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1. STATE PRICE DENSITY ESTIMATION

Parametric or Nonparametric?

Option price data have characteristics which are both nonparametric and parametric

in nature.  The economic theory of option pricing predicts that the price of a call

option should be a monotone decreasing convex function of the strike price. It also

predicts that the state price density (SPD) which is proportional to the second

derivative of the call function, is a valid density function over future values of the

underlying asset price, and hence must be non-negative and integrate to one.  Except

in a few polar cases, the theory does not prescribe specific functional forms.  (Indeed

the volatility smile is an example of a clear violation of the lognormal parametric

specification implied by Black-Scholes.)  All this points to a nonparametric approach

to estimation of the call function and its derivatives.

On the other hand, multiple transactions are typically observed at a finite vector of

strike prices. Thus, one could argue that the model for the option price as a function

of the strike price, is intrinsically parametric.  Indeed given sufficient data, one can

obtain a good estimate of the call function by simply taking the mean transactions

price at each strike price.  Unfortunately, even with large data-sets, accurate

estimation of the call function at a finite number of points does not assure good

estimates of its first and second derivatives, should they exist.  To incorporate

smoothness and curvature properties, one can select a parametric family which is

differentiable in the strike price, and impose constraints on coefficients. Such an

approach, however,  risks specification failures.

Fortunately, nonparametric regression provides a good reservoir of candidates for

flexible estimation of the call function and its derivatives. (See e.g., Aït-Sahalia and

Lo (1998, 2000) and Aït-Sahalia and Duarte (2000) who use such procedures.)   In

addition, there is a growing literature on the imposition of curvature properties on

nonparametric estimators. (See Wright, and Wegman, (1980),  Robertson, Wright
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and  Dykstra (1988), Mammen (1991), Mukarjee and Stern (1994) and Ramsay

(1998),  among others.)

In earlier work, Yatchew and Bos (1997) showed how nonparametric least squares

can easily incorporate a variety of constraints such as monotonicity, concavity,

additive separability, homotheticity and other implications of economic theory.

Their estimator uses least squares over sets of functions bounded in Sobolev norm.

Such norms provide a simple means for imposing smoothness of derivatives of

various order. 

In the current paper, we apply these estimators to option pricing and show how

various restrictions can be incorporated within a single least squares procedure.

Constraints include smoothness of various order derivatives, monotonicity and

convexity of the call function and integration to one of the SPD.  We construct

confidence intervals and tests of various static and dynamic properties using both

asymptotic and bootstrap methods.  In addition to providing simulation results we

apply the procedures to option data on the DAX index for the period January 4-15,

1999.

As an initial illustration of the benefits of smooth constrained estimation, particularly

when estimating derivatives, we have generated 20 independent transactions prices

at each of 25 strike prices.  Details of the data generating mechanism are contained

in Section 3 below. The top panel of Figure 1A depicts all 500 observations and the

‘true’ call function.  Note that the variance decreases as the option price declines.

The second panel depicts the estimated call function obtained by taking the mean

transactions price at each of the 25 strike prices.  The bottom panel depicts our

smooth constrained estimate.  Both estimates lie close to the true function.  

Figure 1B contains estimates of the first derivative.  The upper panel depicts first
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order divided differences of the point means.  By the mean value theorem these

should provide a reasonable approximation to the true first derivative, but as can be

seen, the estimate deteriorates rapidly as one moves to the left and the variance in

transactions prices increases. The bottom panel depicts the first derivative of our

smooth constrained estimate which by comparison is close to the first derivative of

the true call function.

Figure 1C illustrates estimates of the second derivative of the call function.  The

upper panel depicts second order divided differences of the point means which gyrate

wildly around the true second derivative.  The lower panel depicts the second

derivative of our smooth constrained estimate which tracks the true function

reasonably well (note the change in scale of the vertical axis). 

A number of practical advantages ensue from the procedures we propose.  First,

various combinations of constraints can be incorporated in a natural way within a

single least squares procedure.  Second, our ‘smoothing’ parameter has an intuitive

interpretation since it measures the smoothness of the class of functions over which

estimation is taking place.  The measure is actually a (Sobolev) norm.  If one wants

to impose smoothness on higher order derivatives, this can be done by a simple

modification to the norm.  Third, call functions and SPD’s can be estimated on an

hour-by-hour, day-by-day or ‘moving window’ basis, and changes in shape can be

tracked and tested.  Fourth, our procedures readily accommodate heteroskedasticity

and time series structure in the residuals. Fifth, under certain assumptions which we

outline below, the asymptotic theory of our estimator is elementary.

The paper is organized as follows.  The remainder of this section outlines the

relevant financial theory and establishes notation.  Section 2 outlines the estimator

as well as asymptotic and bootstrap inference procedures.  Section 3 contains the

results of a simple Monte Carlo study which permits us to convey some sense of the
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kinds of results one might expect when the true data generating mechanism is

known.  Section 4 applies the techniques to data on DAX index options.
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Figure 1A: Data and Estimated Call Function
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Figure 1B: Estimated First Derivative 
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(1.1)

Financial Market Theory

Before proceeding, we briefly review some of the relevant financial theory.  Implicit

in the prices of traded financial assets are Arrow-Debreu prices or in a continuous

setting, the state price density.   These are elementary building blocks for

understanding markets under uncertainty.  The existence and characterization of

SPDs has been studied by Black and Scholes (1973), Merton (1973), Rubinstein

(1976) and Lucas (1978) amongst many others.  Under the assumption of no-

arbitrage, the SPD is usually called the risk neutral density because if one assumes

that all investors are risk neutral, then the return on all assets must equal the risk free

rate of interest. Cox and Ross (1976) showed that under this assumption Black-

Scholes equation follows immediately. Other approaches have been proposed by

Derman and Kani (1994) and Barle and Cakici (1998).

 Let  X   be the strike price for a call option which will expire at time T.  Let  t  be the

current time and the time to expiry.   Let  and  denote prices of the

underlying asset at times  t  and  T  respectively.  Then the call pricing function at

time t is given by:

where the function   is the state price density.  It  assigns probabilities to various

values of the stock at time of expiration given the current stock price and the time to

expiry. The density and hence the call function also depend on the current risk-free

interest rate and the corresponding dividend yield of the asset.  We have suppressed

these in the notation.   As stated earlier, the call function is monotone decreasing and

convex in X.
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(1.2)

Breeden and Litzenberger (1978) show that the second derivative of the call pricing

function with respect to the strike price is related to the state price density by:

Let us focus on data over a sufficiently brief time span so that we may take the time

to maturity  and the underlying stock price    as roughly constant. Our

objective will be to estimate the call function  subject to monotonicity and

convexity constraints and the constraint that the implied SPD is non-negative and

integrates to one, (or at least does not exceed one over the range of observed strike

prices). 

We will use the following notational conventions.  For an arbitrary vector  and

matrices , B  we will use the usual notation , ,  and  to denote

elements.  Occasionally, we will need to refer to sub-matrices of a matrix.  In this

case we will adopt the notation   to refer to those elements which are in

rows a through b and columns c through d.  Given a function , we will denote

derivatives using bracketed superscripts, e.g., .
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(2.1)

2. Constrained Nonparametric Procedures

 Nonparametric Least Squares

We begin with constrained nonparametric least squares estimation of a function of

one variable.  Suppose we are given data   where   is the strike

price and   is the option price.  Let   be the vector of  k  distinct

strike prices. (In Figure 1A, there are k=25 distinct strike prices with 20 observations

at each price so that n-500.)

We will assume that the vector  X  is in increasing order.  With mild abuse of

notation we will use  x,  y and  X  to denote both the variable in question and the

vector of observations on that variable.  Our model is given by:

We will assume that the regression function  is four times differentiable, which in

a nonparametric setting, will ensure consistent and smooth estimates of its second

derivative.  (Other orders of differentiation can readily be accommodated using the

framework below.)  The vector of distinct strike prices X  lies in the interval [a,b].

(For example, if the X variable was ‘moneyness’ rather than the absolute strike price,

then [a,b] would typically be the interval [.8, 1.2].)

We will assume the residuals  are independent but possibly heteroskedastic.  Let

 be the residual variances at each of the distinct strike prices and  

the diagonal matrix with diagonal values   .
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(2.2a)

(2.2b)

(2.3)

(2.4)

 Define the following Sobolev inner product:

with corresponding norm:

where bracketed superscripts denote derivatives.   Consider the following

optimization problem:

which imposes a smoothness condition with smoothing parameter L.  By varying this

parameter, we control the smoothness of the ball of functions over which estimation

is taking place. 

Before detailing the estimator, we rewrite (2.3) to reflect the fact that option pricing

data are usually characterized by repeated observations at a fixed vector of strike

prices.  Let  B  be the  matrix such that:
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(2.5)

(2.6)

We may now rewrite (2.3) as 

Using techniques well known in the spline function literature, it can be shown that

the infinite dimensional optimization problem in (2.3) or (2.5) can be replaced by a

finite dimensional optimization problem as we outline below, (see e.g., Wahba

(1990) or Yatchew and Bos (1997)). 

Let   be a Sobolev space of functions from   to . Since the evaluation of

functions at a specific point is a linear operator, by the Riesz Representation

Theorem, given a point   there exists a function   in    called a representor

such that   for any  .      Let    be the

representors of function evaluation at     respectively .   Let   be the 

representor matrix whose columns (and rows) equal the representors evaluated at

;   i.e., .  (For relevant details on

Sobolev spaces, calculation of representors and related concepts, see Yatchew and

Box (1997).)

If one solves:

where  c  is a  vector,  then the minimum value is equal to that obtained by

solving (2.5).    Furthermore, there exists a solution to (2.5)  of the form:
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(2.7)

(2.8)

(2.9)

(2.10)

where  solves (2.6).   First and second derivatives may be estimated by

differentiating  (2.7):  

and

Now let   be the vector of distinct strike prices.  Define    to be the 

matrix whose columns (and rows) are the first derivatives of the representors

evaluated at .    Define   in a similar fashion.  Then the estimates of the

call function and its first two derivatives at the vector of observed strike prices is

given by    ,   and . 

Imposing Constraints

What is convenient about this nonparametric setting is that additional constraints on

the optimization problem can be readily incorporated.  Suppose one wants to impose

the constraint that m is monotone decreasing at each strike price. Then one restricts

the first derivative (2.8) to be negative at these points.  To impose convexity, one can

require the second derivative (2.9) to be positive.  Then the quadratic optimization

problem (2.6) can be supplemented with the monotonicity constraints:
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(2.11)

(2.12)

(2.13)

and the convexity constraints:

Suppose the current asset price lies in the interval   and that one wants

to impose the constraint that the state price density is unimodal with the mode in this

same interval.   Since the SPD is (proportional to) the second derivative , one

needs to impose constraints on its derivative, that is on .     Define    to be

the  matrix whose columns (and rows) are the third derivatives of the

representors evaluated at .    Then one imposes the constraints:

The first set of     inequalities ensures that the SPD has a positive derivative at

strike prices below the current asset price, the remaining   inequalities provide

for a negative derivative at higher strike prices.

Finally, to impose the constraint that every valid density function must satisfy, that

is    one inserts:
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Asymptotic Distribution of the Estimator

The estimator we propose in equation (2.7) is nonparametric in the sense that it is the

closest function in the infinite-dimensional ball   to the

data.  On the other hand, if there is a fixed number of strike prices k, then the model

is parametric in the sense that the unknown parameter vector c is finite.

Assumptions: i)  Let   be the proportion of observations at strike price  . 

ii) Assume that the true call function  m  lies strictly inside the ball of functions  ,

i.e., .    iii). Assume also that m is strictly monotone decreasing and

strictly convex.  

Assumption i) ensures there are ample observations at each strike price so that the

option price can be estimated consistently without reference to data at other strike

prices. We could allow the proportions to be functions of n so long as they do not

vanish as n increases. Assumptions ii) and iii) greatly simplify asymptotic

distribution and bootstrap results because they imply that the true function is strictly

in the interior of the set of smooth, monotone and convex functions over which

estimation is taking place.

Proposition 1:  Let   be the k-dimensional vector of average

transactions prices at the k strike prices.  Let  minimize (2.6) with the added

constraints (2.10) and (2.11) and define   .  Then

.   #

Essentially, this proposition states that as data accumulate at each strike price, the

inequalities implied by the smoothness constraint, and the monotonicity and

convexity constraints eventually become non-binding and the estimator becomes
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(2.14a)

(2.14b)

(2.15a)

(2.15b)

identical to the point mean estimator.  

Proposition 2:  Define  and   as in Proposition 1.   Let   and

.  Let   be the  diagonal matrix of variances

of the point mean estimators, i.e., .  Then

 Furthermore,

Proposition 2 provides for asymptotic scalar and vector confidence regions of the call

function, its first derivative and the SPD.  For example, if one is interested in

confidence intervals at strike price  ,  the asymptotic pivots are:
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(2.15c)

(2.16)

To estimate  assemble the estimated residuals  at strike price 

and calculate the usual mean squared deviation:

from which one immediately obtains an estimate of , say .  Proposition 2 is also

useful for establishing the asymptotic validity of bootstrap confidence sets.

Bootstrap Procedures

Percentile and percentile-t procedures are commonly used for constructing

confidence intervals. The latter are often found to be more accurate when the statistic

is an asymptotic pivot (see Hall (1992) for extensive arguments in support of this

proposition).  On the other hand, percentile methods might be better when the

asymptotic approximation to the distribution of the pivot is poor as a result of small

sample size or slow convergence.  

In our case we are especially interested in confidence intervals for the call function

and for the SPD.  Our heuristic example depicted in Figures 1A,B,C suggests that the

asymptotic approximation should be adequate in estimating the call function but poor

when estimating its second derivative.

We continue by outlining a bootstrap procedure for obtaining confidence intervals
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for the call function and its derivatives at one of the observed strike prices, say .

As there are multiple observations at each strike price,  we can accommodate

heteroskedasticity by resampling from the estimated residuals at each strike price or

we can use the wild bootstrap (see Wu (1986) or Härdle (1990, p.106-8, 247)).

Figures 2 contains the algorithm for constructing percentile confidence intervals for

the call function and its first two derivatives at a confidence level of 95%.  The

procedures are applicable with the obvious modifications for a general confidence

level ".  (Algorithms for constructing percentile-t confidence intervals may be

constructed with modest additional effort.)

Proposition 3: Suppose one constructs an "-confidence interval for  ,

 or   using the bootstrap procedure in Figures 2. Then the

probability that it contains the corresponding true value converges to " as . #

Let  be the cross-validation estimate of the Sobolev bound L.  Then, 

Proposition 4:   . #

 

To test stability, we will use conventional parametric and bootstrap tests on . 



Figure 2: Percentile Confidence Intervals for   ,   and   

1.  Calculate   and  by solving (2.6) subject to (2.10) and (2.11).  Calculate the

estimated residuals  .

2.  a)   Construct a bootstrap data-set    where    and  

  is obtained by sampling from  using the wild bootstrap.

    b) Using the bootstrap data-set obtain by solving (2.6) subject to (2.10) and

(2.11).  Calculate and save ,   and .

3.   Repeat steps 2 multiple times.  

4.   To obtain a 95% point-wise confidence intervals for  ,   and   

obtain .025 and .975 quantiles of the corresponding bootstrap estimates.



3.  Monte Carlo Results

Effects of Constraints

To perform their simulations, Aït-Sahalia and Duarte (2000) calibrate their model

using characteristics of the S&P options market.  We calibrate our experiments using

DAX options in January 1999 which expire in March. At that time the DAX index

was in the vicinity of 5000 (see Section 4. Below).   The 25 distinct strike prices

range over the interval 4400 to 5600 in 50 unit increments.  The short term interest

rate is set to 3.5% and the dividend yield to 2%. We assume the volatility smile

function is linear in the strike price.  We have already seen the ‘true’ call function,

its first derivative and SPD plotted in Figures 1A,B, and C above. In each of the

simulations below we assume there are 20 observations at each of the 25 strike prices

for a total of 500 observations. At each strike price, the residual variance is set to

about 10% of the option price.

Figure 3A, B and C  illustrate the impact of constraints on estimation.  The

‘unconstrained’ estimator consists of the point means at each strike price.  The

‘smooth’ estimator imposes only the Sobolev constraint as in (2.5) and (2.6) with the

degree of smoothness identical to the true Sobolev norm of the underlying function

which is the square root of 1.812.  Monotonicity and convexity constraints are

imposed using equations (2.10) and (2.11).  Finally, we impose ‘unimodality’

constraints which requires the estimated SPD to be non-decreasing over the lowest

five strike prices and non-increasing over the highest five.  Its purpose is to improve

the estimator of the SPD at the boundaries.

As is evident from Figure 3A, the improvement in estimation of the call function

resulting from adding constraints is barely discernible, though it is present as may

be seen from the MSE’s in the first column of Table 1.

Figure 3B illustrates the impacts on estimation of the first derivative.  They are
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clearly evident (note that the vertical scale narrows as one moves down the figure).

The most dramatic impact of the constraints is on estimation of the SPD as may be

seen in Figure 3C.  Smoothness alone produces a very broad band of estimates, so

much so that the true SPD looks quite flat.  Adding monotonicity and convexity

improves the estimates substantially, though they are quite imprecise at low strike

prices. This is in part due to the much larger variance there.  The ‘unimodality’

constraints alleviate this problem.   Average mean squared errors are summarized in

Table 1 for the various estimators.

Table 1: Average MSE

Model Call Function First
Derivative

SPD

Unconstrained
Smooth
Smooth, Monotone, Convex
Smooth, Monotone, Convex, Unimodal

200.02
25.68
13.70
13.26

.1219

.0052

.0015
.00097

1.49 × 10-4

1.26 × 10-6

3.76 × 10-7

2.00 × 10-7

The unconstrained estimator consists of the point means at each strike price.

Confidence Intervals

Next we turn to confidence interval estimation.  Asymptotic confidence intervals can

be estimated using Proposition 2.  For bootstrap intervals we use the percentile

method outlined in Figure 2.  In each case we performed 100 bootstrap draws.

Figure 4 contrasts asymptotic and bootstrap confidence intervals for our data

generating mechanism. (Recall there are 25 distinct strike prices with 20
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observations at each  one.)  In the top panel which corresponds to the call function,

the asymptotic confidence intervals (dashed lines) are somewhat broader than the

bootstrap intervals (dotted lines).  The middle and lower panels correspond to the

first derivative and SPD estimates.  In these two cases, confidence intervals based

on the asymptotic approximation are extremely poor relative to the bootstrap

intervals.

Next we turn to the accuracy of the bootstrap intervals. We produced 500 samples

and in each case obtained 100 bootstrap re-samples. The model which was estimated

was the fully constrained version with smoothness, monotonicity, convexity and

unimodality constraints.  The smoothness constraint was set at the true norm of the

function.  Figure 5 plots the point-wise coverage probabilities for confidence

intervals which were nominally set at 99%, 95%, 90% and 50%.  The top panel

corresponds to the call function itself.  Bootstrap intervals are reasonably accurate

except at strike prices between 4500 and 4600DM.  The averages of the observed

coverage frequencies across strike prices is .9795 for 99% confidence intervals, .94

for 95%, .899 for 90% and .5185 for 50% intervals.

The middle panel illustrates observed bootstrap coverage frequencies for the first

derivative.  The averages of the observed coverage frequencies across strike prices

are .9835 for 99% confidence intervals, .9545 for 95%, .9095 for 90% and .4935 for

50%.

The bottom panel provides similar plots for the SPD.  The averages of the observed

coverage frequencies across strike prices is .994 for 99% confidence intervals, .978

for 95%, .953 for 90% and .575 for 50%.  Thus, percentile bootstrap confidence

intervals for the SPD in the fully constrained model are conservative.

Overall we found that while MSE improves and bootstrap confidence intervals

narrow as one adds constraints to the ‘smooth’ model, bootstrap coverage accuracy
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deteriorates moderately.

Cross-Validation

Finally, we performed simulations in which the Sobolev smoothness parameter was

estimated as the minimum of the cross-validation function.  We found that even with

much smaller samples, e.g., with two observations at each of the 25 strike prices, the

estimated cross-validation parameter was close to the true value. 
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Figure 3A: Effects of Constraints on Call Function Estimates



4400 4600 4800 5000 5200 5400 5600

-1
.5

-1
.0

-0
.5

0.
0

True Function
90% Point-Wise Ints
90% Uniform Ints

Smooth

4400 4600 4800 5000 5200 5400 5600

-1
.4

-1
.2

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

True Function
90% Point-Wise Ints
90% Uniform Ints

Smooth,Monotone,Convex

4400 4600 4800 5000 5200 5400 5600

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

True Function
90% Point-Wise Ints
90% Uniform Ints

Smooth,Monotone,Convex,Unimodal

Figure 3B: Effects of Constraints on First Derivative Estimates
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Figure 3C: Effects of Constraints on SPD Estimates
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Figure 5: Accuracy of Bootstrap Confidence Intervals
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4.   Applications to DAX Index Option Data

 

In this section we use the tools we have described to analyze data on DAX index

options over the two week period January 4-15, 1999.  Figure 6 illustrates the closing

daily values of the DAX over the period.  During the first week, the index fluctuates

in a range above 5200. In the early part of the second week it begins to decline and

during the last three days of the sample period, the index remains below 5000.

Figure 6: DAX Jan 4-15, 1999

Our estimates will be restricted to call options which trade at 100 point intervals

between 4500 and 5500 and expire in 1 month.  Some trades do indeed take place

outside this range, but there are few of them. We begin with data for January 4.

Figure 7A illustrates the estimated call function, its first derivative and the SPD

along with 95% point-wise bootstrap confidence intervals.  In addition we have

included uniform confidence bounds for the SPD based on the Bonferroni inequality.

With the DAX closing at 5290, one can reasonably expect that there is some
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probability mass beyond the 5500 level.  Options at 5500 averaged 22DM suggesting

that the market assigned a positive probability to the DAX exceeding 5500 at time

of expiration of the options.   Indeed our estimated SPD integrates to about .8 as may

be inferred from the middle panel of Figure 7A. 

Figure 7B depicts the estimated call function, its first derivative and SPD for January

14.  By this time, the DAX had dropped to about 4900.  The SPD is zero at both end

points of our estimation range and constraint (2.13) which requires that the integral

of the SPD not exceed one is binding and hence informative to the estimation

process.

A test of equality of SPD’s across these two days would clearly fail.  A more

interesting question is whether on two consecutive days when there is little change

in the index, one would conclude that the market has significantly changed its

probabilistic view of  where the market will end up at some future date.  We consider

this question by testing equality of the SPD’s for January 4th and 5th where there has

been little change in the DAX.  As we have indicated earlier, the test can be

conducted by testing equality of the coefficient vectors  .  We use the bootstrap to

obtain critical values.  Figure 8 plots the SPD’s for each day along with uniform

confidence bounds which is strongly suggestive of rejection.  The statistic yields a

value of ___ which compares to a critical value of ___.  

Figure 9 plots two perspectives on the procession of daily estimated SPD’s over the

full period January 4-18, 1999.  During the first week expectations are that the DAX

will be higher at time of expiry.  By the end of the second week, expectations have

moved sharply lower, consistent with the DAX index value, and the SPD’s become

more highly concentrated, possibly a result of the fact that the expiry date is now

closer.  The pattern may be seen perhaps more clearly in the Appendix which

contains graphs of the estimated call functions, their first derivatives and the SPDs

for each day individually.
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Figure 7A: January 4, 1999
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Figure 9: Daily SPD’s January 4-15, 1999
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