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Chapter 1

Introduction

1.1 Overture

As the last measures of the winter music in Vivaldi’s “Four Seasons” trail away in the beaming
lights of the festive concert hall, a few moments of almost contemplative silence ensue, where-
upon the euphoric audience greets the violinist and the orchestra with tremendous applause.
Within a couple of seconds the applause transforms into waves of synchronous rhythmic clap-
ping, as a sign of utmost appreciation, punctuated by occasional bravos and the audience rising
to its feet.

Whether it was a classical concert, a soccer match, or the stirring speech of a beloved
political party leader that roused our emotions – a perfectly synchronous, rhythmic response
in light of a wonderful performance is far from innate. Take, for example, a group of small
children, perhaps in the audience of a puppet show in the nursery rather than in a classical
concert, and it is immediately obvious that we cannot expect the same reaction. Although
they may appreciate the performance as much as the adults did the concert, their expression
of pleasure will be reflected in their laughter and the overall movement and noise, but not
in synchronized clapping. While some among them may try clapping, too, it is not easy to
maintain a rhythm of a specific frequency that matches that of the others.

1.2 From the rhythms in the brain ...

Synchronous applause in concert halls bears many similarities to processes that commonly
take place in our brain. Networks of neurons “clap” in unison – they fire synchronous action
potentials – and hence produce rhythms detectable as a sum of electric potentials of thousands
of neurons in electro-encephalographic (EEG) recordings. The frequency and amplitude of
these rhythms are characteristic of localized brain regions, but also vary in time. Thus rhythms
in awake and attentive states (such as in the beta and gamma frequency band of 20–80 Hz)
are different from the rhythms appearing during sleep (as for example delta waves of 1–4 Hz).
Some rhythms also depend on our behavior, such as alpha rhythms (8–12 Hz) in the occipital
cortex, which appear during aroused states and diminish with eyes opened (Berger, 1929), or
the theta rhythm in the hippocampus, which has been associated with explorative behavior
(Vanderwolf, 1969; O’Keefe and Nadel, 1978).
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2 CHAPTER 1. INTRODUCTION

The achievement of synchrony of thousands of neurons is a complex phenomenon1, and
depends on many factors, such as the network architecture and the synaptic strength of the
connections. Analogous to the clapping after a performance, however, synchronous electrical
activity in the brain also relies on special abilities of the individual neuron, regardless how
trivial these abilities may seem in view of the relatively small efforts required by an adult in
order to join the synchronous clapping. From the point of view of a single neuron, the ability
to maintain synchronous firing is strongly influenced by the ability to phase-lock its response
to the input – an ability, which the small children in the clapping analogy do not have acquired
yet.

1.3 ... to reliability and frequency selectivity

While the synchronous firing of networks of neurons is not analyzed explicitly in the thesis
at hand, the topics discussed herein bear importance for the emergence of rhythms because
they focus on two closely related aspects on the level of individual neurons: the spike timing
reliability2 and the frequency selectivity of signal integration. The first reflects the ability of
an individual neuron to couple to its input, the second relates to the ability of a neuron to
participate in a rhythm of distinct frequency content. Our approach is two-fold and seeks to
emphasize the role of intrinsic neuronal properties:

• First, we identify the fundamental cell-intrinsic mechanisms that determine spike timing
reliability and frequency selectivity.

• Second, we aim at understanding how properties of individual neurons, specifically their
ionic conductances, can serve to modulate these mechanisms in order to optimize signal
integration.

We find that in order to elucidate the mechanisms underlying spike timing reliability and
frequency selectivity, two distinct operating modes have to be distinguished. These depend
on the mean level of depolarization and thus separate a regime of a stimulus mean below
threshold from a regime of a stimulus mean above threshold. In both regimes, spike timing
reliability is tightly connected to frequency selectivity. Specific ionic conductances can adjust
the frequency selectivity and thus also determine spike timing reliability. Intriguingly, they can
also directly influence spike timing reliability through an additional effect – the modification
of a cell’s sensitivity to noise. The latter arises from cell-intrinsic or cell-extrinsic sources and
usually tends to compromise reliability. Our findings suggest an important role for dynamic
neuromodulation of ion channels with regard to signal integration within individual cells and
within neural networks.

1So is clapping, as a study published recently shows (Néda et al., 2000).
2Spike timing reliability as considered here is characterized by both the probability of the occurrence

of spikes as well as their temporal precision. In principle, the terms spike reliability and reproducibility of
neural responses could have been equally used in this thesis.



1.4. OVERVIEW 3

1.4 Overview

Before we begin the exploration of signal integration in individual neurons, let us briefly look
at the structure of this work. Chapter 2 lays the foundations for the fundamental concepts,
embracing the functioning of ion channels, the effect of subthreshold resonance, and spike
timing reliability. The subsequent chapters are arranged according to the mean level of neuronal
depolarization. In other words, when progressing from one chapter to the next, we will move
gradually from the subthreshold nonspiking regime towards the suprathreshold spiking regime.

Chapter 3 starts out with the analysis of frequency selectivity for inputs resulting in graded
nonspiking responses. The influence of subthreshold resonances on the integration of signals
in cells of the entorhinal cortex is investigated. Here, we will examine whether the integration
of periodic and nonperiodic inputs is governed by the same mechanism.

In chapter 4 we begin the analysis of spike timing reliability, for stimuli with subthreshold
mean, which is extended in chapter 5 for stimuli with a mean above firing threshold. In these
chapters the topics of spike timing reliability and frequency selectivity overlap. Chapter 4
elucidates the mechanism that leads to frequency preference of spike reliability and establishes
a connection to the mechanism of subthreshold resonance. Chapter 5 reviews the resonance
mechanism of spike timing reliability described previously and focusses on the influence of ionic
conductances on the tuning of frequency preference. Chapter 6 discusses the results obtained
for both sub- and suprathreshold regimes.

Chapter 7 is also devoted to the analysis of spike timing reliability for stimuli of suprathresh-
old mean. Here, the influence of the ion channels on the sensitivity to noise beyond frequency
preference is presented.

Last but not least, Chapter 8 provides a summary and discussion of the results, as well as
an outline of future research directions. The Appendices A to D contain additional material
concerning the measure of spike timing reliability as well as all technical modeling details,
which have been excluded from the main text for the purpose of readability.
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Chapter 2

General concepts

To start the investigation of frequency selectivity and spike timing reliability in single neurons,
we first need to acquaint ourselves with some of the fundamental concepts. This chapter
therefore covers in large steps three different topics, including frequency selectivity and the
reliability of spiking responses. We begin with a brief look at the functioning and modeling of
ion channels.

“Ion channels are macromolecular pores in cell
membranes. When they evolved and what role
they may have played in the earliest forms of
life we still do not know, but today ion channels
are most obvious as the fundamental excitable
elements in the membranes of excitable cells.”

Bertil Hille, 2001

2.1 Ion channels

Ion channels are ubiquitous in nature. They are integral components of the most complicated
and the most simple nervous systems, but can also be found in plants and bacteria. Hundreds
of ion channels exist, they come in various shapes and flavors, though many of them share
similar structural principles.

2.1.1 A multitude of ion channels

For the generation of efficient neural signals, such as graded changes in membrane potential
as well as action potentials or spikes, in principle two voltage-gated ion channel types are suf-
ficient: sodium and potassium. Evolution chose, however, to create many different and highly
specific types of ion channels. Thus we can find today channels differing in principal carrier,
voltage dependence, time scale of activation and potentially inactivation, dependence on in-
ternal calcium, as well as a vast zoo of regulatory mechanisms including neuromodulators and

5



6 CHAPTER 2. GENERAL CONCEPTS

cell-intrinsic messengers. The operation of ion channels is costly1, in addition, their composi-
tion changes constantly and is highly regulated. The intrinsic membrane currents determined
by the properties of ion channels have been found to contribute to electrical responses and to
memory mechanisms in an activity-dependent way (Turrigiano et al., 1994; Marder et al., 1996;
Goldman et al., 2001; Destexhe and Sejnowski, 2003). To elucidate the role of individual ionic
conductances for specific areas of signal integration is one of the major aims of this thesis.

Ion channels function by stochastic opening and closing of a transmembrane pore to se-
lected ions. The macroscopically measured currents arise from populations of individual ion
channels. The macroscopic behavior can be captured on the basis of kinetic models that
characterize transitions between conformational states. The first quantitative description of
signal integration with ion channels is a cornerstone of modern neurobiology – the model of
action potential initiation by Hodgkin and Huxley (1952). Derived for the squid giant axon, it
still forms the basis for the most commonly used characterization today: conductance-based
models. To date, many ion channels of the nervous system have been characterized in great
detail. To a good approximation, most of them can be modeled according to the principles
introduced by Hodgkin and Huxley.

Also in the present work, conductance-based model neurons form the basis of theoretical
investigation. Therefore, we will briefly review the basic principles underlying these models.
For a more detailed description we refer the reader to standard textbooks, such as (Koch, 1999;
Kandel et al., 2000).

2.1.2 The principles underlying conductance-based neuron models

The generation of voltage responses involves changes in ionic conductance. In the example
of the classical Hodgkin-Huxley model, two major voltage-dependent channels are responsible
for the generation of action potentials: sodium (Na) and potassium (K). In addition, a small
conductance that does not depend on voltage – the so-called leak conductance (L) – is present.
Although the cells used in this study are equipped with a number of additional channels, the
Hodgkin-Huxley channels are representative for the functioning of conductance-based model
cells. These follow a few general principles:

(1) The net current flowing across the membrane is zero, so that the current-balance equation
holds:

Cm
dV

dt
= −INa − IK − IL + Iext, (2.1)

where V denotes the potential across the membrane, Cm the membrane capacitance, and INa,
IK, and IL the corresponding ionic currents. Iext characterizes the external current (either a
synaptic current or the current injected via an electrode). The input to conductance-based
model cells is presented via Iext.

1Interestingly, the largest cost does not arise from the maintenance of the channels themselves, but from
the active pumping of ions that passed the channels in order to stabilize the ionic concentration gradients
(Attwell and Laughlin, 2001).
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(2) In the model, ionic currents are linearly related to the time- and voltage-dependent ionic
conductances (gNa, gK, and gL) and the difference between voltage and reversal potentials
(ENa, EK, and EL):

Cm
dV

dt
= −gNa(V − ENa)− gK(V − EK)− gL(V − EL) + Iext. (2.2)

The reversal potential for each ion type can be derived from Nernst’s equation and is assumed
to be constant. The latter approximation is usually valid if large fluctuations of ionic concen-
trations on either side of the membrane can be excluded.

(3) Ionic conductances depend on the conformational state of the ion channels. The con-
ductances can be expressed as the product of a peak conductance and the fraction of open
channels.2 The fraction of open channels in turn depends on the state of so-called activa-
tion and inactivation gating particles, which all have to be in the correct state to permit ion
flow. Each ion channel may have several independent gating particles, whose open probability
multiply to give the fraction of open channels. In the case of the classical Hodgkin-Huxley
Na channel three activation particles and one inactivating particle are assumed, with open
probabilities denoted as m and h, respectively. Thus the sodium conductance, gNa equals

gNa = ḡNam
3h. (2.3)

(4) The transition of gating particles from the open to the closed state is governed by a kinetic
reaction scheme, such as

m
αm

⇀↽
βm

1−m, (2.4)

which mathematically corresponds to a first order differential equation with the voltage-
dependent transition constants αm(V ) and βm(V ):

dm

dt
= αm(V )(1−m)− βm(V )m. (2.5)

An equivalent but more common way to express the gating kinetics, exemplified for the acti-
vation particle of the Na channel, is the following:

τm(V )
dm

dt
= m∞(V )−m, (2.6)

where τm = 1/(αm(V ) + βm(V )) specifies the voltage-dependent time constant and m∞ =
αm/(αm + βm) the voltage-dependent steady state value of a gating process. In contrast to
the steady state values, the time constants depend on the absolute size of the transition rates
αm and βm. Thus time constants change, for example, with temperature.

2 Usually, only the value of the peak conductance is specified. It is derived from the total number of
ion channels of a given type and the single-channel conductance.
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Altogether, the original Hodgkin-Huxley equations represent a nonlinear system of four dif-
ferential equations, where the kinetics of three types of gating particles (m, h, and a variable
n for potassium) are coupled to the voltage, V . In general, the full solution of such a system
can only be achieved numerically.

While the equations 2.1, 2.2, and 2.6 form the core of all conductance-based models,
simplifications are possible depending on the characteristics of ion channel types. In the
following, some ion channels are used in their full description, such as for example the Na
channel. Other channels are described by only one gating particle, such as the muscarinic
potassium channel, M. The slow potassium channel, Ks, relies on a simplified kinetic scheme
where the voltage-dependence of the time constant is approximated by a constant value, τKs.
The simplicity of the Ks channel, for example, has the advantage to represent a more general
class of noninactivating potassium channels, here used with kinetics slower than the action
potential time scale. Ligand-gated ion channels can also be incorporated according to the
principles described above. For them, the concentration of the ligand has to be included as a
variable in the system of differential equations, usually assuming first-order kinetics.

Throughout this work, one-compartmental conductance-based model neurons on the basis
of Hodgkin-Huxley type sodium conductances (Na), delayed rectifier potassium conductances
(Kdr), and leak conductances (L), are employed. The model cells can also contain a persistent
sodium conductance, NaP, an H conductance, and one of three slow potassium conductances
(Ks, M, and Kca). The presence of the ionic conductances is discussed in the corresponding
chapters, a complete overview is given in Appendix B. In addition to these conductance-based
model neurons, a reduced two-dimensional system introduced by Morris and Lecar (1981) is
analyzed (see Appendix C).

Having gathered the basic principles how ionic conductances determine the generation
of voltage signals in neurons, we now turn to the first mechanism that leads to frequency
selectivity: subthreshold resonance.

2.2 Subthreshold resonance

Subthreshold resonance is a phenomenon observed for graded (nonspiking) responses. Proper-
ties of the membrane determine the amplitude of subthreshold responses to sine wave stimuli in
a frequency-dependent way. Many cells exhibit low-pass-filter characteristics, i.e. the response
amplitude is largest for constant (0 Hz) stimuli and falls off with increasing frequency. A large
number of cells, however, show a maximal response amplitude at non-zero frequencies. They
exhibit a subthreshold resonance.

Subthreshold resonances have been described in a number of excitable cell types (Cole,
1968; Mauro et al., 1970; Nelson and Lux, 1970; Fishman et al., 1977; Gimbarzevsky et al.,
1984; Moore and Christensen, 1985; Jansen and Karnup, 1994), including muscle cells (Falk
and Fatt, 1964), cardiac cells (DeFelice, 1981), hair cells of the inner ear (Hudspeth and Lewis,
1988), cells of the hippocampus and amygdala (Leung and Yu, 1998; Pape and Driesang, 1998;
Pike et al., 2000; Hu et al., 2002), in various cortices (Alonso and Llinás, 1989; Gutfreund
et al., 1995; Hutcheon et al., 1996b; Schmitz et al., 1998; Haas and White, 2002), the thalamus
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(Puil et al., 1994; Hutcheon et al., 1994), as well as olivary neurons (Lampl and Yarom, 1997).

2.2.1 Importance of subthreshold resonance

There is analytical and experimental evidence that the resonance properties play an important
role in tuning neurons to inputs in particular frequency bands (Izhikevich, 2001; Haas and
White, 2002; Richardson et al., 2003). Resonance may thus provide a key mechanism to
establish a frequency-dependent information flow between cortical areas (Chrobak and Buzsaki,
1998; Gloveli et al., 1997; Dickson et al., 2000b). For example, cells in the entorhinal cortex
that provide input to the hippocampus show a pronounced subthreshold resonance in the
same frequency band as the theta rhythm, an electroencephalographic (EEG) rhythm in the
hippocampal region associated with conditions like active exploration (Alonso and Klink, 1993;
Bland and Colom, 1993; Hasselmo et al., 2000). The resonance may enable these cells to
directly contribute to the theta rhythm, it may, on the other hand, also promote synchrony
(Hutcheon and Yarom, 2000) of such neurons if coupled in a network. A closer look at
the influence of subthreshold resonance on signal integration in these cells will be taken in
Chapter 3. In addition, subthreshold resonance is associated with the occurrence of intrinsic
subthreshold oscillations of the membrane potential, see for example (Richardson et al., 2003;
Erchova et al., 2004). These oscillations, however, are not investigated in this work.

2.2.2 Measurement of subthreshold resonance

It is common to use one of two ways to measure subthreshold resonance: either by analysis
of the response amplitude or by quantification in terms of the electrical impedance. In the
first case, response amplitudes are directly obtained by stimulation with sine waves of different
frequencies. One stimulus per frequency has to be utilized. In the second case, often so-called
ZAP (impedance(Z)-Amplitude-Profile) stimuli are employed. These are sine waves with time-
dependent frequencies, for example with a linear increase in frequency as used throughout this
work: IZAP(t) = I0 sin[2πf(t)t], with f(t) = fmt/2T . I0 represents the amplitude of the
ZAP stimulus, fm is the maximum frequency, and T the stimulus length. An example of a
ZAP stimulus with frequencies increasing from 0 to 20 Hz is shown in Fig. 2.1A.

Testing a whole range of frequencies within one stimulus presentation, these types of stimuli
allow a more efficient characterization of subthreshold resonance. With varying frequency also
the “local” response amplitudes vary and thus reflect frequency-selectivity, as can be seen in
Fig. 2.1B. The frequency-dependent electrical impedance is obtained as the Fourier transform
of the time-dependent response to a ZAP input divided by the Fourier transform of the ZAP
current, Z(f) = FFT [VZAP(t)]/FFT [IZAP(t)] (Gimbarzevsky et al., 1984; Puil et al., 1986;
Puil et al., 1988). Fig. 2.1C shows the impedance corresponding to the stimulus and response
shown in panels A and B. In order to avoid large transient responses due to fast changes in the
stimulus frequency, ZAP currents usually extend over several tens of seconds. For an increase
from 0 to 20 Hz we use a duration of 30 seconds throughout this thesis. It was checked that
ZAP currents of double and half duration gave similar estimates for the investigated neurons
and model cells.
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Figure 2.1: Measurement of subthreshold resonance. A A ZAP stimulus with a linear
increase in frequency from 0 to 20 Hz. For frequencies larger than 5 Hz the variation in
the stimulus cannot be resolved graphically in this representation. B The response of a
model cell to the stimulus in A. The “local” amplitudes depend on the stimulus frequency.
The amplitudes are largest in between 10 and 15 seconds after stimulus onset. C The
electrical impedance calculated on the basis of the stimulus and response shown in A and
B (thin black line) and the corresponding fit with the electrical circuit model (thick gray
line). The model cells shows a clear resonance at 7.5 Hz with a Q-value of 1.35.

The resonance frequency is given by the frequency at the impedance peak. In the following,
we denote a resonance frequency of 0 Hz if the impedance is monotonically decreasing and
has a maximum at 0 Hz (although a cell with this profile would be called nonresonant). As an
estimate of the strength of the resonance, the Q-value is given as the ratio of the impedance
at the resonance frequency and the impedance at 0 Hz; the Q-value is larger than 1 for cells
with subthreshold resonance and equals 1 for cells with low-pass-filter characteristics. As
the presence of noise may lead to Q-values larger than 1 even for cells without subthreshold
resonance, it is useful to raise the Q-value that separates resonant from nonresonant behavior
in experiments to a slightly larger value, such as 1.2.

2.2.3 Fitting of impedance profiles

Impedance curves can be fitted with a two-dimensional electrical circuit model with four fit
parameters, designed to account for the resonance properties of neuronal membranes. Electrical
circuit models are equivalent to models of linearized voltage-dependent currents, as suggested
by Mauro et al. (1970). Interpreted as an electrical circuit (see also Koch, 1999), the model
consists of two parallel branches (Fig. 2.2). The first branch is characterized by a resistance
(Rm) in parallel with a capacitance (C) and mimics the integrative properties of a leaky-
integrator. The second branch consists of another resistance (RL) in series with an inductance
(L) and captures the response properties of a delayed rectifying current. Due to its simplicity,
this model has been used in various mathematical investigations of subthreshold phenomena
(Mauro et al., 1970; Hutcheon and Yarom, 2000; Izhikevich, 2001; Richardson et al., 2003;
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Erchova et al., 2004).

R

C

L

m Rm

L

Figure 2.2: The electrical circuit model upon which the fit of the impedance curves is
based.

2.2.4 How ion channels determine the resonance

Extensive investigation in the last decade has revealed many of the principles underlying sub-
threshold resonance. It has been shown that resonance arises from the interplay between
passive and active membrane properties. In order to shape a subthreshold resonance, mecha-
nisms that lead to the attenuation of signals at high and low frequencies are needed, so that
only signals in between can pass efficiently. For an extensive review of these mechanisms we
refer the reader to Hutcheon and Yarom (2000).

Based on the results summarized in their review, we know how the combination of different
ion channels can lead to subthreshold resonance: First, leak channels in the membrane and the
membrane capacitance cause the attenuation of high-frequency responses. Second, voltage-
gated ion channels act as high-pass filters, diminishing the responses to low frequencies. Not
all voltage-gated ion channels are suitable, because ion channels leading to resonance must
fulfill two conditions: (1) They have to oppose changes in membrane potential, such as do
potassium channels or H channels. This includes all channels whose reversal potential falls
near the base of their activation curve. (2) The channels must activate slowly relative to
the membrane time constant to oppose slow changes in voltage and act as high-pass filters.
Two of the most effective ion channel types are slow potassium channels and H channels
with time constants on the order of several tens of ms. Slow potassium channels mainly
activate with depolarization and counteract depolarizing changes in membrane potential. H
channels activate upon hyperpolarization and oppose hyperpolarizing changes in membrane
potential (see also Fig. 2.4). In addition, other conductances, such as the noninactivating
persistent sodium conductance, can help to amplify the resonance (Gutfreund et al., 1995;
Hutcheon and Yarom, 2000).
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2.2.5 Slow potassium and H channels are major players

Indeed, both slow potassium channels as well as H channels can produce subthreshold res-
onance, as impedance curves measured for three conductance-based model neurons confirm.
The neurons are equipped with Na, Kdr, L, and NaP channels, in addition they also contain
different amounts of muscarinic potassium channels, M, and, H channels. No noise is present.
Without M and H channels, the neurons show low-pass-filter impedance profiles (data not
shown). If H or M are present, however, subthreshold resonances can be found:
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Figure 2.3: Influence of H and M channels on subthreshold resonance. A Impedance
curves at different DC levels (-0.3 nA to +0.2 nA in steps of 0.1 nA, light to dark curves)
for a cell with H channels (gH=0.2mS/cm2). B Impedance curves for a cell with M
channels gM=0.4mS/cm2 (at DC levels 0.02, 0.08, 0.14, 0.2, 0.24, and 0.26 nA, light to dark
curves). C Impedance curves for a cell with both, H and M, channels (gH=0.2mS/cm2,
gM=0.4mS/cm2) at different DC levels (-0.3 nA to +0.2 nA in steps of 0.1 nA, light to
dark curves). D-F Resonance frequency and Q-value (in the insets) as a function of the
DC level for the three cells shown in the panels above. The range of IDC values on the
x-axis corresponds to voltages from -73 to -61 mV (D and F) and -81 to -60mV (E). The
combination of H and M channels can stabilize the resonance frequency over a broad range
of DC levels.

With H channels: Subthreshold resonance is observed. Resonance frequency and Q-value
depend on the level of the membrane potential (determined by the DC component of the
stimulus). Fig. 2.3A shows the impedance profile for various levels of membrane potential.
The darker the curves, the larger the DC and consequently the larger the membrane potential.
For hyperpolarized membrane potentials (lighter curves) the resonance is strong with Q-values
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around 2 and a resonance frequency around 12 Hz (Fig. 2.3D). With increasing depolarization
(darker curves Fig. 2.3A) the overall impedance values rise, however, the resonance weakens,
as is reflected in a decreasing Q-value, and the resonance frequency decreases.

The reason for the dependence of the resonance on the DC level is the voltage-dependence
of the H activation curve. H is mainly activated in the hyperpolarizing regime, see Fig. 2.4,
characterized by a half activation voltage of -82 mV in the model. The H conductance is less
active in more depolarized regimes, which shows in the impedance curve.
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Figure 2.4: Steady state activation of H and M model channels as a function of voltage.
An activation value of 1 characterizes a state where all channels are open.

With M channels: M channels are activated at depolarized levels of membrane potential
(Fig. 2.4). The half activation voltage in the model is -35 mV. Thus cells that do not contain
H channels, but a significant M conductance exhibit no resonance at hyperpolarized levels of
membrane potential (lighter curves in Fig. 2.3B), but a pronounced resonance closer to thresh-
old (darker curves). Resonance frequency and Q-value increase towards threshold, as Fig. 2.3E
indicates.

Characteristic of both cells above (with H and with M) is a strong dependence of the
resonance frequency on the DC. For some cell types, as for examples stellate cells in layer
II of the entorhinal cortex and CA1 pyramidal cells in hippocampus, however, the resonance
frequency is relatively stable over a wide range of membrane potentials (Erchova et al., 2004).
We hypothesize that for stabilization of the resonance frequency over a broad range of mem-
brane potentials several resonating currents with activation ranges at different voltages (such
as H and M) have to be combined:

With H and M channels: Resonances caused by each channel type complement one another
and the two peak conductances of both channels can even be tuned to result in a reso-
nance whose frequency is independent of the DC (Fig. 2.3C and 2.3F). Although the ab-
solute values of impedance increase with DC, the overall shape of the resonance is sim-
ilar and the resonance frequency is relatively stable. In the case of the CA1 hippocam-
pal pyramidal cells both, H and M currents, have been shown to be involved in the res-
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onance (Hu et al., 2002). For entorhinal stellate cells, which will be discussed in more
detail in Chapter 3, the presence of H currents has been proven (Dickson et al., 2000a;
Richter et al., 2000), and there is indirect evidence in support of the presence of M currents,
because they are affected by retigabine (Hetka et al., 1999). The latter was recently shown
to act on muscarinic potassium channels (Rundfeldt and Netzer, 2000; Main et al., 2000). In
addition, subunits of muscarinic potassium channels (in the KCNQ family) have been found
to be expressed in layer II of the entorhinal cortex (Saganich et al., 2001).

2.2.6 Neuron type and subthreshold resonance

When discussing subthreshold resonance, it should be mentioned that for two-dimensional
neuron models it is possible to establish a relation between the existence of a subthreshold
resonance at threshold and two types of neuronal dynamic, the so-called type I and type II
dynamics. This relation will be discussed in Chapter 6. The different dynamics are reflected
in different basic properties of neuronal signal integration. It has been known for long, see
for example (Hodgkin, 1948), that neurons can be classified either as one type or the other
according to their responses to constant currents. Accordingly, one obvious difference between
the two types is the firing rate in response to constant stimuli directly above threshold. While
type I neurons can exhibit arbitrarily low firing rates, type II neurons have a minimum firing
rate distinct from zero (Fig. 2.5). In case of the classical Hodgkin-Huxley model this onset
firing rate is on the order of 50Hz. The reason for the different behavior of these neuron types
is the type of bifurcation that occurs at the threshold. Either the fixed point (i.e. the steady
state voltage) in the subthreshold regime loses stability in a saddle-node bifurcation (type I)
or in a Hopf bifurcation (type II), see for example (Hansel et al., 1995; Ermentrout, 1996;
Rinzel and Ermentrout, 1998). For further details on the bifurcation types we refer the reader
to the literature on nonlinear dynamics, such as (Strogatz, 1994).
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Figure 2.5: Schematic representation of the firing rate as a function of the input current,
IDC , for type I and type II dynamics. For type I the firing rate increases continuously,
whereas for type II the firing rate jumps to large values directly at threshold.
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In general, the effects of subthreshold resonance are not limited to subthreshold responses,
they can also influence the generation of spiking responses. The analysis of the relation be-
tween subthreshold resonance and the firing rate of spikes as well as spike timing reliability
plays a major role in Chapters 3 and 4. Therefore basic facts on spike timing reliability are
introduced in the last section of this chapter.

2.3 Spike timing reliability

From what we know today, spikes constitute the inter-neuronal signals of choice in the central
nervous system.3 Because of the all-or-none nature of their generation, they are very robust
and can transmit information efficiently over long distances (Attwell and Laughlin, 2001).
Their fast onset allows to amplify fast transients and can thus sharpen the temporal structure
of neuronal signals (Kretzberg et al., 2001).

2.3.1 Firing rate versus the timing of spikes

Spiking responses consist of a series of pulses in time. It is not straightforward to assign a unique
decoding strategy to recover the information represented by a spike train (Rieke et al., 1997;
Theunissen and Miller, 1995; Salinas and Abbott, 1994). The current research reflects a lively
debate about the time window relevant for decoding: In one extreme, the neuronal firing rate,
defined for example by the number of spikes averaged over a time window of several tens to
hundreds of milliseconds, could contain all information (we also speak of a rate code). This
view underlies many studies, in which neuronal responses are evaluated in terms of firing rate,
see for example (Adrian, 1928; Britten et al., 1992; Shadlen and Newsome, 1994). In the other
extreme, the very position of each individual spike in time could matter and code information
about the signal (spike timing code). In principle, such a spike timing code can achieve higher
rates of information transmission, because the exact position of spikes opens an additional
coding dimension (Bair and Koch, 1996; Rieke et al., 1997).

The prerequisite for a timing-based code is the capability of neurons to reliably produce
spikes with high temporal precision. To date, many studies have provided evidence for high
reliability of the spike initiation process in various parts of nervous systems, comprising for
example retina and LGN (Berry et al., 1997; Reich et al., 1997; Reinagel and Reid, 2000;
Reinagel and Reid, 2002), the electrosensory system of electric fish (Kreiman et al., 2000),
hippocampus and cortex (Mainen and Sejnowski, 1995; Fricker and Miles, 2001; Fellous et al.,
2001; Maccaferri and Dingledine, 2002; Haas and White, 2002; Wehr and Zador, 2003;
Axmacher and Miles, 2004), insect motion detection (de Ruyter van Steveninck et al., 1997;
Warzecha et al., 1998), insect auditory receptors (Machens et al., 2001; Machens et al.,
2003), locust olfaction (Wehr and Laurent, 1996), zebra finch forebrain (Chi and Margo-
liash, 2001), and various other sensory and cortical systems, for reviews see (Bair, 1999;

3It should be noted, however, that much of the signal processing happens in a graded signal regime,
as for examples in the dendrites, and that direct graded signaling between cells through dendro-dendritic
electrical synapses not involving spikes could play a more important role than currently believed.
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Lestienne, 2001). Furthermore, highly synchronized states of many neurons have been ob-
served in local field potential recordings and EEG, see for example (Buzsaki et al., 1983;
Gray et al., 1989). Additional evidence for the important role of temporal precision is provided
by the emerging rules of spike-timing-dependent plasticity, where the strengthening or weak-
ening of synaptic connections is decided by a temporal difference of a few milliseconds in spike
timing (Markram et al., 1997; Bi and Poo, 1998).

During the last years is has become increasingly evident that the exclusive alternative
between a firing rate code and a temporal (spike timing) code is ill-phrased. It is more likely
that – depending on the specific system and task – spikes can be read out at various time scales,
opening a broad spectrum between a rather static firing rate and individual spike timing (Softky
and Koch, 1993; Rieke et al., 1997; Koch, 1999; deCharmes and Zador, 2000). In addition,
it is not only the time of individual spikes that matters, but information can also be carried
by complex relationships between spikes, as for example by the inter-spike intervals or higher-
order correlations in the spikes of groups of neurons (Abeles, 1991; Dayan and Abbott, 2001;
Ikegaya et al., 2004). At the same time, situations where the individual timing of spikes
matters have been confirmed experimentally, so that the ability of neurons to give phase-
locked responses is of immediate interest for the understanding of the nervous system.

Consequently, the experimental studies have been accompanied by a multitude of the-
oretical investigations, trying to elucidate the reliability of spike generation. Thus various
aspects of spike timing reliability have been analyzed on the basis of integrate-and-fire models,
conductance-based model neurons, and stochastic models, as for example in (Pei et al., 1996;
Schneidman et al., 1998; Hunter et al., 1998; Cecchi et al., 2000; Beierholm et al., 2001;
Van Rossum, 2001; Tiesinga, 2002; Tiesinga et al., 2002; Manwani et al., 2002; Brette and
Guigon, 2003; Hunter and Milton, 2003; Gutkin et al., 2003; Svirskis and Rinzel, 2003). Both
experimental and theoretical analysis rely on the definition of a measure of spike timing relia-
bility. In the following, we introduce a correlation-based approach.

2.3.2 The correlation measure of spike timing reliability

A timing-based code could be achieved by reproducible neuronal responses that readily phase-
lock to the stimulus. Individual neurons, however, are subject to intrinsic and extrinsic noise,
as caused by the stochastic nature of channel opening, or by synaptic noise due to external
stimulus-uncorrelated inputs. For a review of the individual noise sources see for example
(Manwani and Koch, 1999). The presence of noise decreases the reproducibility of responses
to identical stimuli, it lowers the reliability.

Reduced reproducibility manifests itself in two ways. First, the number of spikes in response
to a stimulus can be variable - spikes are missing or additional spikes occur. Second, temporal
jitter in the timing of individual spikes is observed. Fig. 2.6 illustrates an input to a model cell
and 20 responses to the same stimulus in the presence of noise. Obviously both, variation in
spike number (mainly missing spikes) and timing jitter occur and thus decrease reliability.

How can spike timing reliability be quantified? Although a multitude of different measures
have been used for the analysis of spike timing reliability, we introduce a simple correlation-
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Figure 2.6: Spike timing reliability. A A noise stimulus and 20 spike trains elicited in
responses to repeated presentation of this particular stimulus (with a different realization of
intrinsic neuronal noise for each stimulation). The data are obtained from a conductance-
based model cell. Reliability can be decreased because of missing and additional spikes
(as for the spikes around 500 ms) or because of timing jitter (as for example at 200 ms).

based approach, that captures both sources of unreliability. In contrast to many other measures,
it relies on the structure of individual responses and does not require the definition of a
posteriori events. It also offers the advantage that it has only a single, intuitive parameter,
that determines the influence that timing jitter has compared to missing or additional spikes.
The measure will be applied to both experimental and modeling data. For a comparison of
this measure to histogram-based measures see Appendix A.

Practically, spike trains have to be obtained from N repeated presentations of the same
stimulus. They are convolved with a Gaussian of standard deviation σt (the only parameter
of the measure, also referred to as filter width) resulting in filtered spike trains, which we
denote ~si for notational simplicity (i = 1, ..., N). The convolution smoothes the spikes and
allows for temporal overlap between spikes in different responses. The allowed temporal jitter
is thus directly determined by the parameter σt. Smoothed spike trains are pairwise correlated
(Fig. 2.7) and the normalized value of this correlation is averaged over all combinations of
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pairs. The correlation measure, R, is therefore given by

R =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

~si · ~sj

|~si||~sj |
.

The normalization guarantees that R ∈ [0; 1]. R=1 indicates highest reliability (when all
spike trains are identical) and R=0 lowest. For most model cells studied, σt equals 1.8 ms;
exceptions and values of σt for experimental data are indicated in the text. Generally, the value
of the filter width σt is chosen such that, given the noise level, reliability values exploit the
possible range of values [0;1], allowing for better discrimination between reliable and unreliable
spike timing. All evaluation of model and experimental data (beyond obtaining spike times)
has been performed in Matlab.
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Figure 2.7: Illustration of the correlation-based measure. A A raw spike train with four
spikes (vertical black lines) and the same spike train filtered with a Gaussian (gray line,
~s1). B Another spike train and its smoothed version (~s2) in response to the same stimulus.
Obviously, the first spike is missing. The last spike shows a high temporal jitter. C The
element-wise multiplication of the two spike trains in A and B. The gray area under the
curve equals the scalar product ~s1 · ~s2 and indicates the (unnormalized) contribution of
this pair of spike trains to the reliability estimate, R. The missing first spike in ~s2 as well
as the large temporal jitter between the last spike in ~s1 and ~s2 strongly reduce R.



2.3. SPIKE TIMING RELIABILITY 19

2.3.3 Stimulus statistics

For the analysis of the mechanisms that set the reliability of responses three major aspects
have to be taken into account.

First, intrinsic properties of a neuron play an important role. On the one hand intrinsic
noise sources directly influence reliability (see, for example, Schneidman et al., 1998). On the
other hand the intrinsic neuronal dynamics that shape the responses to a given input can also
be expected to influence reliability (Fricker and Miles, 2000; Magee, 2002; Franz and Ronacher,
2002; Svirskis and Rinzel, 2003; Axmacher and Miles, 2004). Many questions, however, remain
open: What are the mechanisms that would allow ion channels to influence reliability? Which
ion channels are decisive? How do intrinsic properties interact with external properties?

Second, in addition to intrinsic mechanisms also extrinsic influences – the most obvious
being external neuronal noise sources – determine spike timing reliability. The work of Hunter
et al. (2003) shows for example an influence of additional synaptic input through modification
of the neuronal firing rate. Others discuss the modification of timing precision due to well
timed inhibitory or excitatory input (Mehta et al., 2002).

Third, features of the stimulus are as important as the intrinsic and extrinsic properties set
by the nervous system. Thus a neuron may respond reliably to stimulus A, but unreliably to
stimulus B. For spike timing the two most relevant stimulus properties are the variance and the
frequency content. Mainen and Sejnowski were the first to show that reliability improves with
larger stimulus variance. Many following studies have provided evidence that also the frequency
content matters (Nowak et al., 1997; Hunter et al., 1998; Jensen, 1998; Fellous et al., 2001;
Tiesinga, 2002; Haas and White, 2002; Hunter and Milton, 2003). While the mechanisms
responsible for frequency selectivity of spike timing reliability have been described for some
stimulus regimes, see for example (Hunter et al., 1998; Hunter and Milton, 2003), the picture
is not yet complete. One major aim of this work is therefore to provide a systematic analysis
of frequency preference of spike timing reliability.

As indicated, the factors determining spike timing reliability are complex. In the following,
we will concentrate on the interplay between the first and the third aspect. Four chapters of
this thesis are devoted to the analysis of reliability. We can separate three topics: A systematic
investigation of frequency preference of spike timing reliability and the mechanisms that shape
it. The influence of intrinsic parameters on the tuning of frequency preference. Finally, the
influence of ion channels on spike timing reliability beyond frequency preference.

Summary

Ion channels are stochastic devices that determine the voltage across the cell membrane
through selective gating of ions. Their effect on the membrane potential can be described
by conductance-based models, first introduced by Hodgkin and Huxley (1952). The existence
of many different ion channel types and many different regulation mechanisms suggests that
the differential properties of ion channels play specific roles in the integration of signals in
single neurons.

A specific mechanism that influences the translation of signals into voltage responses is



20 CHAPTER 2. GENERAL CONCEPTS

subthreshold resonance. For nonspiking responses to sinusoidal stimuli, this resonance leads
to maximal response amplitudes at non-zero frequencies. Subthreshold resonance can be
characterized in terms of the electrical impedance, which is conveniently estimated on the
basis of so-called ZAP stimuli. The composition of ion channels in a neuron determines which
frequencies lead to the largest responses.

One important property of spiking responses is the reliability of the timing of spikes. Al-
though various neural noise sources impair the reproducibility of responses to the same stimulus,
spike timing reliability has been found to be very high in a large number of cell types. Reduced
reliability is characterized by temporal jitter in the timing of individual spikes as well as in the
absence of some spikes or the occurrence of additional, noise-triggered spikes. Reliability can
be assessed on the basis of a correlation measure. For the analysis of reliability two aspects
are fundamental: properties of the stimulus and intrinsic properties of the cell, such as the
composition of ion channels. A large part of this study is devoted to the investigation of the
mechanisms that lead to frequency preference of spike timing reliability.



Chapter 3

The integration of subthreshold signals

With this chapter we begin the investigation of frequency-selectivity in the subthreshold regime.
While a large part of the thesis analyzes spiking responses, we here start with purely subthresh-
old responses.1

3.1 The questions

As we have discussed in the previous chapter, the electrical impedance is frequency-dependent
and thus also determines the frequency-dependence of response amplitudes. The impedance
profile, however, is estimated on the basis of periodic (sinusoidal) stimuli or ZAP-stimuli,
which for small time windows resemble sinusoidal stimuli. It has been questioned recently,
whether the findings based on these approaches also extend to more general stimuli, such as
randomly fluctuating inputs. One study, in particular, implies that subthreshold responses to
noise stimuli are strongly nonlinear and nonresonant, and suggests distinctive input-output
relations under subthreshold and suprathreshold conditions (Haas and White, 2002). While
they describe a subthreshold resonance on the basis of periodic stimuli, they do not observe
frequency-dependence in the integration of subthreshold nonperiodic noise stimuli.

Because response properties that strongly depend on stimulus characteristics would have
far-reaching consequences for our basic understanding of neural dynamics and information
processing, we repeated some of the experiments in the same system: the superficial layers II
and III of the entorhinal cortex. These neurons show two types of resonance behavior: Stellate
cells in layer II exhibit a prominent peak in the impedance at stimulus frequencies of 5–16 Hz.
Pyramidal cells in layer III show only a small impedance peak at low frequencies (1–5 Hz) or a
maximum at 0 Hz followed by a monotonic decrease of the impedance. Both cell classes vary
strongly in their dynamical characteristics so that generic properties of subthreshold input-
output relations can be identified. We ask whether frequency-selectivity observed for periodic
stimuli also extends to nonperiodic stimuli, specifically colored noise stimuli of different cutoff
frequencies, or whether a separate mechanism has to be assumed for nonperiodic stimuli. In
addition we want to find out whether the effects found in the subthreshold regime also translate
into the spiking regime in terms of firing rate.

1This chapter is adapted from Schreiber et al. (2004a).
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3.2 The noise stimuli

In order to analyze whether the subthreshold frequency selectivity in response to periodic inputs
also influences the integration of nonperiodic inputs, four different types of frozen low-pass
filtered Gaussian noise stimuli are used, following the analysis of (Haas and White, 2002).
Gaussian white noise is convolved with a low-pass filter f(t), with f(t) = e−t/τ , for t > 0
and zero otherwise. The time constant, τ , determines the cutoff frequency, fcut=1/2πτ , of
the resulting stimulus. Values of τ used are 80, 20, 10, 3 ms, leading to cutoff frequencies of
approximately 2, 8, 16, and 53 Hz, respectively. Through the filter operation the power of the
stimulus is distributed unevenly over frequency space. The smaller the cutoff frequency, the
more of the total stimulus power is allocated to the lower frequencies. A 2 Hz cutoff stimulus,
for example, contains 93 % percent of its power in the range below 20 Hz (see Fig. 3.1A),
whereas the 53 Hz cutoff stimulus contains only about 23 % of its power in this frequency
range. We refer to the first three types of stimuli as lower-frequency stimuli and the 53 Hz
cutoff stimulus type as a broadband stimulus.
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Figure 3.1: Stimuli and responses. A Actual average power spectra of the four stimulus
types, which differed in their cutoff frequency, fcut. The black line indicates the idealized
theoretical power spectra, the labels in the panel’s upper right corner denote the percentage
of stimulus power that is contained in the frequency band below 20 Hz. Lower-frequency
stimuli (fcut=16 Hz and below) have a large percentage of power allocated at frequencies
below 20 Hz. The stimulus fcut=53 Hz is more broadband-like and less than 1/4 of its
power is allocated to frequencies below 20 Hz. B Examples of individual stimuli. All
stimuli have the same standard deviation (RMS = 50 pA). C Responses of the stellate cell
presented in Fig. 3.2. The RMS voltage fluctuation is marked in the upper right corner.
Response amplitudes of the broadband stimulus are significantly lower than those of the
lower-frequency stimuli.
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All raw stimuli had a duration of 2 sec and were normalized to a root-mean-square (RMS)
amplitude of 1. The stimuli were then scaled by an amplitude factor between 0 and 250 pA.
Depending on each cell, a DC component ranging between -300 and 300 pA was added. For
each recording a total of 40 different realizations of the four stimulus types (10 each) were
presented in alternating order. The experimental methods are stated in Appendix D.

3.3 Experimental characterization

3.3.1 General cell parameters

Stable recordings were obtained from 11 entorhinal cortex cells, six of which were layer II
stellate neurons and five layer III pyramidal neurons.2 The neurons were morphologically
identified based on biocytin staining. We did not distinguish between different subclasses of
pyramidal cells. Fig. 3.2A and 3.2B show the responses of two representative cells to DC
current injections. All stellate cells exhibited a typical sag potential in response to both hyper-
and depolarizing currents. For three cells prominent membrane oscillations in the theta-band
of frequencies were confirmed upon depolarization. No membrane potential oscillations were
observed in pyramidal cells. Three pyramidal cells exhibited a sag potential, that had a slower
time course than the sag observed in stellate cells. The input impedance, estimated from the
response to a current step of either 50 pA or -50 pA (for cells with very low firing threshold),
was 32 ± 11 MΩ for stellate cells, and 72 ± 30 MΩ for pyramidal cells. The resting membrane
potential of stellate cells was -65 ± 5 mV, membrane time constants were measured as 6
± 2 ms. The resting membrane potential of pyramidal neurons was -75 ± 6 mV, their time
constants were 21 ± 8 ms. Note that always the mean ± SD is stated.

3.3.2 Impedance profiles

Subthreshold frequency preference was estimated by injecting a ZAP current. Fig. 3.2C and
3.2D show the average response to five presentations of the ZAP current for the cells char-
acterized in the panels above. The prominent peak of the ZAP response for stellate cells
around 20 seconds is translated into a peak in membrane impedance at 11.3 Hz, see Fig. 3.2E.
The pyramidal cell, however, exhibits low-pass filter characteristics. The impedance function
showed a maximum at 0 Hz and fell off with increasing frequencies. All recorded stellate cells
had an impedance peak between 7 and 15 Hz (average across cells 11 ± 3 Hz), and a pro-
nounced Q-value (ratio between the impedance at the resonance frequency and the impedance
at 0 Hz) between 1.2 and 1.8 (average across cells 1.5 ± 0.3). Pyramidal cells either did not
show a resonance at all or the impedance had a maximum at very low frequencies (between
0 and 5 Hz, with an average of 3 ± 2 Hz). In addition, the Q-values of pyramidal cells were
low (1.0 to 1.2, average 1.1 ± 0.1). For both cell types the impedances were estimated at a
depolarization level that was used for further analysis (i.e. at rest for most cells, but also at
moderately hyperpolarized or depolarized levels for some cells). Stellate and pyramidal cells

2I am grateful to Irina Erchova (Humboldt-Universität zu Berlin/Charité) who performed the experi-
ments.
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Figure 3.2: Characteristic properties of stellate and pyramidal cells (left and right columns,
respectively) A,B Voltage responses to DC current injection (A: -300, -200, -100, 0, 50,
150 pA; B: -300, -200, -100, 50 pA). The stellate cell exhibits membrane potential oscil-
lations at depolarized levels and prominent sag potentials. C,D Averaged responses to
ZAP-current injection (five repetitions, C measured at rest, D measured with a DC com-
ponent of -260 pA). E,F Experimental impedance functions derived from the response to
the ZAP current presented in C and D (black lines) and the corresponding fits (gray lines)
with the electric circuit model described in Methods, see also (Mauro et al., 1970). Stellate
cells showed a pronounced resonance at frequencies around 10 Hz. Pyramidal cells mostly
exhibited monotonically decreasing impedance functions; three cells also showed a small
resonance at low frequencies. G, H Impedance functions of the two conductance-based
model cells.

show only a small dependence of subthreshold resonance frequency on membrane potential.
Stellate cells in particular show a stable resonance frequency over a broad range of DC levels
(Erchova et al., 2004).
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3.4 Noise signals in the subthreshold regime

In order to test the frequency-dependence of the integration of nonperiodic quasi-random noise
stimuli, we first assess the total response power of both stellate and pyramidal cells.

3.4.1 Prediction of the response power

If the frequency selectivity estimated from periodic stimulation should equally extend to non-
periodic quasi-random stimuli, one would expect that the total response power depends on the
subthreshold resonance profile and frequency content of the noise stimuli. In this case, theo-
retical predictions of the standard deviation (or root-mean-square value, RMS) of the voltage
response based on linear system’s theory should match the standard deviation (or RMS) of
experimentally recorded responses to the corresponding stimuli. Such theoretical predictions
can be obtained from the stimulus spectra and the cell’s measured impedance function: as-
suming linearity, the amplitude spectrum of the voltage response corresponds to the product
of the amplitude spectrum of the input, Ĩ(f), and the frequency-dependent impedance func-
tion, Z̃(f). Taking into account that the variance of any time-dependent function equals its
integrated power spectrum over positive frequencies, the predicted RMS value reads

RMS(V ) =

√∫ ∞

0
|Ĩ(f)Z̃(f)|2df .

It is assumed that the mean of the input I(t) is subtracted before calculation of the amplitude
spectrum, Ĩ(f).

3.4.2 Experimentally observed response power

For both cell types, we quantified the amplitude of the fluctuating responses by their root-
mean-square (RMS) values. Fig. 3.3A presents the voltage response RMS values as a function
of the input RMS values for the stellate cell described in Fig. 3.2. The dependence of the
response magnitude on the input RMS value is approximately linear. For an input RMS value
of 0 all curves approach the baseline noise level (less than 0.2 mV). For the largest RMS values
the curves bend due to a slight shift of the holding potential during the experiment. Most
importantly, however, the response RMS values between the broadband stimulus and each of
the lower-frequency stimuli differ strongly. On the other hand, the lower-frequency stimuli are
not significantly different from each other. Fig. 3.3B shows the average population data of the
recorded stellate cells and confirms the differential response power to broadband versus lower-
frequency stimuli. For all measured cells, the broadband RMS values were significantly smaller
than those of each of the lower-frequency stimuli (confidence level 99 % with Student’s t-test
at all amplitudes for all recorded cells, with the exception of the lowest 10 pA amplitude, which
was close to the noise level, and with the exception of the 16 Hz and 53 Hz cutoff-frequency
responses for the pyramidal cell at 200 pA presented in Fig. 3.3E, where the confidence level
was only 80 %).

The same analysis was performed for the layer III pyramidal cell presented in Fig. 3.2.
Panels E and F of Fig. 3.3 show the corresponding experimental RMS values. Also for this cell
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type, the response to the broadband stimulus had significantly lower power than the responses
to any of the other lower-frequency stimuli. In contrast to the results obtained for stellate
cells, the response RMS values also differ among lower-frequency stimuli.
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Figure 3.3: Frequency selectivity determines response power. A Root-mean-square (RMS)
values of the voltage response (mV) as a function of the input RMS (pA) for the stellate
cell presented in Fig. 3.2. Different curves correspond to different types of stimuli, with
fcut=2Hz (gray solid), fcut=8Hz (gray dashed),fcut=16Hz (black dashed), and fcut=53Hz
(black solid). The lowest RMS values are achieved in response to the broadband stimulus.
The lower-frequency stimuli yield significantly higher RMS values. In general, the response
RMS values increase linearly with stimulus amplitude (or RMS). B Relative response RMS
values averaged across all stellate cells. The four data points for each input RMS value
(from curves such as in A) were normalized by a factor such that the response RMS
values to the fcut=2 Hz stimulus equal unity. C Linear prediction of response RMS values
(arbitrary units) on the basis of the measured impedance function for the stellate cell in A.
Despite the simplicity of the linear assumption, theoretical prediction and experimental
data match well. D Similar results are obtained with the conductance-based stellate
model cell. E-H The same set of results for pyramidal cells. The response RMS value
decreases monotonically with increasing fcut of the stimulus. Again, frequency selectivity
as characterized by the impedance function allows one to predict the response RMS (G);
the model neuron confirms the observation (H). For all presented data, spikes occurring
at some of the larger stimulus amplitudes were cut out (10 ms before a spike to 50 ms
after the spike). It was checked that the length of these cut out intervals was appropriate
to eliminate the effect of spikes.

3.4.3 Theoretical predictions and model cells

Fig. 3.3C and 3.3G depict the linear theoretical predictions of the response RMS values based
on the measured impedance function of the presented stellate and pyramidal cell. There is a
good agreement between the linear prediction and experimental RMS values, indicating that
in both cell types responses to periodic inputs as well as to noise-like stimuli can indeed be
explained by the subthreshold frequency selectivity.
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In addition, we test how conductance-based model cells with similar impedance profiles
integrate noise stimuli. Two types of model neurons were designed to exhibit the subthreshold
resonance characteristics of stellate and pyramidal cells, respectively. Subthreshold resonance is
achieved by addition of muscarinic potassium channels, M, and H channels. Details are given in
Appendix B. The impedance profiles of the model cells measured at rest are shown in Fig. 3.2G
and 3.2H. Care was taken that the overall shape of the impedance functions corresponds to
the experimental counterparts. The absolute impedance values match qualitatively. For the
analysis of response RMS values, small amounts of white Gaussian current noise were injected
in addition to the low-pass-filtered noise currents to simulate intrinsic noise sources (standard
deviation of σn=0.01 nA for the stellate model cell, σn=0.006 nA for the pyramidal model
cell). These values for the standard deviation were chosen to match the noise-induced model
voltage fluctuations to the voltage fluctuations observed in experiments. The presence of this
additional noise, however, has no significant consequences for the results.

Fig. 3.3D and 3.3H presents the RMS values obtained for the conductance-based model
cells with the same set of stimuli. The model results match both, experimental data as well
as the theoretical prediction.

3.4.4 Dependence on the DC

Subthreshold resonance is shaped by the dynamics of ionic currents, whose activation often
depends on the membrane potential, and may therefore change with membrane potential.
As mentioned in Chapter 2, resonance in stellate cells shows only a small dependence on
membrane potential: the impedance values moderately increase towards threshold (Erchova
et al., 2004), as would be expected from voltage-dependent conductances. The change in
resonance frequency with voltage is small. Accordingly, we find that the significant difference
in response magnitude between broadband stimuli and lower-frequency stimuli is preserved
over depolarized and hyperpolarized values of the membrane potential (data not shown). The
difference between the stimuli tends to increase towards threshold. Because, overall, resonance
in stellate cells does not dramatically change with membrane potential, we do not expect a
qualitative dependence of signal integration on membrane potential in these cells.

3.4.5 Impedance functions calculated on the basis of nonperiodic stimuli

It should be noted that RMS values reflect only the total amount of power. A more detailed
picture is given by the distribution of response magnitude over frequencies, which is depicted
in Fig. 3.4A and 3.4B on the basis of the experimental responses. For both cell types, the
deviations between the responses to the broadband (fcut=53 Hz) stimulus and the lower
frequency stimulus (as exemplified by the fcut=8Hz stimuli) are largest at low frequencies.

In addition, the impedance function can also be calculated directly from the responses
to noise stimuli according to the same procedure as for ZAP currents. Complex impedance
functions were obtained for each stimulus and averaged over all stimuli (at fixed input RMS
values). This average is justified because there were no significant differences between the
impedance functions derived from stimuli with different cutoff frequencies and the impedance
fluctuations decrease due to the increased size of the total data set. Because of the shorter
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Figure 3.4: Impedance can be reconstructed from noise stimuli. A Amplitude spectra of
experimental stellate cell responses to broadband (black solid line, fcut=53Hz) and lower
frequency stimuli (gray dashed line, fcut=8Hz), input RMS=20 pA each. B The same
for the pyramidal cell. C and D The corresponding impedance functions calculated on
the basis of responses to all noise stimuli (at the input RMS=20 pA). The thin gray lines
indicate the SD of the impedance estimate. Clearly, stellate cells show a nonmonotonic
impedance function with a maximum around 10 Hz, similar to the impedance function
estimated from ZAP responses (see Fig. 3.2E). For pyramidal cells the impedance function
decreases monotonically, as does the impedance estimated from ZAP responses (Fig. 3.2F).

length of noise stimuli, however, these impedance functions are not as smooth as those obtained
from stimulation with ZAP currents. The results are presented in Fig. 3.4C and D. For the
stellate cell, an impedance peak around 10 Hz is visible. For the pyramidal cell, the impedance
decreases monotonically. Overall, the noise-derived impedance functions are very similar to
the impedance functions obtained with ZAP stimuli (see Fig. 3.2E and 3.2F). Because the
power spectrum of the used broadband noise stimuli is relatively flat (see Fig. 3.1A), the
overall shapes of the impedance curves (Fig. 3.4C and 3.4D) mirror the amplitude spectrum
of voltage responses (Fig. 3.4A and 3.4B).

3.5 Noise signals in the spiking regime

We now leave the subthreshold response regime and briefly examine whether the differential
integration of noise stimuli in the subthreshold regime also has effects on the spiking regime in
terms of firing rates. Again, we analyze responses to the set of noise stimuli injected on top of
a subthreshold holding current (or at rest). The amplitudes of the noise stimuli are increased
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so that spikes are elicited. Fig. 3.5A shows the average firing rate of the stellate neuron from
Fig. 3.2 in response to the four noise stimuli (with RMS = 200 pA). Similar to the results in
the subthreshold regime, the firing rate evoked by lower-frequency stimuli is higher than that
in response to the broadband stimulus (confidence level 99 % with Student’s t-test for stimuli
with 8 and 16 Hz cutoff frequency, 90 % for stimuli of 2 Hz cutoff frequency). The results for
the model stellate cell show exactly the same trend. The measured data as well as the model
data suggest that the 16 Hz cutoff stimulus elicits the highest firing rate, but the differences
between the three lower-frequency stimuli are not significant.

An extended analysis with the conductance-based model cell involving a tenfold higher
number of stimuli per stimulus type suggests an equal firing rate for the 8 and 16 Hz cutoff
frequency stimuli (firing rate of approximately 5 Hz), a lower firing rate (approximately 3 Hz)
for the fcut= 2 Hz stimulus, and a firing frequency of approximately 1.5 Hz for the broadband
stimulus (data not shown).
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Figure 3.5: Subthreshold frequency selectivity influences firing rate. A Average firing rate
in response to each stimulus type for a stellate cell. Similar to the subthreshold regime
the firing rates obtained from responses to the lower-frequency stimuli were larger than
that of the broadband type stimuli (input RMS = 200 pA). B The firing rates of the
model stellate cell confirms the finding. Stimulus amplitudes (equal for all stimulus types)
were adjusted to yield similar firing rates as in the experiments. C For pyramidal cells
the firing rate is a monotonic function of the stimulus cutoff frequency, analogous to the
subthreshold regime. D Qualitatively, the model pyramidal cell shows the same trend.
For all panels the error bars indicate the SD of firing rates within one stimulus type.

For the pyramidal cells the subthreshold frequency selectivity is also translated into a
differential firing rate (Fig. 3.5C). The more stimulus power is allocated to lower frequencies,
the higher the firing rate. The t-test confirmed a significant difference between the mean
firing rate in response to the broadband stimulus and the mean firing rates of the three lower-
frequency stimuli (confidence level 99 %). The conductance-based pyramidal model shows a
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qualitatively similar behavior. Thus the stimuli resulting in larger response amplitudes in the
subthreshold regime also cause the cells to fire more strongly. As firing rate data are not
available for the cell presented in Fig. 3.2B, data from a different pyramidal cell are shown in
Fig. 3.5C.

The ratio of firing rates in response to different stimuli types depends on the stimulus
amplitude. As expected, there is a regime of smaller amplitudes in both the experiment and
model where only the lower-frequency stimuli cause a cell to spike, while no spikes are observed
for broadband stimuli of the same RMS value. For larger amplitudes the broadband stimulus
triggers spikes too, but does not reach the firing rate of lower-frequency stimuli in the amplitude
regime tested.

3.6 Discussion

3.6.1 Subthreshold responses

The observed integration of subthreshold signals differs from the findings of Haas and White
(2002) in the same experimental system, who do not describe a difference in response mag-
nitude between broadband and lower-frequency stimuli. Comparing the observations in both
studies, the responses reported by these authors show a higher level of stimulus-uncorrelated
noise. This difference in noise may explain the deviation in the overall RMS voltage response
between both studies. Why the studies differ in their observations regarding the response
magnitude of broadband and lower-frequency stimuli, however, remains unclear.

Our analysis suggests that nonperiodic signals are integrated according to the same mech-
anism of frequency-selectivity as periodic signals. Frequency selectivity is determined by the
electrical impedance profile, which as we saw is similar for periodic and nonperiodic stimuli.
In the subthreshold regime, responses of the recorded neurons can be well described by the
principles of linear systems.

3.6.2 Spiking responses

Previous studies have shown subthreshold resonance to influence properties of spiking re-
sponses, such as spike timing reliability (Haas and White, 2002) and firing-rate modulation
(Richardson et al., 2003). Our data also show that frequency selectivity in the subthreshold
regime translates to the spiking regime in terms of firing rate. In the superficial layers of the
entorhinal cortex, cells of layers II and III have common cortical input but different hippocam-
pal targets. It has been found that the cells also respond best to synaptic inputs at different
frequency ranges. Layer III pyramidal cells are driven most strongly in the 0-5 Hz range,
while layer II stellate cells are active at frequencies between 5 and 20 Hz (Gloveli et al., 1997;
Heinemann et al., 2000). Our results support the hypothesis that these firing properties are
caused by the subthreshold resonance in these cells.

The firing rates, however, are also more sensitive to the particular choice of the stimulus
set than the power of subthreshold responses. For model cells, the subthreshold response
magnitudes (RMS values) are stable with regard to different stimuli drawn from the same
stimulus type, while for stimuli with amplitudes large enough to cause spikes the firing rates
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depend more strongly on the specific stimuli chosen. The stimulus type eliciting maximum
firing rate is either the 16 Hz cutoff stimulus, or the 8 Hz cutoff stimulus. This observation goes
along with the finding that for the stimulus set presented in this paper (Fig. 3.5), no significant
distinction between the 16 Hz and 8 Hz cutoff stimuli could be achieved. Nevertheless, the data
indicates that additional nonlinearities induced by spiking may influence frequency-selectivity.

Summary

The analysis of responses to low-pass filtered noise stimuli in cells of the entorhinal cortex pro-
vides experimental evidence that subthreshold resonance does not only govern the integration
of periodic stimuli, but also the integration of nonperiodic stimuli, which has been questioned
recently. Differences between the integration of noise stimuli in stellate and pyramidal cells
of the entorhinal cortex can be fully explained by the resonance properties of each cell type.
Theoretical predictions based on linear system’s theory as well as on conductance-based model
neurons support this hypothesis. Response power thus reflects stimulus power in a frequency-
selective way. The electrical impedance calculated on the basis of noise stimuli is similar to
the impedance obtained upon stimulation with ZAP currents.

We also find that the frequency selectivity in the subthreshold range extends to suprathresh-
old responses in terms of firing rate. Cells in entorhinal cortex are representative examples of
cells with resonant or low-pass filter impedance profiles. It is therefore likely that neurons with
similar frequency selectivity will process input signals according to the same simple principles.
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Chapter 4

Spike timing: the subthreshold regime

We now continue our investigations in the spiking regime and turn from the integration of
nonperiodic signals to that of periodic signals. The major focus is shifted to the reliability of
spike timing, which remains the central topic of the following four chapters. The first goal
is to broaden our understanding of the frequency preference of spike timing reliability. As we
will see, however, this does not mean that we completely abandon the field of subthreshold
resonance.

4.1 The questions

Whether the timing of spikes is reliable, i.e. whether the pattern of spikes in response to a
given stimulus is reproducible in the presence of stimulus-uncorrelated noise, depends on many
factors. As we discussed earlier, the intrinsic properties of neurons, additional external signals
as well as the statistics of the stimulus play a important role. The first part of the reliability
analysis concentrates on the interplay between properties of the stimulus and properties of the
cell. The main questions are: Is spike timing reliability frequency-dependent? If so, what are
the mechanisms underlying frequency preference? How can intrinsic cell parameters, such as
individual conductances, modulate frequency preference?

4.2 The periodic stimuli

The simplest approach to frequency preference is the analysis of periodic stimuli. Because
both, stimulus amplitude and frequency may be relevant for spike timing reliability, we use sine
waves of different frequencies, f , and amplitudes, C. The mean of the amplitude distribution
is formally assigned to a (constant) direct current, IDC. Thus time-dependent stimuli, i(t),
take the shape:

i(t) = C sin(2πf(t)) + IDC.

For two examples of stimuli see Fig. 4.1A and 4.1C. In principle, IDC represents any constant
input component, so that for example constant modulatory synaptic input from other cells can
also be viewed as part of the DC.

33
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4.3 Two different regimes

From the dynamical point of view, two operating regimes have to be distinguished in depen-
dence of the DC component. In the first regime, IDC is below threshold. I.e. the neuron
does not elicit spikes in response to IDC alone, so that solely the time-dependent component
of the stimulus (and potentially intrinsic neuronal noise) is responsible for the occurrence of
spikes. We term this the subthreshold regime1. In the second regime, the stimulus mean is
above threshold, i.e. spikes are elicited in response to IDC, even if no time-dependent com-
ponent is present. This regime is termed suprathreshold. We can already anticipate that in
the suprathreshold regime, the relation of the time-dependent component to the occurrence of
spikes can be viewed as modulatory, because the neuron would spike even the absence of this
component. Whereas the time-dependent component is causal in the subthreshold regime. In
this chapter we investigate the subthreshold regime, while the suprathreshold regime is the
subject of the following chapter.

4.4 Dependence of spike timing reliability on the stimulus

First, we analyze, whether spike timing reliability in the subthreshold regime is indeed frequency-
and amplitude-dependent. Fig. 4.1B illustrates the response of a conductance-based model
neuron to 20 presentations of a 6 Hz sine wave stimulus (presented in the panel above). Be-
cause the intrinsic noise (injected as a White noise current of small amplitude in addition to
the stimulus) is different in each trial, the spiking responses are variable, although the stimulus
is the same for all trials. The noise has a large influence on the occurrence of the spikes,
hardly two of the responses are the same in all spike times. In response to some stimulus
cycles the cell responds with two spikes, while at others there is only one or none. Fig. 4.1C
and 4.1D show a sine wave of different frequency (9 Hz) but same amplitude presented to
the same model cell and the corresponding responses (intrinsic noise level and IDC as before).
Surprisingly, the cell now responds very reliably. No spikes are missing and the timing jitter is
small. Obviously, the spike timing of the cell is frequency-selective.

To analyze frequency and amplitude dependence in a more systematic way, the model cell
was stimulated with a whole set of sine waves of different frequencies and amplitudes (IDC

remaining fixed). Reliability values for each stimulus were obtained on the basis of correlation
of responses to repeated presentation of the stimulus, each with an independent realization
of the noise. See Chapter 2 and Appendix A for further details. Reliability as a function of
stimulus frequency, f , and amplitude, C, is presented in Fig. 4.2. The upper panel shows a
color-coded version of reliability. In analogy to the term established in the regime of stimuli
with suprathreshold mean, we will refer to this type of plot as Arnold plot. For comparison, the
same data is presented as individual curves for reliability as a function of stimulus frequency
in the panel below. Different curves correspond to different stimulus amplitudes.

Fig. 4.2 shows clearly that spike timing reliability increases with stimulus amplitude. For
all amplitude levels there is one region of increased reliability around 17 Hz. The cell exhibits

1The term subthreshold may seem contradictory when referring to the timing of spikes, which are per
definition suprathreshold. Subthreshold relates exclusively to the stimulus mean.



4.4. DEPENDENCE OF SPIKE TIMING RELIABILITY ON THE STIMULUS 35

0 1000 2000

5

10

15

20

time (ms)

tr
ia

l #

B

0 1000 2000
0

0.2

0.4

0.6

0.8
6 Hz

A

time (ms)

in
pu

t c
ur

re
nt

 (
nA

)

0 1000 2000

5

10

15

20

time (ms)
tr

ia
l #

D

0 1000 2000
0

0.2

0.4

0.6

0.8
9 Hz

C

time (ms)

in
pu

t c
ur

re
nt

 (
nA

)

Figure 4.1: Reliability depends on the stimulus frequency. A and C Examples of 6 and
9 Hz stimuli. The current threshold is marked as a dashed gray line. B and D Rastergrams
with 20 responses of a conductance-based model neuron to the stimuli presented above.
While responses to the 6 Hz stimulus show a fair amount of missing and additional spikes,
reliability in response to the 9 Hz stimulus is high. The first 500 ms after stimulus onset
are discarded for the quantification of reliability.

a clear frequency preference of spike timing reliability. The shapes of the curves are symmetric
for small amplitudes but become more asymmetric (with dominance of higher frequencies)
for larger amplitudes. More importantly, the reliable frequency range widens with increasing
amplitude. At the reliability peaks, responses are mode-locked to the stimuli in a 1:1 fashion,
i.e. one spike is elicited per stimulus cycle. To the left and the right of the peak, however,
reliability decreases because more and more spikes are missing from a 1:1 mode-locking pattern.
At large stimulus amplitudes, responses to frequencies smaller than the best frequency also
show a number of additional spikes. Here, a 2:1 mode-locking with 2 spikes per stimulus
cycles is adopted, while still a large number of spikes is missing. Accordingly, the rastergram
in Fig. 4.1B can show either no spike, one spike, or a spike doublet per stimulus cycle. A
more detailed discussion of different mode-locking patterns is postponed to the next chapter,
where these response patterns will be more evident. A 1:2 mode-locking (one spike every two
stimulus cycles) for frequencies larger than the best frequency is camouflaged by an increasing
number of missing spikes.

Due to the large number of missing spikes, also firing rates are reduced with distance from
the most reliable frequency. Even in the range to the right of the most reliable frequency
the increase in the number of missing spikes surpasses the increase in firing rate and a cell
eventually does not fire any more in response to high frequency stimuli.
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Figure 4.2: Arnold plot. A Color-coded reliability as a function of frequency, f , and am-
plitude, C, of the sine component in the input. Reliability around 17 Hz is increased. The
reliable region extends to neighboring frequencies with larger stimulus amplitudes. Each
reliability point is based on responses to 20 repeated presentations of a stimulus. The reli-
ability estimates in the locations marked B and D are based on the rastergrams presented
in the corresponding panels of Fig. 4.1. B Alternative presentation of the reliability in A.
Different curves correspond to different amplitudes, C.

4.5 Spike timing reliability and subthreshold resonance

How can the frequency-dependence of spike timing reliability be explained? Let us look once
more at the influence of amplitude on reliability. The four tested stimulus amplitudes, C, are
relatively small. In fact, for the three lower amplitudes the stimulus peak values (given by the
sum of the stimulus mean and amplitude, IDC + C) are below the current threshold of the
cell (here 0.55 nA). The latter is estimated from injection of DC currents and defined as the
value of the smallest DC current that causes the cell to fire continuously. Thus at first glance
it may be remarkable that the cell elicits spikes in response to those stimuli at all. At second
glance it becomes obvious that subthreshold resonance may explain this observation. If the
cell has a subthreshold resonance peak at frequencies larger than 0 Hz, stimulus frequencies
around the subthreshold resonance will cause larger responses. They may be large enough to
cross the threshold and elicit spikes. Potentially, because of their larger “efficient amplitude”,
these responses will also be more reliable. Fig. 4.3 shows that the model cell presented here
exhibits a subthreshold resonance at the given level of IDC. Indeed, the subthreshold resonance
frequency coincides with the best frequency of spike timing reliability.

4.5.1 Two example cells with resonance

For a more systematic approach, we discuss three model cells in more detail. The peak
conductances of the first two model cells have been selected such that the cells exhibit a clear
subthreshold resonance, mediated by a muscarinic potassium conductance (ḡM=1mS/cm2).
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Figure 4.3: Impedance function of the cell presented in Fig. 4.2. The gray line indicates
the impedance function calculated from a ZAP of 100 s duration, covering frequencies
from 0–20Hz. The black line shows the corresponding fit with the electrical circuit model.
The impedance peak coincides with the reliability peak in Fig. 4.2.

The other conductances present are ḡNa = 24 mS/cm2, ḡKdr=3mS/cm2 , ḡL=0.02mS/cm2,
and ḡNaP=0.2mS/cm2. Both cells have a current firing threshold of 0.55 nA. All parameters are
the same, with the exception of the H conductance. While the latter is included in the first cell
(ḡH=0.04mS/cm2), the second cell is assumed not to have any H channels (ḡH=0 mS/cm2).
Consequently, the profile of subthreshold resonance in these cells changes differently with DC
(Fig. 4.4): Close to threshold both cells show a subthreshold resonance, mainly mediated by
the muscarinic potassium channels. Close to rest, however, the cell with H shows a clear
resonance around 8 Hz, while for the cell without H the impedance profile peaks at 0 Hz. If
subthreshold resonance determines the preferred frequency of spike timing reliability, we would
expect that the two cells show a similar spike timing profile close to threshold, but a clear
difference in the spike timing frequency-dependence for lower DC levels.

Fig. 4.5A depicts Arnold plots for the cell with H over a wide range of DC levels, IDC.
Because larger stimulus amplitudes are required to cause the cell to fire from rest than to
cause the cell to fire from just below threshold, amplitudes were chosen differently for each DC
level (as 60, 80, 100, and 120% of the difference between IDC and the current threshold). At
all DC levels the Arnold plots clearly show a region of increased reliability. Towards threshold,
this region slightly shifts towards higher frequencies. Note that the DC levels underlaid in gray
are suprathreshold. They can be regarded as appetizers for the following chapter. For the
moment, however, we ignore this part of the figure and concentrate on the subthreshold levels
of IDC. For the latter, the subthreshold resonance frequencies (obtained from responses to ZAP
currents of 0.02 nA amplitude) are marked below the frequency axis. Obviously, subthreshold
resonance frequency correlates well with the location of the high reliability region at each DC
level.

Similar results are obtained with the model cell without H, which is shown in Fig. 4.5.
Again, regions of increased reliability are visible. For larger DC values the reliability profiles
of both cells are very similar. For the low DC levels the high reliability regions are located
at smaller frequencies than those of the cell with H. This DC dependence coincides with the
trend of the subthreshold resonance. Also the cell without H shows a correlation between the
subthreshold resonance frequency and preferred spike timing frequency. Closer to threshold,
however, this correlation is better than close to rest. An explanation for the discrepancy at
low DC levels and a better estimate of the preferred frequency of spike timing reliability will
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Figure 4.4: Impedance profiles of two conductance-based cells. A Impedance profile for
the cell with H channels (see text) for 4 different DC levels, as indicated. The cell exhibits
a subthreshold resonance at all DC levels from rest to threshold; the resonance frequency
increases towards threshold. B Impedance functions of the same cell without H channels
(all other parameters are the same; the current threshold is still at 0.55 nA, as for the cell
with H). In contrast to the cell with H, this cell shows no subthreshold resonance at rest,
while the impedance profile closer to threshold is almost identical to that in A.

be discussed in the following section. Before doing so, however, it is necessary to also perform
the negative test - what does the reliability profile of a cell without subthreshold resonance
look like?

4.5.2 An example cell without resonance

Such a neuron can be obtained by not including currents responsible for subthreshold res-
onance. The nonresonant cell therefore does not contain H or M conductances, whereas
ḡNa=24mS/cm2, ḡKdr=3mS/cm2, ḡL=0.04mS/cm2, and ḡNaP=0.02mS/cm2. A small slow
potassium conductance, ḡKs=0.1mS/cm2, is also implemented to increase the firing threshold
(here 0.17 nA). It is not large enough to cause a subthreshold resonance. The resonance profile
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Figure 4.5: Arnold plots of conductance-based cells. A Arnold plots of the conductance-
based cell with H (as in Fig. 4.4A) for various DC levels (from rest to above threshold).
At each DC level (values indicated in the middle column in nA), regions of increased
reliability are visible. These correlate well with the subthreshold resonance frequency
marked by the filled square below each Arnold plot. B The same data for the cell without
H (as in Fig. 4.4B). The subthreshold resonance frequency matches the preferred frequency
of spike timing reliability. The largest deviations occur close to rest. Note that the gray
background indicates suprathreshold DC levels, whose discussion will be postponed until
the next chapter.

has low-pass-filter characteristics at all levels between rest and threshold (data not shown).

Fig. 4.6 shows the Arnold plots at different levels of IDC. Again, regions of increased
reliability exist. For all subthreshold DC levels but the one just below threshold, this region is
located at the lowest frequencies. Thus also for nonresonant cells, frequency preference of spike
timing reliability correlates the the subthreshold frequency preference. Once the threshold is
crossed (and slightly below) we observe an increase in the preferred frequency. The discussion
of this observation, however, is postponed until Chapter 5.
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Figure 4.6: Arnold plots of a nonresonant cell for different DC levels (as indicated to the
left in nA). The cell does not exhibit subthreshold resonance at any DC level (as indicated
by a resonance frequency of 0 Hz, marked by a filled square below each panel). The
Arnold plots show a corresponding peak at very low frequencies. Only above threshold
(gray background) the reliable spike timing regions shift to higher frequencies, which will
be discussed in the following chapter. The amplitudes were chosen as 90, 110, 130, and
150 % of the difference between IDC and the current threshold.

4.6 Amplitude dependence of subthreshold resonance

So far we have seen that subthreshold resonance is a good predictor for the frequency preference
of spike timing reliability. The agreement is reasonable, though larger deviations occur for DC
levels close to rest. What remains open is the question why the estimate improves towards
threshold. Or in other words, what is the cause of the discrepancies closer to rest? To answer
these questions we will first investigate the amplitude-dependence of subthreshold resonance.

For stimuli with subthreshold mean, the amplitude of the time-dependent stimulus compo-
nent has to be large in order to elicit spikes. This holds especially for values of IDC far away
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Figure 4.7: Amplitude dependence of responses to ZAP stimulation. A,C, and E Re-
sponses to ZAP currents of three different amplitudes (as marked). While the response
to small-amplitude ZAPs decays monotonically, responses to larger-amplitude ZAPs show
a peak (at approximately 7 s) in the upper response envelope (B). If the ZAP is large
enough to elicit spikes, these occur at a similar time (i.e. similar stimulus frequency). B,
D, and F The impedance profiles corresponding to the responses on the left (gray line
for the impedance, black line for the fit with the electrical circuit model). Interestingly,
the maxima in the upper response envelope to the ZAP currents are not reflected in the
impedance functions, which are very similar for all three amplitude levels. Also note that
the large wiggles in the raw impedance data based on large-amplitude ZAPs (gray lines
in panels D and F) reflect the influence of nonlinearities.

from threshold. In the previous chapter we have shown subthreshold resonance to act approx-
imately linearly in stellate cells. Thus one could conclude that amplitude should not matter
much. On the other hand, for stellate cells the subthreshold resonance profile is relatively
stable over a large range of DC levels. This is different in the case of our model cells, espe-
cially for the cell without H, where also the largest deviations between subthreshold resonance
frequency and preferred spike timing frequency have been observed.

Fig. 4.7A shows the response of the above described model cell without H to a ZAP current
of small amplitude (0.02 nA) at rest (IDC=0). Already the ZAP response itself indicates that
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the cell most likely has no resonance at this DC level. Indeed, Fig. 4.7B confirms this conclusion
and shows a resonance profile with a maximum at 0 Hz and low-pass filter characteristics. The
stimulus amplitude that was required to elicit spikes (for the corresponding Arnold plot in
Fig. 4.5), however, was twentyfold larger (C=0.41 nA). Fig. 4.7C shows the response of the
same cell to a ZAP of equally large amplitude (0.4 nA). It was assured that the amplitude was
still small enough so that the response did not contain spikes. Unexpectedly, the response
is asymmetric with regard to the line of mean voltage (parallel of the time axis): a global
maximum around 4 Hz is evident for the upper part of the response, whereas the envelope
of the lower part of the response is monotonic. So far, for lower ZAP amplitudes both upper
and lower response envelopes showed similar (sign-inverted) trends. More remarkably, the
maximum of the upper response envelope is not reflected clearly in the impedance profile.
Fig. 4.7D depicts the impedance profile calculated from the response to the large-amplitude
ZAP. The profile shows slight deviations from that of the low-amplitude ZAP, but overall, the
impedance function peaks at 0 Hz and is monotonically decreasing.2

Although deviations between upper and lower envelope may not show up in the impedance
profile, they can affect the initiation of spikes, as Fig. 4.7E shows. The amplitude of the ZAP
is slightly increased (from 0.4 to 0.42 nA), so that the cell elicits spikes for a certain frequency
range. Although the impedance function peaks at 0 Hz and thus would predict spike initiation
at the lowest frequencies, spikes are first initiated in a higher frequency region (around 4 Hz).
This region coincides with the location of the maximum in the upper envelope. Thus for spike
initiation, the upper part of a ZAP response (of large enough amplitude) is more important
than the lower part, which is further away from threshold.

The occurrence of the maximum in the upper response envelope of the cell without H can
be intuitively explained from a very simplified point of view. For small amplitudes the input
“experiences” only one resonance environment, the local resonance profile around the DC level.
For larger amplitudes a wider range of voltages is crossed during up- and downstroke of the
signal. The resonance profiles vary significantly over this range of voltages and thus differ-
entially influence signal integration of upper and lower stimulus segments. Signal integration
in the large-amplitude case is nonlinear if the shape of the resonance profiles (measured with
small amplitude stimuli) strongly depends on the DC level. For small amplitudes, nonlinearities
are negligible, even if the resonance profile varies with the DC level.

Thus we can also conclude that amplitude dependence of responses to ZAP currents does
not play a significant role for the stellate cells discussed in the previous chapter, given that
the dependence of subthreshold resonance on the DC level is low (Erchova et al., 2004). For
illustration Fig. 4.8 shows ZAP responses of a model cell that exhibits a stable subthreshold
resonance frequency around 10-12 Hz over a broad region of DC levels. The resonance profile
and its dependence on the DC level was already discussed in Fig. 2.3C of Chapter 2. The
responses to ZAP currents presented at rest are approximately symmetric with regard to the
location of the maxima and minima of the upper and lower envelopes for both small and large
stimulus amplitude. They coincide with the resonance frequency (at 11 Hz) estimated from

2The fact that the peak the upper response envelope is not clearly reflected in the impedance function
may seem surprising. It helps the intuition, if one takes into account that the difference between the upper
and lower response envelopes also does not exhibit a peak.
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Figure 4.8: Amplitude dependence of ZAP responses in a model cell with a DC-
independent resonance frequency. The impedance profile of this cell was analyzed in
Fig. 2.3C. A, C, and E In contrast to the cell with a strong DC-dependence of subthresh-
old resonance, the ZAP responses of this cell indicate no changes in the maximum of the
upper response envelope with the DC level. B, D, and F The impedance functions are
similar for all three ZAP stimuli.

the impedance profile. Fig. 4.8C indicates that for very large stimulus amplitudes, spikes are
initiated around the resonance frequency. Obviously, amplitude-dependence is more critical for
cells with a strong dependence of subthreshold resonance on the membrane potential.

4.7 A more precise estimate of preferred frequency

The two example cells discussed with regard to spike timing reliability above showed a de-
pendence of subthreshold resonance on the DC level. Thus for large amplitudes, as they are
necessary to cause the cells to fire from rest, deviations in the upper ZAP response envelope
can be expected. The importance of such deviations for the initiation of spikes therefore sug-
gest that a better estimate of frequency preference of spike timing reliability can be obtained
from the upper envelope of ZAP responses with equally large amplitude.
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4.7.1 The three model cells revisited

This hypothesis can be tested: Instead of evaluation of the subthreshold resonance frequency
estimated from the impedance profile on the basis of small-amplitude ZAP stimuli, we now
use the raw responses to ZAP currents of large amplitude. For each DC level, the largest ZAP
amplitude that does not elicit spikes is chosen. Consequently, the amplitude of these large
ZAP stimuli varies with the DC and close to threshold the amplitudes are rather small (despite
the term “large”). The position of the maximum of the upper response envelope in frequency
(here plainly approximated by the position of the global maximum of the ZAP response) is
determined for each cell as a function of IDC. It is assumed that the position of the response
maximum in time can to good approximation be directly related to the frequency of the ZAP
at this point in time. Fig. 4.9A and 4.9B shows the summarized data for both model cells.
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Figure 4.9: Summary of the spike timing reliability frequency preference as a function
of the DC for the three conductance-based model cells presented before. A Cell with
H channels. B Cell without H channels. D Cell without resonance. In all panels the
frequency with the best spike timing reliability (gray circles), the subthreshold resonance
frequency estimated with small-amplitude ZAP currents (dashed line, amplitude 20 pA),
and the frequency with a response peak in the upper envelope of large-amplitude ZAP
stimuli (solid line) are depicted. The amplitudes of the large-amplitude ZAPs were ad-
justed to be maximal but cause no spiking responses. For all cells, the upper envelope of
the large-amplitude ZAP is a good predictor of the preferred spike timing frequency.

While the subthreshold resonance frequency already gave a reasonable estimate of preferred
frequency of spike timing reliability, the large-amplitude upper envelope measure gives an even
better estimate. Closer to threshold, both estimates give similar results, which are close to
the preferred spike timing frequency. Here the amplitudes are relatively small, so no deviations
between both measures would be expected. Closer to rest, however, the amplitudes necessary
to elicit spikes are large and the upper-response measure give better results. The improvement
with the new estimate is more obvious for the cell without H. This is not surprising, because
the cell also shows a stronger dependence of subthreshold resonance on the DC level.

Note that close to threshold, small-amplitude ZAP responses and responses to ZAP stimuli
with an amplitude adjusted to approach threshold give similar results, because in both cases
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the amplitudes are small and responses can therefore be well approximated by the integration
in the linearized system.

For completeness, Fig. 4.9C shows the preferred frequency of the nonresonant model cell
discussed earlier in this chapter. No resonance, also for larger amplitudes, was observed. Both
estimates predict a preferred frequency around 0 Hz. Note that the minimum frequency tested
with regard to spike timing reliability is 1Hz.

4.7.2 Morris-Lecar neurons

At the end of this chapter we briefly turn to a reduced type of model neuron – the two-
dimensional Morris-Lecar neuron – which was developed to capture the voltage dynamics
of the muscle fibers of barnacles (Morris and Lecar, 1981). An advantage of the Morris-
Lecar model is that it has been previously shown to exhibit both type I and type II neuronal
dynamics, depending on the values of only a few parameters. If the influence of ion channels on
spike timing reliability is mediated through variation of the resonance frequency, a correlation
between the resonance frequency and the preferred spike timing frequency is to be expected.
One example of each type is analyzed in the following and as we will see, spike timing frequency
preference is indeed predicted according to the principles stated above.

Based on a linearization of the system of differential equations, the impedance profile and
the resonant frequency for this model are calculated analytically. The details are given in the
Appendix C. For the type II Morris-Lecar neuron, the subthreshold resonance profile shows a
strong dependence on the DC. The type I neuron does not exhibit a subthreshold resonance,
the impedance decreases monotonically at all DC levels. Fig. 4.10 shows the subthreshold
resonance frequency for both neuron types (gray solid lines). The resonance profile obtained
from the linearization is comparable to the resonance profiles obtained with small amplitude
ZAPs.

Numerical analysis of spike timing reliability reveals that both neuron types have preferred
frequency (gray circles in Fig. 4.10). For the type II neuron this frequency is between 35 and 65
Hz; it increases with the DC. For the nonresonant type I neuron, the preferred frequency is at
very low frequencies. As in the conductance-based model neurons, the subthreshold resonance
frequency predicts the general trend of the preferred frequency of spike timing reliability. The
estimate for the type II neuron, however, is not very precise.

The reason for the deviations are the strong nonlinearities of the type II neuron (which are
also the cause of a strong dependence of the impedance profile on the DC). Also in Morris-Lecar
neurons, the numerically derived maximum of the upper response envelope to large-amplitude
ZAP currents (with an amplitude adjusted to prevent the cells from firing) gives a better
estimate (small black dots in Fig. 4.10A).

As in the more detailed conductance-based model neurons, frequency preference of spike
timing reliability is determined by the subthreshold impedance profiles of a cell. In the Morris-
Lecar neurons, however, we can observe another effect that is much weaker in the conductance-
based neurons, as the following section illustrates.
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Figure 4.10: Preferred frequency of spike timing reliability in Morris-Lecar type II and type
I neurons as a function of the DC. A Type II neuron: The frequency of maximal spike
timing reliability (gray circles), the subthreshold resonance frequency of the linearized
system (gray line), and the (numerically derived) frequency of the maximum in the upper-
response envelope to large-amplitude ZAP stimuli (small black dots) are shown. The
large-amplitude ZAP stimuli were chosen with maximal amplitude, under the constraint
that the response contained no spikes. Also in Morris-Lecar neurons the upper-response
envelope to large-amplitude ZAP currents predicts the best spike timing frequency. B
Type I neuron: The absence of a subthreshold resonance results in very low preferred
frequencies of spike timing reliability (gray circles). Note that the regions of increased
reliability in the Arnold plots of Morris-Lecar neurons are very wide (also see Fig. 4.11).
Consequently, the estimate of best spike timing frequency has a larger error for both cells.
For clarity this error is not marked in the figure.

4.8 Spike timing reliability at the harmonics

Arnold plots of the conductance-based model neurons showed only one reliable region for most
DC levels. Only very close to threshold a second region located at the first harmonic of the
main region appears. Arnold plots of Morris-Lecar neurons, however, showed two regions
of increased reliability for all DC levels (Fig. 4.11A). Fig. 4.11 also depicts three examples of
spike trains underlying the reliability values in the Arnold plot. Apparently, in the first region
(Fig. 4.11B) responses are phase-locked to the stimuli in a 1:1 mode (one spike every stimulus
cycle), while the responses in the second region (Fig. 4.11D) are phase-locked in a 2:1 mode
(one spike every second stimulus cycle). In between these regions (Fig. 4.11C) reliability is
mainly decreased by missing spikes.

In conductance-based neurons mode-locking can also occur, as the example in Fig. 4.1B
indicates. In these examples, however, it was never strong enough to give rise to regions of in-
creased reliability. Quite differently, also for conductance-based model neurons, increased relia-
bility at the harmonics of the preferred frequency is a common phenomenon in the suprathresh-
old DC regime, as we will see in the following chapter.
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Figure 4.11: Spike timing at the harmonics of the best frequency in Morris-Lecar model
neurons. A Arnold plot of the type II Morris-Lecar neuron (IDC=10µA/cm2). In contrast
to the results in conductance-based model neurons, this neuron shows two regions of
increased reliability in the investigated frequency-range. B-D Rastergrams in response to
stimuli of different frequencies but fixed amplitude (C=13µA/cm2). In the first region
(example B) highly reliable responses are phase-locked to the stimulus in a 1:1 fashion.
Responses in the second area of increased reliability (example D) show 1:2 phase-locking
to the stimulus (one spike every two stimulus cycles). Responses in between (as in C) are
unreliable.

Summary

The frequency preference of spike timing reliability has to be discussed separately for stimuli
of sub- and suprathreshold mean, which we termed the sub- and suprathreshold regime, re-
spectively. In this chapter we have evaluated spike timing reliability of responses to rhythmic
inputs with subthreshold mean.

Spike timing reliability of responses to sinusoidal inputs increases with the amplitude of
the time-dependent stimulus component, but also shows a strong dependence on the stim-
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ulus frequency. The stimulus frequencies with the most reliable responses can be estimated
from the subthreshold resonance profile at the respective DC level. Consequently, cells with-
out subthreshold resonance show best spike timing for low stimulus frequencies, whereas cells
with subthreshold resonance show the most reliable spike timing for stimuli at the resonance
frequency. We also saw that the responses to large-amplitude ZAP stimuli can be very asym-
metric with respect to their mean. This observation leads to an even better predictor of the
preferred spike timing frequency: the maximum in the upper envelope of responses to ZAP
stimuli, whose amplitudes are large enough to approach threshold but not to elicit spikes.

Generally, at the preferred frequency the spike patterns of cells show a 1:1 mode locking,
where one spike per stimulus cycle is elicited. While for conductance-based model neurons
only one frequency band of increased reliability is observed, Morris-Lecar model neurons can
show a second frequency band, where the response is locked reliably to the stimulus in a 1:2
mode. These reliable mode-locking patterns are more characteristic of the suprathreshold DC
regime, as the next chapter will show.



Chapter 5

Spike timing: the suprathreshold regime

As we have seen in the previous chapter, for stimuli of subthreshold mean neurons exhibit a clear
frequency preference of spike timing reliability, determined by the subthreshold resonance profile
around the mean level of depolarization. For stimuli with a mean above threshold, however, the
response to the mean alone contains spikes and the concept of subthreshold resonance cannot
be applied. Therefore the question arises, how spike timing reliability depends on stimulus
frequency in the suprathreshold regime.1

5.1 A suprathreshold resonance effect of spike timing reliability

A mechanism that can explain frequency preference in the suprathreshold regime has been
suggested recently (Hunter et al., 1998). It is based on a resonance effect between the stimulus
frequency and the intrinsic frequency of a neuron. The latter is determined by the DC firing
rate of the neuron and thus also depends on the stimulus mean (or DC). The effect states that
spike timing reliability is maximal if the frequency of the stimulus and the intrinsic frequency
of the neuron match. This mechanism has been observed experimentally in motor neurons
of Aplysia and reproduced in leaky integrate-and-fire model neurons. Many other studies
had previously emphasized the importance of the firing rate in the generation of phase-locked
firing patters (Keener et al., 1981; Knight, 1972; Rescigno et al., 1970; Hunter et al., 1998;
Coombes and Bressloff, 1999).

For our study, we therefore constrain the analysis of the mechanisms to the confirmation
that the resonance effect is responsible for the frequency-selectivity of reliability in conductance-
based model neurons. In contrast to the previous chapter, where the involvement of ion chan-
nels in the generation of frequency preference was only implicit (by shaping of the subthreshold
resonance), we now explicitly focus on the ability of ion channels to modulate the preferred
frequency in the suprathreshold regime.

5.1.1 Dependence of spike timing reliability on the stimulus

As in the analysis of reliability in response to stimuli with subthreshold mean, sine wave stimuli
are used to characterize spike timing reliability as a function of stimulus frequency. Fig. 5.1B
and Fig. 5.1C show two examples of stimuli (f = 9 and f = 11Hz, respectively) and the

1This chapter is adapted from Schreiber et al. (2004b).
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corresponding rastergrams of 20 responses each, obtained from a conductance-based model
cell that will serve as a reference cell in this chapter. The response to the 11 Hz stimulus
is more reliable than the response to the 9 Hz stimulus (at the same DC level, IDC=0.3 nA
and for the same stimulus amplitudes, C=0.05 nA). In contrast to responses to stimuli with
subthreshold mean (see for example Fig. 4.1), the number of missing and additional spikes is
low. Reliability is mainly decreased by jitter in the spike times.
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Figure 5.1: Frequency dependence of reliability. A Voltage response of the reference
cell to a current step of IDC = 0.3 nA at time 0. The current threshold is marked is a
gray dashed line. B and C Two examples of stimuli used to drive the reference neuron
(f = 9Hz, C = 0.05nA and f = 11Hz, C = 0.05nA, for the sine component respectively;
IDC = 0.3nA in both cases). D and E Rastergrams of the spiking responses to the stimuli
presented above. Low reliability values mark unreliable spiking (as in D), where Rcorr=0.1.
Higher reliability values correspond to more reliable spike timing (Rcorr=0.64 for panel
E). F Arnold plot depicting reliability as a function of the sine frequency, f , and the sine
amplitude, C (here calculated with a high resolution, 0.25 Hz, each data point based on 50
responses). Several “tongues” (regions of increased reliability) are visible. The strongest
tongue around 11Hz corresponds to a 1:1 phase-locking between stimulus and response.

The full characterization of the model cell over a frequency range of 70 Hz and for three
different amplitudes of the stimuli (on top of a fixed DC level, IDC=0.3 nA) is shown in
Fig. 5.1F. Reliability values (each based on responses to 20 presentations of the same stim-
ulus) are color-coded to yield an Arnold plot. As in the subthreshold regime, spike tim-
ing reliability depends on the stimulus frequency. Now several distinct, tongue-shaped re-
gions of high reliability are visible. Because of the similarity to resonance phenomena in
physics, the regions have also been termed Arnold tongues (Coombes and Bressloff, 1999;
Beierholm et al., 2001). As in the subthreshold regime, the largest reliable region (around
11 Hz) corresponds to a 1:1 mode-locking between stimulus and response (one spike per stim-
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ulus cycle). The frequency of the 1:1 mode-locking in the suprathreshold regime, however, is
determined by the DC firing rate. The additional regions of increased reliability to the right
of the main region are located at harmonics of the resonance frequency, where the cell spikes
only at every second or third stimulus cycle (2:1 or 3:1 phase locking). These are now more
pronounced than in the subthreshold regime. Smaller high-reliability regions to the left of the
resonance frequency are related to 1:2 and 1:3 phase locking, where several spikes per stimulus
cycle are elicited. Overall, reliability increases with the power of the input around the resonance
frequency and its harmonics and subharmonics. Although several regions of increased reliability
exist in the suprathreshold regime, we keep the term preferred frequency for the frequency at
the 1:1 Arnold tongue, which in the majority of cases coincides with the frequency of maximum
reliability. The preferred frequency does not strongly depend on stimulus amplitude, although
a slight shift towards higher frequencies with increasing amplitude can be observed. The effect
is limited to a few Hz.

5.1.2 The DC component is fixed

The importance of the DC firing rate for the reliability frequency preference implies that
a neuron’s preferred frequency depends on the mean level of depolarization (in the model
determined by IDC), as well as on the composition of the ion channels at the site of action
potential initiation. Because we want to focus on the contribution of ion channels to the
preferred frequency, we content ourselves with the statement that it was checked that changes
in DC lead to changes in the preferred frequency as predicted by the resulting change in firing
rate (data not shown). The possibility of other neurons to modulate frequency preference of
spike timing reliability through modification of the DC has been recently investigated elsewhere
(Hunter and Milton, 2003). For all plots in this chapter, the DC component of the stimulus
remains fixed (to 0.3 nA).

5.1.3 DC firing rate determines the preferred frequency

The relation between the preferred frequency of spike timing reliability and the DC firing rate is
investigated for different sets of conductance-based model cells in this chapter. Although the
detailed description of the set of model cells is postponed to the following section, a comparison
between the DC firing rate and the preferred spike timing frequency is summarized here. Fig. 5.2
shows the preferred frequency (estimated from the location of the strongest Arnold tongue in
frequency space) as a function of the DC firing rate (with fixed IDC=0.3 nA). For each cell,
preferred frequency is estimated at three different amplitudes (C=0.5, 0.1, and 0.15 nA) of the
sine component. Firing frequency and preferred frequency correlate well for all investigated
cells. In general, the resonant frequency at the lowest amplitude of the sine component is
closest to the DC firing frequency. Two outliers can be seen (around 10 and 20 Hz), where
the highest value of reliability was achieved at the subharmonic, or the first harmonic of the
DC firing frequency. We conclude that the effect observed in Aplysia and integrate-and-fire
can be observed in conductance-based model neurons too. The approximation of the preferred
frequency is best for small stimulus amplitudes. Due to nonlinearities the frequency preference
may shift with larger stimulus amplitudes.
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Figure 5.2: DC firing rate (IDC=0.3 nA) and the stimulus frequency resulting in the highest
reliability for different sets of model cells. For each cell, the best spike timing frequency is
estimated at three different stimulus amplitudes (C=0.05, 0.1, and 0.15 nA). In all cases
the DC firing rate correlates tightly with the stimulus frequency resulting in maximal
spike timing reliability. The largest deviations (around 10 and 20 Hz) occurred when
the maximum reliability was achieved at the first harmonic or the subharmonic of the
stimulus frequency. Altogether, DC firing rate is a good predictor of the preferred spike
timing frequency.

5.1.4 Spike timing reliability at the harmonics

While in general it is the jitter in the timing of individual spikes that decreases reliability in
the suprathreshold regime, phase-locking to different cycles of the stimuli can occur for fre-
quencies neighboring the harmonics of the preferred frequency. Estimated with the correlation
measure, reliability will be lowered for these stimulus frequencies, although the precision of
individual spikes is relatively high. Fig. 5.3A shows an example. The responses presented in
the sequence of recording suggest unreliable spike timing. A reordered version2 of the same
responses shows, however, that the responses split into two classes (trials 1–9 and trials 10–20
in Fig. 5.3B). Reliability within each class is high. Such splitting of responses into different
attractors (Tiesinga et al., 2002) is only observed for stimulus frequencies close to the har-
monics. A second example shown in Fig. 5.3C illustrates that in between harmonics, reliability
is decreased due to jitter in the timing of spikes. Such responses cannot be clustered into
coherent patterns; phase-locking between stimulus and response can only be maintained over
brief periods of time.

5.2 Influence of ion channels on the preferred frequency

From the discussion of the general mechanism responsible for the frequency dependence of
spike timing reliability, we now turn to the capability of ion channels to modulate the fre-
quency preference. Taking into account that effective numbers of ion channels as well as

2Reordering was achieved with a K-means cluster algorithm involving the correlation measure as an
estimate of similarity. Details are described in Appendix A.
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Figure 5.3: Reordering of spike trains reveals reliable response subgroups close to the
harmonics. A 20 spike trains elicited by the reference cell in response to a stimulus with
a frequency close to the second harmonic (f=35Hz) in the sequence of recording. B
The same set of responses presented in a new sequence after application of a clustering
algorithm based on the correlation measure (see Appendix A). Two response subgroups
can be identified, reliability within each subgroup is high. C Responses to a stimulus in the
middle between the preferred frequency and the first harmonic (f=20Hz) in the sequence
of recording. D Reordered representation of the spike trains in C after application of the
clustering algorithm. In contrast to the example shown in A, the responses do not fall
into a small number of highly reliable subgroups.

their properties can be changed on short timescales through neuromodulation and cell-intrinsic
messengers, changes in ion channels may provide a useful way for a neuron to dynamically
maximize (or minimize) spike timing reliability according to the properties of the input. A
strategy achieving maximum spike timing reliability exploits the resonance effect and conse-
quently requires adjustment of the conductances such that the preferred frequency (or its first
harmonic or subharmonic) and the stimulus frequency match.

5.2.1 Dynamic regulation

The following example illustrates how changes in the peak conductance of slow potassium
channels can serve to regulate reliability (Fig. 5.4). The input to the neuron is a 9 Hz sine wave,
on top of a suprathreshold DC current. Spike timing reliability is initially low. The temporary
increase in the slow potassium conductance (after 1.5 seconds), results in a significant increase
in reliability within half a second. As the decrease in gKs back to the original value shows,
the effect on reliability is reversible. The conductance step is chosen such that the preferred
frequency of the cell after the conductance increase is similar to the stimulus frequency. In a
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real neuron, the change in conductance would not be instantaneous, however, the change in
reliability could be expected to follow the time scale of neuromodulator activation, which is on
the order of hundreds of ms.
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Figure 5.4: Dynamic changes in spike timing reliability due to conductance steps. A
Superimposed voltage traces (N=20) in response to a sine wave (f=9Hz, C=0.05 nA),
which is shown in D. The Ks conductance was temporarily increased, as indicated in
panel B. C Rastergram of the responses. The parameters of the cell were those of the
reference cell, gKs values were 0.9 mS/cm2 and 1.4 mS/cm2, noise standard deviation
σ=0.03 nA. Reliability (here estimated with σt=3ms) changed from 0.18 to 0.57 at the
conductance step and back to 0.17.

5.2.2 Influence of individual ion channels

For a systematic investigation of the influence of ion channels on frequency preference we
analyze sets of cells and vary one channel density at a time, keeping the densities of the
other channels fixed. As a reference cell we choose the original parameters of the model for a
cortical pyramidal cell (Golomb and Amitai, 1997). It is important to include a slow potassium
conductance, because it is responsible for a spike frequency adaptation in response to a current
step, which has been experimentally observed in cortical pyramidal neurons (McCormick et al.,
1985; Connors and Gutnick, 1990). The response of the reference cell to a conductance step
from 0 nA to the DC level of 0.3 nA is shown in Fig. 5.1A.

The Arnold plots for two sets of cells (one with modified leak conductance, the other
with modified Ks conductance) are shown in Fig. 5.5. Note that different Arnold plots now
correspond to different cells (all at the same DC level). All cells show a pronounced region of
increased reliability. With an increase in the leak conductance, the preferred frequency only
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moderately shifts to lower frequencies. In contrast, an increase of the Ks conductance has a
large effect on the preferred frequency; the latter is lowered by more than 60 Hz.
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Figure 5.5: Influence of leak and slow potassium conductances on spike timing reliability.
A The right column of the left panel shows Arnold reliability plots for seven different
model cells, systematically varying in the amount of leak channels present (0, 0.005, 0.01,
0.015, 0.02, 0.03, and 0.04mS/cm2 from top to bottom). The left column shows spikes
of the corresponding cells in response to pure DC stimulation without intrinsic noise. B
Arnold plots and spikes in response to DC stimulation for seven different model cells with
increasing amounts of Ks (0.05, 0.15, 0.3, 0.6, 1.0, 1.5, and 2.0mS/cm2, top to bottom).
For both panels the third plot from the bottom (∗) represents the reference cell (as in
Fig. 5.1F). Variation in ḡKs achieves larger shifts in the preferred frequency than variation
in ḡL.

Changes in the preferred frequency mediated by the Na, Kdr, and NaP conductances are
summarized together with the results for leak and Ks conductances in Fig. 5.6A. The curves
represent preferred frequencies that yield maximum reliability (at C=0.1 nA) as a function
of normalized channel density. Because each channel type operates in a different range of
densities, some of which differ by orders of magnitude, the densities are normalized to the range
[0;1] for each channel type (for unnormalized parameters see Appendix C). The conductance
range for each ion channel type was determined such that conductance changes from the
reference cell resulted in regular spiking responses to IDC=0.3 nA, with a peak voltage smaller
than 50mV. As for leak channels, large changes in Na, Kdr, and NaP densities are necessary
to shift the preferred frequency. The overall change for these channel types is in the range of
5 to 15 Hz. Thus starting from the reference cell, only variation in the Ks density can shift
the preferred frequency by several tens of Hz from below 10 Hz to more than 60 Hz.
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5.2.3 Influence of slow potassium channels

Because the slow potassium channel has proven best to adjust the preferred frequency over
a large range of frequencies, we now test the influence of two further potassium channels
with slow kinetics on frequency preference of the reference cell: the muscarinic potassium
channel M (already known from Chapter 2) and a calcium-dependent potassium channel,
KCa. KCa is responsible for a slow afterhyperpolarization (Tanabe et al., 1998). It is activated
by intracellular calcium and does not depend on voltage. Because of the dependence of KCa

on calcium, an L-type calcium channel is inserted, as well as a simple Ca-ATPase pump and
a mechanisms for internal buffering of calcium. For details see Appendix B. In both cases, Ks

was substituted by the new potassium conductance, M and KCa, respectively.
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Figure 5.6: Dependence of the preferred frequency of the reference cell on individual
channel densities. A Preferred frequency as a function of normalized channel density
(definition see text), for five different conductances. Variation in Ks achieves the broadest
shift in preferred frequency. B Preferred frequency for variation in a muscarinic potassium
channel, M, and a calcium-dependent potassium channel, KCa, as a function of normalized
channel density (based on sine wave reliability analysis). M and KCa, respectively, replaced
Ks in the reference cell. C DC firing rate (an estimate of the preferred frequency) for Ks
channels of different time constants, τKs, as a function of Ks peak conductance. Densities
are not normalized in this panel. The lowest achievable frequency (at IDC=0.3 nA) depends
on τKs.

The results of the Arnold plot analysis are shown in Fig. 5.6B. For both channel types, an
increase of their conductance shifts the preferred frequency over a broad range of frequencies.
If two or more slow potassium conductances are present at high densities, the broad tuning
effect is diminished and eventually suppressed at high conductance levels (data not shown).
Fig. 5.6C presents the preferred frequency as a function of the Ks conductance for different
time constants τKs. The slower the kinetics of the Ks channel, the lower the minimum achiev-
able frequency and the broader the frequency range accessible through variation of the slow
potassium conductance. This matches the observations obtained with the other two potas-
sium conductances (M has the fastest kinetics of the three slow potassium channels, KCa the
lowest).
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5.2.4 Firing rate analysis

So far, starting from the reference cell, only one conductance was varied at a time. For a more
complete picture of the influence of ion channels on spike timing frequency preference, now
all combinations of Na, NaP, Kdr, Ks, and L conductances are analyzed. For computational
efficiency we rely on the DC firing rate as an estimate of the preferred frequency. The distribu-
tion of maximum changes in firing rate (i.e. preferred frequency) achievable by variation of the
density of one ion channel type over all combinations of the other four densities is presented
in Fig. 5.7, which shows one curve for each ion channel type. For a more detailed description
of this analysis see Appendix B.

The figure shows that Ks has a significant effect on the preferred frequency in almost all
parameter regimes. The influence of Ks is weakest when another potassium channel (Kdr in
this case), is present at high density (data not shown). The mean change achieved with Ks is
around 20 Hz, while the mean change achieved by the other ion channels is below 10 Hz.

The analysis also shows that in principle, all ion channel types can achieve changes in
preferred frequency of 20Hz or more. Within the parameter space investigated, however, this
is true only for a minority of values of the other four conductances. In all these cases, the
Ks conductance was low. Fig. 5.7B shows four examples of parameter regimes where these
channels significantly change the preferred frequency.

5.2.5 Experimental results

In order to test the effects of ion channels on preferred frequency physiologically, patch-clamp
recordings in slices of rat prefrontal cortex were performed 3. The experimental methods are
stated in Appendix C. We employed the dynamic clamp technique, which allows the injection
of realistic time-dependent currents into in vitro neurons through online feedback (Sharp et al.,
1993; Jaeger and Bower, 1999; Dorval et al., 2001). Because the most interesting influence of
ion channels on spike timing frequency preference was observed with slow potassium channels,
we chose to artificially introduce the slow potassium conductance, with dynamics equal to
those of the Ks current used in the model simulations.

We first characterized its spike timing reliability as a function of frequency of a sine wave
input in the “native” conductance state of the cell (the control state). Then responses to the
same set of stimuli were recorded – this time in the presence of an additional Ks conductance
in the cell, which was introduced with dynamic clamp (the Ks state). The DC level was
kept constant and was the same for control and Ks experiment. Fig. 5.8 shows spike timing
reliability as a function of the frequency of the input for the control and Ks states. In the
control experiment the cell had a preferred frequency of approximately 17 Hz. When Ks was
introduced, the preferred frequency was lowered to 7 Hz and the spike timing reliability was
increased beyond the maximum reliability of the control state. We observed a negative shift in
the preferred frequency for all cells recorded (N=4). For most cells, the shift in the preferred
frequency resulted in an increase of spike timing reliability at that value (N=3). For one cell
reliability at the preferred frequency in the Ks state was not larger than in the control state.

3I am grateful to Jean-Marc Fellous (The Salk Institute of Biological Studies, La Jolla, USA) who
performed the experiments.
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Figure 5.7: Influence of parameter variation on the preferred frequency. A Normalized
distribution of frequency shifts (maximum changes in firing rate) achievable by one ion
channel type (measured over all combinations of the other four channel types). Cells in
conductance space that do not fire are discarded. Different curves correspond to different
ion channel types. B Four examples of cells where Na, NaP, L, and Kdr can mediate
large changes in preferred frequency (for parameters see Appendix). Circles and solid
lines indicate the preferred frequency derived with the sine wave protocol (C = 0.05 nA),
crosses indicate the DC firing rate.
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Thus the experimental data confirm the influence of ion channels, specifically the influence of
a slow potassium conductance, on spike timing reliability.
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Figure 5.8: Reliability as a function of frequency for a cortical neuron. The gray curve
shows reliability in the control case (no additional Ks present). The black curve shows
reliability with dynamic clamp recordings, where additional amounts of Ks were present.

5.3 Reliability of inputs with more than one frequency

Many biologically relevant inputs are rhythmic, such as for example the input to CA1 pyramidal
cells in hippocampus, which participate in the theta rhythm (Kamondi et al., 1998; Buzsaki,
2002). These inputs, however, are not well described by a single sharp peak in their power
spectrum. They rather exhibit a broad distribution of power of frequencies. We therefore briefly
test whether results obtained for modulation of spike timing frequency preference through ion
channels can be extended from strictly periodic to more natural stimuli.

Model neurons are stimulated with quasi-random stimuli whose power spectrum contains
two peaks of different amplitude: one in the theta-range (around 8 Hz) and one in the gamma
range (30Hz to 70Hz). Three different stimuli are implemented, one of which has the dominant
peak in the theta-range; the other two show the dominant peak in the gamma range (30 and
50 Hz, respectively). The characteristics of stimuli and their responses are depicted in Fig. 5.9.

Each stimulus is presented to a set of cells, which consists of reference model cells with
different Ks conductance (as in Fig. 5.5B). The middle panels in Fig. 5.9 show that the re-
liability of the neuronal response depends on the amount of Ks present in a cell. For the
theta-dominated input (Fig. 5.9A) cells with larger Ks conductances respond more reliably,
whereas cells with lower Ks conductances (therefore tuned to higher frequencies) respond with
lower reliability. For the two gamma-dominated stimuli, only cells with an optimally low Ks

conductance achieve high reliability. A high Ks conductance makes the cell more unreliable.
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Figure 5.9: Spike timing reliability tested for three different inputs: a theta-dominated
waveform (A), and two gamma-dominated waveforms (B and C). The uppermost panel
in each column shows one second of the respective stimulus waveform. The second panel
from the top shows the corresponding power spectrum. Below, gray-scale-coded reliability
is presented as a function of the Ks conductance (horizontal axis) for 8 different RMS
values of an input (0.03 nA to 0.1 nA, vertical axis). The panels above the rastergrams
show reliability averaged over all RMS values as a function of the preferred frequency
(corresponding to the Ks values). The bottom rastergrams show 500ms of the responses
at the numbered positions in the gray scale coded reliability panels (1 to 6 from left to
right).

For all stimuli, the cell whose preferred frequency (adjusted by Ks) is closest to the dominant
frequency in the input yields the highest spike timing reliability (as illustrated by the lower
panels in Fig. 5.9). Interestingly, the second (smaller) peak in the power spectra of the inputs
is also reflected by a small increase of reliability at corresponding densities of Ks. Not surpris-
ingly, across all stimuli and cells reliability tends to increase with stimulus standard deviation
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(or RMS value). Obviously, the results obtained with pure sine wave stimulation bear relevance
for more natural rhythmic inputs.

Summary

Also in the suprathreshold regime a frequency-dependence of spike timing reliability exists.
The preferred frequency is correlated to the firing rate in response to the pure DC component.
In addition to the frequency band around the preferred frequency, where a 1:1 mode locking
occurs, in the suprathreshold regime also conductance-based model cells show further frequency
bands of high reliability, characterized by 1:2, 1:3 and 2:1 mode locking.

We have seen that properties of ion channels – their peak conductances as well as their
kinetics – can directly determine the preferred frequency of spike timing reliability. Of the
channels tested, the peak conductance of slow potassium channels has proven especially ef-
ficient in changing the preferred frequency over a broad range of frequencies. In particular,
the size of the tunable range depends on the slow potassium time constant. We have demon-
strated that in principle, adjustment of the ionic peak conductances, as can be achieved by
neuromodulators, is suited for dynamic tuning of reliability frequency preference, as may be
advantageous in view of changing stimulus statistic. Last but not least, experiments in slices
of rat prefrontal cortex confirm the influence of slow potassium channels.

Chapter 4 and 5 have identified two separate mechanisms for the frequency preference of
spike timing reliability, depending on the stimulus mean. It remains, however, to compare both
regimes.
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Chapter 6

Frequency preference of spike timing
reliability

The aim of this chapter is to summarize and discuss the observations on spike timing frequency
preference in the sub- and suprathreshold regimes. We will have a more detailed look at the
frequencies that predict the spike timing reliability preference, and also review the ion channels
suitable for regulation of frequency preference.

6.1 Relating sub- and suprathreshold regimes

As we demonstrated in the previous chapters, spike timing reliability depends on the stimulus
frequency. The two main players determining the frequency preference of spike timing reliability
are the subthreshold resonance frequency (below threshold) and the DC firing frequency (above
threshold). An obvious question inflicted upon the reader is how the two frequencies compare
close to the threshold, where both sub- and suprathreshold regimes coincide. Although we do
not present a full analytical analysis of their relation, a systematic investigation of Morris-Lecar
model neurons will help to gain some intuition.

6.1.1 Subthreshold resonance and bifurcation type

Before turning to spike timing reliability, we note that for any neuronal system described
by two-dimensional differential equations, such as Morris-Lecar models, there is a relation
between the local subthreshold resonance frequency at the threshold and the bifurcation type
of the linearized system (and hence also of the nonlinear system): Cells exhibiting a Hopf
bifurcation at threshold (type II dynamics) have a non-zero subthreshold resonance frequency
near the threshold for small stimulus amplitudes. Conversely, cells that do not exhibit a
Hopf bifurcation, i.e. in two dimensions have a saddle-node bifurcation (type I dynamics), do
not have a subthreshold resonance near threshold. A proof of this statement is presented in
Appendix C. For the Hopf bifurcation, the resonance frequency equals the imaginary part of
the eigenvalue of the linearized system. For the saddle-node bifurcation, the imaginary part of
the eigenvalue is zero and therefore the electrical impedance peaks at 0 Hz. The two (type I
and type II) Morris-Lecar model neurons introduced in Chapter 4 illustrate this finding.

63
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6.1.2 Spike timing in Morris-Lecar neurons

Fig. 6.1 summarizes the results obtained for the spike timing reliability of these two Morris-
Lecar model neurons. Depending on the DC level, the corresponding subthreshold resonance
frequency or the DC firing rate are good predictors of frequency preference.

Type I neurons, do not exhibit a subthreshold resonance near threshold, although they may
show subthreshold resonance at other DC levels. The type I neuron presented in Fig. 6.1B
shows no resonance at any DC level between rest and threshold. Thus, the preferred frequency
for spike timing reliability is low. When crossing threshold, a type I neuron can exhibit ar-
bitrarily low firing rates, which increase with the DC. The spike timing frequency preference
follows this trend (see also the example of the nonresonant conductance-based model neuron
in Chapter 4, Fig. 4.6).

Type II neurons, exhibit a subthreshold resonance at threshold and have a non-zero onset
firing rate when crossing threshold. In the subthreshold regime, the subthreshold resonance
frequency and the frequency at the maximum in the upper response envelope of ZAP stimuli
approximate the preferred frequency (Fig. 6.1A). At the threshold (but not necessarily other
DC levels), the resonance frequency and the frequency obtained from the upper response en-
velope coincide, because the stimulus amplitudes are very small. Both frequencies converge
to the imaginary part of the eigenvalues of the linearized system at this point (see Appendix C).

It is tempting to suspect that the imaginary part of the eigenvalues of the linearized sys-
tem at threshold also approximates the oscillation frequency of the limit cycle that emerges
at the bifurcation point for the full nonlinear system. This would, for example, be true for a
supercritical Hopf bifurcation. Morris-Lecar type II model neurons, however, show a subcriti-
cal Hopf bifurcation (Rinzel and Ermentrout, 1998). In this bifurcation, the fixed point loses
stability and the limit cycle that emerges at the bifurcation point is unstable and inverted.
The spikes arise from another stable and potentially distant limit cycle – which is the “only
attractor in town” (Strogatz, 1994). Hence, the subthreshold resonance frequency and the
oscillation frequency on this limit cycle (i.e. the DC firing rate) may not be similar. Thus a
jump in the preferred frequency of spike timing can be expected at threshold, as can be seen
for the neuron in Fig. 6.1A. The magnitude of the jump is a measure of how much the angular
velocity of the system varies between the unstable fixed point and the stable limit cycle. For
the sets of cells investigated here, the larger the size of the jump, the more type II a cell is,
i.e. the larger the imaginary part of its eigenvalues at threshold.

As the distant stable attractor appears before the fixed point loses stability, the subcritical
bifurcation is accompanied by a region of bistability before the bifurcation. In this (typically
small) region, both spiking and nonspiking behavior can be observed in response to a pure
DC, depending on the initial conditions. The stable limit cycle is separated from the stable
fixed point by the unstable limit cycle (or separatrix). Thus for these DC levels, a subthreshold
resonance frequency exists as well as a DC firing rate. Which of the two frequencies determines
spike timing reliability in this narrow DC region poses an interesting question in itself. It
is, however, not discussed within the scope of this thesis, because it requires an exhaustive
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Figure 6.1: Preferred frequency of spike timing reliability (gray circles) as a function of IDC
for a type II and a type I Morris-Lecar model neuron. A Type II neuron: Below threshold
(at 24.9µA/cm2) the best frequency correlates with the subthreshold resonance frequency
(dotted line), and is predicted well by the maximum of the upper response envelopes to
large-amplitude ZAP currents (small black dots). Above threshold, the preferred frequency
follows the DC firing rate (black solid line). A small jump in preferred frequency when
crossing threshold is visible. B Type I neuron: Below threshold (at 7.8µA/cm2) the
preferred frequency is low; the cell exhibits no subthreshold resonance. Above threshold
the preferred frequency follows the DC firing rate (black solid line).

exploration of all possible initial conditions and the relevance of this phenomenon for biology
is likely to be small. We content ourselves with the discussion of an onset firing rate defined
as the DC firing rate at the DC where the fixed point loses stability.

6.1.3 Frequency preference around the threshold

For a more systematic numerical investigation of these frequencies around threshold, 26 differ-
ent Morris-Lecar model neurons were created. The type II and type I neuron presented above
differ in the values of three parameters. These parameters were linearly interpolated, so that
the first model neuron corresponds to the originally used type II neuron and the last model
neuron corresponds to the originally used type I neuron (Fig. 6.1). Analytically-calculated sub-
threshold resonance frequencies and numerically-calculated firing rates as a function of IDC

are shown for four example neurons in Fig. 6.2A. Out of the 26 neurons, the first 19 neurons
exhibit a subthreshold resonance at the threshold and change to the spiking regime via a Hopf
bifurcation (type II). The bifurcation type can be determined by the analysis of the eigenvalues
of the linearized systems, as is indicated for the example cells in Fig. 6.2B. The other 7 neurons
show a saddle-node bifurcation (type I) and are nonresonant at threshold, as is the last cell of
Fig. 6.2B.

The relation between the subthreshold resonance frequency just below threshold and the
onset firing rate just above threshold is presented in Fig. 6.3A. The neurons of type I show
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Figure 6.2: DC firing rate (black solid line) and subthreshold resonance frequency (gray
solid line) as a function of IDC for different Morris-Lecar neurons. A Three type II model
neurons and one type I model neuron (left to right). All type II neurons show nonzero onset
firing rates and a subthreshold resonance at the threshold. The type I neuron exhibits
arbitrarily low firing rates when crossing threshold and shows no subthreshold resonance.
The cells were derived by linear interpolation of three parameters (see Appendix B). Note
that the decrease in DC firing rate back to zero visible in the two righthand examples
arises from a second bifurcation, not discussed here. If the DC is too large, the cell stops
firing and settles onto a new steady-state voltage. B Determinant and trace of the values
of the matrix of eigenvalues of the corresponding linear system (black dots). The gray
dashed line separates the area of complex eigenvalues from the area of real eigenvalues. A
Hopf bifurcation (type II neuron) occurs when the black dots cross the (horizontal) line of
zero trace at positive values of the determinant, as is the case for the first three neurons.
A saddle-node bifurcation (type I) occurs when the black dots cross the (vertical) line of
zero determinant at negative values of the trace, as in the fourth cell.

an impedance maximum at 0 Hz (marked as a resonance frequency of 0 Hz) and very low
onset firing rates (white symbols). The neurons of type II (gray and black symbols) all exhibit
an onset firing rate significantly different from 0 Hz. The onset firing rate is close to the
subthreshold resonance frequency, though the subthreshold resonance frequency surpasses the
firing rate in all cases. It should be noted that values determined numerically do not necessarily
reflect the subthreshold resonance frequency at the threshold. Morris-Lecar neurons with
parameters near the border between type I and type II show a resonance frequency that, close
to threshold, sharply decreases as a function of the DC. In these cases it is not guaranteed that
this behavior is resolved numerically, due to the finite sampling of DC levels. The consequences
for spike timing reliability in these neurons should, however, be negligible, because only a very
small DC region (in fact smaller than the DC resolution of 0.5µA/cm2) is affected.

Interestingly, similar results can be obtained for conductance-based cells. The same analysis
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Figure 6.3: Onset firing rate (just above threshold) and subthreshold resonance frequency
just below threshold. A 26 Morris-Lecar model neurons, differing in the value of three
parameters such that the set gradually changes from type II (black and gray circles)
to type I (white circles) neurons. The onset firing rate correlates with the subthreshold
resonance frequency just below threshold. The larger the value of the resonance frequency,
the more the resonance frequency surpasses the onset firing rate. B The same analysis
for different sets of conductance-based model cells, showing a strong correlation between
both frequencies. The subthreshold resonance frequency tends to be larger than the onset
firing rate. Note that due to the limited resolution of the DC steps (0.001 to 0.0025 nA,
depending on the model set) the depicted values for the onset firing rate represents an
upper bound. For example, it cannot be excluded that the true values of the white symbols
are below the equality line.

for four sets of conductance-based cells differing in the peak conductances of individual ion
channel types or in the kinetics of some ion channels (as marked in the legend) is presented
in Fig. 6.3B.1 Firing rate and subthreshold resonance frequency correlate very well. As for the
Morris-Lecar neurons, the subthreshold resonance frequency tends to surpass the onset firing
rate for larger frequencies.

Altogether, the analysis of Morris-Lecar neurons and conductance-based neurons suggests
that at threshold jumps in the preferred frequency of spike timing reliability can occur, depend-
ing on the characteristics of the system. The shifts in frequency preference around threshold
illustrated in this chapter are relevant for the integration of small-amplitude stimuli. For larger
stimulus amplitudes, however, nonlinear interactions between the sub- and suprathreshold
regime can be expected, which are likely to have further effects on how the preferred frequency
changes from the subthreshold to the suprathreshold regime.

1These particular sets of conductance-based cells will be of further interest in the following and last
chapter on spike timing reliability. For the moment, however, we only explore their behavior close to
threshold.
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6.2 Comparison of sub- and suprathreshold spike timing

What have we learned about frequency-preference of spike timing reliability? First of all, two
different regimes, depending on the level of depolarization and thus also on the DC component
of the stimulus have to be distinguished: sub- and suprathreshold mean stimuli. From a
biophysicist’s point of view the scenarios can be described as follows: In the subthreshold
regime, the neuron has a stable fixed point, i.e. a fixed steady state voltage determined by
the stimulus mean. Nevertheless, the time-dependent component of the stimulus constantly
drives the input away from this fixed point, sometimes with excursions large enough to send the
neuron on the trajectory of a spike. In the suprathreshold regime, the situation is qualitatively
different. Even in the absence of the time-dependent stimulus component the neuron circles
on the trajectory of a stable limit cycle and thus periodically elicits spikes. The time-dependent
component drives the neuron away from the limit cycle, delaying or advancing the neuron on
the limit cycle.

6.2.1 Similarities

Nevertheless, sub- and suprathreshold regimes have many properties in common: Frequency
selectivity of spike timing can be observed in both regimes, each determined by an intrinsic
frequency - either the subthreshold resonance frequency (assumed to be 0 if a resonance is not
present) or the DC firing rate. Both frequencies per se depend on the DC, and both are tunable
by intrinsic conductances and their kinetics. Some ion channel types are efficient in adjustment
of frequency preference in the sub- and suprathreshold regime, such as the potassium channels
with slow kinetics. For stimuli of sub- and suprathreshold mean reliability increases with the
RMS value of the stimulus (i.e. the amplitude of the time-dependent component). In both
regimes, noise lowers the reliability.

6.2.2 Differences

There are also fundamental differences in the reliability of responses, depending on the stimulus
mean. For stimuli of subthreshold mean, decreased reliability is dominated by missing and
additional spikes, while the timing of individual spikes may be rather precise. For stimuli of
suprathreshold mean, reduced reliability is mainly reflected in the jitter of individual spikes,
while spikes are rarely missing completely. Equally, a larger dependence of the average firing
rate on the stimulus frequency is observed for subthreshold mean stimuli.

These observations can also be understood intuitively: For stimuli with a mean below
threshold, only when the time dependent component approaches threshold, spikes can be
elicited. The “temporal window” for spikes is limited by the structure of the stimulus. In
addition, in this regime it is quite often the stimulus uncorrelated noise which determines,
whether or not the stimulus crosses threshold and a spike is actually fired. For stimuli above
threshold, however, noise only changes the phase of the oscillation (i.e. advance or delay the
spike).

Another difference concerns the influence of nonlinearities. Because from DC levels close
to rest large amplitudes are required to elicit spikes in the first place, nonlinearities play a larger
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role in this (subthreshold) DC range.

Last but not least, in conductance-based model neurons we saw that only in the suprathresh-
old regime (or just below threshold) reliability is increased for stimuli at the harmonics or
subharmonics of the preferred frequency. This lack of multiple regions of increased reliability
in the subthreshold regime could, however, not be confirmed for Morris-Lecar type neurons.
Which of the two behaviors is adopted by real neurons remains to be tested.

6.3 The role of ion channels

From a mechanistic discussion of the spike timing frequency preference, we now briefly review
the ion channels analyzed in this work and their influence on frequency preference.

6.3.1 Potassium channels

Within the framework of this study, the most prominent role in the sub- as well as the
suprathreshold regime has to be assigned to potassium channels. Humans have over 70 potas-
sium channel genes (Jentsch, 2000), which - considering splicing - can be turned into an even
higher number of different potassium channels. The most common functional class of potas-
sium channel are the delayed rectifiers, which are activated with a delay after a depolarizing
voltage step. These channels are known to regulate pacemaker potentials as well as overall
excitability (Hille, 2001). Their activation time constants span several orders of magnitude.
Thus the activation kinetics of the slow potassium channel in the heart are 1000 times slower
than in frog nodes of Ranvier. In addition, potassium channels are regulated dynamically by
a multitude of cellular signals and neuromodulators, examples of which are cAMP-dependent
phosphorylation of slow potassium channels in the heart or regulation of muscarinic potassium
channels through acetylcholine.

We find that among the potassium channels those with slow kinetics have the greatest
effect on the frequency preference of spike timing reliability. In the suprathreshold regime, the
ability of Ks to control the inter-spike-interval during repetitive firing makes slow potassium
channels ideal candidates for regulation of the preferred frequency. As we saw in the previous
chapter, changes in Ks conductance are most efficient in adjusting the DC firing rate and thus
spike timing frequency preferences. In the subthreshold regime, Ks suppresses the response to
slowly varying stimuli and thus is instrumental in shaping the subthreshold resonance. Slower
potassium channel kinetics lead to lower preferred frequencies, while the preferred frequency
increases with faster kinetics (White et al., 1995). In the sub- as well as the suprathreshold
regime, the presence of slow potassium channels limits the ability of other ion channels to tune
the preferred frequency.

6.3.2 Sodium channels

In contrast to potassium channels, sodium channels are less diverse. They are responsible for
the rapid regenerative upstroke of an action potential. They also contribute to pacemaker
and subthreshold potentials that underlie decisions to fire or not to fire. As the firing rate
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usually increases with the Na peak conductance, sodium channels can tune the frequency
preference in the suprathreshold regime. The ability of sodium channels to modulate the firing
rate, however, depends strongly on the presence of slow potassium channels. Only if the Ks

conductance is relatively low, can sodium channels efficiently change preferred frequency. In
the subthreshold regime, the influence of sodium channels on frequency preference is smaller.
The persistent sodium channel is known to act as an amplifier of subthreshold resonance
(Hutcheon and Yarom, 2000). The location of the subthreshold resonance in frequency space,
however, depends more strongly other channels, such as H and Ks, than on NaP.

6.3.3 H and leak channels

In contrast to the sodium and potassium channels used in this study, H channels activate slowly
upon hyperpolarization. They are almost as permeable to Na+ as to K+ ions, with a reversal
potential at depolarized voltage levels (here -43mV). Thus they initiate slow depolarization
if the membrane potentials become negative. The analysis of spike timing reliability suggests
that H channels help to set the preferred frequency of spike timing reliability at hyperpolarized
membrane potentials and close to rest. As they serve to stabilize the subthreshold resonance
frequency (as described in chapter 2), they also can help avoid a dependence of the preferred
frequency on stimulus amplitude (for a given DC). A significant role of H in modulating the
preferred frequency could not be confirmed in the suprathreshold regime (data not shown).

Last but not least, leak channels influence frequency preference. They provide a small,
relatively voltage-independent background conductance. In the subthreshold regime they are
essential for shaping the subthreshold resonance by suppressing the response to high-frequency
components of the stimulus. In the suprathreshold regime, increasing the leak conductance
results in lower firing rates. Therefore, they can, in principle, regulate the frequency preference.
As for the other channels, their effect is decreased in the presence of slow potassium.

Summary

Although the mechanisms responsible for the frequency preference of spike timing reliability
are different in the sub- and suprathreshold regime, they show many similarities. Most impor-
tantly, both mechanisms are based on a resonance between the stimulus frequency and the
intrinsic neuronal dynamics. At threshold, where both regimes “meet”, deviations between the
two resonance frequencies can be observed. In the examples presented here, however, these
deviations were relatively small. The most prominent difference between both regimes is the
contribution of missing and additional spikes versus spike timing jitter to decreases in relia-
bility. While unreliable responses in the subthreshold regime show a large amount of missing
and some additional spikes, the timing jitter is dominant in the suprathreshold regime. It is
important to notice that in both regimes the frequency selectivity is tunable by ion channels,
the most prominent ion channels investigated in this study being the slow potassium channels.

These channels also have a third effect on spike timing reliability, as we will see in the
following chapter.



Chapter 7

Ion channels influence the sensitivity to noise

The previous chapters have shown in detail how neurons can adjust their frequency prefer-
ence of spike timing reliability. In the suprathreshold regime, however, adjustment of the
preferred frequency comes at the cost of a change in the average firing rate. In this chapter we
demonstrate how ion channels can influence spike timing reliability without changing overall
excitability: how ion channels directly set the sensitivity of neuronal responses to noise.1

7.1 Differential reliability despite the same preferred frequency

In the regime of suprathreshold stimulus mean, the preferred frequency of spike timing reliability
is determined by the DC firing rate. Equal firing rates and consequently equal preferred spike
timing frequencies can, however, be achieved under various conditions. Thus cells with different
compositions of conductances can have the same DC firing rate at a given DC level. Does that
mean that spike timing reliability of both cells to a given stimulus is equal? The answer is no.
Even for cells with equal preferred frequency there are fundamental differences in spike timing
reliability. In the following we will show the differential spike timing reliability and relate the
reliability to the composition and kinetics of ionic channels.

7.1.1 Variation in the slow potassium channels

First, we create a set of cells with the same preferred frequency at a given DC level, but
different time constants, τKs, and different peak conductances, ḡKs, of the slow potassium
channel. For each cell, the time constant of the slow potassium channels is set and the Ks

peak conductance is adjusted such that the DC firing rate (in response to IDC=0.3 nA) equals
20 Hz. All other conductance parameters remain those of the reference cell introduced in
Chapter 5. Arnold plots obtained from responses to a set of sine wave stimuli (the same for
each cell) are shown in Fig. 7.1. These plots confirm that all cells in the set have the same
preferred frequency.

The most interesting observation, however, is a systematic difference in the value of re-
liability at the preferred frequency, in the width of the 1:1 Arnold tongue, as well as in the
values of spike timing reliability at the harmonic frequencies (1:2 and 1:3 Arnold tongues). The
absolute value of reliability at the preferred frequency and its harmonics increases significantly

1This chapter is in part adapted from Schreiber et al. (2004b).

71



72 CHAPTER 7. ION CHANNELS INFLUENCE THE SENSITIVITY TO NOISE

τ
Ks

=150 ms F

τ
Ks

=30 ms

τ
Ks

=10 ms G

frequency (Hz)
10 20 30 40 50 60 70 0 50 100 150

0

0.5

1

de
ns

ity
 (

m
S

/c
m

2 )

τ
Ks

 (ms)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

re
lia

bi
lit

y

peak reliability (1:1)

τ
Ks

 (ms)
0 50 100 150

0

0.2

0.4

0.6

0.8

1
peak reliability (1:2)

τ
Ks

 (ms)

re
lia

bi
lit

y

0 50 100 150
0

2

4

6

8

10

w
id

th
 (

H
z)

width (1:1)

τ
Ks

 (ms)

500 1000 1500

−80

−40

0

40

τ
Ks

 = 150 ms

vo
lta

ge
 (

m
V

)

time (ms)
500 1000 1500

−80

−40

0

40

τ
Ks

 = 10 ms

time (ms)

vo
lta

ge
 (

m
V

)

0

1
A B

C D E

GF

Figure 7.1: Differential reliability at identical preferred frequencies. A Arnold plots for
examples of three cells differing in the values of τKs (as indicated) and slow potassium peak
conductance, ḡKs. B ḡKs was adjusted such that all cells had a DC firing rate of 20 Hz,
i.e. the same preferred frequency. C Peak reliability at the preferred frequency (1:1 mode
locking) as a function of τKs for the three different amplitudes of the sine component. D
Peak reliability at the first harmonic (1:2 mode locking). For panels C and D the standard
deviation of the reliability estimate was smaller or equal to the symbol size. E Width
of the reliability peak around the preferred frequency. Measured as the width (in Hz) at
50 % height in between the peak and background reliability levels (mean of reliability from
27 to 29 Hz). The standard deviation of the estimate was never bigger than 1 Hz for all
points presented. The plateaus are due to the 1 Hz discretization of the frequency axis.
F and G Sample voltage traces of neurons with a slower and a faster potassium channel,
respectively (see labeling in panel A). The input to both cells has a frequency of the first
harmonic (1:2 mode locking). Noise is identical for both cells.

with decreasing τKs, i.e. faster kinetics and higher values of ḡKs (Fig. 7.1C and 7.1D). This
effect is more pronounced at the first harmonic of the preferred frequency, despite a small
deviation from the general trend around τKs=25ms. The width also increases with faster
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kinetics and larger values of ḡKs. In addition, Fig. 7.1F and 7.1G show the voltage traces at
the first harmonic for τKs=10ms and τKs=150 ms. The rise in reliability with larger and faster
Ks conductance is accompanied by a deepening of the afterhyperpolarization following a spike
(see Fig. 7.1) and a more efficient shut down of sodium currents after a spike (data not shown).
Similar results were obtained for a set of cells with a preferred frequency of 8 Hz (data not
shown).

7.1.2 Influence of slow potassium kinetics and peak conductance

In order to distinguish the contribution of the peak conductance and the time constant of
the slow potassium channel to the differential reliability, two more sets of neurons with a
preferred frequency of 20 Hz are analyzed. Cells in the first of these sets vary in the Ks peak
conductance. This time, the DC current, IDC is adjusted to keep the firing rate at 20 Hz. Cells
in the second of these sets differ in the time constant τKs. Again, adjustment of IDC keeps
the firing rate constant. The amplitude of the sine wave components of the input, however,
remain the same for all cells.

Fig. 7.2A shows a significant increase of reliability at the preferred frequency with increasing
potassium peak conductance. This observation can be made at all three stimulus amplitude
levels. In addition, the width of the reliable region around the preferred frequency increases
with ḡKs (Fig. 7.2D). Note that for low values of ḡKs, the curves are nonmonotonic. For these
values, the difference between the peak reliability and that at surrounding frequencies is very
small, which as a consequence broadens the estimate of width at the preferred frequency.

From Fig. 7.2B and 7.2E it is obvious that also the Ks time constants influence spike timing
reliability at the preferred frequency. Apart from a shallow maximum around τKs=30ms, the
general trend confirms that faster Ks channels increase the peak conductance and broaden the
width. Overall, the effect of the Ks peak conductance is higher than that of the time constant.

7.1.3 The influence of persistent sodium channels

Slow potassium channels are not the only channel types whose peak conductance and kinetics
influence spike timing reliability. Fig. 7.2C and 7.2F illustrate that also persistent sodium
channels, NaP, modulate reliability. Again, a set with a preferred frequency of 20 Hz was
created by adjusting IDC. For persistent sodium channels, the effect on reliability is opposite
to that of slow potassium. The larger the NaP peak conductance, the more sensitive a cell is
to noise and the less reliable is the response to a given stimulus. Even more pronounced is the
effect of NaP on the width of the 1:1 Arnold tongue. The more NaP is present, the narrower
is the band of increased reliability around the preferred frequency.

7.2 Sensitivity to noise

The observation that certain ion channels have a pronounced effect on reliability beyond an
influence on the preferred frequency of spike timing reliability can be attributed to a change
in the sensitivity to noise. In support of this hypothesis we also analyze the response of the
neurons to pure DC stimuli.
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Figure 7.2: Influence of ḡKs, τKs, and ḡNaP on reliability at the preferred frequency. Peak
reliability at the preferred frequency is presented for neurons differing in ḡKs (A), τKs (B),
and ḡNaP (C). Different curves correspond to different amplitudes of the sine component.
The standard deviation of the reliability estimate does not exceed the symbol size. The
insets indicate how the DC is adjusted to keep the firing rate constant (the x axis of the
insets is equal to that of the respective panel). The lower panels (D-F) depict the widths
of the 1:1 reliability peak. The standard deviation of this estimate was never larger than
1 Hz. Altogether, more and faster Ks channels enhance reliability, while NaP channels
impair reliability.

7.2.1 The DC response

When the stimulus consists only of the DC component, IDC, one cannot expect a neuron
to respond reliably (apart from a brief transient period directly after stimulus onset). The
explanation is straightforward: Because there is no time-dependent stimulus component, the
response will not lock to the stimulus, but to the noise. The noise, however, is different in each
trial so that decorrelation of spike times occurs for times long after stimulus onset. Thus one
would predict that the above described sets of cells do not show a difference in the reliability of
response segments long after stimulus onset (steady-state reliability). On the other hand, one
would expect a difference in the time that it takes to reach the steady-state reliability, i.e. in
the time it takes to decorrelate the initially precise spikes – if the differential reliability within
the above described sets can be attributed to a differential sensitivity to noise. Indeed, Fig. 7.3
shows clearly that the cells of the ḡKs-τKs set take different times to reach the steady-state
reliability (equal for all cells). Reliability is estimated from 500ms long response segments,
every 10 ms after stimulus onset. The reliability trend within the set observed at the preferred
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frequency and the harmonics (in the previous section) also is visible for pure DC stimulation.
The faster the slow potassium channels and the larger their peak conductance, the longer
reliability values above the steady-state reliability are maintained after stimulus onset. The
effect of these channels is not constrained to the preferred frequency, but can be attributed to
a general change in the sensitivity of the responses to noise.
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Figure 7.3: Reliability in response to pure DC stimuli (IDC=0.3 nA) as a function of time
after stimulus onset. Different curves correspond to different cells distinct in their Ks peak
conductance and Ks time constant (on the basis of the same cell set as in Fig. 7.1). The
legend marks the time constant, τKs, in ms. Time-dependent reliability was estimated
from a 500 ms long gliding window (every 50 ms). The first 500 ms after stimulus onset
were discarded from analysis. Although all cells eventually settle on the same low value
of reliability, a significant difference in the first second after stimulus onset and transient
can be observed. Similar to the effect at the preferred frequency, faster Ks channels with
higher peak conductance show improved robustness to noise.

7.2.2 Phase-resetting curves

A cell’s sensitivity to noise is also reflected in so-called phase-resetting curves. Phase resetting
curves describe the influence of brief perturbation pulses on the occurrence of the following
spike, while the cell is in a regular firing mode under pure DC stimulation, see for example
(Ermentrout, 1996). Short current pulses are given in addition to the DC stimulus at various
times after a selected spike. The resulting shift in the occurrence time of the following spike
as a function of the time the pulse was presented defines the phase-resetting curve.

Fig. 7.4A shows phase-resetting curves for the set of cells with varying Ks peak conduc-
tance (presented in Fig. 7.2A). For cells with low ḡKs, a perturbation directly after the spike
significantly advances the following spike. Whereas for cells with high ḡKs, the perturbation
has almost no effect on the timing of the following spike. The effect of perturbations presented
in the last third of the unperturbed inter-spike interval (ISI) is relatively independent of ḡKs.

The other panels of Fig. 7.4 show similar results for all cell sets presented above. The
data indicate that the Ks time constant and the NaP peak conductance influence the phase-
resetting curves. For all cell sets the trend is equal: The change in parameters that was found
to increase spike timing reliability also lowers the influence of perturbations on spike timing.
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Figure 7.4: The dependence of phase-resetting curves on different cell parameters. A Dif-
ferent curves correspond to different values of ḡKs, from the set of cells shown in Fig. 7.2A.
The larger ḡKs, the lower the influence of small perturbations on the timing of the follow-
ing spike, especially for perturbations shortly after the first spike. Similar observations
can be made for the sets of neurons with different Ks time constant (B), different Ks
time constant and ḡKs (C) and different NaP peak conductance (D). Overall, the trends
are the same as those observed for spike timing reliability. Some phase-resetting curves
show small negative values (like the light-gray curves in A). Most of the time, however,
the pulses cause a phase advance (i.e. positive values of the phase-resetting curve). The
largest influence of cell parameters on the timing of the following spike is exerted in the
first half of an ISI. The perturbation pulses had a duration of 2 ms and an amplitude of
0.3 nA.

Even the small peak for the set of τKs variation can be found in the phase-resetting curves;
the phase-resetting curve for the fastest Ks conductance is larger that of the next slower ones
(Fig.. 7.4B).

7.2.3 A relation between phase-resetting and timing jitter

Finally, we briefly establish a relationship between phase-resetting curves and spike timing
reliability. Because in the suprathreshold regime, unreliability predominantly arises from the
jitter in the timing of spikes, reliability is lowered to the extend to which noise between spikes
can shift the following spike. Now the noise between two spikes can be considered as a time-
dependent perturbation, ∆I(ψ), where ψ denotes the phase (or time normalized to the the
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average inter-spike interval of the unperturbed system). ψ is therefore constrained to the
interval [0;1]. In a linear regime of integration - i.e. for noise of small amplitude - the influence
of the noise ∆I(ψ) on the timing jitter, ∆t, of the second spike can be approximated by

∆t ≈ −
∫ 1

0
dψ z(ψ)∆I(ψ), (7.1)

where z(ψ) is the phase-resetting curve (Ermentrout, 1996; Benda and Herz, 2003). In the case
of zero-mean, white Gaussian noise, the average ∆t is zero. What matters for the reliability,
however, is the variance, σ2

∆t, of ∆t:

σ2
∆t ≈

〈(∫ 1

0
dψ z(ψ)∆I(ψ)

)2
〉

∆I

(7.2)

=
∫ 1

0

∫ 1

0
dψdψ′ z(ψ)z(ψ′)

〈
∆I(ψ)∆I(ψ′)

〉
∆I
. (7.3)

Because the noise terms are uncorrelated,

〈∆I(ψ)∆I(ψ′)〉∆I = σ2
I δ(ψ − ψ′), (7.4)

where σI is a constant that relates to the noise variance. Thus the timing variance, σ2
∆t, reads

σ2
∆t ≈ σ2

I

∫ 1

0
dψ z2(ψ), (7.5)

and therefore depends on the area under the squared phase-resetting curve, z2(ψ). Thus
the timing jitter (and consequently unreliability) increase with the area under the squared
phase-resetting curve.

7.3 Potassium and persistent sodium channels

Several lines of evidence presented in this chapter support the hypothesis that potassium
channels and persistent sodium channels can control the sensitivity to noise when a cell is in
regular firing mode. This observation is independent of the frequency-dependence discussed
in the previous chapters.

The most important property of potassium channels is that they counteract depolarization.
Thus the responsiveness of a cell is reduced in the presence of a large potassium conductance,
especially directly after a spike, when the potassium channels are most active, as the phase-
resetting curves in Fig. 7.4A indicate. Consequently, the cell is less sensitive to noise. An
additional effect leading to insensitivity is the inactivation of Na channels after a spike. We
observed that cells with larger Ks conductances also were characterized by a more efficient
shut down of sodium channels after a spike (data not shown).

We also find that cells with faster Ks channels have more reliable responses than cells
with slower Ks channels. A possible explanation is that neural noise (as well as the noise
used in this study) is relatively fast and needs fast channels to follow the time course and
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counteract depolarization (according to the same principle that underlies amplitude attenuation
in subthreshold resonance). One speculation is that the small peak in the effect of the kinetics
on reliability (see for example Fig. 7.2B), reflects a trade-off between long-lasting insensitivity
after a spike (due to slow kinetics) and the ability to attenuate high-frequency noise.

In general, the strong activation of fast Ks channels after a spike is manifested in a deep
afterhyperpolarization, as we observed in cells with a large and fast Ks conductance in contrast
to cells with low and slow Ks conductance (see for example Fig. 7.1F and 7.1G). It is worthwhile
to note, however, that in general the degree of afterhyperpolarization alone is not sufficient to
infer reliability, because lower voltage values after a spike do not exclude an equally increased
sensitivity to signals in the inter-spike interval.

Finally, the effect of persistent sodium channels on reliability can be easily understood.
These channels do not inactivate and thus help boost depolarizing signals and directly increase
sensitivity to noise. Interestingly, similar ion channels – slow potassium and persistent sodium -
have recently been found to determine the state of synchrony in neural networks (Pfeuty et al.,
2003). The trend is the same: slow potassium channels promote synchrony and persistent
sodium channels impede synchrony.

Summary

The analysis in this chapter has shown that individual ion channels and their kinetics can
influence reliability without changing the firing rate or the preferred frequency. Although the
effect is most obvious for stimuli with frequencies at the harmonics of the preferred frequency,
it is not exclusive for periodic inputs. It rather reflects a general decrease in the sensitivity to
noise, which results in more precise spikes. Support for this hypothesis comes from pure DC
stimulation, where we saw that cells with more and faster slow potassium channels channels
could maintain initially high values of reliability over a longer period of time. Also the analysis of
phase-resetting curves indicates that ion channels selectively influence the sensitivity of spike
timing to noise. Altogether, the regulation of the sensitivity to noise through ion channels
provides a second mechanism controlling spike timing reliability, in addition to the adjustment
frequency preference.



Chapter 8

Conclusions and outlook

We followed three major lines of investigation in this thesis. They relate frequency-selectivity,
spike timing reliability and the influence of intrinsic neuronal parameters:

1. The frequency selectivity of subthreshold response amplitudes has been proven to extend
to nonperiodic stimuli and to translate into firing rates.

2. The mechanisms leading to frequency preference of spike timing reliability have been
elucidated and the capacity of specific ionic conductances to modulate the frequency
preference have been shown.

3. A direct influence of ion channels on the sensitivity of the timing of spikes to noise has
been demonstrated.

In the first part, comprising the chapters 2 and 3, subthreshold resonance has been introduced
as a mechanism leading to frequency-selective signal integration. We have shown that although
subthreshold resonance profiles are usually characterized on the basis of periodic signals, they
equally affect responses to nonperiodic stimuli, such as frozen colored noise. The analysis
presented here thus provides an alternative view to previous experiments that suggested a
nonlinear interpretation of the integration of nonperiodic signals.

Interestingly, for stellate and pyramidal cells of the entorhinal cortex, the integration of
periodic and nonperiodic graded signals follows the rules of a linear system and there is no
need to assume additional and selective nonlinear mechanisms. Hence, our results also suggest
that the occurrence and frequency of spontaneous subthreshold oscillations in the presence
of a subthreshold resonance may be quantitatively explained by a simple filtering operation
acting on intrinsic channel noise, see also (White et al., 1998). Whether this relation holds
quantitatively, remains to be tested. The translation of the subthreshold frequency selectivity to
a frequency-dependent firing rate observed here, may be exploited in the frequency-dependent
flow of information, as suggested previously (Gloveli et al., 1997).

Finally, it is important to notice that subthreshold resonance is shaped by intrinsic cur-
rents, as discussed widely in the literature, see for example (Hutcheon et al., 1996b; Hutcheon
and Yarom, 2000; Hu et al., 2002). The modeling of stellate cells in entorhinal cortex has

79
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shown that in principle the presence of H and M currents (in addition to the usual Na, K, and
L currents) is enough to achieve a subthreshold resonance profile that is independent of the
membrane potential, for a large range of voltages.

In the second part, comprising the chapters 4 to 6, we have followed up on the previous ob-
servation that spike timing reliability can depend on the stimulus frequency. The mechanisms
leading to a frequency selectivity of spike timing reliability and the ability of intrinsic currents
to tune this preference have been analyzed.

For the first time, two regimes determined by the relation of the DC to the firing threshold
have been distinguished clearly and the role of subthreshold resonance for the spike timing
of rhythmic inputs has been elucidated. Nonlinear effects have been shown to act on large-
amplitude ZAP currents and to influence spike timing reliability in the subthreshold regime.

In the suprathreshold regime, a mechanism leading to frequency selectivity of spike timing
had been suggested before (Hunter et al., 1998). We have confirmed that this resonance effect
is also observed in conductance-based model neurons and have focussed on the identification
of ion channels that can tune the preferred frequency. The peak conductance of potassium
channels with slow kinetics, which may be adjusted on short time scales by neurotransmitters,
has proven efficient to modulate the preferred frequency over a broad range of frequencies.

In addition to the preferred frequency, neurons also have the option to exploit the harmon-
ics of this frequency. We saw that, in principle, for reliable responses the firing rate can be
chosen lower than the stimulus frequency, if a 1:2 or 1:3 mode locking at harmonic frequencies
is used. Alternatively, the firing rate can also be increased to yield 2:1 mode locking. In this
case, responses with burst-like spikes in short sequence and bimodal inter-spike interval distri-
butions are obtained. Spikes in short sequence can induce short-term plasticity in the synaptic
transmission of central neurons, such as paired-pulse facilitation (Dobrunz and Stevens, 1997).
Therefore, the differential utilization of mode-locking states may also allow to modulate synap-
tic plasticity.

In the third part, comprising chapter 7, an intriguing finding has been presented: the direct
influence of ion channels on the sensitivity to noise, not involving changes in the average firing
rate. In the suprathreshold firing mode this provides an additional mechanism to increase or
decrease spike timing reliability. This effect is not bound to a particular frequency, although it
is reflected more strongly at the resonance frequency and its harmonics. We could specifically
show that the sensitivity to noise can be modulated by the ionic peak conductances, such
as slow potassium or persistent sodium, but also by the kinetics of ionic channels, as results
obtained for the time constant of slow potassium indicate. We will briefly discuss below, how
this mechanism can help maintain a strong rhythmicity or to be sensitive to temporal variations
in the input.

8.1 Rhythmic versus nonrhythmic signals

Rhythmic activity has been observed in many higher level brain structures, for a review see
(Destexhe and Sejnowski, 2001). Oscillations measured in EEG recordings reflect synchronized
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synaptic potentials in neuronal populations, but they can also be found on the level of individual
cells. Often neural rhythms are associated with behavioral states, such as the theta rhythm
in rat hippocampus, which is observed during explorative behavior (Vanderwolf, 1969), or the
delta rhythm during slow wave sleep (Steriade, 2003). They may therefore require dynamic
regulation. For a cell participating in a rhythm, the adjustment of the preferred frequency as
well as the reduction of its sensitivity to noise may prove fruitful to maintain a stable oscillation.

The results in this thesis, however, give reason to suspect that neurons may choose different
strategies for nonperiodic signals. An increased insensitivity to noise, as described here for cells
with a large slow potassium conductance, also implies an increased insensitivity to time-varying
signals in general. Especially during periods that follow a spike, the integration of the signal
– and not only the noise – will be suppressed. Signal integration is thus subordinate to a
maintenance of rhythmic responses in cells with reduced sensitivity to noise. For cells whose
task it is to transmit potentially nonperiodic time-varying signals, such as cells in sensory
peripheries or the LGN, it may be more efficient to increase the sensitivity to time-varying
stimuli and compensate increased sensitivity to noise by larger stimulus amplitudes (mediated
for example by an increased synaptic strength). Whether these two hypothesized strategies
are valid remains to be tested in more detail.

For periodic and nonperiodic stimuli, a decrease in temporal jitter may be easier to achieve
when signals are kept in the subthreshold regime, if necessary through additional inhibitory
synaptic input or upregulation of the threshold. This strategy, however, comes at the cost
of reduced reliability in the number of spikes, in particular the number of missing spikes may
increase. The latter may be acceptable, though, if the representation of the signal is assigned
to several neurons subject to uncorrelated noise sources.

8.2 Network synchrony

Spike timing reliability, as it is investigated in this thesis, reflects the ability of an individual
neuron to produce phase-locked responses to its input. Therefore, spike timing reliability is
also important for the synchrony in networks of neurons as described above. Given that a
network is in a synchronous state, the ability of an individual neuron to maintain synchrony
reduces to its ability to produce reliable, phase-locked responses to the input provided by the
other neurons.

Interestingly, the results we obtained for spike timing reliability of single cells, are similar to
the recent observations made in networks of conductance-based model neurons (Pfeuty et al.,
2003). Pfeuty and colleagues find that potassium channels increase the network synchronicity,
while persistent sodium channels enlarge asynchronous network activity. As we did for spike
timing reliability, these authors establish a relation between synchrony and the influence of ionic
conductances on neuronal phase-resetting curves. For synchrony, however, they particularly
discuss the position of the maximum, while we focussed on the total area under the squared
phase-resetting curve.

Overall, the influence of ion channels on spike timing reliability is likely to bear importance
for the synchronization of neurons, but also for their ability not to synchronize.
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8.3 Related problems

Questions related to the topics in this thesis arise from the results as well as from the restrictions
of our analysis. Let us finish by naming a few of them:

1. A natural step to follow the analysis of spike timing reliability is to test the predictions
made in section 8.2 and to analyze the influence of intrinsic parameters on the synchro-
nization of networks. Although first steps in this direction have been undertaken, see for
example (Pfeuty et al., 2003; Acker et al., 2003), much remains to be explored.

2. As mentioned in section 8.1, different strategies may be optimal for the spike timing of
rhythmic and nonrhythmic stimuli. The spike timing reliability of nonrhythmic stimuli
remains to be analyzed in detail. The outcome of such a study may allow to predict
different compositions of ion channels for neurons receiving periodic inputs, such as
hippocampal neurons participating in rhythms, and neurons receiving nonperiodic inputs,
as for example in the sensory periphery.

3. A high value of spike timing reliability and a high rate of information transfer may not
always be correlated. For example, a neuron firing periodically with perfect reliability
may not convey any information about the stimulus. Therefore, it would be interesting
to see, how the information rates depend on the intrinsic conductances and how these
rates compare to the trends observed for spike timing reliability.

4. Additional extrinsic and intrinsic factors will also influence spike timing reliability. With
regard to the results of this study, an important extrinsic influence is likely to be exerted
by the synaptic background activity and the synaptic strength via the DC (Hunter and
Milton, 2003). A prominent intrinsic candidate determining spike timing reliability is the
noise produced by the stochastic gating of ion channels, that merits further investigation
(Schneidman et al., 1998).

5. We have explored the generation of action potentials. Neural signals, however, before
have to be passed from the synapse to the axon hilloc. They reach the cell in form
of conductance changes (in contrast to current changes as employed in the majority of
experimental and theoretical studies). On their way, the signals are extensively filtered
(as for example expressed in the shape of postsynaptic potentials, PSPs) and summated
in differential ways, depending on the cell geometry and the spatial distribution of ion
channels. All these factors may differentially contribute to spike timing reliability and
allow further insights into the role of intrinsic cell parameters.

6. Subject to further analysis rest the spike timing reliability and frequency preference in
bursting neurons, which have not been discussed here. The results obtained in this study
suggest the hypothesis that both, the frequency of bursts as well as the frequency within
bursts, may be decisive.

7. The relation between the subthreshold resonance at threshold and the type of neuronal
dynamics (I or II) has been shown for systems of two dimensions in this thesis. Whether
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the presence of a resonating current activated at threshold, like a slow potassium current,
can commonly be associated with type II behavior in real neurons, remains unclear.

8. Finally, a question that can be posed for any neuronal mechanism is that of additional
constraints, such as energy efficiency. Because the signaling on the basis of changes
in conductances involving changes in ion channel concentrations is metabolically very
expensive (Attwell and Laughlin, 2001; Schreiber et al., 2002), it may be fruitful to
consider this constraint when optimizing intrinsic conductances.

8.4 Finale

In this thesis we have tried to draw the attention to the fact that the properties of individual
neurons, specifically the peak conductances of ion channels and their kinetics, as well as their
dynamic regulation are of outstanding importance for the integration of signals in the nervous
system. We have illustrated in various examples how the dynamics of single cells are shaped
by intrinsic parameters and have elucidated mechanisms related to spike timing reliability and
frequency preference. Though it is not shown explicitly in this work, these mechanisms and
their dynamic regulation are likely to affect the gating of signals in the network and properties
of the networks themselves, such as synchronization. Parameters beyond the scope of a single
cell, such as the network connectivity, exert a large influence on the way signals are integrated,
but the properties of individual neurons cannot be neglected.

Relating to the introduction of this thesis, the right piece of music and the cheerleading
are important to motivate the audience to clap and even applaud in synchrony. But at the
very basics, we need to be physically capable and willing to synchronize with the rhythm of
enthusiasm after the performance. So do the neurons in our brain.
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Appendix A

The measure of spike timing reliability

In this appendix we take a brief look at how the correlation-based measure compares to widely
used histogram-based measures with regard to variation in the number of spikes (additional
and missing spikes) and with regard to temporal jitter.1 We also show that the basic operation
underlying the measure used in this thesis – correlation of smoothed pairs of spike trains –
provides a good estimate of similarity that allows to cluster spike trains according to their
temporal patterns.

A.1 Comparison to histogram-based measures

Many measures have been used to characterize reliability of spike timing on the basis of the
spike trains a neuron produces in response to repeated presentation of the same stimulus, see
for instance (Berry et al., 1997; Hunter et al., 1998; Mainen and Sejnowski, 1995; Nowak et al.,
1997; Tiesinga et al., 2002; Victor and Purpura, 1996; Van Rossum, 2001). The most widely
used measures are based on the post-stimulus time histogram (PSTH), which is insensitive to
the structure of individual spike trains (Tiesinga et al., 2002). In this study, we introduced
a different measure of spike timing reliability that is based on the similarity between pairs of
individual spike trains. This measure takes the structure of individual spike trains into account
and, unlike histogram-based measures, does not depend on the a posteriori identification of
specific events in the neural responses. As histogram-based measures, it is sensitive to the
absolute timing of spikes. Precise relational timing between spikes, however, as for example
precise timing of the inter-spike intervals without phase-locking to the stimulus, may not be
captured.

A.1.1 Histogram-based measures

The post-stimulus time histogram (PSTH) is constructed from multiple spike trains elicited
in response to the same stimulus. Fig. A.1 illustrates how the PSTH relates to the individual
trials. Histogram-based spike timing measures depend on the particular choice of up to four
parameters, the first of which is the bin width, binh, of the histogram. To obtain an estimate
of reliability, events in the PSTH have to be defined, usually as peaks in the PSTH. In order
to reliably extract peaks, the PSTH is typically smoothed with a time window, τh, which

1This appendix is in part adapted from Schreiber et al. (2003).
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constitutes the second parameter. In practice, care must be taken to set the third parameter:
the threshold, θh, that distinguishes peaks from noise (see dashed line in the lower panels of
Fig. A.1). Note that the threshold cannot be set independently of the first parameter binh.
Once the events are detected, spikes are labeled as belonging to an event. This labeling
sometimes depends on the choice of a fourth parameter, the allowable time window, wh,
around the time of peak, outside of which spikes cannot be considered as part of the event.
This parameter sets a time scale that depends on the phenomena of interest.
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Figure A.1: Illustration of histogram-based measures. A A response rastergram charac-
terized by a significant amount of spike jitter. The PSTH (bars), a smoothed version of
it (gray solid line), and a possible threshold (dashed line) are shown in the lower panel.
A single spike can decide whether a group of several spikes is classified as reliable or not.
B A rastergram with no temporal jitter, but some missing spikes. The average number
of spikes in A and B is comparable. The measure is very sensitive to its parameters,
especially the event threshold (dashed line).

Reliability, Rhist, is defined as the average number of spikes within events, divided by
the total number of spikes, ntotal, present in the histogram: Rhist = (

∑
e∈events ne)/ntotal.

Because of the dependence on four interrelated parameters a fair amount of discretion from
the part of the experimenter is required. It is difficult to compare reliability measures between
studies, unless exactly the same procedure has been used.

For comparison with the correlation-based measure, we smooth the PSTH with a Gaussian
filter (standard deviation τh), the threshold, θh, is fixed, and only bins with values exceeding
θh are considered event bins. The allowable window is defined as twice the width of the peak,
at mid-height.
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A.1.2 Surrogate test data sets

To test the two measures, a surrogate data set, consisting of seven firing events within one
second is introduced (Fig. A.2). Each rastergram is comprised of N = 35 spike trains. Without
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Figure A.2: A The basis surrogate data set (events at 200, 300, 470, 500, 550, 700, and
900 ms) and three examples of data sets with different jitter, σj (2, 6, and 16 ms); B
Examples of data sets of different amounts of missing and extra spikes (0, 2, 4, and 16 %
extra spikes, and 0, 10, 20, 30 % missing event-spikes).

jitter, extra spikes, and missing spikes all trials are identical and reliability equals 1 (upper
rastergram in Fig. A.2A and upper left most rastergram in Fig. A.2B). This rastergram is used
to derive additional surrogate sets of spike trains, by systematically varying the amount of
jitter and the amount of missing and additional spikes. For the sets with variation in jitter,
all spikes of each trial in the reliable set are shifted independently in time. The shift is drawn
from a Gaussian distribution of the standard deviation σj , which characterizes the amount
of jitter. For the sets with missing and additional spikes additional spikes are introduced at
random times and randomly selected spikes of the reliable set are removed.
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A.1.3 The performance of both measures

Reliability with jitter: Fig. A.3 shows that for the correlation measure, reliability degrades
smoothly with jitter. For higher values of the filter width , σt, the reliability tends to be
higher (Fig. A.3A), because there is more overlap between smoothed spike trains.
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Figure A.3: A Correlation-based reliability as a function of spike jitter, σj. Different
curves correspond to different filter width, σc (1, 2, 3, 5, 8, and 12 ms, bottom to top).
In a control calculation, 25 different rastergrams with 10 ms jitter were generated and
the reliability was computed for a filter width of 5ms (circle, and standard deviation).
B Histogram-based reliability as a function of jitter (binh = 2 ms). Different curves
correspond to different smoothing filter widths, τh (1, 2, 3, 5, 8, and 12 ms, bottom to
top). The solid curves were calculated with a threshold of θ = 1200 Hz. For the dashed
curves the threshold is 600 Hz. For both measures error bars based on 25 control data sets
(σj = 10ms, τh=5ms) are indicated.

For the histogram-based measure, the degradation of reliability with jitter is less smooth
(Fig. A.3B). The solid set of curves was obtained for a histogram measure with high threshold.
The dashed curves were obtained with the same parameters of the histogram measure, but a
threshold value lowered by 50%. Measured with a higher threshold, reliability as a function of
jitter depends on the smoothing filter width of the histogram measure, τh. The jaggedness of
the curves of the histogram-based measure arises because, from one jitter value to the next,
some events fall below threshold and hence change the reliability estimate discontinuously. For
a lower threshold (dashed curves), the reliability curves were highly similar and all reliability
values were high. Although this measure is stable over a broad range of filter width parame-
ters, the reliability values do not reflect the true jitter. Similar observations can be made for
reliability as a function of jitter when varying the bin size of the histogram measure (data not
shown). Altogether, the histogram-based measure proves sensitive to the choice of threshold.

Reliability with extra and missing spikes: In Fig. A.4 we compare how the reliability measures
performed on data sets that include extra and missing spikes. Fig. A.4 A shows the correlation-
based reliability as a function of the percentage of missing event-spikes. Each curve is based
on data sets with a fixed number of extra spikes per trial. Reliability values degrade smoothly
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as the number of missing spikes increases. The performance of the histogram-based measure
on these data, shown in Fig. A.4 B, is similar. However, the degradation is less smooth and
suffers from the same threshold choice sensitivity mentioned above.
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Figure A.4: A Correlation-based reliability as a function of missing spikes (σc=5ms).
Different curves correspond to different levels of extra spikes (increasing from 0 % to 30%
from top to bottom). B Histogram-based reliability as a function of missing spikes (τh =
5 ms, binh = 2 ms, θh = 1500 Hz). Different curves correspond to different levels of extra
spikes (0 % to 30 % from top to bottom). The error bars in both panels are based on 25
different rastergrams (30 % missing event-spikes, no extra spikes).

Dependence on the number of trials: The estimate of spike timing reliability depends on the
number of trials, N . The higher the number of trials, the smaller the (average) error in the
estimate of reliability. Based on 208 surrogate data sets with extra and missing spikes (0 to
30 % extra spikes, 0 to 60% missing spikes ), we compare the errors in the reliability estimate
between the histogram measure and the correlation measure as a function of the number of
trials per data set, N . An error free reliability estimate would be based on an infinite number of
trials; however, for practical reasons, we assume the estimate based on 35 trials to be the refer-
ence value for a given data set. The error for estimates based on fewer than 35 trials (N < 35)
was the standard deviation of the reliability values based on N trials chosen randomly out of
the full 35 trials. Fig. A.5 depicts the average error as a function of the number of trials. The
error rapidly decreases with increasing N for both reliability measures. However, the error in
the correlation-based reliability estimate is less than half of the error in the histogram-based
estimate. Hence, fewer trials need to be recorded in an experiment in order to obtain a good
reliability estimate.

A.1.4 The influence of the filter width

Both, missing and additional spikes on the one hand and temporal jitter of spikes on the other
hand, decrease reliability. The only parameter of the correlation-based measure, the filter width
σt of the Gaussian used to smooth the spike trains, determines the relative contribution of both
“symptoms” of unreliability. If σt is on the order of one ms or below, even a small temporal
jitter of only a few ms will substantially lower reliability. If σt is large, temporal jitter causes
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Figure A.5: The average error in reliability for the correlation-based measure (solid line,
sigmac = 5 ms) and the histogram-based measure (dashed line, θh = 1500/35 · N) as a
function of the number of trials, N . The error in the correlation-based estimate was always
more than a factor of two lower than the error in the histogram-based estimate.

a significantly smaller decrease in the reliability estimate. Decreases in reliability then mainly
reflect additional and missing spikes. Note that in the limit of σt →∞, reliability will always
approach 1, as long as each response trial contains at least one spike.

Thus the analysis of the correlation-based reliability, R, as a function of σt can give useful
information about the relevant temporal dimensions of a response. Fig. A.6 illustrates the
dependences of R on the filter width σt for three response sets of different spike jitter.
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Figure A.6: Reliability as a function of the filter width, σt. Reliability is quantified on
the basis of surrogate rastergrams with six spiking events (at 100, 200, 400, 500, 700, and
800 ms). Different curves correspond to different temporal jitter in the events (quantified
by σj) and a different fraction of missing spikes (10, 30, 50, 70, or 90 % from top to bottom,
dark solid curves to light solid curves). A In the case of no temporal jitter, reliability is
constant over a broad range of filter widths, until the time scale of ISIs is approached. B
Responses with medium jitter show two inflection points; the first is indicative of the time
scale of the temporal jitter. C For large temporal jitter only one inflection point is visible.

For all levels of jitter and missing spikes large values of σt (here σt >50 ms), the filtered
spike trains overlap significantly (because the distance between events is on the order of
100 ms). The reliability estimate is in this range of σt more indicative of the average firing
rate than of the precision of individual spikes. Consequently, for practical reasons one should
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chose the filter width σt small enough to avoid this effect.

For smaller values of σt, however, the reliability estimate reflects jitter and missing spikes.
Interestingly, the reliability curves can show several inflection points, depending on the amount
of jitter and missing spikes. In the medium jitter range, a plateau in between two inflection
points is visible (Fig. A.6B). The first inflection point here characterizes the time scale where
the filter width is on the order of the temporal jitter. The second inflection point relates to the
time scale of the average ISI, when the filter width causes overlap between spikes in different
events. In accordance with this interpretation, responses with no temporal jitter show only
the second inflection point (Fig. A.6A), while the two inflection points merge to one point for
responses with very large temporal jitter (Fig. A.6C). In the latter case the jitter is on the order
of the ISI time scale and it is difficult to conceptually distinguish between jitter and missing
spikes.

Thus the analysis of reliability as a function of the filter width provides additional informa-
tion about intrinsic time scales of the responses. The shape of such curves allows to distinguish
the contribution of temporal jitter from that of missing spikes. Additional plateaus may appear,
if the ISI distribution of the responses is multi-modal (data not shown). Note, however, that
the calculation of reliability as a function of filter width is computationally intense. In many
cases, information about the temporal structure of spike trains may be obtained by simpler
means, as the analysis of the raw PSTH.

A.2 Clustering

In the last section of this appendix we show that the correlation of smoothed pairs of spike
trains can also be used to sort spike trains according to their temporal patterns. Stimuli can
possibly give rise to two or more different spiking patterns (Tiesinga et al., 2002; Fellous et al.,
2004). Reliability when assessed on the basis of all responses is likely to be low, because
different temporal structures result in spikes at fixed times that are not present in all events.
Within each class of patterns, however, spike timing reliability can be high.

Correlation of smoothed pairs of spike trains gives a good estimate of similarity between
individual spike trains and can therefore be used to identify temporal patterns. Fig. A.7
illustrates an example. In panel A (artificially produced) spike trains are shown in random
sequence, as they would be obtained in a recording. The responses seem very unreliable. The
pairwise correlation of the smoothed spike trains, however, shows very low and very high values
for different pairs (Fig. A.7B), indicating that some responses are very similar, while others are
not.

Application of clustering algorithms to the correlation matrix of smoothed spike trains
allows to sort the spike patterns apart. Fig. A.7C shows the spike trains reordered according to
similarity after clustering. Efficient reordering of the sequence of spike trains allows to identify
three different patterns, which before could not be identified by naked eye. The spike timing
reliability within each pattern is larger than the reliability estimated across all trials. In the
matrix of pairwise correlations (Fig. A.7D) the reordering is expressed in continuous areas of
high similarity; similar spike trains are now grouped together.

The clustering algorithm applied is a simple K-mean algorithm, which assigns each row
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Figure A.7: Clustering of spike trains. A Spike rastergram in the sequence of recording
(surrogate data). B The corresponding matrix of correlations between pairs of smoothed
spike trains (σt=4ms). C The reordered spike trains from (A) after application of a K-
means clustering algorithm. Three different firing patterns can now easily be distinguished.
D The reordered correlation matrix. Four clusters are visible (one trial with no spikes was
assigned to a fourth cluster).

vector to one of Mclus cluster centers.2 Mclus is specified in advance (here Mclus=5). An
iterative procedure alternates between updates of the membership of correlation vectors to
clusters and assignment of new cluster centers (as the mean of all its current members). The
objective is to minimize the squared Euclidean distance within members of the same cluster.

K-means algorithms usually converge to local optima. Therefore it is advisable to perform
the clustering algorithms several times and to chose the most optimal result. The results in
this thesis are based upon 50 runs of the clustering algorithm. It has proven useful to calculate
two values: the average correlation of pairs belonging to the same clusters and the average
correlation of pairs belonging to different clusters. The best clustering result is identified on
the basis of the maximal difference between these values, which corresponds to the difference
between the average values within the light and dark areas in Fig. A.7D.

Clustering of spike trains according to the principles described here is applied in Chapter
5, where different response patterns to given stimuli are identified.

2Because of the symmetry of the correlation matrix it is equivalent to cluster the column vectors.



Appendix B

Conductance-based model cells

This appendix gives the details on the conductance-based model neurons. All of these are
comprised of one-compartmental, isopotential, cylindrical spheres (diameter and length mea-
suring 89.2µm). Spatial aspects of signal integration are neglected. As in many experimental
studies, the stimulus is “injected” as current into the cells, i.e. synaptic transmission is not
modeled explicitly. The mean level of depolarization can be set via the direct current compo-
nent of the stimulus (IDC). In order to simulate intrinsic noise, a random zero-mean current
of small amplitude (usually of standard deviation σn =0.02 nA) is injected. This noise current
is generated from a Gaussian distribution and is filtered with an alpha function of 3ms time
constant. In Chapter 3, specifically, σn is adjusted to yield voltage fluctuations of similar
variance as those observed in the cells of layer II and III in entorhinal cortex.

The conductance-based model neurons were implemented in NEURON (Hines, 1993) and
solved numerically, with a resolution of 0.1 ms (with the exception of Chapter 3, where the
resolution was 0.125 ms to match the experimental procedure). The kinetics of all currents
were adjusted to 36 ◦C. The reversal potentials were ENa=55mV, EK=-90 mV, EL=-80 mV,
and EH=-43 mV. The value of the capacitance was Cm=1µF/cm2.

B.1 Model equations

The kinetics of five currents (Na, Kdr, L, Ks, and NaP) are based on a model of a cortical
neuron introduced by Golomb and Amitai (1997).

Sodium current, INa:

INa(V, h) = ḡNam
3
∞(V )h(V − ENa) (B.1)

dh

dt
= [h∞(V )− h]/τh(V ) (B.2)

m∞(V ) = {1 + exp[−(V − θm)/σm]}−1 (B.3)
h∞(V ) = {1 + exp[−(V − θh)/σh]}−1 (B.4)

τh(V ) = 0.37 + 2.78× {1 + exp[−(V − θht)/σht]}−1 (B.5)

where θm=-30 mV, σm=9.5mV, θh=-53 mV, σh=-7 mV, θht=-40.5 mV, and σht=-6 mV.

93
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Persistent sodium current, INaP:

INaP(V, h) = ḡNaPp∞(V )(V − ENa) (B.6)
p∞(V ) = {1 + exp[−(V − θp)/σp]}−1 (B.7)

(B.8)

with θp=-40 mV and σp=5.0mV.

Delayed rectifier potassium current, IKdr:

IKdr(V, n) = ḡKdrn
4(V − EK) (B.9)

dn

dt
= [n∞(V )− n]/τn(V ) (B.10)

τn(V ) = 0.37 + 1.85× {1 + exp[−(V − θnt)/σnt]}−1 (B.11)
n∞(V ) = {1 + exp[−(V − θn)/σn]}−1 (B.12)

where θn=-30 mV, σn=10mV, θnt=-27 mV, and σnt=-15 mV.

Slow potassium current, IKs:

IKs(V, z) = ḡKsz(V − EK) (B.13)
dz

dt
= [z∞(V )− z]/τz (B.14)

z∞(V ) = {1 + exp[−(V − θz)/σz]}−1 (B.15)

where θz=-39 mV, σz=5mV, and τz=75ms.

Leak current, IL:

IL = ḡL(V − EL). (B.16)

Slow noninactivating muscarinic potassium current, IM:

IM = ḡMn(V − EK) (B.17)
dn

dt
= (n∞ − n)/τn (B.18)
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n∞ = {1 + exp(−(V − θn)/σn)}−1 (B.19)
τn = 1000{3.3(exp((V − θτn)/σ1τn) + exp(−(V − θτn)/σ2τn))}−1/Tadj (B.20)

Tadj = 3.0(T−22◦C)/10◦C , (B.21)

where θn =-35 mV, σn =10 mV, θτn =-35 mV, σ1τn = 40 mV, and σ2τn = 20 mV. For ref-
erence see (Yamada et al., 1989; Storm, 1990; Barkai et al., 1994; Gutfreund et al., 1995).
Technically, values of τn <0.001 were set to 0.001. Exponentials with arguments larger than
50 were set to exp(50).

H current, IH:

IH = ḡH(0.8h1 + 0.2h2)(V − EH) (B.22)
h1

dt
= (h∞ − h1)/τ1 (B.23)

h2

dt
= (h∞ − h2)/τ2 (B.24)

h∞ = {1 + exp((V + θH)/7)}−1, (B.25)

where θH= 82 mV, τ1=40 ms, and τ2=300 ms. The equations are based on (Spain et al.,
1987), see also (Bernander et al., 1994; Hutcheon et al., 1996a).

Calcium-dependent potassium current, IKca:

IKca = ḡKcan
2(V − EK) (B.26)

dn

dt
= (n∞ − n)/τn (B.27)

Tadj = 3(T−22◦C)/10◦C) (B.28)

n∞ =
[Ca]2i

θ2
Kca + [Ca]2i

(B.29)

τn = {βn(1 + ([Ca]i/θKca)2)}−1/Tadj, (B.30)

where [Ca]i0 =2.4e-04mM (initial intracellular calcium concentration), βn =0.03Hz (backward
rate constant), and θKca =5.0e-04mM (mid activation concentration). For reference also see
(Destexhe et al., 1994). If τn <0.1ms, then τn was set to 0.1 ms.The calcium dependent
potassium current, IKca, thus is a nonvoltage-dependent potassium channel, activated by
intracellular calcium.

The functionality of Kca requires intracellular calcium, whose dynamics include pumping
of calcium ions and internal buffering, as well as a (voltage-dependent) calcium channel, CaL.
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L-type calcium current, ICa:

ICa = ḡCau
2z(V − ECa) (B.31)

ECa = 12.5 mV log([Ca]o/[Ca]i) (B.32)
du

dt
= (u∞ − u)/τu (B.33)

dz

dt
= (z∞ − z)/τz (B.34)

Vx = −0.031(V + 37.1 mV) (B.35)
Vu = V + 24.6 mV + cu (B.36)
Vz = V + 12.6 mV + cz (B.37)

u∞ = {1 + exp(−(Vu/σu))}−1 (B.38)
τu = 2.5 ms {exp(Vx/σx) + exp(−Vx/σx)}−1 (B.39)

z∞ = {1 + exp(Vz/σz))}−1 (B.40)

where ḡCa =0.1 mS/cm2 (maximum conductance of CaL), τz = 5040 ms, σx=1mV, σu=11.3mV,
σz =18.9mV. If abs(Vu) <1e-04mV then cu was set to cu =0.00001mV, else cu=0mV. If
abs(Vz) <1e-04mV then cz was set to cz=0.00001mV, else cz =0 mV.

The removal of intracellular calcium dynamics was accomplished by an ATPase pump.

Calcium pump:

wch = −5000ICa/F

wpump = −Kpump
[Ca]i − ca∞

[Ca]i − ca∞ + Keq

d[Ca]i
dt

= wch + wpump + (ca∞ − [Ca]i)/τr

where wpump is the calcium drive through the pump, wch the calcium drive through the
calcium channel CaL, ca∞ =2.4e-04mM (equilibrium intracellular calcium concentration),
and τr =1e10 ms (time constant of calcium removal by buffering). The time constant τr was
designed to model a first order removal of intracellular calcium, which we neglected by setting τr
to a very large value. Kpump =4e-04mM/ms (time constant of the ATPase), Keq =0.02mM
(equilibrium value for the ATPase), and F =96485.309Cmol−1 (Faraday constant). If wch

was smaller than 0 then wch was set to 0 (no inward pumping). For reference see (Destexhe
et al., 1993).
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B.2 Parameter sets

The following three tables summarize the parameters of the peak conductances. The param-
eters used in the Chapters 2 to 5 are (in mS/cm2):

ḡNa ¯gKdr ḡL ḡNaP ḡKs ḡM ḡH
Fig. 2.3A 24 3 0.06 — — — 0.2

Fig. 2.3B 24 3 0.02 0.06 — 0.4 —

Fig. 2.3C, 4.8 24 3 0.02 0.03 — 0.4 0.2

Fig. 3.2G + all Chapter 3 (stellate) 24 3 0.04 0.02 — 0.4 0.25

Fig. 3.2H + all Chapter 3 (pyramidal) 24 3 0.07 0.02 — — —

Fig. 4.1, 4.2, 4.3, 4.4A, 4.5A, and 4.9A 24 3 0.02 0.2 — 1 0.04

Fig. 4.4B, 4.5B, 4.7, 4.9B 24 3 0.02 0.2 — 1 —

Fig. 4.6, 4.9C 24 3 0.04 0.02 0.1 — —

Fig. 5.1, 5.3, 5.4 24 3 0.02 0.07 1 — —

The analysis in Chapter 5 is based on the parameter set of the reference cell, as given in the
table above for Fig. 5.1. For the figures, where individual conductance values deviate from the
reference cell, the parameters are summarized in the following table (in mS/cm2). The second
column states the parameter values used for the firing rate analysis:

variation of individual conductances
(Fig. 5.5, Fig. 5.6A, Fig. 5.6B, and Fig. 5.9)

firing rate analysis
(Fig. 5.7A)

ḡNa 10, 15, 30, 50, 70, 100 (1, 2, 3, . . . , 10) · 10

ḡNaP 0, 0.07, 0.2, 0.3, 0.4 (0, 1, 2, . . . , 10) · 0.04

ḡL 0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04 (0, 1, 2, 3, 4) · 0.01

ḡKs 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 1.0, 1.5, 2.0 (0, 1, 2, . . . , 10) · 0.2

ḡKdr 1.5, 2, 3, 6, 10, 15, 20, 25, 30 (1, 2, 3, . . . , 10) · 3

ḡM 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 not used

ḡKca 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.2, 0.4, 0.5 not used

The conductance values were chosen such that conductance changes from the reference cell
(parameters as for Fig. 5.1) resulted in regular spiking electrical responses to IDC = 0.3 nA,
where the peak voltage of spikes was smaller than 50 mV, and no bursting was observed. No
conductance was increased by more than a factor of 10 from the reference cell. The conduc-
tance parameters of the four examples shown in Fig. 5.7B are (in mS/cm2):

ḡNa ḡNaP ḡL ḡKs ḡKdr

Na varied varied 0 0.01 0.4 3

NaP varied 30 varied 0.03 0.4 6

L varied 20 0.04 varied 0.2 6

Kdr varied 40 0.08 0.03 0.2 varied
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All model cells in Chapter 7 have the parameters of the reference cell, apart from the individual
parameters that are varied. These are indicated in the figures of that chapter.

B.3 Firing rate analysis

For the firing rate analysis, as presented in (Fig. 5.7), the parameter space of Na, NaP, Kdr,
Ks, and L conductances was analyzed. DC firing rates were obtained for all possible parameter
combinations within this parameter space. The maximum change in firing rate achievable by
one ion channel type was characterized (for each combination of the other four conductances)
as the difference between the maximum and minimum (non-zero) firing rates achievable by
variation of the ion channel conductance of interest, keeping the other four conductances fixed.
If a cell never fired despite variation in one conductance, it was excluded from the parameter
space (less than 5% of the total four-dimensional conductance space for any channel type
tested). The distribution of maximum changes in firing rate achievable by variation of the
density of one ion channel type over all combinations of the other four densities is presented
in Fig. 5.7A.

Though limited to the descriptive level, the following principles can be extracted: Kdr can
modify preferred frequency over several tens of Hz if Ks is not present or present only in small
amounts. NaP can cause a large frequency shift if both potassium conductances, Kdr and Ks,
are low. Na is potent in changing the frequency if both potassium conductances and NaP are
low. Its influence in these cases weakens further with a higher density of leak channels. Leak
channel variation also gives rise to higher frequency shifts if both potassium conductances
are low and the sodium conductances are not too large. In general, higher densities of leak
channels tend to lower the minimum achievable frequency.



Appendix C

Morris-Lecar model neurons

This appendix defines the full Morris-Lecar model and describes its linearization. In addition,
characteristics of the electrical impedance, such as the resonance frequency and the Q-value,
are derived analytically for the general linearized system of two coupled differential equations.
Finally, a relation between the bifurcation type and the existence of a subthreshold resonance
at threshold is established for models of two dimensions.

C.1 The model

In order to describe the voltage dynamics of the muscle fibers of barnacles, Morris and Lecar
developed a set of three coupled differential equations (neglecting spatial dependencies) based
on two ionic currents: an outward noninactivating potassium current and an inward noninacti-
vating calcium current. Following Rinzel and Ermentrout (1998), we assume that the calcium
current is always in equilibrium for the time scales considered. The assumption is justified,
because the Ca2+ current responds much faster than the K+ current. Thus the dynamics
of the Ca2+ current can be neglected and the number of equations is reduced to two. The
equations are

Cm
dV

dt
= −ḡCam∞(V )(V − ECa)− ḡKw(V − EK)− ḡL(V − EL) + Iext (C.1)

dw
dt

= Φ
w∞(V)− w
τw(V )

, (C.2)

where w is the activation variable for potassium, ḡCa is the Ca2+ peak conductance, and ECa

is the calcium reversal potential. The calcium and potassium voltage-dependent activation
curves are

m∞(V ) = 0.5 [1 + tanh{(V −V1)/V2}] , (C.3)
w∞(V) = 0.5 [1 + tanh{(V −V3)/V4}] , (C.4)

and the potassium time constant is

τw(V ) = 1/cosh{(V −V3)/2V4}. (C.5)
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The parameters are Cm=1µF/cm2, V1=-1 mV, V2=15mV, ḡCa=1.1mS/cm2, ḡK=2.0mS/cm2,
gL=0.5mS/cm2, ECa=100mV, EK=-70 mV, and EL=-50 mV.

An advantage of the Morris-Lecar model is that it can exhibit type I as well as type II
neuronal dynamics (depending on only few parameters). The other parameter values used
for the model neurons in Chapters 4 and 6 are V3=10 mV, V4=14mV, Φ =1/3 (type I),
and V3=0mV, V4=30mV, Φ =1/5 (type II). Chapter 6 also uses additional values for these
parameters, which are given by a linear interpolation between the type I and type II parameters
stated here.

Although the Morris-Lecar system has only two dimensions, it is still highly nonlinear and
in general, exact analytical solutions are not possible. The data for spike timing reliability are
therefore obtained numerically. If the voltage responses are constrained to the subthreshold
regime, however, linearization of the system proves useful for small-amplitude stimuli and
responses can be approximated analytically.

C.2 Linearization of the Morris-Lecar model

If the full Morris-Lecar system (Eq. C.1 and Eq. C.2) is represented in the following form,

d

dt

(
V
w

)
=

(
f(V,w)
g(V,w)

)
+

(
Iext

0

)
, (C.6)

the linearized system (with new variables x1 = V − Vst and x2 = w − wst) is given by

d

dt

(
x1

x2

)
=

(
∂f
∂V

∂f
∂w

∂g
∂V

∂g
∂w

)
Vst

(
x1

x2

)
. (C.7)

The steady state values of the original variables, Vst and wst, at a given value of Iext = const
have to be obtained numerically by solution of the equations dV/dt = 0 and dw/dt = 0. The
coefficients of the linearized Morris-Lecar system read

∂f

∂V

∣∣∣∣
Vst

=
1
Cm

{
−ḡCa

[
(Vst − ECa)

∂m∞
∂V

∣∣∣∣
Vst

+m∞(Vst)

]
− ḡKw∞(Vst)− gL

}
(C.8)

∂f

∂w

∣∣∣∣
Vst

= − ḡK
Cm

(Vst − EK) (C.9)

∂g

∂V

∣∣∣∣
Vst

=
1

τw(Vst)
∂w∞
∂V

∣∣∣∣
Vst

(C.10)

∂g

∂w

∣∣∣∣
Vst

= − 1
τw(Vst)

, (C.11)

with

∂m∞
∂V

∣∣∣∣
Vst

=
1

2V2 cosh2
(

Vst−V1
V2

) (C.12)

∂w∞
∂V

∣∣∣∣
Vst

=
1

2V4 cosh2
(

Vst−V3
V4

) . (C.13)
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C.3 Resonance frequency and impedance

The subthreshold resonance frequency for linearized two-dimensional model neuron systems,
including the linearized Morris-Lecar model, can be derived analytically. We consider linearized
systems of the form

d

dt

(
x1

x2

)
=

(
a b
c d

)(
x1

x2

)
+

(
I1(t)
I2(t)

)
. (C.14)

The eigenvalues, λ1 and λ2, are

λ1/2 =
a+ d

2
±

√
(a+ d)2

4
− (ad− bc). (C.15)

The solution of the system based upon variation of constants allows to describe the response
to sine wave stimuli of fixed amplitude (I1(t) = sin(ωt), while I2(t) = 0). The correspond-
ing voltage response is again a sine wave, whose amplitude is proportional to the electrical
impedance at the frequency f = ω/2π. Except for a constant factor, the impedance is therefore
determined by

Z(ω) =

√
d2 + ω2

b2c2 + 2bc(ω2 − ad) + (a2 + ω2)(d2 + ω2)
. (C.16)

The resonance frequency, fres, is determined by the values of ω where the condition dZ(ω)/dω =
0 is fulfilled. Consequently, the resonance frequency reads

fres =
1
2π

√
−d2 +

√
b2c2 − 2abcd− 2bcd2. (C.17)

The Q-value, is defined as the ratio of impedance at the resonance frequency and the impedance
at 0 Hz, i.e. Q = Z(2πfres)/Z(0) with Z(0) = |d|/|ad− bc|.

For the Morris-Lecar model the linear coefficients are given by(
a b
c d

)
=

(
∂f
∂V

∂f
∂w

∂g
∂V

∂g
∂w

)
Vst

, (C.18)

as presented in the previous section.

C.4 Bifurcation type and subthreshold resonance

In order for oscillations to emerge in a bifurcation, as it is the case for spiking neurons, the
bifurcation type in two-dimensional systems has to be either a Hopf bifurcation (type I) or a
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saddle-node bifurcation (type II) (Izhikevich, 2000). The bifurcation type in these systems is
tied to the existence (or nonexistence) of a subthreshold resonance at the threshold (i.e. at
the bifurcation point), as we will show in the following. If the fixed point loses stability in a
Hopf bifurcation, the system shows a subthreshold resonance at threshold and vice versa. If
on the other hand, the fixed point loses stability in a saddle-node bifurcation, it follows that
no subthreshold resonance exists at threshold and vice versa.

Given that the decision whether the bifurcation type of the nonlinear system (with emerg-
ing oscillations) is a Hopf or a saddle-node can be made on the basis of the linearized system,
as can the decision whether a resonance exists at threshold or not, we briefly prove these
statements on the basis of the linearized systems.

In order to have a subthreshold resonance, the resonance frequency, fres, (as stated in Eq. C.17)
has to be real and positive.

Hopf bifurcation:

At a Hopf bifurcation two conditions hold:

a = −d and (C.19)
∆ = −d2 − bc = −d2 + |bc| > 0, (C.20)

where ∆ denotes the determinant of the matrix of eigenvalues,(
λ1 0
0 λ2

)
. (C.21)

The first condition (Eq. C.19) results from the fact that at the point of Hopf bifurcation the
trace of the matrix of eigenvalues is 0 (or in other words, the real value of the eigenvalues is
0). The second (Eq. C.20) is the consequence of the first condition and a positive determinant,
∆ > 0 at the Hopf bifurcation. The latter also guarantees that |bc| = −bc.

From these conditions and Eq. C.17 it follows that wres =
√
−d2 + |bc| =

√
∆ and there-

fore wres real and wres > 0. If the bifurcation at the neuronal threshold is of type Hopf, a
subthreshold resonance exists.

Saddle-node bifurcation:

A saddle-node bifurcation fulfills the following conditions:

a+ d < 0 and (C.22)
∆ = ad− bc = 0. (C.23)

If the bifurcation at threshold is a saddle node, the neuron does not exhibit a resonance
at threshold. The prove is led indirectly. Let us assume that a neuron with a saddle-node
bifurcation had a resonance (i.e. a real, positive wres), then the expression under the outer
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square root in Eq. C.17, as well as the expression under the inner square root would have to
be positive and real. Taking Eq. C.23 into account,

√
(−a2 − 2ad)d2 > d2 (C.24)

would follow from the outer square root. Because both sides of the inequality are positive
(d2 > 0 and the inner square root of Eq. C.17 is real and positive), squaring would give

− a2 − 2ad− d2 = −(a+ d)2 > 0, (C.25)

which is a contradiction for all values of a, d ∈R. Thus a saddle-node bifurcation cannot exhibit
a subthreshold resonance at the bifurcation point.

Because a neuron can only cross threshold in a saddle-node or a Hopf bifurcation, the
derived relations are equivalent. I.e. the existence of a resonance at threshold also determines
the bifurcation type.
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Appendix D

Experimental Methods

The electrophysiological methods used for the recordings in layer II and II neurons of the
entorhinal cortex (Chapter 3) and for the dynamic patch-clamp recordings in cells of prefrontal
cortex (Chapter 5) are described here. The experiments in the entorhinal cortex were done
by Irina Erchova (at Humboldt-University Berlin/Charité), the experiments in the prefrontal
cortex were done by Jean-Marc Fellous (The Salk Institute, La Jolla, USA).1

D.1 Recordings in entorhinal cortex

Slice preparation: Horizontal hippocampal slices (400µm) were prepared from adult Wistar rats
(2.5-4 months, 350-400g) of both sexes after decapitation under deep ether induced anesthesia
in accordance with animal care regulations. Slices were maintained at room temperature in
a submerged-style holding chamber until transferred one by one to the recording chamber
(36.7 ◦C). Slices were superfused with artificial cerebrospinal fluid (ACSF) containing (mM):
129 NaCl, 3 KCl, 1.25 NaH2PO4, 1.8 MgSO4, 1.6 CaCl2, 21 NaHCO3 and 10 glucose, pH 7.4;
bubbled with carbogen gas 95 % O2 – 5 % CO2.

Recording conditions: Intracellular recordings in medial entorhinal cortex were done using
sharp glass micropipets (electrode puller P-87, Shutter Instruments, USA), filled with 2M
potassium acetate, 2 % biocytin, 75-85 MΩ, in current clamp mode. Data were amplified
(NeroData IR 183, NY, USA), low-pass filtered at 3 KHz and digitized with an IO-card (DAQ
card AI16E4 National Instruments Inc, TX, USA) at a sampling rate of 8 KHz. For stimulus
generation and data acquisition LabView (National Instruments Inc, TX, USA) was used.
All recordings were done at 36.7 ◦C, synaptic transmission was blocked by (µM): 30 CNQX,
60 APV, 5 bicucculine, and 1 CGP55845A (3-N-[1-(s)-(3,4-dichlorophenyl)ethyl]amino-2-(s)-
hydroxypropyl-P-benzyl-phosphinic acid, a GABA B blocker, kind gift from Novartis, Basel,
Switzerland). All other chemicals were obtained from Sigma-Aldrich, Deisenhofen, Germany.

Histology: For staining slices were stored in 4 % paraformaldehyde, shortly left in sucrose
30 % and cut at 50µm. Biocytin was revealed by standard procedure (Horikawa and Armstrong,
1988) using fluorescent marker Alexa 466 coupled to avidin (Molecular probes, Leijden, The
Netherlands).

1The appendix is adapted from Schreiber et al. (2004a) and Schreiber et al. (2004b).
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D.2 Recordings in prefrontal cortex

Coronal slices of rat prelimbic and infralimbic areas of prefrontal cortex were obtained from 2 -
4 weeks old Sprague-Dawley rats. Rats were anesthetized with Isoflurane (Abbott Laboratories,
IL) and decapitated. Their brain were removed and cut into 350 µm thick slices using standard
techniques. Patch-clamp was performed under visual control at 30-32 ◦C. In most experiments
Lucifer Yellow (RBI, 0.4 %) or Biocytin (Sigma, 0.5 %) was added to the internal solution. In
all experiments, synaptic transmission was blocked by D-2-amino-5-phosphonovaleric acid (D-
APV; 50 µM), 6,7-dinitroquinoxaline-2,3, dione (DNQX; 10 µM), and Biccuculine methiodide
(Bicc; 20 µM). All drugs were obtained from RBI or Sigma, freshly prepared in ACSF and
bath applied. Whole cell patchclamp recordings were achieved using glass electrodes (4-10
MΩ) containing (in mM): KMeSO4, 140; Hepes, 10; NaCl, 4; EGTA, 0.1; MgATP, 4; MgGTP,
0.3; phosphocreatine 14. Data were acquired in current clamp mode using an Axoclamp 2A
amplifier (Axon Instruments, Foster city, CA).

Data were acquired using two computers. The first computer was used for standard data
acquisition and current injection. Programs were written using Labview 6.1 (National Instru-
ment, Austin, TX), and data were acquired with a PCI16E1 data acquisition board (National
Instrument, Austin, TX). Data acquisition rate was either 10 or 20 kHz. The second computer
was dedicated to dynamic clamp. Programs were written using either a Labview RT 5.1 (Na-
tional Instrument, Austin, TX) or a Dapview (Microstar Laboratory, Bellevue, WA) front-end
and a C language backend. Dynamic clamp (Hughes et al. 1998; Jaeger and Bower 1999;
Sharp et al. 1993) was implemented using a DAP5216a board (Microstar Laboratory, Bellevue,
WA) at a rate of 10 kHz. A dynamic clamp was achieved by implementing a rapid (0.1 ms)
acquisition/injection loop in current clamp mode. All experiments were carried in accordance
with animal protocols approved by the N.I.H.

Stimuli consisted of sine waves of 30 different frequencies (1 to 30 Hz) presented for 2
seconds. Only one amplitude was tested. No additional noise was injected. The first 500 ms
were discarded for analysis of reliability.
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Berger, H. (1929). Über den zeitlichen Verlauf der negativen Schwankung des Nervenstroms.
Arch Ges Physiol, 1:173.

107



108 REFERENCES

Bernander, O., Koch, C., and Douglas, R. (1994). Amplification and linearization of distal
synaptic input to cortical pyramidal cells. J Neurophysiol, 72:2743–2753.

Berry, M. J., Warland, D. K., and Meister, M. (1997). The structure and precision of retinal
spike trains. Proc Natl Acad Sci USA, 94(10):5411–5416.

Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci,
18:10464–10472.

Bland, B. H. and Colom, L. V. (1993). Extrinsic and intrinsic properties underlying oscillation
and synchrony in limbic cortex. Prog Neurobiol, 41:157–208.

Brette, R. and Guigon, E. (2003). Reliability of spike timing is a general property of spiking
model neurons. Neural Comput, 15:279–308.

Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (1992). The analysis of
visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci.,
12:4745–65.

Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33:325–340.

Buzsaki, G., Leung, L. W., and Vanderwolf, C. H. (1983). Cellular bases of hippocampal EEG
in the behaving rat. Brain Res, 287:139–171.

Cecchi, G. A., Sigman, M., Alonso, J. M., Martinez, L., Chialvo, D. R., and Magnasco, M. O.
(2000). Noise in neurons is message dependent. Proc Natl Acad Sci U S A, 97:5557–5561.

Chi, Z. and Margoliash, D. (2001). Temporal precision and temporal drift in brain and behavior
of zebra finch song. Neuron, 32:899–910.

Chrobak, J. and Buzsaki, G. (1998). Gamma oscillations in the entorhinal cortex of the freely
behaving rat. J Neurosci, 18:388–398.

Cole, K. (1968). Membranes, iones and impulses. University of California Press, Berkeley and
Los Angeles.

Connors, B. and Gutnick, M. (1990). Intrinsic firing patterns of diverse neocortical neurons.
Trends Neurosci, 13(9):365–6.

Coombes, S. and Bressloff, P. C. (1999). Mode locking and Arnold tongues in integrate-and-fire
neural oscillators. Phys Rev E, 60:2086–2096.

Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and mathe-
matical modeling of neural systems. MIT Press, Cambridge.

de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R., and Bialek, W.
(1997). Reproducibility and variability in neural spike trains. Science, 275:1805–1808.

deCharmes, R. C. and Zador, A. (2000). Neural representation and the cortical code. Annu
Rev Neurosci, 23:613–647.



REFERENCES 109

DeFelice, L. J. (1981). Introduction to channel noise. Plenum Press.

Destexhe, A., Babloyantz, A., and Sejnowski, T. J. (1993). Ionic mechanisms for intrinsic slow
oscillations in thalamic relay neurons. Biophys J, 65:1538–52.

Destexhe, A., Contreras, D., and Sejnowski, T. J. (1994). A model of spindle rhythmicity in
the isolated thalamic reticular nucleus. J Neurophys, 72:803–18.

Destexhe, A. and Sejnowski, T. J. (2001). Thalamocortical assemblies. Oxford University
Press.

Destexhe, A. and Sejnowski, T. J. (2003). Interactions between membrane conductances
underlying thalamocortical slow-wave oscillations. Physiol Rev, 83:1401–1453.

Dickson, C., Magistretti, J., Shalinsky, M., Fransen, E., Hasselmo, M., and Alonso, A. (2000a).
Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex
layer II neurons. J Neurophysiol, 83(5):2562–79.

Dickson, C. T., Magistretti, J., Shalinsky, M. H., Hamam, B., and Alonso, A. (2000b). Os-
cillatory activity in entorhinal neurons and circuits. Mechanisms and function. Ann N Y
Acad Sci, 911:127–50.

Dobrunz, L. E. and Stevens, C. F. (1997). Heterogeneity of release probability, facilitation,
and depletion at central synapses. Neuron, 18:995–1008.

Dorval, A. D., Christini, D. J., and White, J. A. (2001). Real-time linux dynamic clamp: A
fast and flexible way to construct virtual ion channels in living cells. Annals of biomed.
engineering, 29 (10):897–907.

Erchova, I., Kreck, G., Heinemann, U., and Herz, A. V. M. (2004). Dynamics of rat entorhinal
cortex layer II-III cells: characteristics of membrane potential resonance at rest predict
oscillation properties near threshold. J Physiol, Submitted.

Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural
Comput, 8:979–1001.

Falk, G. and Fatt, P. (1964). Linear electrical properties of striated muscle fibres observed
with intracellular electrode. Proc R Soc, B160:69–123.

Fellous, J. M., Houweling, A. R., Modi, R. H., Rao, R. P., Tiesinga, P. H., and Sejnowski,
T. J. (2001). Frequency dependence of spike timing reliability in cortical pyramidal cells
and interneurons. J Neurophysiol., 85(4):1782–7.

Fellous, J. M., Tiesinga, P. H. E., Thomas, P. J., and Sejnowski, T. J. (2004). Discovering
spike patterns in neuronal responses. J Neurosci, in Press.

Fishman, H. M., Poussart, D. J. M., Moore, L. E., and Siebenga, E. (1977). K+ conduction
description from low-frequency impedance and admittance of squid axon. J Memb Biol,
32:255–290.



110 REFERENCES

Franz, A. and Ronacher, B. (2002). Temperature dependence of temporal resolution in an
insect nervous system. J Comp Physiol A, 188:261–271.

Fricker, D. and Miles, R. (2000). EPSP amplification and the precision of spike timing in
hippocampal neurons. Neuron, 28:559–69.

Fricker, D. and Miles, R. (2001). Interneurons, spike timing, and perception. Neuron, 32:771–
774.

Gimbarzevsky, B., Miura, R., and Puil, E. (1984). Impedance profiles of peripheral and central
neurons. Can J Physiol Pharmacol, 62:460–462.

Gloveli, T., Schmitz, D., Empson, R., and Heinemann, U. (1997). Frequency-dependent
information flow from the entorhinal cortex to the hippocampus. J Neurophysiol, 78:3444–
3449.

Goldman, M. S., Golowasch, J., Marder, E., and Abbott, L. F. (2001). Global structure,
robustness, and modulation of neuronal models. J Neurosci, 21(14):5229–38.

Golomb, D. and Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices:
computational and experimental study. J Neurophysiol, 78:1199–1211.

Gray, C. M., Konig, P., Engel, A. K., and Singer, W. (1989). Oscillatory responses in cat visual
cortex exhibit inter-columnar synchronization which reflects global stimulus properties.
Nature, 338:334–337.

Gutfreund, Y., Yarom, Y., and Segev, I. (1995). Subthreshold ocsillations and resonant fre-
quency in guinea pig cortical neurons – physiology and modeling. J Physiol London,
483(3):621–40.

Gutkin, B., Ermentrout, G., and Rudolph, M. (2003). Spike generating dynamics and the
conditions for spike-time precision in cortical neurons. J Comput Neurosci, 15:91–103.

Haas, J. S. and White, J. A. (2002). Frequency selectivity of layer II stellate cells in the medial
entorhinal cortex. J Neurophys, 88:2422–9.

Hansel, D., Mato, G., and Meunier, C. (1995). Synchrony in excitatory neural networks. Neural
Comput, 7:307–337.

Hasselmo, M. E., Fransen, E., Dickson, C., and Alonso, A. A. (2000). Computational modelling
of entorhinal cortex. Ann NY Acad Sci, 911:418–446.

Heinemann, U., Schmitz, D., Eder, C., and Gloveli, T. (2000). Properties of entorhinal cortex
projection cells to the hippocampal formation. Ann N Y Acad Sci, 911:112–126.

Hetka, R., Rundfeldt, C., Heinemann, U., and Schmitz, D. (1999). Retigabine strongly reduces
repetitive firing in rat entorhinal cortex. Eur J Pharmacol, 386:165–171.

Hille, B. (2001). Ion channels of excitable membranes. Sinauer Associates Inc., Sunderland,
Massachusetts USA, 3rd edition.



REFERENCES 111

Hines, M. (1993). Neuron – a program for simulation of nerve equations. In: Neural Systems:
Analysis and Modeling, edited by F. Eeckman. Norwell, MA: Kluwer, pages 127–36.

Hodgkin, A. (1948). The local electric changes associated with repetitive action in a non-
medullated axon. J Physiol, 107:165–181.

Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its
application to conduction and excitation in nerve. J Physiol, 117:500–544.

Horikawa, K. and Armstrong, W. (1988). A versatile means of intracellular labeling: injection
of biocytin and its detection with avidin conjugates. J Neurosci Methods, 25:1–11.

Hu, H., Vervaeke, K., and Storm, J. (2002). Two forms of electrical resonance at theta frequen-
cies, generated by M-current, h-current and persistent Na+ current in rat hippocampal
pyramidal cells. J Physiol, 545:783–805.

Hudspeth, A. J. and Lewis, R. S. (1988). A model for electrical resonance and frequency
tuning in saccular hair cells of the bull-frog, rana catesbeiana. J. Physiol., 400:275–97.

Hunter, J. D. and Milton, G. (2003). Amplitude and frequency dependence of spike timing:
implications for dynamic regulation. J Neurophysiol, 90:387–394.

Hunter, J. D., Milton, J. G., Thomas, P. J., and Cowan, J. D. (1998). Resonance effect for
neural spike time reliability. J. Neurophysiol., 80:1427–1438.

Hutcheon, B., Miura, R., and Puil, E. (1996a). Models of subthreshold membrane resonance
in neocortical neurons. J Neurophysiol, 76:698–714.

Hutcheon, B., Miura, R., and Puil, E. (1996b). Subthreshold membrane resonance in neocor-
tical neurons. J Neurophysiol, 76:683–697.

Hutcheon, B., Miura, R. M., Yarom, Y., and Puil, E. (1994). Low-threshold calcium current
and resonance in thalamic neurons: a model of frequency-preference. J Neurophysiol,
71:583–594.

Hutcheon, B. and Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency pref-
erences of neurons. TINS, 23 (5):216–22.

Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., and Yuste, R. (2004).
Synfire chains and cortical songs: Temporal modules of cortical activity. Science, 304:559–
564.

Izhikevich, E. (2001). Resonate-and-fire neurons. Neural Netw, 14:883–894.

Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of
Bifurcation and Chaos, 10:1171–1266.

Jaeger, D. and Bower, J. M. (1999). Synaptic control of spiking in cerebellar purkinje cells:
dynamic current clamp based on model conductances. J Neurosci, 19(14):6090–101.



112 REFERENCES

Jansen, H. and Karnup, S. (1994). A spectral analysis of the integration of artificial synaptic
potentials in mammalian central neurons. Brain Res, 666:9–20.

Jensen, R. V. (1998). Synchronization of randomly driven nonlinear oscillators. Phys Rev E,
58:6907–6910.

Jentsch, T. J. (2000). Neuronal KCNQ potassium channels: physiology and role in disease.
Nature Rev Neurosci, 1:21–30.

Kamondi, A., Acsady, L., Wang, X. J., and Buzsaki, G. (1998). Theta oscillations in somata
and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession
of action potentials. Hippocampus, 8:244–261.

Kandel, E. R., Schwartz, J. H., and Jessel, T. M., editors (2000). Principles of neural science.
McGraw-Hill, 4 edition.

Keener, J., Hoppensteadt, F., and Rinzel, J. (1981). Integrate-and-fire models of nerve mem-
brane response to oscillatory input. SIAM J. Appl. Math., 41:503–517.

Knight, B. W. (1972). The relationship between the firing rate of a single neuron and the level
of activity in a population of neurons. Experimental evidence for resonant enhancement
in the population response. J. Gen. Physiol., 59:767–778.

Koch, C. (1999). Biophysics of computation: information processing in single neurons. Oxford
University Press, New York, Oxford.

Kreiman, G., Krahe, R., Metzner, W., Koch, C., and Gabbiani, F. (2000). Robustness and
variability of neuronal coding by amplitude-sensitive afferents in the weakly electric fish
Eigenmannia. J Neurophysiol, 84:189–204.

Kretzberg, J., Warzecha, A.-K., and Egelhaaf, M. (2001). Neural coding with graded mem-
brane potential changes and spikes. J. Computat. Neurosci., 11:153–164.

Lampl, I. and Yarom, Y. (1997). Subthreshold oscillations and resonant behavior: two mani-
festations of the same mechanism. Neuroscience, 78:325–341.

Lestienne, R. (2001). Spike timing, synchronization and information processing on the sensory
side of the central nervous system. Prog Neurobiol, 65:545–591.

Leung, L. and Yu, H. (1998). Theta-frequency resonance in hippocampal CA1 neurons in vitro
demonstrated by sinusoidal current injection. J Neurophysiol, 79:1592–1596.

Maccaferri, G. and Dingledine, R. (2002). Control of feedforward dendritic inhibition by NMDA
receptor-dependent spike timing in hippocampal interneurons. J Neurosci, 22:5462–5472.

Machens, C. K., Schutze, H., Franz, A., Kolesnikova, O., Stemmler, M. B., Ronacher, B.,
and Herz, A. V. M. (2003). Single auditory neurons rapidly discriminate conspecific
communication signals. Nat Neurosci, 6:341–342.



REFERENCES 113

Machens, C. K., Stemmler, M. B., Prinz, P., Krahe, R., Ronacher, B., and Herz, A. V. M.
(2001). Representation of acoustic communication signals in insect auditory receptors. J
Neurosci, 21:3215–3227.

Magee, J. C. (2002). A prominent role for intrinsic neuronal properties in temporal coding.
TINS, 26(1):14–16.

Main, M. J., Cryan, J. E., Dupere, J. R. B., Cox, B., Clare, J. J., and Burbidge, S. A. (2000).
Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol
Pharmacol, 58:253–262.

Mainen, Z. and Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons. Science,
168:1503–1506.

Manwani, A. and Koch, C. (1999). Detecting and estimating signals in noisy cable structure,
I: neuronal noise sources. Neural Comput., 11(8):1797–829.

Manwani, A., Steinmetz, P. N., and Koch, C. (2002). The impact of spike timing variability on
the signal-encoding performance of neural spiking models. Neural Comput, 14:347–367.

Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z., and Golowasch, J. (1996). Memory from
the dynamics of intrinsic membrane currents. Proc Natl Acad Sci USA, 93(24):13481–6.

Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic
efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275:178–179.

Mauro, A., Conti, F., Dodge, F., and Schor, R. (1970). Subthreshold behavior and phenomeno-
logical impedance of squid giant axon. J Gen Physiol, 55(4):497–523.

McCormick, D., Connors, B., Lighthall, J., and DA, P. (1985). Comparative electrophysiology
of pyramidal and sparsely stellate neurons of the neocortex. J Neurophysiol, 54:782–805.

Mehta, M. R., Lee, A. K., and Wilson, M. A. (2002). Role of experience and oscillations in
transforming a rate code into a temporal code. Nature, 417(6):741–746.

Moore, L. E. and Christensen, B. N. (1985). White noise analysis of cable properties of
neuroblastoma cells and lamprey central neurons. J Neurophysiol, 53:636–651.

Morris, D. and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys
J, 193:193–213.
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Deutschsprachige Zusammenfassung

Netzwerke von Neuronen in unserem Gehirn nehmen fortlaufend Informationen verschiedener
Sinnesmodalitäten aus der Umgebung auf, leiten diese Informationen weiter, verarbeiten sie
und bestimmen so schließlich unser Verhalten. Die makroskopischen Eigenschaften dieser
Netzwerke, wie die Beschaffenheit und Anzahl der Verbindungen zwischen den Neuronen und
zwischen verschiedenen Netzwerken, sind wichtig, um eine optimale Verarbeitung und Spei-
cherung der Informationen zu ermöglichen. Grundlegend für die Funktionsweise der Netz-
werke sind jedoch auch der Aufbau und die Funktionsweise einzelner Neuronen. So wird
zum Beispiel die Fähigkeit eines neuronalen Netzwerkes sich zu synchronisieren, die sich in
den im Elektro-Enzephalogramm (EEG) detektierbaren Rhythmen widerspiegelt, auch von den
Eigenschaften einzelner Neuronen beeinflusst. Dies wurde durch erste Studien belegt, die
einen Zusammenhang zwischen den biophysikalischen Eigenschaften einzelner Zellen und dem
Synchronisierungs-Zustand des Gesamtnetzwerks herstellen (Pfeuty et al., 2003; Acker et al.,
2003).

Von besonderer Bedeutung für die Signalverarbeitung sind die Eigenschaften einzelner
Zellen im Hinblick auf die Frequenz-Selektivität der Signalverarbeitung und die Robustheit
neuronaler Antworten gegenüber neuronalem Rauschen. Frequenz-Selektivität beschreibt, wie
die unterschiedlichen Komponenten der Spannungsantwort – zum Beispiel ihre Amplitude –
von der Frequenz des Eingangssignales abhängen. Die Robustheit neuronaler Antworten wird
dadurch charakterisiert, wie reproduzierbar eine Spannungsantwort bei wiederholter Präsenta-
tion eines Stimulus ist. Dabei kann die Zuverlässigkeit der Spannungsantwort dadurch her-
abgesetzt sein, dass nicht bei jeder Präsentation des Stimulus alle Aktionspotentiale auftreten,
oder aber dadurch, dass die zeitliche Präzision der Aktionspotentiale vermindert ist.2 Exper-
imentelle Studien belegen, dass die Zuverlässigkeit der Aktionspotentiale stark vom Zelltyp
abhängt. Der Grad der Zuverlässigkeit wird dabei zum einen durch die Größe des neuronalen
Rauschens bestimmt, welches zum Beispiel durch die stochastische Ausschüttung von Vesikeln
in der synaptischen Übertragung hervorgerufen wird. Zum anderen sind es die intrinsischen
biochemischen und biophysikalischen Eigenschaften der Zellen, die einen großen Einfluss auf
die zeitliche Präzision haben. Die Mechanismen, welche die Frequenz-Selektivität und die Zu-
verlässigkeit von Aktionspotentialen auf der Ebene einzelner Zellen bestimmen, sind zentraler
Gegenstand der vorliegenden Arbeit. Besondere Aufmerksamkeit gilt der Frage, wie einzelne
Neurone, zum Beispiel durch eine Regulation der Zusammensetzung der Ionenkanäle in ihrer
Membran, diese Mechanismen modulieren können, um die Signalübertragung zu optimieren.

Die Untersuchungen basieren auf Simulationen und werden auf der Grundlage von leitfähig-
keits-basierten Modellneuronen mit unterschiedlicher Ionenkanal-Ausstattung durchgeführt.

2In der vorliegenden Arbeit werden beide Erscheinungen unter dem Begriff “Spike Timing Reliability”
zusammengefasst.
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Wie in vielen elektrophysiologischen Studien, werden die Stimuli in Form eines Stromes “in-
jiziert”. Es werden sowohl Rauschstimuli als auch sinusförmige Stimuli verschiedener, zum Teil
zeitlich veränderlicher Frequenzen verwendet. Das intrinsische Rauschen wird über eine ad-
ditive Stromkomponente simuliert. Zusätzlich zur theoretischen Analyse der Modellneuronen
können Teilergebnisse der Studie auch durch Auswertung von Daten aus dem entorhinalen und
präfrontalen Cortex bestätigt werden.3 Wie im Folgenden beschrieben, gliedert sich die Arbeit
in drei Teile.

Im ersten Teil steht die unterschwellige Resonanz als Mechanismus der Frequenz-Selektivität
für Signale, die graduierte Spannungsantworten hervorrufen (und daher keine Aktionspoten-
tiale beinhalten), im Vordergrund. Dieses Phänomen wird durch Eigenschaften der neuronalen
Membran und der Ionenkanäle hervorgerufen und resultiert für sinusförmige Stimuli in maxi-
malen Antwort-Amplituden bei einer bevorzugen Stimulus-Frequenz. In Kapitel 2 und 3 zeigen
wir, dass diese Frequenz-Selektivität, die auf der Grundlage der Antworten zu periodischen
Stimuli beschrieben wird, auf nicht-periodische Stimuli übertragbar ist. Sowohl die experi-
mentellen als auch die theoretischen Ergebnisse widerlegen damit die Hypothese aus einer
vorhergehenden Studie (Haas and White, 2002), welche nahelegte, dass sich die Integration
nicht-periodischer Stimuli nicht auf der Grundlage der unterschwelligen Resonanz erklären lässt.
Wir zeigen ferner, dass sich die Frequenz-Selektivität der graduierten Signale auch auf neu-
ronale Antworten mit Aktionspotentialen auswirkt. Damit gibt es Grund zur Annahme, dass
unterschwellige Resonanzen gezielt zur frequenz-abhängigen Steuerung des Informationsflusses
genutzt werden, wie es von Gloveli et al. (1997) vorgeschlagen wurde.

Der zweite Teil der Arbeit beschäftigt sich mit den Mechanismen, die zu einer Abhängigkeit
der Zuverlässigkeit von Aktionspotentialen von der Stimulus-Frequenz führen. Unsere Unter-
suchungen ergeben, dass zwei Stimulus-Bereiche klar unterschieden werden müssen: Stimuli,
deren Mittelwerte unterhalb der Feuerschwelle liegen, und Stimuli, deren Mittelwerte ober-
halb der Feuerschwelle liegen. In Kapitel 4 belegen wir, dass im ersten Fall der Mechanismus
der unterschwelligen Resonanz nicht nur in einer bevorzugten Stimulus-Frequenz mit maxi-
maler Antwortamplitude resultiert, sondern dass bei dieser bevorzugten Frequenz auch die
Zuverlässigkeit von Aktionspotentialen am größten ist. Wir diskutieren den Einfluss von Nicht-
linearitäten, die bei größeren Stimulus-Amplituden auftreten, ebenso wie die Abhängigkeit der
Zuverlässigkeit vom Mittelwert des Stimulus.

Für Eingangssignale, deren Mittelwert oberhalb der Feuerschwelle liegt, wurde bereits 1998
von Hunter et al. ein Resonanz-Effekt vorgeschlagen, der die Frequenz-Abhängigkeit der Zu-
verlässigkeit von Aktionspotentialen bestimmt. Hunter et al. zeigten anhand von elektrophy-
siologischen Ableitungen der Neuronen der Meeresschnecke Aplysia, dass die mittlere Feuerrate
die Stimulus-Frequenz bestimmt, bei der die Aktionspotentiale am zuverlässigsten sind. Diesen
Effekt können wir in Kapitel 5 und 6 für leitfähigkeits-basierte Modellneurone bestätigen.
Zusätzlich identifizieren wir für dieses Stimulus-Regime Ionenkanäle, bei denen die Änderung
der Gesamtleitfähigkeit in einer Modulation der bevorzugten Frequenz resultiert. Als Ergebnis
der Untersuchung kann festgehalten werden, dass die bevorzugte Frequenz besonders effizient
durch Veränderungen in der Gesamtleitfähigkeit der Kaliumkanäle mit langsamer Kinetik modu-
liert werden kann. Dies ist besonders im Hinblick auf die Tatsache interessant, dass zahlreiche

3Für die Durchführung der experimentellen Untersuchungen danke ich Irina Erchova (Humboldt-
Universität zu Berlin/Charité) und Jean-Marc Fellous (The Salk Institute, USA).
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Neuromodulatoren bekannt sind, die diese Ionenkanäle in ihrer Funktionsweise beeinflussen.
Damit eröffnet sich die Möglichkeit der dynamischen Regulation der Zuverlässigkeit neuronaler
Antworten.

Es ist jedoch wichtig zu erkennen, dass Änderungen der Zuverlässigkeit, wenn sie auf dem
Resonanz-Effekt beruhen, immer auch an eine Änderung der mittleren Feuerrate gekoppelt
sind. Dass jedoch eine Regulierung der Zuverlässigkeit auch ohne Veränderung der mittleren
Feuerrate möglich ist, wird im dritten Teil der Arbeit demonstriert. Wir beschreiben in Kapi-
tel 7 erstmals die Möglichkeit, mittels bestimmter Ionenkanäle die Robustheit der neuronalen
Antworten gegenüber Rauschen zu erhöhen. Die Modifikation der Gesamtleitfähigkeit von
langsamen Kaliumkanälen oder ihrer Kinetik sowie die Modifikation der Gesamtleitfähigkeit
von persistenten Natriumkanälen beeinflusst direkt die Auswirkungen von Rauschen auf die
Zuverlässigkeit.

Insgesamt zeigt diese Arbeit, wie die Dynamik der einzelnen Zellen durch die zell-intrin-
sischen Eigenschaften, insbesondere die Zusammensetzung der Leitfähigkeiten in der neu-
ronalen Membran, bestimmt wird. Wir identifizieren Mechanismen, die die Frequenz-Selektivität
und die Zuverlässigkeit von neuronalen Antworten beeinflussen. Gleichzeitig belegen wir, dass
diese Mechanismen dynamisch durch Veränderung der Zusammensetzung der neuronalen Leit-
fahigkeiten, zum Beispiel über Neuromodulatoren, angepasst werden können. Die vorliegende
Untersuchung beschränkt sich auf einzelne Neurone; das Verständnis der Signalverarbeitung
in einzelnen Zellen erlaubt jedoch auch Rückschlüsse auf die Dynamik von Netzwerken.
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