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Introduction

Several high-profile failures in the last decades have raised the concern how to
monitor and control risk exposure in the financial industry. The global range
of action, intense competition, and the increasing involvement in derivative
trading create new dangers and require new methods of risk measurement
and management. This issue is addressed in the regulation of standards
and guidelines for banking supervision, known under the keyword “Basel I1”.
Basel II is an international initiative that requires financial services compa-
nies to have a more risk sensitive framework for the assessment of regulatory
capital. The aim is to create a better link between minimum regulatory cap-
ital and risk, to establish and to maintain a minimum capital requirement
sufficient to ensure financial stability, and to ground risk measurement and
management in actual data and rigorous quantitative techniques.

These objectives create a new challenge on Mathematical Finance to provide
appropriate risk quantification methods. Indeed, the problem of quantify-
ing the risk associated to a financial position has emerged as a key topic
in the recent mathematical finance research. It started with an axiomatic
analysis of capital requirements and the introduction of coherent risk mea-
sures in Artzner et al. [ADEH97] and [ADEH99]. The theory of coherent
risk measures was developed further in Delbaen [Del02] and [Del00]. Féllmer
and Schied [FS04] and Frittelli and Rosazza Gianin [FRGO2] replace positive
homogeneity by convexity in the set of axioms and establish a more general
concept of a convex risk measure.

The theory of coherent and convex risk measures was developed first in the
static setting. In this setting the future net values of financial positions
are described as random variables X on some probability space. A convex
risk measure p is defined as a real-valued convex functional on a space of
such positions, i.e., the risk measure assigns to each position X a real value
p(X) interpreted as the associated risk. The set A of all financial positions
with non-positive risk is called the acceptance set of p. The axiom of cash



invariance then implies the representation
p(X) =inf {meR|m+X €A}

Thus the value p(X) can be viewed as the minimal capital requirement suf-
ficient to ensure the acceptability of a position X. Moreover, under some
regularity conditions, the duality theory of Fenchel-Legendre yields a robust
representation of the form

p(X) = Sup (Eal-X] - a(Q)).

In other words, the risk of a position is evaluated as the worst expected
loss under a whole class of probabilistic models (). These alternative models
contribute to the evaluation at a different degree, and this is made precise
by the non-negative penalty function a(Q).

In the static formulation, however, the role of information is not jet visible.
Suppose that the information available at time ¢ is described by a o-field F;.
Then it is natural to assume that the risk assessment depends on the events in
F;. Thus updated risk assignment at time ¢ is described by a conditional risk
measure p; which associates to each position X an F;-measurable random
variable p;(X). Such risk measures were studied in Arztner et al. [ADEY],
Delbaen [Del06], Frittelli and Rosazza Gianin [FRG04]. A conditional risk
measure provides a natural generalization of a static risk measure to the con-
ditional setting. It satisfies the same axioms and it can be represented as
a suitably modified worst conditional expected loss under a whole class of
measures. Such robust representations for conditional coherent risk measures
were obtained first on a finite probability space in Roorda and Schumacher
[RSEO05] for random variables and in Riedel [Rie04] for stochastic processes.
On a general probability space, robust representations for conditional coher-
ent and convex risk measures defined on random variables were proved in
Detlefsen [Det03], Scandolo [Sca03], Detlefsen and Scandolo [DS05], Bion-
Nadal [BNO04], Burgert [Bur05], Kloppel and Schweizer [KS|. Cheridito et
al. provide in [CDKO06] a representation result in the more general setting of
conditional risk measures for stochastic processes.

In Chapter 1 we review and refine the robust representation results of con-
ditional convex risk measures for random variables. This chapter is mostly
expository, but we include the proofs in order to give a self-contained presen-
tation and to introduce some technical modifications that we will need later
on. In particular the representations we obtain in Lemma 1.2.5 will be useful
for the discussion of time consistency in Chapter 2, since they allow us to
formulate supermartingale properties in terms of a suitable class of measures.



After this preparation we go on to the dynamic discrete-time setting and
assume that the information flow is given by some filtration (F3);— 1. on the
underlying probability space. Since the risk assessments should be updated
as new information is released, we consider a dynamic risk measure given
by a sequence (p;)i—o1,.. of conditional convex risk measures adapted to the
filtration (F;).

A key question in the dynamical setting is how the conditional risk assess-
ments at different times are interrelated. This question has led to several
notions of time consistency that have been discussed in the literature. One
of todays most used notions is strong time consistency which amounts to the
recursion

Pt(_ﬂt+1) = pPt-

This form of time consistency was studied in Riedel [Rie04], Arztner et al.
[ADET], Delbaen [Del06], Detlefsen and Scandolo [DS05], Burgert [Bur05],
Kloppel and Schweizer [KS], Cheridito et al. [CDKO06], Follmer and Penner
[FP06], Cheridito and Kupper [CKO06]. As explained in [ADET], strong time
consistency may be viewed as a version of the Bellmann principle. Thus
strongly time consistent dynamic risk measures provide a particularly conve-
nient tool for risk quantification methods based on the recursive principle, as
in the case of superhedging. The recursion formula allows one to construct
strongly time consistent dynamic risk measures easily in finite discrete time
as shown in [CKO06], and to use backward stochastic differential equations
as a tool in continuous time as indicated in Peng [Pen97] and Rosazza Gi-
anin [RG03]. However, strong time consistency is a rather strict notion, and
it fails in some natural examples of dynamic risk measures such as average
value at risk. This was noted in [ADE*]. Moreover, Tutsch [Tut06] argues
that strong time consistency is not an appropriate criterion for “updating”
risk measures.

The literature on alternative notions of time consistency is not so numer-
ous. One weaker form of time consistency is based on the following idea: If
some position is accepted (or rejected) for any scenario tomorrow, it should
be already accepted (or rejected) today. This property has appeared under
several names. We call it here weak acceptance (resp. rejection) consistency.
As to our knowledge weak acceptance consistency appeared first in [ADET].
Both weak acceptance and weak rejection consistency were introduced and
used in Weber [Web06] in the context of law-invariant risk measures. Both
notions also appear in Roorda and Schumacher [RS07] under the name “se-
quential consistency”. Some characterizations of weak acceptance consistency
are given in Burgert [Bur05] and in Tutsch [Tut06].



It is shown in Tutsch [Tut06] that time consistency properties can be char-
acterized via benchmark sets: If a financial position at some future time
is always preferable to some element of the benchmark set, then it should
also be preferable today. The bigger the benchmark set, the stronger is the
resulting notion of time consistency. This idea leads to some other possi-
ble notions of time consistency. We recall the general argumentation from
[Tut06] in Section 2.1. In particular we focus on middle acceptance and rejec-
tion consistency, properties that are weaker as time consistency but stronger
than the corresponding weak notions.

The main subject of this thesis is to investigate various time consistency
properties of a dynamic convex risk measure and the manifestation of these
properties in the dynamics of the corresponding penalty functions and risk
processes. We turn to this question in Chapter 2. First we focus on the strong
notion of time consistency in Section 2.2. This section is based on joint work
with Hans Follmer [FP06]. Theorem 2.2.2 gives equivalent characterizations
of strong time consistency in terms of acceptance sets, penalty functions and
a joint supermartingale property of the risk measure and its penalty function
under any reasonable model ). This supermartingale property is our main
contribution to the characterizations of strong time consistency and it will
play a key role in analyzing asymptotic properties of a dynamic risk measure
as time goes to infinity. The characterization of time consistency in terms
of acceptance sets has already appeared in Delbaen [Del06], Cheridito et al.
[CDKO06], Kloppel and Schweizer [KS]. Some similar properties of penalty
functions are given in Cheridito et al. [CDKO06] for time consistent risk mea-
sures on stochastic processes, but not as an equivalent characterization. Our
characterization of time consistency in terms of penalty functions was also
shown independently in Bion-Nadal [BN06], but under the stronger assump-
tion of continuity from below. We also provide the explicit form of the Doob
and of the Riesz decomposition of the penalty function process in Section
2.3.

In Section 2.4 we introduce and study a weaker notion of time consistency
that we call prudence. This property is described by the relation

pe(—per1) < pr.

Economically this means that the future update p:(X) — pr1(X) of the risk
process is acceptable at time ¢. Thus by using prudent risk measures one
always stays on the safe side. We believe that it is a reasonable property
for a dynamic risk measure, in particular from a point of view of a regula-
tor. Similar to the time consistent case, we characterize prudent dynamic



risk measures in terms of acceptance sets, of penalty functions, and by a
combined supermartingale property of risk processes and one-step penalty
functions. The supermartingale property we obtain holds more generally for
any bounded process such that its negative increments are acceptable with
respect to the risk measure (p;), i.e., the process can be upheld without any
additional risk. We call such processes sustainable with respect to the dy-
namic risk measure (p;). The characterization of sustainability by the super-
martingale property is given in Theorem 2.4.6 and in Theorem 2.5.4. It can
be viewed as a generalized optimal decomposition under convex constraints
in analogy to results of Follmer and Kramkov [FK97]; see also Chapter 9 in
Féllmer and Schied [FS04]. In Example 4.2 we show how the results from
[F'S04] can be recovered from our more general characterization of sustain-
ability.

Given a prudent dynamic risk measure (p;), any risk process (p:(X)) is sus-
tainable with respect to it, and covers the final loss —X if the time horizon is
finite. The question arises whether (p;(X)) is the smallest process with these
properties, in other words whether we do not pay too much by “hedging” X
with the process (p:(X)). The discussion in Section 2.5 shows that one could
possibly do better by using the strongly time consistent risk measure (p;)
that can be constructed from any dynamic risk measure (p;) with a finite
time horizon via the recursion

pr(X) = —X,  (X) = p—pa(X)), t=0,....T 1.

This construction was introduced in Section 4.2 of Cheridito et al. [CDKO6]
and studied in Section 3.2 of Drapeau [Dra06] and in Cheridito and Kup-
per [CKO06]. Using the supermartingale characterization of sustainability we
identify the strongly time consistent risk measure (p;) as the smallest pro-
cess that is sustainable with respect to (p;) and covers the final loss. Thus
our discussion provides a new reason for using strongly time consistent risk
measures.

The supermartingale properties of time consistent and of prudent dynamic
risk measures with an infinite time horizon ensure the existence of the limit

Poo(X) := lim py(X)

for all positions X. In Chapter 3 we study the asymptotic behavior of time
consistent and of prudent dynamic risk measures. In particular we focus on
the question whether the dynamic risk measure (p;) is asymptotically safe in
the sense that the limiting capital requirement p,,(X) covers the actual final
loss —X. As shown by Example 3.1.6, not every time consistent dynamic risk



measure is asymptotically safe. Theorem 3.1.4 gives criteria for asymptotic
safety of time consistent risk measures in terms of the asymptotic behavior
of acceptance sets and penalty functions, and Proposition 3.2.2 provides a
sufficient condition for asymptotic safety of prudent risk measures. We also
discuss the case where p.(X) is exactly equal to —X. This property of
asymptotic precision may be viewed as a non-linear analogue of martingale
convergence. We provide a sufficient condition for asymptotic safety in the
time consistent case and in the prudent case. The results of this chapter

for the time consistent risk measures were obtained in joint work with Hans
Follmer [FPO6.

In the final Chapter 4 we illustrate the general results of Chapter 2 and
Chapter 3 by examples. First we study the entropic dynamic risk measure
in Section 4.1. In contrast to the usual definition of the entropic risk mea-
sure we allow the risk aversion to depend both on time and on the available
information. Proposition 4.1.4 shows that time consistency properties of the
entropic dynamic risk measure are completely determined by the monotonic-
ity of its risk aversion process: Strong time consistency is characterized by
constant risk aversion, and prudence by the condition that the risk aversion
is decreasing in time. We illustrate the joint supermartingale property of
the risk process and the penalty function and their asymptotic behavior for
the time consistent and for the prudent entropic dynamic risk measure. The
time consistent case was discussed in [FP06].

In Section 4.2 we consider a model for a financial market with convex trading
constraints as in Chapter 9 of [FS04]. We define the risk of a position X as
the minimal investment needed to hedge X in this model, i.e. p;(X) is the
superhedging price of X at time ¢ under the given constraints. We show that
this definition leads to a time consistent dynamic convex risk measure. We
provide a robust representation of this risk measure and identify it as the
upper Snell envelope under constraints; cf. Section 9.3 of [FS04]. Moreover,
using the supermartingale characterization of sustainability we show that any
bounded process is dominated by a value process of some admissible strategy
in this model iff it has a certain supermartingale property. This result is
known as the optional decomposition under constraints, cf. Theorem 3.1 in
[FK97] for continuous time and Theorem 9.20 in [FS04] for discrete time.
Thus the latter theorem is a special case of our more general discussion of
sustainability in Section 2.5 and Theorem 2.5.4.
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Chapter 1

Conditional convex risk
measures and their robust
representations

In this chapter we summerize and extend some results on conditional convex
risk measures and their robust representations. It is well known that an
unconditional convex risk measure which is continuous from above is of the
form

p(X)= sup (E[X]—a(Q))
QEM(P)

with some penalty function o : M;(P) — RU{+0o0}, see [FS04] for details.

Analogous representations for conditional coherent risk measures on a fi-
nite probability space were obtained in [RSEO05] for random variables and in
[Rie04] for stochastic processes. Robust representations of conditional convex
risk measures for random variables in general setting were proved in [Det03],
[Sca03], [DS05], [Bur05], [KS] and in [CDKO06] in a more general setting of
stochastic processes.

In Section 1.1 we summerize some results from these cited papers, in par-
ticular from [DS05], introducing some technical modifications which we will
need later on. In Section 1.2. we focus on sensitivity of a conditional convex
risk measure. This property allows to drop the dependence on time ¢ for the
representing set of measures and to work only with equivalent propability
measures, which is more convenient for technical reasons. In this section we
apply and modify some results from [CDKO06] and [KS]|, adapting them to
our needs. In particular the representations we obtain in Lemma 1.2.5 will
be very useful for the discussion of time consistency in Chapter 2.

8



In the following we consider a probability space (£2, F, P) and a sigma-field
F; € F. A conditional risk measures will be defined on the space L>* =
L>(Q,F,P), where X € L* describes a discounted terminal value of a
financial position. By L{® we denote the set of all F;-measurable P-a.s.
bounded random variables. All inequalities and equalities applied to random
variables are meant to hold P-a.s. .

1.1 Robust representations

We define a conditional convex risk measure as in [DS05]:

Definition 1.1.1. A map p; : L>® — Lg° is called a conditional convex
risk measure if it satisfies the following properties for all XY € L*:

e Conditional cash invariance: For all X; € L{®

p(X + Xy) = p(X) — X,

o Monotonicity: X <Y = p(X) > p(Y)
o Conditional convexity: For all A € L°, 0 < X < 1:

prAX + (1= )Y) < Ape(X) + (1 = A)pu(Y)
e Normalization: p;(0) = 0.

A conditional convex risk measure is called a conditional coherent risk mea-
sure if it has in addition the following property:

e Conditional positive homogeneity: For all X € Ly, A > 0:
pr(AX) = Apy(X).

Remark 1.1.2. 1. If F, = {0,Q}, we have L® = R, and so we recover
the usual definition of a convex risk measure; cf. [FS04]

2. In [DS05] a conditional convex risk measure is called regular, if
pr(1aX) = Lap(X)

forall A € F, and X € L*>. It was shown in Corollary 1 of [DS05]

that any normalized conditional convex risk measure is reqular. In
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[CDKO06] a local property of a conditional convex risk measure is de-
fined as py(IaX 4+ I14cY) = I4pi(X) + Lacp(Y) for all A € F; and all
X,Y € L. Proposition 3.3 of [CDK06] shows that monotonicity and
cash invariance imply this local property. For a normalized conditional
convex risk measure reqularity and the local property are equivalent, as
shown in Proposition 1 in [DS05].

3. A weaker definition of a conditional convex risk measure is given in
[KS], where normalization is not required and conditional convexity is
replaced by reqularity and by convexity only for constant coefficients.

4. If ps is a convexr conditional risk measure, then —p, defines a monetary
concave utility functional on L™ in the sense of [CDKO06], [KS].

With a conditional convex risk measure p; we associate its acceptance set
Av={X e L™ | p(X) <0}.

In the next proposition we recall some properties of an acceptance set from
Proposition 3 in [DS05].

Proposition 1.1.3. If p; is a conditional convez risk measure then its ac-
ceptance set A; is conditionally convez, solid and such that 0 € A; and
ess inf{X € L ’ X e At} = 0. Moreover, p; is uniquely determined thro-
ugh its acceptance set, since

p(X) =essinf {Y € L | X +V € A} (1.1)

Conversely, if some set Ay C L>(F) satisfies the preceding conditions, then
the functional p; : L — L$° defined via (1.1) is a conditional convez risk
measure.

Proof. The properties of the acceptance sets can be easy verified. To prove
(1.1) note that due to cash invariance p;(X) + X € A; for all X, and this
implies “>" in (1.1). On the over hand, for all Z € {Y € Ly ‘ X+Ye At}
we have

02 o7+ X) = p(X) - Z.

thus p(X < essinf{Y e Ly ’ X+Y e At}.
For the proof of the last part of the assertion we refer to Proposition 3 in
[DS05]. O

A characterization of acceptance sets in more general setting of risk measures
on stochastic processes can be found in Proposition 3.6 of [CDKO06].
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Property (1.1) shows that a conditional convex risk measure can be viewed
as a conditional capital requirement needed to make a financial position
acceptable at time t. We will use (1.1) to define risk measures in Examples
4.1 and 4.2.

By M;(P) we denote the set of all probability measures on (2, F) which
are absolutely continuous with respect to P, and by M¢(P) the set of all
probability measures on (2, F), which are equivalent to P on F. Moreover,
we define the sets

Pr={QeMi(P)|Q~PonF}

and

Qtiz{QEMl(P)‘Q:Pon}"t}.

The penalty function will be given by a map «; from some set P C P; to the
set of Fi-measurable random variable with values in R U {400} such that

esssup(—a(Q)) = 0.
QeP

In our setting the typical form of a penalty function will be

™™ (Q) = esssup Eg[—X | F]. (1.2)
XeA;

Note that this penalty function is well defined for @) € P;. We will say that
pr has a robust representation if

pt(X) = esssup(Eg[—X | Fr] — a(Q)) for all X € L™
QeP

with some set P C P; and some penalty function oy on P.

The next theorem relates robust representations to some continuity proper-
ties of conditional convex risk measures; it is a version of Theorem 1 in [DS05]
and Theorem 2.27 in [Det03], cf. also Theorem 3.6 in [Bur05], Theorem 3.16
in [KS] and Theorem 3.16 in [CDKO06].

Theorem 1.1.4. For a conditional convex risk measure p; the following are
equivalent:

1. py has the robust representation

pr(X) = e SQUP(EQ[_X [Pl —a™(@Q),  Xelx (13

where the penalty function o™ is given by (1.2).
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2. py has the robust representation

pe(X) = eSQSSUP(EQ[—X | Fi]l —a™(@), X el*  (L4)
€Pt

where the penalty function o™ is given by (1.2).
3. pt has a robust representation.

4. py has the “Fatou-property”: For any bounded sequence (X,) which
converges P-a.s. to some X,

pe(X) < lirgnglfpt(Xn) P-a.s..

5. pe is continuous from above, i.e.
Xy N\ X P-as. = p(Xn) / pi(X) P-as.

for any sequence (X,,) € L>® and X € L.

Proof. 2) = 3) is obvious.

3) = 4) Dominated convergence implies that Eg[X,|F:] — Eg[X|F:] for
each @ € P, and lim inf p;(X,,) > p:(X) follows by using a robust represen-
tation of p; as in the unconditional setting, see, e.g., Lemma 4.20 in [FS04].

4) = 5) Monotonicity implies lim sup p;(X,) < p:(X), and liminf p,(X,,) >
pi(X) follows by 4).

5) = 1) The inequality

pe(X) > eséseillp(EQ[—X | ] — a"™(Q))
> esssup(Eq[—X | Fy] — o™ (Q))
QEQ;

(1.5)

follows immediately from the definition of /" and Q; C P;.

In order to prove the equality we will show that
Erlp(X)] < Bp |esssup(Bo[ =X | ] - a™(@))] -
S

To this end, consider the map p” : L>® — R defined by p?(X) := Ep[p:(X)].
It is easy to check that p? is a convex risk measure which is continuous
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from above. Hence Theorem 4.31 in [FS04] implies that p” has the robust
representation

pP(X)= sup (Eol-X]-oa(Q) XelL™
QeEM1(P)

where the penalty function «(Q) is given by
a(Q) = sup Eq[—X].

XeL>:pP(X)<0

Next we will prove that @ € Q, if a(Q) < oc. Indeed, let A € F;, and A > 0.
Then

—AP[A] = Ep[pi(Ma)] = p""(Ma) > Eg[=Ma] — a(Q),
SO

P[A] < Q[A] + ia(@) for all A >0,

and hence P[A] < Q[A] if a(Q) < oco. The same reasoning with A < 0 implies
P[A] > Q[A4], thus P = Q on F; if a(Q) < co. Moreover,

Eplai™(Q)] < a(Q) (1.6)

holds for every ) € P;, which can be seen as follows. As we will prove in
Lemma 1.1.8 below,

Eplal™(@Q)] = sup Ep[~Y],
YeA:

Since pP(Y) < 0 for all Y € A, inequality (1.6) follows from the definition
of the penalty function a(Q).

Finally we obtain

Ep[p(X)] = p"(X)=  sup  (Eg[-X]-a(Q))
QeEM;(P),a(Q)<o0
< sup (E[—X] — a(Q))
QEQ:, Ep[af™(Q)] <0
< sup Ep|Eg[—X|F] — ™ (Q))]

 QEQ:Ep[an(Q)]<oo

< Ep ess sup (Eq[-X|F] - o™ @)
QEQt,Ep[a™(Q)]<o0
< B [ up Eol - X|F)] a?i“(@)] , (17)
QeQ:

proving equality (1.3).
1) = 2) Follows immediately from inequality (1.5). O
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Remark 1.1.5. Another characterization of a conditional convex risk mea-
sure p; that is equivalent to the properties 1)-5) of Theorem 1.1.4 is the
following:

6) The acceptance set A; is weak*-closed, e.g., it is closed in L™ with
respect to the topology o(L>, L').

This equivalence was shown in Theorem 3.16 of [CDK06] in a more general
contex of risk measures for stochastic processes and in Theorem 3.16 of [KS]
for risk measures on random variables as in our setting. Though in [KS] a
slightly different definition of a conditional risk measure is used, the reasoning
given there works just the same in our case, cf. proof of Theorem 3.16 “I =

IV? and “IV = I”in [KS].
A closer look at the proof of Theorem 1.1.4 yields the following corollary,
which will be useful later on.

Corollary 1.1.6. A conditional convex risk measure p; is continuous from
above if and only if for any P* € M*(P) it is representable in the form

p(X) = esssup (B[~ X |F]—a™(Q)), XeLx (18
Qe (P¥)

where

Q/(P*):={Q e My(P)|Q =P on Fi, Ep:[a]™(Q)] < o0}

Proof. The inequality
pi(X) > esssup (Eg[—X | 7] — of"™(Q))
e/ (P)

follows from (1.5) since Q/ (P) C P;, and (1.7) proves the equality for Qf (P).
Moreover, since the definition of a conditional convex risk measure and the
continuity property only depend on the zero sets of P, the same reasoning
works for any P* € M*¢(P). O

In the coherent case we obtain the following representation result:

Corollary 1.1.7. A conditional coherent risk measure p; is continuous from
above if and only if for any P* € M®(P) it is representable in the form

pt(X) = esssup Eg[—X | F], X eL™, (1.9)
QeQV(P*)

where

QUpP*) = {Q € M (P) ‘ Q=P onF, a™™(Q)=0 Q—a.s.}.
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Proof. Due to positive homogeneity of p; the penalty function a(Q) can
only take values 0 or oo for all Q € P;. Indeed, for A := {a™(Q) > 0}, X €
A; and all A > 0 we have A4 X € A;, and hence

"™ (Q) = esssup Eg[—X|F]
XeA;

> esssup Eg[— A4 X |F]
XeA:

= M a"™(Q),

where the lower bound converges to oo with A — oo on A. Thus /"™ (Q) = co
on A and o™ (Q) =0on A°. IfQ € Q{(P*) for some P* =~ P, the inequality
Ep:[a™™(Q)] < oo implies P[A] = 0, hence Q € QY(P*). Thus (1.8) is
equivalent to (1.9). O

The following lemma was used in the proof of the Theorem 1.1.4. Similar
arguments are used in the proofs of Theorem 2.27 in [Det03], Theorem 1 in
[DS05], Theorem 3.5 in [Bur05], Theorem 3.16 in [KS], and Theorem 3.16 in
[CDKO06].

Lemma 1.1.8. For Q € Py and 0 < s <,
EQ[a?‘in(Qﬂfs] = esssup Eg[-Y|Fy,
YeA;

and in particular

EQ[ozf“m(Q)] = sup Eg[-Y].
YeA;

Proof. First we claim that the set
{ Eql-X|F]| X € A}

is directed upward for any @@ € P;. Indeed, for X,Y € A, we can define
Z = X1a+Y 1se, where A = {Eqg|—X|F;| > Eg[-Y|F]} € F;. Conditional
convexity of p; implies that Z € A;, and by definition of Z

Eq[=Z|F] = max (Eq[-X|F], Eq[-Y|F]).
Hence there exists a sequence (X%) in A; such that
a™(Q) = lim E[-XP2|F]  P-as., (1.10)
and by monotone convergence we get
Eglaf™(Q)|F.] = lim Eq | Eq[-X¢|F]| 7]

< esssup Eg[—Y|Fs].
YeA,

The converse inequality follows directly from the definition of o™(Q). O
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Remark 1.1.9. The penalty function o™ (Q) is minimal in the sense that
any other penalty function oy in a robust representation of p; satisfies

a™(Q) < (Q) P-a.s.

for all Q € Py. An alternative formula for the minimal penalty function is
given by

o™ (Q) = esssup (Eq[~X | 7] — pi(X)) forall Q€ P (L11)

XeL>

This follows as in the unconditional case; see e.q. Theorem 4.15 and Remark

4.16 in [FS04].

1.2 Sensitivity

In this section we will show that under an assumption of sensitivity with
respect to the reference measure P it is sufficient to use only equivalent
probability measures in the robust representations of risk measures. This is
more convenient for technical reasons, and it allows us to drop the dependence
on time t for the representing set of measures.

Definition 1.2.1. We call a conditional convex risk measure sensitive or
relevant, if
Plpi(—els) >0] >0 (1.12)

holds for all e > 0 and for any A € F such that P[A] > 0.

Remark 1.2.2. 1. For coherent risk measures it is sufficient to require
Plpi(—14) > 0] > 0, (1.13)

since (1.18) and (1.12) are equivalent under the assumption of positive
homogeneity. This corresponds to the definition of relevance for coher-
ent risk measures given in [Del02] for the unconditional case. For a
convex risk measure, condition (1.12) is stronger than (1.13).

2. Several slightly different definitions of relevance can be found in the
literature. In [KS] relevance is defined as in (1.13). In [CDKO06] the
stronger property A C {p(—ela) > 0} for all ¢ > 0 is required in a
more general setting. The arguments used in this section are similar to
those in [KS] and [CDKO06] up to some technical details.
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In the sequel we will assume that a conditional convex risk measure p; has a
robust representation. First we prove a “o-pasting property” of the penalty
functions which also appears in Lemma 3.12 of [KS].

Lemma 1.2.3. Let (Q,,) be a sequence in Q; and (A,) a sequence of pairwise
disjoint events in F; such that U, A, = Q) P-a.s.. Then

%) d "
Z=3 1.5 o
defines a density of a probability measure Q € Q, such that

mln Z [A amln
(here we define I4, ™™ (Q,) := 0, if P[A,] =0).

Proof. We will prove the first part of the lemma more generally for any
sequence (\,) in L with 0 < X, < 1 and 372, A, = 1 P-as.. Let
Zp = dQ,/dP and Z :=%>° | \,Z,. By monotone convergence,

EIZIF) = lim > MEZF) = 1,
k=1
and so Z is indeed the density of a probability measure Q € Q. Since
| an MZpX| < Z||X|oo € LH(P)  for all n,
k=1
the dominated convergence theorem implies
Eé[X|}"t] = iAnEQn[XU}] (1.14)

for any X € L*™. From the definition of the minimal penalty function we
obtain immediately

mln Z )\ amln Q
t n

In particular if A\, := I4, for a sequence (A,) as above we obtain

esssup E[—X|F] = esssup (Z Ia, Eq, |- X\}}])

XeA; XeA; n=1

= Z 14, esssup Eg, [—X|Fi]

n=1 XeA;
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mm Z ] amln

In particular, for any A € F; and Q1, Qs € Qy,

dQq dQ
7 = [Adip +lae—— IP

defines a density of a probability measure Q € Q; with

Q™ (Q) = Lia™™(Qy) + Lyea™™(Q,). (1.15)

This finite pasting property of the penalty functions, which corresponds
to the local property of the risk measure, also appears in Remark 3.13 of
[CDKOG6].

It follows from (1.15) that the set { min () ’ Qe Qt} is downward directed,
and hence there exists a sequence (Qn) in Q; such that

mm(Qn) \ ess mf amm(Q) 0 P-as.. (116)

For £ > 0 we consider the set
{Q € 9, ‘ ™ (Q) < e P—a.s.},

and we use the same notation for the corresponding set of densities:

Q= { ‘ Qe Q, a™(Q)<e P—a.s.}.

We now show that the set Qf is non-empty. Moreover, it contains an equiv-
alent probability measure as soon as the risk measure is sensitive; this part
is similar to Lemma 3.22 in [CDKO06].

Lemma 1.2.4. For any € > 0 the set Q; is nonempty. For a sensilive

conditional convex risk measure there exists a probability measure P* ~ P
such that P* € Q5.

Proof. For ¢ > 0 and a sequence (@) as in (1.16) with densities (Z,) we
define an F;-measurable N-valued random variable

T = mln{n ‘ aM(Q,) < 5}.
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It follows from (1.16) that 7¢ < oo P-a.s.. Thus the sets A,, := {7 =n} (n =
1,2,...) form a disjoint partition of 2 with A, € F; for all n. By Lemma
1.2.3

ZTE = Z ZnI{Tezn}

n=1

defines a density of a probability measure Q¢ € Q; with
oo ( ZI LaM(Q,) <e P-as.,

which proves Q° € Q5.
Next we use a standard exhaustion argument to conclude that Q; contains
an equivalent measure P* under the assumption of sensitivity. Let

c::sup{P[Z>O] ‘ Z € Qf}
and take a sequence (Z,)nen in Q5 such that P[Z, > 0] — ¢. Then
i 1y
= 2" o
belongs to the set QF by Lemma 1.2.3, and

(Z* > 0} = Up{Z, > O}.

Hence P[Z* > 0] = c¢. Next we show that ¢ = 1, and so the probability
measure P* defined via dP*/dP := Z* has the desired properties. Suppose
by way of contradiction that the set A := {Z* = 0} has positive probability.
Sensitivity implies P[p;(—el4) > 0] > 0, where

pi(=<la) = esssup (Egl=al 7] — o™ (@)
€t

Hence there exists Q € Q, such that the set B := {a™*(Q) < E5lelal ]} €

F; satisfies P[B] > 0. In particular is a™*(Q) < € on B. By Z we denote
the density of @) with respect to P. Without loss of generality we assume
that Q € Q;; otherwise we can simply switch to a probability measure Q
defined via dQ /dP =1 B2 + 1 peZ, where Z is an arbitrary element of Q.
Then Q is in Qs by (1.15) and Q and Q coincide on B.

Next we will show that the set {Z > 0} N A has positive probability. Indeed,
it follows from the definition of B and o/""(Q) > 0, that

E[Z]BIA] = E@[]B]A] = E@[]BEQ[IALEH > 07
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which implies P[{Z > 0} N AN B] > 0 and in particular P[{Z > 0} N A] > 0.
Thus the probability measure () defined via
1 1~

= =7 ==7"4+=Z
aP 27 T

belongs to QF, and we have
P[Z > 0] = P[Z* > 0|+ P[{Z > 0} N A] > P[Z* > 0],
in contradiction to the maximality of P[Z* > 0]. O

Our goal is to obtain a robust representation for a conditional convex risk
measure in terms of equivalent probability measures. The following lemma
shows that this is possible if there exists some equivalent probability measure
such that its penalty function is a.s. bounded. Similar arguments are used
in Proposition 3.22 of [KS] and Theorem 3.22 of [CDKO06]. In the second
part of the lemma we reduce the class of the representing measures even
further, and this reduced representation will be useful in our discussion of
time consistency.

Lemma 1.2.5. Let p; be a conditional convex risk measure that is continu-
ous from above, and let P* be a probability measure such that P* ~ P and
a"m(P*) < oo P-a.s.. Then

pi(X) = esssup (EQ[—X|.7-"t] - a?in(Q)) (1.17)
QeMe(P)

for all X € L>. Moreover, if Ep [a™™(P*)] < oo then

pt(X) = esssup (EQ[—X]]-}] — a?in(Q)) (1.18)
QeQ; " (P¥)

for all X € L*>, where
of“(P) ={Q e M(P)| Q=P* on 7, Ep:[a]"™(Q)] < oo}

Proof. By Z* we denote the density of P* with respect to P, and for € € (0,1)
and @) € 9, we define a probability measure (). via

d0. dQ 7
1, L
ap =N TR

Then Q. € Q;, Q. € M*(P) and

Eq [X|F] = (1 — &) EQ[X|F] + e Ep-[X|F]
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for all X € L*>°. By definition of the minimal penalty function we obtain

"™ (Q:) < (1 - 2)af™(Q) + o™ (P7).

Thus
pr(X) = esssup (EQ[—XU:t] - szremn(Q))

Qe

> esssup (EQ[_X|ft] - Oézrsnin(Q))

QeQ:NMe(P)

> ess sup (EQE[—X!-E] - Oéinin(QJ)
Qe

> esssup ((1 — €) Eo[—X|F]
QED:

+eBp [~ X|F] — (1 - 2)af™(Q) — ca™(P*))
= (1= e)p(X) + e (Ep-[-X|F] — a"™(P"))
> p(X) = & (p(X) + X |oo + a™(PY)) (1.19)

where the lower bound converges a.s. to p; with ¢ — 0. Hence

p(X) = esssup (Eqg[-X|F] - af™@Q)).
QEQNME=(P)

On the other hand it follows from the representation (1.4) that
pi(X) > esssup (EQ[—XU'—t] - Oéinin(Q))
QeEMe(P)
> esssup (EQ[—X!«E] - Oéinin(Q)) ;
QEQ:NMe(P)

proving the representation (1.17).
If Ep- [oi"(P*)] < 0o we define for Q € Qf (P*) and ¢ € (0,1) a probability
measure (), via

dQe dQ)

1P = (]_ —€)ﬁ + €.

Then Q. = P* on F;, Q. € M¢(P) and

Eo.[X|F] = (1 — ) Eq[X|F] + e Ep- [ X|F]
for all X € L*°. This implies

a"™(Q:) < (1= 2)o™(Q) +ea™(P)
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and in particular Ep [a"™(Q.)] < o0, so Q. € Qf“(P*). Thus we obtain
using Corollary 1.1.6

pr(X) = esssup (Eg[~X|F] — o)™ (Q))

Qeof

> esssup (Eq[-X|F] - a}™(Q))
QeQf*

> esssup (EQE [—X|F] — Oéyrsnin(Qa))
Qeof

> p(X) =2 (p(X) + [ X|oe + @™ (P"))
and the representation (1.18) follows. O
In view of Lemma 1.2.4 and Lemma 1.2.5 we obtain the following corollary:

Corollary 1.2.6. Any sensitive conditional convex risk measure that is con-
tinuous from above is representable as in (1.17) and (1.18).



Chapter 2

Time consistency, prudence,
and sustainability

2.1 Introduction and notation.

In this chapter we consider a discrete-time multiperiod information structure
given by a filtered probability space (2, F, (F3)i=o...7, P). The time horizon
T might be finite or infinite. We assume that Fo = {0, Q}, F = Frif T < oo
and F = o (UpJF;) if T = oo. We use the same notation ¢t = 0,1, ... in both
cases T'= oo and T < oo, for T' < oo this numeration is meant to stop by 7.

We consider a sequence (pt)i—o1..., such that each p; is a conditional convex
risk measure defined on the set of all financial positions L> = L>*(Q, F, P).
Such a sequence (with a finite time horizon) is called a dynamic convex
risk measure in [DS05] or (with opposite sign) a dynamic monetary utility
functional in [CDKO6].

A dynamic risk measure (p;) induces for each financial position X a risk
process (pi(X)) describing the conditional risk assessments associated to X
over the time. A key question in the dynamic setting is how these risk
assessments in different periods of time should be interrelated. This question
has led to several notions of time consistency in the literature. We would like
to give a short overview of various time consistency notions here and explain
the terminology we are going to use in this chapter.

A unifying view of different time consistency notions was suggested in [Tut06]
and extended in [Dra06]. In the sequel we will summarize the reasoning from
[Tut06] and [Dra06] with some minor modifications.

23
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Definition 2.1.1. Assume that (p;)i—o1.... is a dynamic risk measure and let
V; be a subset of L™ such that 0 € YV, and Yy +R =), for eacht € {0,1,...}.
Then (pt)t—o,,.. is called acceptance (resp. rejection) consistent with respect
to (Vi)i=oa,.., if for allt,s € {0,1,...} and for any X € L™ and Y € Vi
the following condition holds:

Prrs(X) < prs(Y) (resp. =) = p(X) < pu(Y) (resp. =) (2.1)

The idea is that the degree of time consistency is determined by a sequence
of benchmark sets ();)i—o1,.: If a financial position at some future time
is always preferable to some element of the benchmark set, then it should
also be preferable today. The bigger the benchmark set, the stronger is the
resulting notion of time consistency. In the following we focus on three cases.

Definition 2.1.2. We call a dynamic convex risk measure (p;)i=on1,..

1. (strongly) time consistent, if it is either acceptance consistent or rejec-
tion consistent with respect to YV, = L™ for allt =0,1,... in the sense
of Definition 2.1.1;

2. middle acceptance (resp. middle rejection) consistent, if for all t =
0,1,... we have Y, = L*(F;) in the Definition 2.1.1;

3. weakly acceptance (resp. weakly rejection) consistent, if for all t =
0,1,... we have Y, = R in the Definition 2.1.1.

Note that there is no difference between rejection consistency and acceptance
consistency with respect to L, since the role of X and Y is symmetric in
that case.

Obviously strong time consistency implies both middle rejection and middle
acceptance consistency, and middle rejection (resp. middle acceptance) con-
sistency implies weak rejection (resp. weak acceptance) consistency. This
explains the names strong, middle and weak.

We focus first on the weak notion of time consistency. The definition of this
property can be relaxed, since due to cash invariance of the risk measure it
is sufficient to take 0 as a benchmark set ), for all t.

Proposition 2.1.3. A sequence of conditional risk measures (pt)i—oa,. 1S
weakly acceptance (resp. weakly rejection) consistent, if and only if for any
X € L* and for allt > 0 the following condition holds:

pr1(X) <0 (resp. 2) = p(X) <0 (resp. =) (2.2)
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Condition (2.2) explains the intuition behind this weak notion of time con-
sistency: If some position is accepted (or rejected) for any scenario (modulo
nullsets) tomorrow, it should be already accepted (or rejected) today. As
to our knowledge weak acceptance consistency appeared first in [ADET].
Both weak acceptance and weak rejection consistency were introduced and
used in [Web06] (without adding “weak” to the names) in the context of
law-invariant risk measures. Both notions also appear in [RS07] under the
name “sequential consistency” Some characterizations of weak acceptance
consistency are given in [Bur05] and in [Tut06]. We will come across weak
acceptance consistency in Section 2.3. and we will characterize it in terms of
penalty functions.

Next we turn to the strong notion of time consistency. From now on we call
it simply time consistency. This notion is rather strict, but it seems to be the
easiest one to work with and the most applicable. Time consistency has been
used extensively in the recent work on dynamic risk measures, see [ADET],
[Del06], [Rie04], [DS05], [CDKO06], [KS], [Bur05] and references therein. In
the next Proposition we will give some equivalent characterizations of time
consistency that can be (and are) used as definitions of this property.

Proposition 2.1.4. A dynamic convex risk measure (p;)i—o1,... is time con-
sistent if and only if

1. for allt > 0 the following condition holds:

per1(X) < pea(Y) P-a.s. = p(X) < pu(Y) P-as; (2.3)

2. for any X,Y € L™ and for allt > 0 the following condition holds:
pri1(X) = pi1(Y) P-a.s. =  p(X)=p(Y) P-a.s.; (2.4)
3. (pt)tzoylp_ 1S one-step recursive, i.e.
pr = pe(=pe1) P-a.s. (2.5)
for allt € {0,1,...};
4. (pt)i=o1,.. is recursive, i.e.

pe = pi(—pers) P-a.s;

forallt,s € {0,1,...}.
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Proof. It is obvious that time consistency implies condition (2.3), and (2.3)
implies (2.4). By cash invariance we have p;1(—pi1(X)) = p1(X) and
hence one-step recursiveness follows from (2.4).

We will prove that one-step recursiveness implies recursiveness by induction
on s. For s =1 the claim is true for all . Now we assume that the induction
hypothesis holds for each ¢ and all £ < s for some s > 1. Then we obtain

Pi(=pirs11(X)) = pi(=pres(—perss1(X)))
= pt(_thrs(X))
= pt(X)7

where we have applied the induction hypothesis to the random variable
—prys+1(X). Hence the claim follows.
Due to monotonicity recursiveness implies time consistency. Il

Remark 2.1.5. 1. The equivalence of time consistency and one-step re-
cursiveness was already proved in Proposition 5 of [DS05].

2. As explained in [ADET], recursiveness may be viewed as a version of
the Bellman principle for dynamic risk measures.

3. In [Bur05] time consistency is defined as in (2.3) but in terms of stop-
ping times. For coherent risk measures it is shown in [Bur05] that this
is equivalent to recursiveness for stopping times.

4. A more general definition of time consistency in terms of recursiveness
for stopping times is given in [CDKO06] for risk measures on stochastic
processes.  Proposition 4.5 in [CDK06] shows that this definition is
equivalent to recursiveness in the sense of (2.5) if the time horizon is
finite or if all risk measures are continuous from above.

We will study time consistency in more detail in Section 2.2.

Now we consider middle acceptance and middle rejection consistency. As to
our knowledge these properties have not appeared in the literature before.
Similar to strong time consistency, middle time consistency can be charac-
terized via recursive inequalities as we state in the next Proposition.

Proposition 2.1.6. A sequence of conditional risk measures (pt)i—oa,. 1S
middle rejection (resp. middle acceptance) consistent if and only if for all
t,s > 0 the following condition holds:

pe(—pres) < pe (resp. >)  P-a.s.. (2.6)
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The proof of this proposition is given in Theorem 3.1.5 of [Tut06] and Propo-
sition 3.5 in [Dra06]. In order to stay self-contained we repeat it here.

Proof. We argue for the case of middle rejection consistency; the case of
middle acceptance consistency follows in the same manner. Assume first
that (pt)io,1,. satisfies (2.6) and let X € L™ and Y € L*®(Fi;s) such that
Pras(X) > pas(Y). Since piis(Y) = =Y for all Y € L®(F. ) due to cash-
invariance, we obtain using (2.6) and monotonicity

pi(X) Z pe(=pees(X)) = pe(=pras(Y)) = pu(Y).

This proves middle rejection consistency.
To prove the opposite direction note that

Prvs(X) = pros(—prys(X))

for all X € L* due to cash-invariance of the risk measure p; . Since
—pras(X) € L>®(Fiis) we can apply (2.1) to Y = —py1(X) and obtain

pe(X) = pi(—pets(X)),
which proves (2.6). O

Remark 2.1.7. [t was proved in Proposition 3.9 of [Dra06] that for a coher-
ent dynamic risk measure (pt)i—o.1,.. weak acceptance consistency and middle
acceptance consistency are equivalent.

We have seen that in the case of time consistency one-step recursiveness
pr = pi(—pes1) already implies the general property p; = pi(—piss) for all
s > 0. In the case of middle rejection consistency we believe that the in-
equality p;(—per1) < py is not sufficient to prove general rejection consistency,
although we do not have a counter example. Let us therefore introduce spe-
cial notation for one-step properties.

Definition 2.1.8. We call a sequence of conditional risk measures (pi)i—o ...
one-step middle rejection consistent (resp. one-step middle acceptance con-
sistent), if inequality (2.6) (or equivalently relation (2.1)) holds only with
s=1.

We will say more about the economic interpretation of middle rejection con-
sistency in Section 2.4, where we relate it with the notion of prudence of
a dynamic risk measure. Moreover, one-step middle rejection and one-step



28

middle acceptance consistency are interesting because their combination re-
sults in the strong time consistency property. Thus characterizations of mid-
dle time consistency allow us to understand better the different aspects of
strong time consistency.

In the rest of this chapter we will give alternative characterizations of various
time consistency properties. To this end we introduce some notation. If we
restrict a conditional convex risk measure p; to the space LY for some s > 0,
the corresponding acceptance set is given by

pi(X) < 0}-

If p; is continuous from above, then this property holds on L, and thus the
restriction of p; to Lg], is representable with the minimal penalty function

Ap s == {X € L,

Oé?,ltiis(Q) .= €esssup EQ[_X|E]7 Q S 7Dt-

XEA 145

Note that A, = LY(F) and ofY(Q) = 0 Q-as. for all Q € P,. In par-
ticular we will consider one-step acceptance sets A, ;1 and one-step penalty

min

functions oy} (Q) for each t = 0,1, . ...

2.2 Time consistency

In this section we will focus on the strong notion of time consistency as
defined in the preceding section; cf. Definition 2.1.2 and Proposition 2.1.4.
We omit “strong” and call it simply time consistency. We will give various
characterizations of time consistency in terms of acceptance sets, of penalty
functions and of a joint supermartingale property of the risk measure and its
penalty function. This section is based on Section 4 of [FP06].

Lemma 2.2.1. Let (p;)i—o1.... be a time consistent sequence of conditional
convex risk measures and let py be semsitive. Then p; is sensitive for all
t>0.

Proof. Let A € F with P[A] > 0 and € > 0. Then by monotonicity
pi(—elq) > 0 P-a.s.. Assume that p(—el4) = 0 P-a.s.. Then recursiveness
and normalization imply po(—ela) = po(—p:(—€la)) = 0 in contradiction to
the sensitivity of py. Hence P[p:(—el4) > 0] > 0. O

The next theorem, and in particular the equivalence of 1) and 4), is the main
result of this section.
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Theorem 2.2.2. Let (pt)i—o01,.. be a sequence of conditional convex risk mea-
sures such that each p; is continuous from above, and assume that the set

Q"= {Q e M (P) | af™(Q) < o0}

is nonempty. Then the following properties are equivalent:

1. (pt)i=o01,.. is time consistent.

2. The equality
Ai = Avrn + A

holds for all t =0,1,....
3. The equality
a™(Q) = o (Q) + Egl a1 (Q) | 7]
holds for all t =0,1,... and all Q € M*(P).

4. For all Q) € QF and all X € L*>, the process
VAX) = p(X) +a™@), >0

is a Q-supermartingale.

In each case the dynamic risk measure admits a robust representation in
terms of the set QF, i.e.,

pt(X) = esssup (EQ[—XLE] — a?ﬂn(Q)) (2.7)
QeQ*

for all X € L™ and all t > 0.

Remark 2.2.3. In view of Lemma 1.2.4, the assumption Q* # () is satisfied
if po is sensitive.

Before we begin the proof let us compare Theorem 2.2.2 to the existing
literature. The equivalence of 1) and 2) is already known: It was proved in
a more general setting in Theorem 4.5 in [CDKO06] and also in Lemma 3.25
in [KS]. The decomposition property 2) in terms of stopping times appeared
first in [Del06] in the context of Snell envelopes, and it was shown that this
decomposition property is equivalent to m-stability of the set of measures
and time consistency.
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In terms of penalty functions some necessary and sufficient conditions for
time consistency are given in Theorems 4.19 and 4.22 of [CDKO06]. In the
more general context of risk measures for stochastic processes, they involve
concatenation of the representing dual functionals. In our setting of risk
measures for random variables, it is natural to identify dual functionals with
probability measures and to use 3) as a necessary and sufficient condition.
With a slight modification of property 3) and under the assumption that the
risk measures are continuous from below the equivalence of the first three
properties also appears in [BN06].

The equivalence of recursiveness and the supermartingale property of the
process (pt)i—o.1,.. was shown in [ADET] for dynamic coherent risk measures
which are given in terms of the same representing class Q; see also [Bur05].
In the context of dynamic conver risk measures, the equivalence of time
consistency and the supermartingale property 4) seems to be new.

The proof of Theorem 2.2.2 will be given in several steps. Note that we may
assume that P € QF; otherwise we can simply replace P by some P* € Q*.

The equivalence of time consistency and property 2) follows from
the next lemma, which holds for any sequence of conditional convex risk
measures; here we do not need robust representations and the set Q*. The
equivalences between set inclusions and inequalities provide equivalent char-
acterizations for both middle acceptance and middle rejection consistency in
terms of acceptance sets. Property 2.8 was already shown in [Del06].

Lemma 2.2.4. Let (p;)i—o1... be a sequence of conditional convex risk mea-
sures. Then the following equivalences hold for all s,t > 0 and all X € L*°:

X € At,t+s + At—i—s <~ —pt+s(X) S At,t—i—s (28)
Ay C Apprs + Airs = pi(—piss) < pe P-as. (2.9)
At D) At,t+s + At+5 e Pt(_Pt+s) > Pt P-a.s.. (210)

Proof.

a) To prove “="in (2.8) let X = Xy, + Xyps with Xy € Ay yqs and
Xt+5 c At+s' Then

Pt+s (X) = Pi+s (Xt+s) - Xt,t—l—s < _Xt,t+s
by cash invariance, and monotonicity implies

Pe(—prrs(X)) < pe(Xipys) < 0.

The converse direction follows immediately from X = X + p;,4(X) —
pers(X) and X + ppyo(X) € Ay for all X € L.
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b) In order to show =" in (2.9), take X € L*. Since X + p;(X) € A; C
Aiivs + Airs, we obtain

Pros(X) = pe(X) = prys(X + pe(X)) € —Apiss,

by (2.8) and cash invariance. Hence

pe(=pers(X)) = p(X) = pe(=(prss(X) = pe(X))) <0 P-ass..

To prove “«<=" let X € A;. Then —pii(X) € Aiys by the right hand
side of (2.9), and hence X € Ay ;s + A5 by (2.8).

c) Let X € L* and assume A; O A; ;15 + Aiys. Then

pe(=pers(X)) + X = pe(—pras(X)) = pras(X) + pras(X) + X
€ Appys + Aips C Ay

Hence

Pe(X) = pe(—=pigs(X)) = po(X + pe(—pirs(X))) <0

by cash invariance, and this proves “=" in (2.10). For the converse
direction let X € A;sys + Aiys. Since —piys(X) € Aiyis by (2.8), we
obtain

pe(X) < pi(=prss(X)) <0,
hence X € A,. O

Proof of 2) = 3) of Theorem 2.2.2 follows from the next lemma. As
in the preceding lemma we do not need robust representations and the as-
sumption Q* # () for the proof of this result.

Lemma 2.2.5. Let (p;)i—o1,.. be a sequence of conditional convex risk mea-
sures. Then the following implications hold for all s,t > 0 and all () €
Me(P):

Ar C Apprs + Aips = o1(Q) < aff1,(Q) + Eglo2 (Q)|F (2.11)
A D Appis + Ars = 1(Q) > ofi1,(Q) + Egla2(Q)| . (2.12)

Proof. We fix @ € M¢(P). To prove (2.11) we take X € Ay C Apsis + Asys
such that X = Xt,t+s +Xt+5 with Xt,t—l—s S At,t+s and Xt—i—s S At+5. USng the
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definition of the minimal penalty functions o3}, (Q), af2(Q) and Lemma
1.1.8 we obtain
EQ|=X|F] = Eq— X+ Ft] + Eq[—Xuss| Fi]
< afL(Q) + B3 (Q) | Fi .
Thus

0" (Q) = esssup Eo[-X| 7] < afif, (Q) + Eqlait(Q)I ]

for all s,t > 0.
For the proof of the implication (2.12) we take X; ;s € Assqs and Xyys €
Aiys. Then Xipis + Xiys € A; and by definition of the penalty function
o™ (Q) ,

a"™(Q) = Eg[—Xiuys| Fi] + Egl—Xiys| Fi).
Thus for all s, > 0

af™(Q) > esssup  Eg[—Xy 5| F] + esssup Egl—Xiis|F]

Xt t+s€AL 1+ Xits€EAi4s
= o} (Q) + EQ[ a3 (Q) | i,
where we have used Lemma 1.1.8 for the second equality. U

Remark 2.2.6. Applying property 2) and property 3) of Theorem 2.2.2 step
by step to the time consistent sequence (py)i<n<t+s on the space L*°(Fiys) for
each t > 0 and s > 1 we obtain

t+s—1

At,tJrs = Z An,nJrl
n=t

and
t+s—1

Q) = Fo| 3 a2 (@)] A

for all all t;s > 0 and all Q € M®(P) (note that we have not used that
the initial o-field is trivial in the preceding proofs). In particular it follows
inductive that

t+s—1

Ar= " Appsr + A = Avprs + Asss (2.13)

k=t
and
t+s—1

Q) = Fo | 3 ol (Q)| %] + Eolai@)|7)
k=t

= o731,(Q) + Eo[ a2 (Q) | 7] (2.14)



33

for all t,s = 0,1,... and all Q € M®(P). On the other hand equalities
(2.13) and (2.14) imply the one-step properties 2) and 3) of Theorem 2.2.2.
Thus time consistency is equivalent to the properties

2}) At = At,t—f—s + At-l—s fOT all t, S = O, 1, e
and to

37) a™(Q) = i}, (Q) + Egl i (Q) | 7
forallt,s=0,1,... and all Q € M°(P).

This is consistent with the fact that one-step recursiveness implies general
recursiveness, as we have shown in Proposition 2.1.4.

Proof of 3) = 4) of Theorem 2.2.2:

a) First we will show that the representations (1.17), (1.18) and (2.7) hold for
any t > 0. Note that property 3’) implies Ep- [a™®(P*)] < oo for P* € Q,
and thus the representations (1.17) and (1.18) of Lemma 1.2.5 hold for any
P* € Q*. Now take Q € M*(P) such that @ = P on F; and Eg[a"™(Q)] <
00, that is @ € Q7°(P). Using 3’) we obtain
af™(Q) = Eq |af(Q)] + Eqloaf™(Q)]

= EBp [af{"(P)] + Eqla?™ ()]

< a"(P) + Eqla™(Q)] < oo,
hence ) € Q*. Thus it follows from (1.18) that

pe(X) < esssup (EQ[—X]]-}] - ainin(Q)) for all X € L.
QeQ*

The converse inequality “>” follows from (1.17) of Lemma 1.2.5.

b) In the next step we fix Q € O and apply Lemma 1.2.3 to the set
off1(Q) ={Q e M(P)|Q=Q on Frn, B5[a5(Q)) < o0}
For Q1,Qs € Q{fl((:)) and B € F;,1 we define

2:: [BLQ}—F[B dQl

dQ 4o
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Then by Lemma 1.2.3 the probability measure Q defined via dQ / dQ = Z
satisfies Q = Q on Fiiq and

afi1(Q) = ai1(Q1) Ine + a5 (Qo) I,
hence Q € QFf(Q).

c¢) Using b) and the same reasoning as in the proof of Lemma 1.1.8 we can
deduce that the set

{EQ[_X‘EH] (0] ‘ Qe Qt+1(@)}

is directed upward for all X € L*>. Since p;y1 can be represented as esseg—
tial supremum over this set by a), there exists a sequence (Q,) C Q] +1(Q)
depending on () and X such that

Eo, =X |Fisa] — aH(Qn) /" prs1(X)  P-as. with n — oo.
The monotone convergence theorem implies
Eglperi(X)|F) = lim Bl Eq,[—X|Fen] — o7 (Qn) | 7]
= lim (Eq,[~X|F] — Eo, [02}(Qu)| 7))

n—oo

where we have used that (),, and @ coincide on Fiy1. Moreover, the same
reasoning as in a) implies that Q{fl(Q) C Q*, and applying 3) to @, we
obtain
Eq, [0 (Qu)| A = o™ (Qn) — af11(Qn)
= a"(Q,) — " (Q) for all n € N.

d) In the final step we obtain for Q € Q* and X € L™

E5[V2,(X)|F] = Eglpei(X) + a3 (Q)|F]
= B5lpin1 (X)|1F] — afiy (Q) + o™ (Q)
= lim (Eq,[-X|7] - a]"™(Qn)) + o™ (Q)

< esssup (Bl ~X|7] - a™(Q)) + /"™ (Q)

= p(X) + af"™(Q)
~ V2(X),
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where we have used 3), ¢), a) and @Q,, € Q" for all n. Moreover, (V?(X)) is
adapted and integrable for all ) € Q*, and thus a Q-supermartingale.

Proof of 4) = 1) of Theorem 2.2.2:

In the first step we will show again that the representation (2.7) holds for
all t > 0. Indeed, 4) implies Ep- [a/"™(P*)] < oo for all t > 0 and P* € Q*,
since py(X) + o™ (P*) is P*-integrable and p,(X) € L for all X € L*™ and
t > 0. Hence the representation (1.18) of Lemma 1.2.5 holds for all ¢ > 0
and P* € Q*. Moreover, for Q € Q;°(P) and X € Ay we obtain

Eq[=X] < Eq[=X = p(X)] + Eglo(X) + of™(P)]
< Eqlai™(@)] + Eplp(X) + o™ (P)]
< Eglai™(@Q)] + po(X) + ag™(P)
< Eola™ (@) + ag™(P),

where we have used representation (1.11) for a™(Q), Q € Q;“(P), P € Q*,
4), and X € Aj. Hence

g™ (Q) < Eqlo™(@)] + ag™(P) < o0

which implies ) € Q*. Now we can argue as in part a) of the proof 3) =
4) to obtain representation (2.7).

In the next step we will prove time consistency. To this end let X,Y € L*
such that p;1(X) < pr1(Y) P-a.s.. Using 4) we obtain for all Q € Q*:

pe(Y) +a™(Q) = Eglpeai (Y) + a1 (Q)| ]
> Eqlpi (X) + o (Q)F
> Eq|Eo[~X|Fit] — af1(Q) + a1 (Q)|F]
= Eq[—X|7].
Thus
pi(Y) > Eq[~X|F] — o™ (Q)
for all @) € Q*, and hence

p(Y) = p(X)  P-as.,

proving time consistency of the sequence (p;) as characterized by (2.3). O

In the coherent case the characterization of time consistency is already well
understood; see Theorem 5.1. in [ADET], Theorem 6.2 in [Del06], Lemma
3.29 in [KS], Corollary 3.18 in [Bur05], and Section 4.4 in [CDKO06]. Let
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us show how the main results for coherent risk measures for final values
can be obtained as special cases of our discussion of the convex case. This
involves the following stability property for the representing set of measures,
sometimes called fork convexity as in [Del06] and multiplicative stability or
m-stability as in [ADET]. Tt is equivalent to Definition 6.44 in [FS04] and
stronger than the weak m-stability in Definition 3.27 of [KS].

Definition 2.2.7. We call a set Q C M*(P) stable if it has the following
property: For any Q', Q% Q3 € Q, anyt > 0 and any A, € F; the probability
measure () given by

QIA] = Equ| Lo, Q[ A| F] + Ly Q*[A| ]|, (2.15)

called the pasting of Q', Q? and Q3 in t via A, belongs again to the set Q.

Note that the density of the pasting @) is given by

Zi

Ztl
-y 2.16
Zt2 ) ( )

t

Z%—I—[Ag

where Z° denotes the density process of QQ* with respect to P for i = 1,2, 3.

It is also easy to see that a probability measure @ is a pasting of @', Q? and
Q? at time t via A, iff it has the following property:

Eq|1s, Eq[ X | Fi)+ L Es[ X | R Fo| 5 s<t
IAtEQQ[X|fS]—|—IA§EQ3[X|fs] ;s> t.
(2.17)

Folx17)] - {

for all s > 0. In particular we have Q = Q' on F;.

min

If the initial risk measure pg is coherent then the penalty function of"™(Q)
can only take values 0 or oco. Hence the set Q* takes the form

Q" ={QeM(P)|af™(Q) =0}.

Corollary 2.2.8. Let (pi)i—o1... be a sequence of conditional convex risk
measures such that each p; is continuous from above. Assume that Q* # ()
and that the initial risk measure pgy is coherent. Then the following conditions
are equivalent:

1. (pt)i=o0.1,... is time consistent.
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2. The representation

pt(X) = esssup Eg[—X|F] (2.18)
QeQ*

holds for all X € L* and allt > 0, and the set Q" is stable.

3. The representation (2.18) holds for all X € L*> and allt > 0, and the
process (pi(X))i=o1,.. is a Q-supermartingale for all Q € Q* and all
X e L™,

In each case (pt)i—o1,.. s a dynamic coherent risk measure.

Proof. As in the proof of Theorem 2.2.2 we may assume that P € Q*.

1) = 2) Time consistency implies property 3) of Theorem 2.2.2, and we will
show that this implies property 2) of Corollary 2.2.8. Indeed, af"™(Q) = 0
implies o™(Q) = 0 for all ¢ > 0 due to property 3’). Hence the rep-
resentation (2.7) reduces to (2.18). To prove stability of the set Q*, take
Q0% Q% e Q*, t >0, A; € F; and define Q via (2.15). Using (2.17) we
obtain ag’*(Q) = o (Q"') = 0 and

a"™(Q) = esssup Eg|—X|F]
XeA;

= [y esssup Egz[—X|F] + Lac esssup Egs[—X | F]
XcA: XeA:

= L™ (Q?) + Luaf™(@") = 0,
hence af™(Q) = g (Q) + Eg[aj™(Q)] = 0, and thus Q € Q*.
2) = 3) We have to show that 2) implies

Eg[esssup Eg[—X|F] [ Fi] < esssup Eg[—X|F] (2.19)
QeQ* QeQ*

for all t > 0 and @ € O*. To this end note first that the set
{EQ[_X|]:t+1] ‘ Q€ Q*}

is directed upward due to the stability of the set Q* and our assumption
P € Q*. Indeed, for any Q', Q? € Q* the pasting Q of P, Q' and Q% in t+1
via Ay = {Egr [— X |Fip1] > Eg2[—X|Fi41]} with the density

Zp Zp
ZT = IAH_l?H + IAngl Zt2+1
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belongs to Q* and
Eq[=X|Fi1] = max(Eqi [~ X |Fi1], Ege[—X[Fiia]).
Hence the same argument as in the proof of Lemma 1.1.8 implies

Eglesssup Eq[—X|[Fi1] | Fi] = esssup E5|Eq[—X|Fia] | Fi.
QeQ* QeEQ*

Moreover, the pasting of Q and Q in ¢ + 1 via Air1 = Q belongs to QF, and
hence we have

esssup Eg|Eq[—X|Fi41] | Fi] < esssup Eq[—X|F],
QeQ* QeQ*

and this proves (2.19).

3) = 1) We show that property 3) of Corollary 2.2.8 implies property
4) of Theorem 2.2.2. Indeed, for X € A,y representation (2.18) implies
Eo[—X|Fis1] <0 for all @ € Q*. Hence Eg[—X|F:] <0 for all Q € QF and
X € A; by (2.18). Thus the sequence (p;)i—o,1,... is weakly acceptance consis-
tent, and the process (aj™™(Q))i=o1,.. is a non-negative Q-supermartingale
for all Q € Q* as we will show in Proposition 2.3.4 in the next section.
Moreover, since af™(Q) = 0 we obtain a/"™(Q) = 0 for all ¢ > 0. Hence the

process

geoe

p(X) = p(X) +0™(@), t=0

is a @-supermartingale for all @) € Q*, and so we have verified property 4)
of Theorem 2.2.2. Il

2.3 Dynamics of penalty functions

In this section we discuss property 3) of Theorem 2.2.2 and its impact on the
dynamics of penalty functions.

Remark 2.3.1. [t follows from property 3) of Theorem 2.2.2 that
Eolaf™ Q)| Fy] < af™(Q) P-a.s. for all Q € M°(P).

This implies in particular Eg[af™(Q)] < oo for allt > 0 if af™(Q) < oo, i.e.
(a™™(Q)) is Q-integrable for all Q € Q*. Thus the process (™™ (Q))i=o.1...
is a Q-supermartingale for all Q € Q*. Moreover, property 3) yields an
explicit description of its Doob decomposition in terms of the one-step penalty
functions o1 (Q), as explained in Remark 2.3.3.
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Since (a/"™(Q)) is a non-negative Q-supermartingale, it has a Riesz decom-
position for each @) € Q*. In the next proposition we give an explicit form

of this decomposition.

Proposition 2.3.2. Let (pt)i—o.1... be a time consistent dynamic risk measure
such that each p; is continuous from above. Then for each QQ € QF the

min

process ("™ (Q))i=o0,,.. is a non-negative Q-supermartingale with the Riesz
decomposition
aM(Q) =20 + MP,  t=0,1,...,

where

72 = Eq lzagj};;l(cg) \ft] , t=0,1,...
k=t
is a Q-potential and

ME = lim Fg [asmin(Q) |.7-"t} , t=0,1,...

§—00

is a non-negative QQ-martingale.

Proof. We fix () € Q* note that due to Remark 2.2.6 we have

t+s—1
%ﬂ@Z%lZaWM@M]%MﬂMMﬂ] (2.20)
k=t
for all t,s =0,1,.... By monotonicity there exists the limit

§—00

Z% = lim E, [Z a1 (Q) (ftl = E, lz apita (Q) \ftl
k=t k=t

for all t = 0,1,..., where we have used the monotone convergence theorem
for the second equality. Equality (2.20) implies then that there exists

ME = lim Eo [af(Q)| 7], t=0.1,...
and
a™(Q) = Z2 + MP

forall t=0,1,....
The process (ZtQ ) is a non-negative @-supermartingale. Indeed,

EqlZ7] < Eq [Zaﬁ%(@ < af™(Q) < oo (2.21)

k=0
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since () € Q* and

Eol 28| F = Eq| S ol \(@) \ft]
k=t+1
< Eq [Z A (Q)| ft]
k=t
=79
for all t =0,1,.... Moreover, monotone convergence implies

lim Eo[ 2] = Eq

Jim Za}f}jﬂrl Q)] =0 P-as,

since 2220 a1 (Q) < oo Q-as. by (2.21). Hence the process (Z2) is a
()-potential.
The process (MtQ) is a non-negative ()-martingale, since

Eo| M?) < Eq [ o™ (Q) ] < af™ (@) < oo
and
EIM{, — M| F) = Eqlaf'(Q)|F] — o™ (@) — EolZ, — 27| F)]
= o (Q) — a1 (@) =0 Qas.

forallt = 0,1,... by property 3) of Theorem 2.2.2 and the definition of (Z).
O

Remark 2.3.3. 1. Using Proposition 2.3.2 we can precisely identify the
Q-martingale and the predictable process in the Doob decomposition of
the Q-supermartingal (™™ (Q)). For T < oo we have

or™(Q) = Eq [Z AP (Q)| Z ae (@ (2.22)

forallt=0,...,T, since F™(Q) = 0 Q-a.s for all Q.
ForT'= oo we obtain

a"™(Q) = Eq [Z a1 (Q)| E] +MP - Z i (Q)  (2:23)

forallt=0,1,... with the Q-martingale

Eq [Zaﬁnﬂ(a))ﬂﬂ} +MP, t=0,1,...

and the increasing predictable process (Sh_4, a1 (@Q))i=o,1...-
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2. It is an interesting question under which conditions the martingale M?
in the Riesz decomposition of (o™ (Q)) vanishes and the penalty func-
tion process (™™ (Q)) is a Q-potential. This is always true if T < oo,
as we have seen in (2.22). For T = oo the martingale M© is not nec-
essarily zero as we will show in Example 3.1.6 in Section 3.1. It turns
out that M® vanishes if and only if the dynamic risk measure (Pt)i=o1...
is asymptotically safe, meaning that

Poo(X) == Jim p(X)>—-X P-as.

for all X € L*>.In this case it is sufficient to require MY = 0 for one
Q € QF, and then it holds for all. We will study asymptotic safety and
its equivalent characterizations in Section 3.1, cf. Theorem 3.1.4.

If we do not assume time consistency of a dynamic risk measure (pt)i—o.1,., it
is still possible that its minimal penalty function process is a supermartingale.
The supermartingale property of the minimal penalty function corresponds
to weak acceptance consistency property as defined in Section 2.1, Defini-
tion 2.1.2. This connection was noted first in Lemma 3.17 in [Bur05] under
slightly different conditions. In the next proposition we will show the rela-
tion between the supermartingale property of the penalty function process
and weak acceptance consistency in our setting. Moreover, we will state a
corresponding characterization of weak acceptance consistency in terms of
acceptance sets. This characterization was shown in [Tut06], Corollary 3.1.7.

Proposition 2.3.4. Let (pi)i—o1,.. be a sequence of conditional convex risk
measures such that each p; is continuous from above and consider the follow-
ing properties:

1. (pt)i=o,,.. is weakly acceptance consistent.
2. At+1§.»4t fO’I" allt:(),l,

3. The inequality . .
Eolof1(Q) | Fi] < of™(Q) (2.24)
holds for all Q@ € M*(P) and allt =0,1,....

4. (a™™(Q))i=0.1.... is a Q-supermartingale for all Q € Q*.

Then 1) and 2) are equivalent and imply 3), and 3) implies 4).
Conversely, 3) implies 1) and 2) if the representation (1.17) holds, and 4)
implies 1) and 2) if the representation (2.7) holds.
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Proof. The equivalence of 1) and 2) follows directly from the definition of
weak acceptance consistency. We will show that 2) implies 3). Indeed, 2)
and Lemma 1.1.8 provide

Eqlai(Q)| Fi] = esssup Eg[—X|F]

Xir1€A41
< esssup Eo[—X|F] = o™ (Q)
XeA;
for all @ € M¢(P). This proves 3). If in addition Q € Q*, we have o'™™(Q) <
oo it follows from 3) that o/"™(Q) is Q-integrable for all ¢ > 0. Hence
(a™™(Q))i=0.1.... is a Q-supermartingale for all Q € Q* and 3) implies 4).
To prove that 3) implies 2) we take X € A,;; and note that

Eol—X|Fi1] < a(Q) P-as. forall Q € M°(P)
by definition of the minimal penalty function. Using (2.24) we obtain
Eq[~X|F] < Bo[afR(Q)| Fi] < o™(Q)  P-as.
for all @ € M¢(P). If the representation (1.17) holds we obtain

pr(X) = esssup (EQ[—X|]-}] - ozfﬁn(Q)) <0, (2.25)
QeMe(P)
and hence X € A;. This proves that 3) implies 2). If p, has a representation

(2.7), we use the supermartingale property for () € Q* and argue as in (2.25)
to show that 4) implies 2). O

2.4 Prudence and sustainability

In this section we consider dynamic risk measures that are not necessarily
time consistent. We introduce and study a new property of a dynamic risk
measure which we call prudence. We will show that this property corresponds
to the weaker notion of time consistency that we have called middle rejection
consistency in Section 2.1.

Definition 2.4.1. A sequence of conditional risk measures (p;)i—o 1.... is called

gooe

prudent, if for any X € L*> and for allt,s > 0 the following condition holds:

pe(pe(X) = pras(X)) <0, dcee pe(X) = peps(X) € Appss. (2.26)

A sequence of conditional risk measures (p;)i—o1.... is called one-step prudent,

if the relation (2.26) holds only for s=1.

goee
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Let us explain the economic meaning of the preceding definition. Recall
that due to Proposition 1.1.3 the random variable p;(X) can be viewed as a
minimal capital requirement needed at time ¢ to make a financial position X
acceptable, that is

X+p(X)e A forall X eL™.

In the context of dynamic risk measurement, however one wants to reevaluate
the risk of the position X + p;(X) at some later period of time. At time ¢+ s
the investment

Crits(X) = prs(X + pi(X)) = pras(X) = pu(X)

is required in order to keep the position X + p;(X) acceptable. Prudence
makes sure that this future liability is also acceptable at time ¢:

pt<_0t,t+s (X)) <0.

In other words, having secured the position X at time ¢ by adding p;(X) to
it, we stay on the safe side at any later period of time.

Note that any time consistent sequence of risk measures (p; )01, is prudent,
since pi(pe(X) — prys(X)) = 0 for all X € L*> by cash invariance and recur-
siveness. In the next proposition we will show that prudence corresponds to
the weaker notion of time consistency that we have called middle rejection
consistency in Definition 2.1.2.

Proposition 2.4.2. A dynamic risk measure (p;)i=o1... is middle rejection
consistent if it and only if is prudent. Another equivalent characterization of
prudence is the following:

XeA = —pt+s(X) e A (227)

for any X € L™ and all t,s > 0.

Proof. Since

pr(=pres(X)) = pu(pe(X) = pris(X)) + po(X) (2.28)

due to cash invariance of the risk measure p;, prudence implies middle re-
jection consistency. Obviously middle rejection consistency, applied to an
acceptable position, implies condition (2.27). Now assume that (2.27) holds.
Then for any X € L* we use cash invariance of the risk measure p;,, the
fact that X + p,(X) € A; and (2.27) in order to conclude:

Pe(pe(X) = pr4s(X)) = pr (=45 (X + (X)) <0, (2:29)
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i.e. the sequence of risk measures (p;)i—o1,.. is prudent. O

Condition (2.27) formalizes another aspect of “stay on the safe side”: If
position X is acceptable at time ¢, then all its future “proxies” —p;, 4(X) are
also acceptable at time ¢. Since this seems to be a reasonable property for a
dynamic risk measure, we will study prudence in more detail in this section.

We will focus first on one-step prudence, since it provides one half of the
strong notion of time consistency, as characterized in Section 2.2, Theorem
2.2.2. It is interesting to see how the equivalent characterizations of The-
orem 2.2.2 adjust for this weaker condition. This question will be clarified
in the next theorem. Before we state and prove this result we need some
preparation.

In order to characterize middle rejection consistency we will need some as-
sumptions corresponding to the condition Q* # () of Theorem 2.2.2. In our
present setting we will use sensitivity of the risk measures p; and we will
use a probability measure Q* ~ P such that the sum of its one-step penalty
functions is bounded or locally bounded. In its global form the boundedness
condition takes the following form:

T
3 Q" € M°(P) such that Y o}’ 1(Q*) < C P-as. (2.30)

k=0

for some constant C' > 0. For the local version we require
3 Q* € M°(P) such that o}, (Q*) € L®(F) V t=0,1,....  (2.31)

Both conditions are equivalent if the time horizon 7T is finite.
Moreover, it turns out that if 7" < oo, conditions (2.30) and (2.31) are already
implied by sensitivity, as we will show next.

Lemma 2.4.3. Let (p;)i—o1.... be a sequence of conditional convex risk mea-
sures such that each p; is continuous from above and sensitive. Then for each
t € {1,2,...} there exists Q, € M*(P) such that >j_y i1 (Qs) is P-a.s.
bounded.

Proof. The proof relies on Lemma 1.2.4. We fix t € {1,2,...} and note
that for all s =0,...,¢— 1 the risk measure p; is sensitive on F,,;. Thus by
Lemma 1.2.4 there exist a probability measure P; on Fy; with corresponding
density Y, € L'(F,11) such that P, ~ P on F,.y, P, = P on F, and
ot (P,) < 5 P-a.s.. Consider the process

k—1
Ze=I[Y. k=0, t—1
s=0
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It follows from the properties of the measures P, that 7 is Fj-measurable,
Z >0 P-a.s. and

k—1

E[Zk—i-llfk]znifsE[Yk|fk]:Zk7 kZO,...,t—Z,

s=0
i.e. the process (Z)k—o.. +—1 is a strictly positive martingale with E[Z;_,] =
E[Zy] = 1. Thus we can define a probability measure @); on F via the density
dQ;/dP := Z;_;. Tt follows that Q; € M¢(P) and

Eo, | X | Fi] = Ep[YiX | Fi] = Ep [ X | Fi]

forall X € Fpipandall k=0,...,t— 1.
In particular we obtain o'y | (Q;) = o'y 1 (Px) and

i—1 . t—1 1
> a1 (Qr) < > o5 <00 P-as..
k=0 k=0

O

Thus for 7' < oo the probability measure Qr € M¢(P) from Lemma 2.4.3
satisfies condition (2.30). For 7' = oo we obtain by the same construction as
above a probability measure Q* defined locally on the filtration (F;) via the
density process (Z;), i.e. Ci%| 7 = Z; for all t. Hence @Q* would fulfill the
conditions (2.31) and (2.30), if it would be possible to extend the definition
of Q* on F in such a way that Q* ~ P on F.

However, in order to do so we will need uniform integrability of the martingale
(Z;) and some additional assumption ensuring that the limit will be strictly
positive. Since we cannot expect this properties to hold in general, we will
impose that for 7' = oo one of the conditions (2.30) or (2.31) is satisfied.

Assumptions (2.30) or (2.31) are justified in particular if there exists a prob-
ability measure Q* &~ P that is not penalized, i.e. afl’ti_rh(Q*) = 0 P-a.s. for
all t. This is clearly the case with Q* = P, if penalty functions are given
in terms of conditional p-divergences with respect to P, since then we have
a{f‘tij;l(P) = 0 P-a.s. for all t. For details on general representations of risk
measures with p-divergences we refer to Chapter 4 of [Dra06], cf. also our
Example 4.1. in Chapter 4 for the special case of the entropic dynamic risk

measure.
Now we are ready to state the main result of this section.

Theorem 2.4.4. Let (pt)i—o01,.. be a sequence of conditional convex risk mea-
sures such that each p; is continuous from above and sensitive.
Then the following properties are equivalent:



46

1. (pt)t:()’l,m is one-step prudent.
2. (pt)i=o1.... is one-step middle rejection consistent.

3. The inclusion
Ay C A + A

holds for all t=0,1,....

4. The inequality

"™ (Q) < a1 (Q) + Eolai(Q) | 7]

holds for all t =0,1,... and all Q € M°(P).
Moreover, properties 1)-4) imply the following:
5. The process
UR(X) := Za?}fﬂ t=0,1,...

is a Q-supermartingale for all X € L* and all Q € Qr, where
< oo} .

3 QF € M®(P) such that Za?}cﬂl Q") <C P-as.
k=0

QOr == {Q € M*(P) | Eq [Z A (Q

Assume further that either T < oo or

for some constant C' > 0. Then property 5) is equivalent to properties 1)-4).

Proof. Equivalence of 1) and 2) was already proved in Proposition 2.1.6 and
equivalence of 2) and 3) is part (2.9) of Lemma 2.2.4. The proof of 3) = 4)
is part (2.11) of Lemma 2.2.5.

Let us show that property 4) implies property 1). To this end we fix ¢t €
{0,1,...} and consider a risk measure

pi(X) = pe(=per1(X)), X el

It is easily seen that p; inherits all the properties of p, and p;yq, i.e. it is a
conditional convex risk measure that is continuous from above and sensitive.



47

Moreover, the sequence of risk measures (py, pi+1) is time consistent by defi-

nition and thus it fulfills properties 2) and 3) of Theorem 2.2.2. (Note that

we did not use the assumption Q" # () for the proofs of this properties.) We

denote by A, and A, ++1 the acceptance sets of the risk measure p; and by
a™m jts penalty function. Since

pe(X) = pe(=pe1 (X)) = pe(X)
for all X € L* (ft+1), we obtain -’Z(t,t—i-l = At,t+1 and thus
jt = Ay + A

by property 2) of Theorem 2.2.2. This implies

"™ (Q) = ot (Q) + of1(Q) > o™ (Q) (2.32)

for all @ € M*®(P), where we have used properties 3) of Theorem 2.2.2 and
4) of Theorem 2.4.4. Due to continuity from above and sensitivity both
risk measures p; and p; have robust representations in terms of M¢(P) by
Corollaray 1.2.6. Thus we conclude using (2.32):

p(X) = esssup (Eg[—X|F] — a™(Q))
QEM=(P)

> esssup (Eo[—X|F] — &)™ (Q))
QeMe(P)

= pi(—pr41(X))
for all X € L. This proves 1).

The proof of 1) = 5) and the equivalence of properties 1) and 5) under
imposed assumptions follow from the next Theorem 2.4.6 applied to the
bounded adapted process (p(X)) for X € L. Note that condition (2.30)
required in Theorem 2.4.6 is satisfied for 7' < oo due to sensitivity by Lemma
2.4.3. This concludes the proof. U

The equivalence of one-step prudence and the supermartingale property 5) is
a special case of the next theorem, which we would like to formulate in a more
general setting. To this end we will introduce the notion of sustainability.

Definition 2.4.5. Let (pt)i—o01... be a dynamic risk measure and let X =
(Xt)i=0,1,.. be a bounded adapted process. Then we call X sustainable with

-----

pe( Xy — Xi11) <0 forall t=0,1,.... (2.33)
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Let us explain our motivation for the definition of sustainability. We consider
X to be a cumulative investment process. If we have already invested X; at
time ¢, an adjustment X;,; — X; has to be added at time ¢+ 1. If the process
X is sustainable, then this future payment is acceptable with respect to the
risk measure py, i.e. pi(—(Xy11—X¢)) < 0. Note that in this terminology one-
step prudence of a dynamic risk measure (p;) means that for each X € L™
the risk process (p;(X)) is sustainable with respect to (p;).

In the next Theorem we will give an equivalent characterization of sustain-
ability with respect to any risk measure (p;) in terms of a supermartingale
property. Note that we assume neither prudence nor sensitivity of the dy-
namic risk measure here. This result can be seen as an analogon to the
optional decomposition under constraints, cf. Theorem 3.1 in [FK97] for
continuous time and Theorem 9.20 in [FS04] for discrete time. Indeed our
reasoning here is inspired by the latter theorem.

Theorem 2.4.6. Suppose that (pi)i—o,1,.. s a sequence of conditional convex
risk measures such that each p; is continuous from above and let (X¢)i—o1,..
be any bounded adapted process. Consider the following properties:

a) The process (X;) is sustainable with respect to the risk measure (p;).

b) The process
t—1

X =) o (Q), t=0,1,...
k=0

is a Q-supermartingale for all QQ € Or.

Then property a) implies property b). Assume further that condition (2.30)
1s satisfied, i.e.

3 QF € M®(P) such that Za}?}jﬂrl Q") <C P-as.
k=0
for some constant C' > 0. Then properties a) and b) are equivalent.

Proof. We prove first the easier direction a) = b). We have to show that the
process

t
MP = Xo+ Y (Xp — Xp1) — Zakm;fﬂ t=0,1,...
k=1
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is a @Q-supermartingale for all () € Q7. Indeed, fix () € Or and note that
(MtQ)t:o,L... is adapted and MP € LY(Q) for all ¢, since (X;) is bounded and

< oo forall t=0,1,....

Eq lz O‘?}cnﬂ

< Eq [Z arn (Q)

k=0

Moreover, we have for all ¢
Eq[MZ, — MP|F] = Eq[Xei1 — Xi|F] — of11(Q) <0 Q-as.,

where we have used the definition of the minimal penalty function o3}, (Q)

and the fact that — (X, — X;) € Ay 441 due to sustainability. Thus (M) is
a (Q-supermartingale.

To prove b) = a) assume that (2.30) holds and let (X}) be a bounded adapted
process such that (X, — - apit1(Q)) is a Q-supermartingale for all Q €
Qr. We have to show that

Xt — thl = At c —Atfl’t for all t = 1, 2, e

We can assume without loss of generality that P satisfies the condition (2.30),
otherwise we can switch to any Q* ~ P that does fulfill (2.30). Note that
(2.30) implies in particular P € Q.

Suppose by way of contradiction that A, ¢ —A;_;,;. Since the set A;_;,
is convex and weak*-closed due to Remark 1.1.5, we can apply the Hahn-
Banach separation theorem, e.g. Theorem A.56 in [FS04], and obtain a
random variable Z € L'(F;, P) such that

a:= sup FE[Z(-X)]< E[ZA;]=:b<o0. (2.34)
XeAi—1t

In the rest of the proof we will use Z to construct a density of a probability
measure () € Qr that violates the supermartingale property b). We will
argue in several steps.

i) Since the non-negative random variable Al{z.q belongs to the set
A1 for every A > 0, we have

)\E[—Z[{Z<0}] <b< o0

due to (2.34). This is only possible if Z > 0 P-a.s..
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ii)

iii)

We can even assume that Z is bounded away from zero, since it is
possible to choose € > 0 such that the random variable

Zf=1—-e)Z+e¢

still satisfies the inequality (2.34). Indeed, we have on the left-hand-
side of (2.34)

E[Z°(=X)] = eE[-X]+ (1 — ) E[Z(-X)]
<eE[a(P)]+(1-¢)a

for all X € A;_1;, where we have used the definition of the minimal
penalty function o} (P) and the definition of a. For the right-hand-
side of (2.34) we obtain

E[ZSAt] = EE[At] + (1 — 5)[)
Thus Z° satisfies (2.34) if
eE[a)™ (P)]+ (1 —e)a < eE[A]+ (1 —e)b

or equivalently

b—a

O<e< .
b—a+ E[aj (P)] — E[A]

Clearly the choice of such an € is possible if E[ A; | < E[oj™} ,(P)] < oo.
This inequality holds since

E[A:] = Z g (P (Xt—l Z o (P )]
+ E[Oéim‘ft(P)}
< E[a)™y,(P)] (2.35)
where we have used that P € Qr and the supermartingale property of

the process (X; — i1 ajxt1) due to b). Thus we can assume that
Z >¢e >0 P-as..

We take Z as in part ii) and define a probability measure () on F via
the density

—_

dQ Z
= < 7 2.
dP "~ E[Z|Fi1] " € (2:36)
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Then @ ~ P by part ii) and Q = P on the o-field F;_; by definition.
Moreover, we have

ot (Q) = ap (P forall k=0,...,t—2 (2.37)
and

Eqla™t,(Q)] = sup Eg[—X]
XecAi—1t

<! s EZ-X)

€ XeAi_1,

1
== 2.38
€ a? ( )

where we have used Lemma 1.1.8, (2.36) and (2.34). So we already
have shown that

< 00 (2.39)

t—1
Eq [Z O‘rkrj}cll(@
k=0
by (2.37) and (2.38).

The crucial issue is now to show that @) € Qr, and here we will need
the assumption (2.30). Since Z is F;-measurable, we obtain

EQ[ X | Frys] = Ep[ X | Figs ]
for all s > 0 and all X € L*°. Hence

a1 (Q) =t (P) forall s=0,1,... (2.40)
and
Eq {O‘?mt 1(@)} =Ep Laimnt 1(P)
+s,t+s+ E[Z|.Ft_1] +s,t+s+
1 min
< _Ep|Zaf,a(P)], (2.41)

where we have used (2.40) and (2.36). Thus we obtain using monotone
convergence, (2.41) and (2.30):

T T
Eq [Z az“,zal(@)] = Eq [of1(Q)]
k=t k=t
1 T
< 2> Ep|Zof (P))
k=t
1 T )
= ng ZZ agj}j‘H(P)]
k=t
§S<m. (2.42)
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Hence @ € Qr.

We will show that the process (X, — Yi—papin (Q)) is not a Q-
supermartingale, which is a contradiction to condition b). To this end
note first that the set A;_;; is directed upward, which can be seen as in
the proof of Lemma 1.1.8. Hence there exists a sequence (Y;,) C A;_1.
such that

Eq[-Y.|Fi1] / oz?fit(Q) with n — oo.
Monotone convergence and (2.34) imply
Eq|BlZ|Fia]of™ (Q)] = lim Eq[E[Z| Fi1] Eq[—Ya | Fia]]
=lim Eq [E[Z | Fia] (=Y2)]

< sup E[Z(-X)]=a. (2.43)
XeAi-1,.t

Using (2.34) and (2.43) we obtain

Eq [B1Z| Fi ] (X~ Xt = of™,(Q)] =
= E[ZA] ~ Eq [E[Z| Fia ]} (Q)
>b—a>0. (2.44)

Since E[Z | Fi—1] > 0 Q-a.s., inequality (2.44) cannot hold if
Bo[Xi— X — o™ (Q)| Fia | <0 Qas., (2.45)

which means (X; — Yj—p o', 1(Q)) cannot be a Q-supermartingale.
U

Note that due to Lemma 2.4.3 our assumption (2.30) required in Theorem

2.4.6 is in particular satisfied if 7" < oo and the risk measure (p:)i—o

.....

sensitive.

In the sequel we will explain how the assumptions we have used for the
proofs of Theorem 2.4.6 and Theorem 2.4.4 and can be relaxed. Note first
that we do not need sensitivity to prove the equivalence of properties 1), 2)
and 3) in Theorem 2.4.4, and also not for the proofs of 3) = 4) and 1) = 5).
Sensitivity is needed only to prove that property 4) implies 1), and we use it
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in the proof of 5) = 1) for T' < oo in order to show that condition (2.30) is
satisfied.

As we have said before, assumption (2.30) can be relaxed to the local bound-
edness condition (2.31), that is

3 Q" € M°(P) such that o3}, (Q*) € L®(F,) ¥V t=0,1,....
Obviously (2.31) is equivalent to (2.30) if 7' < co and it only makes a differ-

ence for 7' = co. In this case we obtain the supermartingale property for the
set

Qoo,loc = {Q € ME(P) ’ EQ [Z CYZT}CH_H(Q)
k=0

<ooforallt:0,1,...}.

Since Q7 C Qu1oc, We obtain an equivalent characterization of one-step
prudence in terms of a supermartingale property for a larger set of measures
Q.ioc- Note, however, that the supermartingales appearing in the the next
theorem are no longer bounded from below in L', in contrast to the situation
of Theorem 2.4.4.

Theorem 2.4.7. Let (pt)i—o01,.. be a sequence of conditional convex risk mea-
sures such that each p; is continuous from above and sensitive. Assume fur-
ther that T' = oo and condition (2.31) is satisfied.

Then properties 1)-4) of Theorem 2.4.4 are equivalent to the following prop-
erty:

57 The process
=1
UP(X) = pi(X) = 3 ofia (@), t=0,1,...
k=0

is a Q-supermartingale for all X € L™ and all Q) € Qoo joc-

Proof. The proof follows from the more general version of Theorem 2.4.6
below. n

Corollary 2.4.8. Suppose that (pt)i=o1... i a sequence of conditional convex
risk measures such that each p; is continuous from above. Assume further
that condition (2.31) is satisfied.

Then for any bounded adapted process (Xi)i=o1... the following conditions are
equivalent:
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a) The process (X;) is sustainable with respect to the risk measure (p;).

b”) The process
-1
Xi— > o (Q),  t=0,1,...
k=0

is a Q-supermartingale for all QQ € QO 1oc-

Proof. We can argue exactly like in the proof of Theorem 2.4.6 to show a) =
b”). For the proof of b”) = a) only the following minor corrections are
needed in case T' = oo: We assume that P satisfies the condition (2.31), in
particular P € Qu 0. Then we continue as in the proof of Theorem 2.4.6
with the only difference that in the inequality (2.42) in part iv) we consider
Eq [£its o, (Q)] and show that it is finite for all s > 0. Thus Q € Qu joc
and part v) provides a contradiction to 57). O

Without the restrictions 7' < oo, (2.30) or (2.31) property 5) of Theorem
2.4.4 takes the following form:

Corollary 2.4.9. Let (pi)i—o1,.. be a sequence of conditional convex risk
measures such that each p; is continuous from above and sensitive. Then
properties 1)-4) of Theorem 2.4.4 are equivalent to the following property:

57 The inequality
Eq[pia(X) | F] < po(X) + ofi31(Q) (2.46)

holds for all t=0,1,... and all Q € @t+1; where
Q1= {Q € M(P)| Q=P on Fiyu, Eglafi},(Q)] < oo}

Proof. The proof of this equivalence follows from Corollary 2.4.10 below. Con-
dition Q4,1 # () is satisfied here for all ¢ due to sensitivity of the risk measure

(Pe)- O

Corollary 2.4.10. Suppose that (p;)i—o.1.... is a sequence of conditional con-
vex Tisk measures such that each p; is continuous from above. Assume further
that the sets

Qi1 1={QeM(P)|Q~ P on Frp, Eq [aff1,(Q)] < oo}

are not empty for all t = 0,1,.... Then for any bounded adapted process
(Xt)i=01,... the following conditions are equivalent:
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a) The process (X;) is sustainable with respect to the risk measure (py).

b’) The inequality

Eq[Xer1 | Fe] < Xo+ a1 (Q) (2.47)
holds for all t =0,1,... and all Q € Qy1.

Proof. We will adjust the proof of Theorem 2.4.6 to our present setting.

)

To prove a) = ') we fix t € {0,1,...} and Q € Q,.1. Then sustain-
ability of X and definition of the minimal penalty function imply the
inequality

B[ X — Xo|Fi] < o1 (Q)  Q-as..

which is equivalent to (2.47).

To prove b’) = a) we can argue almost exactly as in the proof of
b) = a) of Theorem 2.4.6, we just skip part iv) of that proof. We fix
t € {1,2,...} and show that X;—X; | € A;_1, by way of contradiction.
We assume that P € Q,. We apply the separation theorem and argue
further as in parts i)-iii) of the proof of Theorem 2.4.6. In part ii)
we use condition (2.47) for X under P instead of the supermartingale
property b) to prove inequality (2.35). In part iii) we omit (2.37) and
use (2.38). This implies @ € Q,. And (2.45) in part v) of the proof of
Theorem 2.4.6 shows that the inequality (2.47) (with ¢ instead of ¢ +1)
does not hold for Q). O

Obviously condition b’) of Corollary 2.4.10 implies the supermartingale prop-
erty b) of Theorem 2.4.6 for all ) € Qp. But the relaxed version b’) does
no longer involve a fixed class of measures independent of time, and so we
cannot formulate the result in terms of supermartingales.

So far we have studied one-step prudence and its equivalent characterizations.
In the sequel we will give a version of Theorem 2.4.4 for the general case of
prudence, that involves looking ahead at any finite time ¢ + s and not just
at the next step.

Corollary 2.4.11. Let (pi)i—o1... be a sequence of conditional convex risk
measures such that each p; is continuous from above and sensitive.

Then the following properties are equivalent:

1.

(pt)i=01,... is prudent.
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2. (pt)i=o.1.... s middle rejection consistent.

3. The inclusion
A © Appgs + Args

holds for all t,s =0,1,....

4. The inequality

a™(Q) < o 1,(Q) + Eg[ a3 (Q) | 7]
holds for all t,s =0,1,... and all Q € M®(P).

5. The inequality
Eq [prealX) | Fi] < pi(X) + a2 (Q) (2.48)

holds for all t,s =0,1,... and all Q € Qy s, where
Qrivei={Q € M(P)| Eq[ai2,(Q)] < oo}

Proof. The proofs of 1) < 2) & 3) < 4) are exactly like in Theorem 2.4.4
with ¢ + 1 replaced by t + s. The proof of 1) = 5) follows straight from the

min

definition of the minimal penalty function o} (Q):

Eq [prs(X) — p(X)|F] < 0f31.(Q) (2.49)

for all @ € M®(P). And since o3 ,(Q) < oo P-as. for all Q € Qut4s, We
can rearrange (2.49) to (2.48).

To prove 5) = 1) we argue like in the proof of ') = a) of Corollary 2.4.10.
We assume that there exists X € L>™ and t,s € {0,1,...} such that A;, :=
Pris(X) — pe(X) ¢ Aiis in contradiction to prudence. Sensitivity implies
that the sets @mﬂ, are not empty for all £, s and thus there is no loss of
generality in assuming P € Qtﬁs. Applying the separation theorem and
arguing further like in parts i)-iii) of the proof of Theorem 2.4.6 we obtain a
probability measure () ~ P such that ) € @t,Hs. And the same reasoning
as in part v) of Theorem 2.4.6 shows that (2.48) does not hold under @,
providing a contradiction to 5). O

Of course property 5) of Corollary 2.4.11 implies property 5°) of Corollary
2.4.10 and the supermartingale properties 5) of Theorem 2.4.4 and 5”) of
Theorem 2.4.7. In itself, however, it cannot be formulated as a supermartin-
gale property for some given process and some class of measures.
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2.5 Sustainability and time consistency

In the following we will assume that the time horizon 7 is finite and (p;)i—o,...1
is a dynamic convex risk measure such that each p; is continuous from above.
If (p¢) is prudent, then for each X € L*° the risk process (p:(X)) is sustainable
with respect to (p;) and covers the final loss: pr(X) = —X P-a.s.. We can
ask whether (p;(X)) is the smallest process with these properties, in other
words whether we do not pay too much by “hedging” X with the process
(pe(X)). Tt turns out that we could possibly do better if we hedge “step by
step” as explained below.

Consider a new risk measure (p;);—o,... 7 defined recursively by

pr(X) = pr(X) =-X
P(X) = p(=pra(X)), t=0,... T—1, XeL™

.....

Thus we have p; = pi(—pir1(—pesa(...))), what we call “step by step” hedg-
ing. It is easy to see that (p)i—o 7 is again a dynamic convex risk measure,
such that each p; is continuous from above. Moreover, the sequence (p;) is
time consistent by definition. Such a recursive construction of time consis-
tent risk measures was introduced in Section 4.2 of [CDKO06] and studied in
Section 3.2 of [Dra06] and in [CKO06].

Lemma 2.5.1. If the original risk measure (p;)i—o.. 1 is prudent, then the

time consistent risk measure (p;) defined via (2.50) lies below (py).

Proof. This is easily proved by backward induction on ¢: We have pp(X) =
pr(X) by definition and if the inequality p;11(X) < pir1(X) holds, we obtain

p(X) = p(=pee1(X)) = pe(=prr1(X)) = pu(X)
using prudence and monotonicity. Thus the claim follows for all ¢. 0

Moreover, it was shown in Theorem 3.10 of [Dra06], that if the original risk
measure (p;) is prudent, then (p;) is the biggest time consistent dynamic
convex risk measure that lies below (p;).

The previous lemma shows that the process (p;(X)) is “cheaper” than (p;(X))
for all X. It is interesting, that though (p;(X)) is cheaper, it still has the
desired properties:

pr(X) = -X (2.50)

by definition and by cash invariance

pr((X) = (X)) = —u(X) + pr(—a (X)) =0 (251)
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for all ¢, i.e. the process (p;(X)) is sustainable with respect to (p;).

This is true not only for a prudent risk measure. Using Corollary 2.4.10
we will prove in the next proposition that for any dynamic risk measure
(pt) the process (p:(X)) defined via (2.50) is the smallest process that is
sustainable with respect to (p;) and covers the final loss —X. This shows
in particular that time consistent dynamic risk measures are “Snell envelope
- type” constructions. In the coherent case, a related result was proved in
Theorem 6.4. of [Del06] for Snell envelopes in terms of m-stable sets of
measures, but without using the notion of sustainability.

Proposition 2.5.2. Suppose that T < oo and let (pt)i—o,...7 be a sequence of
conditional convex risk measures such that each p; is continuous from above.
Assume further that the sets Q, are not empty forallt=1,...,T — 1.

Let (pt)i—o,.. 7 denote the time consistent sequence of conditional convex risk
measures that arises from (p;) via definition (2.50). Then for each X €
L the risk process (pr(X))i—o..7 is the smallest bounded adapted process
(Up)i=o.... 7 such that (Uy) is sustainable with respect to (py) and Ur > —X P-
a.s..

Proof. We have already seen that (p;)—o,.. r satisfies (2.50) and is sustainable
with respect to (p;) due to (2.51).

Let (Ut)i—o.... 7 be another bounded adapted process such that (Uy) is sus-
tainable with respect to (p;) and Uy > —X P-a.s.. We have to show that

U > p(X) P-as. (2.52)
for all t = 0,...,T. The proof of this inequality will follow by backward

induction on t.

We have
Ur > —X = pr(X) P-a.s.

to begin with. Assume that we have proved (2.52) for ¢t + 1 already. To
proceed we use equivalent characterization of sustainability from Corollary
2.4.10. Since (U;) is sustainable w.r.t. (p;) we obtain for all @ € Qyy1:

U, > Eg [Ut—H — a?ﬁ?&(@) |‘7:t}
> Eq [ prn(X) — ot (Q)| 7] Pas, (2.53)
where we have used (2.47) and the induction hypothesis. To proceed with

the proof we will have to show that risk measure p; restricted to the space
L2, has a robust representation in terms of the set Q,,;. We will postpone
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the proof of this result to the next Lemma 2.5.3. Provided the representation
holds, we obtain from (2.53)

U, > esssup (EQ [Pr+1(X)|F] — a?ltlil(Q))

QEQi+1
= pi(—p1 (X)) = p(X)  P-as.,
and this proves the inequality (2.52) for all ¢. O

The following Lemma completes the proof of Proposition 2.5.2.

Lemma 2.5.3. Let (p;)i—o1... be a sequence of conditional convex risk mea-
sures such that each p; is continuous from above and let Q, # (0 for all
t=1,2,.... Then for eacht € {0,1,...} the risk measure p; restricted to the
space LgS, has a robust representation

p(X) =esssup (Eq [-X|F] - afity(Q)), X € L®(Fip),  (254)
QEQi+1

where

Qi1 = {Q € My(P) ‘ Q ~ P on Fi1, Eg [agﬂl(Q)} < oo}.

Proof We fixt € {0,1,...} and take P* € Q,;. Since a1 (P*) < oo P-as.,
(1.17) of Lemma 1.2.5 provides the representation

p(X) = esssup (Eq[~X|F] - afi(Q)), X € L®(Fp),

sz|ft+1

and hence we obtain “>" in (2.54).
To prove the opposite inequality note that Ep-[aj%},(P*)] < oo. Thus we
can apply (1.18) of Lemma 1.2.5 and obtain a representation

p(X) = €55 SUp (EQ [—X|F] — aﬁil(Q)) . X € L®(Fin), (2.55)
QeQ;*

where
ol ={QeMi(P)| Q= P*|n,., Q= Pl Eq |of{1,(Q)] < o0}.

Since @,{e C @t+1 we obtain “<” in (2.54). O

We believe that Proposition 2.5.2 provides a good reason for using time con-
sistent dynamic risk measures which can be constructed from any dynamic
risk measure via (2.50) for a finite time horizon. If the original risk measure
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(p¢) is middle rejection consistent or prudent, the arising risk measure (py)
is cheaper, as shown in Lemma 2.5.1. If the original risk measure is middle
acceptance consistent, then the risk process (p;(X)) may be more expensive,
as shown in Theorem 3.10 of [Dra06]. But on the other hand (p;(X)) is
sustainable with respect to (p;) for all X, whereas the process (p;(X)) itself
might not be sustainable.

The next theorem is a version of Theorem 2.4.6 and provides an equivalent
characterization of sustainability with respect to time consistent risk mea-
sures. Using time consistency we do not need the additional assumption
(2.30) of Theorem 2.4.6, and we obtain the supermartingale property for the
set Q.

Theorem 2.5.4. Suppose that (pi)i—o1,.. is a time consistent sequence of
conditional convex risk measures such that each p; is continuous from above.
Assume further that Q* # ().

Then for any bounded adapted process (Xi)i—o1,.. the following conditions are
equivalent:

a) The process (X;) is sustainable with respect to the risk measure (p;).

b) The process
Zakm}jﬂrl t=0,1,...

is a Q-supermartingale for all Q € QF.

Proof. We will modify the proof of Theorem 2.4.6 once more in order to use
time consistency.
To prove that sustainability implies the supermartingale property b) for all
() € Q* note that

Eq [Z (@ ] = Eq [of"(Q)] < Eq [ad™(Q)] < o0

for all Q € Q* due to property 3) of Theorem 2.2.2. This implies integrability
of the process (X; — >j— o1 (Q)). The rest of the reasoning is the same
as in the proof of a) = b) of Theorem 2.4.6.

To prove that b) implies a) we argue similar to the proof of b) = a) of The-
orem 2.4.6 with the following modifications:

We assume without loss of generality that P € Q" and suppose by the way
of contradiction that X; — X; 1 = Ay ¢ —A;_1;. Then by cash invariance
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—pi(—Ar) ¢ A1+ and hence (2.8) of Lemma 2.2.4 and property 2) of The-
orem 2.2.2 imply
A A+ A= A

Thus we apply the Hahn-Banach separation theorem to the set A; instead
of A;;_1 and obtain a random variable Z € L'(P) such that

a:= sip ElZ(-X)| < E[ZA)] =1b< 0. (2.56)

Then we use Z to define a density of a probability measure () € Q* that
violates property b). We argue in several steps.
i) Condition (2.56) implies that Z > 0 P-a.s. exactly as in part i) of the
proof of Theorem 2.4.6.

ii) To prove that Z can be chosen bounded away from zero we consider
again the random variable

ZF=(1—-¢e)Z +c¢

and show that it still satisfies the inequality (2.56) for an appropriate
e > 0. Indeed, we have on the left-hand-side of (2.56)

BlZ5(=X)] = eB[=X] + (1 = ) E[Z(=X))]
<ead™(P)+ (1 —¢)a

for all X € A;_1, where we have used that A;_; C A, by property 2) of
Theorem 2.2.2, the definition of the minimal penalty function o™ (P)
and the definition of a. For the right-hand-side of (2.56) we obtain

E[ZEAt] = EE[At] + (1 — €)b
Thus Z° satisfies (2.56) if

b—a

U< e T a T o (P) = BlA]

The choice of such an ¢ is possible if E[ A;] < of®(P). This inequality
holds since . .
E[A] < E[af™,(P)] < ag™(P),

where we have used the supermartingale property under P € Q* as in
(2.35) in the first inequality and the property 3) of Theorem 2.2.2 in
the second.
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iii) We define a probability measure () on F via density

Q@ _ Z
dP "~ E[Z|F_i]

Then it follows as in part iii) of the proof of Theorem 2.4.6

a?};ﬂrl(Q) agl}CnH(P) forall k=0,...,t—2 (2.57)
and )
Eolai™i(Q)] = sup Eg[-X] < —a. (2.58)
XeAr_1 £
Hence we obtain
ag™(Q) = Eq [Z api (@ ] + Eq[a}(Q) ]
1

< ag™(P) + ca
< 00,
due to property 3) of Theorem 2.2.2, (2.57) and (2.58). Thus @ € Q.

iv) We will show that the process (X; — >j_{apit,(Q)) is not a Q-
supermartingale. The proof of thls claim goes almost exactly as in
part v) of the proof of Theorem 2.4.6. The only difference is that in
the inequality (2.43) we use that A;_1; C A; by property 2) of Theorem
2.2.2 and conclude that

Eo[ElZ|Fia]af (@] < s E[Z(-X)]
< sup E[Z(-X)]=a.

The rest of the reasoning is the same. O

If a dynamic risk measure (p;) is time consistent, it is also prudent and thus
the risk process (p;(X)) is sustainable with respect to (p;) for all X € L.
Hence the process

U2(X) = Z@gl;;;l ), t=0,1,...

is a Q-supermartingale for all ) € Q" by Theorem 2.5.4. Moreover, since
time consistency implies prudence, the process U? is a Q-supermartingale
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for all Q € Qr due to Theorem 2.4.4. In the sequel we will discuss how these
supermartingale properties are related to the supermartingale property of
the process

VR(X) = p(X) +al™(Q) t=0,1,...
for all € Qr that we have proved in Theorem 2.2.2.

Let (pt)i=01,.. be a time consistent dynamic risk measure such that each p,
is continuous from above. Assume further that the set Q* is not empty.

We first consider the case T" < oo. Then we obtain using the Doob decom-
position (2.22) of a/™™(Q) from Remark 2.3.3:

VtQ(X) - UtQ(X) = O‘flm Z agl}cn—&-l

= Eq [Z O‘km,}cnﬂ(Q) ’ft]
k=0

forallt=0,...,7 —1 and all Q € Q*. Thus the difference between the two
processes V¢(X) and U?(X) is identified as the Q-martingale

T-1
Eq lz i (Q) \ft] . t=0,...,T
k=0

This shows that V@ (X) is a supermartingale iff U?(X) is a supermartingale
for all ) € Q*. Moreover, since

a5™(Q EQ[Zaz“z;l ]

for all Q € M*(P) by property 3) of Theorem 2.2.2, we have Q* = Qr. In
particular time consistency implies the supermartingale property of U%(X)
for all Q € Qr if T' < oo, which is consistent with the fact that time consis-
tency implies prudence.

For T = oo we use the Doob decomposition (2.23) of o/"™(Q) from Remark
2.3.3 and obtain

VA(X) = UP(X) = o™ (Q) + Z i (Q

= E, [Z o (Q) ’Ftl + M2
k=0



64

forallt =0,1,... and all Q € Q*, where M denotes the martingale appear-
ing in the Riesz decomposition of the penalty function process (a}"™(Q)) as
stated in Proposition 2.3.2. Thus the difference between the two processes
VQ(X) and U?(X) is again a Q-martingale, and their supermartingale prop-
erties are equivalent for all ) € 9.

To explain the relation between the sets Q* and Q. for T = oo note that
property 3) of Theorem 2.2.2 implies

t+s

o™ ( EQ[Za?zal<Q>\ﬂ]+EQ[ai‘:§ Q|F]

for all s > 0 and all Q@ € M;(P). Since all penalty functions are non-negative,
monotone convergence implies

A" (Q) = Fo [Zaggﬂ(@ )]—"tl + lim Eg [off2(Q) | 7]
forallt=0,1,... and all ) € Q*. In particular
B™(Q) > Fo | afa(@) .

k=0

and thus Q* C Q.. The converse inclusion is not clear: In order to obtain
the equality of these sets we would need some additional assumption making
sure that

lim sup Eq {afﬁ?(@)} < oo P-as.

S§—00

for all Q € Q.

We summarize the results of the preceding discussion in the next proposition.

Proposition 2.5.5. Let (pt)i—01... be a time consistent dynamic risk measure
such that each p; is continuous from above. Assume further that the set QF
is not empty. Then the process

Ul (X) = Zazn}cnﬂ t=0,1,...
is a Q-supermartingale for all Q) € QF if and only if the process

VX)) = p(X) + a™(Q) t=0,1,...

is a Q-supermartingale for all Q) € QF.
If T < oo, the sets

={Q e M(P) | af™(Q) < o}
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and

-

Remark 2.5.6. Proposition 2.5.5 provides in particular an alternative way
to prove 1) = 4) of Theorem 2.2.2: Time consistency implies one-step pru-
dence, and one-step prudence implies the supermartingale property of the
process U9 for all Q € Q. by Theorem 2.4.4. Since Q* C Q.o the process
U@ is in particular a Q-supermartingale for all Q € Q*. Thus the process
V9 is a Q-supermartingale for all Q € Q* by Proposition 2.5.5.

T—1
0r ={ Qe M(P)| £o| L apta(@
k=0

are equal. If T'= oo we have Q@ C Q.



Chapter 3

Asymptotic safety and
asymptotic precision

In this chapter we consider a dynamic convex risk measure (p;)i—o1,.. with
infinite time horizon T = oo. In the preceding chapter we have seen that
various time consistency properties imply various supermartingale properties
of a dynamic risk measure and its penalty function process. In this chapter
we will study the asymptotic behavior of the arising supermartingales. In
particular we will show that for time consistent and for prudent dynamic risk
measures there exists a limit

Poo(X) = tlir?o pe(X) P-as.

for all X € L*°.

We characterize the functional p,, on L*°. In particular it is natural to ask
when is the functional p,, a conditional convex risk measure itself, i.e. when
is poo(X) = —X for all X € L>. We call this property asymptotic precision
of a dynamic risk measure (p;);—o1,.. In finite time horizon every dynamic
risk measure is naturally asymptotically precise. In infinite time horizon this
condition does not always hold, as we will show in Example 3.1.11. We will
give some sufficient conditions for asymptotic precision for time consistent
dynamic risk measures in Proposition 3.1.12 and for prudent risk measures
in Proposition 3.2.3.

Another interesting question is when is the limit po.(X) enough to cover the
final loss —X. We call this property asymptotic safety. We will show in Ex-
ample 3.1.6 that not every dynamic risk measure is asymptotically safe. We
will give equivalent characterizations of asymptotic safety for time consis-

66
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tent risk measures in Theorem 3.1.4 and sufficient conditions for asymptotic
safety for prudent risk measures in Proposition 3.2.2.

3.1 Asymptotic properties of time consistent
risk measures

This section is based on Section 5 of [FP06]. We consider a time consistent
dynamic convex risk measure (p;)i—o1,.. with infinite time horizon 7' = oc.

oo

We assume that F = F = 0 (UpoF:), that each p; is continuous from

above and that Q* # ().
For Q € Q* and X € L, the process

V;‘/Q(X):pt(X)—'—a?ﬁn(Q)? t=0,1,...

is a Q-supermartingale due to Theorem 2.2.2, and the process (a™™(Q)) is
a non-negative Q-supermartingale by Remark 2.3.1. Moreover, the (V;%(X))
is bounded from below since

VO(X) > Eo[-X|F] Q-as.

due to the robust representation (2.7) of the risk measure p;. Hence the
processes (V,2(X)) and (ai"(Q)) are both Q-a.s. convergent to some finite
limits a2(Q) and VE(X).

In particular, the limit

poo(X) = lim py(X) = VZ(X) — al"(Q) (3.1)
exists P-a.s..

Lemma 3.1.1. The functional po, : L — L defined by (3.1) is normal-
ized, monotone, conditionally convex and conditionally cash invariant with
respect to F; for any t > 0, and il satisfies

o(X) > —X — egsinf o™ P-a.s..
poo(X) = essinfa’(Q) P-as

Proof. Normalization, monotonicity, conditional convexity and conditional
cash invariance w.r.t. any F;, follow from the corresponding properties of p;
for ¢ > ty. Since

pe(X) = Eq[-X|F] — of™(Q)
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for all ¢, we obtain
pl(X) = =X —a(Q) Q-as. (3:2)
by martingale convergence for any () € Q. O

Clearly, p, is a conditional convex risk measure if and only if it reduces to
the trivial monetary risk measure

poo(X) = =X, (3.3)

since this is equivalent to cash invariance w.r.t. F,, = F. But this property
does not always hold as shown by examples 3.1.6 and 3.1.11 below.

Let us first focus on the weaker property
Poo (X ) > —X )

i.e., the asymptotic capital requirement p., is enough to cover the actual final
loss —X:

Definition 3.1.2. We say that the sequence (pt)i=o1
if the limit po defined by (3.1) satisfies

poo(X) > —-X

is asymptotically safe

geee

for any X € L*°.

In order to characterize asymptotic safety we recall that the classes
Ao = Ao N L t=0,1,...
and the corresponding penalty functions

agff"(Q) = sup Eg[—X] t=0,1,...
XeAo,
satisfy the relations
Ao = Ao + As
and
ag™(Q) = ag;"(Q) + Egla™(Q)),
for all ) € Q* by Remark 2.2.6. In particular,

t—1
Q) = Fo | T afta(@)
k=0
is increasing in ¢ and bounded from above by af"(Q) for Q € Q*. Thus the
limit . . ‘
0 (Q) = lim afi(Q) < af™(Q) (3.4
exists for all () € O*.
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Definition 3.1.3. Let us say that X € L™ is predictably acceptable if there

exists a uniformly bounded and P-a.s. convergent sequence (X;) C L™ such
that X, € Aoy for allt > 0 and

X > tlim X;.
We denote by Ao the class of all predictably acceptable positions X .

Note that
Apo € Ao, (3.5)

since X > lim; X; implies
po(X) < Po(hgn Xi) < limtinf po(Xi) <0

by monotonicity and by the Fatou property of the unconditional risk measure
Po-

Theorem 3.1.4. The following properties are equivalent:

1. N A =L
Shh=1s
2. Aoso = Ao.

3. tlirglo g (Q) = ag™(Q) for all Q € Q.
4. Jim a™™ (@) =0 Q-a.s. and in L*(Q) for all Q € Q*.
5. lim a™(Q) =0 Q-a.s. and in L (Q) for at least one Q € Q*.

6. (pt)i=01... is asymptotically safe.

Proof. 1) = 2) In view of (3.5) we have to show that property 1 implies
Ay C Ap o For X € Ay define X; := —py(X). Then X; € Ay, by property
(2.8) of Lemma 2.2.4. Moreover, for 0 < n <t we have

X + p(X) € A,

since pi(X + p¢(X)) = 0 and thus p,(X + p(X)) = 0 for all n < ¢ by time
consistency.
Using the Fatou property of p,, we obtain

pr(X + poo(X)) < liminf p, (X + p(X)) = 0
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for any n > 0, hence

X +po(X)€ [ A= LY.

n>0

Thus lim; X; = —peo(X) < X P-a.s., and this shows X € Ag .

2) = 3) If X € Ay = Ap , then there exists a bounded convergent sequence
X € Agy, t >0, such that lim, X; < X P-a.s.. For any Q) € Q" we have

al™(Q) > agfi,g(cg) = lim ag?,f”(Q) > liminf Eg[—X;] > Eg[-X],

t—o0 t—o0

where we have used (3.4), the definition of of}"(Q) and Lebesgue’s conver-
gence theorem for (). But

ag™(@Q) = Sup Eq[—-X],
0

and this implies the equality of™(Q) = of"2(Q).
3) = 4) Note that property (2.14) in Remark 2.2.6 implies

ap™(Q) = a5 (Q) + Eqloi™(Q)]

for @ € Q*. Thus the convergence of af{"(Q) to ag*"(Q) implies that the
Q-expectation of o™ (Q) converges to 0 as t — oo. This yields our claim

since (™ (Q))t=o,1,.. is a non-negative )-supermartingale by Remark 2.3.1.
4) = 5) This is obvious.

5) = 6) Property 5) and Lemma 3.1.1 imply po(X) > —X P-as..

6) = 1) We have to show that the inequality po.(X) > —X implies N A; C

>0
L%, Indeed,

XeNA=p(X)<0 forallt>0

>0
= —X < po(X) <0
= X e L.

g

Recall that due to Proposition 2.3.2 the minimal penalty function process

min

(o™ (@Q)) has the Riesz decomposition

A" (Q) =28 + MP,  t=0,1,...
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with the Q-potential

72 = E [Zagﬁ}fﬂ ‘ft] = lim aﬁiS(Q) t=0,1,... (3.6)
k=t

and the non-negative ()-martingale
ME = lim Eolaf(Q)F]. 1=0.1....

for all @ € Q*. Using this decomposition we obtain the following equivalent
characterizations of asymptotic safety.

Corollary 3.1.5. Conditions 1)-6) of Theorem 3.1.4 are equivalent to the
following:

7. The martingale M© in the Riesz decomposition of the process (ai™™(Q))
vanishes for all QQ € Q.

8. lim a?;is(@) = a"™(Q) forallQ € Q" and allt =0,1,....

9. lim 04?;};5(@) = a"™(Q) for at least one Q € Q and at least one
i e {0,1,...}.

Proof. Condition 4) of Theorem 3.1.4 implies M(? =0 for all ) € Q*. Since
M is a non-negative supermartingale, we obtain MtQ =0forallt=0,1,...
and all @ € Q*, which proves 7).

Property 7) implies Z9 = an(@Q) for all t = 0,1,... and all Q € Q*. In
view of (3.6) this is equivalent to property 8).

Obviously 8) implies 9).

Conversely, if 9) holds we have Z& = oi"(Q) for one t € {0,1,...} and one
Q € Q due to (3.6). Thus M2 = 0 and the martingale property implies
M =0 for this Q € Q*. This implies condition 5) of Theorem 3.1.4. O

Not every time consistent dynamic risk measure is asymptotically safe, as
illustrated by the following example.

Example 3.1.6. Let P denote Lebesque measure on the unit interval € :=
(0, 1], and let F; denote the finite o-field generated by the t-th dyadic partition
into the intervals Jyp = (k27 (k+1)27" (k= 0,...,2" = 1). Take a set
A€ F = o0(UoF:) such that P[A] > 0 and P[A°N Jux] # 0 for any dyadic

interval, for example
oo 2t—1

= U U, (k27"

t=1 k=1
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with &; € (0,272, For any t > 0 we fix the same acceptance set
Av={XeL®|X>-1I}.
The corresponding conditional convex risk measure p; is given by
p(X) = —esssup{m e Ly ‘ m < X+IA}.

Note that p; is indeed normalized since m < 0 for any m € L such that
m < I, due to our assumption that P[A° N Jix] > 0 for any atom of the
o-field F;. The corresponding penalty function is given by

o"™(Q) = EqlLa| 7],

Since ad™(Q) = Q[A], we have Q* = M*(P), and in particular Q* # 0 as

required in Theorem 2.2.2.

The sequence (pi)i—o.1
t >0, and so we have

is time consistent. Indeed, Ay = LT (Fiqa) for

oo

A= A1 = Ay + LY (Fipr) = A + A

in accordance with property 2 of Theorem 2.2.2. On the other hand, we have
pi(—14) =0 for allt =0,1,... and thus

Poo(—1a) =0 2% L4,

i.e., the sequence (pi)i—o1.... is not asymptotically safe. In order to illustrate
the criteria of Theorem 3.1.4, note that

ﬂ At - -’40 7é Lf?
>0
that
agy (Q) =0 # ag™(Q),
and that

a(Q) = lim o™ (Q) = Ls # 0.

Remark 3.1.7. Every dynamic conditional coherent risk measure that satis-
fies the conditions of Theorem 2.2.2 is asymptotically safe. Indeed, property
4) of Theorem 3.1.4 is clearly satisfied, since ™™ (Q) =0 for all Q € Q* as
shown in the proof of Corollary 2.2.8.
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Lemma 3.1.8. Asymptotic safety holds if the initial risk measure py satisfies
the condition

po (Epx[X[F]) < po(X) (3.7)
for any X € L™, allt > 0 and for some measure PX ~ P.
Proof. Let us verify that condition (3.7) implies property 2) of Theorem 3.1.4.
Indeed, for any X € A, the sequence X; := Epx[X|F] € L (t > 0) is

uniformly bounded and P-a.s. convergent to X. Moreover, X; € Ay for all
t > 0 since po(X;) < po(X) <0 due to (3.7). O

Remark 3.1.9. Condition (3.7) is satisfied for PX = P if py is law-invariant
w.r.t. P; see Corollary 4.59 in [FS04].

Let us now return to the question whether the asymptotic capital requirement
Poo 18 exactly equal to the actual final loss.

Definition 3.1.10. We say that the sequence (pi)i—o1... is asymptotically
precise if the limit ps, defined by (3.1) satisfies

poo(X) = =X

for any X € L.

The following example shows that the sequence (p;)i—o 1,.. may be asymptot-
ically safe without being asymptotically precise.

Example 3.1.11. In the situation of example 3.1.6 we now define the ac-
ceptance sets

At::{XELOO‘XZO}

and the corresponding conditional coherent risk measures
p(X) = —esssup{m e Ly ‘ m < X}.

The sequence (pt)i—o.1.... is time consistent and satisfies the conditions of The-
orem 2.2.2. Moreover, it is asymptotically safe due to Remark 3.1.7. But it
is not asymptotically precise, since the set A defined in example 3.1.6 satisfies
pe(1a) =0 for allt > 0, hence poo(la) =0 # —14.

Let us now formulate a simple sufficient condition for asymptotic precision.
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Proposition 3.1.12. Suppose that the time consistent dynamic risk mea-
sure (pt)i—o1,.. s asymptotically safe, and that the supremum in the robust
representation of the initial risk measure py is in fact a maximum, i.e.,

po(X) = Egx[-X] = ag™(Q") (3.8)

for any X € L>® and for some QX ~ P. Then the sequence (pt)i=01,.. 1S
asymptotically precise.

Proof. Let us fix X € L*™. Since we are assuming asymptotic safety, it
remains to show p.(X) < —X. Due to time consistency as characterized by
property 4) of Theorem 2.2.2, the process

U = V(X)) + Eo[X|F, t>0,

is a non-negative Q-supermartingale for any Q € Q*. For Q = Q¥ we have
Q € Q" and
Us® = po(X) + ao(Q) + Eg[X] =0

due to (3.8). This implies UZ = 0 for any ¢ > 0 and
UL = poo(X) + 00(Q) + X =0,
hence poo(X) < =X, P-a.s.. O

Remark 3.1.13. In Proposition 2.9 of [Nau07] it was shown that it is not
necessary to require asymptotic safety of the risk measure (p;)i—o 1,... in Propo-
sttion 3.1.12 to prove asymptotic precision.

Another sufficient condition for asymptotic safety is given in [Nau07]. It is a
stronger form of sensitivity called hypersensitivity in [Nau07]. This property
appeared in [Pen97] in the context of g-expectations under the name “strong
monotonicity”.

Definition 3.1.14. A conditional convex risk measure p; is called hypersen-
sitive if for all Y, X € L™

X>Y and po(X)=p(Y) = X =Y P-as.

Obviously hypersensitivity implies sensitivity. For more details on hyper-
sensitivity we refer to Chapter 3 of [Nau07]. In particular it is proved in
Proposition 3.12 of [Nau07] that if the dynamic risk measure (p;)i—o 1. is
asymptotically safe and p; is hypersensitive for one ¢ € {0,1,...}, then
(pt)t=0.1... is asymptotically precise. We will give the proof of this asser-
tion in the more general setting of the next section, where time consistency
is replaced by prudence.
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3.2 Asymptotic properties of prudent risk
measures

We consider a one-step prudent dynamic convex risk measure (p;)i—o1,... with

infinite time horizon T" = oo. We assume that each p; is continuous from
above and sensitive.

For Q € Q,, and X € L, the process

t—1

UP(X) = pu(X) = Do (@),  t=0,1,...
k=0

is a Q-supermartingale by Theorem 2.4.4. Moreover, the process (U (X)) is
bounded in L'(Q) for all Q € Q,, since

SQPEQHUtQ(X)H<||X||oo+EQ < 0

Z Oé;fn}fnJrl (Q)

due to the fact that |p;(X)| < || X||o and by definition of the set Q... Hence
the process (UZ(X)) is Q-a.s. convergent to some finite limit U2 (X).
In addition we have

hm Z it (Q) = > o1 (Q) < oo Q-as. and in L'(Q)

k=0

due to monotonicity and monotone convergence.
In particular, the limit

Poo(X) = lim p(X) = 21}511 (3.9)

exists P-a.s..

As in the case of time consistency we have

Lemma 3.2.1. The functional ps : L — L™ defined by (3.9) is normal-
ized, monotone, conditionally convexr and conditionally cash invariant with
respect to F; for any t > 0, and it satisfies

Poo(X) > —X — eQSSénf(hmsup a™™(Q))  P-a.s.. (3.10)
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Proof. To prove monotonicity, conditional convexity and conditional cash-
invariance we can argue as in the proof of Lemma 3.1.1. To prove (3.10) note
that due to sensitivity each p; has the robust representation

pr(X) = esssup (EQ[—X]]-}] - a?in(Q)) : X elL™
QeMe(P)

by Corollary 1.2.6. Thus
pi(X) > Eo[—X|F] — ™ (Q)

for all £ = 0,1,... and all @ € Q.. The inequality (3.10) follows by
martingale convergence as in Lemma 3.1.1. The only difference is that
we have to replace o™(Q) by limsup, /(@) in (3.10), since the limit

a™(Q) = limy_, o o™ (Q) might not exist in case of one-step prudence. [

In the following propostion we give a simple sufficient condition for asymp-
totic safety.

Proposition 3.2.2. Let (p;)i—01,.. be a one-step prudent dynamic risk mea-
sure such that each p; is continuous from above and sensitive. Assume further
that there exists Q € Qu such that ™ (Q) — 0 Q-a.s. with t — oo. Then

(pt)i=0.1.... is asymptotically safe.

Proof. If there exists Q € Q. with lim; . a™(Q) = 0 Q-a.s., inequality
(3.10) of the preceding lemma implies

pPoo(X) > —X P-as.

U

In the next proposition we give a sufficient condition for asymptotic safety of
a prudent dynamic risk measure (p;)¢—o1,.. This result is similar to Propo-
sition 3.12 in [Nau07], where it was proved for time consistent dynamic risk
measures. [t involves hypersensitivity of a conditional convex risk measure
as defined in part 2) of Remark 3.1.14. Note that we assume prudence and
not just one-step prudence here.

Proposition 3.2.3. Let (p;)i—01.... be an asymptotically safe prudent dy-
namic risk measure such that each p; is continuous from above and sensi-
tive. Assume further that ps is hypersensitive for one s € {0,1,...}. Then
(pt)i=01,.. is asymptotically precise.
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Proof. Since the sequence (p;(X)) is bounded and converges P-a.s. t0 po(X),
the Fatou-property of the conditional risk measure p, implies

ps(—poo(X)) < hmtianS(_pS—l-t(X)) < ps(X),

where we have used prudence for the last inequality. On the other hand,
Poo(X) > —X due to asymptotic safety and hence

Ps(—poo(X)) = ps(X)
by monotonicity. Thus ps(—pe (X)) = ps(X) and hypersensitivity implies

Poo(X) ==X P-as..



Chapter 4

Examples

4.1 The entropic dynamic risk measure

Suppose that preferences of some economic agent at time ¢ € {0,1,...} are
characterized by an exponential utility function u;(z) = 1 — exp(—vyz). In
contrast to the usual definition of the entropic risk measure we allow the risk
aversion to depend both on time and on the available information. More
precisely, we assume that v; is a bounded F;-measurable random variable
such that

1
v >0 P-as. and — € L¥(F).
Tt

Thus the conditional expected utility of a financial position X € L at time
t is given by the F;-measurable random variable

U(X) = E[1 — e "X|F).
The set
Av={X e L™ |U(X) > U,(0)} = { X e L™ | Ele¥|F] < 1}

satisfies the necessary conditions for a convex acceptance set, and hence
due to Proposition 1.1.3 we can define a sequence of conditional convex risk
measures (p;)i—o1,.. via

pr(X) = essinf{Y e Ly ‘ Y+ Xe At}
= ess inf{Y e Ly ’ E[e’%X|_7-“t] < e%Y}
1

log E[e "™ |F,]. (4.1)
Mt
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We call a risk measure defined via (4.1) a conditional entropic risk measure
with risk aversion 7; and the sequence (p;)i—o1.. a dynamic entropic risk
measure with risk aversion (7;);—01,.. In the case of constant risk aversion,
these risk measures are also discussed in Section 4 of [DS05] and in Section
5.6 of [CDKO06].

It is easy to see that a conditional entropic risk measure is continuous from
above and hence representable for all t > 0. To identify the minimal penalty
function in the robust representation (1.4) we will need the notion of condi-
tional relative entropy.

Recall that the relative entropy of @ € M;(P) with respect to P on the
o-field F; is defined as

Ht<Q’P) = EQ[IOg Zt] = Ep[Zt IOth] - [0700],

where Z; denotes a density of ) with respect to P on F;,. By Jensen’s
inequality we have Hy(Q|P) > 0, with equality iff Q = P on F;.

Definition 4.1.1. For Q € M;(P) we define the conditional relative entropy
of Q with respect to P at time t > 0 as the F;-measurable random variable

— Z
Hy(Q|P) := Eq [logZT ‘ft:|
¢

Zp . Zr
—log A ‘ Fi

=F
P Z,

I{Zt>0}

(note that Zy > 0 Q-a.s.).

If Q is a polish space, then for all () € P; there exists a regular conditional
probability of @ given F;, that is a probability kernel @, : Q@ x F — [0, 1]
such that Q;(-, B) = Q[B|F:] Q-a.s. for all B € F. In this case the condi-
tional relative entropy can be calculated pointwise as the relative entropy of
Q+(w, -) with respect to P(w, ).

The next lemma is a version of Proposition 4 in [DS05]:

Lemma 4.1.2. For allt > 0 the conditional entropic risk measure p; has
the robust representations (1.4) with the minimal penalty function

1

o

a™(Q) = —H/(Q|P),  QEP:
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Proof. To calculate the minimal penalty function we use formula (1.11):

o"™(Q) = ess sup (Eg[—X|F] — pu(X))
XeL=

1
= esssup (EQ[—XU:t] o log EP[€71X|JTt]>
¢

XeLe>
1

= — esssup (EQ[—Y|.7-"t] — log Ep[eY|.7-"t]) , Qe P
V¢ YeL®

Now we use the conditional version of a well-known variational formula for
relative entropy:

esssup (Eq[~Y'|F] —log Eple”| 7)) = H/(Q|P)

YeL®
for () € P,. This follows as in the unconditional case; see, e.g., Lemma 3.29
in [FS04] and Lemma 2 in [DS05]. O

In order to identify the one-step minimal penalty functions we introduce the

“one-step” conditional entropy

Ziy
Zy

i.e., the conditional entropy at time ¢ if () and P are regarded as measures

on F;11. Then Lemma 4.1.2 applied to p; restricted to F;,; implies

min 1
Q141 (Q)

t

i (@QIP) = Eq |log X[ 7|

ﬁt,t+1(Q|P)> Qe P,

Remark 4.1.3. If the risk aversion ~; is a constant, Lemma 4.1.2 can be
seen as a special case of a more general representation result for an optimized
certainty equivalent in the sense of Ben-Tal and Teboulle; cf. [BTT0S].
A conditional version of the optimized certainty equivalent was studied in
[Dra06]. It is given for a concave utility function u; by

Sit(X) := esssup (nt +FE [ut (X —n) ’.ED , X eL=.
el
It was shown in Theorem 4.8 of [Dra06], that an optimized certainty equiv-
alent has a robust representation in terms of penalty function given by the
conditional p-divergence with respect to p(x) = —u;(—x), where u; denotes
the conjugate of the utility function. If ¢ is a proper closed convex function,

the F;-conditional p-divergence of a probability measure Q) with respect to P
1s defined as

Elp (%) lizoa|R] Q<P

To(QIP) = {+oo else,
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where Z; denotes the density of Q) with respect to P on JF;.

In fact the entropic risk measure with minus sign can be identified as the
optimized certainty equivalent for the exponential utility function uy(x) =
% Then we have the conjugate p(z) = —uj(—x) = %xlogm, and
the conditional p-divergence of the conjugate is just the conditional relative
entropy; cf. Example 4.53.1 in [Dra06].

Time consistency properties of the dynamic entropic risk measure are com-
pletely determined by the adapted process of risk aversion (7V;)i—1,.., as we
will show in the next proposition. It is a more general version of Proposition
3.13 in [Dra06], where a similar result is shown for constant v, t =0, 1,.. ..
The proof of the “only if” part of the Proposition 4.1.4 is due to Samuel
Drapeau.

Proposition 4.1.4. Let (pt)i=o1,.. be the dynamic entropic risk measure
with risk aversion given by an adapted process (Vi)i—o1,.. such that v €
L>®(F), /v € L>®(F), v > 0 P-a.s.. Then the following assertions hold:

1. (pt)t=01... s middle rejection consistent if v > Yep1 P-a.s. for all
t=20,1,...

2. (p )t —0.1,.. is middle acceptance consistent if v, < Y41 P-a.s. for all
t =

3. (pt)i=o1.... is time consistent if vy = 70 € R P-a.s. for allt =0,1,....

Moreover, the assertions 1), 2) and 3) hold with “if and only if”, if v € R
for allt, or if the filtration (F;)i—o1.... is rich enough in the sense that for all
t and for all B € F; such that P[B] > 0 there exists A C B such that A ¢ F;
and P[A] > 0.

Proof. Fix t € {0,1,...} and X € L*. Then

pe(—=pri1(X)) = vltlog (E [exp {% log (E [6_%+1X|-7:t+1])} \ED

Vi1
]—“t]) . (4.2)

1 Tt
= ~log <E [E [6—Vt+1X|ft+l] Vo1
Mt

Thus pi(—pir1) = pe if 7 = 11 and this proves time consistency. One-step
middle rejection (resp. acceptance) consistency follow by the generalized
Jensen inequality that we will prove in the next Lemma 4.1.5. We apply this
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inequality at time ¢ + 1 to the bounded random variable Y := e+ and
the B ((0,00)) ® Fiy1-measurable function

v (w)
u: (0,00) x Q — R, u(z,w) == xwL(w)'

Note that u(-,w) is convex if vy, (w) > v41(w) and concave if 4 (w) < i1 (w).
Moreover, u(X,-) € L™ for all X € L*> and u(-,w) is differentiable on (0, co)
with

It —1
|u'(z,)] = Tt pwn T < ar® Poas.
Vi1
for some a,b € R if v > ;1 P-a.s. due to our assumption ﬁ € L. For

Y < Y11 P-a.s. we obtain

U,/ T, )| = It ZE’YZ‘: ! < a—l P-a.s.
| )
c

Ve+1 T

for some a,c € R. Thus the assumptions of Lemma 4.1.5 are satisfied and
we obtain

pi(—=pir1) < p it v >y P-as forall t=0,1,...

and
pi(—pis1) > pr if v <y P-as forall t=0,1,....

Moreover, v, > 741 (resp. <) for all ¢ implies v, > 745 (resp <) for
all t,s € {0,1,...} and hence by the same reasoning as above we obtain
pit(—pirs) < py (resp >) in (4.2). Thus for the entropic dynamic risk mea-
sures one-step rejection (resp acceptance) consistency imply general rejection
(resp. acceptance) consistency.

The “only if” direction for constant 7, follows by the classical Jensen inequal-
ity.

Now we assume that the sequence (p;)i—o1,.. is middle rejection consistent
and our assumption on the filtration (F;) holds. We will show that the se-
quence (7;) is decreasing in this case. Indeed, for t € {0,1,...} consider
B := {7 < Y11} and suppose that P [B] > 0. Our assumption on the filtra-
tion allows us to choose A C B with P[B] > P[A] > 0 and A ¢ F,y. We
define a random variable X := —x/4 for some z > 0. Then

Ve Vi1

exp <%IB log (E {e%“xl""ftu])) ’E]) ;

Vi+1

pi(—pr+1(X)) = L log (E [exp <% log (E [e”““f‘\FmD) \ED
|

1
= —log (E
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where we have used that A C B. Setting
Y= B[ | £y | = €9 PIA|Fig] + P A% Fra]

and bringing % inside of the logarithm we obtain
1
pi (—per1 (X)) = —log (E

- exp (IB log (Y”tﬁlIB>) ‘]—}D . (4.3)

The function @ — z7«)/7+1() is strictly concave for almost each w € B, and
thus

Yot = (7P [A|Fa] + (1 - [A|~7:t+l]))%+1
> P [A|F1] + (1 — P[A|Fi1]) P-ason B (4.4)

with strict inequality on the set
C:={P[A|Fi1] >0} n{P[A|Fa] <1} NB.
Our assumptions P[A] >0, A C B and A ¢ Fyy imply P[C] > 0 and using
P [A|Fa] + (1 = PIA|Fiya]) = E |4 Fyy (4.5)
we obtain from (4.3), (4.4) and (4.5)

pr (—pey1 (X)) > ; log (E {exp ([B log (E [67”[“ |.7:t+1D) ‘ftD (4.6)

with the strict inequality on some set of positive probability due to strict
monotonicity of the exponential and the logarithmic functions. For the right
hand side of (4.6) we have

(2o s (15 ) ) -

7))

- lOg ( [[BE [e’YtIIA|‘/C't+1} + [Bc

— log (E [exp Yexla) ‘]—}D

_pt(X>7

where we have used A C B and B € F;,;. This is a contradiction to middle
rejection consistency of (p;), and we conclude that ;41 <~ P-a.s. for all ¢.
The proof in the case of middle acceptance consistency follows in the same
manner. And since time consistent dynamic risk measure is both middle
acceptance and middle rejection consistent, we obtain ;11 = 7, P-a.s. for all
t in this case. O

The following lemma concludes the proof of Proposition 4.1.4.
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Lemma 4.1.5. Assume that (2, F, P) is a probability space and Fy C F a
o-field. Let I C R be an open interval and

u: IxQ — R

be a B (I)®@F;-measurable function such that u(-,w) is convex (resp. concave)
and finite on I for P-a.e. w. Assume further that

W, (x, )| < e(x)  P-a.s. with some c(z) € R for all z €1,

where u!,(-,w) denotes the right-hand derivative of u(-,w).
Let X : Q — |a,b] C I be an F-measurable bounded random variable such
that E[|u(X, )|] < oo. Then

Elu(X,)|F]>u(E[X|F],) (rep<) P-as.

Proof. We will prove the assertion for the convex case; the concave follows in
the same manner. Fix w € 2 such that u(-,w) is convex. Due to convexity
we obtain for all xg € 1

u(z,w) > u(zg,w) + v (zg,w)(x — x9) forall zel.
Take g = F[X|F)(w) and z = X (w). Then

u(X (W), w) = u(BX]F](w),w) + v (EIX]F](w), w) (X (w) = BIX|F](w))

(4.7)
for P-almost all w € Q. Note further that B(I) ® F;-measurability of u
implies B (I) ® Fi-measurability of uy. Thus

w — wWEX|F](w),w) and w — v, (E[X|F](w),w)

are F;-measurable random variables, and w — u(X(w),w) is F-measurable.
Moreover, due to our assumption on X there are constants a,b € I such that
a < BE[X|F] < b P-as.. Since v/, (-, w) is increasing by convexity, we obtain
using our assumption on the boundedness of u/,

—c(a) < o (a,0) < o, (BIX|F)w) <, (bw) < c(b)

ie. v\ (E[X|F)], ) is bounded. Since E [|u(X, )|] < oo we can build condi-
tional expectation on the both sides of (4.7) and we obtain

Elu(X,)| /] = E [u(E[X|F], ) + o, (B[X|F], )(X — EX|F) | 7]
— B[u(E[X|F), )| 7] P-as.
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where we have used F;-measurability of w(E[X|F], ) and of v/ (E[X|F], )
and the boundedness of «/, (E[X|F], ). This proves our claim. O

In the sequel we will illustrate the results of Chapter 2 and Chapter 3 by
applying them to the time consistent and to the prudent versions of the
dynamic entropic risk measure.

We first focus on time consistency. Consider the dynamic entropic risk mea-
sure (p¢)i—o,1,.. With constant risk aversion +y for all £. Then (p;)i—o,1,.. is time
consistent by Proposition 4.1.4 and the set

Q" = {Q e M*(P) | Hr(Q|P) < oo}

is obviously not empty. Thus we could apply Theorem 2.2.2 and Theorem
3.1.4. Asymptotic precision follows directly by martingale convergence w.r.t.
P. But let us rather illustrate the main criteria for time consistency and
asymptotic precision by verifying them directly in our present case.

Recall that due to Lemma 4.1.2 we have
) 1~ . 1~
a"(Q) = ;Ht(Q|P) and a?;ﬁl(@) = %Ht,t+1(Q|P)
forallt=0,1,... and Q € P,. Clearly,

H/(Q|P) = Hy1+1(Q|P) + Eg[Hy11(Q|P)|Fi,

and this illustrates property 3) in Theorem 2.2.2.
In the next theorem we prove directly the supermartingale property 4) of the
process

VAX) = pu(X) +al™(Q),  1=0,1,...

in the entropic case. Moreover, we clarify the structure of the correspond-
ing Doob decomposition, i.e., we identify the increasing predictable process
(AY(X)) such that

VOX) - AP(X),  t=0,1,...
is a martingale under Q.

Theorem 4.1.6. Consider the case of constant risk aversion where v, =~y P-
a.s. for allt. Then for any Q € My(P) such that Hp(Q|P) < oo and for
any X € L™ the process

1 1~
VOX) = glong[e_7X|.7-}]+;Ht(Q|P), t=0,1,...
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is a supermartingale under Q). Its Doob decomposition is given by the pre-
dictable increasing process

1 t—1

AQ(X) = S 3 H,.1(Q|PX), t=0,1,..., (4.8)
s=0

where PX € M®(P) is defined by

dpPX e X

dP = EpleX]

The process (VtQ(X))t:oJ,m is in fact a martingale iff Q = PX. Moreover,
V(X)) =—X for T < oo, and

lim p(X) = lim VA(X) = =X Q-a.s. and in L'(Q)
for T = oo. In particular,

) 1~
Jim " (Q) = Jim ;Ht(Q\P) =0 Q-a.s. and in L'(Q).
Proof. Since PX ~ P, we can write
X
w7
= H,(Q|PY) = vEq[X|F) — pu(X),

71,(Q|P) = F(QIPY) + Eq [log

and this implies
1 -
VA(X) = Eo[-X|F] + ;Ht<Q’PX)-

Lemma 4.1.7, applied to P¥ instead of P, shows that (VtQ(X))t:O,LW is a
supermartingale under @ which converges to —X Q-a.s and in L'(Q). Tt also
shows that the increasing predictable process (A?(X)) defined by (4.8) is
such that

VE(X)— A%(X), t=0,1,...

is a Q-martingale. In particular, (V;%(X))o... is a Q-martingale if and
only if H;41(Q|P¥) =0 Q-a.s. for all ¢ > 0, and this is the case iff Q = P¥X
on F = Fr. Il

The following lemma was used in the preceding proof.
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Lemma 4.1.7. For any Q € M;(P) such that Hr(Q|P) < oo, the process
of conditional relative entropies

H,(Q|P), t=0,1,...

is a supermartingale under Q). It is in fact a potential in the sense that
Hr(Q|P) =0 for T < oo and

Jim H,(Q|P)=0 Q-a.s. and in L'(Q) (4.9)

for T = oo. Its Doob decomposition is given by the predictable increasing

process
t—1

A=Y H, o (QIP), t=0,1,..., (4.10)
s=0
i.e., the process f—]\t(Q|P) + A;, t >0 is a martingale under Q.

Proof. We have

oy Z
Ht+1(Q|P> = Eq llOg ZT ‘ft+1‘|
t+1
Zr L1
= Eq [IOth ‘]'—tﬂ — log ;tr )

hence - - N
EQ[Ht+1(Q|P) |-7'—t] = Ht(Q|P) - Ht,t+1(Q|P)-

Since H, 11(Q|P) > 0 Q-a.s. by Jensen’s inequality, it follows that (H,(Q|P)
is a supermartingale under (), and that the predictable increasing process in
its Doob decomposition is given by (4.10). Moreover, (4.9) follows from

Hr(Q|P) = Hy(Q[P) + EQ[ﬁt(Q|P)]»
since limy .o, H;(Q|P) = Hy(Q|P). Indeed, we have H,(Q|P) < Hr(Q|P) by

Jensen’s inequality, and the convergence follows by Fatou’s lemma applied
to the P-a.s. convergent sequence (u(Z;))i—o,1,.. with u(z) = zlogz. O

geee

Now we assume that the sequence (7:)i—o1,. is decreasing in time. The
corresponding dynamic entropic risk measure (p;):—o 1. defined by

1

log Ele™X|F], t=0,1,...
Tt

pe(X)

is prudent due to Proposition 4.1.4. Moreover, each p; is sensitive and even
hypersensitive due to strict monotonicity of the exponential and logarithmic
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functions. And since aj}},(P) = 0 P-as. for all ¢, condition (2.30) is
satisfied. Thus all the characterizations 1)-5) of Theorem 2.4.4 are equivalent.

To illustrate property 4) note that
1

o

1

o

min 7 min
_ o (Q) + Eq [f;lam(cz)m] (4.11)

o"™(Q) = —Eq

YA
log 7? ]Ft]

-~ 1 —
Hi11(QP) + %EQ {Ht+1(Q|P>|}}}

forall £ =0,1,... and all Q € M*(P).

Remark 4.1.8. Equality (4.11) provides an alternative proof of assertion 1)
of Lemma 4.1.4. Indeed, if vi11 <~y P-a.s., (4.11) implies that

o™(Q) < off11(Q) + Eq [al1(Q)| 7, (4.12)

and this is equivalent to middle rejection consistency by Theorem 2.4.4.
Moreover, if the risk aversion process () is predictable, (4.11) shows that
the inequality (4.12) holds iff viy1 < v P-a.s.. This proves that if () is
predictable, the entropic dynamic risk measure (pg)io1,.. S prudent iff the
sequence of risk aversions () is decreasing in time. In contrast to Proposi-
tion 4.1.4 we do not need any additional assumption on the filtration in this
case.

Property 5) of Theorem 2.4.4 provides the following corollary.

Corollary 4.1.9. If the sequence () is decreasing in time, the process

U2(X) = p(X) = 3 ol (Q)
k=0

t—1 1 ~

1
= —log B [e "N F| = 3 —Hun(QIP), t=0,1,...
Mt k=0 Vk
is a Q-supermartingale for all X € L* and all Q € Qr, where

<o},

The converse implication is true if the filtration is rich enough in the sense
of Proposition 4.1.4.

Or = {Q e M*(P) ’ Eq [i iﬁk,k—&-l(Q‘P)
k=0 Tk
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Proof. The proof is a combination of Theorem 2.4.4 and Proposition 4.1.4.
O

For T' = oo we can discuss the asymptotic properties of the prudent entropic
dynamic risk measure (p;);—01... Since o™ (P) = 0 P-a.s. for all ¢, Proposi-
tion 3.2.2 implies asymptotic safety of (p;). More directly, asymptotic safety
follows from the Jensen inequality

1

pe(X) >

log E [e"X|F] > E[-X|F]

combined with the martingale convergence theorem. Moreover, by applying
the Blackwell-Dubins modification of the martingale convergence theorem we
obtain

1 1
lim — log E {e_%X]}"t} = —1logF [e"wa\]:} =—-X P-as.
t—o0 ’Yt ’Yoo
at least for v, := limy ¥ > 0P-as.. From the general point of view

asymptotic precision follows from Proposition 3.2.3, since py is hypersensitive.
Thus

1
lim — log E/ [e‘”’tXLE} =—-X P-as.

t—o00 Vi
for all X € L™ if the sequence (7;) is decreasing.

Assume now that 7' < oo. If the risk aversion (7;) is constant over time,
then by Proposition 2.5.2 the time consistent entropic dynamic risk measure
(pt)t=o...r provides an “optimal hedge” in the sense that the risk process
(pt(X)t=o... 7 is the smallest process that is sustainable with respect to (p;)
and covers the final loss —X. If the risk aversion (;) is not constant, Propo-
sition 2.5.2 implies that we might do better by using the time consistent
dynamic risk measure (p;)i—o,.. 1 defined via (2.50)

]_ ~
pr(X) ==X, p(X)=—logE [e’%pt’f“(x)\ﬂ} . t=0,...,T—1,
Vi

thus iterating the computation in (4.2); see also Example 3.3.2 in [CKO06].
However, (p;) is in general not entropic.

4.2 Hedging under constraints

In this section we consider a model for a financial market with convex trading
constraints. In this model we call a position X acceptable if it can be hedged
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by means of some self-financing admissible strategy in the market. We define
the risk of a position X at time ¢ as the minimal investment needed to make
X acceptable, i.e. p(X) is a superhedging price of a European claim X at
time ¢ under the given constraints. We will show that this definition leads
to a time consistent dynamic convex risk measure. Theorem 2.2.2 provides a
robust representation of this risk measure and identifies it as the upper Snell
envelope under constraints; cf. Section 9.3 of [FS04]. Moreover, applying
Theorem 2.5.4 we characterize the sustainability in this model: Proposition
4.2.10 shows that any bounded process is dominated by a value process of
some admissible strategy iff it has a certain supermartingale property. This
result is known as the optional decomposition under constraints, cf. Theorem
3.1 in [FK97] for continuous time and Theorem 9.20 in [FS04] for discrete
time. Thus the latter theorem is a special case of our more general discussion
of sustainability in Section 2.5 and Theorem 2.5.4. Moreover, using Propo-
sition 2.5.2 we identify the risk process arising from the dynamic convex risk
measure as the “optimal hedge” in the sense that it is the smallest process,
that can be financed by means of some admissible strategy and covers the
final loss.

The results we obtain by identifying the superhedging price process under
constraints as a time consistent dynamic risk measure are already well known,
since the market model has been studied before, cf. e.g. [FK97] for continu-
ous time and Chapter 9 of [FS04] for discrete time. But the characterizations
of the superhedge price from this particular model provided the intuition for
the general case of a dynamic risk measure. Thus we believe that it is inter-
esting to see how the results from [FS04] can be recovered from the general
results we have obtained in Chapter 2.

We use here the setting and notation from Chapter 9 of [FS04]. We consider
a discrete time market model in which d 4 1 assets are priced at times t =
1,...,T. We assume that the time horizon T is finite. The price process
of the assets is modelled by an adapted stochastic process (S?,...,S9), t =
0,...,T on some filtered probability space (2, F, (F)i—o..., P) with Fy =
{Q,0}, F = Fr. We assume further that Sp > 0 P-a.s. for all ¢ and using it
as a numeraire we switch to the discounted price process (X}, ..., X?) with
Xi=Si/SY fort = 0,...,7T and i = 1,...,d. The portfolio constraints
are modelled by a set § of d-dimensional predictable processes, viewed as
admissible investment strategies into risky assets. We will assume that S
satisfies the following conditions:

1. 0es.
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2. S is predictably convex: If £, 7 € § and h is a predictable process with
0 < h <1, then the process h& + (1 — he)n, (t =1,...,T) belongs to
S.

3. For each t € {1,...,T} the set S; := {ét ’ § € S} is closed in
L°(Q, Fi_1, P,R?) with respect to almost sure convergence.

4. Non-redundancy: For all t € {1,..., T} and & € S;, §(Xy — X)) =
0 P-a.s. implies & = 0 P-a.s. .

The first two conditions have a clear economic interpretation, whereas the
last two are more of a technical nature, they are needed for the proof of
“fundamental theorem of asset pricing” in this setting. We refer to Chapter
9 of [FS04] for the details and examples for the set S.

Let S denote the set of all self-financing trading strategies £ = (€2, €) which
arise from an investment strategy £ € S, i.e.,

S = {5: (€°,€) ‘ ¢ is self-financing and & € S}.

We call a position X € L*(Fr) acceptable at time ¢t € {0,...,T} if it can
be hedged with some admissible strategy £ € S at no additional cost. Thus,
we obtain the class of the sets of acceptable positions

T
.Af = {X € Loo(]:T> ’ E'f €S Z fk(Xk — Xk—l) > —-X P—a.s.}
k=t+1

for t =0,...,T with the convention A§ = L%(Fr). Moreover, we introduce
the “one-step” sets

A= {X € L®(F1) |3EE€S : Gn(Xop — Xp) > =X P-as.}

of all positions, which are acceptable for the next period of time in t =
0,...., T —1.

It follows straight from the definition of the sets that
-Af = Af,tﬂ +oe Ag“—l,T + Lio(}_T) (4-13)

for all £ = 0,...,T. Moreover, it is easy to see that due to our assumptions
on the set of admissible strategies S the sets A7 and A7, are conditionally
convex, solid and contain 0 for all £. If we assume in addition that

essinf { X; € L® | X, € A7} =0 (4.14)
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for all ¢, then by Proposition 1.1.3 the sequence of the sets A? (t =0,...,T)
induces a dynamic convex risk measure defined via (1.1):

pP(X) =essinf{Y € L* | Y + X € A7}, X € L®(Fr), t=0,...,T.

Thus, p¢(X) is a minimal cost for the hedge of the position X at time ¢
by means of some admissible strategy in &, and so it coincides with the
superhedge-price for X at time ¢.

It turns out that many important properties of the dynamic risk measure
(pf)t:07.__7T are related to the no-arbitrage condition on the market model.

Definition 4.2.1. We say that the set S satisfies the no-arbitrage condition,
if there is no € € S which generates a free lunch in the sense that

T
SN &(Xi—Xi1) >0 P-as.
t=1

and

T
P} &(X, - X, 1) >0 >0.
t=1

We call a market model arbitrage-free, if S satisfies no-arbitrage condition.

In the rest of this section we will assume that the no-arbitrage condition

-----

under this assumption.

Proposition 4.2.2. Condition (4.14) holds if the market model is arbitrage-
free.

Proof. Since 0 € A? we have ess inf { X € Ly° ‘ X; € Af} < 0. To prove the

converse inequality let X € Af N Ly and £ € S such that Zfzt 11 &e( Xk —
Xk-1) > —X. Consider the set A :={X < 0} € F; and the strategy

g'_ 0 o k=0,...,t
T IAé.k X k)zt—l—l,...,T.
Then £ € S due to conditional convexity and we have

T
> &(Xy — Xjm1) > 14X >0
k=1
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where the last inequality is strict on the set A. Hence, no-arbitrage condition
implies P[A] = 0 and (4.14) follows. O

In order to characterize the dynamic risk measure (pf )t—o,...r it is important
to identify its acceptance sets

Av={X e L™(Fr) | p{(X) <0 Pas}, t=0,...,T

Clearly, A7 C A; for all t. We will show that also the converse inclusion
holds if the market is arbitrage-free, i.e., AS = A, for all . Moreover, we
will prove that the sets AS are weak*-closed. As noted in Remark 1.1.5,
weak*-closedness of the acceptance set is equivalent to the existence of a
robust representation for a conditional convex risk measure. Thus we obtain a
robust representation for the risk measure (p;tS )it—o,...,r under the no-arbitrage
condition. We will argue in several steps.

First we identify the “one-step” sets Aft 41 as acceptance sets of the risk
measure p¢ restricted to the space L%(Fyy1).

Lemma 4.2.3. The risk measure p? restricted to the space L™(F,41) is
determined through the set .AftH under the no-arbitrage condition:

pr(Yiy1) = ess inf{Xt € L ‘ X+ Y € Aft—i—l}

holds for all Vi1 € L®(Fiy1) and allt =0,...,T — 1.

Proof. We will prove the equality
(X €L¥ | X4 Yip € A} = { X € L¥ | Xy + Vi € AT} (4.15)

The inclusion “C” holds since A7, C A7 due to (4.13). To prove the

converse inclusion let X; € {Zt e Ly ’ Zi+ Y € Af} and ¢ € S such
that

T
Xi+ & (X = Xo) + Y0 &l Xpn — Xp) > =Y.
k=t+2

Since the set A := {X; + &11(Xiy1 — Xi) < —Yiu1} belongs to Fiyq, we can
construct arbitrage opportunity on A as in the proof of Proposition 4.2.2.
No-arbitrage condition implies P[A] = 0 and thus Y,,, + X, € A$,,,, which
proves the equality (4.15) and the lemma. O

In the next step we introduce the sets

K ={a(Xi - X0) | & €S} and HY = KF - L(F)



94

for t = 1,...,T. It is shown in Lemma 9.12 in [FS04] that the sets HS are
closed convex subsets of L°(F;) for all ¢ under the no-arbitrage condition.
Moreover, we have AP, | = —HP , N L>(F;41). This implies that the sets
Aft 41 are weak™-closed, as we will prove in the the following propostion.

Proposition 4.2.4. Let A° be a closed convex subset of L°(Q2, F, P) and let
A:=A"NL>®(Q, F,P). Then A is weak*-closed.

Proof. By Lemma A.64 in [FS04] it suffices to show that for every r» > 0 the
set

A= {X e A||X|le <7}

is closed in L'(Q2, F, P). In order to prove this let (X,,) be a sequence in A,
converging in L' to some random variable X. Then there is a subsequence
that converges P-a.s. to X. This implies || X || <7 and X € A" since A° is
closed with respect to almost sure convergence. Hence A, is closed in L. [J

Lemma 4.2.5. Assume that the market model is arbitrage-free. Then the
risk measure p; restricted to the space L™(F,1) is continuous from above
with the acceptance set Aft+1 forallt=0,...,T -1, ie.,

Ay = { X € L®(Fpp1) | p(X) <0 Pas}. (4.16)

Proof. We fix some ¢t € {0,...,7 — 1}. The set AftH is weak*-closed by
Lemma 9.12 in [FS04] and Proposition 4.2.4. Thus, Lemma 4.2.3 and Lemma
3.8. b) in [KS] imply the equality (4.16). Moreover, pf is continuous from
above on the space L>(F;41) by Remark 1.1.5. O

In the next theorem we will extend the results of the previous lemma to the
sets A;.

Theorem 4.2.6. Assume that the market model is arbitrage-free. Then the
risk measure p¢ is continuous from above with the acceptance set A?, i.e.,

A7 ={X € L™(Fr) | p(X) <0 P-a.s.} (4.17)

18 time consistent. ’
Proof. The proof will follow by backward induction on t.

First note that A?_, = AP, ; + LY (Fr) = AJ_, p by (4.13) and solidness
of the set A‘%_LT. Hence p3_, is continuous from above with the acceptance
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set A, by Lemma 4.2.5 and we have the beginning of the induction. In
the induction hypothesis we assume that p¢ ; is continuous from above with
the acceptance set AP, ;.

In order to apply this hypothesis we will show first that the sequence of risk
measures (p, p¢ ;) is time consistent, i.e., p¥ = pP(—p?, ;). Indeed, we have

A DAY = A AT = A + Ap,

where we have used (4.13), Lemma 4.2.5 and induction hypothesis. Hence
pf < pf(=ps.1) by (2.10) of Lemma 2.2.4. To prove the converse inequality

ﬁXXELOO(}"T),letYQG{YGLS"’Y%—XGA}S} and let £ € S such that

T
Vi+&n(Xpn — X))+ ) &(Xen — Xi) > =X, (4.18)
k=t+2

We argue that there is no loss of generality in assuming that Y; +& 1 (X1 —
Xy) =: Vig1 € L®(Fiy1). Indeed, since 0 € S it is sufficient to consider
Vis1 A X || = X to hedge X. On the other hand, on the set A := {V;1 <
—||X ||} € Fis1 we have

T
InVigr + Y La&e(Xpr — Xi) > —IaX > —14]| X ||
k=t+2
and we obtain an arbitrage opportunity on A:
T
D La&p(Xpp1 — Xp) > —La([|X]|oe + Vi)
k=t+2

No-arbitrage condition implies P[A] = 0 and thus ||Vii11]leo < || X || as we
have claimed. Hence it follows from (4.18) that

Yy + & (Xer — X)) > p2 1 (X) (4.19)

by definition of pf,;. Inequality (4.19) implies further that ¥, — p¢ ,(X) €
AP, and thus
Y, > Pf(_PfH(X)) (4.20)

due to Lemma 4.2.3. Since (4.20) holds for all Y; € {Y eELPlY+ X € .A‘ts},
we conclude that it also holds for the essential infinum, i.e.,

Py (X) > p7 (—p7 1 (X))

Thus we have proved the time consistency of p? and p?, ;.
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Now we can identify the acceptance set of p¢. We have
.At == At,tJrl + At+1 = Aft+1 + A;fs+1 == Af,

where we have used Lemma 2.2.4 for the first equality, Lemma 4.2.5 and
induction hypothesis for the second, and (4.13) for the third. Moreover,
p? is continuous from above: If (X,) is a decreasing sequence in L*°(Fr)
converging P-a.s. to some X € L*(Fr), then p¢,(X,) / pf,1(X,) P-as.

by induction hypothesis, and thus

PP (Xn) = 07 (=02 (Xn)) /07 (=5 (X)) = 97 (X)) P-as.
due to time consistency and Lemma 4.2.5. Ul

In the next step we will identify minimal penalty functions in the robust rep-
resentation of p¢. By definition of the penalty functions and due to Theorem
4.2.6 we have

a™((Q)) = esssup { Eo[—X | F] ‘ X e At} (4.21)

T
= esssup { Eo|—X|F] ’ 3EeS: ) &G(Xp—Xp1) > -X P—a.s}
k=t+1

and

afﬁl(Q) = esssup { Eqo—X | F] ’ X e At7t+1}
= esssup { Eg[~X|F] |3 €S (X — Xy) > —X P-as)

for @ € P, and all t € {0,...,T}. For Q@ € M(P) and £ € S such that
ZZ:tH (X — Xyk—1) > C P-a.s. for some constant C' € R the conditional
expectation Eq[ Y. 1 & (Xs—Xy—1) | F1 ] is well defined, and thus we obtain
alternative characterization of the minimal penalty function in the following
propostion.

min min

Proposition 4.2.7. The minimal penalty functions o™ and o}, in the
robust representation of the risk measure p? are of the form

T
Oéimn<Q) = €8s Ssup EQ Z é.k:(Xk: — Xk—l) |f~t (422)
gest k=t+1
and .
it (Q) = esssup Eg[ &1 (X1 — Xo) | Fi (4.23)

§€Sf+1
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where

Sb::{fegS”EIC’ER: zT:fk<Xk—Xk1)ZCP—GS}

k=t+1

and

Sf+1 :{568 ’ EICGR . £t+1(Xt+l_Xt) ZCP-(I.S.}
for Q@ € M¢(P) and allt € {0,...,T —1}.

Proof. Fix @ € M¢(P) and t € {0,...,T — 1}. We will prove the equality
(4.22), the proof of (4.23) is analog.

“<” follows straight from (4.21).

To prove the converse inequality let ¢ € S® and

An, n € N.
k=t+1

Xn = [ XT: Ee( X — Xio1)

Then —X,, € A; for all n by definition, X,, ~* Zfitﬂ (X — Xyp—1) P-as.
with n — oo and Eg[X,|F] /" EolXf_ii1 &(Xk — Xi—1) | F] by monoton
convergence. Thus we obtain “>” in (4.22). O

Remark 4.2.8. If Eg[ X411 — Xi | Fi] is well defined for some probability
measure () € M®(P), (4.23) takes the form

0‘?}&1(@) = GSSGS‘;IP (i1 (B[ Xew|F) — Xo)] -

min

Thus the one-step penalty function oji},(Q) corresponds to the increment of
the so called “upper variation process” A9 of a probability measure Q, which
was introduced in [FK97]. We recall here Definition 9.15 from [FS04]: For
a measure Q € My(P), the upper variation process is the increasing process

AQ defined by A(? =0 and

AL — AP = esssup (1 (Bo[ X | F) — X0)] for t=0,...,T—1.
€

The set of all Q € M®(P) such that
Eo[AY] < oo and Egl|Xi1 — Xi| | Fi] < 0o P-a.s. for allt
is denoted by Qs in [FS04]. In our notation we obtain
api(Q) = A, — AP (4.24)

forallt=0,..., T —1 and all Q € Qgs.
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We have already seen that the dynamic risk measure (pf )it—o,...T i time con-
sistent and continuous from above if the market modell is arbitrage-free.
Thus we can apply Theorem 2.2.2 in order to obtain equivalent characteri-
zations of time consistency for (p? )i=o,... T, if the set

Q' ={Qe M (P)|af™(Q) < o0}

is not empty. The next Lemma shows that this conditions is satisfied if the
market is arbitrage-free. Moreover, we will show that here exists P* € Q*
such that o (P*) = 0 and this is equivalent to the no-arbitrage condition
and to the sensitivity of the initial risk measure pf.

Lemma 4.2.9. The following conditions are equivalent:

1. The risk measure p§ is sensitive.
2. There are no arbitrage opportunities in S.

3. The risk measure p§ is continuous from above and there exists a prob-
ability measure P* ~ P such that of™(P*) = 0.

Proof. 1) = 2): Assume that p§ is sensitive, let £ € S such that

T
Z E( Xk — Xj—1) >0 P-as.
k=1

and consider for n € N

T

Xn = ng(Xk — kal) An.

k=0

Then —X,, € A5 and hence p3(—X,) < 0. Since X,, > 0 P-a.s., we have
p5(—X,) = 0 by monotonicity of p5. We claim that sensitivity implies
X,, = 0 P-a.s.. Indeed, if P[X,, > 0] > 0, we can find ¢ > 0 and A € Fr
with P[A] > 0 such that X,, > eI, and thus 0 = p§(—X,) > p5(—cl,) in
contradiction to sensitivity of p§. Therefore X,, = 0 P-a.s. for all n € N and

T
Zék(Xk - Xk—l) = h?Iann =0 P-as..
k=1

Hence there are no arbitrage opportunities in S.
2) = 3): The risk measure p§ is continuous from above by Theorem 4.2.6.
Moreover, by Theorem 9.9. in [FS04] there exists a probability measure
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P* &~ P such that the value process of any trading strategy in S is a local
P*-supermartingale. We will show that of*"(P*) = 0. To this end it is
sufficient to prove that

Ep[-X] <0 forall X € A,. (4.25)

Let X € Ay. Since Ay = A5 by Theorem 4.2.6, there exists £ € S such that

T
> &( Xy — X)) > —X.
k=1
We consider the the associated value process
t
‘/0:: 0, VVtZ: ng(Xk_Xk—1)7 tzl,...,T.
k=1

Then (V;) is a local supermartingale under P*. Moreover, Vy > —|| X|| and
the same reasoning as in the proof of Theorem 4.2.6 applied to V; for t =
1,...,T—1implies V; > —||X ||~ for all t. Thus (V}) is a P*-supermartingale
by Proposition 9.6 in [FS04] and we obtain in particular

Ep|[—X] < Ep«[Vy] < Ep-[Vg] = 0.

This proves (4.25).

3) = 1): To prove sensitivity of the risk measure p3, let € > 0 and A € Fr
with P[A] > 0. Since p§ has a robust representation in terms of M¢(P) due
to Theorem 1.1.4 and Lemma 1.2.5, we obtain

pS(—ely) = sup (EQ[dA] — agli“(QD > Ep«[ely] > 0.
QEM=(P)

Thus p§ is sensitive. O

Now we can apply Theorem 2.2.2 to the time consistent dynamic risk measure

-----

T—1
am(Q) = Eq [Z o (Q) |f-t]
k=t

forallt=0,...,7—1and all Q@ € M*(P), and due to (4.24) we obtain the
Doob decomposition of the minimal penalty function in terms of the upper
variational process A%:

" (Q) = Egl A7 | 7] — A? (4.26)
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for Q € Qs and for all t =0,...,T. In particular
ag™(Q) = EqlA7].
Thus
T-1
o= 0r = {Qe (P 5o | T at@)
k=0

and Qs C Q* with the difference that we do not require

-

EQHXtJrI_XtHft] < oo P-as.

for all ¢ in the definition of the set OF.

The robust representation

pr(X) = esssup (EQ[—X]}}] - af‘in(Q)) , t=0,....,T (4.27)
QeQ*

identifies for each X € L*°(Fr) the process pP(X) as the upper Q*-Snell
envelope of a discounted European claim —X. For the details on upper Snell
envelopes we refer to Definition 9.21 and Proposition 9.23 of [FS04]. It is
shown there that the upper Qs-Snell envelope of a discounted European
claim H € L (Fr) takes the form

(75 :esssup<EQ[H—A$|}"t]+A?), t=0,...,T,
QEQs

which is the representation (4.27) if we replace Qs with Q" and apply (4.26).
Moreover, Theorem 9.29 in [FS04] identifies U, as the minimal amount for
which a superhedging strategy for H is available, i.e.,

U] = essinf {Ut € Li(]—})’ﬂ ¢ € S such that (4.28)

T
U+ > &(Xe—Xp1) > H P—a.s.}.

k=t+1

This corresponds to our definition of the risk measure p¢, since for H €
L>°(Fr) it is sufficient to consider U; € L{° in (4.28). In contrast to the
reasoning in [FS04] we have defined the risk measure p? via (4.28) and have
shown that it has the robust representation (4.27) under the no-arbitrage
condition. Another difference in our reasoning is that we use the set OF
instead of Qs in the robust representation of pf since it appears more natural
in our setting.



101

Condition 4) of Theorem 2.2.2 provides the supermartingale property of the
process .
VE(X) = pS(X) +a™™(Q), t=0,...,T,

and Proposition 2.5.5 implies the supermartingale property of the process
Ut (X)= Zakm}fﬂ t=0,...,T

for all Q € Q" and X € L°°. This corresponds to sustainability of the
risk process (p(X)) and means that it can be financed by means of some
admissible strategy in the market, as we show in the next proposition.

Proposition 4.2.10. Suppose that the no-arbitrage condition holds. Then
for any bounded adapted process Y = (Y;) the following conditions are equiv-
alent:

1. The process
Za}f};ﬂrl t=0,....T

s a Q—supermartmgale for all Q € OF.

2. There exists & € S and a non-negative adapted increasing process B
such that By = 0 and

t
k=0

Moreover, (pf (X)) is the smallest bounded adapted process that has the rep-
resentation (4.29) and covers the final loss —X for all X € L.

Proof. By definition of the one-step acceptance sets Aft 41 Sustainability of a
bounded process Y = (V;) with respect to (p?) in this model is equivalent
to the representation (4.29). Since Q* # () under the no-arbitrage condition
by Lemma 4.2.9, the equivalence of 1) and 2) follows from Theorem 2.5.4.
Moreover, since Eglajyt(Q)] < oo for all t =0,...,T if Q € Q*, we have
Q, # 0 for all t and thus Proposition 2.5.2 identifies (p5 (X)) as the smallest
bounded adapted process that it is sustainable with respect to (o) and covers
the final loss —X for all X € L. O

The equivalence of 1) and 2) was proved in Theorem 9.20 in [FS04], where it is
called the uniform Doob decomposition under constraints. Since sustainabil-
ity with respect to (pf) is equivalent to the representation (4.29), Theorem
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9.20 in [FS04] is a special case of our general Theorem 2.5.4. The second
part of Proposition 4.2.10, i.e. the identification of (p%(X)) as the smallest
bounded adapted process that has the representation (4.29) and covers the
final loss, is a special case of Theorem 9.22 in [FS04]. There the same result
was proved more generally for upper Qg-Snell envelopes of American options.
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