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Abstract� In this paper we discuss Monte Carlo simulation based approximations of a stochastic
programming problem� We show that if the corresponding random functions are convex piecewise
smooth and the distribution is discrete� then �under mild additional assumptions� an optimal solution
of the approximating problem provides an exact optimal solution of the true problem with probability
one for su�ciently large sample size� Moreover� by using theory of Large Deviations� we show that
the probability of such an event approaches one exponentially fast with increase of the sample size�
In particular� this happens in the case of two stage stochastic programming with recourse if the
corresponding distributions are discrete� The obtained results suggest that� in such cases� Monte
Carlo simulation based methods could be very e�cient� We present some numerical examples to
illustrate the involved ideas�
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�� Introduction� We discuss in this paper Monte Carlo approximations of stochas�
tic programming problems of the form

Min
x��

ff�x� �� IEPh�x� ��g ������

where P is a probability measure on a sample space ���F�� 	 is a subset of IRm and
h � IRm � � � IR is a real valued function� We refer to the above problem as the

true� optimization problem� By generating an independent identically distributed
�i�i�d�� random sample ��� ���� �N in ���F�� according to the distribution P � one can
construct the corresponding approximating program

Min
x��

��
� �fN �x� �� N��

NX
j��

h�x� �j�

��
� ����
�

An optimal solution �xN of ���
� provides an approximation �an estimator� of an
optimal solution of the true problem ������

There are numerous publications where various aspects of convergence properties
of �xN are discussed� Suppose that the true problem has a non empty set A of optimal
solutions� It is possible to show that� under mild regularity conditions� the distance
dist��xN � A�� from �xN to the set A� converges with probability one �w�p��� to zero
as N � �� There is a vast literature in Statistics dealing with such consistency
properties of empirical estimators� In the context of stochastic programming we can
mention recent works �������������� where this problem is approached from the point
of view of the epiconvergence theory�
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It is also possible to give various estimates of the rate of convergence of �xN to A�
Central Limit Theorem type results give such estimates of order Op�N����� for the
distance dist��xN � A� �e�g�� ����� �
���� and the Large Deviations theory shows that one
may expect that� for any given � � �� the probability of the event dist��xN � A� � �
approaches zero exponentially fast as N � � �see� e�g�� ���������������� These are
general results and it seems that they describe the situation quite accurately in case
the involved distributions are continuous� However� it appears that the asymptotics
are completely di�erent if the distributions are discrete� We show that in such cases�
under rather natural assumptions� the approximating problem ���
� provides an exact
optimal solution of the true problem ����� for N large enough� That is� �xN � A w�p��
for su�ciently large N � Even more surprisingly we show that the probability of the
event f�xN �� Ag tends to zero exponentially fast as N � �� That is what happens
in the case of two stage stochastic programming with recourse if the corresponding
distributions are discrete� This indicates that� in such cases� Monte Carlo simulation
based methods could be very e�cient�

In order to motivate the discussion� let us consider the following simple example�
Let Y�� ���� Ym be independent identically distributed real valued random variables�
Consider the following optimization problem

Min
x�IRm

�
f�x� �� IE

�
mX
i��

jYi � xij

�	
������

This problem is a particular case of two stage stochastic programming with simple
recourse� Clearly the objective function f�x� can be written in the form f�x� ��Pm

i�� fi�xi�� where fi�xi� �� IEfjYi�xijg� Therefore the above optimization problem
is separable� It is well known that a minimizer of fi��� is given by the median of
the distribution of Yi� Suppose that the distribution of the random variables Yi is
symmetrical around zero� Then �x �� ��� ���� �� is an optimal solution of ������

Now let Y �� ���� Y N be an i�i�d� random sample of N realizations of the random
vector Y � �Y�� ���� Ym�� Consider the following sample average approximation of �����

Min
x�IRm

��
� �fN �x� �� N��

NX
j��

h�x� Y j�

��
� ������

where h�x� y� ��
Pm

i�� jyi � xij� with x� y � IRm� An optimal solution of the above
approximating problem ����� is given by �xN �� ��x�N � ���� �xmN �� where �xiN is the
sample median of Y �

i � ���� Y
N
i �

Suppose for the moment that m � �� i�e� we are minimizing IEfjY � xjg over
x � IR� We assume that the distribution of Y is symmetrical around zero and hence
�x � � is an optimal solution of the true problem� Suppose now that the distribution
of Y is continuous with density function g�y�� Then it is well known �e�g�� ���� that
the corresponding sample median �xN is asymptotically normal� That is� N�����xN �
�x� converges in distribution to normal with zero mean and variance �
g��x����� For
example� if Y is uniformly distributed on the interval ���� ��� then N�����xN � �x� �
N��� ��� This means that for N � ��� we may expect �xN to be in the �so�called
con�dence� interval ����
� ��
� with probability of about ���� Now for m � � we
have that the events �xiN � ����
� ��
�� i � �� ����m� are independent �this is because
we assume that Yi are independent�� Therefore the probability that each sample
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median �xiN will be inside the interval ����
� ��
� is about ����m� For example� for
m � ��� this probability becomes ������ � ������ If we want that probability to be
about ���� we have to increase the interval to ������ ����� which constitutes ��� of
the range of the random variable Y � In other words for that sample size and with
m � �� our sample estimate will be not accurate�

The situation becomes quite di�erent if we assume that Y has a discrete distribu�
tion� Suppose now that Y can take values ��� � and � with equal probabilities ����
In that case the true problem has unique optimal solution �x � �� The corresponding
sample estimate �xN can be equal to ��� � or �� We have that the event f�xN � �g
happens if more than half of the sample points are equal to one� Probability of that is
given by P �X � N�
�� where X has a binomial distribution B�N� ����� If exactly half
of the sample points are equal to one� then the sample estimate can be any number
in the interval ��� ��� Similar conclusions hold for the event f�xN � ��g� Therefore
the probability that �xN � � is at least �� 
P �X � N�
�� For N � ���� this proba�
bility is �����
� Therefore the probability that the sample estimate �xN � given by an
optimal solution of the approximating problem ����� with the sample size N � ���
and the number of random variables m � ��� is at least �����
�� � ����� With the
sample size N � �
� and the number of random variables m � 
�� this probability�
of �xN � �� is about ��������� � ����� Note that the number of scenarios for that
problem is ����� which is not small by any standard� And yet with sample size of only
�
� the approximating problem produces an estimator which is exactly equal to the
true optimal solution with probability of ����

The above problem� although simple� illustrates the phenomenon of exponential
convergence referred to in the title of the paper� In the above example the correspond�
ing probabilities can be calculated in a closed form� but in the general case of course
we cannot expect to do so� The purpose of this paper is to extend this discussion to
a class of stochastic programming problems satisfying some assumptions� Our goal is
to exhibit some qualitative �rather than quantitative� results� We do not propose an
algorithm� but rather show asymptotic properties of Monte Carlo simulation based
methods�

The paper is organized as follows� In section 
 we show almost sure �w�p���
occurrence of the event f�xN � Ag �recall that A is the set of optimal solutions of
the 
true� problem�� In section � we take a step further and� using techniques from
Large Deviations theory� we show that the probability of that event approaches one
exponentially fast� In section � we discuss the median problem in more detail� and
present some numerical results for a two�stage stochastic programming problem with
complete recourse� Finally� section � presents some conclusions�

�� Almost sure convergence� Consider the 
true� stochastic programming
problem ������ For the sake of simplicity we assume that the corresponding expected
value function f�x� �� IEPh�x� �� exists �and in particular is �nite valued� for all
x � IRm� For example� if the probability measure P has a �nite support �i�e� the
distribution P is discrete and can take a �nite number of di�erent values�� and hence
the space � can be taken to be �nite� say � �� f��� ���� �Kg� and P is given by the
probabilities Pf� � �kg � pk� k � �� ����K� we have

IEPh�x� �� �

KX
k��

pkh�x� �k���
���

We assume that the feasible set 	 is closed and convex� and that for every � � �� the
function h��� �� is convex� This implies that the expected value function f��� is also
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convex� and hence the 
true� problem ����� is convex� Also if P is discrete and the
functions h��� �k�� k � �� ����K� are piecewise linear and convex� then f��� is piecewise
linear and convex� That is what happens in two stage stochastic programming with
a �nite number of scenarios�

Let ��� ���� �N be an i�i�d� random sample in ���F�� generated according to the
distribution P � and consider the corresponding approximating program ���
�� Note
that� since the functions h��� �j� are convex� the approximating �sample average�

function �fN ��� is also convex� and hence the approximating program ���
� is convex�
We show in this section that� under some natural assumptions which hold for

instance in the case of two stage stochastic programming with a �nite number of
scenarios� with probability one �w�p��� for N large enough any optimal solution of
the approximating problem ���
� belongs to the set of optimal solutions of the true
problem ������ That is� problem ���
� yields an exact optimal solution �w�p��� when
N is su�ciently large�

The statement� 
w�p�� for N large enough� should be understood in the sense
that for P �almost every � � � there exists N� � N����� such that for any N � N�

the corresponding statement holds� The number N� is a function of �� i�e� depends
on the random sample� and therefore in itself is random� Note also that� since con�
vergence w�p�� implies convergence in probability� the above statement implies that
the probability of the corresponding event to happen tends to one as the sample size
N tends to in�nity�

We denote by A the set of optimal solutions of the true problem ������ and by
f ��x� d� the directional derivative of f at x in the direction d� Note that the set A
is convex and closed� and since f is a real valued convex function� the directional
derivative f ��x� d� exists� for all x and d� and is convex in d� We discuss initially the
case when A is a singleton� later we will consider the general setting�

Assumption �A� The true problem ����� possesses unique optimal solution �x�
i�e� A � f�xg� and there exists a positive constant c such that

f�x� � f��x� � ckx� �xk� 	x � 	��
�
�

Of course condition �
�
�� in itself� implies that �x is the unique optimal solution of
������ In the approximation theory optimal solutions satisfying �
�
� are called sharp
minima� It is not di�cult to show� since problem ����� is convex� that assumption
�A� holds i�

f ���x� d� � �� 	 d � T���x� n f�g��
���

where T���x� denotes the tangent cone to 	 at �x� In particular� if f�x� is di�eren�
tiable at �x� then assumption �A� �or equivalently �
���� holds i� �rf��x� belongs to
the interior of the normal cone to 	 at �x� Note� that since f ���x� �� is a positively homo�
geneous convex real valued �and hence continuous� function� it follows from �
��� that
f ���x� d� � �kdk for some � � � and all d � T���x�� We refer to a recent paper ���� and
references therein� for a discussion of that condition and some of its generalizations�

If the function f�x� is piecewise linear and the set 	 is polyhedral� then problem
����� can be formulated as a linear programming problem� and the above assumption
�A� always holds provided �x is the unique optimal solution of ������ This happens�
for example� in the case of a two stage linear stochastic programming problem with
a �nite number of scenarios provided it has a unique optimal solution� Note that
assumption �A� is not restricted to such situations only� In fact� in some of our
numerical experiments sharp minima �i�e� assumption �A�� happened quite often in
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the case of continuous �normal� distributions� Furthermore� because the problem is
assumed to be convex� sharp minima is equivalent to �rst order su�cient conditions�
Under such conditions� �rst order �i�e� linear� growth �
�
� of f�x� holds globally� i�e�
for all x � 	�

Theorem ���� Suppose that� �i� for every � � � the function h��� �� is convex�
�ii� the expected value function f��� is well de�ned and is �nite valued� �iii� the set 	
is closed and convex� �iv� assumption �A� holds� Then w�p�� for N large enough the
approximating problem ���
� has a unique optimal solution �xN and �xN � �x�

Proof of the above theorem is based on the following proposition� Results of that
proposition �perhaps not exactly in that form� are basically known� but since its proof
is simple we give it for the sake of completeness� Denote by h���x� d� the directional
derivative of h��� �� at the point x in the direction d� and by H�B�C� the Hausdor�
distance between sets B�C 
 IRm� that is

H�B�C� �� max



sup
x�C

dist�x�B�� sup
x�B

dist�x�C�

�
��
���

Proposition ���� Suppose that the assumptions �i� and �ii�� of Theorem 
��� are
satis�ed� Then� for any x� d � IRm� the following holds�

f ��x� d� � IEP fh
�
��x� d�g ��
���

lim
N��

sup
kdk��

���f ��x� d�� �f �N �x� d�
��� � �� w�p����
���

lim
N��

H


� �fN�x�� �f�x�

�
� �� w�p����
���

Proof� Since f��� is convex we have that

f ��x� d� � inf
t��

f�x � td�� f�x�

t
��
���

and the ratio in the right hand side of �
��� decreases monotonically as t decreases
to zero� and similarly for the functions h��� ��� It follows then by the Monotone
Convergence Theorem that

f ��x� d� � IEP



inf
t��

h�x � td� ��� h�x� ��

t

�
��
���

and hence the right hand side of �
��� is well de�ned and the equation follows�
We have that

�f �N �x� d� � N��
NX
j��

h��j �x� d���
����

Therefore by the strong form of the Law of Large Numbers it follows from �
��� that

for any d � IRm� �f �N �x� d� converges to f ��x� d� w�p�� as N � �� Consequently for

any countable set D 
 IRm we have that the event� 
limN�� �f �N �x� d� � f ��x� d�
for all d � D� happens w�p��� Let us take a countable and dense subset D of IRm�
Recall that if a sequence of real valued convex functions converges pointwise on a
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dense subset of IRm� then it converges uniformly on any compact subset of IRm �e�g��

���� Theorem ������� Therefore� since the functions �f �N�x� �� are convex� it follows from

the pointwise convergence of �f �N �x� �� on D� that the convergence is uniform on the
unit ball fd � kdk � �g� This proves �
����

Recall that if g is a real valued convex function� then g��x� �� coincides with the
support function of its subdi�erential �g�x�� Therefore the Hausdor� distance be�

tween the subdi�erentials of f and �fN � at x� is equal to the supremum on the left
hand side of �
��� �see� e�g�� ��
� Theorem V��������� Consequently �
��� follows from
�
����

Proof of Theorem ��� As we discussed earlier� assumption �A� is equivalent
to condition �
��� which� in turn� implies that f ���x� d� � � for some � � � and all
d � T���x� � Sm��� where

Sm�� �� fd � IRm � kdk � �g�

By �
��� it follows that w�p�� for N large enough

�f �N��x� d� � �� 	 d � T���x� � Sm����
����

Since the approximating problem is convex� this implies that �x is a sharp �and hence
unique� optimal solution of the approximating problem� This completes the proof�

Let us consider now a situation where the true problem ����� may have multiple
optimal solutions� i�e� the set A is not necessarily a singleton� In that case Theorem

�� can be generalized� under stronger assumptions� as follows�

Theorem ���� Suppose that� �i� the set � is �nite� �ii� for every � � � the
function h��� �� is piecewise linear and convex� �iii� the set 	 is closed� convex and
polyhedral� �iv� the true problem ����� has a non empty bounded set A of optimal
solutions� Then the set A is compact convex and polyhedral� and w�p�� for N large
enough the approximating problem ���
� has a non empty set AN of optimal solutions
and AN is a face of the set A�

Proof of the above theorem is based on the following lemma which may have an
independent interest�

Lemma ���� Suppose that the assumptions �i� and �ii�� of Theorem 
��� are
satis�ed� Then the following holds� �a� There exists a �nite number of points z�� ���� zr
�independent of the sample� such that for every x � IRm� there is k � f�� ���� rg such

that �f�x� � �f�zk� and � �fN�x� � � �fN�zk� for any realization of the random sample�

�b� With probability one the subdi�erentials � �fN�x� converge to �f�x� uniformly in
x � IRm� i�e�

lim
N��

sup
x�IRm

H


� �fN �x�� �f�x�

�
� �� w�p����
��
�

�c� If� in addition� the assumptions �iii� and �iv� are satis�ed� then there exists a �nite
number of points x�� ���� xq �independent of the sample� such that the points x�� ���� x��
� � q� form the set of extreme points of A and if the following condition holds

�fN�xi� � �fN�xj� for any i � f�� ���� �g and j � f�� �� ���� qg��
����

then the set AN is non empty and forms a face of the set A�
Proof� It follows from the assumptions �i� and �ii� that the expected value

function f�x� is piecewise linear and convex� and hence f�x� can be represented as a
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maximum of a �nite number of a�ne functions �i�x�� i � �� ���� n� Consequently the
space IRm can be partitioned into a union of convex polyhedral sets C�� ���� Cn such
that f�x�� restricted to Ci� coincides with �i�x�� i � �� ���� n�

Let us make the following observations� Suppose that f�x� is a�ne on a convex
polyhedral set C� Then function h��� �� is also a�ne on C for every � � �� Indeed�
suppose for a moment that the set C has a non empty interior and that for some
� � � the corresponding function h��� �� is not a�ne on C� Since h��� �� is piecewise
linear and convex� this can happen only if there is a point �x in the interior of C
such that �h��x� �� is not a singleton� By the Moreau�Rockafellar theorem �see ����

Theorem 
����� we have that �f��x� �
PK

k�� pk�h��x� �k�� Therefore if �h��x� �� is not
a singleton� then �f��x� is also not a singleton� This� however� cannot happen since
f�x� is a�ne on C� In case the interior of C is empty� we can restrict the problem
to the linear space generated by C and to proceed as above� Now� since the sample
average function �fN �x� is a linear combination of the functions h��� ��� � � �� with

nonnegative coe�cients� it follows that �fN�x� is also a�ne on C for any realization
of the random sample�

Our second observation is the following� Let g�x� be a convex function taking a
constant value over a convex set S� Then �g�x� is constant over the relative interior
of S �e�g�� ��� Lemma �������� By adding to g�x� an a�ne function� we obtain that
the same property holds if g�x� is a�ne over S�

By the above observations we can take points zi in the relative interior of each
face of the sets C�� ���� Cn� Note that an extreme point of a set Ci is viewed as its
face� of dimension zero� and its relative interior coincides with the considered extreme
point� Since each set Ci is polyhedral� it has a �nite number of faces� and hence the
total number of such points will be �nite� This completes the proof of the assertion
�a�� Assertion �b� follows immediately from Proposition 
�
 and assertion �a��

Let us prove �c�� Since the function f�x� is piecewise linear� the set A is a convex
polyhedral set� and by assumption �iv�� A is compact�

Let us observe that by adding a barrier function of the form 	�x� �� 
 dist�x�	�
to the objective function f�x�� for su�ciently large 
 � �� we can reduce the true
problem to the unconstrained problem

Min
x�IRm

IEPh
��x� ����
����

where h��x� �� �� h�x� ���	�x�� It is well�known that� for 
 large enough� the optimal
solutions of problems ����� and �
���� coincide �see� e�g�� �
� Proposition �������� Since
	 is convex� the barrier function� and hence the functions h���� ��� are also convex�
Moreover� since by the assumption �iii� the set 	 is polyhedral� the barrier function
is also polyhedral if we take distance with respect to the �� norm in IRm� Therefore�
without loss of generality� we can assume in the subsequent analysis that 	 � IRm�
i�e� that the problem under consideration is unconstrained�

Let S be a su�ciently large convex compact polyhedral set �e�g� a cube� such
that the set A is included in the interior of the set S� Such set exists since A is
bounded� Consider the sets C �i �� Ci � S� i � �� ���� n� These sets are polyhedral and
compact� We can assume that all these sets are di�erent from each other and that
A coincides with the set C ��� Now let fx�� ���� xqg be the set of all extreme points
�vertices� of the sets C ��� ���� C

�
n such that� for some � � q� points x�� ���� x� form the

set of extreme points of A� Since each set C �i is polyhedral� there is a �nite number of
such points� Suppose that condition �
���� holds� and let C �k� k � 
� be a set from the

above collection such that the intersection of C �k with A is non empty� Since �fN�x� is
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linear on C �k and C �k is compact� it follows from condition �
���� that the minimum of
�fN �x� over C �k is attained on a non empty subset of the set A� Consider a collection of

such sets C �k that their union forms a neighborhood of the set A� Then �fN �x� attains

its minimum over that union on a non empty subset A�N of A� By convexity of �fN �x�
it follows then that the set AN coincides with A�N � and hence is non empty and is a

subset of A� Finally� since �fN �x� is linear on A� it follows that AN is a face of A�

We give now two proofs of Theorem 
��� which give a di�erent insight into the
problem�

Proof of Theorem ��� As it was shown in the proof of the above lemma�
by adding a barrier function� we can reduce the problem to an unconstrained one�
Therefore without loss of generality� we can assume that 	 � IRm� i�e� that the
problem is unconstrained�

It follows from the assumptions �i� and �ii� that the expected value function f�x�
is piecewise linear and convex� Therefore the set A of optimal solutions of the true
problem is a convex polyhedral� and by �iv�� compact set� By the strong Law of Large

Numbers we have that w�p�� the approximating functions �fN �x� converge pointwise
to f�x�� Moreover� by the same arguments as in the proof of Proposition 
�
 we have
that this convergence is uniform on any compact subset of IRm� Let V be a compact
neighborhood of the set A� Then w�p�� for N large enough �fN �x� has a minimizer
over V which is arbitrarily close to A and hence lies in the interior of V � By convexity
this minimizer will be a global minimizer of �fN�x�� This shows that w�p�� for N large
enough the set AN of optimal solutions of the approximating problem is non empty�

Since f�x� is piecewise linear and convex� we have that subdi�erentials of f�x� are
convex compact polyhedral sets and� by Lemma 
��� it follows that the total number
of the extreme points of all subdi�erentials �f�x� is �nite� Moreover� since for any
x �� A we have that � �� �f�x�� it follows that there exists � � � such that the distance
from the null vector � � IRm to �f�x� is greater than � for all x �� A� Together with

�
��
� this implies that w�p�� for N large enough� � �� � �fN�x� for all x �� A� and hence
any x �� A cannot be an optimal solution of the approximating problem� This shows
that w�p�� for N large enough the inclusion AN 
 A holds� Let us �nally observe
that since f�x�� and hence �fN �x�� are linear on A� and AN is the set of minimizers of
�fN �x� over A� it follows that AN is a face of A�

Let us give now the second proof� Let fx�� ���� xqg be the set of points constructed
in the assertion �c� of Lemma 
��� Since this set is �nite and A is the set of minimizers
of f�x�� we have that there exists � � � such that f�xi��� � f�xj� for any i � f�� ���� �g

and j � f� � �� ���� qg� By the Law of Large Numbers we have that �fN �xi� converges
to f�xi�� w�p�� as N � �� for every i � fx�� ���� xqg� Therefore w�p�� for N large

enough we have that �fN�xi� � f�xi� � ��
 for i � f�� ���� �g� and �fN�xj� � f�xj�� ��

for j � f� � �� ���� qg� and hence condition �
���� follows� Together with assertion �c�
of Lemma 
�� this proves that AN is non empty and forms a face of A�

Under the assumptions of the above theorem� the set AN of optimal solutions of
the approximating problem is convex and polyhedral� The above theorem shows that
w�p�� for N large enough� every optimal solution of the approximating problem is an
optimal solution of the true problem and every vertex of the set of optimal solutions
of the approximating problem is a vertex of the set of optimal solutions of the true
problem�

In order to see what may happen consider the following example� Let h�x� �� ��
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jx� � �j� where x � �x�� x�� � IR� and � � � with � �� f�
���� �� 
g 
 IR�
Suppose that the probability of � being equal to any of the points of � is ��
� and let
	 �� fx � IR� � jx�j � �g� Then the set A of optimal solutions of the corresponding
true problem is A � fx � jx�j � �� jx�j � �g� On the other hand� for large N �
the set of optimal solutions of the approximating problem is given either by the face
fx � x� � ��� jx�j � �g or the face fx � x� � �� jx�j � �g of the set A�

�� Exponential rate of convergence� In the previous section we showed that�
under appropriate assumptions� the approximating problem ���
� yields an exact op�
timal solution of the true problem ����� w�p�� for N large enough� Since convergence
w�p�� implies convergence in probability� it follows that the probability of this event
tends to one as N tends to in�nity� That result� however� does not say how large the
sample size N should be in order for the approximating problem to provide such an
exact solution�

Similarly to the example presented in the introduction� it turns out that� in the
case under consideration �i�e� when � is �nite and h��� �� are piecewise linear�� the
convergence of the corresponding probability to one is exponentially fast� A conse�
quence of this� somewhat surprising� fact is that one does not need a very large sample
to �nd the optimal solution of ������ which shows that Monte Carlo approximations
techniques can be an e�ective approach to solve such problems�

In this section we formalize and prove this result� We begin by considering again
the case where the true problem ����� has a unique optimal solution �x� Suppose that
the assumption �A� holds� Recall that Sm�� denotes the sphere in IRm� and consider
the Banach space Z �� C�Sm��� of real valued continuous functions de�ned on Sm��

and equipped with the sup�norm� By restricting a positively homogeneous function
to Sm��� we can identify Z with the space of continuous positively homogeneous
functions on IRm� Denote by Z� the dual space of Z� i�e� the space of continuous
linear functionals de�ned on Z�

Let B be the ��algebra of Borel sets in Z� Consider the function

��d� �� �� h����x� d�� d � IRm� � � �������

The function ���� �� is convex� and hence continuous� and is positively homogeneous�
Therefore it can be considered as an element of Z� Moreover� the mapping � � ���� ���
from ���F� into �Z�B�� is measurable and hence ���� �� can be considered as a random
element of �Z�B�� Let IP be the probability measure on Z induced by the measure
P � Note that IEP ��d� �� � f ���x� d�� and that the measure IP is concentrated on the
subset of Z formed by convex positively homogeneous functions�

Assumption �B� There exists a constant 
 � � such that

k���� ��kZ � 
� for P � almost every ��

This assumption clearly holds if the set � is �nite� Note that

k���� ��kZ � sup
d�Sm��

jh����x� d�j �

Therefore assumption �B� means that the subdi�erentials �h��x� �� are uniformly
bounded for P �almost every �� Notice that this is what happens in two�stage stochas�
tic programming problems with complete recourse if only the right�hand side is ran�
dom� since in that case the dual feasibility set does not depend on �� Complete
recourse implies that the dual feasibility set is also bounded� Therefore� in such case
the subdi�erentials �h��x� �� are uniformly bounded for all ��
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Let us recall now a few facts about random variables on Banach spaces� Let
��� ��� � � � � be an i�i�d� sequence of random elements of �Z�B�� with the common

distribution IP � and de�ne �N �� N��PN
j�� �j � Note that assumption �B� implies

that
R
Z kzkZIP �dz� � �� Then� by the strong Law of Large Numbers �for Banach

spaces� we have that �N � � �� IE��� w�p��� where the convergence is in the norm
of Z and the expectation operator corresponds to the so�called Bochner integral �see�
e�g�� Hiai ������

Let

M�z�� ��

Z
ez
��z�IP �dz�� z� � Z��

be the moment generating function of IP �i�e� of ���� ���� A version of Cram�er s
Theorem for Banach spaces �see� e�g�� Deuschel and Stroock ���� can be stated as
follows� If for any 
 � ����� we haveZ

Z

e�kzkIP �dz� � �����
�

then a Large Deviations Principle �LDP� holds for f�Ng� i�e� for any B�measurable
set ! 
 Z we have that

� infz� int��� I�z� � lim infN��N�� log�P ��N � !��
� lim supN��N�� log�P ��N � !�� � � infz� cl��� I�z��

�����

Here int�!� and cl�!� denote the interior and the topological closure� respectively� of
the set ! 
 Z� and I�z� is the large deviations rate function� which is given by

I�z� �� sup
z��Z�

fz��z�� logM�z��g������

Notice that ���
� follows immediately from assumption �B��
For any d � Sm�� we can de�ne a functional z�d � Z� as z�d�z� �� z�d�� Let

Md�t� �� M�tz�d�� Note that we can also write

Md�t� � IEP

n
et��d���

o
�

so we recognize Md�t� as the moment generating function of the �one dimensional�
random variable X �� ��d� ��� Note also that assumption �B� implies that Md�t� ��
for all t � IR� Consider the rate function of ��d� ��� that is�

Id�
� �� sup
t�IR

�t
� logMd�t�� ������

By taking z� in the right hand side of ����� of the form z� �� tz�d � we obtain that� for
any z � Z�

I�z� � sup
d�Sm��

sup
t�IR

�tz�d�� logMd�t�� � sup
d�Sm��

Id�z�d��������

Let AN be the set of optimal solutions of the approximating problem ���
�� and
consider the following event

EN ��
�

the set AN is non empty and AN � f�xg
�
������
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The above event EN means that the approximating problem possesses unique optimal
solution �xN and that �xN � �x� Denote by EcN the complement of the event EN � Note
that the probability P �EN �� of the event EN � is equal to � � P �EcN �� The following
theorem shows that the probability of the event EcN approaches zero exponentially
fast�

Theorem ���� Suppose that the assumptions of Theorem 
�� are satis�ed� and
that assumption �B� holds� Then there exists a constant � � � such that

lim sup
N��

�

N
log�P �EcN �� � ��������

Proof� Consider �N ��� �� N��PN
j�� ���� �j� � �f �N ��x� ��� and the set

F ��



z � Z � inf

d�T��	x��Sm��
z�d� � �

�
������

Since the topology on Z is that of uniform convergence� it follows that the min�function

��z� �� inf
d�T��	x��Sm��

z�d�

is continuous on the space Z� and hence the set F is closed in Z� By the de�nition
of the set F � we have that if �N �� F � then �N �d� � � for all d � T���x� � Sm���
Consequently� in that case� �xN � �x is the unique optimal solution of the approximating
problem� Therefore we have that

P �EcN � � P ��N � F ��

It follows then by the last inequality of ����� that we only need to show that the
constant

� �� inf
z�F

I�z�������

is positive�
Consider a �xed direction d � T���x��Sm��� and let X denote the corresponding

random variable ��d� ��� Let "�t� �� logMd�t� � log IE�etX � be the logarithmic
moment generating function of X � By the Dominated Convergence Theorem we have
that Md�t� is di�erentiable for all t � IR and M �

d�t� � IE�XetX �� It follows that
"��t� � IE�XetX ��IE�etX � and hence� since jX j � 
 by assumption �B��

j"��t�j �
IE�jX jetX �

IE�etX �
� 
� 	t � IR�

Similarly� we have

j"���t�j �

����IE�X�etX �

IE�etX �
� �"��t���

���� � j
� � �"��t���j � 
�� 	t � IR�������

By the Mean Value Theorem� ������ implies that� for all t� s � IR�

j"��t�� "��s�j � 
�jt� sj�����
�
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Since the function "��� is convex� it follows from a result in convex analysis �e�g�� ��
�
Theorem X���
�
�� that the conjugate function Id � "� is strongly convex modulus
��
�� that is�

Id�
�� � Id�
�� � I �d�
���
� � 
�� �
�



�
j
� � 
�j

�

for all 
�� 
� � IR� Since at �
d �� IE�X � � f ���x� d� we have that Id��
d� � I �d��
d� � ��
it follows that

Id�
� �
�



�
j
� �
dj

�� 	
 � IR�������

By the assumption �A� we have that f ���x� d� � c for all d � T���x� � Sm��� and
hence we obtain that

Id��� �
c�



�
� 	 d � T���x� � Sm���������

By the de�nition of the set F we have that if z � F � then there exists d � T���x��Sm��

such that z�d� � �� It follows then by ����� and ������ that I�z� � c���

�� for any
z � F � Consequently we obtain

� �
c�



�
�������

which completes the proof�
The inequality ����� means that the probability that the approximating problem

���
� has a unique optimal solution which coincides with the optimal solution of the
true problem ������ approaches one exponentially fast� The inequality ������ also gives
an estimate of the corresponding exponential constant�

Consider now a situation where the true problem ����� may have multiple solu�
tions� As in the case of convergence w�p�� presented in section 
� stronger assumptions
are needed� Let AN be the set of optimal solutions of the approximating problem ���
��
and consider the following event

MN ��
�

the set AN is non empty and forms a face of the set A
�
�������

Theorem ���� Suppose that the assumptions of Theorem 
�� hold� Then there
exists a constant � � � such that

lim sup
N��

�

N
log�P �Mc

N �� � ���������

Proof� It is possible to prove this theorem by using arguments of Theorem ���
combined with assertions �a� and �b� of Lemma 
��� The proof becomes even simpler
if we use assertion �c� of Lemma 
��� Let fx�� ���� xqg be the set of points constructed
in the assertion �c� of Lemma 
��� Recall that fx�� ���� x�g forms the set of extreme
points of A� and that f�xi� � f�xj� for any i � f�� ���� �g and j � f� � �� ���� qg� Note
that� by condition �
����� we have that

Mc
N 


n

 i � f�� ���� �g� 
 j � f�� �� ���� qg such that �fN �xi� � �fN �xj�

o
�������
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Moreover� there is � � � such that the event in the right hand side of ����� � is

included in the union of the events Ai ��
n

�fN �xi� � f�xi� � �
o

� i � �� ���� �� and

Aj ��
n

�fN �xj� � f�xj�� �
o

� j � � � �� ���q� It follows that

P �Mc
N � �

�X
i��

P



�fN �xi� � f�xi� � �
�

�

qX
j��
�

P



�fN �xj� � f�xj�� �
�
�

Therefore� in order to prove ������ it su�ces to show that� for any i � f�� ���� �g�
there exists �i � � such that

lim sup
N��

�

N
log

h
P



�fN�xi� � f�xi� � �
�i

� ��i

and� similarly� for any j � f�� �� ���� qg� there exists �j � � such that

lim sup
N��

�

N
log

h
P



�fN�xi� � f�xi�� �
�i

� ��j �

Both assertions follow immediately from the Large Deviations Principle �in a unidi�

mensional setting�� since IE� �fN �xi�� � f�xi�� i � �� � � � � q� This completes the proof
by taking � �� mini�f������qg �i�

�� Examples � In this section we present some examples to illustrate the ideas
discussed in sections 
 and ��

���� The median problem� revisited� We begin by analyzing in more detail
the median problem ����� discussed in the introduction� Let Y�� ���� Ym be i�i�d� real
valued random variables� each one taking values ��� � and � with equal probabilities
���� Let �xN denote an optimal solution of the corresponding approximating problem
������ As it was shown in the introduction� �xN coincides with the true optimal solution
�x � � with very high probability� even for small values of N compared to the size of
the sample space�

We can approach this problem from the point of view of the Large Deviations
theory� Let X be a binomial random variable B�N� p�� with p � ���� As it was
discussed in the introduction� the probability of the event �xN � � is at least � �

P �X � N�
� �more precisely� when N is even this probability is exactly ��
P �X �
N�
� �

�
N
N��

�
pN � the last term becoming negligible as N grows�� By Cram�er s Large

Deviations theorem we have that �see� e�g�� ��� Thm� 
�
����

� infz���� I�z� � lim infN�� �
N log

�
P
�
X
N � �

�

��
� lim supN��

�
N log

�
P
�
X
N � �

�

��
� � infz���� I�z��

For a binomial distribution B�N� p�� the Large Deviations rate function I�z� is given
by

I�z� � z log

�
��� p�z

p��� z�

�
� log

�
�� p �

��� p�z

�� z

�
������

Since I��� is continuous� it follows that

lim
N��

�

N
log

�
P

�
X

N
�

�




��
� � inf

z����
I�z� � �I������
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the last equality arising from the fact that the function I��� is increasing on the interval
�p���� From ����� we obtain that

I����� � log

�
�p�� � �����


��� p�

�
����
�

For p � ��� we have I����� � log


�
p
�

�

�
� ������� and hence the probability

P �X�N � ��
� converges to zero at the exponential rate e�����
�N � Note that in the
considered �one dimensional� case the upper bound of Cram�er s theorem holds for any
N �and not just in the limiting sense�� It follows that the probability that the sample
estimate �xN is equal to the true optimal solution is greater than �� � 
e�����
�N �m�
which for large N is approximately equal to � � 
me�����
�N � Consequently the
probability that the sample estimate �xN is not equal to the true optimal solution
decreases exponentially fast with the sample size N and increases linearly with the
number of variables m� For example� for N � ��� and m � �� we have� by the
above estimate� that the probability of the sample estimate �xN being equal to the
true optimal solution is at least �� � 
e���
���� � ����� This can be compared with
the exact probability of that event� which is about ����� This is quite typical for
the large deviations estimates� For �nite and not too 
large� N � the large deviations
estimates give poor approximations of the corresponding probabilities� What the
Large Deviations theory provides� of course� is the exponential rate at which the
corresponding probabilities converge to zero�

Suppose now that each variable Yi has the following discrete distribution� it can
take values ��� ����� ��� and � with equal probabilities ��
�� In that case the set of
optimal solutions of the true problem ����� is not a singleton� and is given by the cube
fx � ���� � xi � ���g� We have that the probability that the sample estimate �xiN
belongs to the interval ������ ���� is at least ��
P �X � N�
�� where X � B�N� ��
���
Again we obtain that the probability that �xN is an exact optimal solution of the true
problem is approaching one exponentially fast with increasing N �

Now let m � � and suppose that the distribution of Y is discrete with possible
values given by an odd number r � 
� � � of points equally spaced on the interval
���� �� with equal probabilities of ��r� For 
large� r we can view this as a discretization
of the uniform distribution on the interval ���� ��� Then by the same arguments as
above we obtain that the probability that �xN � � is at least ��
P �X � N�
�� where
X � B�N� p� with p � ��r�

An estimate of how fast N grows as a function of the number of variables m and
the number of discretization points r can be obtained using again Large Deviations
techniques� Suppose that m � � and that each random variable Yi� i � �� ����m� has
a discrete distribution as above� From ���
� we have that in this case the constant
� �� I����� is given by

� �
�



log

�
r�

r� � �

�
������

and hence

P ��xN � �� � ��� 
e��N�m �� �� 
me��N �

Consequently� for a �xed � � �� a �conservative� estimate of the sample size N needed
to obtain P ��xN � �� � �� � is given by

N � ��� log�
m��� �� �
r� � �� log�
m����
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so we see that N grows quadratically with the number of discretization points and
logarithmically with the number of random variables�

���� A two�stage stochatic programming problem� We present now some
numerical results obtained for the capacity expansion problem CEP� described in �����
which can be modeled as a two�stage stochastic programming problem with complete
recourse� The problem has � decision variables with � constraints �plus bound con�
straints� on the �rst stage� and �� decision variables with � constraints �plus lower
bound constraints� on the second stage� The random variables� which correspond to
demand in the model� appear only on the right hand side of the second stage� There
are three independent and identically distributed random variables� each taking six
possible values with equal probability� so the sample space has size �� � 
���

For the sake of veri�cation� we initially solved the problem exactly by solving
the equivalent deterministic LP� and obtained the true minimizer �x� Notice that this
optimal solution is unique� We then solved the corresponding Monte Carlo approxi�
mations� with sample sizes N � 
� �� ��� ��� 
�� ��� ��� For each sample size� we solved
the approximating problem ��� times� and counted how many times the optimal so�
lution �xN � of the approximating problem� coincided with the true solution �x� The
corresponding proportion �p is then an estimate of the probability P ��xN � �x�� Since
the generated replications are independent� it follows that an unbiased estimator of
the variance of �p is given by �p��� �p������ From this value we obtain a ��� con�dence
interval whose half�width is denoted by #� The results are displayed in Table ��

N �p #

 ����� ����
� ����� ����
�� ����� ����
�� ����� ����

� ����� ��
�
�� ����� ��
�
�� ����� ����

Table �

Estimated probabilities P ��xN � �x�

Notice again the exponential feature of the numbers on the table� i�e how fast �p
gets close to one� It is interesting to notice that convergence in the CEP� model is even
faster than in the median problem� even though the median problem is much more
structured �in particular� the median problem is separable� with a smaller sample
space �
� points for three random variables� as opposed to 
�� points in the CEP�
model�� For instance� in the median problem a sample size of 
� gives the true optimal
solution with probability ������ whereas in the CEP� problem that probability is
approximately ���� These results corroborate the ideas presented in the previous
sections� showing that convergence can be very fast if there is a sharp minimum such
as in the case of the CEP� model� The results also suggest that the separability
inherent to the median problem was not a major factor to the speed of convergence�
which encourages us to think that the numerical results reported here can be obtained
in more complex problems� Of course� more research is needed to draw any de�nite
conclusions�
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	� Conclusions� We presented in this paper some results concerning conver�
gence of Monte Carlo simulation�based approximations for a class of stochastic pro�
gramming problems� As pointed out in the introduction� the usual approach to con�
vergence analysis found in the literature consists in showing that optimal solutions
of approximating problems converge� with probability one� to optimal solutions of
the original problem� or in obtaining bounds for the rate of convergence via Central
Limit Theorem or Large Deviations type asymptotics� We show� under some speci�c
assumptions �in particular under the assumption that the sample space is �nite � that
the approximating problem provides an exact optimal solution w�p�� for sample size
N large enough and� moreover� that the probability of such an event approaches one
at an exponential rate� This suggests that� in such cases� Monte Carlo simulation
based algorithms could be e�cient� since one may not need a large sample to �nd an
exact optimal solution�

The median problem presented in section � illustrates that point� For a problem
with ���� scenarios� an approximating problem which employs only N � �
� samples�
of a vector of dimension m � 
��� yields the exact optimal solution approximately
��� of the time� Even more impressively� it is possible to show by the same type of
calculations that N � ��� samples are enough to obtain the exact optimal solution
with probability of about ��� for m � ���� random variables� i�e� for ����� scenarios�
Estimates of the sample size N � which were obtained in section � by the large devia�
tions approximations� give slightly bigger values of N �for example� they give N � ���
instead of N � ��� for m � ������ In either case the required sample size grows as
a logarithm of the number m of random variables in that example� Of course� one
must take into account the fact that this is a very structured problem� and in a more
general case one may not get such drastically fast convergence� in fact� the $atter
the objective function is around the optimal solution� the slower the convergence will
be� Nevertheless� the CEP� model studied in section � seems to indicate that fast
convergence is obtained in more general problems� even in the absence of separability�

One should� however� be cautious about these results� especially with respect to
the following aspect� The fact that the convergence is exponential does not necessarily
imply that a small sample su�ces� Indeed� the constant � in the corresponding
exponential rate e��N can be so small that one would need a large sample size N in
order to achieve a reasonable precision� The lower bound ������ gives us an idea about
the exponential constant �� In the median example� with r discretization points for
each random variable Yi� i � �� ����m� we have that we can take c � ��r and 
 � �� if
we use �� norm in the space IRm� This gives us the lower bound � � ���
r��� which
can be compared with the exact value of � � �

�
log�r���r� � ��� �� ���
r� � ��� Note

that the estimate � � ���
r�� does not depend on the number m of random variables�
This happens since any multiplicative constant before e��N can be absorbed into the
exponential rate as N tends to in�nity�

Another remark concerns the assumption of Monte Carlo sampling in our analysis�
By doing so� we were able to exploit properties of i�i�d� samples� which we used to
derive our results� In practice� however� one might think of implementing variance
reduction techniques in order to reduce even more the needed sample sizes� The
incorporation of such techniques into stochastic optimization algorithms has been
shown to be very e�ective in practice �see� e�g�� ��� �� 
���� Research on speci�c
applications of variance reduction techniques to the type of problems discussed in
this paper is underway�
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