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Zusammenfassung

In dieser Arbeit präsentieren wir eine neue Art von Newton-Verfahren mit Linien-
suche, basierend auf Interpolation im Bildbereich nach Wedin et al. [LW84]. Von
dem resultierenden stabilisierten Newton-Algorithmus wird theoretisch und prak-
tisch gezeigt, dass er effizient ist im Falle von nichtsingulären Lösungen. Darüber
hinaus wird beobachtet, dass er eine superlineare Rate von Konvergenz bei einfa-
chen Singularitäten erhält. Hingegen ist vom Newton-Verfahren ohne Liniensuche
bekannt, dass es nur linear von fast allen Punkten in der Nähe einer singulären Lö-
sung konvergiert. In Hinsicht auf Anwendungen auf Komplementaritätsprobleme
betrachten wir auch Systeme, deren Jacobimatrix nicht differenzierbar sondern nur
semismooth ist. Auch hier erreicht unser stabilisiertes und beschleunigtes Newton-
Verfahren Superlinearität bei einfachen Singularitäten.



Abstract

In this thesis we present a new type of line-search for Newton’s method, based
on range space interpolation as suggested by Wedin et al. [LW84]. The resulting
stabilized Newton algorithm is theoretically and practically shown to be efficient
in the case of nonsingular roots. Moreover it is observed that it maintains a
superlinear rate of convergence at simple singularities. Whereas Newton’s method
without line-search is known to converge only linearly from almost all points near
the singular root. In view of applications to complementarity problems we also
consider systems, whose Jacobian is not differentiable but only semismooth. Again,
our stabilized and accelerated Newton’s method achieves superlinearity at simple
singularities.



Chapter 1

Introduction

Systems of nonlinear algebraic equations arise in many fields of applications with
the number of variables ranging from just a handful to thousands or even millions.
It is well understood that fast local convergence at a superlinear rate can only
be achieved by Newton-like methods. The usual conditions for thus are that the
Jacobian formed by the first partial derivatives is nonsingular at the nearest root
and varies continuously in a surrounding neighborhood. In particular its Lipschitz
continuity implies the quadratic convergence of Newton’s method.

In this thesis we consider the situation where the nonsingularity condition is ex-
actly or nearly violated. Such a situation arises at or near turning points with
respect to a(nearly) critical parameter. It also occurs through so-called nonlin-
ear complementarity problem functions that characterize complementarity. Then
there is also the additional complication that the resulting Jacobian is Lipschitz
continuous but not properly differentiable. In the smooth case, i.e., twice con-
tinuously scenario the behavior of Newton’s method has been extensively studied
in the seventies and eighties of the last century, see [Red78], [Red79], [DK80a],
[Gri80b], [Gri80a], [GO81], [Gri85].

At so called regular singularities of order k ∈ N one finds that Newton’s method
converges with the linear rate k

k+1 from most starting points near a singular root.
More specifically the set of suitable starting points forms a starlike domain of
density 1 with respect to the singular root. At irregular singularities Newton’s
method may converge at some other linear rate depending on the size of higher
mixed derivatives or, if these are too large, it may even be repelled by the root,
see [GO81].

Wright et al. [OW09] have recently considered equation systems arising from com-
plementarity problems where the Jacobian may be both singular and nondifferen-
tiable. Under the mild assumption that the Jacobian is semismooth at a regular
order singularity, they showed that Newton’s method still converges with the linear
rate 1

2 from within a starlike domain of positive density. They also suggested and
tested the acceleration of Newton’s method by nearly doubling every other step,
when the halving pattern of the step size seem to have settled in. Variations of this
two-step scheme had been analysed by Kelly et al. and Griewank in the smooth
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case. There is also a three-step scheme where every third step is exactly doubled.
It achieves a three step quadratic rate under certain stronger assumptions on the
first order singularity.

The main drawback of the acceleration schemes mentioned above is that the algo-
rithm or the user has to decide somehow, that the convergence pattern indicates
a singularity and then modify the step multipliers accordingly. It may then also
turn out in the end that the solution is only nearly singular so that the decision
needs to be reversed at some later stage.

Instead we pursue an acceleration approach that is based on the range space line-
search of Wedin et al. [LW84]. It makes complete sense in the nonsingular case
and automatically generates the two-step pattern in simple singular cases. At least
that is our observation in the first order regular case, even when the Jacobian is
only semi-smooth.

Unfortunately, we have not been able to establish this result analytically. In
nearly singular situations, which arise in the vicinity of turning points we observe
a significant acceleration in an intermediate phase before the method reduces to
full-step Newton in the immediate vicinity of the root.

The thesis is organized as follows. In Chapter 2 we discuss the behavior of Newton’s
method at nonsingular solutions. We analyse the local and semilocal convergence
in the case that the Jacobian F ′ is nonsingular at a root x∗ ∈ F −1(0). Locally,
quadratic convergence of Newton’s method is obtained. Kantorovich theorem is
used to obtain quadratic convergence under semilocal conditions.

The concept of regular singularity is introduced and the regularity condition is
derived in the first section of Chapter 3. In Section 2 of Chapter 3 we present
convergence results of Newton’s method at singular roots when the function F is
continuously differentiable to a sufficient order.

Then applications of NLEs reformulations of NCP are discussed where at a singu-
larity the Jacobian F ′ is not Fréchet differentiable but strongly semismooth.

In Chapter 4 we introduce the acceleration of Newton’s method at singular solu-
tions. Here we discuss the two and three step method. Those techniques require
three times differentiability of F and starting points whose errors remain in a
wedge around the nullspace N of F ′(x∗).

The two and three point schemes require deciding that the problem is singular,
but our parabolic line-search method, which is discussed in Chapter 5 can achieve
2-step superlinear convergence for simple singularity automatically i.e., without
being told that a solution is singular. Experimentally we have shown that line-
search is effective in both singular and nonsingular cases.

We also briefly discuss an extension based on cubic rather than quadratic interpo-
lation, which did not fulfill our expectations.

Numerical results and applications to nonlinear complementary problem are con-
sidered in Chapter 6. To illustrate the behavior of the line-search, the so-called
multiplier mountain is analysed. For large dimensions we tested Bratu problem.
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We obtain Newton fractals for some problems from the literature and compare it
with our line-search Newton’s method.
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Chapter 2

Newton-like Methods

In this section, we discuss briefly the behavior of Newton’s method and analyse
its local and semilocal convergence, in the case that the inverse of the derivative
of the function exists. We start by discussing the behavior of Newton’s method
geometrically for scalar functions f : R → R and then we generalize it to multi-
variate functions F : Rn → R

n. The distinguishing feature of Newton’s method
is that if f ′(x) is Lipschitz continuous in a neighborhood containing the root x∗
and f ′(x∗) is nonzero, then the sequence of Newton iterates converges locally and
quadratically to x∗. This means there exist δ > 0 and c ≥ 0 such that the sequence
of Newton iterates {xj} produced by Newton’s method obeys

‖xj+1 − x∗‖ ≤ c ‖xj − x∗‖2, if ‖x0 − x∗‖ ≤ δ.

Locally we prove quadratic convergence of Newton’s method when we use the exact
derivative F ′ : Rn → R

n×n of the function F : Rn → R
n. If we approximate the

derivative F ′ by some matrix then we will get linear or superlinear convergence of
Newton-like methods.

As a semilocal convergence results we consider the Kantorovich theorem, which
imposes conditions on the initial point to establish the existence of a nearby root,
which is found by Newton’s method. If those conditions are satisfied then a solution
exists close to the initial point x0 and the sequence converges quadratically to that
point.

2.0.1 Idea of Newton’s Method

Assume we have to solve a scalar equation

f(x) = 0.

with an appropriate guess x0 of the unknown solution x∗ at hand.

We will use the perturbation

x̂ = x − x∗ and x̂j = xj − x∗, j = 0, 1, 2, . . . (2.0.1)

5



Figure 2.1: Newton’s method for a scalar equation

which denote the difference between the sequence {xj}j≥0 and x∗.

By Taylor’s expansion we have

0 = f(x∗) = f(x0 − x̂0) = f(x0) − f ′(x0)x̂0 + O(|x̂0|2).

If we drop terms of order higher than linear in the perturbation, we arrive at the
approximate equation

f ′(x0)x̂0 ≈ f(x0),

which, assuming f ′(x0) 	= 0, leads to the precise equation

x1 − x0 = − f(x0)
f ′(x0)

,

for a first correction of the starting guess. From this, an iterative scheme is con-
structed by repetition

xj+1 = xj − f(xj)
f ′(xj)

, j = 0, 1, . . . ,

which is called Newton’s method in the scalar case.

2.0.2 Geometric Interpolation of Newton’s method

Looking at the Graph 2.1 of f(x) any root can be interpreted as the intersection
of this graph with the real axis. The graph of f(x) is replaced by its tangent
p(x) = f(x0) + f ′(x0)(x − x0) in x0 and the first iterate x1 is considered as the
intersection of the tangent with the real axis. Upon repeating this geometric
process, the close-by solution point x∗ can be approximated up to any desired
accuracy. By geometric insight, the iterative process will converge globally for
convex or concave f , which includes the case of arbitrarily bad initial guesses as
well. The geometric derivation seems to be restricted to the scalar case. A careful
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examination of the subject in more than one dimension leads to a topological path
called Newton path (see [Deu04]).

Now we consider to the general case of Newton’s method.

2.1 Newton-like Methods for Nonlinear Equa-
tions

We will make standard assumptions on the function F for local convergence.

Definition 2.1.1 (The standard assumptions)

Let
F (x) = 0 (2.1.1)

be a nonlinear equation, where F : Rn −→ R
n, has a root x∗. Let F be differentiable

and non-singular for all x in a neighborhood D ⊂ R
n of x∗ and let F ′ be Lipschitz

continuous with Lipschitz constant L. i.e., for all x, y ∈ D and the constant L > 0

‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖, (2.1.2)

where ‖.‖ denote to Euclidean norms for vectors and the induced spectral norm for
matrices.

Suppose we have a starting guess x0 ∈ R
n for an unknown solution x∗ at hand.

We are interested in solving the nonlinear equation (2.1.1) with Newton’s method.

Definition 2.1.2 Given F : D ⊂ R
n → R

n and x0 ∈ R
n, Newton’s method

computes iteratively the sequence

xj+1 = xj + dj. (2.1.3)

Where
dj := d(xj) := −F ′(xj)−1F (xj). (2.1.4)

is called Newton direction.

There is a large variety of Newton-type methods, which will be named and briefly
sketched here.

Definition 2.1.3 (Exact Newton’s method)
Any of the finite dimensional Newton-type methods requires the numerical solution
of the linear equations

F ′(xj)dj = −F (xj), (2.1.5)
Whenever direct elimination methods (like Gaussian elimination, QR decomposi-
tion,...) are applicable, we speak of the exact Newton’s methods.

Definition 2.1.4 (Newton-like method)
This type of Newton’s method is characterized by the fact that, in finite dimension,
the Jacobian matrices are either replaced by some fixed ’close by’ F ′(z) with z ≈ x0,
or by some other approximation Hj ≈ F ′(xj) and one computes

Hjdj = −F (xj), xj+1 = xj + dj, j = 1, 2, . . . , (2.1.6)
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Definition 2.1.5 (Simplified Newton’s method)
This variant of Newton’s method is characterized by keeping the initial derivative
throughout the whole iteration:

F ′(x0)dj = −F (xj), xj+1 = xj + dj, j = 1, 2, . . . , (2.1.7)

This method is also called chord method.

Definition 2.1.6 (Inexact Newton’s method)
For extremely large scale nonlinear problems the arising linear systems for the
Newton corrections can no longer be solved directly (’exactly’), but must be solved
iteratively (’inexactly’) which gives the name inexact Newton’s methods. The whole
scheme then consists of an inner iteration (at Newton step j)

F ′(xj)dq
j = −F (xj) + rq, j = 1, 2, . . . ,

xq
j+1 = xj + dq

j , q = 1, 2, . . . , qmax
j

in terms of residuals rq
j and an outer iteration where, given x0, the iterates are

defined as
xq

j+1 = xj+1 for q = qmax
j j = 1, 2, . . . ,

Inexact Newton’s method are sometimes also called truncated Newton’s method.

Although Newton’s method is theoretically attractive, it may be difficult to use in
practice. In fact, each step requires the solution of the linear system (2.1.5), even
though the inverse F ′(xj)−1 is rarely computed explicitly[OR70].

A necessary assumption for the solvability of the above linear problems (2.1.5) is
that the Jacobians F ′(x) are invertible at all occurring arguments. For this reason,
standard convergence theorems typically require a prior that the inverse F ′(x)−1

exists and is bounded

‖F ′(x)−1‖ ≤ β < ∞, x ∈ D. (2.1.8)

From a computational point of view, such a theoretical quantity β defined over the
domain D seems to be hard to get, apart from rather simple situations. Sampling
of local estimates like

‖F ′(x0)−1‖ ≤ β0, (2.1.9)

seems to be preferable, but is still quite expensive.

The following lemma is often referred to as the Banach lemma.

Lemma 2.1.7 (Banach Perturbation Lemma)

Let A, C ∈ R
n×n. Assume that A is invertible and ‖A−1‖ ≤ α. If ‖A − C‖ ≤ β

and αβ < 1, then C is also invertible and ‖C−1‖ ≤ α
1−αβ

.

Proof: See Ortega and Rheinboldt [OR70]. �

In order to study the convergence properties of the above Newton iterations, some
information on the variability of the Jacobian is needed, as already stated in the
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scalar equation case. The standard form to include this information is via a Lips-
chitz condition (2.1.2)

With this additional assumption, Banach perturbation Lemma 2.1.7 implies the
existence of some upper bound β such that

‖F ′(x)−1‖ ≤ β ≤ β0

1 − Lβ0‖x − x0‖
for

‖x − x0‖ ≤ 1
Lβ0

, x ∈ D.

Classical convergence theorems for Newton’s method use certain combinations of
these assumptions. The first classical convergence theorems for Newton’s method
is Newton-Kantorovich theorem (see [OR70], [Ort68]). It requires assumptions
(2.1.9) and (2.1.2) to show existence and uniqueness of a solution x∗ as well a
quadratic convergence of Newton iterates from within a neighborhood character-
ized by a so-called Kantorovich quantity h0 := ‖x̂0‖β0L < 1

2 and a corresponding
convergence ball around x0 with radius ρ0 ∼ 1

Lβ0
.

The second classical convergence theorems for Newton’s method is Newton-Mysovskikh
theorem (see [OR70]) requires assumptions (2.1.8) and (2.1.2) to show uniqueness
(not existence!) of a solution x∗ and quadratic convergence within a neighbor-
hood characterized by the slightly different quantity h0 := ‖x̂0‖βL < 2 and a
corresponding convergence ball around x0 with radius ρ0 ∼ 1

Lβ
, [Deu04].

2.1.1 Local Convergence Analysis

In this section we are going to analyse the local convergence properties of Newton’s
method. In this case we must choose x0 to be sufficiently close to x∗. But first,
we bring the following well-known propositions to mind.

We may express the fundamental theorem of calculus as follows.

Theorem 2.1.8 Let F be differentiable in an open set D ⊂ R
n and let x∗ ∈ D.

Then for all x ∈ D sufficiently near x∗ we have

F (x) − F (x∗) =
∫ 1

0
F ′(x∗ + t x̂)x̂ dt.

The next lemma is an important consequence of the standard Assumptions 2.1.1.

Lemma 2.1.9 Assume that the standard Assumptions 2.1.1 hold, then there is
δ > 0 so that for all x ∈ Bδ

‖F ′(x)‖ ≤ 2‖F ′(x∗)‖, (2.1.10)
‖F ′(x)−1‖ ≤ 2‖F ′(x∗)−1‖, (2.1.11)
‖F ′(x∗)−1‖−1‖x̂‖/2 ≤ ‖F (x)‖ ≤ 2‖F ′(x∗)‖‖x̂‖. (2.1.12)

Here Bδ denote the ball of radius δ about x∗, i.e.

Bδ = {x : ‖x̂‖ < δ}.
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Proof: See Kelley [Kel95]. �
The convergence result on Newton’s method follows from Lemma2.1.9.

Lemma 2.1.10 Let the standard Assumptions 2.1.1 hold, then there are L0 > 0
and δ > 0 such that if xc ∈ Bδ the Newton iterate from xc given by x+ = xc −
F ′(xc)−1F (xc) satisfies

‖x̂+‖ ≤ L0‖x̂c‖2 (2.1.13)

Proof: Let δ > 0 be small enough so that the conclusions of Lemma 2.1.9 hold.
By Theorem 2.1.8 First we note that

F ′(x∗)−1F (x) = F ′(x∗)−1
∫ 1

0
F ′(x∗+t x̂∗) x̂∗ dt = x̂∗−

∫ 1

0
[I−F ′(x∗)−1F ′(x∗+t x̂∗)] x̂∗ dt

then

x̂+ = x̂c − F ′(xc)−1F (xc) = F ′(xc)−1
∫ 1

0
[F ′(xc) − F ′(x∗ + t x̂c)] x̂c dt.

By Lemma 2.1.9 and the Lipschitz continuity of F ′ yields

‖x̂+‖ ≤ 2‖F ′(x∗)‖‖x̂c‖
∫ 1

0
(Lt‖x̂c‖)dt = L‖F ′(x∗)−1‖‖x̂c‖2

This proves the relation (2.1.13) by taking L0 = L ‖F ′(x∗)−1‖. The proof of con-
vergence of the full-step Newton iteration will be complete if we reduce δ if needed
so that L0δ < 1. �
Now we can prove the local convergence of Newton iteration given by (2.1.3).

Theorem 2.1.11 (Local Convergence)

Let the standard Assumptions 2.1.1 hold. Then there is δ such that if x0 ∈ Bδ the
Newton iteration given by (2.1.3) converges q-quadratically to x∗.

Proof: Let δ be small enough so that the conclusions of Lemma 2.1.10 hold.
Reduce δ if needed so that L0δ = ε < 1. Then if j ≥ 0 and xj ∈ Bδ, then Lemma
2.1.10 implies that

‖x̂j+1‖ ≤ L0‖x̂j‖2 ≤ ε‖x̂j‖ ≤ ‖x̂j‖ (2.1.14)

and hence xj+1 ∈ Bεδ ⊂ Bδ. Therefore if xj+1 ∈ Bδ we may continue the iteration.
Since x0 ∈ Bδ by assumption, the entire sequence {xj} ∈ Bδ. (2.1.14) then implies
that xj → x∗ q-quadratically see [Kel95]. �
We present now the linear convergence results for Newton-like methods in the next
theorem.

Theorem 2.1.12 ( Linear Convergence [Kel95])

Let the standard Assumptions 2.1.1 hold. Then there are KH > 0, δ > 0, and
δ1 > 0 such that if x0 ∈ Bδ and the matrix H(x) satisfies

‖I − H(x)F ′(x∗)‖ = σ(x) ≤ δ1, (2.1.15)
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for all x ∈ Bδ then the iteration xj+1 = xj − H(xj)F (xj) converges q-linearly to
x∗ and

‖x̂j+1‖ ≤ KH [σ(xj) + ‖x̂j‖]‖x̂j‖.

Proof: By (2.1.15) we have

‖H(x)‖ = ‖H(x)F ′(x∗)F ′(x∗)−1‖ ≤ ‖H(x)F ′(x∗)‖‖F ′(x∗)−1‖ (2.1.16)
≤ MH = (1 + δ1)‖F ′(x∗)−1‖. (2.1.17)

Using the above equality and

x̂+ = x̂c − H(xc)F (xc) =
∫ 1

0
[I − H(xc)F ′(x∗ + tx̂c)]x̂cdt

= [I − H(xc)F ′(x∗)]x̂c + H(xc)
∫ 1

0
[F ′(x∗) − F ′(x∗ + tx̂c)]x̂cdt.

we have
‖x̂+‖ ≤ σ(xc)‖x̂c‖ + MHL

2 ‖x̂c‖2.

This completes the proof with KH = 1 + MHL
2 .

�

2.1.2 Semilocal Convergence Analysis

In the following section we are going to introduce Kantorovich’s theorem which
established semi-local convergence of Newton’s method. Here we are free to choose
x0.

2.1.3 Newton-Kantorovich Theorem

Kantorovich’s theorem asserts that the iterative method of Newton, applied to
a general system of nonlinear equations F (x) = 0, converges to a solution x∗,
provided the Jacobian of the system satisfies a Lipschitz condition near x0 and
its inverse at x0 satisfies certain boundedness conditions. The theorem also gives
computable error bounds for the iterates. The system of equations takes the form
F (x) = 0. The Jacobian of F at x0 ∈ R

n is the Fréchet derivative F ′(x0). It is
assumed that F is defined and has a Fréchet differential at each point of a given
convex open set D0 ⊂ R

n. Kantorovich has given two basically different proofs of
this result using recurrence relations [Kan48] or majority functions[LVK59].

Now we give a proof which is a modification of the second approach and is easier
to understand and present [Ort68] .

Theorem 2.1.13 ( Newton-Kantorovich Theorem)

Let F be defined as in (2.1.1) and F : D ⊂ R
n → R

n is F-differentiable on a
convex set D0 ⊂ D, and assume for an operator norm that (2.1.2) is satisfied
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and ∀x, y ∈ D0. Assume for some x0 ∈ D0 that Γ = F ′(x0)−1 exists and that
α = Lβη ≤ 1

2 where ‖Γ‖ ≤ β, ‖ΓF (x0)‖ ≤ η. Set

t∗ = (Lβ)−1[1 − (1 − 2α) 1
2 ], t∗∗ = (Lβ)−1[1 + (1 − 2α) 1

2 ], (2.1.18)

and suppose that B(x0, t∗) = {x | ‖x − x∗‖ ≤ t∗} ⊂ D0. Then the Newton iterates
given by (2.1.3) are well-defined, remain in B(x0, t∗), and converge to a solution
x∗ ∈ B(x0, t∗) of F (x∗) = 0 which is unique in B(x0, t∗∗) ∩ D0. Moreover, if α < 1

2
the order of convergence is quadratic.

The proof will be an easy consequence of the following lemmas which serve to
isolate the essential points.

Lemma 2.1.14 Let {yj} be a sequence in R
n and {tj} a sequence of nonnegative

real numbers such that

‖yj+1 − yj‖ ≤ (tj+1 − tj) j = 0, 1, . . . , (2.1.19)

and tj → t∗ < ∞. Then there exists a y∗ ∈ R
n such that yj → y∗ and

‖y∗ − yj‖ ≤ (t∗ − tj) j = 0, 1, . . . , (2.1.20)

Proof: The proof is immediate from

‖yj+p − yj‖ ≤
p∑

i=1
‖yj+i − yj+i−1‖ ≤ (tj+p − tj) ≤ (t∗ − tj)

which shows that {yj} is a Cauchy sequence. �
Definition 2.1.15 We shall say that {tj} majorizes {yj} if (2.1.19) holds.

In the following two lemmas the relevant assumptions of the theorem are assumed
to hold.

Lemma 2.1.16 For all x ∈ Q ∩ D0, F ′(x)−1 is defined on all of Rn and

‖F ′(x)−1‖ ≤ β

1 − Lβ‖x − x0‖ .

Where Q = {x | ‖x − x0‖ < 1
Lβ

}. If x and N(x) = x − F ′(x)−1F (x) are in Q, then

‖N(N(x)) − N(x)‖ ≤ 1
2

Lβ‖x − N(x)‖2

1 − Lβ‖x0 − N(x)‖ .

Proof: The first statement follows from Banach Lemma 2.1.7. To prove second
statement we note that, since F (x) + F ′(x)(N(x) − x) = 0, we find

‖N(N(x)) − N(x)‖ = ‖F ′(N(x))−1F (N(x))‖
≤ β

1 − Lβ‖x0 − N(x)‖‖F (N(x)) − F (x) − F ′(x)(N(x) − x)‖
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and the result follows by use of the mean value Theorem [LVK59]:

‖F (y) − F (x) − F ′(x)(y − x)‖ = ‖
∫ 1

0
[F ′(θy + (1 − θ)x) − F ′(x)](y − x)dθ‖

≤ L

2 ‖y − x‖2.

�
Lemma 2.1.17 The Newton sequence {xj} is well-defined and is majorized by the
sequence defined by

tj+1 = tj − (Lβ/2)t2
j − tj + η

Lβtj − 1 , j = 0, 1, . . . , t0 = 0.

Moreover, tj → t∗, where t∗ is defined by (2.1.18).

Proof: See [Ort68], [LVK59]. �
The proof of Newton-Kantorovich theorem now is ready to do based on last three
lemmas.

Proof: ( Newton-Kantorovich Theorem 2.1.13)

The Lemmas 2.1.14 and 2.1.17 show that there exists an xj ∈ B(x0, t∗) such that
xj → x∗. That x∗ is a solution follows in the usual way from

‖F (xj)‖ = ‖F ′(xj)(xj+1 − xj)‖
≤ [ ‖F (x0)‖ + ‖F ′(x0) − F ′(xj)‖ ] ‖xj − xj+1‖
≤ [ ‖F ′(x0)‖ + Lt∗ ] ‖xj − xj+1‖ → 0

and the continuity of F in B(x0, t∗). If α < 1
2 ,the roots t∗ and t∗∗ are distinct and

the order of convergence of tj to t∗ is at least quadratic; hence, by (2.1.20) the order
of convergence of xj to x∗ is at least quadratic. Finally, the uniqueness statement
follows as in [LVK59] by consideration of the simplified Newton iteration(2.1.7).
�
We have presented in this chapter Newton’s method for nonsingular roots, and
could then prove the quadratic convergence of Newton’s method, this conclusion
is no longer possible when the Jacobian is singular at a solution x∗ ∈ F −1(0). Then
only linear convergence can be expected, as we will see in the following chapters.
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Chapter 3

Newton’s Method at Singular
Points

In this section we will describe the behavior of Newton’s method at singular so-
lutions x∗, where F ′(x∗) is not invertible. For this case we are going to present
the concept of regular singularity. To see the behavior of Newton’s method at
such points we start by characterizing a regular singularity, then we present the
convergence results.

Assumptions 3.0.18 For F : R
n −→ R

n, suppose x∗ ∈ F −1(0) is a singular
solution of a nonlinear equation F (x) = 0 and F ′ is Lipschitz continuous for all
x ∈ R

n and the constant L > 0. We define N := ker F ′(x∗), and N⊥ denote the
orthogonal complement of N , such that N ⊕ N⊥ = R

n, and let N∗ := ker F ′(x∗)�.
Let 1 ≤ m := dim N . We denote by PN , PN⊥, and PN∗ the projection operators
into N, N⊥, and N∗, respectively, where PN : N −→ N⊥, PN∗ : N∗ −→ N∗

⊥, so
that

PN∗F ′(x∗) = F ′(x∗)PN = 0.

We set
PN⊥ = I − PN , PN∗

⊥ = I − PN∗ .

where N∗
⊥ is the orthogonal complement of N∗.

We will frequently write the elements of Rn in the form

x = x∗ + ρ t, with ρ = ‖x − x∗‖ and t ∈ S. (3.0.1)

Where

S ≡ {t ∈ N : ‖t‖ = 1}, (3.0.2)

is the unit sphere of directions in R
n.

The perturbation x̂ will refer to the difference between the sequence {xj}j≥0 and
the root x∗, we write

x̂j = xj − x∗, j = 0, 1, . . .
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The determinant of the Jacobian F ′(x) of the function F is

δ(x) = det(F ′(x)).

The singular set is given by

δ−1(0) = {x ∈ R
n : δ(x) = 0}.

3.1 Characterization of Regular Singularities

The Newton iteration is invariant with respect to nonsingular affine transform
on the domain of F and nonsingular linear transformation on the range of F
respectively. Hence we may assume without loss of generality that

x∗ = 0, F ′(x∗) = (I − PN∗), and N∗ = R
m × {0}n−m (3.1.1)

which implies in particular that the nullspace N is identical to N∗.

From the third assumption in (3.1.1), we have that the projection operator PN∗ is
the identity on its range N∗, i.e. PN∗ x = x, ∀x ∈ N∗, and takes the form

PN∗ =
(

Im×m 0m×n−m

0n−m×m 0n−m×n−m

)
,

where 0 represents the zero matrix and subscripts indicate dimensions. By substi-
tuting in the second assumption of (3.1.1), we obtain

F ′(0) = I − PN∗ =
(

0m×m 0m×n−m

0n−m×m In−m×n−m

)
. (3.1.2)

Definition 3.1.1 (Order of Singularity)

We define the order of the singularity at x∗ ∈ F −1(0) as the index k ≥ 0 for which
F has a Lipschitz continuous (1 + k)th derivatives and

PN∗F (k+1)(x∗) 	= 0, and PN∗F (q)(x∗) = 0 for q ∈ [1, k],

and we will call “m“ the defect of the singularity. In the scalar case m = 1 the
index k + 1 gives the algebraic multiplicity of the root x∗.

Let (.)|N and (.)|N⊥ denote the restriction maps for N and N⊥ respectively. Using
(3.1.1), the Jacobin F ′ can be partitioned as follows:

F ′(x) =
(

PN∗F ′(x)|N PN∗F ′(x)|N⊥
PN∗

⊥F ′(x)|N PN∗
⊥F ′(x)|N⊥

)
:=

(
B(x) C(x)
D(x) E(x)

)
. (3.1.3)

In conformity with the partitioning in (3.1.2), the submatrices B, C, D, and E
are (k + 1)th times differentiable and have dimensions m × m, m × n − m, n − m ×
m, and n − m × n − m, respectively.
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To compute the determinant of a Jacobin F ′, we reduce it to block lower triangular
matrix, by multiplying it from the left by the unitary block matrix

(
I −C(x)E(x)−1

0 I

)
.

The result is the block triangular form
(

B(x) − C(x)E(x)−1D(x) 0
D(x) E(x)

)
,

whose determinant is equal to the product of the determinants of the diagonal
blocks, i.e.

δ(x) = det
(
B(x) − C(x) E(x)−1 D(x)

)
det E(x). (3.1.4)

Let
G(x) := B(x) − C(x) E(x)−1 D(x) ∈ R

m×m, (3.1.5)

and then by the assumption on F ′(x), the principal submatrix E(x∗) = I must be
nonsingular, so that in some neighborhood of x∗ the determinant function takes
the form

δ(x) = det(G(x)) det(E(x)) ≈ det(G(x)). (3.1.6)

From the Assumption 3.1.1 we have x∗ = 0, x = ρ t and by applying Taylor’s
theorem to the entries of F ′ in (3.1.3) we find for B that

B(x) = PN∗F ′(x)|N =
k∑

j=0
PN∗F (j+1)(0)|N(ρt)j(j!)−1 + O(ρk+1)

= (k!)−1PN∗F (k+1)(0)|N(ρt)k + O(ρk+1),
= (k!)−1ρkB̄(t) + O(ρk+1).

(3.1.7)

Since
B̄(t) := PN∗F (k+1)(x)|N tk. (3.1.8)

In the same way we obtain for the other entries of F ′

C(x) = (k!)−1ρkC̄(t) + O(ρk+1) = O(ρk)
D(x) = O(ρ), and E(x) = I + O(ρ).

(3.1.9)

For some r > 0, E(x) is invertible for all ρ < r and all t ∈ S ⊂ R
n,

with E−1(x) = I + O(ρ). Then the Jacobian F ′(x) is invertible if and only if the
reduced Jacobian G(x) defined by (3.1.5) is nonsingular. This claim follows from
(3.1.10) by reducing r if necessary to apply (3.1.9), we have

G(x) = B(x) + O(ρk+1) = ρk

k! B̄(t) + O(ρk+1).
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At the singularity x∗ = 0 we have the submatrices C(x∗) = D(x∗) = 0 and
E(x∗) = I. Hence

δ(x) = det(G(x)) det(E(x)),
= det

(
B(x) + O(ρk+1)

)
(I + O(ρ)) ,

=
(
(k!)−1ρk

)m
det B̄(t) + O(ρkm+1).

(3.1.10)

If we differentiate the first relation in (3.1.10) we obtain the gradient

∇δ(x) = ∇ det
(
B(x) −C(x) E(x)−1 D(x)

)
det E(x)+

(
B(x) − C(x) E(x)−1 D(x)

)
∇ det E(x).

This reduces at x∗ to

∇δ(x∗) = ∇ det(B(x∗)) det(E(x∗)) = ∇ det(B(x∗)). (3.1.11)

If
∇ det(B(x))|x=x∗ 	= 0, (3.1.12)

it follows from the implicit function theorem that the singular set δ−1(0) forms a
smooth hypersurface in some neighborhood of x∗.

Remark 3.1.2 We are mainly interested throughout this thesis in first order sin-
gularities with a one-dimensional nullspace i.e., m = 1 = k. Then there are vectors
v, u ∈ S spanning the nullspace N of F ′(x∗) and its transpose N∗ of F ′(x∗)� re-
spectively, which are both identical to the first Cartesian basis vector in R

n by the
normalization (3.1.1).

Remark 3.1.3 After the above normalization, we can consider det(B̄) as m × m
matrix depending on t ∈ S ∩ N ⊂ R

n.

Definition 3.1.4 (Regular Singularity)

The singularity x∗ is said to be regular if

det(B̄(t)) 	= 0 for some t ∈ S ∩ N ⊂ R
n. (3.1.13)

This reduces for the case in Remark 3.1.2 to

B̄ = ∇B(x∗)�v = ∇δ(x∗)�v = u�F ′′(x∗)vv 	= 0, (3.1.14)

In which case we call the singularity simple.

Remark 3.1.5 If det(B̄(t)) = 0 for all t ∈ S ⊂ R
n, so that the regularity condi-

tion (3.1.13) is violated, then the singularity x∗ is called irregular [GO83]. When
m = 1 = k then the null vector v given in (3.1.14) is orthogonal to ∇δ(x∗) and
thus tangential to the singular set δ−1(0).

Remark 3.1.6 The strong regularity condition that det(B̄(t)) 	= 0 for all t ∈
S ∩ N ⊂ R

n had been used by Reddien [Red78], Decker and Kelley [DK80a], which
is called in this case strong regularity.

Remark 3.1.7 When m = 1, then the condition det(B̄(t)) 	= 0 for all t ∈ S∩N ⊂
R

n is equivalent to the condition det(B̄(t)) 	= 0 for some t ∈ S ∩ N ⊂ R
n .
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Proposition 3.1.8 Strong regularity, i.e. det(B̄(t)) 	= 0 for all t ∈ S ∩ N ⊂
R

n implies that m is even or equal to one [GO81].

Proof: Consider an m × m matrix representation of B̄(t). This is a homogeneous
function of t. Now

det(B̄(t)) := (−1)m det B̄(−t), (3.1.15)
and t can be deformed continuously into −t while remaining on the surface of the
sphere ‖l‖ = ‖t‖ in N , provided m > 1. Thus it follows from (3.1.15) that there
exists an l ∈ N with ‖l‖ = ‖t‖, such that det(B̄(l)) = 0 provided m is odd > 1;
so that the assumption excludes all odd cases. �
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Figure 3.1: Singular set and set of good start points W = B∗ ∩ Cv for m = 1 = k

Now we are going to define an open starlike domain A of initial points.

Definition 3.1.9 Any open set A ⊂ R
n is called starlike domain with respect to

x∗ if
x ∈ A =⇒ {(1 − λ)x∗ + λx, 0 < λ < 1} ∈ A.

In other words A contains the open line segment between x∗ and any one of its
elements x ∈ A.

Particular examples of starlike domains are balls, cones and their intersections
called wedges, which were used by Reddien [Red78], [Red79] and Decker and Kelley
[DK80a] as domains of convergence.

Definition 3.1.10 A domain of convergence is any open set of initial points from
where Newton’s method converging to a particular root x∗.

Definition 3.1.11 The set of included directions is defined by

As = {t ∈ S : A ∩ {x∗ + ρ t}ρ>0 	= ∅}.

Definition 3.1.12 A vector t ∈ S ⊂ R
n is called an excluded direction for A if

x∗ + ρ t /∈ A for all ρ > 0.

Definition 3.1.13 A starlike domain A has density 1 at x∗ if the set of the ex-
cluded directions has measure zero in the unit sphere S ⊂ R

n.
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3.2 Convergence Results at Smooth Singularity

The behavior of Newton’s method when the Jacobian F ′(x) is singular at the so-
lution x∗ has been analysed extensively in the literature [Ral66],[Red78],[Red79],
[DK80a],[DK80b], [Gri80b], [GO81], [DK82],[DKK83],[GO83],[KS83],[EP84], [DK85],
[Gri85], [QS91], [Kan94].

Later on [KH99], [BKM03], [FP03], [SY05],[OW07], [LVZ06], [OW07], [OW09],
[HMT09], [BK08], [BKL10],[LZ10], [LZ12b] and [LZ12a].

Several sufficient conditions for its convergence have been formulated. Under cer-
tain regularity and smoothness assumptions, the existence of special regions (cones,
starlike regions) about the solution x∗ has been proven. The Jacobian F ′(x) is non-
singular at all points of these regions except at x∗. If the initial iterate lies in such
a region, then the Newton iterates will remain in this region and converge linearly
to x∗.

In general there are two difficulties when one wants to prove the convergence for
singular problems, First, there may be singular manifolds containing x∗ on which
F ′(x) is singular. Hence the starting points must be chosen from some region
about x∗ in which F ′(x) is invertible. Second, we must show that the subsequent
iterates remain in some region of invertibility like Wμ,θ, which will be given by
(3.2.4), [DKK83].

Rall in[Ral66] analysed the univariate case n = 1 in detail. He found that Newton’s
method will succeed and can be modified to retain quadratic convergence. He also
sketched some results for the higher dimensional case, which were partly wrong.
Cavanagh [CAV70] provides more details for Rall’s ideas, however, he does not
have the generality of [Red78], but he made the stringent assumption that F ′(x) is
nonsingular in a deleted neighborhood of the root. Reddien [Red78] gave sufficient
conditions for the convergence of the Newton iteration for the particular case in
which F ′(x) has a smooth singular manifold of codimension one in a neighborhood
of x∗.

The extension of these results to the case in which the null space of F ′(x∗) has
dimension m > 1 has been considered by Decker and Kelley [DK80a], and Reddien
[Red79]. Griewank and Osborne [GO81] succeeded in weakening the conditions
under which the main results in [Red78] are derived. The original conditions
cannot be satisfied when the dimension of the null space is an odd integer m > 1.
Their results also represent a slight generalization over those in [Red79] (they are
valid if some components of F (x) are linear in x), and the derivation is significantly
more direct.

Remark 3.2.1 The regularity condition given in (3.1.13) are typically needed to
prove convergence of Newton’s methods to singular solutions, such conditions con-
cern the behavior of certain directional derivatives of F ′ on the null spaces N and
N∗.

For a first order singularity k = 1, Griewank assumed that F ′′(x) is Lipschitz
continuous near the regular singularity solution x∗ and satisfies the regularity
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condition given in (3.1.13).

Griewank’s convergence analysis shows that the first Newton step takes the initial
point x0 from the original starlike domain A into a simpler starlike domain W
defined by [(26) in [OW09], a wedge around a vector t in the null space N . The
domain W is similar to the domains of convergence Wμ,θ found in earlier works
[Red78], [DK80a]. Linear convergence is then proved inside W . For F twice
continuously differentiable, the convergence domain A is much larger than W and
the set of excluded directions from A has zero measure.

Griewank [Gri80b] constructed an open starlike domain of initial points A, from
which Newton’s method converges linearly to x∗. He provides in [Gri85] a com-
prehensive survey of the singularity results.

One can find in all those above studies that the quadratic convergence of the
Newton iterates is degraded to linear.

Griewank in [Gri85] combined various results from [DK80a],[DK80b],[Gri80b] and
[Gri80a] to obtain the following convergence theorem of Newton’s method at reg-
ular singularities.

Theorem 3.2.2 Let F ∈ Ck+1(Rn) have a regular singularity of order k > 0 at
x∗ ∈ F −1(0).Then there exists a starlike domain A with density 1 at x∗ such that
any Newton sequence

xj = x∗ + ρj tj = xj−1 − F ′(xj−1)−1F (xj−1), j = 1, 2, . . . , (3.2.1)

generated from some initial point x0 ∈ A converges to x∗ and satisfies:

(i) ρj+1
ρj

= k
k+1 + O(ρj),

(ii) t = lim
j→∞

tj ∈ N ∩ As.

(iii)

θj ≡ min{cos−1(s�tj : s ∈ N ∩ S)} :=
⎧⎨
⎩O(ρ2

j) if k = 1
O(ρj) otherwise

(3.2.2)

(iv) F (xj)
ρ2

j
= 1

2k2 ∇2F (x∗)tt + O(ρj).

(v) lim
j→∞

σj

σj+1
= ( k

k+1)−k ∈ [2, e].

Where

σ(t) :=
⎧⎨
⎩0 if B̄(t) is singular

min(1, ‖B̄(t)−1‖−1) otherwise
(3.2.3)

denotes the smallest singular value of F ′(xj) and O(ρi
j) may be any sequence that

is majorized by a multiple of the sequence {ρi
j}.

Remark 3.2.3 From the regular singularity Theorem 3.2.2 we conclude the fol-
lowing.

• Linear convergence (i) is almost certain whenever the initial point x0 is suf-
ficiently close to a regular singularity x∗.
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• According to (ii) the iterates approach x∗ along a regular direction t ∈ N∩As.

• The angle θj between the discrepancies xj − x∗ and the nullspace N at x∗
tends rapidly to zero.

• The last assertion (v) shows that the condition number of the Jacobian es-
sentially doubles at each step. However, at least in the simple case, it appears
that this gradual deterioration of the conditioning does not prevent Newton’s
method form attaining the maximal solution accuracy that one can reasonably
expect.

Remark 3.2.4 As a consequence of (iv) and (i), the Newton iteration reduces
eventually the residual F (xj) by the factor ( k

k+1)2 at each step. This feature allows
one to monitor the progress towards a singularity and to estimate its order.

To see that, let look at the following simple example for k = 1:

F (x) = x2 =⇒ xj+1 = 1
2xj =⇒ ‖F (xj+1)‖ = 1

4‖F (xj)‖

In [Gri80a] Griewank showed, that the chord method and other stabilized Newton’s
methods xj+1 = xj −H−1

j F (xj) with sup ‖H−1
j ‖ < ∞ can only converge sublinearly

in that
lim

j→∞
‖x̂j‖

1
j = 1.

Some of results in the above literature apply also to mappings between Banach or
Hilbert spaces. In this thesis we will only consider the finite dimensional case.

Now we want to discuss some other convergence results of Newton’s method at
singular solutions due to [Red78], [Red79], [DK80a], [Gri80b], [Gri80a], [GO81],
[Gri85]. Reddien in [Red78] indicates that the convergence region around x∗ must
have quite a special structure.

The singular set δ−1(0) of F ′(x) near x∗ may range from a single point to the union
of several codimension one smooth manifold through x∗. Hence the nonsingularity
of F ′ can be expected only in carefully selected regions about x∗. An added diffi-
culty is that the Newton iterates must remain in the chosen region of invertibility
of F ′.

The following starlike set Wμ,θ satisfies both above requirements.

Definition 3.2.5 For μ, θ > 0 and x̂ = x − x∗, we define the region of acceptable
initial iterates for Newton’s method Wμ,θ by

Wμ,θ = {x ∈ R
n : 0 < ‖x̂‖ ≤ μ, ‖PN⊥(x̂)‖ ≤ θ ‖PN(x̂)‖}, (3.2.4)

which is a wedge rooted at x∗ around the null space N of F ′(x).

Remark 3.2.6 We note that the wedge Wμ,θ is the intersection of a ball and a
cone. It is only convex if m = 1.

Reddien in [Red79] gave two generalizations of the results in [Red78], he put
conditions for convergence when the dimension of the nullspace is greater than
one and when the solution is of higher order. He had defined the subset wedge
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Wμ,θ,ψ, for ψ, μ, θ > 0 of Wμ,θ given by (3.2.4) and for L is a one dimensional
subspace of N

Wμ,θ,ψ = {x ∈ R
n : x ∈ Wμ,θ, ‖(I − PL)PN(x̂)‖ ≤ ψ ‖PN(x̂)‖} . (3.2.5)

Where PL is any bounded projection onto the subspace L of N . For the case m > 1
he uses that dim L = 1 and let Newton step start inside the new smaller wedge
Wμ,θ,ψ.

Decker and Kelley in [DK80a], Griewank and Osborne [GO81] had extended the
theorem of Reddien [Red78] to the case when m < ∞, this theorem gives sufficient
conditions for convergence of Newton iterates for singular problems. It has been
extended by Decker and Kelley in [DK80a].

We deduced from the above analysis that Newton’s method converges Q-linearly if
F ′(x∗) is singular. This situation is analysed and acceleration techniques are sug-
gested by many authors, including Reddien [Red78], Decker and Kelley [DK80a],
[DK80b], [DK82], Decker, Keller and Kelley [DKK83], Kelley and Suresh [KS83],
Griewank and Osborne [GO83], Griewank [Gri85].

In summary, their papers show that when the Jacobian at the solution has a null
space and the order of singularity is k with a certain regularity condition being
satisfied, then from good starting points in W , Newton’s method is locally Q-
linearly convergent with asymptotic reducing ratio k

k+1 . That means the Newton
step is too short. For acceleration we need to extend the Newton’s step by a step
multiplier larger than k ideally converging to k + 1. While Rall already noted that
in the univariate case n = 1 = m Newton’s method can be accelerated even when
the order k > 1, this seems rather difficult in the multivariate case. Hence, we
consider only first order singularities with k = 1 from now on.

So far we have assumed that F is (k + 1)th times continuously differentiable.
When F is the nonlinear equation formulation of a nonlinear complementarity
problem according to the approach of Evtushenko [EP84], then lack of strict com-
plementarity leads to F having a first order singularity without F ′ being Fréchet
differentiable. This situation was carefully analysed by Wright et al. [OW09], who
showed that F ′(x) is still strongly semismooth as defined below.

By the standard Assumptions 3.0.18, we note that F ′ is Lipschitz continuous but
singular, so that the celebrated results of Qi and Sun [QS91] can and need not
be invoked. Instead we will see that a weakened version of Griewank starlike
convergence theorem applies.

The main difference in the results are that the domain of convergence A need
no longer have density 1, i.e., there may be full-dimensional cones of excluded
directions.

We now list various definitions relating to the smoothness of a function.

Definition 3.2.7 ( Directionally Differentiable)

Let G : Ω ⊂ R
n −→ R

ñ with Ω open, x ∈ Ω and v ∈ R
n. If the limit

lim
t↓0

G(x + tv) − G(x)
t
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exists in R
ñ, then G has a directional derivative at x along v, we denote this limit

by G′(x; v). G is directionally differentiable at x if G′(x; v) exists for every v 	= 0.

Definition 3.2.8 (B-differentiable)

G is B(ouligand)-differentiable at x ∈ Ω if G is Lipschitz continuous in a neigh-
borhood of x and directionally differentiable at x.

Definition 3.2.9 ( Strongly Semismooth)

Let G : Ω ⊂ R
n −→ R

ñ with Ω open, G be locally Lipschitz continuous on Ω. G is
strongly semismooth at x̄ ∈ Ω if G is directionally differentiable near x̄ and

lim sup
x̄ 
=x→x̄

‖G′(x; x − x̄) − G′(x̄; x − x̄)‖
‖x − x̄‖ < ∞.

Further, G is strongly semismooth on Ω if G is strongly semismooth at every x̄ ∈ Ω.

Proposition 3.2.10 If F ′(x) is strongly semismooth at x, then it is B-differentiable
at x. Further, if F ′(x) is B-differentiable at x, then F ′′(x; .) is Lipschitz continuous
[QS91]. Hence, for F ′ strongly semismooth at x∗, there is some Lx∗ such that

‖(F ′)′(x∗; h1) − (F ′)′(x∗; h2)‖ ≤ Lx∗‖h1 − h2‖. (3.2.6)

Proposition 3.2.11 If F ′(x) is strongly semismooth at x∗ and ‖x − x∗‖ is suf-
ficiently small, we have the following crucial estimate from equation (7.4.5) of
[FP03]

F ′(x) = F ′(x∗) + (F ′)′(x∗; x − x∗) + O(‖x − x∗‖2). (3.2.7)

Now Wright et al. weaken the smoothness assumptions of Griewank by replacing
the second derivative of F by a directional derivative of F ′. The assumptions
follow:

Assumptions 3.2.12 ( Assumptions of Wright et al.,[OW09])

For F : Rn −→ R
n, let x∗ be a singular solution, satisfying the regularity condition

(3.1.13) with B̄(t) = B(x∗; t) = PN∗F ′′(x∗; d)|N the directional derivative for t ∈
S ∩ N ⊂ R

n with k = 1 and m ≥ 1 and F ′(x) is strongly semismooth at x∗ but
F /∈ C2(Rn) i.e., F ′′ need not exist.

Wright et al. show that Griewank’s convergence results [Gri80b], [Gri85] hold
under this assumptions.

Theorem 3.2.13 Suppose Assumptions 3.2.12 hold. Then there exists a starlike
domain A about x∗ with positive density such that, if Newton’s method for F (x)
is initialized at any x0 ∈ A, the iterates converge linearly to x with asymptotic
rate 1

2 . If the problem is converted to standard form (3.1.1) and x0 = ρ0t0 , where
ρ0 = ‖x0‖ > 0 and t0 ∈ S, then the iterates converge inside a cone whose axis
depends on t0.
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Proof: See [OW07]. �
Remark 3.2.14 Wright et al. use the properties (3.2.6) and (3.2.7) to show that
F ′ is smooth enough for the steps in the proof to hold. Finally, they make an in-
significant change to a constant required by the proof due to a loss of symmetry in
A. (Symmetry is lost in moving from derivatives to directional derivatives because
directional derivatives are positively but not negatively homogeneous [OW09]). The
proof in [Gri80b] also considers regularities larger than 2, for which higher deriva-
tives are required. Here we are only interested in first order regularity.
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Chapter 4

Acceleration of Newton’s Method
at Singularities

When the sequence {xj}j≥0 produced by a Newton iterates converge to x∗, then
the discrepancy xj − x∗ lies mainly in the nullspace N of F ′(x∗). Acceleration
schemes typically attempt to stay within a cone around the nullspace N while
lengthening the Newton steps.

We will present some of those acceleration techniques proposed in the early 1980s.

Decker and Kelley [DK82] prove superlinear convergence for a scheme in which
every second Newton step is essentially doubled in length along the subspace N .

Decker, Keller, and Kelley [DKK83] prove superlinear convergence when every
third step is overrelaxeded, provided the third derivative of F at x∗ satisfies a
coercivity condition on the nullspace N of F ′(x∗).

Kelley and Suresh [KS83] require the third derivative of F at x∗ bounded over the
truncated cone about the nullspace N of F ′(x∗). Overrelaxing every other step by
a factor approaching 2 results in superlinear convergence.

In summary, their techniques require regularity condition (3.1.13) at x∗ . All those
schemes require starting points whose error remain in a wedge around the subspace
N , and all assume three times differentiability of F .

In contrast the acceleration technique due to Wright et al. [OW09] does not require
the starting point x0 to be in a cone about the subspace N , and requires only strong
semismoothness of F ′ at x∗.

We will focus in this section on two acceleration schemes, that are closely related
to Newton’s method, since all later Newton steps cover roughly half of the distance
to the root x∗. Firstly we discuss two point method [OW09], then a three-point
method [Gri80a].The notations of last chapter are also used here.

Overrelaxation is known to improve the rate of convergence of Newton’s method
to a singular solution [Gri85]. The overrelaxed iterate is with ηj

xj+1 = xj + ηjdj, F ′(xj)dj = −F (xj), j = 0, 1, . . . . (4.0.1)
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Where Newton direction dj is defined in (4.0.1). On every other step the multiplier
ηj is equal to 2 for the case of Kelley and Decker [DK82], and ηj ∈ [1, 2) for the
case considered by Wright et al. [OW09].

4.1 Two-Point Method

In first part of this section we study the two point method considered by Kelley
and Decker [DK82]. They give sufficient conditions such that the modified New-
ton’s method produces the subsequence {x2j}j≥0 of the sequence {xj}j≥0, which
converges quadratically to the root x∗ if F ′(x∗) is singular.

Their main results can be presented in the followed theorem

Theorem 4.1.1 With the same notations as in the Theorem 3.2.2 assume that:

1. m ≤ 2.

2. B̄(t) is nonsingular for all t ∈ S ∩ N .

3. There is c0 > 0 so that for all v ∈ N, ‖G′′′(x∗)vvv‖ ≥ c0‖v‖3.

Then, for μ and θ sufficiently small, and x0 ∈ Wμ,θ the sequence {xj} given by

x2j+1 = x2j + d2j, j ≥ 0, ,

x2j+2 = x2j+1 + (I + PN)d2j+1,
(4.1.1)

stays in Wμ,θ and converges to x∗. Moreover, there is an M > 0 so that for j ≥ 0

‖x̂2j+2‖ ≤ M‖x̂2j‖2.

Proof: See [DK82]. �

This result is theoretically very interesting, but not really implementable since the
nullspace N at x∗ and thus the projection PN onto it are generally not known.
Therefore the overrelaxed step must be held back a bit, i.e., the step multipliers
ηj must be less than 2.

If every step is overrelaxed, we can show that in general the condition η < 4
3 must

be satisfied to ensure convergence and, as a result, the rate of linear convergence is
no faster than 1

3 . On special problem all steps may be overrelaxed by some η < 4
3

as we observed in Table 6.11. Now, we focus on a technique in which overrelaxation
occurs only on every second step; that is, standard Newton steps are interspersed
with steps of the form (4.0.1) for some fixed, η ∈ (1, 2]. Broadly speaking, each
pure Newton step refocuses the iterates along the null space. Kelley and Suresh
prove superlinear convergence for this method when η is systematically increased
to 2 as the iterates converge. However, their proof requires the third derivative of
F evaluated at x∗ to satisfy a coercivity condition and assumes a starting point
x0 that lies near a regular direction in the null space of F ′(x∗).

We state here the main result of Wright et al.[OW09].
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The major assumptions are that regularity condition (3.1.13) holds at x∗ and that
x0 ∈ Rη, where Rη is a starlike domain whose excluded directions are identical to
those of A defined in Section 4 in [OW07] but whose rays may be shorter. The
lengthy proof appears in full in [[OW07], Sect. 5].

Theorem 4.1.2 Suppose Assumption 3.2.12 holds and let η ∈ [1, 2). There exists
a starlike domain Rη ⊆ R about x∗ such that if x0 ∈ Rη and with iterates defined
by

x2j+1 = x2j − F ′(x2j)−1F (x2j),
x2j+2 = x2j+1 − ηF ′(x2j+1)−1F (x2j+1),

(4.1.2)

for j = 0, 1, 2, . . . then the iterates {xj} converge linearly to x∗ and

lim
j→∞

‖x2j+2 − x∗‖
‖x2j − x∗‖ = 1

2(1 − η

2).

Proof: See [OW07]. �
As an immediate consequence we see that if we gradually enlarge η towards 2 at
just the right rate superlinear convergence can be achieved theoretically.

Corollary 4.1.3 Under the assumptions of Theorem 4.1.2, the multiplier η = ηj

can gradually be pushed towards 2, so that

lim
j→∞

‖x2j+2 − x∗‖
‖x2j − x∗‖ = 0,

i.e., we have two-step superlinear convergence.

The two point method with doubling every other step is not feasible in the multi-
variate case because x1

j+1 = 2xj+1 −xj = xj −F ′(xj)−1F (xj) even though closer to
x∗, may be much less suitable as a starting point for the next iteration. Neverthe-
less under certain conditions one can restore at least R-superlinear convergence
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Now we study a technique in which overrelaxation occurs only on every third step,
that is three-point method [Gri80a].

4.2 Three-Point Method

Now we present the idea of three point method, we start with the full step Newton
iteration and then we double every third iteration. That produces a new procedure,
which accelerates Newton iteration, its analysis and proof of convergence is due
to Griewank [Gri80a]. We want to introduce the behavior of this method in this
section.

The iterations of the method can be written as

yj = xj − F ′(xj)−1F (xj),
zj = yj − F ′(yj)−1F (yj), j = 0, 1, . . . ,

xj+1 = zj − 2F ′(zj)−1F (zj),
(4.2.1)

Theorem 4.2.1 (Second Order Three-Point Method) Let F ∈ C3,1(Rn,Rn)
have a strongly regular first order singularity at x∗. If

PN∗F ′′′(x)t3 	= 0, ∀ t ∈ N ∩ S,

then there exists a constant ρ̄ and θ̂ such that the three-point iteration xj given by
(4.2.1) converges Q-quadratically to x∗ with

θ( xj+1 − x∗
‖xj+1 − x∗‖) = O(‖xj − x∗‖),

from all initial points x0in the starlike domain

V̂ ≡ {x∗ + ρt : t ∈ S, θ(t) < θ̂, 0 < ρ < ρ̄}.

Proof: See [Gri80a]. �
The two multi-point schemes obtain the same results as Newton’s method in con-
siderably fewer steps and produce some iterates that are much closer to the so-
lution. However, these gains can only be realized if it is assumed or known that
the Jacobian at the sought after solution is singular. If the Jacobian F ′(x∗) turns
out to be only nearly singular, then the 2− and 3−step overrelaxation methods
converge with an R−order of

√
2 and 3

√
4 respectively [Gri85].

The three point method like the two point method has some theoretical appeal
but both must eventually break down due to rounding errors. In practice both
methods reach about the same solution accuracy as Newton’s method.

In summary, the two and three point methods require deciding that the problem
is singular, while our line-search to be discussed in the next section detects that
automatically.
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Chapter 5

Parabolic Range Space
Interpolation

We consider a nonlinear equation F (x) = 0, where F : Rn −→ R
n, and our aim is

to compute efficiently a solution x∗. For that we intend to apply Newton’s method
with a line-search procedure based on parabolic range space interpolation.

5.1 Line-search

The Newton’s method can be made more powerful if we use line-search techniques.
Before we describe these techniques, we need to define a merit function.

5.1.1 Merit Functions

A merit function is a scalar-valued function of a variable x which indicates whether
a new iterate is better or worse than the current one, in the sense of making progress
toward a root of F . In nonlinear equation solving, the merit function is usually
obtained by combining the n components of the vector F in some way. The most
widely used merit function is the sum of squares, defined by

f(x) = 1
2‖F (x)‖2.

Any root x∗ of F obviously has f(x∗) = 0. Since f(x) ≥ 0 for all x, each root if
F is a global minimizer of f . However, local minimizers of f are not roots of the
gradient F if f is strictly positive at the point in question. The derivative of f is
given by

∇f(x) = g(x) = F ′(x)�F (x).

Definition 5.1.1 The vector d is a descent direction with respect to the function
f(x) at the point x if it satisfies the condition

g(x)�d < 0.
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5.1.2 Line-search Strategy

Each iteration of a descent method computes a search direction dj and then decides
how far to move along that direction. The iteration is given by

xj+1 = xj + ηjdj, j = 1, 2, 3, . . . . (5.1.1)

where the positive scalar ηj is called the step length. The success of a descent
method depends on effective choices of both the direction dj and the step length
ηj. Most line-search algorithms require dj to be a descent direction, because this
property guarantees that the function f can be reduced along this direction.

In our case, the direction dj is Newton’s direction. This direction is defined and
descent, whenever det(F ′(xj)) 	= 0 since

g�
j dj = f ′�

j dj = (F ′�
j Fj)�(−Fj

−1Fj) = −‖Fj‖2 < 0, dj = −F ′(xj)−1F (xj).
(5.1.2)

Definition 5.1.2 A line-search which chooses η∗ to minimize f(xj + ηjdj) is said
to be perfect or exact.

Definition 5.1.3 A weak or inexact line-search is one which accepts any value of
ηj such that f(xj + ηjdj) − f(xj) is sufficiently negative.

A perfect line-search gives the greatest possible reduction in f along the search
direction.

5.1.3 Effective Line-search

Definition 5.1.4 A line-search is called effective in a level set

D0 = {x ∈ R
n : f(x) ≤ f(x0)} (5.1.3)

for a Lipschitz continuously differentiable function f if it ensures the inequality

f(xj+1) − f(xj) ≤ −δ‖g(xj)‖2 cos2 φj, (5.1.4)

for xj, xj+1 ∈ D0, and some coefficient δ > 0 that does not depend on j. Here φj

represents the angle, between the search direction d(xj) and −g(xj), i.e.

cos φj = −g(xj)�dj

‖g(xj)‖‖dj‖ with 0 ≤ |φj| ≤ π

2 . (5.1.5)

Now we introduce the so-called Not-too-small and Not-too-large conditions, which
guarantee the effectiveness of many line-search algorithms. Before that we define
the reduction ratio:

Definition 5.1.5 The reduction ratio q : R → R is given by

qj(η) := f(xj + ηdj) − f(xj)
ηg(xj)�dj

= f(xj) − f(xj + ηdj)
η|g(xj)�dj| .
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It compares the actual change of f in the numerator with the expected reduction
based on the linear Taylor expansion of f at xj in direction dj for step size η in
the denominator.

Definition 5.1.6 Not-too-large condition on ηj > 0

(a) Upper Goldstein test:
qj(ηj) ≥ σ ∈ (0, 1

2),

i.e., the actual reduction f(xj)−f(xj +ηjdj) should be at least σ times the expected
linearized reduction.

Definition 5.1.7 Not-too-small conditions

(b0) Lower Goldstein test: qj(ηj) ≤ (1 − σ).

(b1) Lower Armijo test: qj(η̂j) ≤ σ for some η̂j ≤ βηj with constant β > 1, i.e.,
condition (a) fails for η̂j that is not very much bigger than ηj.

(b2) Weak Wolfe condition:

g(xj + ηjdj)�dj ≥ γg(xj)�dj with γ ∈ (0, 1). (5.1.6)

(b3) Strong Wolfe condition: |g(xj + ηjdj)�dj| ≤ γ|g(xj)�dj| with γ ∈ (0, 1).

(γ ≈ 0 forces almost exact line-searches).

Proposition 5.1.8 ([Noc06]) Every line-search that implements a combination
of the Not-too-large condition (a) with any one of the Not-too-small conditions
(bj), j = 0, 1, 2, 3 is effective in the sense of Definition 5.1.4.

5.1.4 Zoutendijk Condition

Definition 5.1.9 (Zoutendijk Condition) The divergence property
∞∑

j=0
cos2 φj = ∞, (5.1.7)

is called Zoutendijk condition.

The Zoutendijk condition ensures that the angle between dj and −g(xj) tends
sufficiently slowly to the angle π

2 or is bounded away from it.

Theorem 5.1.10 ([Noc06]) Suppose that the descent method (5.1.1) is applied
to the function f with starting point x0 ∈ D0. Furthermore, assume that the search
directions dj are descent directions and the step multipliers ηj are computed by an
effective line-search. Then the property

∞∑
j=0

cos2 φj‖g(xj)‖2 < ∞,

holds.
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Figure 5.1: Line-search Conditions

Corollary 5.1.11 ([Noc06]) Consider an algorithm to minimize the function f ,
in which there holds at each iteration the inequality (5.1.4). Then if the search
directions are selected such that the Zoutendijk condition (5.1.7) holds, either the
objective function tends to −∞, or

inf ‖g(xj)‖ = 0, (5.1.8)

which means that there is at least one stationary cluster point.

Proof: If the decreasing sequence {f(xj)} is bounded from below by f ∗, then
from (5.1.4) we have

δ cos2 φj‖g(xj)‖2 ≤ f(xj) − f(xj+1).

By summing the both sides of this inequality from j to ∞, where the coefficient
δ > 0 does not depend on j yields

+∞∑
j=0

cos2 φj‖g(xj)‖2 ≤ 1
δ

+∞∑
j=0

[f(xj) − f(xj+1)] ≤ 1
δ

[f(x1) − f ∗] < +∞.

As a results, if |gj| were bounded from below, by γ > 0, then we would have

γ2
∞∑

j=0
cos2 φj < +∞,
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which is a contradiction to the Zoutendijk condition (5.1.7).

�
Corollary 5.1.12 If the search directions dj are chosen such that | cos(φj)| is
bounded away from zero we get

g(xj) → 0,

which means that all cluster points are stationary.

In other words, we can be sure that the gradient norms ‖g(xj)‖ converge to zero,
provided that the search directions dj are never too close to orthogonality with
the gradient.

The previous corollary applies to Newton direction provided F ′ stays nonsingular
since

‖dj‖ = ‖F ′
j
−1

Fj‖ ≤ ‖F ′
j
−1‖‖Fj‖ =⇒ 1

‖dj‖ ≥ 1
‖F ′

j
−1‖‖Fj‖

.

Denoting by κ(A) = ‖A‖‖A−1‖ the condition number of a square matrix A we
obtain

cos φj = ‖F (xj)‖2

‖g(xj)‖‖dj‖ ≥ 1
‖F ′(xj)−1‖‖F ′(xj)‖

= 1
κ(F ′

j)
> 0.

5.1.5 Backtracking Line-search

When a search direction dj is available, we would like to determine the step length
ηj that is effective. The following backtracking line-search ensures that the condi-
tions (a) and b1 are satisfied.

Backtracking Line-search Algorithm

Initialize η0 = 1.

Given σ ∈ (0, 1
2), r ∈ (0, 1), 0 < l < u < 1,

1. While q(η) ≥ σ, set η = η
r

with l ≤ r ≤ u < 1.

2. While q(η) ≤ σ, set η = ηr with l ≤ r ≤ u < 1.

Termination of Backtracking Line-search

Lemma 5.1.13 Backtracking line-search terminates with η satisfying (a) and (b1).

Proof: If the assertion (1) was executed infinitely often, we would have f(x+ηd) ≤
f(x) with η → ∞, which contradicts the assumed compactness of the level set.
If the assertion (2) was executed infinitely often, we would have η → 0 since it
is reduced by r ≤ u < 1 at each iteration. That would imply q(η) → 1, which
contradicts the test q(η) ≤ σ being violated infinitely often. �
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In the next sub-section we are going to provide a suitable step multiplier η by a
new line-search strategy based on parabolic range space interpolation.

5.2 Parabolic Range Space Interpolation

We present in this section a new type of line-search, which is based on the range
space interpolation of Wedin, Lindstroem [LW84] to improve Newton’s method.
We prove that this line-search is efficient in the nonsingular case. Our aim is to
apply this modified Newton’s method for singular problems, since we found in
numerical experiments that it gives better results for singular problems than the
unmodified Newton method. Furthermore it is stable under small perturbations
of singular problems. This line-search procedure does not require the computation
or even the existence of any second derivatives of the original problem.

5.2.1 The Idea of the Method

For a given descent direction d at the point x, we aim to find the multiplier η
which enables us to reduce the function f(x) = 1

2‖F (x)‖2 in the direction d.

In our line-search we approximate the function

F̃ (η) ≡ F (x + ηd), (5.2.1)

by a Hermite polynomial P (η)

P (η) = F̃ (η),

and compute the new trial multiplier

η∗ = arg min 1
2‖P (η)‖2

2.

We always start with a current tentative step multiplier ηc, which enable us to go
from a base point x to a current one x+ηcd, then perform a parabolic interpolation
P (η)

P (η) = a0 + a1η + a2η2 = F̃ (η), ai ∈ R
n, i = 0, 1, 2. (5.2.2)

It is based on the initial descent and the two function values of F at x and x+ηcd.
Then we compute a minimizer η∗ of the function

ψ(η) = 1
2‖P (η)‖2 = 1

2‖F̃ (η)‖2 ≈ 1
2‖F (x + ηd)‖2, (5.2.3)

so that ψ′(η∗) = 0. We accept ηc if it satisfies the line-search condition

2
3 ≤ η∗

ηc

≤ 9
8 . (5.2.4)
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5.2.2 Computation of the Coefficients

The vector coefficients ai, i = 0, 1, 2, of the parabola (5.2.2) are computed as
follows.

The first coefficient a0 can be obtained by substituting η = 0 in the relation (5.2.2)

a0 = P (0) = F̃ (0) = F (x). (5.2.5)

Evaluating the tangent P ′(η) at η = 0 yields for the Newton direction d that

a1 = P ′(0) = F̃ ′(0) ≡ F ′(x)�d = −F (x) (5.2.6)

and, thus, we have
a1 = −a0 = −F (x).

Using a0 = F (x) and a1 = −a0, one can find the last coefficient a2 by requiring
F̃ (η) = P (η) at η = ηc, i.e.

F̃ (ηc) = P (ηc) = a0 + a1ηc + a2η2
c = F (x + ηcd),

which yields
a2 = 1

η2
c

[F (x + ηcd) − (1 − ηc)F (x)] . (5.2.7)

Hence, the polynomial P (η) (5.2.2) becomes

P (η) = η2

η2
c

[F (x + ηcd) − F (x)(1 − ηc)] + F (x)(1 − η), (5.2.8)

with variable coefficient a2 = a2(ηc) depending on ηc. The latter coefficient can be
shown to be bounded.

Lemma 5.2.1 Provided x + ηcd belongs to the compact level set, the coefficient
a2 given by (5.2.7) of the parabola P (η) = a2η2 − a0η + a0 is bounded above by
‖a2‖ ≤ L

2 ‖d‖2.

Proof: We know from (5.2.7) that a2 is given by

η2
c a2 = F (x + ηcd) − F (x)(1 − ηc),

by taking the norm of a2, and use the expression of Taylor’s Theorem we get the
following

‖η2
c a2‖ = ‖F (x + ηcd) − F (x)(1 − ηc)‖

=
∥∥∥∥F (x) +

∫ 1

0
F ′(x + tηcd) ηc d dt − F (x)(1 − ηc)

∥∥∥∥ , For t ∈ (0, 1)

=
∥∥∥∥F (x) +

∫ 1

0
[F ′(x + tηcd) − F ′(x)]d ηc dt + F ′(x)dηc − F (x)(1 − ηc)

∥∥∥∥
≤

∫ 1

0
‖[F ′(x + tηcd) − F ′(x)]d ηc‖dt, where F ′(x)d = −F.

≤ L
2 η2

c ‖d‖2,
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yields that the coefficient a2 is bounded

‖a2‖ ≤ L
2 ‖d‖2.

�
We have from (5.2.3) that

ψ(η) = 1
2‖P (η)‖2

now we substitute a1 = −a0 and expanding this function yields

ψ(η) = 1
2‖a0‖2 − ‖a0‖2η + 1

2(‖a0‖2 + 2a�
0 a2)η2 − a�

0 a2η3 + 1
2‖a2‖2η4. (5.2.9)

The derivative of ψ(η) is

ψ′(η) = −‖a0‖2 + (‖a0‖2 + 2a�
0 a2)η − 3a�

0 a2η2 + 2‖a2‖2η3. (5.2.10)

Proposition 5.2.2 The cubic function ψ′(η) has a smallest root η∗ inside the
interval (0, 2] and this root is a minimizer of ψ. Moreover, η∗ = η∗(ηc) is a
continuous function from ηc ∈ [0, ∞) to (0, 2] with limηc→∞ η∗(ηc) = 0.

Proof: The polynomial ψ(η) has at η = 0 a positive value 1
2‖a0‖2 and a negative

slope
ψ′(0) = −‖a0‖2 ≤ 0.

Since ψ(η) tends to infinity for η → 0, there must exist a first local minimizer
η∗ > 0, which is the smallest positive root of ψ′(η) = 0. Moreover, we see that the
derivative is nonnegative at η = 2

ψ′(2) = ‖a0‖2 − 8a�
0 a2 + 16‖a2‖2 = (‖a0‖ − 4‖a2‖)2 ≥ 0,

which means that there exists η∗ ∈ (0, 2] such that ψ′(η∗) = 0.

�
Rather than computing η∗ for given ψ(η) by Cardano’s formula we approximate it
with full working accuracy by a stabilized Newton’s method.

From now on we consider for fixed F, x and Newton direction d the root η∗(ηc) as
a continuous function of ηc.

If ηc is a fixed point such that η∗(ηc) = ηc then the parabolic interpolation suggests
that the current point x + ηcd achieves the optimal reduction possible. Therefore
we can terminate the line-search whenever the ratio η∗

ηc
is sufficiently close to 1.

After some experimentation, we settled for the line-search condition (5.2.4). As
we will see this condition implies effectiveness in the sense of Definition 5.1.4 on
nonsingular regions. On the other hand it favors multipliers ηc that are bigger
than 1 and may even come close to 2.

A typical situation is shown in Figure 5.2. We see that the curve η∗(ηc) must
intersect the diagonal η∗(ηc) = ηc at least once due to continuity. Hence the line-
search condition (5.2.4) will be satisfied for at least one interval of ηc values. To
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Figure 5.2: Upper and lower bound of PRSI Line-search

compute such acceptable values of ηc we use the following line-search algorithm.
We assume the point x and the Newton direction d are given and denote the
quadratic residual ψ(η) formed at ηc by ψc(η).

5.2.3 PRSI Line-search Algorithm

Initialize:

(I1) η1
c = 1, η1

∗ = arg min ψc(η)

(I2) if (2
3 < η1

∗ < 4
3) then accept ηc = 1 and exit.

(I3) ηc = η1
∗, η∗ = arg min ψc(η)

(I4) η�
c = 10−5, η�

∗ = η1
∗ + 1 − η∗−1

η1∗−1 , η�
∗ = max{10−5, η�

∗}
(I5) ηr

c = 2, ηr
∗ = η1

∗ + 1 − η∗−1
η1∗−1 , ηr

∗ = min{2, ηr
∗}

Loop:

(L1) If 8
9 ≤ η∗

ηc
≤ 9

8 then accept ηc and exit.

(L2) If (η∗ > ηc)

• then η�
c = ηc, η�

∗ = η∗ and ηr
∗ = ηr∗+ηr

c

2 .

• else ηr
c = ηc, ηr

∗ = η∗ and η�
∗ = η�∗+η�

c

2 .
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Figure 5.3: PRSI line-search procedure

(L3) Set ηc = η�
∗ηr

c − ηr
∗η�

c

(ηr
c − ηr∗) + (η�∗ − η�

c)
.

(L4) Compute η∗ = arg min ψc(η) and go to (L1).

The line-search must terminate with a suitable step size ηc, since ηr
∗ − η�

∗ is mono-
tonically reduced by a certain fraction.

The line-search condition is presented graphically in Figure 5.3.

Starting from an initial guess η0 = 1, the method generates a sequence of step
multipliers { ηj}∞

j=0 with the corresponding residuals F (x + ηjd) and interpolants
Pj(ηj) in the range space at a fixed point x and direction d. The line-search
procedure is illustrated in Figure 5.3.

In the first step, the function F (x + ηd) is approximated by the parabola P1(η),
which interpolates F (x) and F (x + η0d) = F (x + d). Since the minimizer η∗ = η1
of ‖P1(η)‖ does not sufficiently coincide with a minimizer of ‖F (x + ηd)‖, i.e. the
line-search condition 2

3 ≤ η1
ηc

≤ 9
8 failed, one can construct a better approximation

P2(η), which now intersects F (x) and F (x + η1d). The process is repeated until
the convergence criterion (5.2.4) is satisfied, as for example in the third step.
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5.3 Properties of Line-search in Nonsingular Case

The main goal is, to show that our line-search is effective, and to prove thus it can
produce a reduction of ‖F‖ in the case of F ′ is invertible in a compact level set
containing x∗. to this end, we need to prove some lemmas about the behavior of
the derivative ψ′(η) of the function ψ(η) defined in (5.2.3).

The cubic function ψ′(η) is given by (5.2.10) has some properties, which can give
us good information’s about the minimizer η∗. We present those properties next.

5.3.1 Lower Bound of η

In the next lemma we show that the cubic function has minimizer η∗, which is
bounded away from zero. This ensures that the line-search is efficient.

Lemma 5.3.1 Suppose that there exist a bounded level set

D := {x ∈ R
n | ‖F (x)‖ ≤ ‖F (x0)‖},

such that the Jacobian F ′(x) is invertible for all x ∈ D and Lipschitz continuous
with Lipschitz constant L. Then the step multiplier ηc satisfying the line-search
condition (5.2.4) is uniformly bounded away from zero for x ∈ D.

Proof: We want prove that the minimizer η∗ of the cubic function ψ′ is bounded
below. We apply the minimality condition of P (η) given by (5.2.2).

ψ′(η) =< P (η), P ′(η) > = < γη + a0, 2a2η − a0 >= 0.

Where the coefficient γ = a2η−a0 is bounded above, because a0 = F (x) is bounded
above by ‖a0‖ = ‖F (x)‖ ≤ ‖F (x0)‖ for all x ∈ D.

The norm of the coefficient a2 is bounded above by L
2 ‖d‖2 according to Lemma

5.2.1.

By applying the triangular inequality we find

‖γ‖ = ‖a2η − a0‖ ≤ ‖a2η‖ + ‖a0‖ ≤ L‖d‖2 + ‖F (x0)‖.

Then we have from parallelogram equality

‖γη + 2a2η‖ = ‖γη − 2a2η + 2a0‖.

That yields
‖2a0‖ ≤ ‖γη + 2a2η‖ + ‖γη − 2a2η‖.

Implies
‖a0‖ ≤ |γ‖η + 2‖2a2‖η.

That gives
‖a0‖ ≤ ‖a2η − a0‖η + 2‖a2‖η.
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Which implies
‖a0‖ ≤ ‖a2‖η2 + ‖a0‖η + 2‖a2‖η.

Which yields
η2 + (‖a0‖

‖a2‖ + 2)η − ‖a0‖
‖a2‖ ≥ 0. (5.3.1)

The solution η∗ of the equation (5.3.1) has two cases

First η∗ ≥ 1 then η∗ is bounded below by 1.

Second η∗ < 1 then by solve the equation (5.3.1) we find η∗ ≥ 1
1+3‖a2‖/‖a0‖ ≡ η̄ > 0.

Hence η∗ is bounded below

η∗ ≥ min(1, η̄) > 0. (5.3.2)

Then from the line-search condition (5.2.4) yields

ηc ≥ 8
9η∗ ≥ 8

9 min(1, η̄). (5.3.3)

The proof is complete. �

Lemma 5.3.2 Let u, v be vectors such that there exist α and β ∈ R with

< u + αv, u + βv >= 0.

Then, it holds
‖u‖ ≤ max(|α|, |β|)‖v‖.

Proof:

The claim follows by applying the Parallelogram equality

‖u + 1
2(α + β)v‖2 = ‖u + 1

2(α − β)v‖2.

to the assumption via

‖u‖ ≤ ‖u + 1
2(α + β)v‖ + ‖1

2(α + β)v‖.

Using the triangle inequality, we get

‖u‖ ≤ ‖1
2(α − β)v‖ + ‖1

2(α + β)v‖,

and, thus,
‖u‖ ≤ 1

2(|α + β| + |α − β|)‖v‖ ≤ max(|α|, |β|)‖v‖.

by the properties of the norm. �
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5.3.2 Reduction of ‖F‖
The idea now is, we consider the line-search parameter ηc as good if the minimizer
η∗ of the interpolating polynomial is close by. In fact, ’close by’ needs not be very
close at all.

Proposition 5.3.3 Under the same assumptions of Lemma 5.3.1 and if ηc satis-
fies the line-search condition (5.2.4) then it holds that

‖F (x + ηcd)‖ ≤ (1 − ηc

3 )‖F (x)‖.

This bound ensures a substantial reduction of the residual when ηc ∈ (0, 2].

Proof:

We have from the minimality condition of the function P (η)

2η∗ψ′(η∗) = 2η∗P (η∗)�P ′(η∗) = 0 = < 2a2η∗ − 2a0η∗ + 2a0 , 2a2η∗ − a0η∗ >,
(5.3.4)

from a2 = 1
η2

c
[Fc − (1 − ηc)F0], where a0 = F0 we can isolate

a2η2
c = Fc − (1 − ηc)F0.

We now define the quotient q with qη∗ = ηc and multiply the second component
of (5.3.4) by qηc = q2η∗ to yield

q2η∗P ′(η∗) = q2(2a2η2
∗ − a0η∗) = 2Fc − 2(1 − ηc)F0 − qηcF0

= 2Fc − 2[1 − (1 − 1
2q)ηc]F0, ηc = qη∗

= 2Fc − [2 − (2 − q)ηc]F0

and multiplying the first component of (5.3.4) by 2q2

2q2P (η∗) = q2(2a2η2
∗ + 2(1 − η∗)a0 = 2a2η2

c + (1 − η∗)q2F0, η2
c a2 = Fc − (1 − ηc)F0

= 2(Fc − (1 − ηc)F0) + (1 − η∗)q2F0

= 2Fc + (q − 1)(q + 1 − ηc)F0.

Thus we find by replacing corresponding components in (5.3.4)

〈2Fc + 2(q − 1)(q + 1 − ηc)F0 , 2Fc − [2 − (2 − q)ηc]F0〉 = 0,

and applying Lemma 5.3.2 that

‖Fc‖ ≤ C(q, ηc)‖F0‖ with C(q, ηc) = max(|q − 1||q + 1 − ηc|, |1 − (1 − 1
2q)ηc|).

The factor C(q, ηc) is a convex function in ηc. The linear function through the
values at ηc = 0 and ηc = 2 is an upper bound for C(q, ηc) on ηc ∈ [0, 2]. With
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|q − 1| ≤ 1
3 we obtain the value at ηc = 0 as C(q, 0) = max(|q2 − 1|, 1) = 1. The

value ηc = 2 is
C(q, 2) = max(|q − 1|2, |q − 1|) ≤ 1

3 .

The linear function defined by these values is 1 + ηc
( 1

3 −1)
2−0 = 1 − ηc

3 and we get a
descent in the function value of at least

‖F (x + ηcd)‖ ≤ (1 − ηc

3 )‖F (x)‖.

�

5.3.3 Behavior of Line-search near a Root

Lemma 5.3.4 The parabolic range space interpolation line-search takes the full
step ηc = 1 if the point x is sufficiently close to a nonsingular solution of F (x) = 0.

Proof:

We have from the orthogonality condition of the function P (η) that

< a2η2 − a0η + a0, a2η2 − η

2a0 > = 0

and, thus,
‖2a2η2 + (1 − 3

2η)a0‖ = ‖(1 − η

2)a0‖.

The latter formula implies for all t ∈ [−1
2 , ∞) that

(1 + t){|2t + 1
2 | − |2t − 1

2 |}‖a0‖ ≤ 2‖a2‖

holds by using the transformation

η = 1
1 + t

, for η ∈ (0, 2] (5.3.5)

and substituting

‖2a2 + ((1 + t)2 − 3
2(1 + t))a0‖ = ‖((1 + t)2 − 1 + t

2 )a0‖.

This relation is equivalent to

(1 + t) min (2|t|, 1) ≤ 2‖a2‖
‖a0‖ ,

which can be further simplified

(1 + t) min (2|t|, 1) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + t) > |t| if t > 1
2

|t| ≥ |t| if t ∈ [−1
2 , 0]

(1 + t)2|t| > |t| if t ∈ (0, 1
2).
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As a consequent we can see that

|t| ≤ 2‖a2‖
‖a0‖ . (5.3.6)

The resubstitution t = 1
η

− 1 then implies

1
1 − 2‖a2‖

‖a0‖
≥ η ≥ 1

1 + 2‖a2‖
‖a0‖

. (5.3.7)

Since ‖a2‖ ≤ L
2 ‖d‖2 and

‖a2‖ ≤ L

2 ‖d‖2 = L

2 ‖F ′(x)−1F (x)‖2 ≤ L

2 ‖F ′(x)−1‖2‖a0‖2

it follows that the denominator of the lower and upper bound of (5.3.7) tend to
one as x approaches a nonsingular solution. Therefore, η gets 1 and the line-search
condition (5.2.4) will be fulfilled. �
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5.4 Properties of Line-search in Singular Case

As we have detailed in Section 3.2 the unmodified Newton’s method converges
to regular singularities of order k with the linear rate k

k+1 . More specifically the
convergence Theorem 3.2.2 states that during the final approach the Newton steps
tend to aim in the right direction towards the root but never go quite far enough.
In the simple case k = 1 they stop short exactly half way to the root. Stabiliza-
tion in the sense of reducing the step length below 1 by a conventional line-search
or bounding the Jacobian inverse will only deteriorate the situation, quite likely
resulting in a sublinear rate of convergence. In contrast it was established theo-
retically and confirmed numerically that nearly doubling every other Newton step
can recover a superlinear rate of convergence when k = 1.

Before analyzing the behavior of the range space line-search, let us briefly con-
sider the effect of a classical parabolic interpolation of the merit function f(x) =
1
2‖F (x)‖2 defined in Section 5.1.1 near a simple singularity. Given the current point
x and the Newton step d, one would obtain by quadratic interpolation, matching
the values at η = 0 and η = 1 and the slope at η = 0.

f(x + ηd) ≈ ‖F (x)‖2(1
2 − η) + 1

2

[
‖F (x + d)‖2 + ‖F (x)‖2

]
η2

The minimum of the right hand side is attained at

η∗ = 1
1 + ‖F (x + d)‖2/‖F (x)‖2 ≤ 1,

so that we can never achieve an overrelaxed step. If x−x∗ is close to the nullspace of
the Jacobian at x∗ we know from the assertions (iv) and (i) of convergence Theorem
3.2.2 that the residual is approximately quarter so that F (x + d) ≈ 1

4F (x), which
means that η∗ ≈ 16

17 . Hence the line-search based on quadratic interpolation of the
sum of squares residual f(x) has almost no effect on the convergence of Newton’s
method to simple singularities. Things are dramatically different for the range
space line-search.

When ηc = 1 then the range space interpolant given in (5.2.8) takes the simple
form

P (η) = F (x)(1 − η) + F (x + d)η2

Assuming without loss of generality that ‖F (x)‖ = 1 and abbreviating ‖F (x +
d)‖ = r and φ = arccos(1

r
F (x)�F (x + d)) and substituting into (5.2.9), we obtain

the residual

ψ(η) = 1
2 − η + (1

2 + r cos φ)η2 − r cos(φ)η3 + 1
2r2η4

and for the minimizer η∗ = η∗(r, φ) the stationarity condition

0 = −1 + (1 + 2 r cos φ)η∗ − 3 r cos(φ)η2
∗ + 2r2η3

∗

Now suppose we keep η∗ fixed and consider the corresponding contours with respect
to the polar coordinates (r, φ) in the plane.

Lemma 5.4.1 For η∗ ∈ (0, 2] the contours {(r, φ) : η∗(r, φ) = η∗} are circles
with the radius ρ = 1

2η∗ ( 1
η∗ − 1

2) and the centers at the points
[

1
2η∗ (3

2 − 1
η∗ ), 0

]
in

Cartesian coordinates.
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Proof:

With r̄ = rη∗ the stationarity condition becomes

0 = −1 + (η∗ + 2 r̄ cos(φ)) − 3 r̄ cos(φ)η2
∗ + 2r̄2η∗

and thus
r̄2 + r̄( 1

η∗ − 3
2) cos(φ) = 1

2η∗ − 1
2

this is one form of a circle equation. On both sides of the η axis we find apposite
path of the circle of cos(φ) = ±1 so that

(r̄ ± 1
2( 1

η∗ − 3
2))2 = 1

2η∗ − 1
2 + 1

4( 1
η∗ − 3

2)2 = − 1
4η∗ + 1

16 + 1
4η2∗

= ( 1
2η∗ − 1

4)2

which implies
r̄ = ∓ ( 1

2η∗ − 3
4) + | 1

2η∗ − 1
4 |

We have η∗ ≤ 2 =⇒ ( 1
2η∗ − 1

4) ≥ 0 =⇒ | 1
2η∗ − 1

4 | = 1
2η∗ − 1

4 which yields

r̄ = ∓ ( 1
2η∗ − 3

4) + 1
2η∗ − 1

4

Now we have two cases

r̄ = +( 1
2η∗ − 3

4) + 1
2η∗ − 1

4 =⇒ r̄ = 1
η∗ − 1 =⇒ r = 1

η2∗
− 1

η∗

r̄ = − ( 1
2η∗ − 3

4) + 1
2η∗ − 1

4 =⇒ r̄ = 1
2 =⇒ r = 1

2η∗

That is
r ∈

{
1
η∗ − 1

η2∗
, 1

2η∗

}
. (5.4.1)

By averaging and subtracting the lower and upper bounds on r one obtains the
center ( 3

4η∗ − 1
2η2∗

) and the width ( 1
η2∗

− 1
2η∗ )1

2respectively.

�
Solving (5.4.1)for η∗ in terms of r we obtain the spiked function

η∗ =
⎧⎨
⎩2

/
(1 +

√
1 − 4r) if r ≤ 1

4
1
2r

if r ≥ 1
4

The situation is depicted in Figure 5.4. As one can see the spike occurs exactly at
r = 1

4 i.e., when the full Newton step leads to the quartering of the residual F (x)
to F (x+d) = 1

4F (x). Then and only then the suggested step multiplier η∗ reaches
its maximal value 2. To come even close to doubling the step the quartering must
occur quite accurately. The lower bound on r for given η∗ has vertical slope at
η∗ = 2. The center line in the middle between the lower and upper bound is drawn
in red, the width labeled by ρ.
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Figure 5.4: Step multiplier η∗ = η∗(r, 0).

Figure 5.5: The level set of the Multiplier Mountain.

A three dimensional version, which we call the multiplier mountain is depicted in
Figure 5.5 where one can clearly see the circular contours. The border line between
extending and reducing the step multiplier is the circle with radius 1

2 centered at
the point (1

4 , 0).

In our numerical experiments to be reported later we observed that the line-search
does indeed overrelaxed steps when the root looks singular in that r ≈ 1

4 and
φ ≈ 0. Unfortunately, we have not been able to demonstrate that rigorously.
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5.5 Cubic Extension

With the hope of also accelerating Newton’s method at second order singularities
we considered the generalization of the range space interpolation from quadratic
to cubic. As additional information we used the directional derivative F ′(x + ηc)d,
which can be computed quite cheaply by forward differentiation or approximated
by differencing. The interpolating polynomial is obtained via

P (η) = a0(1 − η) + a2η2 + a3η3 ≈ F (x + ηd),

and
P ′(η) = −a0 + 2a2η + 3a3η2 ≈ F ′(x + ηd) d,

by solving the two relations above and substituting a0 = F (x) and a1 = −F (x)
we obtain

a2 = 1
η2

c
[3F (x + ηcd) − ηcF

′(x + ηcd)d + (2ηc − 3)F (x)] ,

a3 = 1
η3

c
[−2F (x + ηcd) + ηcF

′(x + ηcd)d + (2 − ηc)F (x)] ,

Now the norm
ψ(η) = 1

2‖P (η)‖2
2,

is a polynomial of degree 6 and its derivative ψ′(η) is quintic. Of its five roots
three may be minimizers of ψ(η). We have implemented this approach using a
line-search criterion similar to (5.2.8).

Unfortunately we obtained a nonsignificant gain at second order singularities com-
pared to parabolic interpolation and the two yield almost identical results at first
order singularities ( see Figure 6.3 and 6.4 for Bratu problem.)

Hence the extra conceptual and computational effort does not seem justified.
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Chapter 6

Numerical Results

In this section we report the numerical results obtained for a set of test problems.
We introduce the following notations:

• pj = ηj+1
ηj

‖dj+1‖
‖dj‖ is the reduction ratio, where dj is the Newton direction and

ηj is the step multiplier of line-search.

• ls is the number of iterations per line-search.

• The stopping criterion is ‖F (x)‖ < 10−11.

6.1 Nonsingular case

We use as a test problem for the nonsingular case the function

F (x, y) =
(−2x + 3y + 4y2 + x2 + x2y + x3

x − 2y + y2 + 3yx2 + xy2 + y3

)
. (6.1.1)

One nonsingular root of this function is (0, 0). The Jacobian of F at (0, 0) is(−2 3
1 −2

)
.

Table 6.1 shows the behavior of the step multiplier ηj, for x0 = (0.1, 0.03).

j ls ηj xj ‖F (xj)‖ pj

1 1 0.5642815848 (-0.05775922926,-0.03911510821) 0.02267079486 0.05741164477
2 1 1 (-0.01412698875,-0.007757523356) 0.005606032978 0.311966136
3 1 1 (-0.0009284100954,-0.0004937610213) 0.0003820122093 0.2803822273
4 1 1 (-4.365156722e-06,-2.304270042e-06) 1.833767385e-06 0.06947122653
5 1 1 (-9.651125467e-11,-5.091043654e-11) 4.063954752e-11 0.004716097878
6 1 1 (-4.71394463e-20,-2.486565021e-20) 1.985186508e-20 2.210656984e-05

Table 6.1: The behavior of ηj for x0 = (0.1, 0.03), the nonsingular case.
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x0 PRSI iterations Newton iterations
(0.1, 0.03) 6 7
(-1, -0.01) 9 10

(0.0189, 0.0625) 6 7

Table 6.2: The Number of iterations of the pure Newton’s method and using PRSI
line-search, for different initial points, for the nonsingular solution (0, 0).

In Table 6.2 we compare the full step Newton’s method and parabolic range space
interpolation Newton’s method for different initial points. Here we find that the
modified Newton iterations are always faster than the full step one when converging
to the same solution.

Only some early steps are extended before the full-step convergence pattern settles
in.

For this and all other problems, we have visualized the behavior of Newton’s
method and its variants by so-called fractals. In Subsection 6.5.1, the Pictures
6.7, 6.8, 6.9 are the fractals of the problem (6.1.1). As we can see there is a
second, nonsingular root far away from (nearly) singular solutions at or near the
origin.
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Figure 6.1: Perturbation of the Problem

6.2 (Nearly) Singular Case

The parameter depended function

F (x, y) =
(

y + xy + y2 + 0.1x2 + 1.1x3 + yx2

x2 + y2 + yx + 0.2x3 + 1.2y3 + xy2 + ε

)
. (6.2.1)

with ε ∈ R, has a regular singularity at (0, 0) if ε = 0. The Jacobian of F at

this root is
(

0 1
0 0

)
. The root (0, 0) is a regular singularity because an elementary

calculation yields that
∇ det(F ′)�v = −2 	= 0.

Here v =
(

1
0

)
is a nullvector of F ′ at the root (0, 0).

By variation of ε the above problem yields the following cases depicted in Figure
6.1.

1. If ε < 0 then we have two nearly singular solutions.

2. If ε > 0 then we have no solution but a nonzero minimum of ‖F‖.

3. If ε = 0 then we have a regular singularity.

Tables 6.3 and 6.4 show the behavior of the step multiplier ηj for the small negative
perturbation ε = −10−5. Starting from x0 = (−1, 1) the xj reach the solution
x∗ = (−0.0031628, −9.6858e − 07) after 10 iterations. If the initial point is x0 =
(1, 1.5) then xj converge to the nearly singular solution x∗ = (0.0031618, −1.0312e−
06) using 18 iterations.

Table 6.5 shows the behavior of the step multiplier ηj for the small positive pertur-
bation ε = 10−5 > 0. If we start from x0 = (−0.5, −1.5) then the iterates converge
to x∗ = (−0.69461, −1.0836) after 5 iterations.
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j ls ηj xj ‖F (xj)‖ pj

1 1 1 (-0.89072, 0.59017) 0.44999 0.14138
2 1 1 (-0.44991, 0.083541) 0.15148 1.5833
3 1 1 (-0.13978, -0.10323) 0.091093 0.53908
4 1 1 (-0.11956, 0.018525) 0.020399 0.34093
5 1 1 (-0.054481, -0.0017575) 0.0033962 0.55232
6 1 1 (-0.027624, -4.6793e-05) 0.00075023 0.39476
7 2 1.7661 (-0.0034957, 1.5086e-05) 1.6351e-05 0.89661
8 1 1 (-0.0031779, -9.7355e-07) 9.6035e-08 0.013188
9 1 1 (-0.0031628, -9.6858e-07) 2.2873e-10 0.04747
10 1 1 (-0.0031628, -9.6858e-07) 1.3017e-15 0.002386

Table 6.3: The behavior of ηj for the initial point x0 = (−1, 1), for ε = −10−5 < 0.
First solution x∗ = (−0.0031628, −9.6858e − 07).

j ls ηj xj ‖F (xj)‖ pj

1 2 1.6188 (-0.028519, 0.72648) 1.5593 0.42898
2 6 0.10842 (0.25501, 0.59158) 1.4689 0.24398
3 6 0.021341 (0.35522, 0.53533) 1.4523 0.36599
4 6 0.0068093 (0.40813, 0.50319) 1.447 0.53875
5 6 0.004623 (0.4502, 0.47597) 1.4434 0.80935
6 6 0.0064532 (0.49844, 0.44236) 1.4385 1.1734
7 5 0.02614 (0.59683, 0.36373) 1.4212 2.1422
8 1 1 (0.86404, -0.2598) 0.77553 5.386
9 1 1 (0.46299, 0.026967) 0.30425 0.72678
10 2 1.402 (0.13202, 0.046842) 0.065944 0.67251
11 1 1 (0.082098, 0.0040746) 0.0092001 0.19825
12 1 1 (0.042285, 0.00042114) 0.0019424 0.6082
13 2 1.5089 (0.010815, -0.00014623) 0.00017121 0.78728
14 1 1 (0.0058423, -1.1218e-06) 2.4295e-05 0.15806
15 1 1 (0.0037775, -9.8392e-07) 4.3054e-06 0.41504
16 1 1 (0.003212, -1.0291e-06) 3.2244e-07 0.27385
17 1 1 (0.0031622, -1.0312e-06) 2.5042e-09 0.088145
18 1 1 (0.0031618, -1.0312e-06) 1.5589e-13 0.0078901

Table 6.4: The behavior of ηj for the initial point x0 = (1, 1.5), for ε = −10−5 < 0.
Second solution x∗ = (0.0031618, −1.0312e − 06) .

j ls ηj xj ‖F (xj)‖ pj

1 1 1 (-0.92615, -1.1873) 0.49591 0.17619
2 2 1.4722 (-0.68943, -1.0816) 0.0069604 0.49046
3 1 1 (-0.69468, -1.0836) 9.0464e-05 0.021613
4 1 1 (-0.69461, -1.0836) 1.5294e-08 0.013084
5 1 1 (-0.69461, -1.0836) 3.6802e-16 0.0001719

Table 6.5: The behavior of ηj for given initial point, for ε = 10−5 > 0.
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j ls ηj xj ‖F (xj)‖ pj

1 2 1.7797 (0.38586, -0.044846) 0.14619 0.27366
2 1 1 (0.18833, 0.014208) 0.048879 0.25113
3 2 1.7101 (0.032927, -0.0030635) 0.0031724 0.75837
4 1 1 (0.015888, -2.0202e-05) 0.00025306 0.1107
5 2 1.646 (0.0028233, 1.6312e-05) 1.8961e-05 0.75476
6 1 1 (0.0014161, 3.2979e-08) 2.02e-06 0.10772
7 2 1.8759 (8.8053e-05, -2.5976e-08) 2.6367e-08 0.94374
8 1 1 (4.402e-05, -6.6021e-13) 1.9474e-09 0.033155
9 2 1.9938 (1.358e-07, 7.4796e-13) 7.5003e-13 0.99664

Table 6.6: Singular case, The behavior of ηj for given initial point, for ε = 0.

x0 jP RSI jF SN

(1, 0.5) 9 20
(1, 1.5) 18 22

(-0.493259, -0.369245) 9 19
(1.57571, -0.61938) 10 20

(0.980752, 0.176084) 13 23

Table 6.7: Singular case, The number of iterations of full Newton step and PRSI
line-search for different initial points, for ε = 0.

Table 6.6 shows the behavior of the step multiplier ηj in the singular case without
perturbation, i.e., ε = 0. When one starts from x0 = (1, 0.5) then the regular
singularity solution is x∗ = (0, 0). In this case the fractals are given in the Pictures
6.13, 6.14, 6.15.

In Table 6.7 we compare the full Newton step and Newton’s method with PRSI line-
search for different initial points in the case ε = 0 and for the regular singularity
solution (0, 0). As we can see from the table Newton’s method with PRSI line-
search needs approximately half of the iterations of the full step Newton’s method.

As we can see for ε < 0 there is some early acceleration when the two close-by
roots look like a single singular root. Then the full-step convergence settles in.

In the exactly singular case ε = 0 we see significant acceleration throughout the
iteration. At the end it looks as through a single unit step interspersed with
extended steps is sufficient to realign the the iterates along the nullvector.

In the case ε > 0 the iterations diverted to a nonsingular root far from the origin.

The fractals of the problem (6.2.1) for the case ε = 0 are given in Subsection 6.5.1.
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Figure 6.2: Fold bifurcation (turning point) at λ = λ∗, solid line represents stable
solutions, dashed line indicates unstable solutions.

6.3 Bratu problem

We apply the new method for a large number of variables to solve a discretized
Bratu problem on the unit square with an equidistant decomposition into n = M2

parts in each direction, that is, a mesh width h = 1
M

.

The Bratu problem is the nonlinear partial differential equation:

Δu + λeu = 0, on [0, 1] × [0, 1], u = u(x, y), (6.3.1)

with boundary conditions

u(0, y) = u(1, y), u(x, 0) = sin(2πx), u(x, 1) = w(x) = 2.2,

The Bratu problem has two solutions if λ < λ∗, no solutions if λ > λ∗ and a unique
singular solution if λ = λ∗, as presented in Figure 6.2.

The Jacobian is very sparse with the typical structure for 2D partial differential
equations. Therefore the arising linear systems can be solved efficiently for large
M by special software UMFPACK [Dav].

In the Diagrams 6.3 and 6.4 we display along the vertical axis the number of
iterations needed by Newton’s method to converge as function of λ. Here the
λ-axis is scaled logarithmically according to the function

− log10(λ∗ − λ).

The exact value of λ∗ depends on the grid number M . Hence, for each value of M
we have a new value of λ∗, which was computed by nested bisection.
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Figure 6.3: Comparing Newton’s method without and with quadratic or cu-
bic line-search on Bratu problem with M = 12, n = 144 variables, where
λ∗ = 1.022057436608385

The Picture 6.3, 6.4 show the behavior of the modified and unmodified Newton’s
method, where the red color refers to full-step Newton, green to the parabolic and
blue to the cubic range space interpolation line-search.

We observe that Newton’s method with full step needs more iterations than with
either line-search. The iteration count of the full step method grows approximately
linearly with the logarithm of the difference between λ∗ and λ. In contrast for both
line-search variant we note that the iteration counts stay approximately constant as
λ approaches λ∗. The extra effort for performing the cubic interpolation compared
to the quadratic one does not seem to pay off. Throughout we use ‖F‖ ≤ 10−11√n
as stopping criterion for the Bratu problem.
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Figure 6.4: Comparing Newton’s method without and with quadratic or cubic
line-search on Bratu problem with M = 40, n = 1600 variables, where λ∗ =
1.025046903052621

6.4 Complementarity Problems

We apply the new method to an equations reformulation of nonlinear complemen-
tarity problems, whose derivative is well defined and strongly semismooth at x∗
if the function F defining the NCP is sufficiently smooth. Conditions on F are
derived that ensure that the appropriate regularity conditions are satisfied for the
nonlinear reformulation of the NCP at x∗.

Definition 6.4.1 A nonlinear complementarity problem NCP is defined by a map-
ping F (x) = (Fi(x))(i=1...n) : Rn −→ R

n. A solution is an x ∈ R
n satisfying

x ≥ 0, F (x) ≥ 0, x�F (x) = 0. (6.4.1)

Definition 6.4.2 A solution x is degenerate if both Fi(x) and the i-th component
xi vanish for some index i, i.e. there is no strict complementarity.

We discuss a nonlinear equations reformulation to solve the nonlinear comple-
mentarity problem NCP, which involves reformulating the problem as system of
nonlinear equations. This involves constructing a function Ψ : Rn −→ R

n with
the property that zeros of Ψ correspond to solutions of the NCP. Such a function
is called NCP-function [BM00].

Definition 6.4.3 The function Ψ is defined by

Ψi(x) = ψ(xi, Fi(x)), (6.4.2)
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Figure 6.5: The Level curves of the Function ψ

where
ψ(a, b) := 2ab − (min(0, a + b))2. (6.4.3)

This function has the property that

ψ(a, b) = 0 if and only if a ≥ 0, b ≥ 0 and ab = 0. (6.4.4)

The Jacobian of Ψ is
Ψ′(x) = (ψ′

i)n
i=1, (6.4.5)

where

ψ′
i =

⎧⎨
⎩2xiF

′
i + 2Fie

�
i if xi + Fi ≥ 0

−2xie
�
i − 2FiF

′
i if xi + Fi ≤ 0

(6.4.6)

This reformulation is apparently due to Evtushenko [EP84]. One can easily see
that the function Ψ has a singular Jacobian if there is no strict complementarity.

We apply the new method to find a solution for a nonlinear equations reformulation
Ψ(x) = 0. Of particular interest are solution x∗ at which due to lack of strict
complementarity ψ′

i is singular and only semismooth.

We describe here some computational results from the simple NCP test problems
of small dimensions given in [OW09]. A solution is any x satisfying

0 ≤ x ⊥ F (x) ≥ 0,

and we denote such x by x∗.

1. aff1
F (x) =

(
x1 + 2x2

x2 − 1

)
(6.4.7)
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2. DIS61 ([DIS03], Example 6.1)

F (x) =
(

(x1 − 1)2

x1 + x2 + x2
2 − 1

)
(6.4.8)

3. quarquad

F (x) =
(−(1 − x1)4 + x2

1 − x2
2

)
(6.4.9)

4. affknot1
F (x) =

(
x2 − 1

x1

)
(6.4.10)

5. affknot2
F (x) =

(
x2 − 1

x1 + x2 − 1

)
(6.4.11)

6. quadknot

F (x) =
(

x2 − 1
x2

1

)
(6.4.12)

7. munson4 (from MCPLIB [MCP] )

F (x) =
(−(x2 − 1)2

−(x1 − 1)2

)
(6.4.13)

8. ne-hard (from MCPLIB [MCP])

F (x) =

⎛
⎜⎝ sin x1 + x2

1
x3

2 + x1x3
x2

3 − 200 + x1x2

⎞
⎟⎠ (6.4.14)

9. doubleknot

F (x) =

⎛
⎜⎜⎜⎝

1 − x1 + x2 + x3
x1 − 1
x4 − 1

1 + x3 − x4

⎞
⎟⎟⎟⎠ (6.4.15)

10. quad1

F (x) =
(

x1 − 1
x2

2

)
(6.4.16)

11. quad2

F (x) =
(

x2
1

x2

)
(6.4.17)
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Problem x0 x∗
quarquad (0.1, 0.9) (0, 1)
affknot1 (0.9, 0.1) (0, 1)
affknot2 (0.5, 0.5) (0, 1)
quad2 (-1, -1) (0, 0)
quad1 (0.9, 0.1) (1, 0)

quadknot (0.5, 0.5) (0, 1)
munson4 (0, 0) (1, 1)

DIS61 (1.5, -0.5) (1, 0)
ne-hard (10, 1, 10) (0, 0,

√
200)

doubleknot (0.5, 0.5, 0.5, 0.5) (1, 0, 0, 1)

Table 6.8: Starting points and solutions for given problem.

O&W Accelerated PRSI line-search
problem n dim N FNS iters total iters η = 1.9 total iters η > 1 Add. Eval.
quarquad 2 1 16 10 5 6 2 2
affknot1 2 1 20 10 7 2 1 1
affknot2 2 1 19 10 5 1 1 1
quad2 2 2 20 13 4 4 4 4
quad1 2 1 15 9 4 7 3 3

quadknot 2 2 18 8 5 4 4 5
munson4 2 2 19 12 4 6 3 3

DIS61 2 2 19 12 5 4 4 4
ne-hard 3 2 25 19 5 12 8 4

doubleknot 4 2 22 14 5 11 4 5

Table 6.9: Comparison of the number of iterations for the Full Newton Step,
accelerated Newton’s method of Wright et al., with η = 1.9 on accelerated steps,
PRSI iterations with 0 < η ≤ 2.

j ls ηj xj ‖F (xj)‖ pj

1 2 1.6081 (0.017285, 0.92795) 0.14858 0.48477
2 1 1 (-0.0012705, 1.0061) 0.013231 0.05521
3 1 1 (-6.8204e-06, 1) 7.7658e-05 0.076725
4 1 1 (-2.2466e-10, 1) 2.7914e-09 0.0060037
5 1 1 (-2.7164e-19, 1) 1.0866e-18 3.6241e-05

Table 6.10: The behavior of the step multiplier η of PRSI line-search method for
NCP with strict complementarity, e.g. the function aff1 (6.4.7) for initial point
(1, 2).
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Figure 6.6: Graphical presentation of the data of the Table 6.9. Red represents
accelerated steps, blue indicates unaccelerated steps, light blue accounts for the
addtional pure function evaluations without Jacobian calculations and factoriza-
tions during the line-searches. The full height of the columns represents the total
number of function evaluations, which can be directly compared to the histograms
for the full-step Newton method and its accelerations according to Oberlin and
Wright.

j ls ηj xj ‖F (xj)‖ pj

1 2 1.7361 (1.3056, 1.3056) 0.34476 0.32736
2 2 1.8304 (1.0552, 1.0552) 0.0090949 0.36051
3 2 1.9516 (1.0027, 1.0027) 2.0832e-05 0.20967
4 2 1.9973 (1, 1) 1.5076e-10 0.051492

Table 6.11: The behavior of step multiplier η of PRSI line-search method for the
function munson4 (6.4.13) at the initial point (2, 2).
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Table 6.9 compares the number of iterations of the pure Newton’s method, ac-
celerated Newton’s method of Wright et al. and PRSI line-search for the NCP
test problems. It is clearly shown that our line-search is faster than the other two
approaches.

Table 6.10, 6.11 show the behavior of the step multiplier η for the new method
applied to two different NCP examples.

As we can see in Table 6.10 the Newton method with line-search behaves almost like
full-step Newton on nonsingular problems. Note that strict complementarity also
implies that Ψ is as smooth as F in some neighborhood of the solution. Singularity
of Ψ′ due to lack strict complementarity makes the line-search variant much more
effective relative to the full-step version, especially if Ψ′ vanishes completely so
that N = R

n. This is the case for problem munson4 (6.4.13) where as shown in
Table 6.11 all steps are accelerated, leading to a reduction of the iteration count
by the factor 3 compared to full-step Newton. On problems where N is properly
contained in R

n on average only every step can be accelerated in order to stay
close to the wedge shape domain of construction. On such problems the reduction
in the iteration count is roughly by a factor of 2.
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6.5 Newton’s Fractals

6.5.1 Description of the Fractals

We consider the same problems above for the singular and nonsingular case and we
want to plot this functions with respect to the number of iterations j in both cases
unmodified Newton’s method and parabolic range space interpolation Newton’s
method:

The plot represents a grid in the square [−1, 1] × [−1, 1]. Each point of the grid
was assigned the number of iterations j which Newton’s method takes to reach a
first point in a target set W around the solution in the center of the picture. The
stopping criterion was chosen to be: (|y| < μ|x| : |x| < ρ), whose ρ = 10−11, and μ
is selected as ‖F (x)‖ ≤ μ = 10−11.

6.5.2 Description of the Pictures

We have four different types of pictures.

1. Newton fractal.

2. Line search parameters.

3. Norm of function values.

4. Determinant of the Jacobian.

1. Newton Fractals: The singular root is always in the center of the square. The
nullspace corresponds to the horizontal axis through the center. The singular
set is a smooth curve that runs transversal to the nullspace, it is not drawn
explicitly. The colors indicate the basins of attraction of various roots of the
tested problem. The intensity of the color represents the number of steps
needed to approximate the root with a specified tolerance. The darker color
means that more iterations are needed. The gray color indicates divergence.

2. The step multiplier η : The color blue indicates that η is very small or even
zero, which may be the case if the determinant is close to zero, and hence,
possibly large steps. This can result in within a sensitivity of the iteration
with respect to the starting point. The meaning of the other colors are as
follows green: η = 1, yellow: η = 1.5 and red:η = 2. Flat color in the
pictures indicate the line-search stops after one iteration.

3. The norm ‖F‖ of function F : The picture shows the shapes of the level sets
of the function. The color scale is adapted to size of the function.

4. Determinant of the Jacobian δ(x): Blue color presents the singular set δ−1(0),
the color yellow indicate when the determinant takes the values bounded
away from zero.

We produce fractals for the following problem, where the solutions are always (0, 0)
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1. Rall’s shifted example, nonsingular [Ral66]

F07(x, y) =
(

x2 − xy + y2 + 2x

3x2 + 2xy + 8x + 4y

)
. (6.5.1)

2.
F04(x, y) =

(
x3(−y2 + y + 2) + 2x2y + 2xy2(y2 + y − 2)

y − x(y2 − 2)

)
. (6.5.2)

3. Reddien’s example [Red78], regular singularity

F05(x, y) =
(

x + xy + y2

x2 − 2x + y2

)
. (6.5.3)

4. Kelley and Decker’s example, regular singularity [DK80a]

F06(x, y) =
(

x2 + 2y + y2

y + x2

)
. (6.5.4)

5. Griewank’s example for simple singularity k = 1, regular singularity [Gri80a]

F21(x, y) =
(

y2

2
y − x

)
. (6.5.5)

6. Griewank’s example for k = 2 [Gri80a]

F22(x, y) =
( y2

2
y − x2

2

)
. (6.5.6)

7. Irregular singularity example

F03(x, y) =
(−4xy + 4x3

4y − 2x2

)
. (6.5.7)

8. Wright et al. NCP example affknot2 (6.4.11)

F23 =
(

f1

f2

)
, (6.5.8)

where

f1(x, y) =
⎧⎨
⎩2xy − 2x if x + y − 1 ≥ 0

−x2 − y2 + 2y − 1 otherwise
and

f2(x, y) =
⎧⎨
⎩2xy + 2y2 − 2y if x + 2y − 1 ≥ 0

−x2 − 2y2 + 2y + 2x − 2xy − 1 otherwise
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The function given in (6.2.1) has a singular root (0, 0) for the case ε = 0 as it
was shown in Section 6.2. In the first four Pictures (6.13), (6.14) we see that
the singular root (0, 0) is in the center of the pictures and is colored by green.
There is other nonsingular root is colored by blue. In the right hand side of the
Picture (6.13) we note the light green color of line-search method, which indicate
that it needs fewer iterations to reach the root (0, 0). The case is different for
other methods in Pictures (6.14) and in the left hand side of the Picture (6.13),
where we see the darker green for full-step Newton. The big green wedge in RHS
of the Picture (6.13) indicate the large domain of starting point which enable the
line-search method to converge to the singular root(0, 0).

As we have seen in the Table (6.6) for this function, the parameter η takes 7
accelerated steps of the total number of iterations 11, i.e. η > 1.69. That is clear
in the LHS of Picture (6.15), where the color indicates the value of η. Here we see
the blue color which shows when η → 0 near to the singular set as it is shown in
the determinant pictures.

The case is different for the nonsingular roots of the problem (6.1.1) presented in
Pictures (6.7), (6.8), (6.9). Here we see three roots. The root (0, 0) is colored
by green. In the other side we see the (nearly) singular root, which is colored by
brown. For the root (0, 0) we note there is no big difference in the color indication
of the pictures. The other two methods in Picture (6.1.1) are approximately the
same. As we have seen in Table 6.2. Here the line-search is a little bit faster than
full-step Newton. While in the 3- and 2-step methods we see the green region is
rather smaller. The parameter η in the Picture (6.9) is always 1, except for one
step, it is 1.67807. Because of that the picture shows more green color because the
iterations sequence takes often the full Newton step.

For the singularity of order 2 we consider the problem given in (6.5.6), its Pictures
(6.28), (6.29), (6.29) show a solution in the center of the picture of PRSI line-search
which is colored by green. The picture shows that the line-search could converge
to the singular solution (0, 0) with few iterations except the slow curve through the
solution. While full-step Newton picture does not display the solution. The 2- and
3-step methods give chaos of jumped iterations, the solution also does not appear.
In the determinant picture we see clearly the singular set. The line-search made
good performance of convergence to singular solution. While the other methods
failed. The parameter η through the singular set goes to zero and take the full-step
near the orthogonal axis to the singular set.

We see the Pictures (6.31), (6.32), (6.33) of the irregular singularity example
(6.5.7). The irregular singular root (0, 0) is colored by green and centered the
pictures. We see in the determinant picture the singular set is like a parabola.
The slow curve appear orthogonally to the tangential of singular set. At the slow
curve and its parallels we note that the line-search does not converge to the root.
The plot of NCP example (6.5.8) of the function affknot2 (6.4.11) is given in Pic-
tures (6.34), (6.35), (6.36). Here the singular root (0, 1) of NCP is colored by blue
and centered the picture, since we change here the radius of the pictures. we note
that there is only one solution appears in the pictures. The light blue indicates the
fewer iterations to reach the singular root (0, 1). This is shown in the line-search
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picture. The Table 6.9 gives an example where the NCP needs only 6 iterations to
reach the root. While the full-step Newton needs 19 iterations. The 2- and 3-step
method pictures also show faster convergence than full-step Newton method, but
the faster one of all is PRSI line-search. The parameter η is always bigger than
1.72 i.e., the iterations sequence in this case do not do any full-step Newton.

The other fractals of problems have generally the same behavior of above discussed
examples. Since we showed the singular, nonsingular cases, irregular example and
the NCP example. One can see their behavior in the following conclusion of the
fractals.

Conclusion In the pictures we observe the improvement of line-search over full
step Newton. In the full step picture the vast regions of darker green color signal
a large number of iterations needed to approach the solution. In contrast the line-
search picture has a large bright green region of fast convergence. Also divergence
is more likely for the full step method and the performance of the 3-step and 2-
step variants lies somewhere in the middle. As we already noted in general the
line-search method needs about half as many iterations as the full step method.
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Figure 6.7: Newton fractal for example (6.1.1), left with FSN, right with PRSI
line-search

Figure 6.8: Newton fractal for example (6.1.1), left with 3-step method, right with
2-step method

Figure 6.9: Newton fractal for example (6.1.1), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.10: Newton fractal for example (6.5.1), left with FSN, right with PRSI
line-search

Figure 6.11: Newton fractal for example (6.5.1), left with 3-step method, right
with 2-step method

Figure 6.12: Newton fractal for example (6.5.1), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.13: Newton fractal for example (6.2.1), left with FSN, right with PRSI
line-search, for ε = 0

Figure 6.14: Newton fractal for example (6.2.1), left with 3-step method, right
with 2-step method

Figure 6.15: Newton fractal for example (6.2.1), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.16: Newton fractal for example (6.5.2), left with FSN, right with PRSI
line-search

Figure 6.17: Newton fractal for example (6.5.2), left with 3-step method, right
with 2-step method

Figure 6.18: Newton fractal for example (6.5.2), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.19: Newton fractal for example (6.5.3), left with FSN, right with PRSI
line-search

Figure 6.20: Newton fractal for example (6.5.3), left with 3-step method, right
with 2-step method

Figure 6.21: Newton fractal for example (6.5.3), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.22: Newton fractal for example (6.5.4), left with FSN, right with PRSI
line-search

Figure 6.23: Newton fractal for example (6.5.4), left with 3-step method, right
with 2-step method

Figure 6.24: Newton fractal for example (6.5.4), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.25: Newton fractal for example (6.5.5), left with FSN, right with PRSI
line-search

Figure 6.26: Newton fractal for example (6.5.5), left with 3-step method, right
with 2-step method

Figure 6.27: Newton fractal for example (6.5.5), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.28: Newton fractal for example (6.5.6), left with FSN, right with PRSI
line-search

Figure 6.29: Newton fractal for example (6.5.6), left with 3-step method, right
with 2-step method

Figure 6.30: Newton fractal for example (6.5.6), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.31: Newton fractal for example (6.5.7), left with FSN, right with PRSI
line-search

Figure 6.32: Newton fractal for example (6.5.7), left with 3-step method, right
with 2-step method

Figure 6.33: Newton fractal for example (6.5.7), left with line-search parameters,
middle with norm of the function values , right with the Determinant δ(x)
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Figure 6.34: Newton fractal for example NCP of (6.4.11), left with FSN, right with
PRSI line-search

Figure 6.35: Newton fractal for example NCP of (6.4.11), left with 3-step method,
right with 2-step method

Figure 6.36: Newton fractal for example NCP of (6.4.11), left with line-search
parameters, middle with norm of the function values , right with the Determinant
δ(x)
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Chapter 7

Summary and Discussion

In this thesis we exam the modification of Newton’s method by a line-search with
the aim of stabilizing its performance at nearly singular root. We first reviewed
convergence results for the full-step Newton method at nonsingular and singular
solutions. While quadratic convergence is lost even for smooth nonlinear systems,
linear convergence from within starlike domain of density 1 has been established
provided the singular solution is regular in a certain sense. There are two key
parameters, m the dimension of the nullspace and k of the order of the singularity.
At regular singularities of order k the rate of convergence of full-step Newton is
linear with the asymptotic ratio k/k + 1. The exact pattern of convergence is
displayed in Theorem 3.2.2.

Regular singularities with m = 1 = k occur for example at quadratic turning
points of parameter depended equations, e. g. the Bratu problem from com-
bustion theory, which we use as test problem. First order singularities with m
dimensional nullspace arise in complementarity systems whose solutions violate
strict complementarity in m components. Here the system Jacobian is typically
only directionally differentiable but semismooth. As shown by Oberlin et al. the
convergence theory mention above still valid with minor modifications.

Based on the particular convergence pattern to singularities acceleration techniques
have been developed in Chapter 4. Multi step quadratic or superlinear convergence
can be recovered by the so-called 3- or 2-step variants of Newton’s method. They
require the detection of singularity and additional regularity conditions, which are
difficult if not impossible to verify.

To overcome these short comings we have developed a line-search criterion that
promises to implicitly detect and remedy singularity without effecting convergence
in nonlinear cases. In particular, as illustrated by the multiplier mountain, we can
expect the almost doubling of every other Newton step in the case of a regu-
lar first order singularity. This expectation was largely verified in our numerical
experiments on problems with k = 1 and 1 ≤ m < n. The acceleration com-
pared to full-step Newton’s method usually reduced the number of steps needed
to reach a certain solution accuracy by a factor of 2. In cases where m = n the
reduction factor was even close to 3 since all later steps could be accelerated as

76



observed for example on some complementarity problems, see e. g. Table 6.11.
In the vicinity the quadratic turning point of the Bratu problem nearly singular
solutions were computed with the a number of iterations largely independent of
the near-criticality.

No significant gains were observed when the line-search was based on cubic rather
than parabolic interpolation of the residual path F (x + ηd).

In summary we conclude that the parabolic line-search is easy to implement, effec-
tive near regular first order singularity, and enhances global convergence properties
for nonsingular and singular problems alike. The principal remaining challenge is
an analytical proof of superlinear convergence in at least the simply singular case
k = 1 = m.
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