Distribution of the angle between the orientation of maximal excitation and maximal
inhibition. The data from [Ringach et al., 2002] contains simple cells as well as complex cells, which might
explain the more pronounced peak at 90◦. (c) Distribution of half-height frequency bandwidth in complex
cells and in our simulation. The bandwidth is measured by the units’ contrast sensitivity function as in
[De Valois et al., 1982a]. Units whose contrast sensitivity does not drop below 50% of the maximum are
classified in the last bin. (d) Distribution of the directionality index of complex cells and in our simulation
(the data from [De Valois et al., 1982b] also contain simple cells, but in the paper it is stated that there was
no significant difference between the two populations).
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lobe. 9 units out of 100 had this characteristic. (We classify a unit as having a secondary response
lobe if on the orientation tuning curve its output expressed in percentage of the maximal response
decreases from 100% to less than 10% and then it increases again to more than 50% at the orthogonal
orientation.) De Valois et al. [1982b] repeatedly stress that non-orthogonal inhibition is common
among neurons in V1 and show some example cells (one of which is shown in Fig. 3.8c.4). The
fraction of such cells in V1 is not reported. Ringach et al. [2002] measured the relative angle between
maximal excitation and suppression. Figure 3.9b shows the histograms of the angle between maximal
excitation and inhibition in our simulation and in their study. In the latter there is a more pronounced
peak at orthogonal orientations. This difference might be due to the small fraction of complex cells
in the population considered in the paper (24 complex cells out of 75). To draw the histogram the
cells that responded to very low frequencies were discarded. It was not specified how many complex
cells remained in the final set). To the extent simple cells are well described by linear functions, they
are likely to show maximal suppression at 90◦.

Analogous considerations also hold for the frequency domain: here again the tuning varies from a
sustained response within a range of frequencies (Fig. 3.8a) to a sharp tuning due to active inhibition
(Fig. 3.8d). Figure 3.9c shows the distribution of frequency bandwidth in octaves in our simulation
and in complex cells as reported by De Valois et al. [1982a]. The bandwidth was computed from the
units’ contrast sensitivity, like in the cited paper. Complex cells have a rather flat distribution, while
the bandwidth of our units is concentrated between 0.3 and 1.4 octaves with a peak at 0.5 . The reason
for this difference is not yet entirely clear (but see Sect. 3.6.4).

Figure 3.10 shows the joint distribution of frequency and orientation bandwidth in V1 in our sim-
ulation and as reported by De Valois et al. [1982a]. Since the marginal distribution of frequency
bandwidth is different, in our case the data points are more concentrated in the left part of the graph.
However, the two distributions are similar in that they have a large scatter and no strong correlation
between orientation and frequency bandwidth. (The data from [De Valois et al., 1982a] also contains
simple cells. The distribution of frequency and orientation bandwidth was found to be similar in
simple and in complex cells [De Valois et al., 1982a,b], but the correlation of the two variables within
the two groups is not reported.)

End- and Side-Inhibition: Some of the complex cells in V1 are selective for the length (end-inhibited
cells) or width (side-inhibited cells) of their input. While in normal cells the extension of a grating at
the preferred orientation and frequency produces an increase of the response up to a saturation level,
in these cells the response drops if the grating extends beyond a certain limit [DeAngelis et al., 1994].

End- and side-inhibition are present also in our simulation (Fig. 3.11). We computed for each unit a
quantitative measure of its degree of end- or side-inhibition by presenting sine gratings of different
length and width (keeping all other parameters equal to the preferred ones). We define the end- and
side-inhibition index as in [DeAngelis et al., 1994] by the decrease of the response in percent between
optimal and asymptotic length and width, respectively. 10 units out of 100 had an end-inhibition index
greater than 20%, and 7 units out of 100 had a side-inhibition index greater than 20%. In contrast to
[DeAngelis et al., 1994] we found only 2 units that showed large (> 20%) end- and side-inhibition
simultaneously.

End- and side-inhibited units can sometimes be identified by looking directly at the optimal stimuli. In
these cases x+ fills only one half of the window while the missing half is covered by x− with the same
orientation and frequency (Figs. 3.11a.1,b.1). In this way, if we extend the stimulus into the missing
half, the output receives an inhibitory contribution and drops. This receptive field organization is
compatible with that observed in V1 by Walker et al. [1999] in that inhibition is asymmetric and is
tuned to the same orientation and frequency as the excitatory part.
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Figure 3.10 Frequency and orientation bandwidth This figure compares the joint distribution of fre-
quency and orientation bandwidth in our simulation (left) and in [De Valois et al., 1982a] (right). The two
distributions are similar in that they have a large scatter and no strong correlation between orientation and
frequency bandwidth. (The data set on the right contains simple and complex cells. The distribution of ori-
entation bandwidth was found to be similar for both classes, but the correlation of the two variables within
the two groups is not reported.)

A secondary characteristic of end- and side-inhibited cells in V1 is that they are sometimes selective
for different signs of curvature [Dobbins et al., 1987, Versavel et al., 1990]. This can be observed in
our simulation, for example in Figure 3.11b.2: the dashed circles indicate two opposite curvatures.
One of them causes the unit to respond strongly while the other one inhibits it.

Direction selectivity: Complex cells in V1 are sensitive to the motion of the presented stimuli. Some of
them respond to motion in both directions while others are direction selective [Hubel and Wiesel,
1962, Schiller et al., 1976a, De Valois et al., 1982b, Gizzi et al., 1990]. Similarly, in our model some
units are strongly selective for direction (Fig. 3.12) while others are neutral. In the latter case the
optimal speed may be non-zero but the response is nearly equal for both directions.

We measure direction selectivity by the directionality index given by DI = (1 − Rnp/Rp) · 100
with Rp and Rnp being the response in the preferred and in the non-preferred direction, respectively
[Gizzi et al., 1990]. The index is 0 for bidirectional units and 100 for units that respond only in one
direction of motion. Figure 3.9d shows the histogram of DI in our simulation compared to three
distributions from the physiological literature. The distributions are quite similar, although there is a
more pronounced peak for bidirectional units. (See Sect. 3.6.5 for additional remarks.)

Tonic cells: The first unit in every simulation codes for the mean pixel intensity and is thus comparable
to the tonic cells found in V1 [Schiller et al., 1976a]. Tonic cells respond to either bright or dark
stimuli but do not need a contour in order to respond. We find in addition one unit (the second one)
that responds to the squared mean pixel intensity and therefore to both bright and dark stimuli. (See
Sect. 3.6.6 for additional remarks.)

Response to complex stimuli: As can be inferred from the invariances (Sect. 4.5), some units give a near-
optimal output (> 80% of the optimum) in response to corners and T-shaped stimuli and are related
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Figure 3.11 End and side inhibition This figure illustrates end- and side-inhibition in our simulation.
Subfigures (a–b.1) show the optimal stimuli x+ and x− of the considered units. Subfigures (a–b.2) show
the response image corresponding to a hexagonal test image (Fig. 3.4b). The small square in the upper left
corner represents the size of an input patch. Subfigures (a–b.3) show the response of the unit to a sine grating
with varying length or width, respectively. For comparison, equivalent plots of the response in spikes/sec
of end- and side-inhibited complex cells published in [DeAngelis et al., 1994] are shown in Subfigures (a–
b.4). The four curves (a–b.3, a–b.4) have similar shapes and mainly differ in their inhibition index (the ratio
between maximal and asymptotic response), which has a broad distribution in all four cases. (a) This unit
is end-inhibited. The optimal stimuli indicate how the receptive field is organized: the optimal excitatory
stimulus only fills one half of x+while the missing half is in x−. Inhibition is thus asymmetric and tuned
to the same orientation and frequency as excitation in agreement with [Walker et al., 1999]. Going from
left to right, the first arrow in the hexagonal response image indicates the point of maximal response, when
only the right part of the input window is filled. In the region indicated by the second arrow the grating fills
the whole input window; the response is decreased, which corresponds to end-inhibition. The third arrow
indicates the region where only the left part of the input window is filled, and the unit is inhibited. (b) A
side-inhibited unit. The interpretation of x+ and x− and of the arrows is similar to that in a), except that
the grating extends laterally, which corresponds to side-inhibition. The two dashed circles surround two
regions with opposite curvature. The unit responds strongly in one case and is inhibited in the other, which
indicates curvature selectivity.
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Figure 3.12 Direction selectivity This figure shows a direction selective unit. See the caption of Fig. 3.8
for the description of the subfigures. The two wavelets in x+ at time t and at time t + ∆t are identical
except for a phase shift. This means that the unit responds best to a moving edge. This is confirmed by the
response image, which shows different responses at opposite points of a ring. At those points the orientation
is equal but the grating is moving in opposite directions.
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to the V1-cells described in [Shevelev, 1998]. In a physiological experiment these stimuli could be
classified as the optimal ones if the contrast instead of the energy is kept constant (for example, a T-
shaped stimulus has a larger energy than a bar with the same length and contrast). Other units respond
to one sign of curvature only. These behaviors are often associated with end- or side-inhibition, as
described above. In a few cases the two wavelets in the optimal stimuli have a slightly different
orientation or frequency at time t and at time t + ∆t, which indicates a more complex behavior in
time, such as selectivity for rotation or zoom.

Relations between slowness and behavior: Although the precise shape and order of the units can vary
in different simulations, there seem to be relations between the slowness of unit responses and the
receptive field properties. The slowest units are usually less selective for orientation and frequency,
have orthogonal inhibition, and their preferred speed is near zero. Units with non-orthogonal inhi-
bition, direction selectivity, and end- or side-inhibition predominate in a faster regime. It would be
interesting to see if similar relations can also be found experimentally by comparing the temporal
variation of the response of a neuron stimulated by natural scenes and its receptive field properties.
We could not find any relation between preferred orientation and slowness.

3.4 Control experiments

We performed a set of control experiments in order to assess the role of spatial transformations, the statistics
of the input images, dimensionality reduction, and asymmetric decorrelation in our results.

3.4.1 Control Experiment 1

In this first set of simulations we investigated the role of the three spatial transformations used in our simu-
lation: translation, rotation, and zoom. The settings for these experiments are identical to those of the main
simulation described in Section 3.3 except for the fact that to achieve a reasonable total simulation time the
input vectors consisted of single frames (instead of pairs of consecutive frame). The input dimensionality is
reduced accordingly to N = 50, so that the proportion between input and reduced dimensions is the same as
in the main simulation. We analyzed the first 50 units for each experiment. We performed a first simulation
to be used as a reference using all three spatial transformations, followed by six simulations where only
one or two transformations where used: translation only, rotation only, zoom only, translation and rotation,
translation and zoom, rotation and zoom. The parameters used for the transformations are the same as in
the main simulation.

Figure 3.13a–h shows the optimal excitatory stimuli of all seven simulations. It can be seen that optimal
stimuli similar to Gabor wavelets appear only in simulations with translation, including the one with only
translation. Sine grating experiments show that all units have phase shift invariance (all relative modulation
rates are smaller than 0.27). Translation is thus a necessary and sufficient spatial transformation to obtain
complex cell receptive fields from natural images with SFA. On the other hand, the optimal stimuli in
the simulation with only translation seem to occupy the whole patch in contrast to the more localized
optimal stimuli in the simulations where translation is combined with the other transformations. Zoom
and especially rotation are necessary to obtain more localized receptive fields. (This is not directly evident
from Fig. 3.13 because of the small number of optimal stimuli shown. Images containing more optimal
stimuli can be found online; see Additional Material.) In simulations including translation but no rotation,
the distribution of orientation bandwidth is skewed towards small bandwidths. High bandwidths therefore
seem to be a consequence of the amount of rotation included in the simulation, as one would expect since
it results in an improved tolerance to changes in orientation.
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Figure 3.13 Control Experiments 1 and 2 This figure shows the optimal excitatory stimuli of Units 15–
30 for Control Experiment 1 and 2. One or more icons representing the spatial transformations applied in a
particular experiment are displayed on the top of each plot. A legend for the icons can be found in (e). (a–h)
Optimal excitatory stimuli for Control Experiment 1. In this set of experiments we investigated the role of
the three spatial transformations used in our simulation. The input image sequences were constructed from
natural images, like in the main simulation, and all combinations of one, two, or three spatial transforma-
tions were applied. The results show that translation is a necessary and sufficient spatial transformation to
obtain complex cell characteristics. (i–p) Optimal excitatory stimuli for Control Experiment 2. In this set
of experiments we investigated the role of the spatial statistics of natural images in our results. The input
images were replaced by colored noise images with a power spectrum equal to that of natural images. The
results suggest that spatial second order statistics are sufficient to obtain complex cell characteristics.
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Functions learned with rotation only and with both rotation and zoom show optimal stimuli with a
circular structure [cf. Kohonen et al., 1997]. Functions learned with zoom only have optimal stimuli with
small white/black spots in the center of the receptive field. These two last receptive field structures are not
found in V1.

3.4.2 Control Experiment 2
In this set of experiments we investigated the role of the spatial statistics of natural images in our results.
The settings are identical to those of Control Experiment 1 except that instead of natural images we used
colored noise images with a 1/f2 power spectrum, similar to the one shown in Figure 3.13m. The statisti-
cal properties of such images are equivalent to those of natural images up to the second order [Ruderman
and Bialek, 1994, Dong and Atick, 1995b]. For each experiment we generated 36 new noise images that
replaced the natural ones. The results of these experiments were almost identical to those of Control Exper-
iment 1. The experiments including translation show Gabor-like optimal stimuli (Fig. 3.13i–p) and phase
shift invariance. All relative modulation rates are smaller than 0.14 except for two units (one in the ex-
periment with all transformations and one in the experiment with translation and rotation), which have a
modulation rate of 1.47 and 1.53, respectively. The distributions of the various parameters are very similar
to those obtained in Control Experiment 1. This suggests that spatial second order statistics are sufficient to
learn complex cell receptive fields. In principle our model considers spatial statistics up to the fourth order,
since SFA uses the matrices A and B (Eq. 2.38), that contain products of monomials of degree 2.

3.4.3 Control Experiment 3
This experiment was performed in order to exclude an influence of the dimensionality reduction on our
results. (See also Sect. 3.6.1.) The settings of the simulation are identical to those used in the main sim-
ulation except that the input vectors consisted in single frames only and, most importantly, that the input
patches were 10 × 10 pixels large and no dimensionality reduction was performed. The translation speed
was reduced by 10/16th, so that the proportion with the patch size was preserved. The first 100 units were
analyzed.

The first two units were classified as tonic units. All other units have Gabor-like optimal stimuli
(Fig. 3.14) and phase shift invariance (maximum modulation rate 0.23) excluding Unit 9 and 10 which
are described below. Units 4 and 11 have checkerboard-like optimal excitatory stimuli. Further analysis
reveals that they are non-oriented units that only respond to very high frequencies. Units 9 and 10 have
optimal excitatory stimuli with one bright region in a corner. The optimal inhibitory stimuli are similar, but
their bright corner is opposite to the excitatory one. The role of these units is unclear, but it is possible that
they give a nonlinear response to a luminance gradient along the diagonal.

This experiment shows that the learning of complex cells receptive fields is not a consequence of the
dimensionality reduction step.

3.4.4 Control Experiment 4
In our mathematical formulation of the slowness principle the units are learned “one after the other” (Con-
straint 2.16) in the sense that in an online implementation of SFA the units would be learned using an
asymmetric decorrelation term, i.e. unit j would be adapted to optimize the slowness objective (2.13) and
to be decorrelated to all units i with i < j. In a biological system it might seem more realistic to use
symmetric decorrelation, where each unit is adapted to optimize (2.13) and to be decorrelated to all other
units.

In this control experiment we relax Constraint (2.16) and mix the units of the main simulation by an
orthonormal transformation. The resulting units still satisfy Constraints (2.14–2.16) and span the slowest
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Figure 3.14 Control Experiment 3 This figure shows the optimal excitatory stimuli of Units 1–50 for
Control Experiment 3. This experiment was performed without dimensionality reduction in order to exclude
a possible influence on the main simulation’s results. The results show that the learning of complex cell
receptive fields is not a consequence of the dimensionality reduction step.

subspace, i.e. they minimize the total variance of the derivative in a 100-dimensional subspace. However,
the asymmetry that is inherent in the algorithm and induces the order is no longer effective, so that none of
the units is distinguished over the others anymore.

All resulting units have Gabor-like optimal stimuli and phase-shift invariance (maximum modulation
rate 0.37) and would thus be classified as complex cells. However, their response images are more un-
structured than in the main simulation and they sometimes show a few peaks at different orientations and
frequencies, which is not consistent with the behavior of complex cells (see for example the plots reported
in [Ringach et al., 2002]). Moreover, the distribution of orientation bandwidth is skewed towards small
bandwidths, and in the distribution of the relative angle between excitation and suppression the peak at
90 degree is missing and there is a maximum at 45 degree. It thus seems that asymmetric decorrelation
is necessary to obtain the more structured results found in the main simulation. Note, however, that every
breaking in the symmetry of decorrelation would make the units converge to the asymmetric solution. Since
perfect symmetry is difficult to enforce in a biological system, the asymmetric case might be more realistic.

3.5 Discussion
In this chapter we have shown that SFA applied to natural image sequences learns a set of functions that
has a good qualitative and quantitative match with the population of complex cells in V1. In the following
section we discuss other theoretical models of complex cells. In Section 3.5.2 we discuss the properties of
the chosen function space, present a neural network architecture equivalent to a given polynomial of degree
2, and compare it with the neural networks used in other studies. We conclude with some remarks about
other learning rules.

3.5.1 Other theoretical studies
Several theoretical studies have successfully reproduced the basic properties of simple cells [Olshausen
and Field, 1996, Bell and Sejnowski, 1997, Hoyer and Hyvärinen, 2000, Szatmáry and Lõrincz, 2001, Ol-
shausen, 2002, Einhäuser et al., 2002, Hurri and Hyvärinen, 2003a] or complex cells [Hyvärinen and Hoyer,
2000, Körding et al., 2004] in models based on the computational principles sparseness [Olshausen and
Field, 1996, Olshausen, 2002], statistical independence [Bell and Sejnowski, 1997, Hoyer and Hyvärinen,
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2000, Hyvärinen and Hoyer, 2000, Szatmáry and Lõrincz, 2001], or slowness [Einhäuser et al., 2002, Hurri
and Hyvärinen, 2003a, Körding et al., 2004]. Among the simple cell models, two included direction selec-
tivity [Olshausen, 2002, Szatmáry and Lõrincz, 2001], two color-selectivity [Hoyer and Hyvärinen, 2000,
Einhäuser et al., 2002], and one disparity [Hoyer and Hyvärinen, 2000]. Most of these models focused on
one particular aspect of the behavior of cells in V1. In particular the two complex cell models [Hyvärinen
and Hoyer, 2000, Körding et al., 2004] learned units that were equivalent to the classical model and thus
reproduced only the Gabor-like receptive fields and the phase shift invariance. One important limitation of
these models was that they assumed linear or nonlinear but simple neural network architectures that belong
to a function set much smaller than the one we consider (see Sect. 3.5.2). None of the nonlinear models
included inhibition while many of the illustrated complex cell behaviors are impossible to obtain without it.

Hashimoto [2003] learned quadratic forms (without the linear term) from natural image sequences using
three computational principles: independent component analysis (ICA), a gradient descent variant of SFA,
and an objective function that maximizes the sparseness of the derivatives of the output. In the experiments
performed using ICA she obtained a set of units corresponding to the squared output of simple cells. The
results obtained with the gradient descent variant of SFA showed a few units with complex cell properties
while most of them were not structured. Although it is difficult to make a direct comparison since only the
largest eigenvectors of two of the quadratic forms are reported, these results are in contradiction with the
ones presented here. It is possible that the size of the input patches (8×8 pixel) was too small in comparison
with the transformations of the image sequences that were used, so that two consecutive frames would have
had almost no correlation. It is also possible that the gradient descent converged to a local minimum. In this
respect it would be interesting to compare the β-value of the quadratic forms. The experiments performed
by maximizing the sparseness of the derivatives learned some units with complex cell properties (including
a few with structured inhibition) and others with the characteristics of squared simple cells. These results
seemed in general more structured than the ones obtained with the SFA variant. It would be interesting to
explore the relation between these two objective functions further.

The studies mentioned up to now learned visual receptive fields directly from the pixel intensities of
natural images or movies. Zetzsche and Röhrbein [2001] on the other hand considered as an input the
response of a set of artificial simple cells (i.e. linear Gabor wavelets, whose outputs were split into an ON
(positive) and an OFF (negative) pathway by half-wave rectification). The two pathways were then used
as an input to PCA or to ICA. The main result of the paper is that PCA applied to the output of Gabor
wavelets having the same orientation and frequency but different positions in the visual field learns units
with simple- and others with complex-cell characteristics. Additionally, some units of both classes showed
end-inhibition. Another experiment performed by applying ICA to the output of Gabor wavelets with same
orientation, different positions, and even- and odd-symmetric filter properties produced simple cells, some
of which were end-inhibited and others side-inhibited. It is known that the Gabor wavelets used to form
the first layer can be learned directly from natural images, for example by ICA, so that these results could
in principle be obtained directly from pixel intensities. In this case, however, an additional criterion should
be provided to group the resulting wavelets, so that only the ones with equal orientation and frequency are
connected to a second-layer unit.

To our knowledge the model presented here is the first one based directly on input images that is able
to learn a population of units with a rich repertoire of complex cell properties, such as active inhibition,
secondary response lobes, end-inhibition, side-inhibition, direction selectivity, tonic cell behavior, and cur-
vature selectivity.

3.5.2 Function space and equivalent network architecture

We performed SFA on the function space F of all polynomials of degree 2 mainly because of limited
computational resources. In principle one would like to consider a function space as large as possible. On
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the other hand, neurons have computational constraints, too, and thus considering too large a set could
lead to unrealistic results. This leads to an interesting question: Which functions of its input can a neuron
compute? In other words, in which function space does the input-output map of a neuron lie?

Lau et al. [2002] have fitted the weights of a nonlinear 2-layer neural network to the output of complex
cells. They found that the relation between the linear output of the subunits and the output of the complex
cell is approximately quadratic (mean exponent 2.3±1.1). This result describes which functions the neurons
do compute and not which ones it could compute, which would determine the function space. It suggests,
however, that considering the space of polynomials of degree 2 might be sufficient. Kayser et al. [2003]
adapted the weights and the exponents of a neural network similar to the classical model of complex cells
using an objective function based on the slowness principle (but see Sect. 3.5.3 for some remarks regarding
the definition of slowness). The exponent of most of the units converged to 2. This experiment also suggests
that quadratic nonlinearities might be an appropriate choice in our context. Polynomials of degree 2 also
correspond to a Volterra expansion up to the second order of the spatio-temporal receptive field of a neuron
[see e.g. Dayan and Abbott, 2001, Sect. 2.2] when time is discretized in small steps. Such an approximation
has been used with some success to describe complex cells [e.g. Touryan et al., 2002].

As shown later in Section 4.9, each polynomial of degree 2 can be written as a two layer neural network
(Fig 3.15a). The first layer is formed by a set of N linear subunits sk(x) = vT

k x followed by a quadratic
nonlinearity weighted by some coefficients µk/2 (vk and µk are the eigenvectors and eigenvalues of the
quadratic term H of the corresponding quadratic form, cf. Sect. 3.2.2). The output neuron sums the con-
tribution of all subunits plus the output of a direct linear connection from the input layer. The coefficient
can be negative, so that some of the subunits give an inhibitory contribution to the output. The equivalent
neural network clarifies the relation between the general case of polynomials of degree 2 (Fig. 3.15a) and
the smaller neural networks used in in standard studies in the field [Hyvärinen and Hoyer, 2000, Hyvärinen
and Hoyer, 2001, Körding et al., 2004, see also Sect. 3.5.1]. Those models usually rely either on linear
networks, which lie in the space of polynomials of degree 1, or on networks with one layer of 2 to 25 linear
units followed by a quadratic nonlinearity (Fig. 3.15b), which form a small subset of the space of poly-
nomials of degree 2. These networks differ from polynomials of degree 2 in that they lack a direct linear
contribution to the output and have fewer subunits: in our study each learned function has N = 100 sub-
units, which is much larger than the fixed numbers used in the studies mentioned above. The most important
difference, however, is related to the normalization of the weights. In the theoretical studies cited above the
weights are normalized to a fixed norm and the activity of the subunits is not weighted. In particular, since
there are no negative coefficients, no inhibition is possible.

The equivalent neural network shows that the choice of the space of all polynomials of degree 2 is
compatible with the hierarchical organization of the visual cortex first proposed by Hubel and Wiesel [Hubel
and Wiesel, 1962] in the sense that every learned function can be implemented by a hierarchical model
similar to the energy model (Fig. 3.1b). The additional excitatory or inhibitory subunits might introduce
additional complex cell invariances, broaden or sharpen the orientation and frequency tuning, and provide
end- or side-inhibition. The learning of the linear subunits would be modulated by the application of the
slowness principle to the complex cell. According to this interpretation, the subunits would correspond to
simple cells, and their receptive fields should thus look like Gabor wavelets. However, the neural network
architecture is not unique and the subunits can assume different forms many of which might not be similar
to simple cells (Sect. 4.9 and Fig. 4.11).

A possible alternative would be that simple cells are learned by a parallel computational principle and
then grouped and weighted by the slowness principle in order to form complex cells. A similar distinct
grouping step has been used in [Zetzsche and Röhrbein, 2001] and [Hurri and Hyvärinen, 2003b]. Compu-
tational principles that have led to simple cells are sparseness, statistical independence, and slowness (see
Sect. 3.5.1).

Although the function space of polynomials of degree 2 is mathematically attractive and has proved
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Figure 3.15 Equivalent neural network In the plots we assume that the norm of the subunits is normal-
ized to 1, i.e. ‖vi‖ = 1. The ellipse in the input layer represents a multidimensional input. (a) Neural
network architecture equivalent to a polynomial of degree 2. The first layer consists of linear subunits
whose outputs are squared and weighted. The output neuron on the second layer sums the contribution of
all subunits and the output of a direct linear connection from the input layer (cf. Sect. 4.9). (b) Simpler neu-
ral network used in some theoretical studies. The output of the linear subunits is squared but not weighted
and can only give an excitatory (positive) contribution to the output. There is no direct linear connection
between input and output layer.

to be appropriate in experimental and theoretical studies as discussed above, it is not able to encompass
all input-output nonlinearities of visual neurons. Contrast gain control [Ohzawa et al., 1982], which has a
divisive effect on the input, saturation effects, or pattern adaptation are some examples of nonlinear effects
present in the visual cortex that cannot be realized.

3.5.3 Relation to other learning rules

As mentioned before in Section 2.2 the definition of slowness in the present work (Sect. 2.3.1) and that given
in other models of the primary visual cortex [Einhäuser et al., 2002, Hurri and Hyvärinen, 2003a, Körding
et al., 2004] are different to some extent. In [Körding et al., 2004] the weights of neural networks equivalent
to the classical model of complex cells are adapted by gradient descent in order to optimize a decorrelation
and a slowness term. The slowness term is defined by the mean of the ∆-values in Equation (2.13). If
one fully enforces the decorrelation constraint (Eq. 2.16), the units found by this rule lie in the subspace
of the most slowly varying functions, but they are unique only up to an orthogonal transformation, i.e. by
mixing the resulting functions through a rotation (in the space of polynomials) one would find different
but equally optimal units. In the cited paper, however, the architecture of the neural networks imposes
additional constraints in the sense that the polynomials that the networks can compute form a subset and
not a subspace of the space of polynomials of degree 2. This implies that an arbitrary rotation could lead
to functions that do not lie in the subset and are thus not representable by such neural networks (Körding
2003, personal communication). This argument shows that the two objective functions are different in some
aspects.

It is interesting to notice that in our model the learning rule at the level of the subunits in the equivalent
neural network is similar to the one proposed by Hurri and Hyvärinen [2003a] plus some cross-correlation
terms. As shown in Section 3.6.7 if we consider a neural network like that of Figure 3.15b and we expand
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the SFA objective function (Eq. 2.13) at the level of the subunits, we obtain the equivalent objective function

N ′∑
i=1

si(t)2si(t− 1)2 +
N ′∑

i,j=1
i6=j

si(t)2sj(t− 1)2 , (3.2)

which has to be maximized (si(t) is the activity of subunit i at time t). The first term of Equation (3.2) is
equal to the objective function proposed by Hurri and Hyvärinen [2003a] in the case f(y) = y2 (Sect. 2.2),
i.e. in the case where the energy of the output of a unit has to be similar at successive time steps. Hurri
and Hyvärinen [2003a] showed that this learning rule applied to natural video sequences learn simple-cell
receptive fields. The second term of Equation (3.2) maximizes the coherence of the energy of different
subunits at successive time steps. As a consequence, the subunits are encouraged to code for frequently
occurring transformations of the features represented by the others. According to this analysis, it is tempting
to conclude that temporal slowness at the level of complex cells modulates temporal coherence at the level
of simple cells.

As mentioned in Section 1.1, another proposed computational principle is based on the sparseness of
the output of a cell or on the independence of the outputs of a set of cells, which turns out to be equivalent
in this context [Hyvärinen et al., 2001, Chap. 21.2]. The sparseness of a code can be measured by its
kurtosis, where higher kurtosis corresponds to a sparser code [Willmore and Tolhurst, 2001]. Interestingly,
the kurtosis of our units (mean kurtosis 12.85± 3.46) is much higher than that of their input (mean kurtosis
0.42 ± 0.04). This is due to the selectivity characteristics of the units. They can therefore take advantage
of the benefits of a sparse representation without being explicitly optimized for it. Figure 3.16 shows an
excerpt of the activity trace of a unit and the distribution of its output in response to 400,000 test frames.
In a complex cell in V1 the activity would be half-rectified at some threshold since the firing rate cannot be
negative.

Statistical independence can be defined on the basis of higher order statistics, like in the studies cited
above, or on the basis of second order temporal statistics of the input signals. In this case, the correlation
between different input signals at different time delays is minimized [Molgedey and Schuster, 1994, Be-
louchrani et al., 1997, Ziehe and Müller, 1998]. Blaschke et al. [2004] investigated the relation between
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Figure 3.16 Units activity (a) Excerpt of the activity trace of Unit 5. In a complex cell in V1, the
activity would be half-rectified at some threshold since the firing rate cannot be negative. In the plot, the
spontaneous activity level has been put to zero, and negative values corresponding to inhibition have been
plotted in gray. (b) Distribution of the activity of Unit 5 in response to 400,000 test frames. The kurtosis of
the output of this unit is 19.74, which is much higher than that of its input (mean kurtosis 0.42± 0.04).
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SFA and second order ICA and proved that in the linear case if only one time delay is considered the two
methods are equivalent.

3.5.4 Conclusion
In summary we have shown that slowness leads to a great variety of complex cell properties found also in
physiological experiments. Our results demonstrate that such a rich repertoire of receptive field properties
can be accounted for by a single unsupervised learning principle. They also suggest a relation between the
behavior of a neuron and the slowness of its output. It will be interesting to see whether this prediction
will be confirmed experimentally. Earlier modeling studies with SFA [Wiskott and Sejnowski, 2002] have
shown that translation, scale, and other invariances can also be learned for whole objects in a hierarchical
network of SFA-modules: When trained with moving random 1D objects, such a network learns to represent
the what and the where information (i.e. the identity and position) of novel objects in an invariant fashion,
results that have been derived also analytically in [Wiskott, 2003b]. This suggests that slowness might be a
rather general learning principle in the visual systems.
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3.6 Technical remarks to Chapter 3

3.6.1 Dimensionality reduction by PCA

In our model the dimensionality of the input vectors is reduced by PCA. This corresponds to a low pass
filtering of the input patches, since the principal components of natural images are linear filters of increasing
frequency [Hancock et al., 1992, Field, 1994]. The exact form of the filters learned in the PCA step, how-
ever, is completely irrelevant (and thus not shown), since SFA is independent of any linear transformation of
its input. An arbitrary linear mix of the principal components would lead to identical results. Due to the self-
similar structure of natural images [Ruderman and Bialek, 1994, Dong and Atick, 1995b], it is in principle
equivalent to work with low-pass filtered large patches or with small patches with no preprocessing. Large,
low-pass filtered patches, however, are smoother and easier to analyze, especially in experiments with drift-
ing sine gratings. In smaller patches, higher frequencies are represented as alternating positive and negative
values. This raw sampling has undesired effects especially for diagonal orientations, where the highest
frequencies assume a checkerboard-like appearance whose orientation is often ambiguous. Moreover, the
anisotropy due to the square shape of the pixels has more influence on measurements. Control Experi-
ment 3 (Sect. 3.4.3) shows that there is no major qualitative difference between results obtained with large,
low-passed filtered patches or with smaller unprocessed patches.

3.6.2 Receptive field localization

The optimal stimuli are somewhat localized (Fig. 3.3), especially for end- or side-inhibited units. However,
their size is necessarily relative to that of the input patches (i.e. by making the input patches larger we would
expect to obtain larger optimal stimuli), since there is nothing in the algorithm nor in the statistics of natural
images that would define an absolute scale. This is analogous to what happens in the linear case for PCA,
which also produces a set of filters extending over the whole image patches when applied to natural images.
In contrast, the wavelets learned by independent component analysis (ICA) [e.g. Bell and Sejnowski, 1997]
are more localized and do not scale with input patch size (but might depend on the resolution used, since
the frequencies of the learned filters seem to cluster around the highest possible frequency). The difference
between PCA and ICA suggests that by replacing the decorrelation constraint (Eq. 2.16) (like in PCA) with
an independence constraint (like in ICA) we might expect to find more localized filters with a fixed absolute
scale.

3.6.3 Inhibition in cortical neurons

The exact shape and tuning of inhibition in cortical neurons is usually difficult to determine experimentally
from the firing rate, which cannot be negative. Experiments studying inhibition must rely on the membrane
potential, increase the neuron’s firing by superimposing a “conditioning stimulus”, or block inhibition with
pharmacological manipulations. Each of these methods has specific drawbacks. For example adaptation to
the conditioning stimulus influences the orientation tuning of the neurons [Dragoi et al., 2001]. Ringach
et al. [2002] applied a new reverse correlation technique and found that suppression and enhancement
have similar magnitudes and that peak enhancement tends to be slightly larger than suppression. This
is compatible with our results (note that peak enhancement is larger by construction). They also showed a
positive correlation between suppression and orientation selectivity. Since they used non-localized, oriented
stimuli, it is impossible to say if inhibition was oriented or localized. It was also not possible to make precise
statements on the feedback/feedforward or broadly/narrowly tuned structure of inhibition, although it was
found to be compatible with a tuned, feedforward, additive inhibition like the one present in our model.
Walker et al. [1999] showed that the inhibitory part of end- and side-inhibited cells in V1 is localized and
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oriented, which is compatible with our results (Sect. 3.3). In the two cells reported in [Walker et al., 1999]
the inhibitory part has also the same orientation- and frequency-tuning than the excitatory part.

3.6.4 Frequency tuning, digitalization, and dimensionality reduction

The difference between the two distributions of frequency bandwidths in Figure 3.9c might be partly due
to digitalization and dimensionality reduction. Our input patches are 16 × 16 pixels large, which means
that the maximal bandwidth of our units is 3 octaves (from 1 to 8 cycles per patch, somewhat more on the
diagonal). However, we reduced the number of input dimensions to 100 for both time steps using PCA,
i.e. there are about 50 components per input patch (assuming that the two patches are independent). Since
the principal components of natural images are linear filters of increasing frequency (see Sect. 3.6.1) we
are only considering the 7 × 7 central Fourier components (because we have 50 = 7 · 7 + 1 principal
components). This corresponds to frequencies from 1 to 4 cycles/patch, and thus to at most 2 octaves. The
actual bandwidth would in general be much smaller because to reach the theoretical limit the response of a
unit at the two extreme frequencies of 1 and 4 cycles/patch would need to be exactly half of the maximum
response. Simulations with a higher number of input components could yield a broader distribution.

3.6.5 Direction selectivity and velocity distribution

We observed in other simulations (data not shown) that the distribution of the direction selectivity index
depends on the distribution of velocities in the input sequences. Direction selectivity disappears for a
velocity distribution including mostly very small translations and increases if it is skewed toward larger
translations. A better estimation of the real-world distribution of velocities (both of the observer and of the
environment) could improve the match between the histograms. One would perhaps need to increase the
size of the input patches, since it limits the maximum velocity.

3.6.6 Tonic cells

The first two units in our simulation code for the mean pixel intensity and for the squared mean pixel
intensity. It might be argued that the fact that the first two units code for such simple features argues
against the slowness principle, because they might seem “uninteresting” when compared with successive
units described in Section 3.3. However, although simple, the features coded by the first two cells might be
fundamental ones, just like the first terms in a Taylor expansion.

3.6.7 Derivation of the relation to temporal coherence

As proved in [Blaschke et al., 2004], if the first derivative is approximated by the time difference
ẏj(t) ≈ yj(t)− yj(t− 1) it is equivalent to minimize Equation (2.13) or to maximize the expression

〈yj(t)yj(t− 1)〉t , (3.3)

since

〈ẏ2
j 〉t = 〈(yj(t)− yj(t− 1))(yj(t)− yj(t− 1))〉t

= 〈yj(t)2〉t + 〈yj(t− 1)2〉t − 2〈yj(t)yj(t− 1)〉t
= 2− 2〈yj(t)yj(t− 1)〉t ,

(3.4)

where in the last step we applied the unit variance constraint (2.15).
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For a neural network like that shown in Figure 3.15b we can express Equation (3.3) at the level of the
subunits by expanding the output yj :

〈yj(t)yj(t− 1)〉t =

〈 N ′∑
k=1

sk(t)2

 N ′∑
l=1

sl(t− 1)2

〉
t

=

〈
N ′∑

k,l=1

(
sk(t)2sl(t− 1)2

)〉
t

=

〈
N ′∑

k=1

(
sk(t)2sk(t− 1)2

)〉
t

+

〈
N ′∑

k,l=1
k 6=l

(
sk(t)2sl(t− 1)2

)〉
t

,

(3.5)

where in the last step we split the sum over all terms into one sum over all terms with equal indices and one
sum over all terms with different indices. N ′ is the number of the subunits.

As discussed in Section 3.5.2, the first term is equal to the objective function proposed by Hurri and
Hyvärinen [2003a] and maximizes the correlation of the energy of the output of each subunit, while the
second term maximizes the correlation of the energy of the output of different subunits.



Chapter 4

Analysis and interpretation
of inhomogeneous quadratic forms
as receptive fields

4.1 Introduction
Recent research in neuroscience has seen an increasing number of extensions of established linear tech-
niques to their nonlinear equivalent, in both experimental and theoretical studies. This is the case, for
example, for spatio-temporal receptive-field estimates in physiological studies [e.g. Touryan et al., 2002,
Rust et al., 2004] and information theoretical models like principal component analysis (PCA) [Schölkopf
et al., 1998] and independent component analysis (ICA) (see [Jutten and Karhunen, 2003] for a review).
Additionally, new nonlinear unsupervised algorithms have been introduced, like, for example, slow feature
analysis (SFA) [Wiskott and Sejnowski, 2002]. The study of the resulting nonlinear functions can be a
difficult task because of the lack of appropriate tools to characterize them qualitatively and quantitatively.

To analyze the results of the model of self-organization of complex-cell receptive fields presented in
Chapter 3 we have developed some of these tools to analyze quadratic functions in a high-dimensional
space. Because of the complexity of the methods we describe them here in a separate chapter. The resulting
characterization is in some aspects similar to that given by physiological studies, making it particularly
suitable to be applied to the analysis of nonlinear receptive fields.

We are going to focus on the analysis of the inhomogeneous quadratic form

g(x) =
1
2
xT Hx + fT x + c , (4.1)

where x is an N -dimensional input vector, H an N × N matrix, f an N -dimensional vector, and c a
constant. Although some of the mathematical details of this study are specific to quadratic forms only,
it should be straightforward to extend most of the methods to other nonlinear functions while preserving
the same interpretations. In other contexts it might be more useful to approximate the functions under
consideration by a quadratic form using a Taylor expansion up to the second order and then apply the
algorithms described here.

Table 4.1 lists some important terms and variables used throughout the chapter. We will refer to
1
2 xT Hx as the quadratic term, to fT x as the linear term and to c as the constant term of the quadratic form.
Without loss of generality we assume that H is a symmetric matrix, since if necessary we can substitute

47
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H in Equation (4.1) by the symmetric matrix 1
2 (H + HT) without changing the values of the function

g. We define µ1, . . . , µN to be the eigenvalues to the eigenvectors v1, . . . ,vN of H sorted in decreasing
order µ1 ≥ µ2 ≥ . . . ≥ µN . V = (v1, . . . ,vN ) denotes the matrix of the eigenvectors and D the diagonal
matrix of the corresponding eigenvalues, so that VT HV = D. Furthermore, 〈·〉t indicates the mean over
time of the expression included in the angle brackets.

N Number of dimensions of the input space.
〈·〉t Mean over time of the expression between the two brackets.
x Input vector.

g, g̃ The considered inhomogeneous quadratic form and its restriction to a
sphere.

H,hi N × N matrix of the quadratic term of the inhomogeneous quadratic
form (Eq. 4.1) and i-th row of H (i.e. H = (h1, . . . ,hN )T ). H is
assumed to be symmetric.

vi, µi i-th eigenvector and eigenvalue of H, sorted by decreasing eigenvalues
(i.e. µ1 ≥ µ2 ≥ . . . ≥ µN ).

V,D The matrix of the eigenvectors V = (v1, . . . ,vN ) and the diagonal
matrix of the eigenvalues, so that VT HV = D.

f N -dimensional vector of the linear term of the inhomogeneous
quadratic form (Eq. 4.1).

c Scalar value of the constant term of the inhomogeneous quadratic form
(Eq. 4.1).

x+,x− Optimal excitatory and inhibitory stimuli, ‖x+‖ = ‖x−‖ = r.

Table 4.1 Definition of some important terms This table lists the definition of the most important terms
and the basic assumptions of this chapter.

In the next section we introduce the model system that we are going to use for illustration throughout
this chapter. Section 4.3 describes two ways of analyzing a quadratic form by visualizing the coefficients
of its quadratic and linear term directly and by considering the eigenvectors of its quadratic term. We then
present in Section 4.4 an algorithm to compute the optimal excitatory and inhibitory stimuli, i.e. the stimuli
that maximize and minimize a quadratic form, respectively, given a fixed energy constraint. In Section 4.5
we consider the invariances of the optimal stimuli, which are the transformations to which the function is
most insensitive, and in the following section we introduce a test to determine which of these are statistically
significant. In Section 4.7 we discuss two ways to determine the relative contribution of the different terms
of a quadratic form to its output. Furthermore, in Section 4.8 we consider the techniques described above in
the special case of a quadratic form without the linear term. In the end we present in Section 4.9 a two-layer
neural network architecture equivalent to a given quadratic form.

4.2 Model system

To illustrate the analysis techniques presented here we make use of the quadratic forms that result from a
simulation similar to that of Chapter 3 and presented in [Berkes and Wiskott, 2002]. The units learned in
that simulation receive as input only one frame of the image sequence and are thus more appropriate to
illustrate the analysis methods, since they are easier to visualize and interpret. In this section we summarize
the settings and main results of this simulation.
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We generated image sequences from a set of natural images by translation, rotation, and zoom as de-
scribed in Section 3.2. The size of the input window was 16× 16 pixels. The translation speed was chosen
uniformly between 1 and 5 pixel/frame, the rotation speed between 0 and 0.1 rad/frame and the magnifica-
tion difference between -0.02 and 0.02 per frame. Each sequence was 30 frames long, for a total of 150,000
frames. The functions space F used for SFA was the space of all polynomials of degree 2. (As shown in
Section 3.2.2 every polynomial of degree 2 can be written as an inhomogeneous quadratic form.) The main
difference from the simulation presented in Chapter 3 is that the input vectors to SFA were formed by the
pixel intensities of one frame instead of two successive frames. The resulting units could thus not respond
to changes in time.

The dimensionality of the input vectors x was reduced from 256 to 50 input dimensions including a
whitening using principal component analysis (PCA) with

x′ = W(x− 〈x〉t) , (4.2)

with W being a 50 × 256-matrix. Under an affine transformation of the coordinates x′ = Ax + b the
quadratic form

g(x′) =
1
2
x′T H′x′ + f ′T x′ + c′ (4.3)

becomes

g(Ax + b) =
1
2
(Ax + b)T H′(Ax + b) + f ′T (Ax + b) + c′ (4.4)

=
1
2
xT AT H′Ax + bT H′Ax +

1
2
bT H′b + f ′T Ax + f ′T b + c′ (4.5)

=
1
2
xT (AT H′A)x + (AT H′T b + AT f ′)T x + (

1
2
bT H′b + f ′T b + c′) (4.6)

=:
1
2
xT Hx + fT x + c , (4.7)

i.e. another quadratic form. For analysis we can thus project the learned functions back into the input space
applying Equations (4.4–4.7) with A := W and b := −W〈x′〉t. Note that the rank of the quadratic term
H after the transformation is the same as before and it has only 50 eigenvectors.

We applied SFA to the whitened data and determined the quadratic forms whose output signals vary as
slowly as possible in time, sorted by decreasing slowness. The units were classified as complex cells by
experiments with sine-gratings and had most of the properties described in Section 3.3, except direction
selectivity which can not be computed from one input frame.

This model system is representative of the application domain considered here, which includes second-
order approximations and theoretical models of physiological receptive fields.

4.3 Visualization of coefficients and eigenvectors

One way to analyze a quadratic form is to visualize its coefficients. The coefficients f1, . . . , fN of the linear
term can be visualized and interpreted directly and give the shape of the input stimulus that maximizes the
linear part given a fixed norm.

The quadratic term can be rewritten as a sum over the inner product of the j-th row hj of H with the
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vector of the products xjxi between the j-th variable xj and all other variables:

xT Hx =
N∑

j=1

xj(hT
j x) =

N∑
j=1

hT
j


xjx1

xjx2

...
xjxN

 . (4.8)

In other words, the response of the quadratic term is formed by the sum of the response of N linear filters
hj which respond to all combinations of the j-th variable with the other ones. If the input data has a two-
dimensional spatial arrangement, like in our model system, the interpretation of the rows can be made easier
by visualizing them as a series of images (by reshaping the vector hj to match the structure of the input)
and arranging them according to the spatial position of the corresponding variable xj . In Figure 4.1 we
show some of the coefficients of two functions learned in the model system. In both units, the linear term
looks unstructured. The absolute values of its coefficients are small in comparison to those of the quadratic
term so that its contribution to the output of the functions is very limited (cf. Sect. 4.7). The row vectors
hj of Unit 4 have a localized distribution of their coefficients, i.e. they only respond to combinations of the
corresponding variable xj and its neighbors. The filters hj are shaped like a four-leaf clover and centered
on the variable itself. Pairs of opposed leaves have positive and negative values, respectively. This suggests
that the unit responds to stimuli oriented in the direction of the two positive leaves and is inhibited by
stimuli with an orthogonal orientation, which is confirmed by successive analysis (cf. later in this section
and Sect. 4.4). In Unit 28 the appearance of hj depends on the spatial position of xj . In the bottom half of
the receptive field the interaction of the variables with their close neighbors along the vertical orientation is
weighted positively, with a negative flank on the sides. In the top half the rows have similar coefficients but
with reversed polarity. As a consequence, the unit responds strongly to vertical edges in the bottom half,
while vertical edges in the top half result in strong inhibition. Edges extending over the whole receptive
field elicit only a weak total response. This unit is thus end-inhibited.
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Figure 4.1 Quadratic form coefficients This figure shows some of the quadratic form coefficients of two
functions learned in the model system. The top plots show the coefficients of the linear term f , reshaped to
match the two-dimensional shape of the input. The bottom plots show the coefficients of nine of the rows
hj of the quadratic term. The crosses indicate the spatial position of the corresponding reference index j.



4.4. OPTIMAL STIMULI 51

Another possibility to visualize the quadratic term is to display its eigenvectors. The output of the
quadratic form to one of the eigenvectors equals half of the corresponding eigenvalue, since 1

2v
T
i Hvi =

1
2v

T
i (µivi) = 1

2µi. The first eigenvector can be interpreted as the stimulus that among all input vectors
with norm 1 maximizes the output of the quadratic term. The j-th eigenvector maximizes the quadratic
term in the subspace that excludes the previous j − 1 ones. In Figure 4.2 we show the eigenvectors of the
two functions previously analyzed in Figure 4.1. In Unit 4 the first eigenvector looks like a Gabor wavelet.
The second eigenvector has the same form except for a 90 degree phase shift of the sine grating. Since
the two eigenvalues have almost the same magnitude, the response of the quadratic term is similar for the
two eigenvectors and also for linear combinations with constant norm 1. As a consequence the quadratic
term of this function has the main characteristics of complex cells in V1. The last two eigenvectors, which
correspond to the stimuli that minimize the quadratic term, are Gabor wavelets with orientation orthogonal
to the first two. This means that the output of the quadratic term is inhibited by stimuli at an orientation
orthogonal to the preferred one. A similar interpretation can be given in the case of Unit 28, although in
this case the first and the last two eigenvalues have the same orientation but occupy two different halves
of the receptive field. This confirms that Unit 28 is end-inhibited. A direct interpretation of the remaining
eigenvectors in the two functions is difficult (see also Sect. 4.8), although the magnitude of the eigenvalues
shows that some of them elicit a strong response. Moreover, the interaction of the linear and quadratic
terms to form the overall output of the quadratic form is not considered but cannot generally be neglected.
The methods presented in the following sections often give a more direct and intuitive description of the
quadratic forms.

6.56 −5.006.54 −4.964.72 −3.744.64 −3.693.81 −2.89

12.23 −12.0312.10 −11.726.38 −8.086.24 −7.936.04 −6.52

Unit #4

Unit #28

. . .

. . .

Figure 4.2 Eigenvectors of the quadratic term Eigenvectors of the quadratic term of two functions
learned in the model system sorted by decreasing eigenvalues as indicated above each eigenvector.

4.4 Optimal stimuli
Another characterization of a nonlinear function can be borrowed from neurophysiological experiments,
where it is common practice to characterize a neuron by the stimulus to which it responds best [for an
overview see Dayan and Abbott, 2001, chap. 2.2]. Analogously, we can compute the optimal excitatory
stimulus of g, i.e. the input vector x+ that maximizes g given a fixed norm ‖x+‖ = r. Note that x+

depends qualitatively on the value of r: if r is very small the linear term of the equation dominates, so that
x+ ≈ f , while if r is very large the quadratic part dominates, so that x+ equals the first eigenvector of H
(see also Sect. 4.8). We usually choose r to be the mean norm of all input vectors, since we want x+ to be
representative of the typical input. In the same way we can also compute the optimal inhibitory stimulus
x−, which minimizes the response of the function.

The fixed norm constraint corresponds to a fixed energy constraint [Stork and Levinson, 1982] used
in experiments involving the reconstruction of the Volterra kernel of a neuron [Dayan and Abbott, 2001,
chap. 2.2]. During physiological experiments in the visual system one sometimes uses stimuli with fixed
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contrast instead. The optimal stimuli under these two constraints may be different. For example, with
fixed contrast one can extend a sine grating indefinitely in space without changing its intensity, while with
fixed norm its maximum intensity is going to dim as the extent of the grating increases. The fixed contrast
constraint is more difficult to enforce analytically (for example because the surface of constant contrast is
not bounded).

The problem of finding the optimal excitatory stimulus under the fixed energy constraint can be mathe-
matically formulated as follows:

maximize g(x) = 1
2x

T Hx + fT x + c
under the constraint xT x = r2 .

(4.9)

This problem is known as the Trust Region Subproblem and has been extensively studied in the context of
numerical optimization, where a nonlinear function is minimized by successively approximating it by an
inhomogeneous quadratic form, which is in turn minimized in a small neighborhood. Numerous studies
have analyzed its properties, in particular in the numerically difficult case where H is near to singular (see
[Fortin, 2000] and references therein). We make use of some basic results and extend them where needed
to fit our needs.

If the linear term is equal to zero (i.e. f = 0), the problem can be easily solved (it is simply the first
eigenvector scaled to norm r, see Sect. 4.8). In the following we consider the more general case where
f 6= 0. We can use a Lagrange formulation to find the necessary conditions for the extremum:

xT x = r2 (4.10)

and ∇[g(x)− 1
2
λxT x] = 0 (4.11)

⇔ Hx + f − λx = 0 (4.12)

⇔ x = (λI−H)−1 f , (4.13)

where we inserted the factor 1
2 for mathematical convenience. According to Theorem 3.1 in [Fortin, 2000],

if an x that satisfies Equation (4.13) is a solution to (4.9), then (λI − H) is positive semidefinite (i.e. all
eigenvalues are greater than or equal to 0). This imposes a strong lower bound on the range of possible
values for λ. Note that the matrix (λI−H) has the same eigenvectors vi as H with eigenvalues (λ− µi),
since

(λI−H)vi = λvi −Hvi (4.14)
= λvi − µivi (4.15)
= (λ− µi)vi . (4.16)

For (λI −H) to be positive semidefinite all eigenvalues must be nonnegative, and thus λ must be greater
than or equal to the largest eigenvalue µ1,

µ1 ≤ λ . (4.17)

An upper bound for lambda can be found by considering an upper bound for the norm of x. First we
note that matrix (λI−H)−1 is symmetric and has the same eigenvectors as H with eigenvalues 1/(λ−µi):

(λI−H)vi =
(4.16)

(λ− µi)vi (4.18)

⇔ 1
(λ− µi)

vi = (λI−H)−1vi . (4.19)

We also know that the inequality
‖Av‖ ≤ ‖A‖‖v‖ (4.20)



4.4. OPTIMAL STIMULI 53

holds for every matrix A and vector v. ‖A‖ is here the spectral norm of A, which for symmetric matrices
is simply the largest absolute eigenvalue. With this we find an upper bound for ‖x‖:

‖x‖ = ‖(λI−H)−1f‖ (4.21)

≤
(4.20)

‖(λI−H)−1‖ ‖f‖ (4.22)

=
(4.19)

max
i

{∣∣∣∣ 1
λ− µi

∣∣∣∣} ‖f‖ (4.23)

=
(4.17)

1
λ− µ1

‖f‖ . (4.24)

We can therefore discard all values of λ for which the upper bound is smaller than r (in which case the
condition ‖x‖ = r would be violated), i.e. λ must fulfill the equation

r ≤ 1
λ− µ1

‖f‖ (4.25)

⇔ λ ≤ ‖f‖
r

+ µ1 . (4.26)

The optimization problem (4.9) is thus reduced to a search over λ on the interval
[
µ1,
(
‖f‖
r + µ1

)]
until

x defined by (4.13) fulfills the constraint ‖x‖ = r (Eq. 4.10). Vector x and norm ‖x‖ can be efficiently
computed for each λ using the eigenvalue decomposition of f :

x =
(4.13)

(λI−H)−1f (4.27)

= (λI−H)−1
∑

i

vi (vT
i f) (4.28)

=
∑

i

(λI−H)−1 vi (vT
i f) (4.29)

=
∑

i

1
λ− µi

vi (vT
i f) (4.30)

and

‖x‖2 =
∑

i

(
1

λ− µi

)2

(vT
i f)2 , (4.31)

where the terms vT
i f and (vT

i f)2 are constant for each quadratic form and can be computed in advance.
The last equation also shows that the norm of x is monotonically decreasing in the considered interval, so
that there is exactly one solution and the search can be efficiently performed by a bisection method. x−

can be found in the same way by maximizing the negative of g. Table 4.2 contains the pseudo-code of an
algorithm that implements all the considerations above (see also Additional Material).

If the matrix H is negative definite (i.e. all its eigenvalues are negative) there is a global maximum that
may not lie on the sphere, which might be used in substitution for x+ if it lies in a region of the input space
that has a high probability of being reached (the criterion is quite arbitrary, but the region could be chosen to
include, for example, 75% of the input data with highest density). The gradient of the function disappears
at the global extremum such that it can be found by solving a simple linear equation system:

∇g(x) = Hx + f = 0 (4.32)

⇔ x = −H−1f . (4.33)
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input: H, f, c: quadratic form
r: norm of the solution (> eps)
eps: tolerance of norm(x) from r

output: x_max: optimal excitatory stimulus x+

1- compute the eigenvalues mu(1) ... mu(N)
1- and the eigenvectors v(1) ... v(N) of H
2- # compute the coefficients of the eigenvector decomposition
2- # of f (Eq. 4.28)
2- alpha(i) := v(i)’*f (i = 1 ... N)

3- # compute the range of the parameter lambda (Eqs. 4.17 and 4.26)
3- lambda_left := max(mu)
4- lambda_right := norm(f)/r + max(mu)

# search by bisection until norm(x)^2 = r^2
5- # norm_x_2 holds the value of norm(x)^2 at the current lambda
5- norm_x_2 := 0
6- while abs(sqrt(norm_x_2)-r) > eps:
7- # bisect the interval
7- lambda = (lambda_right-lambda_left)/2 + lambda_left
8- # compute the eigenvalues of (lambda*I - H)^-1 (Eq. 4.19)
8- beta(i) := 1/(lambda-mu(i)) (i = 1 ... N)
9- # compute norm(x)^2 at lambda (Eq. 4.31)
9- norm_x_2 = sum(beta(i)^2 * alpha(i)^2)

# update the interval limits
10- if norm_x_2 > r^2:
11- lambda_left = lambda
12- else:
13- lambda_right = lambda

14- # lambda found, compute the solution (Eq. 4.30)
14- x_max = sum(beta(i)*v(i)*alpha(i))

Table 4.2 Algorithm to compute the optimal stimuli Pseudo-code of the algorithm that computes the
optimal excitatory stimulus of the inhomogeneous quadratic form. In the code, A′ means “A transpose”.
The algorithm can be used to compute the optimal inhibitory stimulus by calling it with the negative of the
quadratic form.
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In the same way a positive definite matrix H has a negative global minimum, which might be used in
substitution for x−.

For general nonlinear functions, the optimal stimuli can be found by standard techniques like gradient
descent or stochastic methods [see e.g. Bishop, 1995, chap. 7]. This is also useful for quadratic forms if
there are additional constraints which are difficult to incorporate analytically (e.g. the non-negativity of the
elements of x+). In Section 4.5 we provide an explicit formula for the gradient and the second derivative
of g restricted to the sphere of vectors of fixed energy that can be used in such situations. A well-known
drawback of online optimization algorithms is that they can get trapped in local extrema, depending on the
point from which the algorithm started. In this context, the vector in the input data set that yields the largest
output of g can be a good starting point.

In Figure 4.3 we show the optimal stimuli for the first 48 quadratic forms in the model system. In
almost all cases x+ looks like a Gabor wavelet, in agreement with physiological data (cf. Sect. 3.3). Like
in the simulation of Chapter 3, x− is usually structured and looks like a Gabor wavelet, which suggests that
inhibition plays an important role. x+ can be used to compute the position and size of the receptive fields
as well as the preferred orientation and frequency of the units for successive experiments.

x+ x− x+ x− x+ x− x+ x− x+ x− x+ x−

1

7

19

25

31

37

13

43

Figure 4.3 Optimal stimuli Optimal stimuli of the first 48 quadratic forms in the model system. x+ looks
like a Gabor wavelet in almost all cases, in agreement with physiological data. x− is usually structured and
is also similar to a Gabor wavelet, which suggests that inhibition plays an important role.

Note that although x+ is the stimulus that elicits the strongest response in the function, it doesn’t
necessarily mean that it is representative of the class of stimuli that give the most important contribution to
its output. This depends on the distribution of the input vectors: if x+ lies in a low-density region of the
input space, it is possible that other kinds of stimuli drive the function more often. In that case they might
be considered more relevant than x+ to characterize the function. Symptomatic for this effect would be
if the output of a function when applied to its optimal stimulus would lie far outside the range of normal
activity. This means that x+ can be an atypical, artificial input that pushes the function in an uncommon
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state. A similar effect has also been reported in some physiological papers comparing the response of
neurons to natural stimuli and to artificial stimuli such as sine gratings [Baddeley et al., 1997]. Thus the
characterization of a neuron or a nonlinear function as a feature detector via the optimal stimulus is at
least incomplete [see also MacKay, 1985]. However, the optimal stimuli remain extremely informative in
practice.

4.5 Invariances
Since the considered functions are nonlinear, the optimal stimuli do not provide a complete description of
their properties. We can gain some additional insights by studying a neighborhood of x+ and x−. An
interesting question is, for instance, to which transformations of x+ or x− the function is invariant. This
is similar to the common interpretation of neurons as detectors of a specific feature of the input which are
invariant to a local transformation of that feature. For example, complex cells in the primary visual cortex
are thought to respond to oriented bars and to be invariant to a local translation. In this section we are going
to consider the function g̃, defined as g restricted to the sphere S of radius r, since like in Section 4.4 we
want to compare input vectors having fixed energy. Notice that although g̃ and g take the same values on
S (i.e. g̃(x) = g(x) for each x ∈ S) they are two distinct mathematical objects. For example, the gradient
of g̃ in x+ is zero because x+ is by definition a maximum of g̃. On the other hand, the gradient of g in the
same point is Hx+ + f , which is in general different from zero.

Strictly speaking, there is no invariance in x+, since it is a maximum and the output of g̃ decreases in
all directions (except in the special case where the linear term is zero and the first two or more eigenvalues
are equal). In a general non-critical point x∗ (i.e. a point where the gradient does not disappear) the rate
of change in any direction w is given by its inner product with the gradient, ∇g̃(x∗) · w. For all vectors
orthogonal to the gradient (which span an N − 2 dimensional space) the rate of change is thus zero. Note
that this is not merely a consequence of the fact that the gradient is a first-order approximation of g̃. By
the implicit function theorem [see e.g. Walter, 1995, Theorem 4.5], in each open neighborhood U of a
non-critical point x∗ there is an N − 2 dimensional level surface {x ∈ U ⊂ S | g̃(x) = g̃(x∗)}, since
the domain of g̃ (the sphere S) is an N − 1 dimensional surface and its range (R) is 1 dimensional. Each
non-critical point thus belongs to an N − 2 dimensional surface where the value of the g̃ stays constant.
This is a somewhat surprising result: for an optimal stimulus there does not exist any invariance (except in
some degenerate cases); for a general sub-optimal stimulus there exist many invariances.

This shows that although it might be useful to observe for example that a given function f that maps
images to real values is invariant to stimulus rotation, one should keep in mind that in a generic point there
are a large number of other transformations to which the function might be equally invariant but that would
lack an easy interpretation. The strict concept of invariance is thus not useful for our analysis, since in
the extrema we have no invariances at all, while in a general point they are the typical case, and the only
interesting direction is the one of maximal change, as indicated by the gradient. In the extremum x+,
however, since the output changes in all directions, we can relax the definition of invariance and look for
the transformation to which the function changes as little as possible, as indicated by the direction with the
smallest absolute value of the second derivative. (In a non-critical point this weak definition of invariance
still does not help: if the quadratic form that represents the second derivative has positive as well as negative
eigenvalues, there is still a N − 3 dimensional surface where the second derivative is zero.)

To study the invariances of the function g in a neighborhood of its optimal stimulus respecting the
fixed energy constraint we have defined the function g̃ as the function g restricted to S. This is particularly
relevant here since we want to analyze the derivatives of the function, i.e. its change under small movements.
Any straight movement in space is going to leave the surface of the sphere. We must therefore be able to
define movements on the sphere itself. This can be done by considering a path ϕ(t) on the surface of S
such that ϕ(0) = x+ and then studying the change of g along ϕ. By doing this, however, we add the rate of
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change of the path (i.e. its acceleration) to that of the function. Of all possible paths we must take the ones
that have as little acceleration as possible, i.e. those that have just the acceleration that is needed to stay on
the surface. Such a path is called a geodetic. The geodetics of a sphere are great circles and our paths are
thus defined as

ϕ(t) = cos (t/r) · x+ + sin (t/r) · rw (4.34)

for each direction w in the tangential space of S in x+ (i.e. for each w orthogonal to x+), as shown in
Figure 4.4. The 1/r factor in the cosine and sine arguments normalizes the function such that d

dtϕ(0) = w
with ‖w‖ = 1.

The first derivative of g̃ along ϕ is

d
dt

(g̃ ◦ϕ)(t) =
d
dt

[
1
2
ϕ(t)T Hϕ(t) + fT ϕ(t) + c

]
(4.35)

=
d
dt

[
1
2
(
cos (t/r) x+ + sin (t/r) rw

)T
H
(
cos (t/r) x+ + sin (t/r) rw

)
+ fT

(
cos (t/r) x+ + sin (t/r) rw

)
+ c

]
(4.36)

=
d
dt

[
1
2

cos (t/r)2 x+T Hx+ + cos (t/r) sin (t/r) r x+T Hw +
1
2

sin (t/r)2 r2 wT Hw

+ cos (t/r) fT x+ + sin (t/r) r fT w + c

]
(4.37)

(since wHx+T = x+T Hw, because H is symmetric)

= −1
r

sin (t/r) cos (t/r) x+T Hx+ + cos (2t/r) x+T Hw + sin (t/r) cos (t/r) r wT Hw

− 1
r

sin (t/r) fT x+ + cos (t/r) fT w . (4.38)

Taking the second derivative we obtain

d2

dt2
(g̃ ◦ϕ)(t) = − 1

r2
cos (2t/r) x+T Hx+ − 2

r
sin (2t/r) x+T Hw + cos (2t/r) wT Hw

− 1
r2

cos (t/r) fT x+ − 1
r

sin (t/r) fT w .

(4.39)

In t = 0 we have
d2

dt2
(g̃ ◦ϕ)(0) = wT Hw − 1

r2
(x+T Hx+ + fT x+) , (4.40)

i.e. the second derivative of g̃ in x+ in the direction of w is composed of two terms: wT Hw corresponds
to the second derivative of g in the direction of w, while the constant term −1/r2 · (x+T Hx+ + fT x+)
depends on the curvature of the sphere 1/r2 and on the gradient of g in x+ orthogonally to the surface of
the sphere:

∇g(x+) · x+ = (Hx+ + f)T x+ (4.41)

= x+T Hx+ + fT x+ . (4.42)
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Figure 4.4 Geodetics on a sphere To compute the second derivative of the quadratic form on the surface
of the sphere one can study the function along special paths on the sphere, known as geodetics. Geodetics
of a sphere are great circles.

To find the direction in which g̃ decreases as little as possible we only need to minimize the absolute
value of the second derivative (Eq. 4.40). This is equivalent to maximizing the first term wT Hw in (4.40),
since the second derivative in x+ is always negative (because x+ is a maximum of g̃) and the second term
is constant. w is orthogonal to x+ and thus the maximization must be performed in the space tangential to
the sphere in x+. This can be done by computing a basis b2, . . . ,bN of the tangential space (for example
using the Gram-Schmidt orthogonalization on x+, e1, . . . , eN−1 where ei is the canonical basis of RN )
and replacing the matrix H by

H̃ = BT HB , (4.43)

where B = (b2, · · · ,bN ). The direction of the smallest second derivative corresponds to the eigenvec-
tor ṽ1 of H̃ with the largest positive eigenvalue. The eigenvector must then be projected back from the
tangential space into the original space by a multiplication with B:

w1 = Bṽ1 . (4.44)

The remaining eigenvectors corresponding to eigenvalues of decreasing value are also interesting, as they
point in orthogonal directions where the function changes with gradually increasing rate of change.

To visualize the invariances, we move x+ (or x−) along a path on the sphere in the direction of a vector
wi according to

x(α) = cos (α)x+ + sin (α)rwi (4.45)

for α ∈
[
−π

2 , π
2

]
as illustrated in Figure 4.5. At each point we measure the response of the function to the

new input vector, and stop when it drops under 80% of the maximal response. In this way we generate for
each invariance a movie like those shown in Figure 4.6 for some of the optimal stimuli (the corresponding
animations are available online, see Additional Material). Each frame of such a movie contains a nearly-
optimal stimulus. Using this analysis we can systematically scan a neighborhood of the optimal stimuli,
starting from the transformations to which the function is most insensitive up to those that lead to a great
change in response. Note that our definition of invariance applies only locally to a small neighborhood of
x+. The path followed in (4.45) goes beyond such a neighborhood and is appropriate only for visualization.
Table 4.3 contains the pseudo-code of an algorithm that computes and visualizes the invariances of the
optimal stimuli (see also Additional Material).
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Figure 4.5 Visualization of the invariances This figure illustrates how the invariances are visualized.
Starting from the optimal stimulus (top) we move on the sphere in the direction of an invariance until the
response of the function drops below 80% of the maximal output or reaches 90 degrees. In the figure two
invariances of Unit 4 are visualized. The one on the right represents a phase-shift invariance and preserves
more than 80% of the maximal output until 90 degrees (the output at 90 degrees is 99.6% of the maximum).
The one on the left represents an invariance to orientation change with an output that drops below 80% at
55 degrees.

Figure 4.6 Invariance movies This figure shows selected invariances for some of the optimal excitatory
stimuli shown in Fig. 4.3. The central patch of each plot represents the optimal stimulus of a quadratic
form, while the ones on the sides are produced by moving it in the positive (right patch) or negative (left
patch) direction of the eigenvector corresponding to the invariance. In this image, we stopped before the
output dropped below 80% of the maximum to make the interpretation of the invariances easier. The relative
output of the function in percent and the angle of displacement α (Eq. 4.45) are given above the patches.
The animations corresponding to these invariances are available online, see Additional Material.
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input: H, f, c: quadratic form
x_max: optimal excitatory stimulus x+
dalpha: precision (angular step in degrees on the sphere for

each frame of the invariance movies)

output: w(1) ... w(N-1) directions of the invariances, sorted by
increasing magnitude of the second derivative

nu(1) ... nu(N-1) value of the second derivative in the
directions w(1) ... w(N-1)

1- # determine the radius of the sphere
1- r := norm(x_max)

2- # find a basis for the tangential plane of the sphere in x+
2- # e(1) ... e(N) is the canonical basis for R^N
2- perform a Gram-Schmidt orthogonalization on
2- x_max, e(1), ..., e(N-1) and save the results in b(1) ... b(N)

# restrict the matrix H to the tangential plane
3- B := matrix with b(2) ... b(N) as columns
4- Ht := B’*H*B

# compute the invariances
5- compute the eigenvalues nu(1) ... nu(N-1) and the eigenvectors
5- w(1) ... w(N-1) of Ht, sorted by decreasing nu(i)
6- # compute the second derivative in the direction of the
6- # eigenvectors (Eq. 4.40)
6- nu(i) := nu(i) - 1/r^2 * (x_max’*H*x_max + f’*x_max)
7- # project the eigenvectors back to R^N
7- w(i) := B*w(i)

8- # compute the value of the function at the maximum
8- out0 := 0.5*x_max’*H*x_max + f’*x_max + c
9- # minimal threshold value (80 percent of the maximum)
9- minout := 0.8*out0

# visualize the invariances (Eq. 4.45)
10- for i from 1 to N-1:
11- out := out0
12- alpha := 0
13- x := x_max
14- while out > minout and alpha < 90:
15- visualize x
16- alpha := alpha + dalpha
17- x := cos(alpha)*x_max + sin(alpha)*r*w(i)
18- out := 0.5*x’*H*x + f’*x + c

19- repeat the visualization from step 10 with negative dalpha

Table 4.3 Algorithm to compute and visualize the invariances Pseudo-code of the algorithm that
computes and visualizes the invariances of g in x+. In the code, A′ means “A transpose”.
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4.6 Significant invariances
The procedure described above finds for each optimal stimulus a set of N − 1 invariances ordered by the
degree of invariance (i.e. by increasing magnitude of the second derivative). We would like to know which
of these are statistically significant. An invariance can be defined to be significant if the function changes
exceptionally little (less than chance level) in that direction, which can be measured by the value of the
second derivative: the smaller its absolute value, the slower the function will change.

To test for their significance, we compare the second derivatives of the invariances of the quadratic
form we are considering with those of random inhomogeneous quadratic forms that are equally adapted to
the statistics of the input data. We therefore constrain the random quadratic forms to produce an output
that has the same variance and mean as the output of the analyzed ones when applied to the input stimuli.
Without loss of generality, we assume here zero mean and unit variance. These constraints are compatible
with the ones that are usually imposed on the functions learned by many theoretical models, including the
one presented in Chapter 3. Because of this normalization the distribution of the random quadratic forms
depends on the distribution of the input data.

To understand how to efficiently build random quadratic forms under these constraints, it is useful to
think in terms of a dual representation of the problem. A quadratic form over the input space is equivalent
to a linear function over the space of the input expanded to all monomials of degree one and two using the
function h((x1, . . . , xn)T ) := (x1x1, x1x2, x1x3, . . . , xnxn, x1, . . . , xn)T , i.e.

1
2

xT


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h12 h22
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h(x)

+ c . (4.46)

We can whiten the expanded input data h(x) by subtracting its mean 〈h(x)〉t and transforming it with a
whitening matrix S. In this new coordinate system, each linear filter with norm 1 fulfills the unit variance
and zero mean constraints by construction. We can thus choose a random vector q′ of length 1 in the
whitened, expanded space and derive the corresponding quadratic form in the original input space:

q′T (S(h(x)− 〈h(x)〉t)) = (ST q′)︸ ︷︷ ︸
=:q

T
(h(x)− 〈h(x)〉t) (4.47)

= qT (h(x)− 〈h(x)〉t) (4.48)

=
(4.46)

1
2
xT Hx + fT x− qT 〈h(x)〉t (4.49)

=
1
2
xT Hx + fT x + c , (4.50)

with appropriately defined H and f according to (4.46).
We can next compute the optimal stimuli and the second derivative of the invariances of the obtained

random quadratic form. To make sure that we get independent measurements we only keep one second
derivative chosen at random for each random function. This operation, repeated over many quadratic forms,
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allows us to determine a distribution of the second derivatives of the invariances and a corresponding con-
fidence interval.

Figure 4.7a shows the distribution of 50,000 independent second derivatives of the invariances of ran-
dom quadratic forms and the distribution of the second derivatives of all invariances of the first 50 quadratic
forms learned in the model system. The dashed line indicates the 95% confidence interval derived from the
former distribution. The latter is more skewed towards small second derivatives and has a clear peak near
zero. 28% of all invariances were classified to be significant. Figure 4.7b shows the number of significant
invariances for each individual quadratic form in the model system. Each function has 49 invariances since
the rank of the quadratic term is 50 (see Sect. 4.2). The plot shows that the number of significant invariances
decreases with increasing ordinal number (the functions are ordered by slowness, the first ones being the
slowest). 46 units out of 50 have 3 or more significant invariances. The first invariance, which corresponds
to a phase shift invariance, was always classified as significant, which confirms that the units behave like
complex cells.
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Figure 4.7 Significant invariances (a) Distribution of 50,000 independently drawn second derivatives
of the invariances of random quadratic forms and distribution of the second derivatives of all invariances
of the first 50 quadratic forms learned in the model system. The dashed line indicates the 95% confidence
interval as derived from the random quadratic forms. The distribution in the model system is more skewed
towards small second derivatives and has a clear peak near zero. 28% of all invariances were classified as
significant. (b) Number of significant invariances for each of the first 50 quadratic forms learned in the
model system (the functions were sorted by decreasing slowness, see Sect. 4.2). The number of significant
invariances tends to decrease with decreasing slowness.

4.7 Relative contribution of the quadratic, linear, and constant term
The inhomogeneous quadratic form has a quadratic, a linear, and a constant term. It is sometimes of
interest to know what their relative contribution to the output is. The answer to this question depends on
the considered input. For example, the quadratic term dominates for large input vectors while the linear or
even the constant term dominates for input vectors with a small norm.

A first possibility is to look at the contribution of the individual terms at a particular point. A privileged
point is, for example, the optimal excitatory stimulus, especially if the quadratic form can be interpreted
as a feature detector (cf. Sect. 4.4). Figure 4.8a shows for each function in the model system the absolute
value of the output of all terms with x+ as an input. In all functions except the first two, the activity of
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the quadratic term is greater than that of the linear and of the constant term. The first function basically
computes the mean pixel intensity, which explains the dominance of the linear term. The second function
is dominated by a constant term from which a quadratic expression very similar to the squared mean pixel
intensity is subtracted.
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Figure 4.8 Relative contribution of the quadratic, linear, and constant term (a) This figure shows
the absolute value of the output of the quadratic, linear, and constant term in x+ for each of the first 50
functions in the model system. In all but the first 2 units the quadratic term has a larger output. The subplot
shows a magnified version of the contribution of the terms for the first 10 units. (b) Histogram of the mean
of the logarithm of the ratio between the activity of the linear and the quadratic term in the model system,
when applied to 90,000 test input vectors. A negative value means that the quadratic term dominates while
for a positive value the linear term dominates. In all but 4 units (Units 1, 7, 8, and 24) the quadratic term is
greater on average.

As an alternative we can consider the ratio between linear and quadratic term, averaged over all input
stimuli: 〈

log
∣∣∣∣ fT x

1
2x

T Hx

∣∣∣∣〉
t

=
〈

log
∣∣fT x

∣∣− log
∣∣∣∣12xT Hx

∣∣∣∣〉
t

. (4.51)

The logarithm ensures that a given ratio (e.g. linear/quadratic = 3) has the same weight as the inverse ratio
(e.g. linear/quadratic = 1/3) in the mean. A negative result means that the quadratic term dominates while
for a positive value the linear term dominates. Figure 4.8b shows the histogram of this measure for the
functions in the model system. In all but 4 units (Units 1, 7, 8, and 24) the quadratic term is on average
greater than the linear one.

4.8 Quadratic forms without linear term
In the case of a quadratic form without the linear term, i.e.

g(x) =
1
2
xT Hx + c (4.52)

the mathematics of Sections 4.4 and 4.5 becomes much simpler. The quadratic form is now centered at
x = 0, and the direction of maximal increase corresponds to the eigenvector v1 with the largest positive
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eigenvalue. The optimal excitatory stimulus x+ with norm r is thus

x+ = rv1 . (4.53)

Similarly, the eigenvector corresponding to the largest negative eigenvalue vN points in the direction of x−.
The second derivative (Eq. 4.40) in x+ in this case becomes

d2

dt2
(g̃ ◦ϕ)(0) = wT Hw − 1

r2
x+T Hx+ (4.54)

=
(4.53)

wT Hw − vT
1 Hv1 (4.55)

= wT Hw − µ1 . (4.56)

The vector w is by construction orthogonal to x+ and lies therefore in the space spanned by the remaining
eigenvectors v2, . . . ,vN . Since µ1 is the maximum value that wT Hw can assume for vectors of length 1
it is clear that (4.56) is always negative (as it should since x+ is a maximum) and that its absolute value is
successively minimized by the eigenvectors v2, . . . ,vN in this order. The value of the second derivative for
vi is given by

d2

dt2
(g̃ ◦ϕ)(0) = vT

i Hvi − µ1 (4.57)

= µi − µ1 . (4.58)

In the same way, the invariances of x− are given by vN−1, . . . ,v1 with second derivative values (µi−µN ).
Quadratic forms without the linear term were analyzed in some recent theoretical [Hashimoto, 2003,

Bartsch and Obermayer, 2003] and experimental [Touryan et al., 2002] studies. There, the eigenvectors
of H were visualized and interpreted as “relevant features”. Some of them were discarded because they
were “unstructured”. According to our analysis, this interpretation only holds for the two eigenvectors
with largest positive and negative eigenvalues. We think that the remaining eigenvectors should not be
visualized directly but applied as transformations to the optimal stimuli. Therefore it is possible for them
to look unstructured but still represent a structured invariance, as illustrated in Figure 4.9. For example,
Hashimoto [2003, Fig. 5a] shows in her paper the eigenvectors of a quadratic form learned by a variant
of SFA performed by gradient descent. The two largest eigenvectors look like two Gabor wavelets and
have the same orientation and frequency. According to the interpretation above and to the cited paper, this
shows that the network responds best to an oriented stimulus and is invariant to a phase shift. The third
eigenvector looks like a Gabor wavelet with the same frequency as the first two but a slightly different
orientation. Hashimoto suggests that the eigenvector makes the interpretation of that particular quadratic
form difficult [Hashimoto, 2003, page 777]. According to our analysis, that vector might code for a rotation
invariance, which would be compatible with a complex-cell behavior.

Based on spike-triggered average (STA) Rust et al. [2004] computed the best linear approximation
of the input-output function computed by some neurons. On the space orthogonal to that function they
then determined the best quadratic approximation given by the spike-triggered covariance matrix. They
interpreted the eigenvectors corresponding to the eigenvalues with largest absolute value as the basis that
spans the subspace of stimuli that governs the response of a cell. Our analysis is consistent with this
interpretation, since every stimulus that is generated by a linear combination of the optimal stimulus and
the most relevant invariances is going to produce a strong output in the quadratic form.
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Figure 4.9 Interpretation of the invariances This figure illustrates the fact that although the vector cor-
responding to an invariance (center) might be difficult to interpret or even look unstructured, when applied
to the optimal excitatory stimulus (left) it can code for a meaningful invariance (right). The invariance
shown here is the curvature invariance of Fig. 4.6f.

4.9 Decomposition of a quadratic form in a neural network
As also noticed by Hashimoto [2003], for each quadratic form there exists an equivalent two layer neural
network, which can be derived by rewriting the quadratic form using its eigenvector decomposition:

g(x) =
1
2
xT Hx + fT x + c (4.59)

=
1
2
xT VDVT x + fT x + c (4.60)

=
1
2
(VT x)T D(VT x) + fT x + c (4.61)

=
N∑

i=1

µi

2
(vT

i x)2 + fT x + c . (4.62)

One can thus define a neural network with a first layer formed by a set of N linear subunits sk(x) = vT
k x

followed by a quadratic nonlinearity weighted by the coefficients µk/2. The output neuron sums the con-
tribution of all subunits plus the output of a direct linear connection from the input layer (Fig. 4.10a).
Since the eigenvalues can be negative, some of the subunits give an inhibitory contribution to the output.
It is interesting to note that in an algorithm that learns quadratic forms the number of inhibitory subunits
in the equivalent neural network is not fixed but is a learned feature. As an alternative one can scale the
weights vi by

√
|µi|/2 and specify which subunits are excitatory and which are inhibitory according to the

sign of µi, since

g(x) =
(4.62)

N∑
i=1

µi

2
(vT

i x)2 + fT x + c (4.63)

=
N∑

i=1
µi>0

(√ |µi|
2

vi

)T

x

2

−
N∑

i=1
µi<0

(√ |µi|
2

vi

)T

x

2

+ fT x + c . (4.64)

This equation also shows that the subunits are unique only up to an orthogonal transformation (i.e. a rotation
or reflection) of the excitatory subunits and another one of the inhibitory subunits, which can be seen as
follows. Let A+ and A− be the matrices having as rows the vectors

√
|µi|/2 vi for positive and negative

µi, respectively. Equation (4.64) can then be rewritten as

g(x) = ‖A+x‖2 − ‖A−x‖2 + fT x + c . (4.65)
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Figure 4.10 Neural network related to inhomogeneous quadratic forms This figure shows a neural
network architecture equivalent to an inhomogeneous quadratic form. The first layer consists of linear
subunits, followed by a quadratic nonlinearity weighted by the coefficients µi/2. The output neuron sums
the contribution of each subunit plus the output of a direct linear connection from the input layer. In this
plot, the norm of the subunits is normalized to 1, i.e. ‖vi‖ = 1, and the ellipse in the input layer represents
a multidimensional input.

Since the length of a vector doesn’t change under rotation or reflection, the output of the function remains
unchanged if we introduce two orthogonal transformations R+ and R−:

g(x) = ‖R+A+x‖2 − ‖R−A−x‖2 + fT x + c . (4.66)

Figure 4.11 shows the weights of the subunits of the neural network equivalent to one of the units learned
in the model system as defined by the eigenvectors of H (Eq. 4.62) and some examples of the weights after
a random rotation of the excitatory and inhibitory subunits. The subunits are not as structured as in the case
of the eigenvectors, although the orientation and frequency can still be identified.

The neural model suggests alternative ways to learn quadratic forms, for example by adapting the
weights by backpropagation. The high number of parameters involved, however, could make it difficult
for an incremental optimization method to avoid local extrema. On the other hand, each network of this
form can be transformed into a quadratic form and analyzed with the techniques described in this chapter,
which might be useful for example to compute the optimal stimuli and the invariances.

4.10 Conclusion
In this chapter we have presented a collection of tools to analyze nonlinear functions and in particular
quadratic forms. These tools allow us to visualize the coefficients of the individual terms of an inhomo-
geneous quadratic form, to compute its optimal stimuli (i.e. the stimuli that maximize or minimize the
quadratic form under a fixed energy constraint) and their invariances (i.e. the transformations of the opti-
mal stimuli to which the quadratic form is most insensitive), and to determine which of these invariances
are statistically significant. We have also proposed a way to measure the relative contribution of the lin-
ear and quadratic term. Moreover, we have discussed a neural network architecture equivalent to a given
quadratic form. The methods presented here can be used in a variety of fields, in particular in physiological
experiments to study the nonlinear receptive fields of neurons and in theoretical studies.
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eigenvectors
Unit #4

Random
rotations

1.33 −1.271.33 −1.151.27 −1.121.26 −1.121.24 −1.11

1.52 −1.251.27 −1.211.26 −1.201.24 −1.171.17 −1.13

1.60 −1.201.38 −1.181.37 −1.171.34 −1.101.31 −1.07

1.27 −1.201.26 −1.191.21 −1.171.20 −1.111.18 −1.10

1.53 −1.171.47 −1.151.47 −1.141.32 −1.121.31 −1.08

3.28 −2.503.27 −2.482.36 −1.872.32 −1.851.91 −1.44

. . .
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Figure 4.11 Random rotations of the positive and negative subunits The weights of the subunits of Unit
4 as defined by the eigenvectors of H (Eq. 4.62) and five examples of the weights after a random rotation
of the excitatory and inhibitory subunits. The numbers above the patches are the weighting coefficients on
the second layer when the weight vectors of the first layer are normalized to 1.
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Chapter 5

Pattern recognition
with slow feature analysis

5.1 Introduction

As discussed in Chapter 1 a functional model of the sensory cortex is of potential interest for technological
applications, since it captures the abstract principles with which our brain performs difficult tasks like object
recognition. We have seen in Section 2.1 that temporal slowness can be understood as a principle to learn
salient features of time series in a way invariant to frequent transformations [see also Wiskott, 1998]. Such
a representation would of course be convenient to perform classification in pattern recognition problems.
Most such problems, however, do not have a temporal structure, and it is thus necessary to reformulate the
algorithm. The basic idea is to introduce an artificial time structure by constructing a large set of small
time series with only two elements chosen from patterns that belong to the same class (Fig. 5.1a). In order
to be slowly varying the functions learned by SFA will need to respond similarly to both elements of the
time series (Fig. 5.1b) and therefore to ignore the transformation between the individual patterns. As a
consequence, patterns corresponding to the same class will cluster in the feature space formed by the output
signals of the slowest functions, making it suitable to perform classification with simple techniques such as
Gaussian classifiers. It is possible to show that in the ideal case the output of the functions is constant for
all patterns of a given class and that the number of relevant functions is small (Sect. 5.2). Notice that this
approach does not use any a priori knowledge of the problem. SFA simply extracts the information about
relevant features and common transformations by comparing pairs of patterns.

In the next section we adapt the SFA algorithm to the pattern recognition problem and consider the
optimal output signal. In Section 5.3 we then apply the proposed method to a handwritten digit recognition
problem and discuss the results.

5.2 SFA for pattern recognition

The pattern recognition problem can be summarized as follow. Given C distinct classes c1, . . . , cC and for
each class cm a set of Pm patterns p(m)

1 , . . . ,p(m)
Pm

we are requested to learn the mapping c(·) between a

pattern p(m)
j and its class c(p(m)

j ) = cm. We define P :=
∑C

m=1 Pm to be the total number of patterns.
In general in a pattern recognition problem the input data does not have a temporal structure and it is

thus necessary to reformulate the definition of the SFA algorithm. Intuitively, we want to obtain a set of

69
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Figure 5.1 SFA for pattern recognition The input to SFA for pattern recognition is formed by small
time series consisting of pairs of patterns that belong to the same class. (a) Sample time series in a digit
recognition problem. (b) In order to be slowly varying the functions learned by SFA must respond similarly
to both elements of the time series, as defined in Eq. (5.1).

functions that respond similarly to patterns belonging to the same class. The basic idea is to consider time
series of just two patterns (p(m)

k ,p(m)
l ), where k and l are two distinct indices in a class cm (Fig. 5.1).

We can rewrite the slowness objective (2.13) using the mean over all possible pairs obtaining

∆(yj) = a ·
C∑

m=1

Pm∑
k,l=1
k<l

(
gj(p

(m)
k )− gj(p

(m)
l )

)2

, (5.1)

where the normalization constant a divides by the number of all possible pairs:

a =
1∑C

m=1

(
Pm

2

) . (5.2)

We can then reformulate Constraints (2.14)–(2.16) by substituting the average over time with the average
over all patterns, so that the learned functions are going to have zero mean, unit variance, and be decorrelated
when applied to the whole training data.

1
P

C∑
m=1

Pm∑
k=1

gj(p
(m)
k ) = 0 (zero mean) , (5.3)

1
P

C∑
m=1

Pm∑
k=1

gj(p
(m)
k )2 = 1 (unit variance) , (5.4)

∀i < j,
1
P

C∑
m=1

Pm∑
k=1

gi(p
(m)
k )gj(p

(m)
k ) = 0 (decorrelation and order) . (5.5)

Comparing the mathematical formulation of the SFA problem (Eqs. (2.13–2.16) with Equations (5.1,
5.3–5.5) it is possible to see that to respect the new formulation, matrix A (Eq. 2.39) must be computed
using the derivatives of all possible pairs of patterns while matrix B (Eq. 2.40) using all training patterns
just once. Since the total number of pairs increases very fast with the number of patterns it is sometimes
necessary to approximate A with a random subset thereof.
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It is clear by (5.1) that the optimal output signal for the slowest functions consists of a signal that is
constant for all patterns belonging to the same class, in which case the objective function is zero, as illus-
trated in Figure 5.2a (see Sect. 5.5.1 for additional remarks). Signals of this kind can be fully represented
by a C-dimensional vector, where each component contains the output value for one of the classes. The
zero-mean constraint (Eq. 5.3) eliminates one degree of freedom, such that in the end all possible optimal
signals span a (C−1)-dimensional space. Constraints (5.4) and (5.5) force the output signals to build an
orthogonal basis of this space. In a simulation it is therefore possible to extract at most (C−1) such sig-
nals. The output signals in the limit case (i.e. when the function space F is large enough) are thus known
in advance. The feature space is very small (C−1 dimensions) and consists of C sets of superimposing
points (one for each class). In actual applications, of course, the response to the patterns belonging to one
class is not exactly constant, but tends to be narrowly distributed around a constant value (Fig. 5.2b). The
representation in the (C−1)-dimensional feature space will thus consist of C clusters (Fig. 5.2c). As a
consequence, classification can be performed with simple methods such as Gaussian classifiers.

For a given input and a fixed function space, the approach proposed above has no parameters (with the
exception of the number of derivatives used to estimate A if the number of patterns per class is too high),
which is an important advantage with respect to other algorithms that need to be fine-tuned to the considered
problem. Moreover, since SFA is based on an eigenvector problem, it finds the global solution in a single
iteration and has no convergence problems, in contrast for example to algorithms based on gradient descent
that might get trapped in local minima. On the other hand, SFA suffers from the curse of dimensionality,
since the size of the covariance matrices A and B that have to be stored during training grows rapidly with
increasing dimensionality of the considered function space, which limits the number of input components
(see also Sect. 5.3.3).

5.3 Example application

5.3.1 Methods
We illustrate our method by its application to a digit recognition problem. We consider the MNIST digit
database, which consists of a standardized and freely available set of 70,000 handwritten digits, divided into
a training set (60,000 digits) and a test set (10,000 digits). Each pattern consists of a handwritten digit of
size 28× 28 pixels (some examples are shown in Fig. 5.1). Several established pattern recognition methods
have been applied to this database by LeCun et al. [1998]. Their paper provides a standard reference work
to benchmark new algorithms.

We perform SFA on spaces of polynomials of a given degree d, whose corresponding expansion func-
tions h include all monomials up to order d and have

D =
(

N + d

d

)
− 1 (5.6)

output dimensions, where N is the number of variables, i.e. the input dimension (see Sect. 5.5.2 for a proof
of Eq. 5.6). In this very large space we have to compute the two covariance matrices A and B, each of
which has D2 component. It is clear that the problem quickly becomes intractable because of the high
memory requirements. For this reason, the input dimensionality N is first reduced by principal component
analysis (PCA) from 28× 28 = 784 to a smaller number of dimensions (from 10 to 140).

On the preprocessed data we then apply SFA as described in Section 5.2. We compute the covariance
matrix B using all training patterns, and we approximate A with 1 million derivatives (100,000 derivatives
for each digit class), chosen at random without repetition from the set of all derivatives. As explained in
Section 5.2, since we have 10 classes only the 9 slowest signals should be relevant. This is confirmed by
the ∆-values of the learned functions (Eq. 5.1), which increase abruptly from function g9 to function g10
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Figure 5.2 Output signals (a) In the limit case (i.e. when the considered function space is large enough)
the optimal output signal is constant for all patterns of a given class. (b) Output signal of one of the
functions learned in the best among the simulations of Sect. 5.3, performed on the MNIST database using
polynomials of degree 3 and 35 input dimensions. In this plot the function was applied to 500 test digits for
each class. Its output for a specific class is narrowly distributed around a constant value. (c) Feature space
representation given by 3 output signals in the same simulation as in (b). Each class forms a distinct cluster
of points.
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(Fig. 5.3). The increase factor ∆(y10)/∆(y9) in our simulations was on average 3.7 . For this reason, we
only need to learn the 9 slowest functions.
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Figure 5.3 ∆-values ∆-values (Eq. 5.1) of the first 15 functions in the simulation with polynomials of
degree 3 and 35 input dimensions. As explained in Sect. 5.2, since there are 10 classes only the 9 slowest
signals should be relevant. This is confirmed by the abrupt increase in temporal variability at function
number 10.

For classification, we apply the 9 functions to the training data of each class separately and fit a Gaussian
distribution to their output by computing mean and covariance matrix. In this way we obtain 10 Gaussian
distributions, each of which represents the probability P (y|cm) of an output vector y given the class cm.
We then consider the test digits and compute for each of them the probability to belong to each of the classes

P (cm|y) =
P (y|cm)P (cm)∑C

j=1 P (y|cj)
, (5.7)

where P (cm) = Pm/P is the probability of occurring of class cm. Finally, we assign the test digit to the
class with the highest probability.

5.3.2 Results
Figure 5.4 shows the training and test errors for experiments performed with polynomials of degree 2 to 5
and number of input dimensions from 10 to 140. With polynomials of second degree the explosion in the
dimensionality of the expanded space with increasing number of input dimensions is relatively restricted,
such that it is possible to perform simulations with up to 140 dimensions, which explain 94% of the total
input variance. The test error settles down quickly around 2%, with a minimum at 100 dimensions (1.95%).
Simulations performed with higher order polynomials have to rely on a smaller number of input dimen-
sions, but since the function space gets larger and includes new nonlinearities, one obtains a remarkable
improvement in performance. Given a fixed dimensionality, the error rate decreases monotonically with
increasing degree of the polynomials (Fig. 5.4).

The best performance in our simulations is achieved with polynomials of degree 3 and 35 input dimen-
sions, with an error rate of 1.5% on test data. Figure 5.2b shows the output of one of the functions learned
in this simulation when applied to 500 test digits for each class. For each individual class the signal is
narrowly distributed around a constant value, and approximates the optimal solution shown in Figure 5.2a.
Some of the digit classes (e.g. 1, 2, and 3) have similar output values and cannot be distinguished by looking
at this signal alone. However, other functions represent those classes in different ways and considering all
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Figure 5.4 Test and training error Error rates for simulations performed with polynomials of degree 2
to 5 and number of input dimensions from 10 to 140. Dotted and solid lines represent training and test error
rate, respectively. For polynomials of degree 5 the error rate for test and training data are indicated by a
label.

signals together it is possible to separate them. For example, Figure 5.2c shows the feature space represen-
tation given by 3 output signals. It is possible to see that each class forms a distinct cluster. Considering
the whole 9-dimensional feature space improves the separation further. Figure 5.5 shows all 146 digits that
were misclassified out of the 10,000 test patterns. Some of them seem genuinely ambiguous, while others
would have been classified correctly by a human. The reduction of the input dimensionality by PCA is
partly responsible for these error, since it erases some of the details and makes some patterns difficult to
recognize, as illustrated in Figure 5.6.

Table 5.1 compares the error rates on test data of different algorithms presented in [LeCun et al., 1998]
with that of SFA. The error rate of SFA is comparable to but does not outperform that of the most elaborate
algorithms. Its performance is however remarkable considering the simplicity of the method and the fact
that it has no a priori knowledge on the problem, in contrast for example to the LeNet-5 algorithm which has
been designed specifically for handwritten character recognition. In addition, for recognition, our method
has to store and compute only 9 functions and has thus small memory requirements and a high recognition
speed.

The comparison with the Tangent Distance (TD) algorithm [Simard et al., 1993, LeCun et al., 1998,
Simard et al., 2000] is particularly interesting. TD is a nearest-neighbor classifier where the distance be-
tween two patterns is not computed with the Euclidean norm but with a metric that is made insensitive to
local transformations of the patterns which have to be specified a priori. In the case of digit recognition,
they might include for example local translation, rotation, scaling, stretching, and thickening or thinning
of the image. This method, as most memory-based recognition systems, has very high memory and com-
putational requirements. One can interpret SFA as an algorithm that learns a nonlinear transformation of
the input such that the Euclidean distance between patterns belonging to the same class gets as small as
possible. A natural objective function for this would be, defining g as the vector of all learned functions
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Figure 5.5 Classification errors This figure shows all the 146 digits that were misclassified out of the
10,000 test patterns in the best among our simulations performed with polynomials of degree 3 and 35 input
dimensions. The patterns in the first line were classified as 0, the ones in the second line as 1, etc.

projected

original

Figure 5.6 Dimensionality reduction The reduction by PCA of the number of input dimensions might be
responsible for some of the classification errors. This figure shows some of the test patterns that have been
misclassified as 2. In the top row we plot the original patterns from the MNIST database. In the bottom row
we plot the same patterns after a projection onto the first 35 principal components. Due to dimensionality
reduction some of the patterns become more ambiguous.
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METHOD % ERRORS
Linear classifier 12.0
K-Nearest-Neighbors 5.0
1000 Radial Basis Functions, linear classifier 3.6
Best Back-Propagation NN 2.95

(3 layers with 500 and 150 hidden units)

Reduced Set SVM (5 deg. polynomials) 1.0
LeNet-1 (16× 16 input) 1.7
LeNet-5 0.95
Tangent Distance (16× 16 input) 1.1

Slow Feature Analysis 1.5
(3 deg. polynomials, 35 input dim)

Table 5.1 Performance comparison Error rates on test data of various algorithms. All error rates are
taken from [LeCun et al., 1998].

g = (g1, . . . gK):

a ·
C∑

m=1

Pm∑
k,l=1
k<l

∥∥∥g(p(m)
k )− g(p(m)

l )
∥∥∥2
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=
(5.1)

K∑
j=1

∆(yj) , (5.11)

which has to be minimized under Constraints (2.14–2.16). For a given K the objective function (5.11)
and that of SFA for pattern recognition (5.1) are identical, except that in the former case the average of
the temporal variation over all K learned functions is minimized, while in the latter the functions are
optimized one after the other inducing an order. The set of functions that minimizes the SFA objective
function (Eq. 5.1) also minimizes Equation (5.11). Furthermore, all other solutions to (5.11) are orthogonal
transformations of this special one (a sketch of the proof is given in Sect. 5.5.3). The solution found by SFA
is particular in that it is independent from the choice of K, in the sense that the components are ordered such
that it is possible to compute the global solution first and then reduce the number of dimensions afterward
as needed.

In conclusion, while the TD algorithm keeps the input representation fixed and applies a special metric,
SFA transforms the input space such that the TD-metric gets similar to the Euclidean one. As already
mentioned, the new representation has only few dimensions (since K in Eq. 5.11 can be set to K = C − 1,
see Sect. 5.2), which decreases memory and computational requirements dramatically, and can be easily
learned from the input data without a priori knowledge on the transformations.



5.4. CONCLUSIONS 77

5.3.3 Extensions
In this example application we tried to keep the pattern recognition system as basic as possible in order to
show the simplicity and effectiveness of SFA. Of course, a number of standard techniques could be applied
to improve its performance. A trivial way to improve the performance would be to use a computer with more
memory and perform SFA with a higher number of input dimensions and/or polynomials of higher degree.
This approach would however rapidly reach its limits, since the dimensionality of the matrices A and B
grows exponentially, as discussed above. An important improvement to our method would be to find an
algorithm that performs a preliminary reduction of the dimensionality of the expanded space by discarding
directions of high temporal variation. Note that it is theoretically not possible to reduce the dimensionality
of the expanded space by PCA or by any other method that does not take into account the derivatives of
the expanded signal, as suggested in [Bray and Martinez, 2002] and [Hashimoto, 2003], since there is in
general no simple relation between the spatial and the temporal statistics of the expanded signal (in the case
of PCA the solution would even depend on the scaling of the basis functions). If we consider for example
the simulation with polynomials of degree 3 and 35 input dimensions and reduce the dimensionality of
the expanded space by PCA down to one half (which is still an optimistic scenario since in general the
reduction has to be more drastic), the error rate shows a substantial increase from 1.5% to 2.5%. A viable
solution if the number of patterns in the data set is small (which is not the case in our example application
nor usually in real-life problems) is to use the standard kernel trick and compute the covariance matrices
on the temporal dimensions instead of in space [see Müller et al., 2001, Bray and Martinez, 2002]. In this
case it is even possible to use an infinite-dimensional function space if it permits a kernel function (i.e. if it
satisfies Mercer’s Condition, see [Burges, 1998]).

Other standard machine learning methods that have been applied to improve the performance of pattern
recognition algorithms might be applied in our case as well, like for example a more problem-specific
preprocessing of the patterns, boosting techniques, or mixture of experts with other algorithms [Bishop,
1995, LeCun et al., 1998]. Some of the simulations in [LeCun et al., 1998] were performed on a training
set artificially expanded by applying some distortions to the original data, which improved the error rate.
Such a strategy might be particularly effective with SFA since it might help to better estimate the covariance
matrix A of the transformations between digits.

Finally, the Gaussian classifier might be substituted by some more enhanced supervised classifier, al-
though we would not expect a particularly dramatic improvement in performance, due to the simple form
taken by the representation in the feature space both in the limit case and in simulations (Fig. 5.2).

5.4 Conclusions
In this chapter we described the application of SFA to pattern recognition. The presented method is
problem-independent and for a given input signal and a fixed function space it has no parameters. In an
example application it yields an error rate comparable to that of other established algorithms. The learned
feature space has a very small dimensionality, such that classification can be performed efficiently in terms
of speed and memory requirements.

Since most pattern recognition problems do not have a temporal structure it is necessary to present the
training set in the way described in Section 5.2. If instead the input does have a temporal structure (e.g.
when classifying objects that naturally enter and leave a visual scene), it is possible to apply SFA directly on
the input data [cf. Wallis and Rolls, 1997]. By applying more elaborated unsupervised clustering techniques
for classification it should be thus possible to achieve totally unsupervised pattern recognition (i.e. without
supervision from perception to classification).
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5.5 Technical remarks to Chapter 5

5.5.1 Input sequences in the limit case
In the limit case (i.e. when the function space is large enough) one would obtain the optimal signals also by
just showing C sequences, each consisting of all patterns p(m)

1 , . . . ,p(m)
Pm

belonging to one class. In general,
however, if SFA cannot produce a perfectly constant solution it could find and exploit some structure in the
particular patterns succession used during training, which would in turn create some artificial structures in
the output signals. For this reason one obtains better results by presenting the patterns in all same-class
pairs as mentioned above.

5.5.2 Dimensionality of a space of polynomials
The space of polynomial of degree d has

D =
(

N + d

d

)
− 1 (5.12)

dimensions. This can be seen as follow: The number of monomials of degree i is equal to the number of
combinations of length i on N elements with repetition, i.e.(

N + i− 1
i

)
. (5.13)

The number of dimensions is thus
d∑

i=0

(
N + i− 1

i

)
− 1 , (5.14)

where we subtracted the constant term i = 0, which is fixed by the zero-mean constraint (5.3). Equa-
tion (5.12) is then easily proved by induction.

5.5.3 The solutions of Equation 5.11
In this section we prove that the functions g1, . . . , gK that minimize Equation (5.11) under the zero mean,
unit variance, and decorrelation constraints (Eqs. 2.14–2.16) are identical up to an orthogonal transforma-
tion with the SFA solutions that minimize the slowness objective (Eq. 2.13) under the same constraints.

Without loss of generality we consider only the linear case

gj(x) = wT
j x (5.15)

and we assume that the input vectors x are whitened, such that B = 〈xxT 〉t = I, which can be obtained
with an orthogonal transformation. Under this conditions Constraints (2.14–2.16) simply mean that the
vectors wj must be orthogonal and have norm 1 (cf. Eqs. 2.29–2.30). Moreover, the generalized eigenvalue
problem (2.28) becomes a standard eigenvalue problem

AW = WΛ (5.16)

and the SFA solutions correspond to the eigenvectors with the smallest eigenvalues. Moreover, Equa-
tion (5.11) can be written as

K∑
j=1

∆(yj) =
(2.23)

K∑
j=1

wT
j Awj . (5.17)
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Minimizing this equation involves computing the Lagrange multipliers of (5.17) under the conditions

wT
i wj = δj

i , ∀i, j < K , (5.18)

where δj
i is the Kronecker delta. The complete calculation is reported in [Bishop, 1995, Appendix E] for

an equivalent PCA theorem. The solution is found to be an arbitrary orthogonal transformation of the
eigenvectors of A corresponding to the smallest eigenvalues, i.e. an arbitrary orthogonal transformation of
the special SFA solution.
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Chapter 6

Conclusion and future directions

A first objective of this thesis was to provide evidence of the relevance of temporal slowness as a principle
for self-organization of the sensory cortex. The results of Chapter 3 show that slow feature analysis applied
to natural image sequences reproduces many properties of complex cells in V1, not only the two basic ones,
namely a Gabor-like optimal stimulus and phase-shift invariance, but also secondary ones like direction
selectivity, non-orthogonal inhibition, end-inhibition, and side-inhibition. Earlier studies have shown that
the what and where information (i.e. identity and position) can be learned for whole objects in a hierarchical
network of SFA modules [Wiskott and Sejnowski, 2002, Wiskott, 2003b]. It is remarkable that the slowness
principle is able to extract relevant information at such different levels of representation. These results make
temporal slowness a good candidate as a computational principle for the sensory cortex.

The slowness hypothesis will need to be verified in greater detail in future research. First of all, a
necessary condition for a computational principle to be a realistic model for the self-organization of the
sensory cortex is that it must be realizable by a plausible physiological mechanism. Preliminary theoretical
considerations suggest that SFA can be implemented with spiking neurons using a spike timing dependent
plasticity rule (Michaelis and Wiskott, personal communication). Further, the hypothesis should be falsi-
fiable by predictions at different levels [Hurri, 2003]: i) qualitative, ii) quantitative with respect to earlier
physiological measurements, and iii) quantitative with respect to new physiological measurements. We ad-
dressed the first two points in Chapter 3 and found a good match between the set of slowly varying functions
and the population of complex cells in V1. Regarding the third point, our model predicts a relation between
the behavior of a neuron and the slowness of its output (Sect. 3.3), although this relation is not particularly
strong.

Some experiments can be suggested to collect further evidence:

• One could record the response of the units learned by SFA and of complex cells in V1 to given image
sequences. The output of the SFA units could then be used as a predictor for the response of complex
cells [cf. the use of the output of Fourier filters as predictors in Theunissen et al., 2001]. A good fit
would indicate that complex cells lie in the subspace spanned by the slowest functions and are thus
slowly varying themselves.

• The model presented in Chapter 3 could be extended to one or more successive layers of SFA mod-
ules, corresponding to higher visual areas. Neurons in those areas respond to features of increasing
complexity [for an overview see Oram and Perrett, 1994], but their function is still poorly understood,
mostly because a systematic exploration of the input space with physiological experiments is diffi-
cult. The results of a hierarchical SFA model might provide some predictions about this function and
suggest further physiological experiments.
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• Finally, SFA could be applied to other sensory modalities, like for example on the auditory signals
coming from cochlear filters. Should the properties of the learned function be similar to those of
neurons in the corresponding cortical area, this would prove the generality of the temporal slowness
principle for the whole sensory cortex.

In Chapter 4 we introduced some methods to analyze and interpret quadratic forms as receptive fields,
including an algorithm to compute the optimal excitatory and inhibitory stimuli (i.e. the stimuli that maxi-
mize and minimize a quadratic form, respectively, given a fixed energy constraint), an algorithm to compute
and visualize the invariances of the optimal stimuli, which are the transformations to which the quadratic
form is most insensitive, and a test to determine which of these are statistically significant. Moreover, we
defined two measures to determine the relative contribution of the different terms of a quadratic form to
its output and presented a two-layer neural network architecture equivalent to a given quadratic form. As
mentioned in Section 4.1 it should be straightforward to extend most of these methods to other nonlinear
functions while preserving the same interpretations, so that they should be applicable in general for the
analysis of physiological receptive fields. It will be interesting to see if they will provide new insights on
the behavior of cortical neurons.

Another purpose of this thesis was to show the potentialities of temporal slowness for engineering
applications. In Chapter 5 we presented a way to apply SFA to pattern recognition problems by defining
an artificial temporal structure on the patterns, and showed that the optimal solution in this context consists
of a signal that is constant for all patterns belonging to the same class. In the simulations of Section 5.3
this method achieved a good performance on a digit recognition problem, although its error rate did not
outperform that of more elaborate algorithms. However, an advantage with respect to those is that our
system uses no a priori knowledge on the problem and has to store and compute only a small number of
functions, so that it has small memory requirements and a high recognition speed. Some extensions to
this basic system were proposed in Section 5.3.3. One particularly important improvement to SFA would
be to find an efficient algorithm to perform a preliminary dimensionality reduction in the expanded space,
which would allow to perform simulations with higher order polynomials and a larger number of input
components.



Appendix A

Additional material

Scientific results should be readily available and easily reproducible. In the case of studies based on com-
puter models and simulations this is particularly feasible and at the same time fundamental. The publication
of the source code serves three important purposes: i) to make the results reproducible; ii) to allow to per-
form additional experiments, for example in order to further explore the parameters space; iii) to provide an
explicit and exact description of the applied algorithm.

To complete this thesis we published following software and data online:

• Chapter 2: The SFA algorithm has been made available in two software packages: the sfa-tk
Matlab toolbox [Berkes, 2004] and the MDP Python library [Berkes and Zito, 2004].

• Chapter 3: The site http://itb.biologie.hu-berlin.de/˜berkes/slowness contains de-
tailed single-unit analysis, additional population statistics, larger versions of Figures 3.3 and 3.13,
and Matlab functions to perform simulations like those described in that chapter.

• Chapter 4: The animations corresponding to Figure 4.6 and Matlab source code for the algorithms of
Table 4.2 and 4.3 are available at
http://itb.biologie.hu-berlin.de/˜berkes/qforms .

• Chapter 5: Python source code and data to reproduce the simulations are available at
http://itb.biologie.hu-berlin.de/˜berkes/pattern_recognition .
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Anhang B

Zusammenfassung
in deutscher Sprache

B.1 Einleitung

Ein möglicher Ansatz zum Verständnis des sensorischen Kortex besteht darin, die seiner Funktion und
Selbstorganisation zu Grunde liegenden Prinzipien zu untersuchen. Dieser Ansatz hat in den letzten Jahr-
zehnten in Folge des Bedarfs an theoretischen Grundlagen für die Motivation und Interpretation von Ex-
perimenten zunehmend an Wichtigkeit gewonnen. Als grundlegende Prinzipien wurden Kompaktheit, Un-
abhängigkeit, Spärlichkeit und zeitliche Langsamkeit vorgeschlagen. Ein attraktiver Aspekt vieler theo-
retischer Modelle sensorischer Verarbeitung ist ihre Relevanz für technische Anwendungen. Ziel dieser
Doktorarbeit ist die Untersuchung von zeitlicher Langsamkeit als Prinzip für die Selbstorganisation des
sensorischen Kortex sowie für die Mustererkennung.

B.2 Das Prinzip der zeitlichen Langsamkeit

Das Prinzip der zeitlichen Langsamkeit basiert auf der Beobachtung, dass sensorische Signale aus direkten
Messungen unserer physikalischen Umwelt entstehen und deshalb im allgemeinen sehr empfindlich ge-
gen kleine Veränderungen der Umgebung oder des Beobachters sind. Im Gegensatz dazu sind die für uns
wesentlichen Merkmale der Umgebung, etwa Identität oder Position von Objekten im visuellen Umfeld,
stabil und variieren auf einer sehr viel langsameren Zeitskala. Wenn es also gelingt, langsam veränderliche
Merkmale aus den schnell variierenden sensorischen Signalen zu extrahieren, so ist es wahrscheinlich, dass
diese wesentliche Eigenschaften unserer Umwelt repräsentieren. Zudem sind sie invariant oder zumindest
robust gegenüber typischen Transformationen der sensorischen Eingangssignale, z.B. gegenüber Transla-
tionen, Rotationen oder Zoom von visuellen Eindrücken. Kapitel 2 gibt eine Einführung und Diskussion des
Prinzips der zeitlichen Langsamkeit sowie einen Überblick über vorhergehende Arbeiten zu diesem Ansatz.
Im Abschnitt 2.3 wird die von uns verwendete Formulierung von Wiskott und Sejnowski (2002) dargestellt
und der entsprechende Algorithmus Slow Feature Analysis (SFA) eingeführt.
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B.3 Zeitliche Langsamkeit als Modell für die Selbstorganisation
rezeptiver Felder im primären visuellen Kortex

In Kapitel 3 untersuchen wir zeitliche Langsamkeit als Lernprinzip für rezeptive Felder im visuellen Kor-
tex. Unter Verwendung von SFA werden Transformationsfunktionen gelernt, die, angewendet auf natürliche
Bildsequenzen, möglichst langsam variierende Merkmale extrahieren. Die Funktionen können als nichtli-
neare raum-zeitliche rezeptive Felder interpretiert und mit Neuronen im primären visuellen Kortex (V1)
verglichen werden. Wir zeigen, dass sie viele Eigenschaften von komplexen Zellen in V1 besitzen, nicht
nur die primären, d.h. Gabor-ähnliche optimale Stimuli und Phaseninvarianz, sondern auch sekundäre, wie
Richtungsselektivität, nicht-orthogonale Inhibition sowie End- und Seiteninhibition. Dies wird qualitativ
und anhand eines quantitativen Vergleichs mit der Populationsstatistik von komplexen Zellen in V1 nach-
gewiesen. Anhand einer Reihe von Kontrollexperimenten untersuchen wir zudem, welche Rolle die statisti-
schen Eigenschaften natürlicher Bilder und die unterschiedlichen Transformationen, die zur Erstellung der
Bildsequenzen verwendet werden, für die Ergebnisse spielen.

B.4 Analyse und Interpretation von quadratischen Formen als
rezeptive Felder

Für die Analyse der mit SFA gelernten nichtlinearen Funktionen haben wir eine Reihe mathematischer
und numerischer Werkzeuge entwickelt, mit denen man die quadratischen Formen als rezeptive Felder cha-
rakterisieren kann. Diese Techniken sind auch von allgemeinerem Interesse für Approximationen zweiter
Ordnung und theoretische Modelle physiologischer rezeptiver Felder. In Kapitel 4 stellen wir zwei Algorith-
men vor, um die optimalen Stimuli und deren Invarianzen zu berechnen, und einen Test, um festzustellen,
welche von diesen statistisch signifikant sind. Außerdem definieren wir zwei Maße, mit denen die Beiträge
des linearen und quadratischen Terms verglichen werden können. Wir stellen schließlich ein neuronales
Netz vor, das zu einer gegebenen quadratischen Form äquivalent ist.

B.5 Mustererkennung mit Slow Feature Analysis
Den Abschluss dieser Arbeit bildet die Anwendung des Prinzips der zeitlichen Langsamkeit auf Muster-
erkennungsprobleme. Die fehlende zeitliche Struktur in dieser Problemklasse erfordert eine Modifikation
des SFA-Algorithmus. Wir stellen eine entsprechende alternative Formulierung vor und präsentieren die
optimalen Lösungen. Anschließend wenden wir dieses System auf eine Standard-Datenbank von handge-
schriebenen Ziffern an.

B.6 Schlussfolgerung
Eines der Ziele dieser Arbeit war, zu zeigen, dass zeitliche Langsamkeit ein leistungsfähiges Prinzip für
die Selbstorganisation des sensorischen Kortex sein kann. Die Resultate von Kapitel 3 belegen, dass SFA
angewendet auf natürliche Bildsequenzen viele Eigenschaften von komplexen Zellen in V1 reproduziert.
Frühere Studien haben gezeigt, dass Identität und Position für ganze Objekte in einem hierarchischen Netz
von SFA-Modulen erlernt werden können. Es ist bemerkenswert, dass das Langsamkeitsprinzip in der La-
ge ist, relevante Informationen auf so unterschiedlichen Darstellungsniveaus zu extrahieren. Zusätzliche
Experimente können vorgeschlagen werden, um die Langsamkeithypothese weiter zu prüfen. Ein anderer
Zweck dieser Doktorarbeit war, das Potenzial der zeitlichen Langsamkeit für technische Anwendungen zu
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untersuchen. Die Simulationen von Kapitel 5 bestätigen, dass SFA leicht und erfolgreich für Mustererken-
nungsprobleme verwendet werden kann.
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