
Accessing knowledge is essential for us to recognize 
and identify the large variety of objects, some more or 
less well known, some novel, with which we are daily 
confronted. However, the facets of object-related knowl-
edge held in memory can vary considerably (e.g., Pexman, 
Hargreaves, Edwards, Henry, & Goodyear, 2007). Thus, 
knowledge about cars can range from basic driving re-
quirements to understanding intricate details of function. 
How this vast range of knowledge affects object recogni-
tion is largely unknown.

Expertise in object recognition may alter behavior 
(Gauthier, James, Curby, & Tarr, 2003; Gauthier, Wil-
liams, Tarr, & Tanaka, 1998; Tanaka, Curran, & Shein-
berg, 2005), enhance metabolism in the fusiform gyrus 
(Gauthier, Skudlarski, Gore, & Anderson, 2000; Gau-
thier, Tarr, Anderson, Skudlarski, & Gore, 1999), and 
increase the N170 component in event-related brain po-
tentials (ERPs) (Tanaka & Curran, 2001). These kinds 
of expertise typically involve not only rich perceptual 
experience but also profound semantic knowledge, fac-
tors that are hard to disentangle. Thus, when computer-
generated, visually similar novel objects or shapes are 
associated with arbitrary semantic information, it affects 
visual discrimination (Gauthier et al., 1999) and activates 
a neural network related to semantic processing (James 
& Gauthier, 2003, 2004). Furthermore, hands-on experi-
ence with novel tools affects neural activity in extrastriate 
visual areas (Weisberg, van Turennout, & Martin, 2007), 
as does learning novel objects in the context of different 
actions (Kiefer, Sim, Liebich, Hauk, & Tanaka, 2007).

Although the above mentioned studies suggest that 
knowledge affects behavioral and neural aspects of ob-
ject processing, they mostly used behavioral or BOLD 
responses, providing only limited insight into the tem-
poral unfolding of knowledge effects. Also, it is unclear 
whether findings from homogeneous artificial objects, 
associated with arbitrary and unconnected information, 
would generalize to more common heterogeneous ob-
jects and connected semantic information. Therefore, 
the pres ent study used a wide variety of different objects, 
for some of which in-depth knowledge about functional 
attributes was provided. Because basic semantic infor-
mation may be accessed very rapidly (Thorpe, Fize, & 
Marlot, 1996)—in fact, as quickly as detecting the object 
(Grill-Spector & Kanwisher, 2005)—knowledge might 
not only affect high-level identification but may already 
influence early visual processing. Therefore, we exploited 
the high temporal resolution of ERPs to investigate the 
functional loci of in-depth knowledge on perception and 
identification.

To isolate semantic sources of expertise while con-
trolling perceptual factors and preexisting knowledge, 
we manipulated the depth of knowledge about initially 
unfamiliar objects in a multistep learning procedure (see 
Figure 1). To control for changes in object perception, one 
participant group was tested with minimal opportunity 
for visual inspection of the objects during knowledge ac-
quisition. Knowledge effects were assessed in separate 
test sessions with various tasks, ranging from familiarity 
classifications to naming.

 1055 Copyright 2008 Psychonomic Society, Inc.
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The P1 component peaks about 100 to 130 msec after 
stimulus onset and reflects processing of visual ob-
ject features in extrastriate cortex (Di Russo, Martínez, 
Sereno, Pitzalis, & Hillyard, 2001). P1 amplitude is sensi-
tive to spatial attention (Hillyard & Anllo-Vento, 1998) 
and other cognitive processes such as facial expression 
analysis (Meeren, van Heijnsbergen, & de Gelder, 2005). 
Assuming that increased knowledge about the meaning 
of object features facilitates perceptual analysis or visual 

We focused on ERP components associated with mean-
ing access and low-level visual perception. The N400 
component is most pronounced around 400 msec after 
stimulus onset. Its amplitude increases with the depth of 
semantic processing associated with meaningful stimuli 
such as words and objects (Kutas & Hillyard, 1980; Kutas, 
Van Petten, & Kluender, 2006). Therefore, we expected 
an amplitude modulation of the N400, due to in-depth 
knowledge.

C Test Phase, Blurred Example Stimuli

A Learning Phase, Part 1

Ganosis
Real

Sonocor
Fictitious

Planeo
Fictitious

Adder
Real

Notande
Real

B Learning Phase, Part 2

In-Depth-Knowledge Condition

Minimal-Knowledge Condition

Calimat
Real

Calimat
Real

“This is an artificial incubation device for hen’s eggs. 
Instead of letting the hens breed farmers put the eggs 
into this box. By adjusting temperature and humidity 
the breeding hen is simulated by the box very 
efficiently. The breeding process is even slightly faster, 
which saves money.”

“For Italian tomato sauce, saute onions in oil in a 
saucepan over medium-high heat until golden brown. 
Add crushed tomatoes, water, tomato paste, basil, 
garlic, salt and pepper. Let the sauce come to a boil, and 
stir occasionally until desired thickness. Sauce is ready 
when oil rises to the top.”

Figure 1. Example stimuli as presented in Experiments 1 and 2. The stimulus 
set consisted of 40 rare objects, such as historic tools and gadgets, with largely 
unknown functions. (A) Examples for object pictures and task-relevant infor-
mation to be memorized in the first part of the learning sessions. (B) English 
examples for a story with in-depth expert knowledge (in-depth-knowledge con-
dition) and an unrelated story (minimal-knowledge condition), as presented in 
the second part of the learning session. While the stories were played, the ob-
jects were presented on the screen (Group 1 of Experiment 1), or only the asso-
ciated information (name and real vs. fictitious) was presented in the absence of 
the object picture (Group 2 of Experiment 1 and Experiment 2). (C) Examples 
of blurred versions of the images, as presented in Experiment 2.
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from 56 sites according to the extended 10–20 system, referenced 
to the left mastoid, and at a sampling rate of 500 Hz (bandpass 
0.032–70 Hz). Electrooculograms were recorded from the left and 
right outer canthi and beneath and above the left eye. Electrode 
impedance was kept below 5 k . Prototypical eye movements for 
later artifact correction were obtained in a calibration procedure. 
Offline, the continuous EEG was transformed to average reference 
and low-pass filtered at 30 Hz. Eye movement artifacts were re-
moved with a spatiotemporal dipole modeling procedure using the 
BESA software (Berg & Scherg, 1991). Remaining artifacts were 
eliminated with a semiautomatic rejection procedure. Error- and 
artifact-free data were segmented into epochs of 2.5 sec, start-
ing 100 msec prior to picture onset, with a 100-msec prestimulus 
baseline interval. Global field power (GFP; Lehmann & Skrandies. 
1980) was computed as overall activity at each time point across 
the 56 scalp electrodes.

Amplitude differences were assessed with repeated measures 
ANOVAs. Huyhn–Feldt corrections were applied when appropri-
ate. For the analyses of topographical distributions, the difference 
waveforms for each participant were scaled to the individual GFP 
of each participant.

Results and Discussion
Because results were very similar in both participant 

groups, we collapsed their data (see Figures 2 and 3). 
Response times (RTs) and error rates (see Figure 2) in-
creased from familiarity over semantic classification to 
naming [F(2,76)  171.1 and 17.3, respectively, ps  
.001]. However, there was no main effect of in-depth ver-
sus minimal knowledge and no interaction (Fs  2.3). 
Thus, knowledge effects in performance that had been 
present immediately after acquisition vanished after sev-
eral days of consolidation.

In ERPs, the most prominent knowledge effect was 
an increased posterior negativity in the latency range of 
the N400 (300–500 msec). We conducted a three-way 
ANOVA on mean amplitudes for this time window with 
factors electrode (56 electrodes),1 task (familiarity clas-
sification, semantic classification, naming) and knowl-
edge condition (in-depth knowledge, minimal knowl-
edge, well-known objects), and the between-subjects 
factor group. This analysis revealed main effects of task 
[F(110,4180)  5.71, p  .0001] and knowledge condi-
tion [F(110,4180)  25.61, p  .0001], and an interaction 
of task, knowledge condition, and group [F(220,8360)  
2.03, p  .006], mainly due to stronger knowledge effects 
in Group 2. Separate comparisons revealed a difference 
between the in-depth-knowledge and minimal-knowledge 
conditions [F(55,2090)  14.49, p  .001; F(1,38)  
30.0, p  .001, when tested only at electrode sites Pz, 
P7, and P8] (see Figure 3) and between common objects 
and both the in-depth-knowledge [F(55,2090)  13.89, 
p  .001; F(1,38)  36.1, p  .001, at sites Pz, P7, and 
P8] and the minimal-knowledge [F(55,2090)  45.2, p  
.001; F(1,38)  138.8, p  .001, at sites Pz, P7, and P8] 
conditions.

For the P1 time window (100–150 msec), ANOVAs on 
mean amplitudes across all electrodes yielded main effects 
of task [F(110,4180)  2.32, p  .018] and knowledge 
condition [F(110,4180)  6.67, p  .0001], reflecting an 
overall higher amplitude in the minimal-knowledge condi-
tion. Separate comparisons revealed a difference between 

integration of these features, we expected a decrease in 
the amount of the corresponding neural activity, reflected 
in P1 magnitude.

EXPERIMENT 1
Method

Participants. Participants were 40 native German speakers (32 
women; mean age, 24.1 years; age range, 19–41), who had given in-
formed consent.

Materials. Stimuli were pictures of 40 rare objects with largely 
unknown functions (neither pictures nor names revealed any mean-
ingful information about functional properties), and 20 well-known 
objects. Forty spoken stories containing functional information 
about objects and 20 cooking recipes were recorded (mean dura-
tions were 18.3 vs. 18.6 sec).

Procedure. The learning session consisted of two parts. In Part 1, 
lasting about 45 min, participants were familiarized with all rare ob-
jects and learned the task-relevant information (names and whether 
the object was real or fictitious), terminating with a test of the task-
relevant knowledge.

In Part 2, lasting on average 1.5 h, short stories were presented 
while either the object images (Group 1, n  20) or only the written 
task-relevant information associated with the object was shown on 
the screen (Group 2, n  20). For half of the objects, the stories con-
tained information about the object’s function (in-depth-knowledge 
condition; see Figure 1). For the other objects, unrelated cooking 
recipes were presented (minimal-knowledge condition), controlling 
for unspecific effects of attention, fatigue, and so on. Presentation 
times of objects in the two conditions were identical. The assign-
ment to the in-depth-knowledge and minimal-knowledge conditions 
was counterbalanced across participants within a group; therefore, 
all objects were assigned equiprobably to each condition. All sto-
ries were presented three times. Object-related stories were always 
assigned to the same objects; recipes were randomly assigned to 
different objects at each presentation, precluding the formation of 
fixed associations. This part terminated with the same knowledge 
test as did Part 1.

Following Part 1, naming latencies (M  1,244 msec) were 
slower than semantic decisions (M  972 msec) [F(1,39)  63.3, 
p  .001]. After knowledge acquisition this difference increased, 
because naming was slowed to M  1,382 msec [F(1,38)  34.1, 
p  .001], whereas there was no significant change for the clas-
sification task (M  947 msec) (F  1.7). Slowing of naming was 
more pronounced for the in-depth-knowledge than for the minimal-
knowledge condition (M  1,407 vs. 1,357 msec) [F(1,39)  4.9, 
p  .05]. These task- and knowledge-dependent changes between 
Parts 1 and 2 gave rise to a three-way interaction [F(1,38)  3.9, p  
.053], indicating that the acquisition of in-depth knowledge affects 
the retrieval of other pieces of knowledge.

Test sessions took place two to three days after learning. First, the 
objects (Group 1) or names (Group 2) were presented in print and 
participants gave all the information they remembered. Then the 
newly learned objects were presented, alternating randomly with 
well-known real and fictitious objects (e.g., sofa vs. gingerbread 
house). Three tasks were employed, none of which required the re-
trieval of in-depth knowledge, nor was this knowledge mentioned 
in the instructions. In the familiarity task, participants classified 
objects as “well-known” or “newly learned” by buttonpresses. In the 
semantic task, participants verbally indicated whether objects were 
“real” or “fictitious,” and in the speech production task, objects were 
named. Objects were presented three times in each task, resulting 
in 60 trials per condition and task. Tasks alternated blockwise in 
counterbalanced order.

A trial began with a fixation cross at the center of a light gray 
screen for 0.5 sec, followed by a picture, disappearing with the re-
sponse, or after 3 sec. The next trial began 1 sec later.

Data recording and analysis. In the test sessions, the electro-
encephalogram (EEG) was recorded with Ag/AgCl electrodes 
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the minimal and both the in-depth-knowledge condition 
[F(55,2090)  8.84, p  .001], most pronounced at oc-
cipital electrodes O1 and O2 [F(1,38)  17.01, p  .001] 
(see Figure 3), and well-known objects [F(55,2090)  8.0, 
p  .001; F(1,38)  6.3, p  .016, at O1 and O2]. There 
was also a marginally significant difference between the 
in-depth-knowledge condition and well-known objects 
[F(55,2090)  2.27, p  .046; F(1,38)  8.2, p  .018, 
at O1 and O2]. Scalp distributions of knowledge effects 
(in-depth-knowledge minus minimal-knowledge condi-
tion) for the P1 and the N400 time segments did not differ 
(F  0.5). Differences between groups in the N170 (see 
Figure 3; bottom), potentially reflecting effects of percep-
tual exposure, did not reach significance.

Experiment 1 indicates that in-depth knowledge affects 
ERPs in the time range of the P100 and the N400. There-
fore, it appears that early perception is indeed affected by 
semantic knowledge.

Next, we probed the mechanisms underlying in-depth-
knowledge effects by manipulating a perceptual factor 
during testing.

EXPERIMENT 2

Object images were presented strongly low-pass fil-
tered (blurred; see Figure 1) or in their original version. 
If in-depth knowledge influences visual perception, this 
effect should be enhanced when perceptual analysis is 
made more difficult by blurring. Therefore, we expected a 
stronger effect on P1 amplitude to blurred compared with 
intact images.

Method
Twenty new participants (15 women; mean age, 24.0 years; age 

range, 18–33) ran through the same procedure as did Group 2 of 
Experiment 1, except that during the test session all objects were 
first shown spatially low-pass filtered (Gaussian filter); thereafter 
images were presented again in intact versions.

Results
Figure 4 shows effects of knowledge and blurring on 

P1 amplitudes at an occipital electrode (Oz) and on per-
formance. An ANOVA with factors perceptual difficulty 
(blurred vs. intact images), task, and knowledge condition 
(in-depth vs. minimal knowledge) on peak amplitude of 
the P1 at Oz revealed main effects of perceptual difficulty 
[F(1,19)  17.27, p  .001] and knowledge condition 
[F(1,19)  17.09, p  .001], an interaction of task and 
perceptual difficulty [F(2,38)  4.70, p  .01], and, most 
importantly, an interaction of perceptual difficulty and 
knowledge condition [F(2,38)  9.44, p  .006]. This 
interaction reflects stronger knowledge effects on P1 am-
plitude for blurred images.

In the N400 time window, an ANOVA yielded main ef-
fects of task [F(110,2090)  31.57, p  .0001], perceptual 
difficulty [F(55,1045)  2.99, p  .026], and knowledge 
condition [F(55,1045)  8.14, p  .0001], and interac-
tions of task and knowledge condition [F(110,2090)  
7.74, p  .0001] and task and perceptual difficulty 
[F(110,2090)  2.87, p  .031]. In contrast to the P1 ef-
fects, however, there was no interaction of perceptual dif-
ficulty and knowledge condition (F  0.5).

At variance with Experiment 1, an effect of knowledge 
on performance was found here. Relative to intact im-
ages, error rates (disregarding omissions) were increased 
in the blurred condition [F(1,19)  20.81, p  .0001] and 
tended to be higher in the minimal- than in the in-depth-
knowledge condition [F(1,19)  3.89, p  .063]. There 
was no main effect of knowledge condition ( p  .18). 
Apart from main effects of blurring [F(1,19)  243.3, p  
.001] and task [F(2,19)  83.2, p  .001], there were no 
effects of minimal versus in-depth knowledge on RTs.

These results show that knowledge effects are percep-
tual effects. This holds even if blurring causes changes in 
energy levels or spatial frequency. In line with Bar et al. 
(2006), one might suggest that low spatial frequencies may 
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in-depth knowledge was provided; therefore, the initial 
learning conditions and familiarity levels were identical 
for all objects. Second, in Group 2 of Experiment 1, and 
in Experiment 2, object pictures had been absent while 
in-depth knowledge was acquired. This procedure pre-
cluded differences in visual inspection and attention 
during learning, leaving visual imagery during learning 
(a type of “priming”) as the only possible difference be-
tween knowledge conditions. Because very similar P1 
effects were obtained in the two groups, differential atten-
tional influences of acquiring in-depth knowledge on per-
ceptual experience are unlikely. Furthermore, during the 
test session of Experiment 1, objects associated with in-
depth knowledge were not processed any better or faster 
than were objects associated with minimal knowledge. 
This finding speaks against the idea that these objects 
are visually more familiar or learned with more focused 
attention.

The present results are therefore consistent with the as-
sumption that knowledge shapes perception. As suggested 
above, this effect might be a consequence of top-down or, 
alternatively, perceptually grounded influences of seman-
tic processes, possibly reducing the need to draw attention 
to perceptual analysis.

The suggested accounts are compatible with our obser-
vations concerning the underlying brain systems. First, 
knowledge-dependent modulations are closely linked to 
the visual processing modules active during the same time 
(P1 time window) and were influenced by a purely percep-
tual factor (blurring). Within the limits of spatial precision 
allowed by ERPs, free-fit dipole localization of the P1 and 
the knowledge effects yielded similar neuroanatomical 
loci (see Figure 5). Second, the brain systems related to 
the early effect appear to contribute substantially to the 
late effect in the N400 time window, yielding very similar 
scalp topographies (see Figure 2). Thus, in-depth knowl-
edge influences visual systems early on, and continues to 
do so for several hundred milliseconds. Over this time pe-
riod, semantic processing may become more fine grained, 
as suggested by the more graded knowledge effects in the 
later ERP timeframe.

Our findings extend those obtained with artificial 
objects and arbitrary semantic information to more 
heterogeneous common objects associated with coher-
ent object-specific information. They also complement 
previous research on expertise in object recognition by 
elucidating the temporal dynamics of the effects of newly 
learned knowledge, independent of perceptual experi-
ence. We show that the nature of knowledge effects differs 
from the effects of perceptual expertise. Most strikingly, 
knowledge affects even earlier stages of visual analysis 
than perceptual expertise, as reflected in P1 modulations 
which precede perceptual expertise effects, most promi-
nent in the N170 (e.g., Tanaka & Curran, 2001), by about 
40 msec.

In conclusion, the observed influence of in-depth knowl-
edge on perception calls to mind a well-known quotation 
from the German poet and vision researcher Goethe (von 
Müller, 1982): “One only sees what one already knows 

be better tuned to activate early top-down modulations in 
vision. However, please note that we found no evidence of 
the frontal activation that Bar et al. assert.

GENERAL DISCUSSION

Exploring the effects of in-depth knowledge on object 
recognition, we obtained two main findings. A negative 
ERP deflection in the N400 time window gradually in-
creased in amplitude from objects associated with mini-
mal information, to those with newly acquired in-depth 
knowledge, to well-known objects. Because none of our 
tasks required the retrieval of in-depth knowledge, this 
effect reflects involuntary, automatic activation of facets 
of object meaning.

Furthermore, P1 amplitude was bigger for objects as-
sociated with minimal knowledge relative to both objects 
with in-depth knowledge and well-known objects. This 
suggests that stored in-depth knowledge shapes early 
stages of visual object perception, presumably by facili-
tating low-level visual analysis or reducing demands on 
detailed visual inspection, and that it does so in a direct 
and task-independent manner, even when this knowledge 
is irrelevant to the task at hand.

We propose two possible accounts for the present find-
ings. First, high-level conceptual knowledge may exert a 
top-down influence on early perception, facilitating fea-
ture analysis by means of reentrant activation from higher 
level semantic to sensory cortical areas (e.g., Bar et al., 
2006). In line with this assumption, recent evidence sug-
gests that semantic information about objects is available 
very rapidly (Thorpe et al., 1996). Furthermore, although 
there were no behavioral knowledge effects in Experi-
ment 1, knowledge does seem to enhance correct object 
recognition when visual analysis is very demanding, as 
was the case in Experiment 2 with blurred images.

Second, the findings are also in line with sugges-
tions that semantic knowledge is grounded in perception 
(Barsalou, 1999; Barsalou, Simmons, Barbey, & Wilson, 
2003; Goldberg, Perfetti, & Schneider, 2006; Martin, 
1998, 2007). Because in-depth knowledge was associ-
ated here with the meaning of visual object features, this 
knowledge might be stored within brain areas subserving 
visual analysis of these features, or may cause a restruc-
turing of the neural networks in the perceptual system.

Alternatively, can the present results be accounted for 
by more global effects of selective attention? Because at-
tention to the location or specific object features increases 
the P1 (e.g., Hillyard & Anllo-Vento, 1998; Hopfinger, 
Luck, & Hillyard, 2004), in-depth-knowledge effects 
might be due to differences in attention to specific fea-
tures or whole objects. Since P1 amplitude was smaller in 
response to objects associated with in-depth knowledge, 
an attention-based account would have to postulate that 
knowledge decreases the need for allocating attention dur-
ing perception.

This potential attention effect at testing cannot be due 
to learning-induced differences in visual experience on 
two grounds. First, objects had been familiarized before 
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and understands. Often one will not discern aspects of ob-
jects encountered for many years until they become easily 
visible through maturing knowledge and education.”
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