-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Dokumenten-Publikationsserver der Humboldt-Universitat zu Berlin

ON RATE OF CONVERGENCE OF OPTIMAL SOLUTIONS OF
MONTE CARLO APPROXIMATIONS OF STOCHASTIC
PROGRAMS

ALEXANDER SHAPIRO* AND TITO HOMEM-DE-MELLO'

Abstract. In this paper we discuss Monte Carlo simulation based approximations of a stochastic
programming problem. We show that if the corresponding random functions are convex piecewise
smooth and the distribution is discrete, then (under mild additional assumptions) an optimal solution
of the approximating problem provides an ezact optimal solution of the true problem with probability
one for sufficiently large sample size. Moreover, by using theory of Large Deviations, we show that
the probability of such an event approaches one exponentially fast with increase of the sample size.
In particular, this happens in the case of two stage stochastic programming with recourse if the
corresponding distributions are discrete. The obtained results suggest that, in such cases, Monte
Carlo simulation based methods could be very efficient. We present some numerical examples to
illustrate the involved ideas.

Key words. Two-stage stochastic programming with recourse, Monte Carlo simulation, Large
Deviations theory, convex analysis

AMS subject classifications. 90C15, 90C25

1. Introduction. We discuss in this paper Monte Carlo approximations of stochas-
tic programming problems of the form

(1.1) Min {f(z) := Eph(z,w)},

€O
where P is a probability measure on a sample space (2, F), © is a subset of IR™ and
h: R™ x Q2 — IR is a real valued function. We refer to the above problem as the
“true” optimization problem. By generating an independent identically distributed
(ii.d.) random sample w!,...,w" in (Q, F), according to the distribution P, one can
construct the corresponding approximating program

N
(1.2) Min fn(@) ==N""Y " h(z,w)

Jj=1

An optimal solution &y of (1.2) provides an approximation (an estimator) of an
optimal solution of the true problem (1.1).

There are numerous publications where various aspects of convergence properties
of & are discussed. Suppose that the true problem has a non empty set A of optimal
solutions. It is possible to show that, under mild regularity conditions, the distance
dist(Zn, A), from &x to the set A, converges with probability one (w.p.1) to zero
as N — oo. There is a vast literature in Statistics dealing with such consistency
properties of empirical estimators. In the context of stochastic programming we can
mention recent works [9],[14],[17], where this problem is approached from the point
of view of the epiconvergence theory.
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It is also possible to give various estimates of the rate of convergence of &y to A.
Central Limit Theorem type results give such estimates of order O,(N~'/2) for the
distance dist(Zn, A) (e.g., [15], [20]), and the Large Deviations theory shows that one
may expect that, for any given € > 0, the probability of the event dist(Zy,A) > ¢
approaches zero exponentially fast as N — oo (see, e.g., [13],[16],[19]). These are
general results and it seems that they describe the situation quite accurately in case
the involved distributions are continuous. However, it appears that the asymptotics
are completely different if the distributions are discrete. We show that in such cases,
under rather natural assumptions, the approximating problem (1.2) provides an ezact
optimal solution of the true problem (1.1) for N large enough. That is, &y € A w.p.1
for sufficiently large N. Even more surprisingly we show that the probability of the
event {#y ¢ A} tends to zero exponentially fast as N — oo. That is what happens
in the case of two stage stochastic programming with recourse if the corresponding
distributions are discrete. This indicates that, in such cases, Monte Carlo simulation
based methods could be very efficient.

In order to motivate the discussion, let us consider the following simple example.
Let Yi,...,Y,, be independent identically distributed real valued random variables.
Consider the following optimization problem

(13) Min {f(fv) = (g v; |> } .

This problem is a particular case of two stage stochastic programming with simple
recourse. Clearly the objective function f(x) can be written in the form f(z) :=
Sty fi(wi), where fi(x;) := IE{]Y; —x;]}. Therefore the above optimization problem
is separable. It is well known that a minimizer of f;(-) is given by the median of
the distribution of Y;. Suppose that the distribution of the random variables Y; is
symmetrical around zero. Then Z := (0,...,0) is an optimal solution of (1.3).

Now let Y1, ..., Y™ be an i.i.d. random sample of N realizations of the random
vector Y = (Y7, ...,Y,,). Consider the following sample average approximation of (1.3)

N

(1.4) Min fn(z) = N‘lzlh(x,Yj) 7
iz

where h(z,y) := > 1%, |yi — x;|, with z,y € IR™. An optimal solution of the above
approximating problem (1.4) is given by &n := (Z1n,-., £mn), Where Z;n is the
sample median of Y}!,..., VN

Suppose for the moment that m = 1, i.e. we are minimizing FE{|Y — z|} over
x € IR. We assume that the distribution of Y is symmetrical around zero and hence
Z = 0 is an optimal solution of the true problem. Suppose now that the distribution
of Y is continuous with density function ¢g(y). Then it is well known (e.g., [6]) that
the corresponding sample median #y is asymptotically normal. That is, N'1/2 (Zn —
#) converges in distribution to normal with zero mean and variance [2g(#)] 2. For
example, if Y is uniformly distributed on the interval [~1,1], then N'/?(iy — &) =
N(0,1). This means that for N = 100 we may expect &x to be in the (so-called
confidence) interval [—0.2,0.2] with probability of about 95%. Now for m > 1 we
have that the events &;x € [-0.2,0.2], i = 1,...,m, are independent (this is because
we assume that Y; are independent). Therefore the probability that each sample
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median #;y will be inside the interval [-0.2,0.2] is about 0.95™. For example, for
m = 50, this probability becomes 0.95%° = 0.077. If we want that probability to be
about 0.95 we have to increase the interval to [—0.3,0.3], which constitutes 30% of
the range of the random variable Y. In other words for that sample size and with
m = 50 our sample estimate will be not accurate.

The situation becomes quite different if we assume that Y has a discrete distribu-
tion. Suppose now that ¥ can take values —1, 0 and 1 with equal probabilities 1/3.
In that case the true problem has unique optimal solution & = 0. The corresponding
sample estimate Zy can be equal to —1, 0 or 1. We have that the event {Zy = 1}
happens if more than half of the sample points are equal to one. Probability of that is
given by P(X > N/2), where X has a binomial distribution B(N,1/3). If exactly half
of the sample points are equal to one, then the sample estimate can be any number
in the interval [0, 1]. Similar conclusions hold for the event {#x = —1}. Therefore
the probability that &y = 0 is at least 1 —2P(X > N/2). For N = 100, this proba-
bility is 0.9992. Therefore the probability that the sample estimate &y, given by an
optimal solution of the approximating problem (1.4) with the sample size N = 100
and the number of random variables m = 50, is at least 0.9992%° = 0.96. With the
sample size N = 120 and the number of random variables m = 200 this probability,
of #x = 0, is about 0.99982% = 0.95. Note that the number of scenarios for that
problem is 32°°, which is not small by any standard. And yet with sample size of only
120 the approximating problem produces an estimator which is exactly equal to the
true optimal solution with probability of 95%.

The above problem, although simple, illustrates the phenomenon of exponential
convergence referred to in the title of the paper. In the above example the correspond-
ing probabilities can be calculated in a closed form, but in the general case of course
we cannot expect to do so. The purpose of this paper is to extend this discussion to
a class of stochastic programming problems satisfying some assumptions. Our goal is
to exhibit some qualitative (rather than quantitative) results. We do not propose an
algorithm, but rather show asymptotic properties of Monte Carlo simulation based
methods.

The paper is organized as follows. In section 2 we show almost sure (w.p.1)
occurrence of the event {#y € A} (recall that A is the set of optimal solutions of
the “true” problem). In section 3 we take a step further and, using techniques from
Large Deviations theory, we show that the probability of that event approaches one
exponentially fast. In section 4 we discuss the median problem in more detail, and
present some numerical results for a two-stage stochastic programming problem with
complete recourse. Finally, section 5 presents some conclusions.

2. Almost sure convergence. Consider the “true” stochastic programming
problem (1.1). For the sake of simplicity we assume that the corresponding expected
value function f(z) := Eph(x,w) exists (and in particular is finite valued) for all
x € IR™. For example, if the probability measure P has a finite support (i.e. the
distribution P is discrete and can take a finite number of different values), and hence
the space 2 can be taken to be finite, say Q := {wi,...,wx}, and P is given by the
probabilities P{w = wr} = pi, k=1, ..., K, we have

K
(2.1) Eph(z,w) = pph(z,wp).
k=1

We assume that the feasible set O is closed and convex, and that for every w € Q, the
function h(-,w) is convex. This implies that the expected value function f(-) is also
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convex, and hence the “true” problem (1.1) is convex. Also if P is discrete and the
functions h(-,wy), k = 1,..., K, are piecewise linear and convex, then f(-) is piecewise
linear and convex. That is what happens in two stage stochastic programming with
a finite number of scenarios.

Let w!,...,w" be an ii.d. random sample in (£2,F), generated according to the
distribution P, and consider the corresponding approximating program (1.2). Note
that, since the functions h(-,w’) are convex, the approximating (sample average)
function fx(-) is also convex, and hence the approximating program (1.2) is convex.

We show in this section that, under some natural assumptions which hold for
instance in the case of two stage stochastic programming with a finite number of
scenarios, with probability one (w.p.1) for N large enough any optimal solution of
the approximating problem (1.2) belongs to the set of optimal solutions of the true
problem (1.1). That is, problem (1.2) yields an ezact optimal solution (w.p.1) when
N is sufficiently large.

The statement: “w.p.1 for N large enough” should be understood in the sense
that for P-almost every w € ) there exists N* = N*(w), such that for any N > N*
the corresponding statement holds. The number N* is a function of w, i.e. depends
on the random sample, and therefore in itself is random. Note also that, since con-
vergence w.p.1 implies convergence in probability, the above statement implies that
the probability of the corresponding event to happen tends to one as the sample size
N tends to infinity.

We denote by A the set of optimal solutions of the true problem (1.1), and by
f'(z,d) the directional derivative of f at x in the direction d. Note that the set A
is convex and closed, and since f is a real valued convex function, the directional
derivative f'(z,d) exists, for all z and d, and is convex in d. We discuss initially the
case when A is a singleton; later we will consider the general setting.

Assumption (A) The true problem (1.1) possesses unique optimal solution Z,
i.e. A= {z}, and there exists a positive constant ¢ such that

(2.2) f(@) > f(&) +cla — 7], Vaeo.

Of course condition (2.2), in itself, implies that Z is the unique optimal solution of
(1.1). In the approximation theory optimal solutions satisfying (2.2) are called sharp
minima. It is not difficult to show, since problem (1.1) is convex, that assumption
(A) holds iff

(2.3) fl(z,d) >0, VdeTeo(z)\ {0},

where To(Z) denotes the tangent cone to © at Z. In particular, if f(z) is differen-
tiable at Z, then assumption (A) (or equivalently (2.3)) holds iff —V f(Z) belongs to
the interior of the normal cone to © at Z. Note, that since f'(Z,-) is a positively homo-
geneous convex real valued (and hence continuous) function, it follows from (2.3) that
f'(Z,d) > ¢l||d|| for some € > 0 and all d € To(Z). We refer to a recent paper [4], and
references therein, for a discussion of that condition and some of its generalizations.

If the function f(x) is piecewise linear and the set © is polyhedral, then problem
(1.1) can be formulated as a linear programming problem, and the above assumption
(A) always holds provided Z is the unique optimal solution of (1.1). This happens,
for example, in the case of a two stage linear stochastic programming problem with
a finite number of scenarios provided it has a unique optimal solution. Note that
assumption (A) is not restricted to such situations only. In fact, in some of our
numerical experiments sharp minima (i.e. assumption (A)) happened quite often in
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the case of continuous (normal) distributions. Furthermore, because the problem is
assumed to be convex, sharp minima is equivalent to first order sufficient conditions.
Under such conditions, first order (i.e. linear) growth (2.2) of f(z) holds globally, i.e.
for all x € O.

THEOREM 2.1. Suppose that: (i) for every w € Q the function h(-,w) is convez,
(ii) the expected value function f(-) is well defined and is finite valued, (iii) the set ©
is closed and convex, (iv) assumption (A) holds. Then w.p.1 for N large enough the
approzimating problem (1.2) has a unique optimal solution Tn and En = Z.

Proof of the above theorem is based on the following proposition. Results of that
proposition (perhaps not exactly in that form) are basically known, but since its proof
is simple we give it for the sake of completeness. Denote by h/ (x,d) the directional
derivative of h(-,w) at the point x in the direction d, and by H(B, C) the Hausdorff
distance between sets B,C' C IR™, that is

(2.4) H(B,C) := max {sup dist(z, B), sup dist(z, C’)} .
zeC reEB

PROPOSITION 2.2. Suppose that the assumptions (i) and (ii), of Theorem 2.1, are
satisfied. Then, for any x,d € IR™, the following holds:

(2.5) f'(x,d) = Ep {h,(z,d)},

(2.6) lim sup ‘f’(x,d) - f;’v(a:,d)‘ =0, w.p.l,
N—o00
lldll<1
(2.7) lim M (afN(x),Bf(a:)) =0, wp.l.
N—o00
Proof. Since f(-) is convex we have that

P C o i
(238) /(o) = inf TR 2T,

and the ratio in the right hand side of (2.8) decreases monotonically as ¢ decreases
to zero, and similarly for the functions h(-,w). It follows then by the Monotone
Convergence Theorem that

, _ . o h(z+td,w) — h(z,w)
(2.9) f'(x,d) = Ep {tlgg ; } ;

and hence the right hand side of (2.5) is well defined and the equation follows.
We have that

N
(2.10) fr(@,d)y = N3 "B (x,d).
j=1

Therefore by the strong form of the Law of Large Numbers it follows from (2.5) that
for any d € R™, fz’v(a:,d) converges to f'(z,d) w.p.1 as N — oo. Consequently for
any countable set D C IR™ we have that the event: “limy_ s f]’\,(x7d) = f'(x,d)
for all d € D” happens w.p.1. Let us take a countable and dense subset D of IR™.
Recall that if a sequence of real valued convex functions converges pointwise on a
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dense subset of IR™, then it converges uniformly on any compact subset of R™ (e.g.,
[18, Theorem 10.8]). Therefore, since the functions f4 (z, ) are convex, it follows from
the pointwise convergence of f]’v(a:, -) on D, that the convergence is uniform on the
unit ball {d : ||d|| < 1}. This proves (2.6).

Recall that if ¢ is a real valued convex function, then ¢'(z,-) coincides with the
support function of its subdifferential dg(xz). Therefore the Hausdorff distance be-
tween the subdifferentials of f and fN, at x, is equal to the supremum on the left
hand side of (2.6) (see, e.g., [12, Theorem V.3.3.8]). Consequently (2.7) follows from
(2.6). 1

Proof of Theorem 2.1 As we discussed earlier, assumption (A) is equivalent
to condition (2.3) which, in turn, implies that f'(Z,d) > ¢ for some ¢ > 0 and all
d € To(z) N S™ 1, where

smli={de R™:|d|| =1}.
By (2.6) it follows that w.p.1 for N large enough
(2.11) fa(@,d) >0, VdeTo(z)nsm™ .

Since the approximating problem is convex, this implies that Z is a sharp (and hence
unique) optimal solution of the approximating problem. This completes the proof. Jj

Let us consider now a situation where the true problem (1.1) may have multiple
optimal solutions, i.e. the set A is not necessarily a singleton. In that case Theorem
2.1 can be generalized, under stronger assumptions, as follows.

THEOREM 2.3. Suppose that: (i) the set Q is finite, (ii) for every w € Q the
function h(-,w) is piecewise linear and convez, (iii) the set © is closed, convex and
polyhedral, (iv) the true problem (1.1) has a non empty bounded set A of optimal
solutions. Then the set A is compact convexr and polyhedral, and w.p.1 for N large
enough the approzimating problem (1.2) has a non empty set Ax of optimal solutions
and Ay is a face of the set A.

Proof of the above theorem is based on the following lemma which may have an
independent interest.

LEMMA 2.4. Suppose that the assumptions (i) and (ii), of Theorem 2.3, are
satisfied. Then the following holds. (a) There exists a finite number of points z1, ..., 2,
(independent of the sample) such that for every x € IR™, there is k € {1,...,7} such
that Of (x) = 0f(zk) and Ofn(x) = Ofn(2k) for any realization of the random sample.
(b) With probability one the subdifferentials 0fx(z) converge to Of (z) uniformly in
x € R™, ie.

(2.12) lim sup H (afN(a:),Bf(x)) —0, wpl.
N—o00 z€IR™

(c) If, in addition, the assumptions (iii) and (iv) are satisfied, then there exists a finite

number of points x1,...,x, (independent of the sample) such that the points 1, ..., xy,

l < q, form the set of extreme points of A and if the following condition holds

(2.13) fn(x) < fN(xj) forany i € {1,...,0}and j € {{ +1,...,q},

then the set An is non empty and forms a face of the set A.
Proof. It follows from the assumptions (i) and (ii) that the expected value
function f(x) is piecewise linear and convex, and hence f(z) can be represented as a
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maximum of a finite number of affine functions ¢;(z), i = 1,...,n. Consequently the
space IR™ can be partitioned into a union of convex polyhedral sets C,...,Cy such
that f(x), restricted to Cj, coincides with ¢;(z), i =1,...,n.

Let us make the following observations. Suppose that f(x) is affine on a convex
polyhedral set C. Then function h(-,w) is also affine on C for every w € Q. Indeed,
suppose for a moment that the set C' has a non empty interior and that for some
w € Q the corresponding function h(-,w) is not affine on C'. Since h(-,w) is piecewise
linear and convex, this can happen only if there is a point Z in the interior of C
such that Oh(%#,w) is not a singleton. By the Moreau-Rockafellar theorem (see [18,
Theorem 23.8]) we have that 0f(z) = 22":1 prOh(Z,wy). Therefore if Oh(Z,w) is not
a singleton, then Jf(#) is also not a singleton. This, however, cannot happen since
f(z) is affine on C. In case the interior of C' is empty, we can restrict the problem
to the linear space generated by C' and to proceed as above. Now, since the sample
average function fy(z) is a linear combination of the functions h(:,w), w € Q, with
nonnegative coefficients, it follows that fN(a:) is also affine on C' for any realization
of the random sample.

Our second observation is the following. Let g(z) be a convex function taking a
constant value over a convex set S. Then Og(z) is constant over the relative interior
of S (e.g., [3, Lemma 1.115]). By adding to g(x) an affine function, we obtain that
the same property holds if g(z) is affine over S.

By the above observations we can take points z; in the relative interior of each
face of the sets C4,...,C,. Note that an extreme point of a set C; is viewed as its
face, of dimension zero, and its relative interior coincides with the considered extreme
point. Since each set C; is polyhedral, it has a finite number of faces, and hence the
total number of such points will be finite. This completes the proof of the assertion
(a). Assertion (b) follows immediately from Proposition 2.2 and assertion (a).

Let us prove (c¢). Since the function f(z) is piecewise linear, the set A is a convex
polyhedral set, and by assumption (iv), A is compact.

Let us observe that by adding a barrier function of the form ¢ (z) := adist(x, ©)
to the objective function f(z), for sufficiently large a > 0, we can reduce the true
problem to the unconstrained problem
(2.14) Min Eph*(z,w),

zeR™

where h*(z,w) := h(z,w)+(z). It is well-known that, for « large enough, the optimal
solutions of problems (1.1) and (2.14) coincide (see, e.g., [2, Proposition 5.4.1]). Since
© is convex, the barrier function, and hence the functions h*(-,w), are also convex.
Moreover, since by the assumption (iii) the set © is polyhedral, the barrier function
is also polyhedral if we take distance with respect to the ¢; norm in IR™. Therefore,
without loss of generality, we can assume in the subsequent analysis that @ = IR™,
i.e. that the problem under consideration is unconstrained.

Let S be a sufficiently large convex compact polyhedral set (e.g. a cube) such
that the set A is included in the interior of the set S. Such set exists since A is
bounded. Consider the sets C} := C; NS, i = 1,...,n. These sets are polyhedral and
compact. We can assume that all these sets are different from each other and that
A coincides with the set C]. Now let {z1,...,2,} be the set of all extreme points
(vertices) of the sets C], ..., Cl, such that, for some ¢ < ¢, points @1, ...,x¢ form the
set of extreme points of A. Since each set C] is polyhedral, there is a finite number of
such points. Suppose that condition (2.13) holds, and let C},, k > 2, be a set from the
above collection such that the intersection of C}, with A is non empty. Since fN(a:) is
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linear on C}, and Cj, is compact, it follows from condition (2.13) that the minimum of
fN (x) over C}, is attained on a non empty subset of the set A. Consider a collection of
such sets C}, that their union forms a neighborhood of the set A. Then fn(z) attains
its minimum over that union on a non empty subset A} of A. By convexity of f ~N ()
it follows then that the set An coincides with A%, and hence is non empty and is a
subset of A. Finally, since fN(a:) is linear on A, it follows that Ay is a face of A. |

We give now two proofs of Theorem 2.3, which give a different insight into the
problem.

Proof of Theorem 2.3 As it was shown in the proof of the above lemma,
by adding a barrier function, we can reduce the problem to an unconstrained one.
Therefore without loss of generality, we can assume that ® = IR™, i.e. that the
problem is unconstrained.

It follows from the assumptions (i) and (ii) that the expected value function f(z)
is piecewise linear and convex. Therefore the set A of optimal solutions of the true
problem is a convex polyhedral, and by (iv), compact set. By the strong Law of Large
Numbers we have that w.p.1 the approximating functions fN(a:) converge pointwise
to f(z). Moreover, by the same arguments as in the proof of Proposition 2.2 we have
that this convergence is uniform on any compact subset of IR™. Let V be a compact
neighborhood of the set A. Then w.p.1 for N large enough fn(x) has a minimizer
over V which is arbitrarily close to A and hence lies in the interior of V. By convexity
this minimizer will be a global minimizer of fn (z). This shows that w.p.1 for N large
enough the set Ay of optimal solutions of the approximating problem is non empty.

Since f(z) is piecewise linear and convex, we have that subdifferentials of f(z) are
convex compact polyhedral sets and, by Lemma 2.4, it follows that the total number
of the extreme points of all subdifferentials df(z) is finite. Moreover, since for any
x & A we have that 0 ¢ 9f(x), it follows that there exists e > 0 such that the distance
from the null vector 0 € IR™ to Of(x) is greater than ¢ for all x ¢ A. Together with
(2.12) this implies that w.p.1 for N large enough, 0 & 8 fx (z) for all 2 ¢ A, and hence
any x € A cannot be an optimal solution of the approximating problem. This shows
that w.p.1 for IV large enough the inclusion Ay C A holds. Let us finally observe
that since f(z), and hence fN(a:), are linear on A, and Ay is the set of minimizers of
fN (z) over A, it follows that Ay is a face of A.

Let us give now the second proof. Let {1, ...,24} be the set of points constructed
in the assertion (c) of Lemma 2.4. Since this set is finite and A is the set of minimizers
of f(x), we have that there exists ¢ > 0 such that f(z;)+c < f(z;) forany i € {1, ..., ¢}
and j € {{+1,...,q}. By the Law of Large Numbers we have that fn (z;) converges
to f(x;), w.p.l as N — oo, for every i € {x1,...,24}. Therefore w.p.1 for N large
enough we have that fy(z;) < f(z;)+¢/2fori € {1,...,(}, and fN(x]') > f(zj)—¢e/2
for j € {¢+1,...,q}, and hence condition (2.13) follows. Together with assertion (c)
of Lemma 2.4 this proves that Ay is non empty and forms a face of A. J

Under the assumptions of the above theorem, the set Ay of optimal solutions of
the approximating problem is convex and polyhedral. The above theorem shows that
w.p.1 for N large enough, every optimal solution of the approximating problem is an
optimal solution of the true problem and every vertex of the set of optimal solutions
of the approximating problem is a vertex of the set of optimal solutions of the true
problem.

In order to see what may happen consider the following example. Let h(z,w) :=
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|z1 — w|, where @ = (z1,22) € R? and w € Q with Q := {-2,-1,1,2} C R.
Suppose that the probability of w being equal to any of the points of €2 is 0.25 and let
O := {z € R? : |z2| < 1}. Then the set A of optimal solutions of the corresponding
true problem is A = {z : |x1| < 1, |z2] < 1}. On the other hand, for large N,
the set of optimal solutions of the approximating problem is given either by the face
{x 21 = —1, |xa] <1} or the face {z : x1y =1, |x2| <1} of the set A.

3. Exponential rate of convergence. In the previous section we showed that,
under appropriate assumptions, the approximating problem (1.2) yields an exact op-
timal solution of the true problem (1.1) w.p.1 for N large enough. Since convergence
w.p.1 implies convergence in probability, it follows that the probability of this event
tends to one as N tends to infinity. That result, however, does not say how large the
sample size N should be in order for the approximating problem to provide such an
exact solution.

Similarly to the example presented in the introduction, it turns out that, in the
case under consideration (i.e. when ) is finite and h(:,w) are piecewise linear), the
convergence of the corresponding probability to one is exponentially fast. A conse-
quence of this, somewhat surprising, fact is that one does not need a very large sample
to find the optimal solution of (1.1), which shows that Monte Carlo approximations
techniques can be an effective approach to solve such problems.

In this section we formalize and prove this result. We begin by considering again
the case where the true problem (1.1) has a unique optimal solution Z. Suppose that
the assumption (A) holds. Recall that S™~! denotes the sphere in IR™, and consider
the Banach space Z := C'(S™™1) of real valued continuous functions defined on S™~!
and equipped with the sup-norm. By restricting a positively homogeneous function
to S™~!, we can identify Z with the space of continuous positively homogeneous
functions on IR™. Denote by Z* the dual space of Z, i.e. the space of continuous
linear functionals defined on Z.

Let B be the o-algebra of Borel sets in Z. Consider the function

(3.1) n(d,w) :=hl (z,d), de R™, weN.

The function 7(-,w) is convex, and hence continuous, and is positively homogeneous.
Therefore it can be considered as an element of Z. Moreover, the mapping w — n(-,w),
from (Q, F) into (Z, B), is measurable and hence n(-,w) can be considered as a random
element of (Z,B). Let IP be the probability measure on Z induced by the measure
P. Note that Epn(d,w) = f'(z,d), and that the measure IP is concentrated on the
subset of Z formed by convex positively homogeneous functions.

Assumption (B) There exists a constant x > 0 such that

In(,w)llz < k, for P- almost every w.

This assumption clearly holds if the set € is finite. Note that
InCwlllz="sup |k, (2,d)].
desSm—1

Therefore assumption (B) means that the subdifferentials Oh(Z,w) are uniformly
bounded for P-almost every w. Notice that this is what happens in two-stage stochas-
tic programming problems with complete recourse if only the right-hand side is ran-
dom, since in that case the dual feasibility set does not depend on w. Complete
recourse implies that the dual feasibility set is also bounded. Therefore, in such case
the subdifferentials Oh(Z,w) are uniformly bounded for all w.
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Let us recall now a few facts about random variables on Banach spaces. Let
7,72,--., be an i.i.d. sequence of random elements of (Z,B), with the common
distribution IP, and define ( := N~} Ejvzl n;. Note that assumption (B) implies
that [, ||z||zIP(dz) < oo. Then, by the strong Law of Large Numbers (for Banach
spaces) we have that {(y — ¢ := [E[n] w.p.1, where the convergence is in the norm
of Z and the expectation operator corresponds to the so-called Bochner integral (see,
e.g., Hiai [10]).

Let

M(z*) := /ez*(z)ZP(dz)7 e Zz",

be the moment generating function of IP (i.e. of n(-,w)). A version of Cramér’s
Theorem for Banach spaces (see, e.g., Deuschel and Stroock [8]) can be stated as
follows. If for any « € [0,00) we have

(3.2) /Ze"“Z“P(dz) < 00,

then a Large Deviations Principle (LDP) holds for {(x}, i.e. for any B-measurable
set [ C Z we have that

(33) ~ inf.cinyry [(2) <liminfy_oo N1 log[P((n € T)]
: <limsupy_,,, N7 log[P((y € )] < —inf,e o) I(2).

Here int(T") and cl(T") denote the interior and the topological closure, respectively, of
the set I' C Z, and I(z) is the large deviations rate function, which is given by

(3.4) I(z) := f,lelg{z*(z) —log M (z*)}.

Notice that (3.2) follows immediately from assumption (B).
For any d € S™~! we can define a functional 2z € Z* as z3(z) := z(d). Let
My(t) := M (tz}). Note that we can also write

M(t) = Bp {4},

so we recognize My(t) as the moment generating function of the (one dimensional)
random variable X := n(d,w). Note also that assumption (B) implies that M4(t) < oo
for all ¢t € IR. Consider the rate function of n(d,w), that is,

(3.5) Li(a) := sup [ta — log M4(t)] .
teR

By taking z* in the right hand side of (3.4) of the form z* := ¢z, we obtain that, for
any z € 7,

(3.6) I(z) > sup sup[tz(d) —log My(t)] = sup I4(z(d)).
desm—1teR desm—1

Let Ax be the set of optimal solutions of the approximating problem (1.2), and
consider the following event

(3.7) En :={ the set Ay is non empty and Ay = {z} }.
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The above event £y means that the approximating problem possesses unique optimal
solution & and that £ = z. Denote by £5, the complement of the event £x. Note
that the probability P(En), of the event En, is equal to 1 — P(£5). The following
theorem shows that the probability of the event €5 approaches zero exponentially
fast.

THEOREM 3.1. Suppose that the assumptions of Theorem 2.1 are satisfied, and
that assumption (B) holds. Then there exists a constant 3 > 0 such that

(3.8) limsup%log[P(E}:v)] < -3

N—o0

Proof. Consider (y(-) := N1 Ej\;l n(,wl) = f]’v(a_:, -), and the set

(3.9) F .= {Z €Z: inf z(d) < 0}.
deTo(z)NS™—1

Since the topology on Z is that of uniform convergence, it follows that the min-function

o(z) = inf z(d)

deTo(T)NS™—1

is continuous on the space Z, and hence the set F' is closed in Z. By the definition
of the set F', we have that if (y & F, then {x(d) > 0 for all d € Te(z) N S™ L.
Consequently, in that case, &y = T is the unique optimal solution of the approximating
problem. Therefore we have that

P(Ex) < P(Cn € F).

It follows then by the last inequality of (3.3) that we only need to show that the
constant

(3.10) B = Zlgg 1(z)
is positive.

Consider a fixed direction d € To(z)NS™~!, and let X denote the corresponding
random variable 1(d,w). Let A(t) := log My(t) = logE[e!X] be the logarithmic
moment generating function of X. By the Dominated Convergence Theorem we have
that Mg(t) is differentiable for all ¢ € IR and M)(t) = E[Xe!X]. It follows that
A'(t) = E[XetX]/E[e!X] and hence, since | X| < & by assumption (B),

! < <K .
A < Ee~] <k, ViER
Similarly, we have

_ E[XZetX] B

31 VO = | T

(A1) < 82— (W) < &2, Vie R

By the Mean Value Theorem, (3.11) implies that, for all ¢, s € IR,

(3.12) IN(t) — A'(s)] < K2t —s].
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Since the function A(+) is convex, it follows from a result in convex analysis (e.g., [12,
Theorem X.4.2.2]) that the conjugate function Iy = A* is strongly convex modulus
1/k2, that is,

1
Ii(aa) > Ia(on) + Iy(an) (o — ar) + 2—R2|0¢2 —ayf?

for all a, a2 € IR. Since at aq := IE[X] = f'(z,d) we have that I4(aq) = I}(aq) =0,
it follows that

(3.13) Li(a) > T|a—c‘ud|2, Va € R.

By the assumption (A) we have that f'(Z,d) > ¢ for all d € Te(F) N S™ !, and
hence we obtain that

02

(3.14) 1) > =,

Vde Te(z)nS™ L.

By the definition of the set F' we have that if z € F, then there exists d € Tg(z)NS™ !
such that z(d) < 0. It follows then by (3.6) and (3.14) that I(z) > ¢*/(2x?) for any
z € F. Consequently we obtain

02

which completes the proof. |

The inequality (3.8) means that the probability that the approximating problem
(1.2) has a unique optimal solution which coincides with the optimal solution of the
true problem (1.1), approaches one exponentially fast. The inequality (3.15) also gives
an estimate of the corresponding exponential constant.

Consider now a situation where the true problem (1.1) may have multiple solu-
tions. Asin the case of convergence w.p.1 presented in section 2, stronger assumptions
are needed. Let Ay be the set of optimal solutions of the approximating problem (1.2),
and consider the following event

(3.16) My :={ theset Ay is non empty and forms a face of the set 4 }.

THEOREM 3.2. Suppose that the assumptions of Theorem 2.3 hold. Then there
exists a constant 3 > 0 such that

(3.17) limsup%log[P(M?v)] < -

N—o00

Proof. It is possible to prove this theorem by using arguments of Theorem 3.1
combined with assertions (a) and (b) of Lemma 2.4. The proof becomes even simpler
if we use assertion (c) of Lemma 2.4. Let {1, ..., 24} be the set of points constructed
in the assertion (c) of Lemma 2.4. Recall that {zi,...,z,} forms the set of extreme
points of A, and that f(z;) < f(z;) for any i € {1,...,¢} and j € {{+1,...,q}. Note
that, by condition (2.13), we have that

(3.18) MS, C {Hi € {1,...0},3j € {{+1,...q} such that fx(z;) > fN(xj)}.
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Moreover, there is ¢ > 0 such that the event in the right hand side of (3.18 ) is
included in the union of the events A; := {fN(xl) > f(x;) -I-E}, i =1,..,0 and

Aj = {fN(xj) < flzj) - g}, j=0+1,..q It follows that

P(M%) < zZ:P (fN(l“i) > f(xs) +€) + z’]: Vi (fN(l“j) < flzj) —5) .

i=1 j=0+1

Therefore, in order to prove (3.17) it suffices to show that, for any i € {1,...,(},
there exists 3; > 0 such that

limsup%log [P (fN(a:,) > f(x;) +6)] < =B

N—o0

and, similarly, for any j € {¢+ 1,...,q}, there exists 3; > 0 such that

. 1 2

limsup < log [P (fv(z) < fw) —<)| < —8;.
N—00

Both assertions follow immediately from the Large Deviations Principle (in a unidi-

mensional setting), since E[fn(z;)] = f(z;), i = 1,...,q. This completes the proof

by taking 3 := min;e(1, .. q) Gi- 1

4. Examples . In this section we present some examples to illustrate the ideas
discussed in sections 2 and 3.

4.1. The median problem, revisited. We begin by analyzing in more detail
the median problem (1.3) discussed in the introduction. Let Y7,...,Y;, be i.i.d. real
valued random variables, each one taking values —1, 0 and 1 with equal probabilities
1/3. Let &y denote an optimal solution of the corresponding approximating problem
(1.4). As it was shown in the introduction, #y coincides with the true optimal solution
Z = 0 with very high probability, even for small values of N compared to the size of
the sample space.

We can approach this problem from the point of view of the Large Deviations
theory. Let X be a binomial random variable B(N,p), with p = 1/3. As it was
discussed in the introduction, the probability of the event &y = 0 is at least 1 —
2P(X > N/2) (more precisely, when N is even this probability is exactly 1 —2P(X >
N/2) + (N]\/fz)pN7 the last term becoming negligible as N grows). By Cramér’s Large
Deviations theorem we have that (see, e.g., [7, Thm. 2.2.3])

5)]
%)] S — inszl/Q I(Z)

For a binomial distribution B(N, p), the Large Deviations rate function I(z) is given
by

—inf,o1 /0 I(2) <liminfy o 4 log [P (% >
< limsupy_, . + log [P (%X >

(4.1) I(2) = zlog {%} “log {1 - %

Since I(+) is continuous, it follows that

1 X _1
lim —log [P(2 >2)| == inf I(z) = —I(0.
NgnooNog|: <N—2>} nf, 1) 05),
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the last equality arising from the fact that the function I(-) is increasing on the interval
[p,00). From (4.1) we obtain that

-1 _ 1\1/2

For p = 1/3 we have I(0.5) = log (%5) = 0.0589, and hence the probability

P(X/N > 1/2) converges to zero at the exponential rate e=%-058N_ Note that in the
considered (one dimensional) case the upper bound of Cramér’s theorem holds for any
N (and not just in the limiting sense). It follows that the probability that the sample
estimate #x is equal to the true optimal solution is greater than (1 — 2e~0-0589Nym
which for large N is approximately equal to 1 — 2me~20589N  Consequently the
probability that the sample estimate Zy is not equal to the true optimal solution
decreases exponentially fast with the sample size IV and increases linearly with the
number of variables m. For example, for N = 100 and m = 50 we have, by the
above estimate, that the probability of the sample estimate Zy being equal to the
true optimal solution is at least (1 — 2e5-89)59 = 0.76. This can be compared with
the exact probability of that event, which is about 0.96. This is quite typical for
the large deviations estimates. For finite and not too “large” N, the large deviations
estimates give poor approximations of the corresponding probabilities. What the
Large Deviations theory provides, of course, is the exponential rate at which the
corresponding probabilities converge to zero.

Suppose now that each variable Y; has the following discrete distribution: it can
take values -1, -0.5, 0.5 and 1 with equal probabilities 0.25. In that case the set of
optimal solutions of the true problem (1.3) is not a singleton, and is given by the cube
{z : =0.5 < x; < 0.5}. We have that the probability that the sample estimate Z;n
belongs to the interval [-0.5,0.5] is at least 1 —2P(X > N/2), where X ~ B(N,0.25).
Again we obtain that the probability that #y is an exact optimal solution of the true
problem is approaching one exponentially fast with increasing N.

Now let m = 1 and suppose that the distribution of Y is discrete with possible
values given by an odd number r = 2¢ 4+ 1 of points equally spaced on the interval
[—1, 1] with equal probabilities of 1/r. For “large” r we can view this as a discretization
of the uniform distribution on the interval [—1,1]. Then by the same arguments as
above we obtain that the probability that 5 = 0 is at least 1 —2P(X > N/2), where
X ~ B(N,p) with p={/r.

An estimate of how fast N grows as a function of the number of variables m and
the number of discretization points r can be obtained using again Large Deviations
techniques. Suppose that m > 1 and that each random variable Y;, ¢ = 1,...,m, has
a discrete distribution as above. From (4.2) we have that in this case the constant
B :=1(0.5) is given by

1 2
4. = —l S
(4. 5= 5108 | 5|
and hence
P(iny =0)> (1 —2eAN)m =1 - 2me PN,

Consequently, for a fixed ¢ > 0, a (conservative) estimate of the sample size N needed
to obtain P(Zxy = 0) > 1 —¢ is given by

N = 3 tlog(2m/e) = (2r? — 1) log(2m/<),
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so we see that N grows quadratically with the number of discretization points and
logarithmically with the number of random variables.

4.2. A two-stage stochatic programming problem. We present now some
numerical results obtained for the capacity expansion problem CEP1 described in [11],
which can be modeled as a two-stage stochastic programming problem with complete
recourse. The problem has 8 decision variables with 5 constraints (plus bound con-
straints) on the first stage, and 15 decision variables with 7 constraints (plus lower
bound constraints) on the second stage. The random variables, which correspond to
demand in the model, appear only on the right hand side of the second stage. There
are three independent and identically distributed random variables, each taking six
possible values with equal probability, so the sample space has size 63 = 216.

For the sake of verification, we initially solved the problem exactly by solving
the equivalent deterministic LP, and obtained the true minimizer . Notice that this
optimal solution is unique. We then solved the corresponding Monte Carlo approxi-
mations, with sample sizes N = 2,5, 10, 15, 20, 35, 50. For each sample size, we solved
the approximating problem 400 times, and counted how many times the optimal so-
lution Z, of the approximating problem, coincided with the true solution &. The
corresponding proportion p is then an estimate of the probability P(Zy = Z). Since
the generated replications are independent, it follows that an unbiased estimator of
the variance of p is given by p(1—p)/399. From this value we obtain a 95% confidence
interval whose half-width is denoted by A. The results are displayed in Table 1.

N[ 7 | A
2 | 0.463 | .049
5 | 0.715 | .044
10 | 0.793 | .040
15 | 0.835 | .036

20 | 0.905 | .029
35 1 0.958 | .020
50 | 0.975 | .015

TABLE 1
Estimated probabilities P(Zn = T)

Notice again the exponential feature of the numbers on the table, i.e how fast p
gets close to one. It is interesting to notice that convergence in the CEP1 model is even
faster than in the median problem, even though the median problem is much more
structured (in particular, the median problem is separable) with a smaller sample
space (27 points for three random variables, as opposed to 216 points in the CEP1
model). For instance, in the median problem a sample size of 20 gives the true optimal
solution with probability 0.544, whereas in the CEP1 problem that probability is
approximately 0.9. These results corroborate the ideas presented in the previous
sections, showing that convergence can be very fast if there is a sharp minimum such
as in the case of the CEP1 model. The results also suggest that the separability
inherent to the median problem was not a major factor to the speed of convergence,
which encourages us to think that the numerical results reported here can be obtained
in more complex problems. Of course, more research is needed to draw any definite
conclusions.
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5. Conclusions. We presented in this paper some results concerning conver-
gence of Monte Carlo simulation-based approximations for a class of stochastic pro-
gramming problems. As pointed out in the introduction, the usual approach to con-
vergence analysis found in the literature consists in showing that optimal solutions
of approximating problems converge, with probability one, to optimal solutions of
the original problem, or in obtaining bounds for the rate of convergence via Central
Limit Theorem or Large Deviations type asymptotics. We show, under some specific
assumptions (in particular under the assumption that the sample space is finite ) that
the approximating problem provides an ezact optimal solution w.p.1 for sample size
N large enough and, moreover, that the probability of such an event approaches one
at an exponential rate. This suggests that, in such cases, Monte Carlo simulation
based algorithms could be efficient, since one may not need a large sample to find an
exact optimal solution.

The median problem presented in section 4 illustrates that point. For a problem
with 32°0 scenarios, an approximating problem which employs only N = 120 samples,
of a vector of dimension m = 200, yields the exact optimal solution approximately
95% of the time. Even more impressively, it is possible to show by the same type of
calculations that N = 150 samples are enough to obtain the exact optimal solution
with probability of about 95% for m = 1000 random variables, i.e. for 31990 scenarios.
Estimates of the sample size N, which were obtained in section 4 by the large devia-
tions approximations, give slightly bigger values of N (for example, they give N = 180
instead of N = 150 for m = 1000). In either case the required sample size grows as
a logarithm of the number m of random variables in that example. Of course, one
must take into account the fact that this is a very structured problem, and in a more
general case one may not get such drastically fast convergence; in fact, the flatter
the objective function is around the optimal solution, the slower the convergence will
be. Nevertheless, the CEP1 model studied in section 4 seems to indicate that fast
convergence is obtained in more general problems, even in the absence of separability.

One should, however, be cautious about these results, especially with respect to
the following aspect. The fact that the convergence is exponential does not necessarily
imply that a small sample suffices. Indeed, the constant § in the corresponding
exponential rate e ?N can be so small that one would need a large sample size N in
order to achieve a reasonable precision. The lower bound (3.15) gives us an idea about
the exponential constant 3. In the median example, with r discretization points for
each random variable Y;, i = 1, ..., m, we have that we can take ¢ = 1/r and k = 1, if
we use {; norm in the space IR™. This gives us the lower bound 3 > 1/(2r?), which
can be compared with the exact value of 3 = 1 log[r?/(r* — 1)] 2 1/(2r? — 1). Note
that the estimate 3 > 1/(2r?) does not depend on the number m of random variables.
This happens since any multiplicative constant before e=?" can be absorbed into the
exponential rate as N tends to infinity.

Another remark concerns the assumption of Monte Carlo sampling in our analysis.
By doing so, we were able to exploit properties of i.i.d. samples, which we used to
derive our results. In practice, however, one might think of implementing wvariance
reduction techniques in order to reduce even more the needed sample sizes. The
incorporation of such techniques into stochastic optimization algorithms has been
shown to be very effective in practice (see, e.g., [1, 5, 21]). Research on specific
applications of variance reduction techniques to the type of problems discussed in
this paper is underway.
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