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Abstract

The strangeness index concept is generalized and represented by
a matrix chain similar to the structure of the tractability index. The
properties of the related projectors are proven. A decoupling of the
DAE and a representation of a solution is given.
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1 Introduction

The strangeness index introduced by Kunkel and Mehrmann (see [KM06])
was defined in a constructive way.
Here we will use a more general matrix chain based concept, which contains
the index definition given by Kunkel and Mehrmann as a special case. We
will restrict ourselves to the square case, i.e., we will consider DAEs with as
many equations as variables in the system.
After a motivation, which shows the first steps of the strangeness index algo-
rithm from a different view, we form a matrix chain using projectors onto the
related nullspace or image spaces of the involved matrices. The properties of
these projectors are summarized and a definition of a generalized strangeness
index is given, which is independent of the chosen projectors. The introduced
projectors allow us also a decoupling of a DAE and a representation of its
solution. At the end of the paper we will use the classical strangeness concept
for DAEs with properly stated leading term (see [Meh03]) to find out which
projectors are used.
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2 Motivation

We consider a linear DAE with properly stated leading term

A(Dx)′ + Bx = q (2.1)

with A(t) ∈ Rm×n, D(t) ∈ Rn×m, B(t) ∈ Rm×m and t ∈ I (interval
of interest). Properly stated leading term means (see also [Mär02]) that
ker A⊕ imD = Rn and the projector R, which realizes this splitting, belongs
to C1. We choose Q0 as a projector onto ker D, and because of the properly
stated leading term it holds that ker AD = ker D. If we introduce the com-
plementary projector P0 := I −Q0, we can determine a generalized reflexive
inverse D− with D−DD− = D−, DD−D = D, DD− = R and D−D = P0.
Because of D = DP0 only the P0x part of x influences the derivative Dx.
The idea is to extract at least a part of P0x from the algebraic equations and
to use its derivative to reduce the dimension of the derived part Dx of the
unknown function. From (2.1) we derive

A(DP0x)′ + B(P0 + Q0)x = q (2.2)

and by reordering we obtain

(AD + BQ0︸ ︷︷ ︸
=:Ĝ1

)(D−(DP0x)′ + Q0x) + BP0x = q. (2.3)

Let Ḡ0 := AD and Ĝ1 := Ḡ0 + BQ0. We can extract the interesting part
multiplying (2.3) by a projector along im Ĝ1. According to the tractability
index world we call that projector Ŵ1. We obtain

Ŵ1BP0x = Ŵ1q. (2.4)

Let Z0 be a projector onto the nullspace of Ŵ1BP0. We represent Z0 by
Z0 = I − (Ŵ1BP0)

−Ŵ1BP0 with a reflexive generalized inverse (Ŵ1BP0)
−.

If we multiply (2.4) by (Ŵ1BP0)
−, we obtain

(I − Z0)P0x = (Ŵ1BP0)
−Ŵ1q,

which represents that part of P0x we are looking for. Under the assumption
that rank Ŵ1BP0 = const =: s0 and D(Ŵ1BP0)

−Ŵ1q ∈ C1 we convert (2.2)
into

A(DZ0x)′ + Bx = q − A(D(I − Z0)x)′ =: q̄. (2.5)
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The DAE (2.5) does not have a properly stated leading term, but using the
image projector RZ0 := DZ0(DZ0)

− we form, under the assumption that
RZ0 ∈ C1,

A(DZ0x)′ = A(RZ0DZ0x)′ = ARZ0(DZ0x)′ + AR′
Z0

DZ0,

and using this relation we obtain a new DAE with properly stated leading
term

ARZ0(DZ0x)′ + (A(RZ0)
′DZ0 + B)x = q̄. (2.6)

Now we could apply the same procedure to (2.6).

3 A Matrix Chain

Let us consider a regular DAE defined by the three matrices A0, D0 and B̄0.
We calculate Ḡ0 := A0D0 and let Q̄0 be a projector onto ker Ḡ0. We define
the following matrix chain

Ĝi+1 := Ḡi + B̄iQ̄i with

a projector Q̄i onto ker Ḡi,

a projector Ŵi+1 along im Ĝi+1 and (3.1)

a projector Zi onto the nullspace of ker Ŵi+1B̄i.

and assume that r̄i := rank Ḡi and si := rank Ŵi+1B̄i are constant ∀t ∈ I.
We define

Di+1 = DiZi, Ai+1 := AiRZi
with a projector RZi

∈ C1 onto im Di+1

and
Ḡi+1 := Ai+1Di+1 = ḠiZi and B̄i+1 := AiR

′
Zi

Di+1 + B̄i. (3.2)

In every chain step, projectors Q̄i, Ŵi+1 and Zi are defined. What are
their properties and relations ?

Lemma 1 The projector P̄i (= I− Q̄i) has the structure P̄i := P0Z0 . . . Zi−1,
i ≥ 1, (P̄0 := P0) built by the projectors P0 and Z0, . . . , Zi defined by (3.1).
It holds

(a) Ŵi+1B̄i = Ŵi+1B̄iP̄i,

(b) P̄iP̄j = P̄max(i,j), and for
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(c) X0 := Q0, Xj+1 := P̄j(I − Zj), 0 ≤ j ≤ i− 1
we obtain that Xj are again projectors, with

(d)
i∑

k=0

Xk = I − P̄i,

(e) XkXj = 0, k 6= j and

(f) XkP̄i = P̄iXk = 0 for 0 ≤ k ≤ i.

Proof: Let Ŵi+1 be a projector along im Ĝi+1. From Ĝi+1 := Ḡi + B̄iQ̄i we
have the relation

Ŵi+1B̄iQ̄i = 0, (3.3)

i.e., (a) is valid.
Zi projects onto ker Ŵi+1B̄i, i.e., Ŵi+1B̄iZi = 0, and Zi can be represented
by Zi = I− (Ŵi+1B̄i)

−Ŵi+1B̄i with an arbitrary generalized reflexive inverse
(Ŵi+1B̄i)

−.
From (3.3) it follows that

ZiQ̄i = Q̄i. (3.4)

Thus, with Zi also P̄i+1 is a projector because of (P̄i+1)
2 = P̄iZiP̄iZi =

P̄iZiZi = P̄i+1.
For a fixed i we consider P̄i and define

X0 := Q0, Xj+1 := P0Z0 . . . Zj−1(I − Zj) = P̄j(I − Zj), j = 0, . . . , i− 1.

(d) holds by construction.
From (3.4) we have the relation

Zi(I − P̄i) = I − P̄i. (3.5)

For i = 0 (3.4) means Z0Q0 = Q0 or (I − Z0)Q0 = 0. Therefore, X1X0 = 0
(X0X1 = 0 holds trivially) and

X2
1 = P0(I − Z0)P0(I − Z0) = P0(I − Z0)(I − Z0) = X1

is a projector, too.
For i = j let X0, . . . , Xj be projectors with XkXl = 0,

k, l = 0, . . . , j, k 6= l. From (3.4) the relation Zj

j∑
k=0

Xk =
j∑

k=0

Xk holds and

it follows that
(I − Zj)Xl = 0, l = 0, . . . , j. (3.6)
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Because of (d) also XlP̄j = P̄jXl = 0 is valid for l = 0, . . . , j.
For i = j + 1 we get Xj+1 = P̄j(I − Zj) and with (3.6) we obtain (e)

Xj+1Xl = P̄j(I − Zj)Xl = 0,

XlXj+1 = XlP̄j︸ ︷︷ ︸
=0

(I − Zj) = 0, l = 0, . . . , j.

To show (b) we consider the product of P̄l and P̄r. It holds
for r > l

P̄rP̄l = P̄lZl · · ·Zr−1P̄l = P̄lZl · · ·Zr−1(I −
l∑

k=0

Xk)

= P̄l(Zl · · ·Zr−1 −
l∑

k=0

Xk)) = P̄r

and for r < l
P̄rP̄l = P̄rP̄rZr · · ·Zl−1 = P̄l.

To show (c) that Xj+1 itself is a projector we consider

X2
j+1 = P̄j(I − Zj)P̄j(I − Zj) = Xj+1

and, additionally with Xj+1P̄j+1 = P̄j(I − Zj)P̄jZj = 0 and P̄j+1Xj+1 =
P̄j+1P̄j(I−Zj) = P̄j+1(I−Zj) = P̄jZj(I−Zj) = 0, (f) of Lemma 1 holds. �

Lemma 2 For the projectors Ŵi+1 along im Ĝi+1, Zi onto ker Ŵi+1B̄i and
for Xk, k = 0, . . . , i it holds for l = 0, . . . , i, that

(a) Ŵi+1B̄kXl = 0, 0 ≤ l − 1 ≤ k ≤ i,

(b) Ŵi+1B̄lQ̄l = 0, l 6 i

(c) Ŵi+1B̄l(I − Zl) = 0, 0 ≤ l < i

Proof: From the relations

Ŵi+1B̄i = Ŵi+1B̄iP̄i and P̄iXl = 0, l ≤ i

(cf. Lemma 1 (1), (6)) it follows that

Ŵi+1B̄iXl = 0, l = 0, . . . , i.

With the structure of

B̄i = B̄i−1 + Ai−1R
′
Zi−1

Di, and Di = DiP̄i,
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and using Lemma 1 (6) we obtain

B̄iXl = B̄kXl with 0 ≤ l − 1 ≤ k ≤ i, i.e.

Ŵi+1B̄iXl = Ŵi+1B̄kXl = 0. (3.7)

By summation over l we obtain from (3.7)

Ŵi+1B̄k

k∑
l=0

Xl = Ŵi+1B̄kQ̄k = 0, k 6 i.

It holds now that

0 = Ŵi+1B̄l−1Xl = Ŵi+1B̄l−1P̄l−1(I − Zl−1) (3.8)

= Ŵi+1B̄l−1(I − Zl−1), l = 1, . . . , i. (3.9)

�

Corollary 3 For two projectors Zi and Z̃i onto ker Ŵi+1B̄i it holds that

im B̄i−1Zi−1Z̃i−1(I − Zi−1) ⊆ im Ĝi+1.

Proof: From Lemma 2(c) we obtain Ŵi+1B̄i−1Zi−1 = Ŵi+1B̄i−1, therefore,

Ŵi+1B̄i−1Zi−1Z̃i−1(I − Zi−1) = Ŵi+1B̄i−1Z̃i−1(I − Zi−1)

= Ŵi+1B̄i−1(I − Zi−1) = 0,

which means im B̄i−1Zi−1Z̃i−1(I − Zi−1) ⊆ im Ĝi+1. �

Lemma 4 The nonsingularity of Ĝi+1 makes the chain stationary.

Proof: If Ĝi+1 is nonsingular, Ŵi+1 becomes zero and Zi = I. Therefore,
Ḡi+1 = Ḡi, and Di+1 = Di = DiP̄i leads to Ĝi+2 = Ḡi+1 + Bi+1Q̄i+1 =
Ḡi + (AiR

′
Zi

Di+1︸︷︷︸
=DiP̄i

+Bi)Q̄i = Ĝi+1.

�

Remark 3.1 For RZi
we can use the representation RZi

= DP̄i−1Zi(DP̄i−1Zi)
−.

Using Lemma 1, a special generalized inverse is given by (DP̄i−1Zi)
− =

P̄iZiD
− and a suitable projector by RZi

= DZ0 . . . ZiD
−.
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To characterize the different parts of the splitting at each level i we introduce
the dimensions of the dynamical part r̄i, the algebraic part ai, and the part
we have to differentiate, i.e. si. It is valid that

r̄i + ai + si = m, ∀i.

By construction r̄i+1 = r̄i− si and, hence, for reasons of dimension, si has to
reach si = 0 for a finite i. The relation between the three quantities shows
that r̄i itself describes si and ai. We may identify

r̄i := rank Ḡi = rank P0Z0 . . . Zi−1,

si := rank Ŵi+1B̄i = rank P0Z0 . . . Zi−1(I − Zi) = rank Xi+1.

Definition 3.2 Let the chain be realizable up to µ, Ĝi for i = 1, . . . , µ − 1
be singular and let Ĝµ become nonsingular. The numbers

r̄0 > r̄1 > · · · > r̄µ−1

are constant for t ∈ I, then we call the DAE a regular DAE with strangeness
index µ− 1.

To illustrate Definition 3.2 we give two examples.

Example 3.3 For

(
1
0

)
(
(
0 1

)
x)′ + x = q we have

Ḡ0 = AD =

(
0 1
0 0

)
, Q̄0 =

(
1 0
0 0

)
, B̄0 = I

Ĝ1 = Ḡ0 + B̄0Q̄0 =

(
1 1
0 0

)
, Ŵ1 =

(
0 0
0 1

)
.

Ŵ1B̄0 = Ŵ1, which means that Z0 = I − Ŵ1 =

(
1 0
0 0

)
.

Ḡ1 = Ḡ0Z0 =

(
0 0
0 0

)
, Q̄0 = I, B̄1 = B̄0, and with Ĝ2 = I we obtain that

this DAE has strangeness index 1 as expected.

Example 3.4 The second example is not a regular DAE with strangeness
index.

For

(
1
1

)
(
(
1 0

)
x)′ +

(
x2

x2

)
= q we have

7



Ḡ0 = AD =

(
1 0
1 0

)
, Q̄0 =

(
0 0
0 1

)
, B̄0 =

(
0 1
0 1

)
.

Ĝ1 = Ḡ0 + B̄0Q̄0 =

(
1 1
1 1

)
, Ŵ1 =

(
1 −1
0 0

)
.

Ŵ1B̄0 =

(
0 0
0 0

)
, which means that Z0 = I ⇒ Ḡ1 = Ḡ0Z0 = Ḡ0, and for

Ĝ2 = Ĝ1, i.e. that the chain ends but Ĝ2 does not become nonsingular. This
DAE does not have regular strangeness index.

As we saw in the definition and, in a more illustrative way in the ex-
amples, the determination of the strangeness index of a DAE requires the
computation of different projectors. The choice of these projectors is not
unique. Therefore it is important to check whether the index depends on the
choice of the projectors at the different levels or not.

Before we prove the independence of the choice of the projectors we repeat
some properties of projectors. Let Z and Z̃ be two projectors onto the same
subspace and W and W̃ two projectors along the same subspace. Then the
following relations are valid:

ZZ̃ = Z̃, Z = Z̃Z,

Z̃ = Z (I + ZZ̃(I − Z))︸ ︷︷ ︸
nonsingular

, (3.10)

WW̃ = W, W̃W = W̃ ,

W̃ = (I + (I −W )W̃W )︸ ︷︷ ︸
nonsingular

W. (3.11)

The first step of the matrix chain contains the choice of the nullspace pro-

jector Q̄0. Let us assume that we choose two projectors Q̄0 and ˜̄Q0, then

˜̂
G1 = Ḡ0+B̄0

˜̄Q0 = (Ḡ0+B̄0Q̄0)(I+Q̄0
˜̄Q0(I−Q̄0)) = Ĝ1 (I + Q̄0

˜̄Q0(I − Q̄0))︸ ︷︷ ︸
nonsingular

.

We obtain that im
˜̂
G1 = im Ĝ1. Let us assume that we are now at level i.

We have to choose the projector Ŵi along im Ĝi and we choose a different
˜̂
Wi, too. Because of (3.11), the different choice of the projectors does not
influence the nullspace of ŴiB̄i−1. The next projector to be chosen is Zi−1

with ŴiB̄i−1Zi−1 = 0. Here too, we select a distinct Z̃i−1. We compute
˜̂
Gi+1
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and will show that im
˜̂
Gi+1 = im Ĝi+1.

˜̂
Gi+1 = ˜̄Gi + ˜̄Bi

˜̄Qi,

= ˜̄Gi + B̄i−1
˜̄Qi,

= Ḡi−1Z̃i−1 + B̄i−1(I − P̄i−1Z̃i−1).

Because of (3.10), Z̃i−1 = Zi−1(I + Zi−1Z̃i−1(I −Zi−1)) =: Zi−1Mi−1, and we
obtain

˜̂
Gi+1 = Ḡi−1Zi−1Mi−1 + B̄i−1(I − P̄i−1Zi−1Mi−1),

= (Ḡi−1Zi−1 + B̄i−1M
−1
i−1(I −Mi−1P̄i−1Zi−1))Mi−1.

Using the relations given in Lemma 1 we see from (3.5) that

Mi−1P̄i−1Zi−1 = (I + Zi−1Z̃i−1 (I − Zi−1))P̄i−1Zi−1︸ ︷︷ ︸
=0

= P̄i−1Zi−1.

Now we can represent

˜̂
Gi+1 = Ĝi+1Mi−1 + B̄i−1Zi−1Z̃i−1(I − Zi−1)Q̄iMi−1

and because of Corollary 3 it is obvious that
˜̂
Gi+1 and Ĝi+1 have the same

image, and a different choice of the projectors does not change rank Ḡi and,
consequently, the index definition does not depend on the choice of the pro-
jector.
This proves the following:

Lemma 5 The definition of the regular strangeness index given by Definition
3.2 is independent of the choice of the projectors.

4 Decoupling of a DAE and Representation

of a Solution

Let us assume that the DAE has regular strangeness index µ − 1. Then, at
each step, the matrix chain forms a DAE

Ai(Dix)′ + B̄ix = qi with qi := qi−1 − Ai−1(DXix)′ for i = 1, . . . , µ− 1,

and the index reduces by one at each step . This index reduction is realized
by the differentiation of DXix. By construction of the matrix chain we can
compute (at least theoretically) this part of the solution by

Xix = P̄i−1(I − Zi−1)x = (ŴiB̄i−1)
−Ŵiqi−1,
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where the generalized inverse (ŴiB̄i−1)
− is exactly the one that forms the

chosen Zi−1 = I − (ŴiB̄i−1)
−ŴiB̄i−1. Xix is given by a part of the right

hand side qi−1, which may contain derivatives of q up to the (i− 1)-th order.
Using the special image projector RZi

defined by Remark 3.1 Ai = ḠiD
− is

valid and the last DAE for i = µ− 1 reads

Ḡµ−1D
−(DP̄µ−1x)′ + B̄µ−1x = qµ−1. (4.1)

We reformulate (4.1) by

(Ḡµ−1 + B̄µ−1Q̄µ−1)︸ ︷︷ ︸
Ĝµ

(P̄µ−1D
−(DP̄µ−1x)′ + Q̄µ−1x) + B̄µ−1P̄µ−1x = qµ−1.

Using the nonsingularity of Ĝµ we obtain

P̄µ−1D
−(DP̄µ−1x)′ + Q̄µ−1x + Ĝ−1

µ B̄µ−1P̄µ−1x = Ĝ−1
µ qµ−1. (4.2)

Multiplying (4.2) by DP̄µ−1 and Q̄µ−1, respectivelly, we obtain

DP̄µ−1D
−(DP̄µ−1x)′ + DP̄µ−1Ĝ

−1
µ B̄µ−1P̄µ−1x = DP̄µ−1Ĝ

−1
µ qµ−1 (4.3)

and
Q̄µ−1x + Q̄µ−1Ĝ

−1
µ B̄µ−1P̄µ−1x = Q̄µ−1Ĝ

−1
µ qµ−1. (4.4)

(4.3) leads to an ODE to determine u := DP̄µ−1x as

u− (DP̄µ−1D
−)′u + DP̄µ−1Ĝ

−1
µ B̄µ−1D

−u = DP̄µ−1Ĝ
−1
µ qµ−1.

Using the relation Q̄µ−1 =
µ−1∑
i=0

Xi we can compute Q̄0x = X0x from (4.4),

which may contain derivatives of (µ− 1)-th order of q.

Because of Q̄µ−1 = Ĝ−1
µ B̄µ−1Q̄µ−1 also Q̄µ−1,s = Q̄µ−1Ĝ

−1
µ B̄µ−1 represent

a projector onto ker Ḡµ−1. Using this projector (4.3) and (4.4) are decoupled
into the dynamical and the algebraic part.
The solution of the DAE is given by

x = P̄µ−1x + Q̄µ−1x = D−u + Q̄µ−1x = D−u +

µ−1∑
i=0

Xix.
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5 Application to classical Strangeness Index

Concept

We apply (3.1), (3.2) to (2.1). There exist orthogonal matrices P1, U1 and

Q1 with P∗
1AU1 =

(
A1 0
0 0

)
, and U∗1DQ1 =

(
D1 0
0 0

)
(see [Meh03]). Using

this relation we transform (2.1) into

A(Dx)′+Bx = P1

(
A1 0
0 0

)
(

(
D1 0
0 0

)
Q∗

1x)′+(B + AU ′1
(

D1 0
0 0

)
Q∗

1︸ ︷︷ ︸
B

)x = q.

(5.1)
We write

B = P1

(
P∗

1BQ1 +

(
A1 0
0 0

)
U∗1U ′1

(
D1 0
0 0

))
Q∗

1. (5.2)

Computing the first chain elements we have for Ḡ0 = P1

(
A1D1 0

0

)
Q∗

1

and Q̄0 = Q1

(
0

I

)
Q∗

1, (P̄0 := I − Q̄0).

With P∗
1BQ1 =:

(
B11 B12

B21 B22

)
we obtain Ĝ1 = P1

(
A1D1 B12

B22

)
Q∗

1 , but

P∗
1BQ1 =:

(
B11 B12

B21 B22

)
if P∗

1BQ1 =:

(
B11 B12

B21 B22

)
, because of the structure

of the second term of (5.2) (Note the difference between B and B). This
means that we apply (3.1), (3.2) to the original data A, D, and B of the
DAE.

There exist orthogonal matrices such that B22 = P̃2

(
B̃22

0

)
Q̃∗

2. We can

choose an orthogonal projector along the image of Ĝ1 as

Ŵ1 = P1

(
I

P̃2

)
︸ ︷︷ ︸

=:P2


0

...
. . . . . . . . . .

... 0

... I


(

I

P̃∗
2

)
P∗

1 .
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If we introduce the relation P̃∗
2B21 =

(
B̃21

B̃31

)
, we obtain

Ŵ1BP̄0 = P1

 0

P̃2

(
0

B̃31

)
0

 (
T

Q̃∗
2

)
︸ ︷︷ ︸

Q∗2

Q∗
1,

and with B̃31 = P̃3

(
0 B̂42

)
Q̃∗

3 with orthogonal matrices P̃3 and Q̃∗
3, and a

full rank matrix B̂42 it results that

Ŵ1BP̄0 = P1P2

I
I

P̃3


︸ ︷︷ ︸

P3


0 0

... 0 0
. . . . . . . . . . . . . . .

0 0
... 0 0

0 B̂42
... 0 0


(
Q̃∗

3

I

)
︸ ︷︷ ︸

=:Q∗3

Q∗
2Q∗

1. (5.3)

Now we are looking for a nullspace projector of Ŵ1BP0. The structure given

by (5.3) leads to Z0 = Q1Q2

(
Q̃3

I

)


I
...

0
...

. . . . . . . . . . . . .
... I
... I


(
Q̃∗

3

I

)
Q∗

2Q∗
1. With

Z0 we obtain for DZ0 = U1


D1Q̃3

(
I

0

)
... 0

. . . . . . . . . . . . . . . . . . . . . .

0
... 0

0
... 0

Q∗
3Q∗

2Q∗
1. We set

D1Q̃3 =:
(
D̂1 D̂2

)
and there exists an orthogonal matrix with Ũ∗4 D̂1 =(

D̄1

0

)
.

With U4 =

(
Ũ4

I

)
this leads to

Dnew = DZ0 = U1U4


D̄1 0

...

0 0
...

. . . . . . . . . . .
... 0

Q∗
3Q∗

2Q∗
1
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and a reflexive inverse is given by

(DZ0)
− = Q1Q2Q3


D̄−1

1 0
...

0 0
...

. . . . . . . . . . . . .
... 0

U∗4U∗1 . Applying the image projector

RZ0 = DZ0(DZ0)
− = U1U4


I

...

0
...

. . . . . . . . . .
... 0

U∗4U∗1 to A leads to

Anew = ARZ0 = P1

(
A1 0
0 0

)
U∗1U1U4


I

...

0
...

. . . . . . . . . .
... 0

U∗4U∗1 .

With A1Ũ4 =:
(
Â1 Â2

)
and a P̃4 exists with Â1 = P̃4

(
Ā1

0

)
we obtain for

Anew = P1

(
P̃4

I

)
︸ ︷︷ ︸

P4


Ā1 0

...

0 0
...

. . . . . . . . . . .
... 0

U∗4U∗1

and

Bnew = A(RZ0)
′DZ0 + B =

P1

(
A1 0

0

)
U∗1

(U1U4)
′

I
0

0

U∗4U∗1 + U1U4

I
0

0

 (U∗4U∗1 )′

 ∗

∗ U1U4

D̄1 0
0 0

0

Q∗
3Q∗

2Q∗
1 + B.

(5.4)
Now, one step of the chain (3.2) is finished. The new DAE is given by

Anew(Dnewx)′ + Bnewx = q̄.
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If we combine the underlined term of (5.4) with Anew(Dnewx)′ we obtain the
DAE

P1P4

Ā1 0 0
0 0 0
0 0 0

 D̄1 0 0
0 0 0
0 0 0

 xnew

′

+ (A(U1U4)
′

D̄1 0
0 0

0

 + BQ1Q2Q3)xnew = q̄.

with xnew := Q∗
3Q∗

2Q∗
1x, and this DAE is identical with the result of one

”strangeness step”.
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